[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024092639A1 - 用于邻区测量的方法、终端设备和网络设备 - Google Patents

用于邻区测量的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2024092639A1
WO2024092639A1 PCT/CN2022/129617 CN2022129617W WO2024092639A1 WO 2024092639 A1 WO2024092639 A1 WO 2024092639A1 CN 2022129617 W CN2022129617 W CN 2022129617W WO 2024092639 A1 WO2024092639 A1 WO 2024092639A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
measurement
threshold
criterion
location
Prior art date
Application number
PCT/CN2022/129617
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
于新磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/129617 priority Critical patent/WO2024092639A1/zh
Publication of WO2024092639A1 publication Critical patent/WO2024092639A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present application relates to the field of communication technology, and more specifically to a method, terminal equipment and network equipment for neighboring cell measurement.
  • a measurement criterion based on reference signal received power (RSRP) is used to determine whether to perform neighboring cell measurement.
  • RSRP measurement may have a large measurement error. Therefore, determining whether to perform neighboring cell measurement based on RSRP measurement criterion may cause malfunction of terminal equipment.
  • the present application provides a method, terminal device and network device for neighboring cell measurement.
  • the following introduces various aspects involved in the present application.
  • an embodiment of the present application provides a method for neighboring cell measurement, the method comprising: a terminal device determines whether to perform neighboring cell measurement according to one or more measurement criteria; wherein the one or more measurement criteria include a measurement criterion based on the location of the terminal device.
  • an embodiment of the present application provides a method for neighboring cell measurement, the method comprising: a network device configures one or more measurement criteria, the one or more measurement criteria being used to determine whether to perform neighboring cell measurement; wherein the one or more measurement criteria include measurement criteria based on the location of a terminal device.
  • an embodiment of the present application provides a terminal device, comprising: a determination unit, used to determine whether to perform neighboring area measurement based on one or more measurement criteria; wherein the one or more measurement criteria include a measurement criterion based on the location of the terminal device.
  • an embodiment of the present application provides a network device, comprising: a configuration unit, used to configure one or more measurement criteria to determine whether to perform neighboring area measurement; wherein the one or more measurement criteria include a measurement criterion based on the location of the terminal device.
  • an embodiment of the present application provides a terminal device, comprising a processor and a memory, wherein the memory is used to store one or more computer programs, and the processor is used to call the computer program in the memory so that the terminal device executes part or all of the steps in the method of the first aspect.
  • an embodiment of the present application provides a network device, comprising a processor and a memory, wherein the memory is used to store one or more computer programs, and the processor is used to call the computer program in the memory so that the network device executes part or all of the steps in the method of the second aspect.
  • an embodiment of the present application provides a device, comprising a processor, for calling a program from a memory to execute the method described in the first aspect or the second aspect.
  • an embodiment of the present application provides a chip comprising a memory and a processor, wherein the processor can call and run a computer program from the memory to execute the method described in the first aspect or the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, wherein the computer program enables a communication device (for example, a terminal device or a network device) to execute the method described in the first aspect or the second aspect.
  • a communication device for example, a terminal device or a network device
  • an embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a communication device (e.g., a terminal device or a network device) to execute the method as described in the first aspect or the second aspect.
  • a communication device e.g., a terminal device or a network device
  • the computer program product can be a software installation package.
  • the embodiment of the present application introduces a measurement criterion based on the terminal device location. Compared with RSRP measurement, the measurement of the terminal device location is more accurate and helps to avoid misoperation of the terminal device.
  • FIG1 is a schematic diagram of a wireless communication system used in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a transparent forwarding network architecture.
  • FIG. 3 is a schematic diagram of a regeneration and forwarding network structure.
  • FIG4 is a schematic diagram of RSRP of a terminal at different locations in a cell in a terrestrial network and an NTN.
  • FIG5 is a schematic flow chart of a method for neighboring cell measurement provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a network device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a device provided in an embodiment of the present application.
  • FIG1 is a wireless communication system 100 used in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120.
  • the network device 110 may provide communication coverage for a specific geographical area, and may communicate with the terminal device 120 located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and each network device may include other number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • future communication systems such as the sixth generation mobile communication system, satellite communication system, etc.
  • the terminal device in the embodiment of the present application may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT), remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to a user, and can be used to connect people, objects and machines, such as a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • the terminal device in the embodiment of the present application can be a mobile phone, a tablet computer, a laptop computer, a PDA, a mobile internet device (MID), a wearable device, a virtual reality (VR) device, an augmented reality (AR) device, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical surgery, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, etc.
  • the UE can be used to act as a base station.
  • the UE can act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • a cellular phone and a car communicate with each other using a sidelink signal.
  • the cellular phone and the smart home device communicate with each other without relaying the communication signal through the base station.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be referred to as an access network device or a wireless access network device, such as a base station.
  • the network device in the embodiment of the present application may refer to a wireless access network (RAN) node (or device) that connects a terminal device to a wireless network.
  • RAN wireless access network
  • Base station can broadly cover various names as follows, or be replaced with the following names, such as: NodeB, evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting and receiving point (TRP), transmitting point (TP), master station MeNB, auxiliary station SeNB, multi-standard radio (MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), remote radio unit (RRU), active antenna unit (AAU), remote radio head (RRH), central unit (CU), distributed unit (DU), positioning node, etc.
  • NodeB evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting and receiving point (TRP), transmitting point (TP), master station MeNB, auxiliary station SeNB, multi-standard radio (MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver no
  • the base station can be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • the base station may also refer to a communication module, modem or chip used to be set in the aforementioned device or apparatus.
  • the base station may also be a mobile switching center and a device to device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communication device that performs the base station function, a network side device in a 6G network, and a device that performs the base station function in a future communication system.
  • the base station can support networks with the same or different access technologies.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move based on the location of the mobile base station.
  • a helicopter or drone can be configured to act as a device that communicates with another base station.
  • the network device in the embodiments of the present application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • the gNB may also include an AAU.
  • the network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the scenarios in which the network equipment and terminal equipment are located.
  • 5G 3rd Generation Partnership Project
  • eMBB enhanced mobile broadband
  • URLLC ultra reliable low latency communications
  • mMTC massive machine type communications
  • RRC connected RRC_connected
  • RRC idle RRC-idle
  • RRC inactive RRC-inactive
  • the RRC connection state may refer to the state of the terminal device after completing the random access process and before performing RRC release.
  • An RRC connection exists between the terminal device and a network device (e.g., an access network device).
  • the terminal device may perform data transmission with the network device, such as downlink data transmission and/or uplink data transmission.
  • the terminal device may also perform transmission of terminal device-specific data channels and/or control channels with the network device to transmit specific information or unicast information of the terminal device.
  • the network device can determine the cell-level location information of the terminal device, that is, the network device can determine the cell to which the terminal device belongs.
  • the network device can control the terminal device to perform cell handover. It can be seen that the mobility management of the terminal device in the RRC connected state may include cell handover.
  • the mobility management of the terminal device in the RRC connected state can be controlled by the network device, and accordingly, the terminal device can switch to the specified cell according to the instructions issued by the network device.
  • the RRC idle state refers to the state of the terminal device when the terminal device resides in the cell but does not perform random access.
  • the terminal device usually enters the RRC idle state after being powered on or after RRC is released.
  • the RRC idle state there is no RRC connection between the terminal device and the network device (such as the resident network device), the network device does not store the context of the terminal device, and no connection is established between the network device and the core network for the terminal device. If the terminal device needs to enter the RRC connected state from the RRC idle state, it is necessary to initiate the RRC connection establishment process.
  • the core network can send a paging message to the terminal device, that is, the paging process can be triggered by the CN.
  • the paging area can also be configured by the CN.
  • the terminal device can initiate a cell reselection process.
  • the terminal device can initiate a cell selection process. That is, the mobility management of the terminal device in the RRC idle state may include cell reselection and/or cell selection.
  • the RRC inactive state is a state defined to reduce air interface signaling, quickly restore wireless connections, and quickly restore data services.
  • the RRC inactive state is a state between the connected state and the idle state.
  • the terminal device has previously entered the RRC connected state and then released the RRC connection with the network device, but the network device saves the context of the terminal device.
  • the connection established between the network device and the core network for the terminal device has not been released, that is, the user plane bearer and control plane bearer between the RAN and the CN are still maintained, that is, there is a CN-NR connection.
  • the RAN can send a paging message to the terminal device, that is, the paging process can be triggered by the RAN.
  • the RAN-based paging area is managed by the RAN, and the network device can know the location of the terminal device based on the RAN paging area level.
  • the terminal device may initiate a cell reselection process.
