[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024095763A1 - Exhaust gas treatment method, fixation method for carbon dioxide, and purification method for alkaline earth metal carbonate - Google Patents

Exhaust gas treatment method, fixation method for carbon dioxide, and purification method for alkaline earth metal carbonate Download PDF

Info

Publication number
WO2024095763A1
WO2024095763A1 PCT/JP2023/037553 JP2023037553W WO2024095763A1 WO 2024095763 A1 WO2024095763 A1 WO 2024095763A1 JP 2023037553 W JP2023037553 W JP 2023037553W WO 2024095763 A1 WO2024095763 A1 WO 2024095763A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkaline earth
earth metal
metal carbonate
exhaust gas
hydroxide
Prior art date
Application number
PCT/JP2023/037553
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 佐野
秀和 後藤
研人 茂住
Original Assignee
株式会社Inpex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Inpex filed Critical 株式会社Inpex
Publication of WO2024095763A1 publication Critical patent/WO2024095763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide

Definitions

  • the present invention relates to an exhaust gas treatment method, a carbon dioxide fixation method, and a method for purifying alkaline earth metal carbonates.
  • CO2 carbon dioxide
  • CCS Carbon Dioxide Capture and Storage
  • CO2 is absorbed in an alkaline aqueous solution of an amine or the like, and then the aqueous solution that has absorbed the CO2 is heated to capture gas containing a high concentration of CO2 , which is then discharged into the ground.
  • Patent Literature 1 discloses a carbon dioxide capture method and capture device that can reduce the energy required to regenerate a CO2 absorbing solution and thereby reduce operating costs.
  • the place where CO2 is captured ( CO2 capture site) and the place where CO2 is stored ( CO2 storage site) may be separated.
  • the captured CO2 is liquefied under low temperature and high pressure, filled into a low temperature and/or high pressure resistant container, and transported from the CO2 capture site to the CO2 storage site by a transport means such as a ship. Therefore, low temperature and high pressure operations are required when transporting CO2 , and therefore a large amount of energy is required for transporting CO2 .
  • one aspect of the present invention aims to provide an exhaust gas treatment method with improved energy efficiency when a CO2 capture site and a CO2 storage site are separated from each other.
  • Another aspect of the present invention aims to provide a carbon dioxide fixation method constituting a part of the above-mentioned method, and a method for purifying an alkaline earth metal carbonate.
  • the present invention includes, for example, the following inventions [1] to [9].
  • [1] (a) obtaining an alkaline earth metal carbonate from a flue gas containing CO2 ; (b) transporting the alkaline earth metal carbonate from a first location to a second location; (c) decomposing the alkaline earth metal carbonate after transportation into alkaline earth metal oxide and CO2 ; (d) discharging the CO2 produced by the decomposition into the ground;
  • the exhaust gas treatment method includes the steps of: [2]
  • the step (a) comprises: (a1) obtaining an alkali metal carbonate from a flue gas containing CO2 ; (a2) reacting the alkali metal carbonate with an alkaline earth metal hydroxide to obtain the alkaline earth metal carbonate;
  • the exhaust gas treatment method according to [1], [3] (e) transporting the oxide produced by the decomposition in the (c) step; (f) reacting the transported oxide with water to obtain an alkaline earth metal hydro
  • the exhaust gas further contains sulfur oxides and nitrogen oxides
  • the exhaust gas treatment method according to any one of [1] to [6], wherein in the step (a), a product containing the alkaline earth metal carbonate, the alkaline earth metal sulfate, and the alkaline earth metal nitrate is obtained from the exhaust gas, and then the alkaline earth metal carbonate is separated from the product.
  • an exhaust gas treatment method with improved energy efficiency when a CO2 capture site and a CO2 storage site are separated from each other.
  • FIG. 1 is a configuration diagram showing an example of an exhaust gas treatment facility according to the present invention.
  • FIG. 1 is a configuration diagram showing an example of an exhaust gas treatment facility according to the present invention.
  • the exhaust gas treatment facility 100 shown in Fig. 1 is divided into a first location side and a second location side.
  • the treatment facility 10 includes a CO 2 absorption device 11 , a reaction device 12 , a separation device 13 , a drying device 14 , and a reaction device 15 .
  • the exhaust gas is transferred to the CO2 absorbing device 11 through a transfer pipe L11.
  • the CO2 absorbing device 11 is a device that brings the exhaust gas into contact with an alkaline solution to absorb the CO2 in the exhaust gas.
  • the CO2 absorbing device 11 is connected to a transfer pipe L12 and a transfer pipe L13.
  • the exhaust gas may be, for example, exhaust gas from a factory or the like, or exhaust gas generated from a transportation means (ship, diesel locomotive, railway, truck, etc.) described later.
  • the exhaust gas contains at least CO2 .
  • the exhaust gas may further contain sulfur oxides ( SOx ) and/or nitrogen oxides ( NOx ).
  • SOx sulfur oxides
  • NOx nitrogen oxides
  • the CO2 absorption device 11 may be a device that absorbs the sulfur oxides and/or nitrogen oxides together with the CO2 in the exhaust gas.
  • the exhaust gas transferred through the transfer pipe L11 may be heated to 60°C or higher from the viewpoint of increasing the absorption efficiency of CO2 in the CO2 absorption device 11.
  • the alkaline solution is not particularly limited as long as it is a solution capable of absorbing CO2 , and may be an aqueous solution containing a hydroxide of an alkali metal (potassium, sodium, etc.), an aqueous solution containing a hydroxide of an alkaline earth metal (calcium, magnesium, barium, etc.), a solution containing an amine, etc.
  • the alkaline solution may be an aqueous solution containing a hydroxide of an alkali metal, or an aqueous solution containing sodium hydroxide, potassium hydroxide, etc. Below, a case where the alkaline solution is an aqueous solution containing a hydroxide of an alkali metal will be described as an example.
  • the concentration (solid content) of the alkali metal hydroxide in the aqueous solution containing the alkali metal hydroxide can be determined depending on the type of alkali metal, the CO2 concentration in the exhaust gas, etc. For example, when the CO2 concentration in the exhaust gas is 7 to 10 mass%, the concentration (solid content) of the alkali metal hydroxide may be 1 to 20 mass%.
  • the aqueous solution containing the hydroxide of the alkali metal that has come into contact with the exhaust gas is transferred to the reaction device 12 through the transfer pipe L12.
  • the aqueous solution passing through the transfer pipe L12 contains, in addition to the hydroxide of the alkali metal, an alkali metal carbonate, which is a reaction product of the hydroxide of the alkali metal and CO 2.
  • the aqueous solution passing through the transfer pipe L12 may contain, for example, an alkali metal sulfate (a reaction product of the hydroxide of the alkali metal and a sulfur oxide), an alkali metal nitrate (a reaction product of the hydroxide of the alkali metal and a nitrogen oxide).
  • the aqueous solution passing through the transfer pipe L12 may contain potassium carbonate, potassium sulfate, potassium nitrate, etc.
  • a component e.g., nitrogen
  • the reaction device 12 is a device that reacts the alkali metal carbonate transferred through the transfer pipe L12 with the alkaline earth metal hydroxide to produce the alkaline earth metal carbonate.
  • the alkali metal is potassium and the alkaline earth metal is calcium in the reaction device 12
  • the potassium carbonate transferred through the transfer pipe L12 reacts with the calcium hydroxide in the reaction device 12 to produce calcium carbonate.
  • the reaction device 12 is connected to the transfer pipes L14, L15, and L19.
  • the aqueous solution transferred through the transfer pipe L12 comes into contact with the hydroxide of the alkaline earth metal in the reaction device 12, and the carbonate of the alkali metal in the aqueous solution reacts with the hydroxide of the alkaline earth metal to produce the carbonate of the alkaline earth metal.
  • the aqueous solution contains a sulfate and/or a nitrate of an alkali metal
  • the sulfate and/or the nitrate of the alkali metal reacts with the hydroxide of the alkaline earth metal to produce the sulfate and/or the nitrate of the alkaline earth metal.
  • the alkaline earth metal is calcium, calcium sulfate and/or calcium nitrate are produced.
  • the alkaline earth metal carbonate produced in the reaction device 12 is transferred to the separation device 13 through the transfer pipe L14.
  • the alkaline earth metal carbonate transferred through the transfer pipe L14 may be in a solid state or in a liquid state such as an aqueous solution or a slurry.
  • alkaline earth metal sulfates and/or nitrates are produced in the reaction device 12, these are also transferred to the separation device 13 through the transfer pipe L14.
  • the aqueous solution containing the hydroxide of the alkali metal is discharged from the reaction device 12 through the transfer pipe L15.
  • the aqueous solution containing the hydroxide of the alkali metal is discharged from the reaction device 12 through the transfer pipe L15, but a part or all of the aqueous solution may be transferred (recycled) to the CO2 absorption device 11.
  • the transfer pipe L14 for transferring the alkaline earth metal carbonate and the transfer pipe L15 for transferring the aqueous solution containing the alkali metal hydroxide are separate, but after the aqueous solution containing the alkaline earth metal carbonate and the alkali metal hydroxide is discharged from the reaction device, the aqueous solution may be transferred to a separation device (not shown) where it is separated into the alkaline earth metal carbonate and the aqueous solution containing the alkali metal hydroxide.
  • Separator 13 is a device that separates the alkaline earth metal carbonate produced in reactor 12 from components other than the alkaline earth metal carbonate (e.g., sulfate, nitrate). When the alkaline earth metal is calcium, separator 13 separates calcium carbonate from components other than calcium carbonate.
  • the method for separating the alkaline earth metal carbonate from components other than the alkaline earth metal carbonate may be, for example, a separation method that utilizes the difference in solubility in water. Transfer pipe L16 and transfer pipe L17 are connected to separator 13.
  • the alkaline earth metal carbonate is transferred to the drying device 14 through the transfer pipe L16.
  • the alkaline earth metal carbonate may be a wet cake containing the alkaline earth metal carbonate and water.
  • Components other than the alkaline earth metal carbonate are discharged from the separation device 13 through the transfer pipe L17.
  • Multiple separation devices may be used to separate the alkaline earth metal carbonate from the components other than the alkaline earth metal carbonate.
  • the drying device 14 is a device that dries a wet cake containing alkaline earth metal carbonate and water.
  • the drying temperature in the drying device 14 may be, for example, 60 to 200°C, or 90 to 150°C.
  • An energy supply line E1 is connected to the drying device 14, and reaction heat generated in the reaction device 15 described below is supplied and used as a heat source for drying.
  • the dried alkaline earth metal carbonate is transported from the first location to the second location by the transport means T1.
  • CO2 can be transported from the CO2 capture location to the CO2 storage location by transporting the alkaline earth metal carbonate at room temperature and normal pressure. Therefore, energy efficiency can be improved compared to the case where CO2 is liquefied at low temperature and/or high pressure, and then filled in a low-temperature and high-pressure resistant container and transported.
  • the transport means T1 include ships, diesel locomotives, railways, trucks, etc.
  • the alkaline earth metal carbonate may be transported at room temperature and normal pressure.
  • the first location may be a CO2 capture location
  • the second location may be a CO2 storage location.
  • the first location may be a region, country, etc. that has a higher CO2 emission amount than the second location, or may be a region, country, etc. that has a lower CO2 emission amount.
  • the second location may be a region, country, etc. that has a larger CO2 storage capacity than the first location.
  • the alkaline earth metal carbonate is transported, for example, to a processing facility 20 at a second location.
  • the processing facility 20 includes a decomposition unit 21.
  • the decomposition device 21 is a device that decomposes an alkaline earth metal carbonate into an alkaline earth metal oxide and CO 2.
  • the alkaline earth metal is calcium
  • calcium carbonate is decomposed into calcium oxide and CO 2 in the decomposition device 21.
  • a transfer pipe L21 is connected to the decomposition device 21.
  • the method for decomposing the alkaline earth metal carbonate into the alkaline earth metal oxide and CO2 may be, for example, thermal decomposition.
  • the temperature for thermally decomposing calcium carbonate may be, for example, 700 to 1000°C.
  • CO2 produced by decomposition of alkaline earth metal carbonate is transferred through the transfer pipe L21.