  • the terminal device may initiate a cell selection process. That is, the mobility management of the terminal device in an RRC inactive state may include cell reselection and/or cell selection.
  • RRM measurement is a type of mobility measurement. Cell selection, cell handover, and cell reselection can all be performed based on RRM measurement results.
  • the types of RRM measurements include intra-frequency measurement and inter-frequency/inter-system (inter-RAT) measurement.
  • Intra-frequency measurement includes measuring other frequencies in the same frequency band of the current serving cell and neighboring cell frequencies that are the same as the center frequency of the frequency band supported by the serving cell.
  • Inter-frequency/inter-system measurement includes measuring neighboring cell frequencies that are different from the center frequency band of the frequency band supported by the serving cell, or measuring neighboring cell frequencies that are not in the same system as the serving cell.
  • the terminal device When the terminal device is in the RRC idle state or the RRC inactive state, there is no RRC connection between the terminal device and the network device.
  • the terminal device When the RRM measurement result of the cell where the terminal device resides (also called the service cell) is lower than a certain threshold, the terminal device can perform RRM measurements on the service cell and the cells adjacent to the service cell (also called neighboring cells) according to the same-frequency, different-frequency and/or different-system neighboring cell information configured by the network device in the system message.
  • the terminal device When the terminal device is in the RRC connected state, there is an RRC connection between the terminal device and the network device, and the network device configures the terminal device to perform same-frequency, different-frequency and/or different-system neighboring cell measurements through RRC signaling.
  • the above RRM measurement results are used to indicate the communication quality of the terminal device.
  • the above RRM measurement results may include one or more of the following measurement quantities: signal level (Srxlev), signal strength (Squal), reference signal received power (reference signal received power, RSRP), reference signal received quality (reference signal received quality, RSRQ), signal to noise ratio (signal to noise ratio, SNR), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), received signal strength indication (received signal strength indication, RSSI), etc.
  • the above RRM measurement thresholds may include a same-frequency measurement threshold and a different-frequency/different-system measurement threshold.
  • terminal devices in the narrowband Internet of Things do not support RRM measurements in a connected state.
  • RLF radio link failure
  • RRC radio link failure
  • R17 introduces a neighbor measurement mechanism for connected terminal devices in the NB-IoT system. The following is a brief introduction to the neighbor measurement mechanism.
  • the neighbor measurement mechanism can be based on the s-measurement criterion and the mobility state evaluation criterion. For example, after the terminal device enters the RRC connected state, if the network configures the mobility state evaluation criterion: the reference value (Ref) of the narrowband reference signal received power (NRSRP) is set to the NRSRP on the serving cell for cell selection/reselection measured most recently; if the terminal device does not meet the neighbor measurement relaxation criterion before entering the RRC connected state (the criterion will be described in detail later), the terminal device starts timer T326.
  • Ref narrowband reference signal received power
  • NRSRP NRSRP-PowerOffsetNonAnchor
  • PowerOffsetNonAnchor is the non-anchor power offset.
  • s-MeasureIntra represents the same-frequency measurement threshold mentioned above
  • s-MeasureInter represents the different-frequency measurement threshold mentioned above.
  • Some protocols require that terminal devices perform RRM measurements periodically, which results in high energy consumption of terminal devices.
  • RRM measurements in some measurement scenarios (for example, when the terminal device is stationary or the terminal device is moving at a low speed), it is not necessary for the terminal device to perform RRM measurements frequently. Therefore, in order to reduce the energy consumption of terminal devices, the RRM measurement relax mechanism is introduced.
  • RRM measurement relaxation may also be referred to as neighboring cell measurement relaxation, or neighboring cell RRM measurement relaxation.
  • the terminal device may implement RRM measurement relaxation by increasing the period of RRM measurement (i.e., reducing the number of RRM measurements).
  • the terminal device may implement RRM measurement relaxation by reducing the number of measured neighboring cells.
  • the terminal device may implement RRM measurement relaxation by reducing the number of measured frequency points.
  • the RRM measurement relaxation of the terminal device in the RRC idle state and the RRC inactive state may be determined based on whether the terminal device is located at an edge cell of a serving cell and/or whether the terminal device is in a low mobility state.
  • Whether the terminal device is in a low mobility state can be determined based on the RRM measurement results of the serving cell. For example, the terminal device can measure the RRM measurement results of the serving cell at different times. If the RRM measurement results of the serving cell change little at different times, that is, the signal quality of the serving cell is relatively stable, it means that the terminal device is in a low mobility state, and the terminal device can relax the RRM measurement.
  • the network device will configure the RSRP change evaluation duration TSearchDeltaP and the RSRP change value threshold SSearchDeltaP.
  • TSearchDeltaP the RSRP change evaluation duration
  • SSearchDeltaP the RSRP change value threshold
  • the terminal device is considered to meet the measurement relaxation criteria.
  • (SrxlevRef–Srxlev) ⁇ SSearchDeltaP (Formula 1) is satisfied.
  • Srxlev represents the current signal amplitude of the serving cell
  • SrxlevRef represents the signal amplitude reference value of the serving cell.
  • the use of SrxlevRef can follow the following rules.
  • Rule 3 If the measurement relaxation criteria are not met within the t-SearchDelta time (ie, Formula 1 is not satisfied), the terminal device needs to set the signal reference value to the current measured value of the signal amplitude of the serving cell.
  • the measurement interval of the terminal device for the neighboring cell can be increased to 24 hours.
  • NTN generally uses satellite communication to provide communication services to ground users.
  • ground communication networks for example, ground cellular network communication
  • satellite communication has many unique advantages.
  • satellite communications are not limited by the user's geographical location.
  • general ground communication networks cannot cover areas such as oceans, mountains, deserts, etc. where network equipment cannot be set up.
  • ground communication networks do not cover certain sparsely populated areas.
  • a satellite can cover a larger ground area and the satellite can orbit the earth, in theory, every corner of the earth can be covered by the satellite communication network.
  • Satellite communications have great social value. Satellite communications can cover remote mountainous areas, poor and backward countries or regions at a relatively low cost, so that people in these areas can enjoy advanced voice communications and mobile Internet technologies. From this perspective, satellite communications are conducive to narrowing the digital divide with developed regions and promoting the development of these regions.
  • satellite communication has the advantage of long distance, and the increase in communication distance does not significantly increase the cost of communication.
  • LEO low earth orbit
  • MEO medium earth orbit
  • GEO geostationary earth orbit
  • HEO high elliptical orbit
  • the altitude of LEO satellites is generally between 500km and 1500km. Accordingly, the orbital period of LEO satellites is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite visibility time of LEO satellites is about 20 minutes. LEO satellites have the advantages of short signal propagation distance, low link loss, and low transmission power requirements for user terminal devices.
  • the orbital altitude of GEO satellites is 35786km.
  • the period of GEO satellites' rotation around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally about 250ms.
  • satellites In order to ensure satellite coverage and improve the system capacity of the entire satellite communication system, satellites usually use multiple beams to cover the ground area. Therefore, a satellite can form dozens or even hundreds of beams to cover the ground area. One beam of a satellite can cover a ground area with a diameter of tens to hundreds of kilometers.
  • the NTN system includes the NR-NTN system and the Internet of Things (IoT)-NTN system.
  • IoT Internet of Things
  • 3GPP considers two types of satellites: one is a satellite with transparent payload, and the other is a satellite with regenerative payload.
  • the following text introduces the network architecture of a satellite with transparent payload and the network architecture of a satellite with regenerative payload, respectively, in conjunction with Figures 2 and 3.
  • the satellite network architecture may include a terminal device 210, a satellite node 222, and a ground receiving station 221 (referred to as a “ground station”).
  • a terminal device 210 may send data to the satellite node 222 through a link between the terminal device 210 and the satellite node 222.
  • data may be sent to the satellite node 222 through a service link.
  • the satellite node 222 may send the data to the ground receiving station 221 through a link between the satellite node 222 and the ground receiving station 221.
  • the data may be transmitted to the ground receiving station 221 through a wireless link (such as a feeder link).
  • a wireless link such as a feeder link
  • the ground receiving station 221 transmits the data to the core network (data network), and then processes the data through the core network, such as interacting with other terminals.
  • the service link here refers to the link between the terminal device 210 and the satellite node 222
  • the feeder link refers to the link between the satellite node 222 and the ground receiving station 221.
  • the link between the terminal device and the satellite node, and/or the link between the satellite node and the ground receiving station can also be expressed by other terms, which are not limited in this application.
  • the above-mentioned satellite node 222 can be divided into two types.
  • the first type of satellite node is only used for forwarding, that is, it only has a transparent forwarding function.