  • the CO2 produced by the decomposition is transported to the ground through a pipeline (not shown) or the like and discharged.
  • a known method can be applied as a method for discharging CO2 into the ground (a method for storing CO2 ).
  • the CO2 transferred through the transfer pipe L21 may be supplied to a separation device (not shown) or the like.
  • the alkaline earth metal oxide produced by the decomposition of the alkaline earth metal carbonate is transported from the second location to the first location by transport means T2.
  • transport means T2 include a ship, a diesel locomotive, a train, and a truck.
  • the alkaline earth metal oxide may be transported at room temperature and pressure.
  • the alkaline earth metal oxide is transported, for example, by transport means T2 to the reactor 15 of the treatment facility 10 at the first location.
  • the reactor 15 is connected to a transfer pipe L18, a transfer pipe L19, and an energy supply line E1.
  • the reactor 15 is a device that reacts the transported alkaline earth metal oxide with water to produce an alkaline earth metal hydroxide.
  • the alkaline earth metal is calcium
  • calcium oxide reacts with water in the reactor 15 to produce calcium hydroxide. Water is supplied through the transfer pipe L18.
  • the hydroxide of the alkaline earth metal produced in the reaction device 15 is transferred to the reaction device 12 through the transfer pipe L19. This allows the alkaline earth metal (hydroxide of the alkaline earth metal) used to fix CO2 to be reused.
  • the hydroxide of the alkaline earth metal transferred through the transfer pipe L19 may be subjected to removal of unreacted oxide of the alkaline earth metal, water, etc. in a separation device (not shown) before being transferred to the reaction device 12.
  • the reaction heat generated at this time is supplied to the drying device 14 through the energy supply line E1. All of the reaction heat generated in the reaction device 15 may be used in the drying device 14, or only a portion of the reaction heat may be used in the drying device 14.
  • the flue gas treatment equipment 100 when the CO2 capture location and the CO2 storage location are separated from each other, CO2 can be transported from the CO2 capture location to the CO2 storage location by transporting alkaline earth metal carbonate at room temperature and pressure. Therefore, energy efficiency can be improved compared to the case where CO2 is liquefied at low temperature and/or high pressure, filled in a low-temperature and high-pressure resistant container, and transported.
  • the flue gas treatment equipment 100 when transporting alkaline earth metal carbonate, it can be managed at room temperature and pressure, so that equipment such as storage tanks can be reduced and operability is excellent compared to the case where CO2 is liquefied and transported.
  • the flue gas treatment facility may include a device that directly contacts the flue gas with an alkaline earth metal hydroxide to produce an alkaline earth metal carbonate, instead of including a CO2 absorption device and a reaction device that reacts an alkali metal carbonate with an alkaline earth metal hydroxide.
  • the exhaust gas treatment facility does not need to be equipped with a separation device.
  • the alkaline earth metal carbonate produced by the reaction between the alkali metal carbonate and the alkaline earth metal hydroxide may be transferred directly to the drying device without passing through the separation device.
  • the exhaust gas treatment facility does not need to include a drying device.
  • a drying device For example, when the amount of water in the wet cake containing alkaline earth metal carbonate is small, the alkaline earth metal carbonate (wet cake containing alkaline earth metal carbonate) may be transported from the first location to the second location without passing through a drying device.
  • the exhaust gas treatment equipment does not need to be equipped with a reaction device that reacts alkaline earth metal oxides with water.
  • Exhaust gas treatment method A method for capturing CO2 in flue gas and discharging it underground using the flue gas treatment facility 100 will be described. That is, another embodiment of the present invention is an flue gas treatment method.
  • the flue gas treatment method includes at least the following steps.
  • the above contents can be appropriately referred to.
  • the CO 2 when the CO 2 capture location and the CO 2 storage location are separated from each other, the CO 2 can be transported from the CO 2 capture location to the CO 2 storage location by transporting the alkaline earth metal carbonate at room temperature and pressure. Therefore, energy efficiency can be improved compared to the case where CO 2 is liquefied at low temperature and/or high pressure, and then filled in a low temperature and/or high pressure resistant container and transported.
  • the alkaline earth metal carbonate when the alkaline earth metal carbonate is transported, it can be managed at room temperature and pressure. Therefore, compared to the case where CO 2 is liquefied and transported, equipment such as a storage tank can be reduced and operability is excellent.
  • the step (a) is a step of obtaining an alkaline earth metal carbonate from an exhaust gas containing CO 2.
  • the step (a) can also be said to be a step of removing CO 2 from the exhaust gas.
  • the step (a) may include the following steps. (a1) Obtaining an alkali metal carbonate from exhaust gas containing CO2 . (a2) reacting an alkali metal carbonate with an alkaline earth metal hydroxide to obtain an alkaline earth metal carbonate;
  • Step (a1) is a step in which exhaust gas is contacted with an aqueous solution containing an alkali metal hydroxide in the CO2 absorption device 11, CO2 in the exhaust gas is reacted with the alkali metal hydroxide, and an alkali metal carbonate is obtained.
  • the alkali metal is potassium
  • CO2 in the exhaust gas is reacted with potassium hydroxide to obtain potassium carbonate.
  • the exhaust gas may be exhaust gas generated from a transportation means (ship, diesel locomotive, railway, truck, etc.) described later.
  • the alkali metal carbonate may be in a solid state or in a liquid state such as an aqueous solution.
  • Step (a2) is a step of reacting an alkali metal carbonate with an alkaline earth metal hydroxide in the reaction device 12 to obtain an alkaline earth metal carbonate.
  • alkaline earth metals include calcium, magnesium, barium, etc.
  • step (a2) is a step of reacting potassium carbonate with calcium hydroxide to obtain calcium carbonate.
  • the (a2) step may include separating a wet cake containing an alkaline earth metal carbonate from the reaction product of the alkali metal carbonate and the alkaline earth metal hydroxide in the separation device 13, and drying the wet cake in the drying device 14.
  • the heat of reaction between the alkaline earth metal oxide and water in the (g) step described below may be used.
  • step (a) a product containing alkaline earth metal carbonate, alkaline earth metal sulfate, and alkaline earth metal nitrate may be obtained from the exhaust gas, and then the alkaline earth metal carbonate may be separated from the product. That is, step (a) may be a step of obtaining alkaline earth metal carbonate, alkaline earth metal sulfate, and alkaline earth metal nitrate from exhaust gas containing CO 2 , sulfur oxides, and nitrogen oxides, or may be a step of removing CO 2 , sulfur oxides, and nitrogen oxides from the exhaust gas.
  • step (a1) the exhaust gas is contacted with an aqueous solution containing an alkali metal hydroxide in the CO2 absorption device 11, whereby the CO2 , sulfur oxides, and nitrogen oxides in the exhaust gas are reacted with the alkali metal hydroxide to obtain an alkali metal carbonate, an alkali metal sulfate, and an alkali metal nitrate.
  • step (a2) the alkali metal carbonate, the alkali metal sulfate, and the alkali metal nitrate are reacted with an alkaline earth metal hydroxide in the reaction device 12 to obtain a product containing an alkaline earth metal carbonate, an alkaline earth metal sulfate, and an alkaline earth metal nitrate.
  • step (a2) the alkali metal carbonate, the alkali metal sulfate, and the alkali metal nitrate are reacted with an alkaline earth metal hydroxide in the reaction device 12 to obtain a product containing an alkaline earth metal carbonate, an alkaline earth metal sulfate, and an alkaline earth metal nitrate.
  • the separation device 13 the alkaline earth metal carbonate is separated from the product.
  • Step (b) is a step of transporting the hydroxide of the alkaline earth metal from a first location to a second location.
  • the first location may be a CO2 capture location, and the second location may be a CO2 storage location.
  • the first location may be a region, country, etc. that emits more CO2 than the second location, or may be a region, country, etc. that emits less CO2 .
  • the second location may be a region, country, etc. that can store more CO2 than the first location.
  • the alkaline earth metal may be transported by a means of transportation such as a ship, a diesel locomotive, a railroad, or a truck.
  • Step (c) is a step of decomposing the alkaline earth metal carbonate after transportation into an alkaline earth metal oxide and CO 2 in a decomposition device 21.
  • step (c) decomposes the calcium carbonate after transportation into calcium oxide and CO 2.
  • the decomposition of the alkaline earth metal carbonate may be thermal decomposition.
  • Step (d) is a step of discharging the CO2 generated by the decomposition into the ground.
  • a method for discharging the CO2 into the ground a known method can be applied.
  • the exhaust gas treatment method according to this embodiment may further include the following steps. (e) transporting the alkaline earth metal oxides produced by the decomposition in (c). (f) reacting the transported alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide. (g) A step of reacting the alkaline earth metal hydroxide obtained in step (f) with an alkali metal carbonate to obtain an alkaline earth metal carbonate.
  • Step (e) is a step of transporting the alkaline earth metal oxide generated by the decomposition in step (c) above.
  • the alkaline earth metal oxide may be transported, for example, from the second location to the first location, or from the second location to a third location different from the first location.
  • the alkaline earth metal oxide may be transported by ship, diesel locomotive, railroad, truck, etc.
  • Step (f) is a step of reacting the transported alkaline earth metal oxide with water in the reaction device 15 to obtain an alkaline earth metal hydroxide.
  • step (f) is a step of reacting the transported calcium oxide with water to obtain calcium hydroxide.
  • the reaction heat generated when reacting the alkaline earth metal oxide with water to obtain the alkaline earth metal hydroxide may be utilized for drying the wet cake in the drying device 14.
  • step (g) the hydroxide of the alkaline earth metal obtained in step (f) is reacted with a carbonate of an alkaline earth metal to obtain a carbonate of the alkaline earth metal.
  • the alkali metal is potassium and the alkaline earth metal is calcium
  • step (g) the calcium hydroxide obtained in step (f) is reacted with potassium carbonate to obtain calcium carbonate.
  • Another embodiment of the present invention is a method for fixation of carbon dioxide.
  • the method for fixation of carbon dioxide includes at least the following steps.
  • the above-mentioned contents can be appropriately referred to.
  • (v) A process for obtaining an alkali metal carbonate from CO2 .
  • (w) reacting the alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide.
  • (x) reacting an alkali metal carbonate with an alkaline earth metal hydroxide to obtain a reaction product comprising an alkaline earth metal carbonate.
  • (z) A step of drying the wet cake by utilizing the heat of reaction between the alkaline earth metal oxide and water in the step (w).
  • the alkali metal examples include sodium, potassium, etc.
  • Examples of the alkaline earth metal include calcium, magnesium, barium, etc.
  • the CO2 may be CO2 contained in the exhaust gas.
  • the method for immobilizing carbon dioxide can also be said to be a method for purifying (production method) an alkaline earth metal carbonate. That is, another embodiment of the present invention is a method for purifying (production method) an alkaline earth metal carbonate.
  • the method for purifying (production method) an alkaline earth metal carbonate includes at least the following steps. For the method for purifying an alkaline earth metal carbonate according to the other embodiment, the above-mentioned contents can be appropriately referred to.
  • V A process of absorbing CO2 into an alkaline solution.
  • W A step of reacting an alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide.
  • (X) A process of reacting the alkaline solution having absorbed CO2 with an alkaline earth metal hydroxide to obtain a reactant containing an alkaline earth metal carbonate.
  • (Y) A step of separating a wet cake containing an alkaline earth metal carbonate from the reaction product.
  • (Z) A step of drying the wet cake by utilizing the heat of reaction between the alkaline earth metal oxide and water in the (W) step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This exhaust gas treatment method comprises: (a) a step for obtaining an alkaline earth metal carbonate from exhaust gas containing CO2; (b) a step for transporting the alkaline earth metal carbonate from a first place to a second place; (c) a step for decomposing the transported alkaline earth metal carbonate into an alkaline earth metal oxide and CO2; and (d) a step for discharging, into the ground, the CO2 produced due to the decomposition.

Description

排ガス処理方法、二酸化炭素の固定化方法、及びアルカリ土類金属の炭酸塩の精製方法Exhaust gas treatment method, carbon dioxide fixation method, and alkaline earth metal carbonate purification method
 本発明は、排ガス処理方法、二酸化炭素の固定化方法、及びアルカリ土類金属の炭酸塩の精製方法に関する。 The present invention relates to an exhaust gas treatment method, a carbon dioxide fixation method, and a method for purifying alkaline earth metal carbonates.
 大気中の二酸化炭素濃度の上昇を抑えるために、工場等の排ガス中の二酸化炭素(CO)を回収して地中に貯留すること(CCS;Carbon dioxide Capture and Storage)が検討されている。CCSでは、例えば、COをアミン等のアルカリ性水溶液に吸収させた後、COを吸収した水溶液を加熱することによりCOを高濃度で含むガスを回収して、回収したガスが地中に排出する。 In order to prevent the increase in the carbon dioxide concentration in the atmosphere, carbon dioxide ( CO2 ) in exhaust gas from factories and other sources is being captured and stored underground (CCS; Carbon Dioxide Capture and Storage). In CCS, for example, CO2 is absorbed in an alkaline aqueous solution of an amine or the like, and then the aqueous solution that has absorbed the CO2 is heated to capture gas containing a high concentration of CO2 , which is then discharged into the ground.
 近年、CCSではエネルギー効率を高めることが検討されている。例えば、特許文献1には、COの吸収液を再生するために要するエネルギーを削減して操業費用を低減可能な二酸化炭素の回収方法及び回収装置が開示されている。 In recent years, efforts have been made to improve the energy efficiency of CCS. For example, Patent Literature 1 discloses a carbon dioxide capture method and capture device that can reduce the energy required to regenerate a CO2 absorbing solution and thereby reduce operating costs.
特開2012-110805号公報JP 2012-110805 A
 CCSにおいて、COを回収する場所(CO回収場所)と、COを貯留する場所(CO貯留場所)とが離れていることがある。このとき、回収されたCOは、低温・高圧下で液化された後、耐低温及び/又は耐高圧の容器に充填されて、船等の輸送手段によってCO回収場所からCO貯留場所に輸送される。そのため、COを輸送する際に、低温・高圧の操作が必要となるため、COの輸送には多大なエネルギーが必要となる。 In CCS, the place where CO2 is captured ( CO2 capture site) and the place where CO2 is stored ( CO2 storage site) may be separated. In this case, the captured CO2 is liquefied under low temperature and high pressure, filled into a low temperature and/or high pressure resistant container, and transported from the CO2 capture site to the CO2 storage site by a transport means such as a ship. Therefore, low temperature and high pressure operations are required when transporting CO2 , and therefore a large amount of energy is required for transporting CO2 .
 そこで、本発明の一側面は、CO回収場所とCO貯留場所とが離れている場合において、エネルギー効率を向上させた排ガス処理方法を提供することを目的とする。また、本発明の他の側面は、上記の方法の一部を構成する二酸化炭素の固定化方法、及びアルカリ土類金属の炭酸塩の精製方法を提供することを目的とする。 Therefore, one aspect of the present invention aims to provide an exhaust gas treatment method with improved energy efficiency when a CO2 capture site and a CO2 storage site are separated from each other. Another aspect of the present invention aims to provide a carbon dioxide fixation method constituting a part of the above-mentioned method, and a method for purifying an alkaline earth metal carbonate.
 本発明は、例えば、以下の発明[1]~[9]を含む。
[1](a)COを含む排ガスからアルカリ土類金属の炭酸塩を得る工程と、
(b)前記アルカリ土類金属の炭酸塩を第一の場所から第二の場所に輸送する工程と、
(c)輸送後の前記アルカリ土類金属の炭酸塩をアルカリ土類金属の酸化物と、COと、に分解する工程と、
(d)分解で生じた前記COを地中に排出する工程と、
を含む、排ガス処理方法。
[2]前記(a)工程は、
(a1)COを含む排ガスからアルカリ金属の炭酸塩を得るステップと、
(a2)前記アルカリ金属の炭酸塩をアルカリ土類金属の水酸化物と反応させ、前記アルカリ土類金属の炭酸塩を得るステップと、
を含む、[1]に記載の排ガス処理方法。
[3](e)前記(c)工程における分解で生じた前記酸化物を輸送する工程と、
(f)輸送後の前記酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程と、
(g)前記(f)工程で得た前記アルカリ土類金属の水酸化物をアルカリ金属の炭酸塩と反応させ、アルカリ土類金属の炭酸塩を得る工程と、
を更に含む、[2]に記載の排ガス処理方法。
[4]前記(a2)ステップは、
 前記アルカリ金属の炭酸塩と前記アルカリ土類金属の水酸化物との反応物から前記アルカリ土類金属の炭酸塩を含むウェットケーキを分離すること、及び
 前記ウェットケーキを乾燥させること、
を含み、
 前記ウェットケーキの乾燥に、前記(f)工程における前記酸化物と前記水との反応熱を利用する、[3]に記載の排ガス処理方法。
[5]前記(e)工程において、前記第二の場所から前記第一の場所に前記酸化物を輸送する、[3]又は[4]に記載の排ガス処理方法。
[6]前記排ガスが輸送によって生じた排ガスである、[1]~[5]のいずれか一つに記載の排ガス処理方法。
[7]前記排ガスが硫黄酸化物と窒素酸化物とを更に含み、
 前記(a)工程において、前記排ガスから前記アルカリ土類金属の炭酸塩、アルカリ土類金属の硫酸塩、及びアルカリ土類金属の硝酸塩を含む生成物を得た後、前記生成物から前記アルカリ土類金属の炭酸塩を分離する、[1]~[6]のいずれか一つに記載の排ガス処理方法。
[8](v)COからアルカリ金属の炭酸塩を得る工程と、
(w)アルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程と、
(x)前記アルカリ金属の炭酸塩を前記水酸化物と反応させ、アルカリ土類金属の炭酸塩を含む反応物を得る工程と、
(y)前記反応物から前記アルカリ土類金属の炭酸塩を含むウェットケーキを分離する工程と、
(z)前記ウェットケーキを、前記(w)工程における前記酸化物と水との反応熱を利用して乾燥させる工程と、
を含む、二酸化炭素の固定化方法。
[9](V)COからアルカリ金属の炭酸塩を得る工程と、
(W)アルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程と、
(X)前記アルカリ金属の炭酸塩を前記水酸化物と反応させ、アルカリ土類金属の炭酸塩を含む反応物を得る工程と、
(Y)前記反応物から前記アルカリ土類金属の炭酸塩を含むウェットケーキを分離する工程と、
(Z)前記ウェットケーキを、前記(W)工程における前記酸化物と水との反応熱を利用して乾燥させる工程と、
を含む、アルカリ土類金属の炭酸塩の精製方法。
The present invention includes, for example, the following inventions [1] to [9].
[1] (a) obtaining an alkaline earth metal carbonate from a flue gas containing CO2 ;
(b) transporting the alkaline earth metal carbonate from a first location to a second location;
(c) decomposing the alkaline earth metal carbonate after transportation into alkaline earth metal oxide and CO2 ;
(d) discharging the CO2 produced by the decomposition into the ground;
The exhaust gas treatment method includes the steps of:
[2] The step (a) comprises:
(a1) obtaining an alkali metal carbonate from a flue gas containing CO2 ;
(a2) reacting the alkali metal carbonate with an alkaline earth metal hydroxide to obtain the alkaline earth metal carbonate;
The exhaust gas treatment method according to [1],
[3] (e) transporting the oxide produced by the decomposition in the (c) step;
(f) reacting the transported oxide with water to obtain an alkaline earth metal hydroxide;
(g) reacting the alkaline earth metal hydroxide obtained in the step (f) with an alkali metal carbonate to obtain an alkaline earth metal carbonate;
The exhaust gas treatment method according to [2], further comprising:
[4] The (a2) step
separating a wet cake comprising the alkaline earth metal carbonate from a reaction product of the alkali metal carbonate and the alkaline earth metal hydroxide; and drying the wet cake.
Including,
The exhaust gas treatment method according to [3], wherein the wet cake is dried by utilizing heat of reaction between the oxide and the water in the step (f).
[5] The exhaust gas treatment method according to [3] or [4], wherein in the step (e), the oxide is transported from the second location to the first location.
[6] The exhaust gas treatment method according to any one of [1] to [5], wherein the exhaust gas is exhaust gas generated during transportation.
[7] The exhaust gas further contains sulfur oxides and nitrogen oxides,
The exhaust gas treatment method according to any one of [1] to [6], wherein in the step (a), a product containing the alkaline earth metal carbonate, the alkaline earth metal sulfate, and the alkaline earth metal nitrate is obtained from the exhaust gas, and then the alkaline earth metal carbonate is separated from the product.
[8] (v) obtaining an alkali metal carbonate from CO2 ;
(w) reacting the alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide;
(x) reacting the alkali metal carbonate with the hydroxide to obtain a reaction product comprising an alkaline earth metal carbonate;
(y) separating a wet cake comprising the alkaline earth metal carbonate from the reaction product;
(z) drying the wet cake by utilizing the heat of reaction between the oxide and water in the (w) step;
A method for fixing carbon dioxide, comprising:
[9] (V) a step of obtaining an alkali metal carbonate from CO2 ;
(W) reacting an alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide;
(X) reacting the alkali metal carbonate with the hydroxide to obtain a reaction product containing an alkaline earth metal carbonate;
(Y) separating a wet cake containing the alkaline earth metal carbonate from the reaction product;
(Z) drying the wet cake by utilizing the heat of reaction between the oxide and water in the (W) step;
1. A method for purifying an alkaline earth metal carbonate, comprising:
 本発明の一側面によれば、CO回収場所とCO貯留場所とが離れている場合において、エネルギー効率を向上させた排ガス処理方法を提供することができる。また、本発明の他の側面によれば、上記の方法の一部を構成する二酸化炭素の固定化方法、及びアルカリ土類金属の炭酸塩の精製方法を提供することができる。 According to one aspect of the present invention, it is possible to provide an exhaust gas treatment method with improved energy efficiency when a CO2 capture site and a CO2 storage site are separated from each other. Also, according to another aspect of the present invention, it is possible to provide a carbon dioxide fixation method constituting a part of the above-mentioned method, and a method for purifying an alkaline earth metal carbonate.
図1は、本発明に係る排ガス処理設備の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of an exhaust gas treatment facility according to the present invention.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。 Below, an embodiment of the present invention will be described in detail with reference to the drawings. In the following description, the same or equivalent parts will be given the same reference numerals, and duplicate descriptions will be omitted.