  • such satellite nodes can only provide one or more of a wireless frequency filtering function, a frequency conversion function, and a power amplification function.
  • the received terminal device signal can be amplified and then sent to the ground receiving station.
  • the terminal device signal is not processed at the satellite node, as shown in FIG2; wherein, the terminal device and the satellite node can communicate through the NR-Uu interface, the satellite node and the ground receiving station (such as the NTN radio remote unit (RRU) and gNB) can communicate through the NR-Uu interface, the ground receiving station and the 5G core network (5G CN) can communicate through the N1, N2, and N3 interfaces, and the 5G CN and the data network can communicate through the N6 interface.
  • the terminal device and the satellite node can communicate through the NR-Uu interface
  • the satellite node and the ground receiving station such as the NTN radio remote unit (RRU) and gNB
  • RRU radio remote unit
  • gNB the ground receiving station
  • 5G core network 5G core network
  • the 5G CN and the data network can communicate through the N6 interface.
  • the second type of satellite node has complete base station processing functions.
  • the satellite node is a base station for the terminal equipment on the ground.
  • the communication between the satellite node and the terminal equipment is basically the same as the normal 5G communication, as shown in Figure 3.
  • such satellite nodes can also provide one or more of the following functions: demodulation function, decoding function, routing function, conversion function, encoding function, and modulation function.
  • the terminal equipment and the satellite node can communicate through the NR-Uu interface, and the satellite node and the ground receiving station can communicate through the satellite radio interface (satellite radio interface, SRI).
  • SRI interface can be used to send interface messages between the satellite node and the 5G CN (such as N2, N3 interface messages).
  • the ground receiving station and the 5G CN can communicate through the N1, N2, and N3 interfaces, and the 5G CN and the data network can communicate through the N6 interface.
  • the reference signal received power (N)RSRP of the terminal device when it is in the center of the cell is significantly higher than the (N)RSRP when it is at the edge of the cell. Due to the obvious “near-far effect" (see the schematic diagram a in Figure 4), it is possible to determine whether the neighboring cell measurement start condition is met based on the (N)RSRP measurement, that is, when the network device is configured with the s-measure criterion, the terminal device can determine whether its channel state is not good enough by measuring the (N)RSRP of the serving cell; when the network is configured with the mobility assessment criterion, the terminal device can determine whether it does not meet the low mobility or static state based on the change in its (N)RSRP on the serving cell.
  • the RSRP difference between them is not obvious (see the schematic diagram b in Figure 4). If the terminal device satisfies the s-measure criterion or/and the mobility evaluation criterion based on RSRP measurement, on the one hand, it is difficult for the network to set a suitable RSRP threshold. On the other hand, due to the error in RSRP measurement, it is likely to cause the terminal device to malfunction.
  • the neighboring cell measurement is started due to the low measured RSRP, which increases unnecessary terminal power consumption; for users at the edge of the cell, the neighboring cell measurement is not started due to the high measured RSRP.
  • the terminal device triggers RLF, the RRC reconstruction time is increased, thereby affecting the terminal experience.
  • the location difference of the terminal equipment is relatively obvious.
  • the global navigation satellite system (GNSS) location of the terminal equipment is obviously different.
  • the distance of the terminal equipment relative to the cell center is obviously different.
  • an embodiment of the present application provides a method for neighboring area measurement, which can determine whether to perform neighboring area measurement based on the location of the terminal device, thereby avoiding erroneous operation of the terminal device.
  • the network device configures one or more measurement criteria.
  • the one or more measurement criteria may be used to determine whether to perform neighboring cell measurement.
  • the one or more measurement criteria may include a measurement criterion based on the location of the terminal device.
  • the network device may configure the one or more measurement criteria through a system message.
  • the network device may configure the one or more measurement criteria through a system information block (SIB) in a system message.
  • SIB system information block
  • the network device may configure the one or more measurement criteria through RRC signaling.
  • step S520 the terminal device determines whether to perform neighboring cell measurement according to one or more measurement criteria.
  • the embodiment of the present application introduces a measurement criterion based on the terminal device location. Compared with RSRP measurement, the measurement of the terminal device location can be more accurate, which helps to avoid misoperation of the terminal device.
  • the measurement criteria based on the location of the terminal device may include one or more of the following: a first measurement criterion for evaluating the mobility state of the terminal device; and a second measurement criterion for indicating the threshold conditions for starting same-frequency measurement and/or different-frequency measurement.
  • the first measurement criterion may evaluate the mobility state of the terminal device based on one or more of: a first threshold; a second threshold; an RRC state of the terminal device; a current location of the terminal device; a reference location of the terminal device; and a first timer.
  • the first threshold may include a threshold of a location change of the terminal device (such as s-MeasureDeltaLocation).
  • the location of the terminal device mentioned here may refer to the global navigation satellite system (GNSS) location of the terminal device.
  • GNSS global navigation satellite system
  • the first threshold may include a threshold of the distance change of the terminal device relative to the cell reference position (such as s-MeasureDeltaDistance).
  • the cell reference position may include one or more of the following: the center position of the service cell of the terminal device; and the position of the satellite corresponding to the service cell of the terminal device.
  • the center position of the service cell of the terminal device may also be referred to as the service cell reference point. For example, it may refer to the center point of the cell ground coverage.
  • the second threshold can be used to indicate the evaluation duration of the mobile state.
  • the first threshold and the second threshold can be used in combination, that is, the terminal device is evaluated to see whether it meets the first threshold within the evaluation duration specified by the second threshold.
  • the first threshold as the threshold s-MeasureDeltaLocation for the position change of the terminal device as an example
  • the second threshold can be represented by t-MeasureDeltaLocation, which is used to evaluate whether the position change of the terminal device exceeds s-MeasureDeltaLocation within the evaluation duration corresponding to the second threshold.
  • the second threshold can be represented by t-MeasureDeltaDistance, which is used to evaluate whether the distance change of the terminal device relative to the cell reference position exceeds s-MeasureDeltaDistance within the evaluation duration corresponding to the second threshold.
  • the first timer may refer to a timer associated with the first measurement criterion.
  • the timing duration of the first timer may be determined based on the evaluation duration of the mobile state. For example, the timing duration of the first timer may be equal to the evaluation duration of the mobile state.
  • the reference position of the terminal device may be monitored and updated.
  • the determination or update of the reference position of the terminal device may be based on a certain condition (hereinafter referred to as the first condition). For example, if the first condition is met, the reference position of the terminal device may be determined or updated to be the current position of the terminal device.
  • the first condition can be determined based on one or more of the following: whether the terminal device enters the RRC connected state from the RRC non-connected state; whether the terminal device is configured with the first measurement criterion; the relationship between the difference between the current position of the terminal device and the reference position of the terminal device and the first threshold. As an example, if the terminal device enters the RRC connected state from the RRC non-connected state, and the terminal device is configured with the first measurement criterion, the current position of the terminal device is the initial value of the reference position of the terminal device.
  • the current position of the terminal device is the updated value of the reference position of the terminal device.
  • the start or restart of the first timer may be determined by whether the second condition is met.
  • the second condition may be determined based on one or more of the following: whether the terminal device enters the RRC connected state from the RRC non-connected state; whether the terminal device is configured with the first measurement criterion; whether the terminal device satisfies the neighboring area measurement relaxation criterion in the RRC non-connected state; and the relationship between the difference between the current position of the terminal device and the reference position of the terminal device and the first threshold.
  • the second condition may include one or more of the following: if the terminal device enters the RRC connected state from the RRC non-connected state, the terminal device is configured with a first measurement criterion, and the terminal device does not meet the neighboring area measurement relaxation criterion in the RRC non-connected state, then the first timer is started. If the terminal device is configured with the first measurement criterion, and the difference between the current position of the terminal device and the reference position of the terminal device is greater than the first threshold, then the first timer is started or restarted.
  • the first situation is that the terminal device does not meet the neighboring area measurement relaxation criteria in the RRC non-connected state
  • the second situation is that the terminal device meets the neighboring area measurement relaxation criteria in the RRC non-connected state.
  • the terminal device usually needs to execute one or more measurement criteria to determine whether to turn on neighboring area measurement. At this time, if the terminal device is configured with the first measurement criterion, the first timer can be started or restarted.
  • the terminal device When in the second situation, that is, the terminal device is in a low mobility state or a stationary state in the RRC non-connected state, the terminal device may have a lower demand for neighboring area selection, reselection or switching. Therefore, even if the terminal device is configured with the first measurement criterion, the first timer may not be started at this time.
  • the terminal device is configured with the first measurement criterion, and the difference between the current position of the terminal device and the reference position of the terminal device is greater than the first threshold, that is, the difference between the current position of the terminal device and the reference position of the terminal device is greater than s-MeasureDeltaLocation or s-MeasureDeltaDistance, the first timer can be started or restarted.