[排ガス処理設備]
 図1は、本発明に係る排ガス処理設備の一例を示す構成図である。図1に示す排ガス処理設備100は、第一の場所側と第二の場所側とに分かれている。
[Exhaust gas treatment equipment]
Fig. 1 is a configuration diagram showing an example of an exhaust gas treatment facility according to the present invention. The exhaust gas treatment facility 100 shown in Fig. 1 is divided into a first location side and a second location side.
 処理設備10は、CO吸収装置11と、反応装置12と、分離装置13と、乾燥装置14と、反応装置15とを備える。 The treatment facility 10 includes a CO 2 absorption device 11 , a reaction device 12 , a separation device 13 , a drying device 14 , and a reaction device 15 .
 排ガスは、移送管L11を通じてCO吸収装置11に移送される。CO吸収装置11は、排ガスとアルカリ性溶液とを接触させ、排ガス中のCOを吸収する装置である。CO吸収装置11には、移送管L12と移送管L13とが接続されている。 The exhaust gas is transferred to the CO2 absorbing device 11 through a transfer pipe L11. The CO2 absorbing device 11 is a device that brings the exhaust gas into contact with an alkaline solution to absorb the CO2 in the exhaust gas. The CO2 absorbing device 11 is connected to a transfer pipe L12 and a transfer pipe L13.
 排ガスは、例えば、工場等からの排ガスであってもよく、後述の輸送手段(船、ディーゼル機関車、鉄道、トラック等)から生じる排ガスであってもよい。排ガスは、COを少なくとも含む。排ガスは、硫黄酸化物(SO)及び/又は窒素酸化物(NO)を更に含んでもよい。排ガスが硫黄酸化物及び/又は窒素酸化物を含む場合、CO吸収装置11は、排ガス中のCOと共に硫黄酸化物及び/又は窒素酸化物を吸収する装置であってもよい。移送管L11を通じて移送される排ガスは、CO吸収装置11におけるCOの吸収効率を高める観点から、60℃以上に加温されていてもよい。 The exhaust gas may be, for example, exhaust gas from a factory or the like, or exhaust gas generated from a transportation means (ship, diesel locomotive, railway, truck, etc.) described later. The exhaust gas contains at least CO2 . The exhaust gas may further contain sulfur oxides ( SOx ) and/or nitrogen oxides ( NOx ). When the exhaust gas contains sulfur oxides and/or nitrogen oxides, the CO2 absorption device 11 may be a device that absorbs the sulfur oxides and/or nitrogen oxides together with the CO2 in the exhaust gas. The exhaust gas transferred through the transfer pipe L11 may be heated to 60°C or higher from the viewpoint of increasing the absorption efficiency of CO2 in the CO2 absorption device 11.
 アルカリ性溶液は、COを吸収できる溶液であれば特に制限はなく、アルカリ金属(カリウム、ナトリウム等)の水酸化物を含む水溶液、アルカリ土類金属(カルシウム、マグネシウム、バリウム等)の水酸化物を含む水溶液、アミンを含む溶液等であってもよい。アルカリ性溶液は、アルカリ金属の水酸化物を含む水溶液であってもよく、水酸化ナトリウム、水酸化カリウム等を含む水溶液であってもよい。以下、アルカリ性溶液がアルカリ金属の水酸化物を含む水溶液である場合を例示して説明する。 The alkaline solution is not particularly limited as long as it is a solution capable of absorbing CO2 , and may be an aqueous solution containing a hydroxide of an alkali metal (potassium, sodium, etc.), an aqueous solution containing a hydroxide of an alkaline earth metal (calcium, magnesium, barium, etc.), a solution containing an amine, etc. The alkaline solution may be an aqueous solution containing a hydroxide of an alkali metal, or an aqueous solution containing sodium hydroxide, potassium hydroxide, etc. Below, a case where the alkaline solution is an aqueous solution containing a hydroxide of an alkali metal will be described as an example.
 アルカリ金属の水酸化物を含む水溶液におけるアルカリ金属の水酸化物の濃度(固形分量)は、アルカリ金属の種類、排ガス中のCO濃度等に応じて決定することができる。例えば、排ガス中のCO濃度が7~10質量%である場合、アルカリ金属の水酸化物の濃度(固形分量)は、1~20質量%であってもよい。 The concentration (solid content) of the alkali metal hydroxide in the aqueous solution containing the alkali metal hydroxide can be determined depending on the type of alkali metal, the CO2 concentration in the exhaust gas, etc. For example, when the CO2 concentration in the exhaust gas is 7 to 10 mass%, the concentration (solid content) of the alkali metal hydroxide may be 1 to 20 mass%.
 排ガスと接触したアルカリ金属の水酸化物を含む水溶液は、移送管L12を通じて反応装置12に移送される。移送管L12を通る水溶液は、アルカリ金属の水酸化物の他に、アルカリ金属の水酸化物とCOとの反応物であるアルカリ金属の炭酸塩を含む。移送管L12を通る水溶液は、アルカリ金属の炭酸塩の他に、アルカリ金属の硫酸塩(アルカリ金属の水酸化物と硫黄酸化物との反応物)、アルカリ金属の硝酸塩(アルカリ金属の水酸化物と窒素酸化物との反応物)等を含んでいてもよい。アルカリ金属がカリウムである場合、移送管L12を通る水溶液は、炭酸カリウムを含み、硫酸カリウム、硝酸カリウム等を含んでいてもよい。一方、排ガス中の成分のうち、アルカリ金属の水酸化物を含む水溶液に難溶であり、且つアルカリ金属の水酸化物との反応性が低い成分(例えば、窒素)は、移送管L13を通じてCO吸収装置11から排出される。 The aqueous solution containing the hydroxide of the alkali metal that has come into contact with the exhaust gas is transferred to the reaction device 12 through the transfer pipe L12. The aqueous solution passing through the transfer pipe L12 contains, in addition to the hydroxide of the alkali metal, an alkali metal carbonate, which is a reaction product of the hydroxide of the alkali metal and CO 2. In addition to the carbonate of the alkali metal, the aqueous solution passing through the transfer pipe L12 may contain, for example, an alkali metal sulfate (a reaction product of the hydroxide of the alkali metal and a sulfur oxide), an alkali metal nitrate (a reaction product of the hydroxide of the alkali metal and a nitrogen oxide). When the alkali metal is potassium, the aqueous solution passing through the transfer pipe L12 may contain potassium carbonate, potassium sulfate, potassium nitrate, etc. On the other hand, among the components in the exhaust gas, a component (e.g., nitrogen) that is poorly soluble in the aqueous solution containing the hydroxide of the alkali metal and has low reactivity with the hydroxide of the alkali metal is discharged from the CO 2 absorption device 11 through the transfer pipe L13.
 反応装置12は、移送管L12を通じて移送されるアルカリ金属の炭酸塩をアルカリ土類金属の水酸化物と反応させ、アルカリ土類金属の炭酸塩を生成する装置である。反応装置12において、アルカリ金属がカリウムであり、アルカリ土類金属がカルシウムである場合、移送管L12を通じて移送される炭酸カリウムが反応装置12内の水酸化カルシウムと反応して、炭酸カルシウムが生成する。反応装置12には、移送管L14と、移送管L15と、移送管L19とが接続されている。 The reaction device 12 is a device that reacts the alkali metal carbonate transferred through the transfer pipe L12 with the alkaline earth metal hydroxide to produce the alkaline earth metal carbonate. In the case where the alkali metal is potassium and the alkaline earth metal is calcium in the reaction device 12, the potassium carbonate transferred through the transfer pipe L12 reacts with the calcium hydroxide in the reaction device 12 to produce calcium carbonate. The reaction device 12 is connected to the transfer pipes L14, L15, and L19.
 反応装置12において、移送管L12を通じて移送される水溶液が、反応装置12内のアルカリ土類金属の水酸化物と接触することにより、水溶液中のアルカリ金属の炭酸塩がアルカリ土類金属の水酸化物と反応して、アルカリ土類金属の炭酸塩が生成する。水溶液がアルカリ金属の硫酸塩及び/又は硝酸塩を含む場合、アルカリ金属の硫酸塩及び/又は硝酸塩は、アルカリ土類金属の水酸化物と反応して、アルカリ土類金属の硫酸塩及び/又は硝酸塩が生成する。アルカリ土類金属がカルシウムである場合、硫酸カルシウム及び/又は硝酸カルシウムが生成する。 In the reaction device 12, the aqueous solution transferred through the transfer pipe L12 comes into contact with the hydroxide of the alkaline earth metal in the reaction device 12, and the carbonate of the alkali metal in the aqueous solution reacts with the hydroxide of the alkaline earth metal to produce the carbonate of the alkaline earth metal. When the aqueous solution contains a sulfate and/or a nitrate of an alkali metal, the sulfate and/or the nitrate of the alkali metal reacts with the hydroxide of the alkaline earth metal to produce the sulfate and/or the nitrate of the alkaline earth metal. When the alkaline earth metal is calcium, calcium sulfate and/or calcium nitrate are produced.
 反応装置12で生成したアルカリ土類金属の炭酸塩は、移送管L14を通じて分離装置13に移送される。移送管L14を通じて移送されるアルカリ土類金属の炭酸塩は、固体状であってもよく、水溶液、スラリー等の液状であってもよい。反応装置12でアルカリ土類金属の硫酸塩及び/又は硝酸塩が生成する場合、これらも移送管L14を通じて分離装置13に移送される。 The alkaline earth metal carbonate produced in the reaction device 12 is transferred to the separation device 13 through the transfer pipe L14. The alkaline earth metal carbonate transferred through the transfer pipe L14 may be in a solid state or in a liquid state such as an aqueous solution or a slurry. When alkaline earth metal sulfates and/or nitrates are produced in the reaction device 12, these are also transferred to the separation device 13 through the transfer pipe L14.
 アルカリ金属の水酸化物を含む水溶液は、移送管L15を通じて反応装置12から排出される。アルカリ金属の水酸化物を含む水溶液は、移送管L15を通じて反応装置12から排出されるが、水溶液の一部又は全部は、CO吸収装置11に移送(リサイクル)されてもよい。 The aqueous solution containing the hydroxide of the alkali metal is discharged from the reaction device 12 through the transfer pipe L15. The aqueous solution containing the hydroxide of the alkali metal is discharged from the reaction device 12 through the transfer pipe L15, but a part or all of the aqueous solution may be transferred (recycled) to the CO2 absorption device 11.
 図1において、アルカリ土類金属の炭酸塩を移送する移送管L14と、アルカリ金属の水酸化物を含む水溶液を移送する移送管L15とが分離しているが、アルカリ土類金属の炭酸塩とアルカリ金属の水酸化物とを含む水溶液の状態で反応装置から排出された後、水溶液を分離装置(図示せず)に移送し、分離装置においてアルカリ土類金属の炭酸塩と、アルカリ金属の水酸化物を含む水溶液とに分離してもよい。 In FIG. 1, the transfer pipe L14 for transferring the alkaline earth metal carbonate and the transfer pipe L15 for transferring the aqueous solution containing the alkali metal hydroxide are separate, but after the aqueous solution containing the alkaline earth metal carbonate and the alkali metal hydroxide is discharged from the reaction device, the aqueous solution may be transferred to a separation device (not shown) where it is separated into the alkaline earth metal carbonate and the aqueous solution containing the alkali metal hydroxide.
 分離装置13は、反応装置12で生成したアルカリ土類金属の炭酸塩と、アルカリ土類金属の炭酸塩以外の成分(例えば、硫酸塩、硝酸塩)とを分離する装置である。アルカリ土類金属がカルシウムである場合、分離装置13において、炭酸カルシウムと、炭酸カルシウム以外の成分とを分離する。アルカリ土類金属の炭酸塩と、アルカリ土類金属の炭酸塩以外の成分とを分離する方法は、例えば、水に対する溶解度の差を利用した分離方法であってもよい。分離装置13には、移送管L16と、移送管L17とが接続されている。 Separator 13 is a device that separates the alkaline earth metal carbonate produced in reactor 12 from components other than the alkaline earth metal carbonate (e.g., sulfate, nitrate). When the alkaline earth metal is calcium, separator 13 separates calcium carbonate from components other than calcium carbonate. The method for separating the alkaline earth metal carbonate from components other than the alkaline earth metal carbonate may be, for example, a separation method that utilizes the difference in solubility in water. Transfer pipe L16 and transfer pipe L17 are connected to separator 13.
 アルカリ土類金属の炭酸塩は、移送管L16を通じて乾燥装置14に移送される。このとき、アルカリ土類金属の炭酸塩は、アルカリ土類金属の炭酸塩と水を含むウェットケーキであってもよい。アルカリ土類金属の炭酸塩以外の成分は、移送管L17を通じて分離装置13から排出される。アルカリ土類金属の炭酸塩と、アルカリ土類金属の炭酸塩以外の成分とを分離するために、複数の分離装置を用いてもよい。 The alkaline earth metal carbonate is transferred to the drying device 14 through the transfer pipe L16. At this time, the alkaline earth metal carbonate may be a wet cake containing the alkaline earth metal carbonate and water. Components other than the alkaline earth metal carbonate are discharged from the separation device 13 through the transfer pipe L17. Multiple separation devices may be used to separate the alkaline earth metal carbonate from the components other than the alkaline earth metal carbonate.
 乾燥装置14は、アルカリ土類金属の炭酸塩と水を含むウェットケーキを乾燥させる装置である。乾燥装置14における乾燥温度は、例えば、60~200℃、又は90~150℃であってもよい。乾燥装置14には、エネルギー供給ラインE1が接続されており、後述の反応装置15で発生する反応熱が供給されて、乾燥の熱源として利用される。 The drying device 14 is a device that dries a wet cake containing alkaline earth metal carbonate and water. The drying temperature in the drying device 14 may be, for example, 60 to 200°C, or 90 to 150°C. An energy supply line E1 is connected to the drying device 14, and reaction heat generated in the reaction device 15 described below is supplied and used as a heat source for drying.
 乾燥させたアルカリ土類金属の炭酸塩は、輸送手段T1により第一の場所から第二の場所に輸送される。CO回収場所とCO貯留場所とが離れている場合において、アルカリ土類金属の炭酸塩を常温・常圧下で輸送することにより、COをCO回収場所からCO貯留場所まで輸送できる。そのため、COを低温及び/又は高圧下で液化した後、耐低温・耐高圧の容器に充填して輸送する場合と比べてエネルギー効率を向上させることができる。輸送手段T1としては、船、ディーゼル機関車、鉄道、トラック等が挙げられる。アルカリ土類金属の炭酸塩の輸送は、常温・常圧下で行ってもよい。第一の場所は、CO回収場所であってもよく、第二の場所はCO貯留場所であってもよい。第一の場所は、第二の場所よりもCOの排出量が多い地域、国等であってもよく、COの排出量が少ない地域、国等であってもよい。第二の場所は、第一の場所よりもCOの貯留可能量が多い地域、国等であってもよい。 The dried alkaline earth metal carbonate is transported from the first location to the second location by the transport means T1. When the CO2 capture location and the CO2 storage location are apart, CO2 can be transported from the CO2 capture location to the CO2 storage location by transporting the alkaline earth metal carbonate at room temperature and normal pressure. Therefore, energy efficiency can be improved compared to the case where CO2 is liquefied at low temperature and/or high pressure, and then filled in a low-temperature and high-pressure resistant container and transported. Examples of the transport means T1 include ships, diesel locomotives, railways, trucks, etc. The alkaline earth metal carbonate may be transported at room temperature and normal pressure. The first location may be a CO2 capture location, and the second location may be a CO2 storage location. The first location may be a region, country, etc. that has a higher CO2 emission amount than the second location, or may be a region, country, etc. that has a lower CO2 emission amount. The second location may be a region, country, etc. that has a larger CO2 storage capacity than the first location.
 アルカリ土類金属の炭酸塩は、例えば、第二の場所における処理設備20に輸送される。処理設備20は、分解装置21を備える。 The alkaline earth metal carbonate is transported, for example, to a processing facility 20 at a second location. The processing facility 20 includes a decomposition unit 21.
 分解装置21は、アルカリ土類金属の炭酸塩をアルカリ土類金属の酸化物とCOとに分解する装置である。アルカリ土類金属がカルシウムである場合、分解装置21において、炭酸カルシウムを酸化カルシウムとCOとに分解する。分解装置21には、移送管L21が接続されている。 The decomposition device 21 is a device that decomposes an alkaline earth metal carbonate into an alkaline earth metal oxide and CO 2. When the alkaline earth metal is calcium, calcium carbonate is decomposed into calcium oxide and CO 2 in the decomposition device 21. A transfer pipe L21 is connected to the decomposition device 21.
 アルカリ土類金属の炭酸塩をアルカリ土類金属の酸化物とCOとに分解する方法は、例えば、熱分解であってもよい。アルカリ土類金属がカルシウムである場合、すなわちアルカリ土類金属の炭酸塩が炭酸カルシウムである場合、炭酸カルシウムを熱分解するときの温度は、例えば、700~1000℃であってもよい。 The method for decomposing the alkaline earth metal carbonate into the alkaline earth metal oxide and CO2 may be, for example, thermal decomposition. When the alkaline earth metal is calcium, that is, when the alkaline earth metal carbonate is calcium carbonate, the temperature for thermally decomposing calcium carbonate may be, for example, 700 to 1000°C.
 アルカリ土類金属の炭酸塩の分解で生じたCOは、移送管L21を通じて移送される。分解で生じたCOは、パイプライン(図示せず)等により地中まで輸送されて排出される。COを地中に排出する方法(COを貯留する方法)は、公知の方法を適用することができる。地中に排出する前にCOの純度を高めるために、移送管L21を通じて移送されるCOを分離装置(図示せず)等に供給してもよい。 CO2 produced by decomposition of alkaline earth metal carbonate is transferred through the transfer pipe L21. The CO2 produced by the decomposition is transported to the ground through a pipeline (not shown) or the like and discharged. A known method can be applied as a method for discharging CO2 into the ground (a method for storing CO2 ). In order to increase the purity of CO2 before discharging it into the ground, the CO2 transferred through the transfer pipe L21 may be supplied to a separation device (not shown) or the like.
 アルカリ土類金属の炭酸塩の分解で生じたアルカリ土類金属の酸化物は、輸送手段T2により第二の場所から第一の場所に輸送される。輸送手段T2としては、船、ディーゼル機関車、鉄道、トラック等が挙げられる。アルカリ土類金属の酸化物の輸送は、常温・常圧下で行ってもよい。 The alkaline earth metal oxide produced by the decomposition of the alkaline earth metal carbonate is transported from the second location to the first location by transport means T2. Examples of the transport means T2 include a ship, a diesel locomotive, a train, and a truck. The alkaline earth metal oxide may be transported at room temperature and pressure.
 アルカリ土類金属の酸化物は、例えば、輸送手段T2により第一の場所における処理設備10の反応装置15に輸送される。反応装置15には、移送管L18と、移送管L19と、エネルギー供給ラインE1とが接続されている。 The alkaline earth metal oxide is transported, for example, by transport means T2 to the reactor 15 of the treatment facility 10 at the first location. The reactor 15 is connected to a transfer pipe L18, a transfer pipe L19, and an energy supply line E1.
 反応装置15は、輸送されたアルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を生成する装置である。アルカリ土類金属がカルシウムである場合、反応装置15において、酸化カルシウムが水と反応して、水酸化カルシウムが生成する。水は、移送管L18を通じて供給される。 The reactor 15 is a device that reacts the transported alkaline earth metal oxide with water to produce an alkaline earth metal hydroxide. When the alkaline earth metal is calcium, calcium oxide reacts with water in the reactor 15 to produce calcium hydroxide. Water is supplied through the transfer pipe L18.
 反応装置15で生成したアルカリ土類金属の水酸化物は、移送管L19を通じて反応装置12に移送される。これにより、COを固定化するために用いたアルカリ土類金属(アルカリ土類金属の水酸化物)を再利用することができる。移送管L19を通じて移送されるアルカリ土類金属の水酸化物は、反応装置12に移送される前に分離装置(図示せず)において未反応のアルカリ土類金属の酸化物、水等を除去してもよい。 The hydroxide of the alkaline earth metal produced in the reaction device 15 is transferred to the reaction device 12 through the transfer pipe L19. This allows the alkaline earth metal (hydroxide of the alkaline earth metal) used to fix CO2 to be reused. The hydroxide of the alkaline earth metal transferred through the transfer pipe L19 may be subjected to removal of unreacted oxide of the alkaline earth metal, water, etc. in a separation device (not shown) before being transferred to the reaction device 12.
 アルカリ土類金属の酸化物が水と反応してアルカリ土類金属の水酸化物を生成する際に発熱する。このとき発生する反応熱は、エネルギー供給ラインE1を通じて乾燥装置14に供給される。反応装置15で発生する反応熱の全てが乾燥装置14で利用されてもよく、反応熱の一部が乾燥装置14で利用されてもよい。 Heat is generated when the alkaline earth metal oxide reacts with water to produce the alkaline earth metal hydroxide. The reaction heat generated at this time is supplied to the drying device 14 through the energy supply line E1. All of the reaction heat generated in the reaction device 15 may be used in the drying device 14, or only a portion of the reaction heat may be used in the drying device 14.