  • whether further measurement is required can be determined according to the running state of the first timer to determine whether to enable neighboring cell measurement.
  • the measurement criterion based on the location of the terminal device may further include a second measurement criterion. Whether the second measurement criterion is satisfied may be determined based on one or more of the following: the current location of the terminal device, the cell reference location, and a third threshold.
  • the third threshold may be a distance threshold between the current position of the terminal device and the reference position of the cell (such as s-MeasureDistance).
  • the reference position of the cell may refer to the center position of the serving cell of the terminal device or the position of the satellite corresponding to the serving cell of the terminal device.
  • the second measurement criterion is met if the distance between the current position of the terminal device and the cell reference position is greater than or equal to a third threshold.
  • the terminal device is configured with a measurement criterion based on the location of the terminal device, which may include multiple situations. In some cases, the terminal device is configured with a first measurement criterion and a second measurement criterion. In other cases, the terminal device is only configured with the second measurement criterion.
  • the measurement criterion that satisfies the location of the terminal device may include the following situations: if the terminal device is not configured with the first measurement criterion, and the terminal device satisfies the second measurement criterion, then the measurement criterion based on the location of the terminal device is satisfied; if the first timer associated with the first measurement criterion is in a running state, and the terminal device satisfies the second measurement criterion, then the measurement criterion based on the location of the terminal device is satisfied.
  • the neighboring area measurement is started.
  • the one or more measurement criteria also include the measurement criteria based on cell signal quality as mentioned above.
  • the measurement criteria based on cell signal quality may include, for example, a third criterion based on (N)RSRP (i.e., neighCellMeasCriteria), and a fourth criterion (i.e., s-MeasureIntra and/or s-MeasureInter).
  • satisfying the measurement criteria based on cell signal quality may include the following situations: if the terminal device is not configured with the third measurement criteria and the terminal device satisfies the fourth measurement criteria, then the measurement criteria based on cell signal quality is satisfied; if the timer associated with the third measurement criteria (such as T326 mentioned above) is in a running state and the terminal device satisfies the fourth measurement criteria, then the measurement criteria based on cell signal quality is satisfied.
  • the neighboring cell measurement is started. That is, if the measurement criteria based on the location of the terminal device is met, but the measurement criteria based on the cell signal quality is not met, the neighboring cell measurement is started; if the measurement criteria based on the location of the terminal device is not met, but the measurement criteria based on the cell signal quality is met, the neighboring cell measurement is started; and if the measurement criteria based on the location of the terminal device is met and the measurement criteria based on the cell signal quality is met, the neighboring cell measurement is started.
  • the following is a detailed introduction to the method for neighboring area measurement provided in an embodiment of the present application, taking the first measurement criterion based on the position change threshold of the terminal device (s-MeasureDeltaLocation) and the second measurement criterion based on the distance threshold between the current position of the terminal device and the service cell satellite (s-MeasureDistance) as an example.
  • the first measurement criterion may include a location change threshold s-MeasureDeltaLocation and an evaluation duration t-MeasureDeltaLocation.
  • the second measurement criterion may include a distance threshold s-MeasureDistance.
  • a location reference value Lref of the terminal device is introduced, and a first timer T3YY is defined, and the timing duration of the T3YY timer is t-MeasureDeltaLocation.
  • Lref When the terminal device enters the RRC connected state from the RRC non-connected state (ie, the RRC idle state or the RRC inactive state), if the terminal device is configured with the first measurement criterion, Lref can be initialized (Lref is set to the current position of the terminal device).
  • the terminal device When the terminal device enters the RRC connected state from the RRC non-connected state (i.e., the RRC idle state or the RRC inactive state), if the terminal device is configured with the first measurement criterion and the terminal device does not meet the neighboring area measurement relaxation criterion in the RRC non-connected state, the terminal device can start the T3YY timer.
  • the RRC non-connected state i.e., the RRC idle state or the RRC inactive state
  • the terminal device is configured with the first measurement criterion, it can be determined whether the change in the current position L of the terminal device relative to Lref is greater than s-MeasureDeltaLocation. If the change in the current position L relative to Lref is greater than s-MeasureDeltaLocation, Lref can be updated to the current position L of the terminal device, and the T3YY timer can be started or restarted.
  • the terminal device is configured with the second measurement criterion, the relationship between the distance between the terminal device and the serving cell satellite and the first distance threshold s-MeasureDistance is determined. If the distance between the terminal device and the serving cell satellite is greater than (or equal to) the first distance threshold s-MeasureDistance, the second measurement criterion is considered to be met.
  • the terminal device is configured with both the first measurement criterion and the second measurement criterion, when the T3YY timer is running and the terminal device meets the second measurement criterion, it can be considered that the measurement criterion based on the location of the terminal device is met. At this time, the terminal device can start neighboring area measurement.
  • the terminal device is configured with only the second measurement criterion, when the terminal device meets the second measurement criterion, it can be considered that the measurement criterion based on the location of the terminal device is met. At this time, the terminal device can start neighboring area measurement.
  • Neighboring cell measurement may include co-frequency and/or inter-frequency measurement. It should be noted that the conditions for starting co-frequency or inter-frequency measurement may be further set according to different situations, and this application does not limit this.
  • Fig. 6 is a schematic block diagram of a terminal device provided in an embodiment of the present application.
  • the terminal device 600 may include a determination unit 610.
  • the determination unit 610 may be configured to determine whether to perform neighboring cell measurement according to one or more measurement criteria; wherein the one or more measurement criteria include a measurement criterion based on the location of the terminal device.
  • the measurement criteria based on the location of the terminal device include one or more of the following: a first measurement criterion for evaluating the mobility state of the terminal device; and a second measurement criterion for indicating a threshold condition for starting same-frequency measurement and/or different-frequency measurement.
  • the first measurement criterion evaluates the mobile state based on one or more of the following: a first threshold, including a threshold for the change in position of the terminal device and/or a threshold for the change in distance of the terminal device relative to a cell reference position; a second threshold for indicating the evaluation duration of the mobile state; the radio resource control RRC state of the terminal device; the current location of the terminal device; the reference location of the terminal device; and a first timer, the timing duration of the first timer being determined based on the evaluation duration of the mobile state.
  • a first threshold including a threshold for the change in position of the terminal device and/or a threshold for the change in distance of the terminal device relative to a cell reference position
  • a second threshold for indicating the evaluation duration of the mobile state
  • the radio resource control RRC state of the terminal device the current location of the terminal device; the reference location of the terminal device
  • a first timer the timing duration of the first timer being determined based on the evaluation duration of the mobile state.
  • the reference position of the terminal device is determined or updated to the current position of the terminal device; wherein the first condition is determined based on one or more of the following: whether the terminal device enters an RRC connected state from an RRC non-connected state; whether the terminal device is configured with a first measurement criterion; and the relationship between the difference between the current position of the terminal device and the reference position of the terminal device and a first threshold.
  • the first condition includes one or more of the following: if the terminal device enters an RRC connected state from an RRC non-connected state and the terminal device is configured with a first measurement criterion, the current position of the terminal device is the initial value of the reference position of the terminal device; and if the terminal device is configured with the first measurement criterion and the difference between the current position of the terminal device and the reference position of the terminal device is greater than a first threshold, the current position of the terminal device is an updated value of the reference position of the terminal device.
  • the first timer is started or restarted; wherein the second condition is determined based on one or more of the following: whether the terminal device enters the RRC connected state from the RRC non-connected state; whether the terminal device is configured with the first measurement criterion; whether the terminal device meets the neighboring area measurement relaxation criterion in the RRC non-connected state; and the relationship between the difference between the current position of the terminal device and the reference position of the terminal device and the first threshold.
  • the second condition includes one or more of the following: if the terminal device enters the RRC connected state from the RRC non-connected state, the terminal device is configured with a first measurement criterion, and the terminal device does not meet the neighboring area measurement relaxation criterion in the RRC non-connected state, then the first timer is started; and if the terminal device is configured with the first measurement criterion, and the difference between the current position of the terminal device and the reference position of the terminal device is greater than a first threshold, then the first timer is started or restarted.
  • whether the second measurement criterion is met is determined based on one or more of: the current location of the terminal device; the cell reference location; and a third threshold, the third threshold being a distance threshold between the current location of the terminal device and the cell reference location.
  • the second measurement criterion is met if the distance between the current position of the terminal device and the cell reference position is greater than or equal to a third threshold.
  • the measurement criterion based on the location of the terminal device is met; and if the first timer associated with the first measurement criterion is in a running state and the terminal device meets the second measurement criterion, the measurement criterion based on the location of the terminal device is met.