 排ガス処理設備100によれば、CO回収場所とCO貯留場所とが離れている場合において、アルカリ土類金属の炭酸塩を常温・常圧下で輸送することにより、COをCO回収場所からCO貯留場所まで輸送できる。そのため、COを低温及び/又は高圧下で液化した後、耐低温・耐高圧の容器に充填して輸送する場合と比べてエネルギー効率を向上させることができる。また、排ガス処理設備100によれば、アルカリ土類金属の炭酸塩を輸送する場合、常温・常圧下での管理することができるため、COを液化して輸送する場合と比べて、貯蔵タンク等の設備を削減できると共に操作性が優れる。 According to the flue gas treatment equipment 100, when the CO2 capture location and the CO2 storage location are separated from each other, CO2 can be transported from the CO2 capture location to the CO2 storage location by transporting alkaline earth metal carbonate at room temperature and pressure. Therefore, energy efficiency can be improved compared to the case where CO2 is liquefied at low temperature and/or high pressure, filled in a low-temperature and high-pressure resistant container, and transported. In addition, according to the flue gas treatment equipment 100, when transporting alkaline earth metal carbonate, it can be managed at room temperature and pressure, so that equipment such as storage tanks can be reduced and operability is excellent compared to the case where CO2 is liquefied and transported.
[変形例]
 排ガス処理設備は、CO吸収装置、及び、アルカリ金属の炭酸塩とアルカリ土類金属の水酸化物とを反応させる反応装置を備える代わりに、排ガスをアルカリ土類金属の水酸化物に直接接触させ、アルカリ土類金属の炭酸塩を生成する装置を備えていてもよい。
[Modification]
The flue gas treatment facility may include a device that directly contacts the flue gas with an alkaline earth metal hydroxide to produce an alkaline earth metal carbonate, instead of including a CO2 absorption device and a reaction device that reacts an alkali metal carbonate with an alkaline earth metal hydroxide.
 排ガス処理設備は、分離装置を備えていなくてもよい。例えば、排ガスに含まれる硫黄酸化物及び窒素酸化物が微量である場合、アルカリ金属の炭酸塩とアルカリ土類金属の水酸化物との反応により生成したアルカリ土類金属の炭酸塩は、分離装置を経由せずに、直接乾燥装置に移送されてもよい。 The exhaust gas treatment facility does not need to be equipped with a separation device. For example, when the exhaust gas contains only trace amounts of sulfur oxides and nitrogen oxides, the alkaline earth metal carbonate produced by the reaction between the alkali metal carbonate and the alkaline earth metal hydroxide may be transferred directly to the drying device without passing through the separation device.
 排ガス処理設備は、乾燥装置を備えていなくてもよい。例えば、アルカリ土類金属の炭酸塩を含むウェットケーキにおける水が微量である場合、アルカリ土類金属の炭酸塩(アルカリ土類金属の炭酸塩を含むウェットケーキ)は、乾燥装置を経由せずに、第一の場所から第二の場所に輸送されてもよい。 The exhaust gas treatment facility does not need to include a drying device. For example, when the amount of water in the wet cake containing alkaline earth metal carbonate is small, the alkaline earth metal carbonate (wet cake containing alkaline earth metal carbonate) may be transported from the first location to the second location without passing through a drying device.
 排ガス処理設備は、アルカリ土類金属をリサイクルしない場合、アルカリ土類金属の酸化物と水とを反応させる反応装置を備えていなくてもよい。 If alkaline earth metals are not recycled, the exhaust gas treatment equipment does not need to be equipped with a reaction device that reacts alkaline earth metal oxides with water.
[排ガス処理方法]
 排ガス処理設備100を使用して排ガス中のCOを回収し、地中に排出する方法について説明する。すなわち、本発明の他の実施形態は、排ガス処理方法である。排ガス処理方法は、少なくとも以下の工程を含む。他の実施形態に係る排ガス処理方法は、上述した内容を適宜参照することができる。
(a)COを含む排ガスからアルカリ土類金属の炭酸塩を得る工程。
(b)アルカリ土類金属の炭酸塩を第一の場所から第二の場所に輸送する工程。
(c)輸送後のアルカリ土類金属の炭酸塩をアルカリ土類金属の酸化物と、COと、に分解する工程。
(d)分解で生じたCOを地中に排出する工程。
[Exhaust gas treatment method]
A method for capturing CO2 in flue gas and discharging it underground using the flue gas treatment facility 100 will be described. That is, another embodiment of the present invention is an flue gas treatment method. The flue gas treatment method includes at least the following steps. For the flue gas treatment methods according to the other embodiments, the above contents can be appropriately referred to.
(a) A process for obtaining alkaline earth metal carbonates from exhaust gas containing CO2 .
(b) transporting the alkaline earth metal carbonate from the first location to a second location.
(c) Decomposing the transported alkaline earth metal carbonate into alkaline earth metal oxide and CO2 .
(d) Discharging the CO2 produced by the decomposition into the ground.
 他の実施形態に係る排ガス処理方法は、CO回収場所とCO貯留場所とが離れている場合において、アルカリ土類金属の炭酸塩を常温・常圧下で輸送することにより、COをCO回収場所からCO貯留場所まで輸送できる。そのため、COを低温及び/又は高圧下で液化した後、耐低温及び/又は耐高圧の容器に充填して輸送する場合と比べてエネルギー効率を向上されることができる。また、他の実施形態に係る排ガス処理方法は、アルカリ土類金属の炭酸塩を輸送する場合、常温・常圧下での管理することができる。そのため、COを液化して輸送する場合と比べて、貯蔵タンク等の設備を削減できると共に操作性が優れる。 In the exhaust gas treatment method according to another embodiment, when the CO 2 capture location and the CO 2 storage location are separated from each other, the CO 2 can be transported from the CO 2 capture location to the CO 2 storage location by transporting the alkaline earth metal carbonate at room temperature and pressure. Therefore, energy efficiency can be improved compared to the case where CO 2 is liquefied at low temperature and/or high pressure, and then filled in a low temperature and/or high pressure resistant container and transported. In addition, in the exhaust gas treatment method according to another embodiment, when the alkaline earth metal carbonate is transported, it can be managed at room temperature and pressure. Therefore, compared to the case where CO 2 is liquefied and transported, equipment such as a storage tank can be reduced and operability is excellent.
<(a)工程>
 (a)工程は、COを含む排ガスからアルカリ土類金属の炭酸塩を得る工程である。(a)工程は、排ガスからCOを除去する工程ともいえる。(a)工程は、以下のステップを含んでもよい。
(a1)COを含む排ガスからアルカリ金属の炭酸塩を得るステップ。
(a2)アルカリ金属の炭酸塩をアルカリ土類金属の水酸化物と反応させ、アルカリ土類金属の炭酸塩を得るステップ。
<Step (a)>
The step (a) is a step of obtaining an alkaline earth metal carbonate from an exhaust gas containing CO 2. The step (a) can also be said to be a step of removing CO 2 from the exhaust gas. The step (a) may include the following steps.
(a1) Obtaining an alkali metal carbonate from exhaust gas containing CO2 .
(a2) reacting an alkali metal carbonate with an alkaline earth metal hydroxide to obtain an alkaline earth metal carbonate;
 (a1)ステップは、CO吸収装置11において、排ガスとアルカリ金属の水酸化物を含む水溶液とを接触させ、排ガス中のCOをアルカリ金属の水酸化物と反応させ、アルカリ金属の炭酸塩を得るステップである。アルカリ金属がカリウムである場合、排ガス中のCOを水酸化カリウムと反応させ、炭酸カリウムを得るステップである。排ガスは、後述の輸送手段(船、ディーゼル機関車、鉄道、トラック等)から生じた排ガスであってもよい。アルカリ金属の炭酸塩は、固体状であってもよく、水溶液等の液状であってもよい。 Step (a1) is a step in which exhaust gas is contacted with an aqueous solution containing an alkali metal hydroxide in the CO2 absorption device 11, CO2 in the exhaust gas is reacted with the alkali metal hydroxide, and an alkali metal carbonate is obtained. When the alkali metal is potassium, CO2 in the exhaust gas is reacted with potassium hydroxide to obtain potassium carbonate. The exhaust gas may be exhaust gas generated from a transportation means (ship, diesel locomotive, railway, truck, etc.) described later. The alkali metal carbonate may be in a solid state or in a liquid state such as an aqueous solution.
 (a2)ステップは、反応装置12において、アルカリ金属の炭酸塩をアルカリ土類金属の水酸化物と反応させ、アルカリ土類金属の炭酸塩を得るステップである。アルカリ土類金属としては、例えば、カルシウム、マグネシウム、バリウム等が挙げられる。アルカリ金属がカリウムであり、アルカリ土類金属がカルシウムである場合、(a2)ステップは、炭酸カリウムを水酸化カルシウムと反応させ、炭酸カルシウムを得るステップである。 Step (a2) is a step of reacting an alkali metal carbonate with an alkaline earth metal hydroxide in the reaction device 12 to obtain an alkaline earth metal carbonate. Examples of alkaline earth metals include calcium, magnesium, barium, etc. When the alkali metal is potassium and the alkaline earth metal is calcium, step (a2) is a step of reacting potassium carbonate with calcium hydroxide to obtain calcium carbonate.
 (a2)ステップは、分離装置13において、アルカリ金属の炭酸塩とアルカリ土類金属の水酸化物との反応物からアルカリ土類金属の炭酸塩を含むウェットケーキを分離すること、及び、乾燥装置14において、ウェットケーキを乾燥させることを含んでもよい。また、乾燥装置14において、ウェットケーキを乾燥させる際に、後述の(g)工程におけるアルカリ土類金属の酸化物と水との反応熱を利用してもよい。 The (a2) step may include separating a wet cake containing an alkaline earth metal carbonate from the reaction product of the alkali metal carbonate and the alkaline earth metal hydroxide in the separation device 13, and drying the wet cake in the drying device 14. In addition, when drying the wet cake in the drying device 14, the heat of reaction between the alkaline earth metal oxide and water in the (g) step described below may be used.
 排ガスが硫黄酸化物と窒素酸化物とを更に含む場合、(a)工程において、排ガスからアルカリ土類金属の炭酸塩、アルカリ土類金属の硫酸塩、及びアルカリ土類金属の硝酸塩を含む生成物を得た後、生成物からアルカリ土類金属の炭酸塩を分離してもよい。すなわち、(a)工程は、CO、硫黄酸化物、及び窒素酸化物を含む排ガスからアルカリ土類金属の炭酸塩、アルカリ土類金属の硫酸塩、及びアルカリ土類金属の硝酸塩を得る工程であってもよく、排ガスからCO、硫黄酸化物、及び窒素酸化物を除去する工程であってもよい。 When the exhaust gas further contains sulfur oxides and nitrogen oxides, in step (a), a product containing alkaline earth metal carbonate, alkaline earth metal sulfate, and alkaline earth metal nitrate may be obtained from the exhaust gas, and then the alkaline earth metal carbonate may be separated from the product. That is, step (a) may be a step of obtaining alkaline earth metal carbonate, alkaline earth metal sulfate, and alkaline earth metal nitrate from exhaust gas containing CO 2 , sulfur oxides, and nitrogen oxides, or may be a step of removing CO 2 , sulfur oxides, and nitrogen oxides from the exhaust gas.
 排ガスが硫黄酸化物と窒素酸化物とを更に含む場合、(a1)ステップでは、CO吸収装置11において、排ガスとアルカリ金属の水酸化物を含む水溶液とを接触させることにより、排ガス中のCO、硫黄酸化物、及び窒素酸化物をアルカリ金属の水酸化物と反応させ、アルカリ金属の炭酸塩、アルカリ金属の硫酸塩、及びアルカリ金属の硝酸塩を得る。次いで、(a2)ステップでは、反応装置12において、アルカリ金属の炭酸塩、アルカリ金属の硫酸塩、及びアルカリ金属の硝酸塩をアルカリ土類金属の水酸化物と反応させ、アルカリ土類金属の炭酸塩、アルカリ土類金属の硫酸塩、及びアルカリ土類金属の硝酸塩を含む生成物を得る。次いで、分離装置13において、生成物からアルカリ土類金属の炭酸塩を分離する。 In the case where the exhaust gas further contains sulfur oxides and nitrogen oxides, in step (a1), the exhaust gas is contacted with an aqueous solution containing an alkali metal hydroxide in the CO2 absorption device 11, whereby the CO2 , sulfur oxides, and nitrogen oxides in the exhaust gas are reacted with the alkali metal hydroxide to obtain an alkali metal carbonate, an alkali metal sulfate, and an alkali metal nitrate. Then, in step (a2), the alkali metal carbonate, the alkali metal sulfate, and the alkali metal nitrate are reacted with an alkaline earth metal hydroxide in the reaction device 12 to obtain a product containing an alkaline earth metal carbonate, an alkaline earth metal sulfate, and an alkaline earth metal nitrate. Then, in the separation device 13, the alkaline earth metal carbonate is separated from the product.
<(b)工程>
 (b)工程は、アルカリ土類金属の水酸化物を第一の場所から第二の場所に輸送する工程である。第一の場所は、CO回収場所であってもよく、第二の場所はCO貯留場所であってもよい。第一の場所は、第二の場所よりもCOの排出量が多い地域、国等であってもよく、COの排出量が少ない地域、国等であってもよい。第二の場所は、第一の場所よりもCOの貯留可能量が多い地域、国等であってもよい。アルカリ土類金属は、船、ディーゼル機関車、鉄道、トラック等の輸送手段で輸送してもよい。
<Step (b)>
Step (b) is a step of transporting the hydroxide of the alkaline earth metal from a first location to a second location. The first location may be a CO2 capture location, and the second location may be a CO2 storage location. The first location may be a region, country, etc. that emits more CO2 than the second location, or may be a region, country, etc. that emits less CO2 . The second location may be a region, country, etc. that can store more CO2 than the first location. The alkaline earth metal may be transported by a means of transportation such as a ship, a diesel locomotive, a railroad, or a truck.
<(c)工程>
 (c)工程は、分解装置21において、輸送後のアルカリ土類金属の炭酸塩をアルカリ土類金属の酸化物とCOとに分解する工程である。アルカリ土類金属がカルシウムである場合、(c)工程は、輸送後の炭酸カルシウムを酸化カルシウムとCOとに分解する。アルカリ土類金属の炭酸塩の分解は、熱分解であってもよい。
<Step (c)>
Step (c) is a step of decomposing the alkaline earth metal carbonate after transportation into an alkaline earth metal oxide and CO 2 in a decomposition device 21. When the alkaline earth metal is calcium, step (c) decomposes the calcium carbonate after transportation into calcium oxide and CO 2. The decomposition of the alkaline earth metal carbonate may be thermal decomposition.
<(d)工程>
 (d)工程は、分解で生じたCOを地中に排出する工程である。COを地中に排出する方法としては、公知の方法を適用することができる。
<Step (d)>
Step (d) is a step of discharging the CO2 generated by the decomposition into the ground. As a method for discharging the CO2 into the ground, a known method can be applied.
 本実施形態に係る排ガス処理方法は、以下の工程を更に含んでもよい。
(e)(c)工程における分解で生じたアルカリ土類金属の酸化物を輸送する工程。
(f)輸送後のアルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程。
(g)(f)工程で得たアルカリ土類金属の水酸化物をアルカリ金属の炭酸塩と反応させ、アルカリ土類金属の炭酸塩を得る工程。
The exhaust gas treatment method according to this embodiment may further include the following steps.
(e) transporting the alkaline earth metal oxides produced by the decomposition in (c).
(f) reacting the transported alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide.
(g) A step of reacting the alkaline earth metal hydroxide obtained in step (f) with an alkali metal carbonate to obtain an alkaline earth metal carbonate.
<(e)工程>
 (e)工程は、上記の(c)工程における分解で生じたアルカリ土類金属の酸化物を輸送する工程である。アルカリ土類金属の酸化物の輸送は、例えば、第二の場所から第一の場所であってもよく、第二の場所から第一の場所とは異なる第三の場所であってもよい。アルカリ土類金属の酸化物は、船、ディーゼル機関車、鉄道、トラック等で輸送してもよい。
<Step (e)>
Step (e) is a step of transporting the alkaline earth metal oxide generated by the decomposition in step (c) above. The alkaline earth metal oxide may be transported, for example, from the second location to the first location, or from the second location to a third location different from the first location. The alkaline earth metal oxide may be transported by ship, diesel locomotive, railroad, truck, etc.
<(f)工程>
 (f)工程は、反応装置15において、輸送後のアルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程である。アルカリ土類金属がカルシウムである場合、(f)工程は、輸送後の酸化カルシウムを水と反応させ、水酸化カルシウムを得る工程である。アルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る際に発生する反応熱は、乾燥装置14におけるウェットケーキの乾燥に利用してもよい。
<Step (f)>
Step (f) is a step of reacting the transported alkaline earth metal oxide with water in the reaction device 15 to obtain an alkaline earth metal hydroxide. When the alkaline earth metal is calcium, step (f) is a step of reacting the transported calcium oxide with water to obtain calcium hydroxide. The reaction heat generated when reacting the alkaline earth metal oxide with water to obtain the alkaline earth metal hydroxide may be utilized for drying the wet cake in the drying device 14.
<(g)工程>
 (g)工程は、上記(f)工程で得たアルカリ土類金属の水酸化物をアルカリ金属の炭酸塩と反応させ、アルカリ土類金属の炭酸塩を得る工程である。アルカリ金属がカリウムであり、アルカリ土類金属がカルシウムである場合、(g)工程は、(f)工程で得た水酸化カルシウムを炭酸カリウムと反応させ、炭酸カルシウムを得る工程である。(e)~(g)工程により、COを固定化するために用いたアルカリ土類金属(アルカリ土類金属の水酸化物)を再利用することができる。
<Step (g)>
In step (g), the hydroxide of the alkaline earth metal obtained in step (f) is reacted with a carbonate of an alkaline earth metal to obtain a carbonate of the alkaline earth metal. When the alkali metal is potassium and the alkaline earth metal is calcium, in step (g), the calcium hydroxide obtained in step (f) is reacted with potassium carbonate to obtain calcium carbonate. By steps (e) to (g), the alkaline earth metal (hydroxide of the alkaline earth metal) used for fixing CO2 can be reused.
[二酸化炭素の固定化方法]
 本発明の他の実施形態は、二酸化炭素の固定化方法である。二酸化炭素の固定化方法は、少なくとも以下の工程を含む。他の実施形態に係る二酸化炭素の固定化方法は、上述した内容を適宜参照することができる。
(v)COからアルカリ金属の炭酸塩を得る工程。
(w)アルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程。
(x)アルカリ金属の炭酸塩をアルカリ土類金属の水酸化物と反応させ、アルカリ土類金属の炭酸塩を含む反応物を得る工程。
(y)反応物からアルカリ土類金属の炭酸塩を含むウェットケーキを分離する工程。
(z)ウェットケーキを、(w)工程におけるアルカリ土類金属の酸化物と水との反応熱を利用して乾燥させる工程。
[Method for fixing carbon dioxide]
Another embodiment of the present invention is a method for fixation of carbon dioxide. The method for fixation of carbon dioxide includes at least the following steps. For the method for fixation of carbon dioxide according to the other embodiment, the above-mentioned contents can be appropriately referred to.
(v) A process for obtaining an alkali metal carbonate from CO2 .
(w) reacting the alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide.
(x) reacting an alkali metal carbonate with an alkaline earth metal hydroxide to obtain a reaction product comprising an alkaline earth metal carbonate.
(y) separating a wet cake comprising an alkaline earth metal carbonate from the reaction mixture.
(z) A step of drying the wet cake by utilizing the heat of reaction between the alkaline earth metal oxide and water in the step (w).
 アルカリ金属としては、例えば、ナトリウム、カリウム等が挙げられる。アルカリ土類金属としては、カルシウム、マグネシウム、バリウム等が挙げられる。COは、排ガスに含まれるCOであってもよい。 Examples of the alkali metal include sodium, potassium, etc. Examples of the alkaline earth metal include calcium, magnesium, barium, etc. The CO2 may be CO2 contained in the exhaust gas.
[アルカリ土類金属の炭酸塩の精製方法(製造方法)]
 二酸化炭素の固定化方法は、アルカリ土類金属の炭酸塩の精製方法(製造方法)ともいえる。すなわち、本発明の他の実施形態は、アルカリ土類金属の炭酸塩の精製方法(製造方法)である。アルカリ土類金属の炭酸塩の精製方法(製造方法)は、少なくとも以下の工程を含む。他の実施形態に係るアルカリ土類金属の炭酸塩の精製方法は、上述した内容を適宜参照することができる。
(V)COをアルカリ性溶液に吸収させる工程。
(W)アルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程。
(X)COを吸収させたアルカリ性溶液をアルカリ土類金属の水酸化物と反応させ、アルカリ土類金属の炭酸塩を含む反応物を得る工程。
(Y)反応物からアルカリ土類金属の炭酸塩を含むウェットケーキを分離する工程。
(Z)ウェットケーキを、(W)工程におけるアルカリ土類金属の酸化物と水との反応熱を利用して乾燥させる工程。
[Method for purifying (producing) alkaline earth metal carbonate]
The method for immobilizing carbon dioxide can also be said to be a method for purifying (production method) an alkaline earth metal carbonate. That is, another embodiment of the present invention is a method for purifying (production method) an alkaline earth metal carbonate. The method for purifying (production method) an alkaline earth metal carbonate includes at least the following steps. For the method for purifying an alkaline earth metal carbonate according to the other embodiment, the above-mentioned contents can be appropriately referred to.
(V) A process of absorbing CO2 into an alkaline solution.
(W) A step of reacting an alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide.
(X) A process of reacting the alkaline solution having absorbed CO2 with an alkaline earth metal hydroxide to obtain a reactant containing an alkaline earth metal carbonate.
(Y) A step of separating a wet cake containing an alkaline earth metal carbonate from the reaction product.
(Z) A step of drying the wet cake by utilizing the heat of reaction between the alkaline earth metal oxide and water in the (W) step.
10,20…処理設備、11…CO吸収装置、12,15…反応装置、13…分離装置、14…乾燥装置、21…分解装置、L11,L12,L13,L14,L15,L16,L17,L18,L19,L21…移送管、E1…エネルギー供給ライン、T1,T2…輸送手段、100…排ガス処理設備。