  • the one or more measurement criteria further include: a measurement criterion based on cell signal quality.
  • the neighboring cell measurement is initiated.
  • the cell reference position includes one or more of the following: a central position of a service cell of the terminal device; and a position of a satellite corresponding to the service cell of the terminal device.
  • Fig. 7 is a schematic block diagram of a network device provided in an embodiment of the present application.
  • the network device 700 may include a configuration unit 710.
  • the configuration unit 710 may be configured to configure one or more measurement criteria, where the one or more measurement criteria are used to determine whether to perform neighboring cell measurement; wherein the one or more measurement criteria include a measurement criterion based on the location of the terminal device.
  • the measurement criteria based on the location of the terminal device include one or more of the following: a first measurement criterion for evaluating the mobility state of the terminal device; and a second measurement criterion for indicating a threshold condition for starting same-frequency measurement and/or different-frequency measurement.
  • the first measurement criterion evaluates the mobile state based on one or more of the following: a first threshold, including a threshold for the change in position of the terminal device and/or a threshold for the change in distance of the terminal device relative to a cell reference position; a second threshold for indicating the evaluation duration of the mobile state; the radio resource control RRC state of the terminal device; the current location of the terminal device; the reference location of the terminal device; and a first timer, the timing duration of the first timer being determined based on the evaluation duration of the mobile state.
  • a first threshold including a threshold for the change in position of the terminal device and/or a threshold for the change in distance of the terminal device relative to a cell reference position
  • a second threshold for indicating the evaluation duration of the mobile state
  • the radio resource control RRC state of the terminal device the current location of the terminal device; the reference location of the terminal device
  • a first timer the timing duration of the first timer being determined based on the evaluation duration of the mobile state.
  • the reference position of the terminal device is determined or updated to the current position of the terminal device; wherein the first condition is determined based on one or more of the following: whether the terminal device enters an RRC connected state from an RRC non-connected state; whether the terminal device is configured with a first measurement criterion; and the relationship between the difference between the current position of the terminal device and the reference position of the terminal device and a first threshold.
  • the first condition includes one or more of the following: if the terminal device enters an RRC connected state from an RRC non-connected state and the terminal device is configured with a first measurement criterion, the current position of the terminal device is the initial value of the reference position of the terminal device; and if the terminal device is configured with the first measurement criterion and the difference between the current position of the terminal device and the reference position of the terminal device is greater than a first threshold, the current position of the terminal device is an updated value of the reference position of the terminal device.
  • the first timer is started or restarted; wherein the second condition is determined based on one or more of the following: whether the terminal device enters the RRC connected state from the RRC non-connected state; whether the terminal device is configured with the first measurement criterion; whether the terminal device meets the neighboring area measurement relaxation criterion in the RRC non-connected state; and the relationship between the difference between the current position of the terminal device and the reference position of the terminal device and the first threshold.
  • the second condition includes one or more of the following: if the terminal device enters the RRC connected state from the RRC non-connected state, the terminal device is configured with a first measurement criterion, and the terminal device does not meet the neighboring area measurement relaxation criterion in the RRC non-connected state, then the first timer is started; and if the terminal device is configured with the first measurement criterion, and the difference between the current position of the terminal device and the reference position of the terminal device is greater than a first threshold, then the first timer is started or restarted.
  • whether the second measurement criterion is met is determined based on one or more of the following: a current location of the terminal device; a cell reference location; and a third threshold, the third threshold being a distance threshold between the current location of the terminal device and the cell reference location.
  • the second measurement criterion is met if the distance between the current position of the terminal device and the cell reference position is greater than or equal to a third threshold.