 
10, 20... treatment equipment, 11... CO2 absorption device, 12, 15... reaction device, 13... separation device, 14... drying device, 21... decomposition device, L11, L12, L13, L14, L15, L16, L17, L18, L19, L21... transfer pipe, E1... energy supply line, T1, T2... transportation means, 100... exhaust gas treatment equipment.

Claims (9)

  1. (a)COを含む排ガスからアルカリ土類金属の炭酸塩を得る工程と、
    (b)前記アルカリ土類金属の炭酸塩を第一の場所から第二の場所に輸送する工程と、
    (c)輸送後の前記アルカリ土類金属の炭酸塩をアルカリ土類金属の酸化物と、COと、に分解する工程と、
    (d)分解で生じた前記COを地中に排出する工程と、
    を含む、排ガス処理方法。
    (a) obtaining an alkaline earth metal carbonate from a flue gas containing CO2 ;
    (b) transporting the alkaline earth metal carbonate from a first location to a second location;
    (c) decomposing the alkaline earth metal carbonate after transportation into alkaline earth metal oxide and CO2 ;
    (d) discharging the CO2 produced by the decomposition into the ground;
    The exhaust gas treatment method includes the steps of:
  2.  前記(a)工程は、
    (a1)COを含む排ガスからアルカリ金属の炭酸塩を得るステップと、
    (a2)前記アルカリ金属の炭酸塩をアルカリ土類金属の水酸化物と反応させ、前記アルカリ土類金属の炭酸塩を得るステップと、
    を含む、請求項1に記載の排ガス処理方法。
    The step (a) comprises:
    (a1) obtaining an alkali metal carbonate from a flue gas containing CO2 ;
    (a2) reacting the alkali metal carbonate with an alkaline earth metal hydroxide to obtain the alkaline earth metal carbonate;
    The exhaust gas treatment method according to claim 1 ,
  3. (e)前記(c)工程における分解で生じた前記酸化物を輸送する工程と、
    (f)輸送後の前記酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程と、
    (g)前記(f)工程で得た前記アルカリ土類金属の水酸化物をアルカリ金属の炭酸塩と反応させ、アルカリ土類金属の炭酸塩を得る工程と、
    を更に含む、請求項2に記載の排ガス処理方法。
    (e) transporting the oxide produced by the decomposition in (c);
    (f) reacting the transported oxide with water to obtain an alkaline earth metal hydroxide;
    (g) reacting the alkaline earth metal hydroxide obtained in the step (f) with an alkali metal carbonate to obtain an alkaline earth metal carbonate;
    The exhaust gas treatment method according to claim 2 , further comprising:
  4.  前記(a2)ステップは、
     前記アルカリ金属の炭酸塩と前記アルカリ土類金属の水酸化物との反応物から前記アルカリ土類金属の炭酸塩を含むウェットケーキを分離すること、及び
     前記ウェットケーキを乾燥させること、
    を含み、
     前記ウェットケーキの乾燥に、前記(f)工程における前記酸化物と前記水との反応熱を利用する、請求項3に記載の排ガス処理方法。
    The (a2) step includes:
    separating a wet cake comprising the alkaline earth metal carbonate from a reaction product of the alkali metal carbonate and the alkaline earth metal hydroxide; and drying the wet cake.
    Including,
    4. The exhaust gas treatment method according to claim 3, wherein heat of reaction between the oxide and the water in the step (f) is utilized for drying the wet cake.
  5.  前記(e)工程において、前記第二の場所から前記第一の場所に前記酸化物を輸送する、請求項3又は4に記載の排ガス処理方法。 The exhaust gas treatment method according to claim 3 or 4, wherein in step (e), the oxide is transported from the second location to the first location.
  6.  前記排ガスが輸送によって生じた排ガスである、請求項1~4のいずれか一項に記載の排ガス処理方法。 The exhaust gas treatment method according to any one of claims 1 to 4, wherein the exhaust gas is exhaust gas generated by transportation.
  7.  前記排ガスが硫黄酸化物と窒素酸化物とを更に含み、
     前記(a)工程において、前記排ガスから前記アルカリ土類金属の炭酸塩、アルカリ土類金属の硫酸塩、及びアルカリ土類金属の硝酸塩を含む生成物を得た後、前記生成物から前記アルカリ土類金属の炭酸塩を分離する、請求項1~4のいずれか一項に記載の排ガス処理方法。
    The exhaust gas further contains sulfur oxides and nitrogen oxides,
    5. The exhaust gas treatment method according to claim 1, wherein in the step (a), a product containing the alkaline earth metal carbonate, the alkaline earth metal sulfate, and the alkaline earth metal nitrate is obtained from the exhaust gas, and then the alkaline earth metal carbonate is separated from the product.
  8. (v)COからアルカリ金属の炭酸塩を得る工程と、
    (w)アルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程と、
    (x)前記アルカリ金属の炭酸塩を前記水酸化物と反応させ、アルカリ土類金属の炭酸塩を含む反応物を得る工程と、
    (y)前記反応物から前記アルカリ土類金属の炭酸塩を含むウェットケーキを分離する工程と、
    (z)前記ウェットケーキを、前記(w)工程における前記酸化物と水との反応熱を利用して乾燥させる工程と、
    を含む、二酸化炭素の固定化方法。
    (v) obtaining an alkali metal carbonate from CO2 ;
    (w) reacting the alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide;
    (x) reacting the alkali metal carbonate with the hydroxide to obtain a reaction product comprising an alkaline earth metal carbonate;
    (y) separating a wet cake comprising the alkaline earth metal carbonate from the reaction product;
    (z) drying the wet cake by utilizing the heat of reaction between the oxide and water in the (w) step;
    A method for fixing carbon dioxide, comprising:
  9. (V)COをアルカリ性溶液に吸収させる工程と、
    (W)アルカリ土類金属の酸化物を水と反応させ、アルカリ土類金属の水酸化物を得る工程と、
    (X)前記COを吸収させた前記アルカリ性溶液を前記水酸化物と反応させ、アルカリ土類金属の炭酸塩を含む反応物を得る工程と、
    (Y)前記反応物から前記アルカリ土類金属の炭酸塩を含むウェットケーキを分離する工程と、
    (Z)前記ウェットケーキを、前記(W)工程における前記酸化物と水との反応熱を利用して乾燥させる工程と、
    を含む、アルカリ土類金属の炭酸塩の精製方法。

     
    (V) absorbing CO2 into an alkaline solution;
    (W) reacting an alkaline earth metal oxide with water to obtain an alkaline earth metal hydroxide;
    (X) reacting the alkaline solution having absorbed the CO2 with the hydroxide to obtain a reactant containing an alkaline earth metal carbonate;
    (Y) separating a wet cake containing the alkaline earth metal carbonate from the reaction product;
    (Z) drying the wet cake by utilizing the heat of reaction between the oxide and water in the (W) step;
    1. A method for purifying an alkaline earth metal carbonate, comprising:

PCT/JP2023/037553 2022-10-31 2023-10-17 Exhaust gas treatment method, fixation method for carbon dioxide, and purification method for alkaline earth metal carbonate WO2024095763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022174248A JP2024065400A (en) 2022-10-31 2022-10-31 Exhaust gas treatment method, fixation method of carbon dioxide and purifying method of alkaline earth metal carbonate
JP2022-174248 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095763A1 true WO2024095763A1 (en) 2024-05-10

Family

ID=90930353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037553 WO2024095763A1 (en) 2022-10-31 2023-10-17 Exhaust gas treatment method, fixation method for carbon dioxide, and purification method for alkaline earth metal carbonate

Country Status (2)

Country Link
JP (1) JP2024065400A (en)
WO (1) WO2024095763A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190831A (en) * 1990-11-22 1992-07-09 Hitachi Ltd Recycling system for carbon dioxide as renewable resource
JPH0523535A (en) * 1991-07-19 1993-02-02 Hitachi Ltd Removal of acidic gas from combustion exhaust gas
JP2010510161A (en) * 2006-11-22 2010-04-02 オリカ、エクスプローシブズ、テクノロジー、プロプライエタリー、リミテッド Integrated chemical method
JP2013017982A (en) * 2011-07-14 2013-01-31 Ihi Corp Gas separation apparatus
JP2014171932A (en) * 2013-03-06 2014-09-22 Babcock-Hitachi Co Ltd Method and apparatus for removing carbon dioxide
JP2018204734A (en) * 2017-06-07 2018-12-27 株式会社Ksi技研 Flexible pipe supporting structure and retaining method of retaining object on seabed

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190831A (en) * 1990-11-22 1992-07-09 Hitachi Ltd Recycling system for carbon dioxide as renewable resource
JPH0523535A (en) * 1991-07-19 1993-02-02 Hitachi Ltd Removal of acidic gas from combustion exhaust gas
JP2010510161A (en) * 2006-11-22 2010-04-02 オリカ、エクスプローシブズ、テクノロジー、プロプライエタリー、リミテッド Integrated chemical method
JP2013017982A (en) * 2011-07-14 2013-01-31 Ihi Corp Gas separation apparatus
JP2014171932A (en) * 2013-03-06 2014-09-22 Babcock-Hitachi Co Ltd Method and apparatus for removing carbon dioxide
JP2018204734A (en) * 2017-06-07 2018-12-27 株式会社Ksi技研 Flexible pipe supporting structure and retaining method of retaining object on seabed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Proposal for innovation policy planning based on quantitative scenarios of technology, economy, and society toward the realization of a low-carbon society", 1 February 2020, JAPAN SCIENCE AND TECHNOLOGY AGENCY, LOW CARBON SOCIETY STRATEGY CENTER, JP, article ANONYMOUS: "Cost and evaluation of the Direct Air Capture (DAC) method for carbon dioxide", pages: 1 - 16, XP009557036 *

Also Published As

Publication number Publication date
JP2024065400A (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US7255842B1 (en) Multi-component removal in flue gas by aqua ammonia
US11034619B2 (en) Intrinsic CO2 capture process for the production of metal oxides, cement, CO2 air capture or a combination thereof
EP3153224B1 (en) Process and device for desulphurization and denitration of flue gas
JP5023512B2 (en) Gas separation and recovery method and apparatus
JP3663117B2 (en) Method and apparatus for recovering carbon dioxide from an oxygen-containing mixture
JP3776448B2 (en) How to reduce air pollution
AU2008270468B2 (en) Removal of carbon dioxide from flue gas with ammonia comprising medium
US8496895B2 (en) Exhaust gas treating apparatus and treating method for carbon dioxide capture process
US9469547B2 (en) Integrated carbon dioxide removal and ammonia-soda process
KR20070053738A (en) Ultra cleaning of combustion gas including the removal of co2
US8623314B2 (en) Chilled ammonia based CO2 capture system with ammonia recovery and processes of use
EP2942323A1 (en) Production of sulfuric acid from coke oven gas desulfurisation product
JPH09313879A (en) Desulfrization/decarboxylation process
CN113368683A (en) Carbon dioxide capture system and method
CN113731134B (en) Shipborne carbon dioxide capturing and sealing device and method
CN106621808A (en) Wet type integrated purification system and method for recovery of residual heat in flue gas
US20140369914A1 (en) Acidic gas collection system
JP2014128775A (en) Exhaust gas treatment equipment and gas turbine power generation system using the same
WO2024095763A1 (en) Exhaust gas treatment method, fixation method for carbon dioxide, and purification method for alkaline earth metal carbonate
KR101644538B1 (en) Method and apparatus for capturing and resourcing carbon dioxide from flue gas containing carbon dioxide
WO2021246317A1 (en) Method for separating and recovering co2 in cement production exhaust gas, and co2 separation and recovery device
US20150375164A1 (en) Process and apparatus for processing a gas stream and especially for processing a flue gas stream
CN214973031U (en) Carbon dioxide capture system
Al-taher et al. Process to capture SO x onboard vehicles and ships
US11242785B2 (en) Process to capture SOx onboard vehicles and ships

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885525

Country of ref document: EP

Kind code of ref document: A1