  • the measurement criterion based on the location of the terminal device is met; and if the first timer associated with the first measurement criterion is in a running state and the terminal device meets the second measurement criterion, the measurement criterion based on the location of the terminal device is met.
  • the neighboring cell measurement is initiated.
  • the one or more measurement criteria further include: a measurement criterion based on cell signal quality.
  • the neighboring cell measurement is initiated.
  • the cell reference position includes one or more of the following: a central position of a service cell of the terminal device; and a position of a satellite corresponding to the service cell of the terminal device.
  • FIG8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dotted lines in FIG8 indicate that the unit or module is optional.
  • the device 800 may be used to implement the method described in the above method embodiment.
  • the device 800 may be a chip, a terminal device, or a network device.
  • the device 800 may include one or more processors 810.
  • the processor 810 may support the device 800 to implement the method described in the above method embodiment.
  • the processor 810 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor may also be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the apparatus 800 may further include one or more memories 820.
  • the memory 820 stores a program, which can be executed by the processor 810, so that the processor 810 executes the method described in the above method embodiment.
  • the memory 820 may be independent of the processor 810 or integrated in the processor 810.
  • the apparatus 800 may further include a transceiver 830.
  • the processor 810 may communicate with other devices or chips through the transceiver 830.
  • the processor 810 may transmit and receive data with other devices or chips through the transceiver 830.
  • the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied to a terminal or network device provided in the present application, and the program enables a computer to execute the method performed by the terminal device or network device in each embodiment of the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied to the terminal or network device provided in the embodiment of the present application, and the program enables the computer to execute the method performed by the terminal or network device in each embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device or network device provided in the embodiment of the present application, and the computer program enables a computer to execute the method executed by the terminal device or network device in each embodiment of the present application.
  • the "indication" mentioned can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or an association relationship between the two, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the “protocol” may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, and the present application does not limit this.
  • the term "and/or" is only a description of the association relationship of the associated objects, indicating that there can be three relationships.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be read by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于邻区测量的方法、终端设备和网络设备,该方法包括:终端设备根据一个或多个测量准则,确定是否执行邻区测量;其中,一个或多个测量准则包括基于终端设备的位置的测量准则。针对邻区测量,本申请实施例引入了基于终端设备位置的测量准则,相比RSRP的测量,终端设备位置的测量会更加准确,有助于避免终端设备的误操作。

Description

用于邻区测量的方法、终端设备和网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地涉及一种用于邻区测量的方法、终端设备和网络设备。
背景技术
相关技术中采用基于参考信号接收功率(reference signal received power,RSRP)的测量准则确定是否执行邻区测量。在某些通信场景中,如非地面通信网络(non terrestrial network,NTN)场景中,RSRP的测量可能存在较大测量误差,因此基于RSRP的测量准则确定是否执行邻区测量可能会导致终端设备的误操作。
发明内容
本申请提供一种用于邻区测量的方法、终端设备和网络设备。下面对本申请涉及的各个方面进行介绍。
第一方面,本申请实施例提供了一种用于邻区测量的方法,该方法包括:终端设备根据一个或多个测量准则,确定是否执行邻区测量;其中,所述一个或多个测量准则包括基于所述终端设备的位置的测量准则。
第二方面,本申请实施例提供了一种用于邻区测量的方法,该方法包括:网络设备配置一个或多个测量准则,所述一个或多个测量准则用于确定是否执行邻区测量;其中,所述一个或多个测量准则包括基于终端设备的位置的测量准则。
第三方面,本申请实施例提供一种终端设备,包括:确定单元,用于根据一个或多个测量准则,确定是否执行邻区测量;其中,所述一个或多个测量准则包括基于所述终端设备的位置的测量准则。
第四方面,本申请实施例提供一种网络设备,包括:配置单元,用于配置一个或多个测量准则,确定是否执行邻区测量;其中,所述一个或多个测量准则包括基于所述终端设备的位置的测量准则。
第五方面,本申请实施例提供一种终端设备,包括处理器以及存储器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,使得所述终端设备执行第一方面的方法中的部分或全部步骤。
第六方面,本申请实施例提供一种网络设备,包括处理器以及存储器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,使得所述网络设备执行第二方面的方法中的部分或全部步骤。
第七方面,本申请实施例提供一种装置,包括处理器,用于从存储器中调用程序,以执行如第一方面或第二方面所述的方法。
第八方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以执行如第一方面或第二方面所述的方法。
第九方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备(例如,终端设备或网络设备)执行如第一方面或第二方面所述的方法。
第十方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使通信设备(例如,终端设备或网络设备)执行如第一方面或第二方面所述的方法。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
针对邻区测量,本申请实施例引入了基于终端设备位置的测量准则,相比RSRP的测量,终端设备位置的测量会更加准确,有助于避免终端设备的误操作。
附图说明
图1为本申请实施例应用的无线通信系统示意图。
图2为一种于透明转发网络架构的示意图。
图3为一种再生转发网络结构的示意图。
图4为地面网络和NTN中终端在小区内不同位置的RSRP示意图。
图5为本申请实施例提供的一种用于邻区测量的方法流程示意图。
图6为本申请实施例提供的一种终端设备的结构示意图。
图7为本申请实施例提供的一种网络设备的结构示意图。
图8为本申请实施例提供的一种装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性和复杂性,第三代移动通信合作伙伴计划(3rd generation partnership project,3GPP)国际标准组织开始研发5G。5G的主要应用场景可以包括:增强移动超宽带(enhance mobile broadband,eMBB)、低时延高可靠通信(ultra reliable low latency communications,URLLC)和大规模机器类通信(massive machine type communication, mMTC)。
为了便于理解,下文介绍本申请实施例涉及的通信过程。
无线资源控制(radio resource control,RRC)状态及移动性管理
目前,协议中定义了终端设备的三种RRC状态:RRC连接(RRC_connected)态、RRC空闲(RRC-idle)态和RRC非激活(RRC-inactive)态。
RRC连接态可以指终端设备完成随机接入过程之后,未进行RRC释放时所处的状态。终端设备和网络设备(例如接入网络设备)之间存在RRC连接。在RRC连接态下,终端设备可以和网络设备进行数据传输,如进行下行数据传输和/或上行数据传输。或者,终端设备也可以和网络设备进行终端设备特定的数据信道和/或控制信道的传输,以传输该终端设备的特定信息或单播信息。
在RRC连接态下,网络设备可以确定终端设备小区级别的位置信息,也就是说,网络设备可以确定终端设备所属的小区。在RRC连接态下,终端设备发生位置移动后,如从一个小区移动到另一个小区后,网络设备可以控制终端设备进行小区切换(handover)。由此可见,终端设备在RRC连接态下的移动性管理可以包括小区切换。另外,终端设备在RRC连接态下的移动性管理可以由网络设备控制,相应地,终端设备可以按照网络设备下发的指令切换到指定的小区。
RRC空闲态是指终端设备在小区中驻留,但是未进行随机接入时终端设备所处的状态。终端设备通常在开机之后,或者在RRC释放之后进入RRC空闲态。在RRC空闲态下,终端设备和网络设备(例如驻留网络设备)之间没有RRC连接,网络设备没有存储终端设备的上下文,网络设备与核心网之间没有建立针对该终端设备的连接。如果终端设备需要从RRC空闲态进入RRC连接态,则需要发起RRC连接建立过程。
在RRC空闲态下,核心网(core network,CN)可以向终端设备发送寻呼消息,也就是说,寻呼过程可以由CN触发。可选地,寻呼区域也可以由CN配置。在一些情况下,对于处在RRC空闲态下的终端设备而言,当终端设备发生位置移动(例如,从一个小区移动到另一个小区)后,终端设备可以发起小区重选(cell reselection)过程。在另一些情况下,对于处在RRC空闲态下的终端设备而言,当终端设备需要接入小区时,终端设备可以发起小区选择(cell selection)过程。也就是说,终端设备在RRC空闲态的移动性管理可以包括小区重选和/或小区选择。
RRC非激活态是为了降低空口信令、快速恢复无线连接和快速恢复数据业务,定义的状态。RRC非激活态是处于连接态和空闲态之间的一个状态。终端设备之前已经进入了RRC连接态,然后释放了与网络设备的RRC连接,但是网络设备保存了该终端设备的上下文。另外,网络设备与核心网建立的针对该终端设备的连接没有被释放,也就是说,RAN与CN之间的用户面承载和控制面承载仍被维护,即存在CN-NR的连接。
在RRC非激活态下,RAN可以向终端设备发送寻呼消息,也就是说,寻呼过程可以由RAN触发。基于RAN的寻呼区域由RAN管理,网络设备能够知道终端设备的位置是基于RAN的寻呼区域级别的。
在一些情况下,对于处在RRC非激活态下的终端设备而言,当终端设备发生位置移动(例如,从一个小区移动到另一个小区)后,终端设备可以发起小区重选过程。在另一些情况下,对于处在RRC非激活态下的终端设备而言,当终端设备需要接入小区时,终端设备可以发起小区选择过程。也就是说,终端设备在RRC非激活态的移动性管理可以包括小区重选和/或小区选择。
无线资源管理(radio resource management,RRM)测量
RRM测量属于一种移动性测量。无论是小区选择、小区切换还是小区重选,都可以基于RRM测量结果进行。
RRM测量的种类包括同频测量、异频/异系统(inter-RAT)测量。同频测量包括测量当前服务小区同一频带下的其他频点和与服务小区支持的频段的中心频点相同的邻区频点。异频/异系统测量包括测量与服务小区支持的频段的中心频段不相同的邻区频点,或者测量与服务小区不在同一个系统的邻区频点。
当终端设备处于RRC空闲态或RRC非激活态,终端设备和网络设备之间没有RRC连接。当终端设备驻留的小区(又称为服务小区)的RRM测量结果低于一定门限时,终端设备可以根据网络设备在系统消息中配置的同频、异频和/或异系统邻区信息,对服务小区和与服务小区相邻的小区(又称为邻区)进行RRM测量。当终端设备处于RRC连接态,终端设备和网络设备之间存在RRC连接,网络设备通过RRC信令配置终端设备进行同频、异频和/或异系统邻区测量。
需要说明的是,上述RRM测量结果用于指示终端设备的通信质量。在一些实现方式中,上述RRM测量结果可以包括以下测量量中的一项或多项:信号电平(Srxlev)、信号强度(Squal)、参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality, RSRQ)、信噪比(signal to noise ratio,SNR)、信干噪比(signal to interference plus noise ratio,SINR)、接收信号强度指示(received signal strength indication,RSSI)等。
上述RRM测量门限中可以包括同频测量门限,以及异频/异系统测量门限。
但是,在R17之前的版本中,窄带物联网(narrow band internet of things,NB-IoT)中的终端设备不支持连接态的RRM测量。当处于连接态的终端设备在服务小区上的信道质量变差后,通过无线链路失败(radio link failure,RLF)和RRC重建过程来进行移动性管理。由于终端设备触发RLF之后,需要先通过搜索,测量来选择一个合适的小区,然后在该小区上发起RRC连接重建。为了节省终端设备触发RLF之后选择重建小区的时间,R17针对NB-IoT系统的处于连接态的终端设备引入了邻区测量机制,下文将对该邻区测量机制进行简单介绍。
邻区测量机制可以基于s-测量(s-measure)准则和移动状态评估准则。例如,当终端设备进入到RRC连接态之后,如果网络配置了移动状态评估准则:则将窄带参考信号接收功率(narrowband reference signal received power,NRSRP)的参考值(Ref)设置为最近一次测得的用于小区选择/重选的服务小区上的NRSRP;如果终端设备在进入RRC连接态之前没有满足邻区测量放松准则(该准则将在后文中进行详细介绍),则终端设备启动定时器T326。
对于处于连接态的终端设备,假设终端设备在被测载波上的测量结果为NRSRP,如果网络配置了终端设备移动状态评估准则:如果(NRSRP Ref–(NRSRP–PowerOffsetNonAnchor))>s-measureDeltaP,则终端设备设置NRSRP Ref=NRSRP-PowerOffsetNonAnchor,同时终端设备启动或重启定时器T326。其中PowerOffsetNonAnchor为非锚功率偏移量。如果网络没有配置移动状态评估准则,或者T326正在运行:如果(NRSRP-PowerOffsetNonAnchor)<s-MeasureIntra,则终端设备执行对同频邻区的测量;如果(NRSRP-PowerOffsetNonAnchor)<s-MeasureInter,则终端设备执行对异频邻区的测量。s-MeasureIntra表示前文提到的同频测量门限,s-MeasureInter表示前文提到的异频测量门限。
在一些协议中规定终端设备需要周期性进行RRM测量,这导致了终端设备的能耗较大,尤其在某些测量场景下(例如终端设备处于静止状态或者终端设备的移动速度较低时),终端设备其实没有必要频繁地进行RRM测量。因此为了降低终端设备的能耗,引入了RRM测量放松(RRM measurement relax)的机制。
RRM测量放松机制
RRM测量放松也可以称为邻区测量放松,或邻区RRM测量放松。RRM测量放松的实现方式有多种,例如,终端设备可以通过增大RRM测量的周期(即减少RRM测量的次数)来实现RRM测量放松。又例如,终端设备可以通过减小测量的邻区的数量来实现RRM测量放松。再例如,终端设备可以通过减小测量的频点数来实现RRM测量放松。
针对终端设备在RRC空闲态和RRC非激活态的RRM测量放松,可以根据终端设备是否处于服务小区的边缘小区位置和/或终端设备是否处于低移动状态进行确定。
终端设备是否处于低移动状态可以基于服务小区的RRM测量结果进行判断。例如,终端设备可以在不同的时间对服务小区的RRM测量结果进行测量。如果服务小区的RRM测量结果在不同的时间变化很少,即服务小区的信号质量比较稳定,则表示终端设备处于低移动状态,终端设备可以进行RRM测量放松。
以确定NB-IoT中终端设备是否进行RRM测量放松为例,对测量放松的判断过程进行介绍。
网络设备会配置RSRP变化的评估时长TSearchDeltaP和RSRP变化值门限SSearchDeltaP。当一段时间TSearchDeltaP内终端设备在服务小区上的RSRP变化量小于SSearchDeltaP时,则认为该终端设备满足测量放松准则。也就是说,在一段时间TSearchDeltaP内,满足(SrxlevRef–Srxlev)<SSearchDeltaP(公式1)。其中,Srxlev表示服务小区的当前信号幅值,SrxlevRef表示服务小区的信号幅值参考值。通常,SrxlevRef的使用可以遵循下述规则。
规则一:当终端设备进行小区选择或小区重选后,服务小区发生变化,则终端设备需要设定信号参考值为服务小区的信号幅值的当前测量值(即Srxlev)。
规则二:如果服务小区的信号幅值大于信号幅值参考值,即(Srxlev-SrxlevRef)>0,则终端设备需要设定信号参考值为服务小区的信号幅值的当前测量值。
规则三:在t-SearchDelta时间内没有满足测量放松的准则(即不满足公式1),则终端设备需要设定信号参考值为服务小区的信号幅值的当前测量值。
在一种实现方式中,当终端设备满足测量放松准则时,终端设备针对邻区的测量间隔可以增大到24小时。
NTN
目前3GPP正在研究NTN技术。NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地 面通信网络(例如,地面蜂窝网通信),卫星通信具有很多独特的优点。
首先,卫星通信不受用户地域的限制。例如,一般的地面通信网络不能覆盖海洋、高山、沙漠等无法搭设网络设备的区域。或者,地面通信网络不覆盖某些人口稀少的区域。而对于卫星通信来说,由于一颗卫星可以覆盖较大的地面区域,且卫星可以围绕地球做轨道运动,因此,理论上讲,地球上每一个角落都可以被卫星通信网络所覆盖。
其次,卫星通信有较大的社会价值。卫星通信可以以较低的成本覆盖到边远山区、贫穷落后的国家或地区,从而使这些地区的人们享受到先进的语音通信和移动互联网技术。从这个角度看来,卫星通信有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。
再次,卫星通信距离远的优势,且通信距离的增大并没有明显增加通信的成本。
最后,卫星通信的稳定性高,不受自然灾害的影响。
通信卫星按照轨道高度的不同分为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等。目前阶段主要研究的是LEO卫星和GEO卫星。
LEO卫星高度范围一般在500km~1500km。相应地,LEO卫星的轨道周期约为1.5小时~2小时。对于LEO卫星而言,用户间单跳通信的信号传播延迟一般小于20ms。LEO卫星的最大卫星可视时间约为20分钟。LEO卫星具有信号传播距离短,链路损耗少,对用户的终端设备的发射功率要求不高等优点。
GEO卫星的轨道高度为35786km。GEO卫星围绕地球旋转的周期为24小时。对于GEO卫星而言,用户间单跳通信的信号传播延迟一般约为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星通常采用多波束覆盖地面区域。因此,一颗卫星可以形成几十甚至数百个波束来覆盖地面区域。卫星的一个波束大约可以覆盖直径几十至上百公里的地面区域。
目前,NTN系统包括NR-NTN系统和物联网(internet of things,IoT)-NTN系统。
卫星网络架构
目前3GPP考虑的卫星有两种,一种是透明转发(transparent payload)的卫星,一种是再生转发(regenerative payload)的卫星。下文分别结合图2至图3介绍包含透明转发的卫星的网络架构,以及包含再生转发的卫星的网络架构。
在图2至图3所示的卫星网络架构中,卫星网络架构可以包括终端设备210、卫星节点222和地面接收站221(简称“地面站”)。终端设备210与卫星节点222之间存在无线通信,终端设备210可以通过终端设备210和卫星节点222之间的链路将数据发送至卫星节点222。例如,可以通过服务链路(service link)发送至卫星节点222。相应地,卫星节点222接收到数据之后,可通过卫星节点222与地面接收站221之间的链路发送给地面接收站221。例如,可以通过无线链路(如馈线链路(feeder link))传递给地面接收站221。相应地,地面接收站221接收到卫星节点222的数据之后,将数据传输至核心网(数据网络),进而通过核心网对数据进行处理,比如与其他终端进行数据交互等等。可以理解的是,此处的服务链路指的是终端设备210和卫星节点222之间的链路,馈线链路指卫星节点222与地面接收站221之间的链路,在其他可能的实施例中,该终端设备和卫星节点之间的链路,和/或,卫星节点与地面接收站之间的链路还可以用其他的名词表示,本申请不做限定。
上述卫星节点222的类型可以分为两种,第一种卫星节点是仅仅用于转发,即仅具有透明转发功能。在一些实现方式中,此类卫星节点可以只提供无线频率滤波功能、频率转换功能和功率放大功能中的一种或多种。对于这种卫星节点,可以将收到的终端设备信号进行放大,然后发送给地面接收站,终端设备信号在卫星节点上不做任何处理,如图2所示;其中,终端设备与卫星节点之间可通过NR-Uu接口进行通信,卫星节点和地面接收站(如可包括NTN射频拉远单元(remote radio unit,RRU)和gNB)之间可通过NR-Uu接口进行通信,地面接收站和5G核心网(5G CN)之间可通过N1、N2、N3接口进行通信,5G CN和数据网络之间可通过N6接口进行通信。
第二种卫星节点具有完整的基站处理功能,卫星节点对于地面的终端设备来说就是一个基站,卫星节点与终端设备之间的通信与正常的5G通信基本一致,如图3所示。在一些实现方式中,此类卫星节点还可以提供以下功能中的一种或多种:解调功能、解码功能、路由功能、转换功能、编码功能、调制功能。其中,终端设备与卫星节点之间可通过NR-Uu接口进行通信,卫星节点和地面接收站之间可通过卫星无线接口(satellite radio interface,SRI)进行通信,该SRI接口可以用于发送卫星节点与5G CN的接口消息(例如N2、N3接口消息),地面接收站和5G CN之间可通过N1、N2、N3接口进行通信,5G CN和数据网络之间可通过N6接口进行通信。
在地面网络中,终端设备处于小区中心时的参考信号接收功率(N)RSRP要明显高于其处于小区边 缘时的(N)RSRP。由于存在明显的“远近效应”(参见图4中的示意图a),因此可以基于(N)RSRP测量判断是否满足邻区测量启动条件,即在网络设备配置了s-measure准则的情况下,终端设备可以通过对服务小区的(N)RSRP测量来判断自己是否信道状态不够好;在网络配置了移动性评估准则的情况下,终端设备可以基于自己在服务小区上的(N)RSRP变化量判断自己是否不满足低移动性或静止状态。
但是,在NTN系统中,对于处于小区中心的终端设备和处于小区边缘的终端设备,它们对应的RSRP差异并不明显(参见图4中的示意图b),如果基于RSRP测量来判断终端设备是否满足s-meausre准则或/和移动性评估准则,一方面网络很难设置合适的RSRP门限,另一方面,由于RSRP测量存在误差,很可能导致终端设备的误操作。例如,在网络配置了s-measure准则的情况下,对于小区中心的用户,由于测量的RSRP偏低导致启动了邻区测量,增加了不必要的终端功耗;对于小区边缘的用户,由于测量的RSRP偏高导致没有启动针对邻区的测量,当终端设备触发了RLF之后增加了RRC重建的时间,从而影响了终端的体验。
在NTN系统中,虽然服务小区中心的终端设备和服务小区边缘的终端设备接收信号强度差异不明显,但是终端设备的位置差异相对明显。例如,终端设备的全球导航卫星系统(global navigation satellite system,GNSS)位置差异明显。又如,终端设备相对小区中心的距离差异明显。
因此,为了解决上述问题,本申请实施例提供了一种用于邻区测量的方法,可以基于终端设备的位置,确定是否执行邻区测量,从而避免终端设备的误操作。
下文将结合图5,对本申请实施例的用于邻区测量的方法的流程进行介绍。
参见图5,在步骤S510,网络设备配置一个或多个测量准则。所述一个或多个测量准则可用于确定是否执行邻区测量。该一个或多个测量准则可以包括基于终端设备的位置的测量准则。
在一些实施例中,网络设备可以通过系统消息配置所述一个或多个测量准则。例如,网络设备可以通过系统消息中的系统信息块(system information block,SIB)配置该一个或多个测量准则。又如,网络设备可以通过RRC信令配置一个或多个测量准则。
在步骤S520,终端设备根据一个或多个测量准则,确定是否执行邻区测量。
针对邻区测量,本申请实施例引入了基于终端设备位置的测量准则,相比RSRP的测量,终端设备位置的测量可以更加准确,有助于避免终端设备的误操作。
在一些实施例中,基于终端设备的位置的测量准则可以包括以下中的一种或多种:第一测量准则,用于对终端设备的移动状态进行评估;以及第二测量准则,用于指示启动同频测量和/或异频测量的门限条件。
在一些实施例中,第一测量准则可以基于以下中的一种或多种对终端设备的移动状态进行评估:第一门限;第二门限;终端设备的RRC状态;终端设备的当前位置;终端设备的参考位置;以及第一定时器。
在一些实施例中,第一门限可以包括终端设备的位置变化量的门限(如s-MeasureDeltaLocation)。这里提到的终端设备的位置可以指终端设备的全球导航卫星系统(global navigation satellite system,GNSS)位置。
在一些实施例中,第一门限可以包括终端设备相对小区参考位置的距离变化量的门限(如s-MeasureDeltaDistance)。该小区参考位置可以包括以下中的一种或多种:终端设备的服务小区的中心位置;以及终端设备的服务小区对应的卫星的位置。终端设备的服务小区的中心位置也可称为服务小区参考点。例如可以指小区地面覆盖的中心点。
在一些实施例中,第二门限可用于指示移动状态的评估时长。第一门限和第二门限可以结合使用,也就是说,在第二门限规定的评估时长内对终端设备是否满足第一门限进行评估。以第一门限为终端设备的位置变化量的门限s-MeasureDeltaLocation为例,则第二门限可以采用t-MeasureDeltaLocation表示,用于评估在第二门限对应的评估时长内,终端设备的位置变化量是否超过s-MeasureDeltaLocation。以第一门限为终端设备相对小区参考位置的距离变化量的门限s-MeasureDeltaDistance为例,则第二门限可以采用t-MeasureDeltaDistance表示,用于评估在第二门限对应的评估时长内,终端设备相对小区参考位置的距离变化量是否超过s-MeasureDeltaDistance。
第一定时器可以指与第一测量准则关联的定时器。在一些实施例中,该第一定时器的定时时长可以基于移动状态的评估时长确定。例如,该第一定时器的定时时长可以等于移动状态的评估时长。
在一些实施例中,在基于第一测量准则对终端设备的移动状态进行评估过程中,可以监控和更新终端设备的参考位置。该终端设备的参考位置的确定或更新可以基于一定的条件(后文将该条件称为第一条件)进行。例如,如果第一条件满足,则可以将终端设备的参考位置被确定或更新为终端设备的当前位置。
该第一条件可以基于以下中的一种或多种确定:终端设备是否从RRC非连接态进入RRC连接态; 终端设备是否配置了所述第一测量准则;终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。作为一个示例,如果终端设备从RRC非连接态进入RRC连接态,且终端设备配置了第一测量准则,则终端设备的当前位置为终端设备的参考位置的初始值。作为另一个示例,如果终端设备配置了第一测量准则,且终端设备的当前位置与终端设备的参考位置之间的差值大于第一门限,则终端设备的当前位置为终端设备的参考位置的更新值。
作为一种实现方式,第一定时器的启动或重启可以通过是否满足第二条件来确定。第二条件可以基于以下中的一种或多种确定:终端设备是否从RRC非连接态进入RRC连接态;终端设备是否配置了第一测量准则;终端设备在RRC非连接态是否满足邻区测量放松准则;以及终端设备的当前位置与终端设备的参考位置之间的差值与第一门限的关系。
作为一个示例,第二条件可以包括以下中的一种或多种:如果终端设备从RRC非连接态进入RRC连接态,终端设备配置了第一测量准则,且终端设备在RRC非连接态不满足邻区测量放松准则,则启动第一定时器。如果终端设备配置了第一测量准则,且终端设备的当前位置与终端设备的参考位置之间的差值大于第一门限,则启动或重启第一定时器。
终端设备从RRC非连接态进入RRC连接态,通常包括两种情况:第一种情况是,终端设备在RRC非连接态不满足邻区测量放松准则;第二种情况是,终端设备在RRC非连接态满足邻区测量放松准则。当处于第一种情况时,通常终端设备需要执行一个或多个测量准则,以确定其是否开启邻区测量。此时,如果终端设备配置了第一测量准则,则可以启动或重启第一定时器。当处于第二种情况时,也就是说终端设备在RRC非连接态时为低移动性状态或静止状态,终端设备进行邻区选择、重选或切换的需求可能较低。因此,即使终端设备配置了第一测量准侧,但是此时可以不启动第一定时器。
如果终端设备配置了第一测量准则,而且终端设备的当前位置与终端设备的参考位置之间的差值大于第一门限,也就是说终端设备的当前位置与终端设备的参考位置之间的差值大于s-MeasureDeltaLocation或s-MeasureDeltaDistance,则可以启动或重启第一定时器。
作为一种实现方式,可以根据第一定时器的运行状态确定是否需要进一步测量,以确定是否开启邻区测量。
在一些实施例中,基于终端设备的位置的测量准则还可以包括第二测量准则。第二测量准则是否满足可以基于以下中的一种或多种确定:终端设备的当前位置、小区参考位置以及第三门限。
作为一种实现方式,第三门限可以为终端设备的当前位置与小区参考位置之间的距离门限(如s-MeasureDistance)。其中,小区的参考位置可以指终端设备的服务小区的中心位置,也可以指终端设备的服务小区对应的卫星的位置。
作为一种实现方式,如果终端设备的当前位置与小区参考位置之间的距离大于或等于第三门限,则满足第二测量准则。
终端设备配置了基于终端设备的位置的测量准则可以包括多种情况。在一些情况下,终端设备配置第一测量准则和第二测量准则。在另一些情况下终端设备只配置了第二测量准则。根据测量准则的不同配置,满足终端设备的位置的测量准则可以包括以下情况:如果终端设备未配置第一测量准则,且终端设备满足第二测量准则,则满足基于终端设备的位置的测量准则;如果第一测量准则关联的第一定时器处于运行状态,且终端设备满足第二测量准则,则满足基于终端设备的位置的测量准则。
作为一种实现方式,如果满足基于终端设备的位置的测量准则,则启动邻区测量。
作为另一种实现方式,一个或多个测量准则还包括如前文提到的基于小区信号质量的测量准则。基于小区信号质量的测量准则例如可以包括基于(N)RSRP的第三准则(即neighCellMeasCriteria),和第四准则(即s-MeasureIntra和/或s-MeasureInter)。
在一些实施例中,满足基于小区信号质量的测量准则可以包括以下情况:如果终端设备未配置第三测量准则,且终端设备满足第四测量准则,则满足基于小区信号质量的测量准则;如果第三测量准则关联的定时器(如前文提到的T326)处于运行状态,且终端设备满足第四测量准则,则满足基于小区信号质量的测量准则。
如果基于终端设备的位置的测量准则以及基于小区信号质量的测量准则中的至少一个被满足,则启动邻区测量。也就是说,如果满足基于终端设备的位置的测量准则,但不满足基于小区信号质量的测量准则,启动邻区测量;如果不满足基于终端设备的位置的测量准则,但满足基于小区信号质量的测量准则,启动邻区测量;以及如果满足基于终端设备的位置的测量准则,且满足基于小区信号质量的测量准则,启动邻区测量。
下文以第一测量准则基于终端设备的位置变化量门限(s-MeasureDeltaLocation),第二测量准则基于终端设备的当前位置与服务小区卫星之间的距离门限(s-MeasureDistance)为例,对本申请实施例提供的用于邻区测量的方法进行详细的介绍。
如果网络设备为终端设备配置了第一测量准则,第一测量准则可以包含位置变化量门限s-MeasureDeltaLocation和评估时长t-MeasureDeltaLocation。如果网络设备为终端设备配置了第二测量准则,第二测量准则可以包括距离门限s-MeasureDistance。
在第一测量准则中,引入终端设备的位置参考值Lref,定义第一定时器T3YY,该T3YY定时器的定时时长为t-MeasureDeltaLocation。
当终端设备从RRC非连接态(即RRC空闲态或RRC非激活态)进入到RRC连接态,如果终端设备配置了第一测量准则,则可以对Lref进行初始化(将Lref设置为终端设备的当前位置)。
当终端设备从RRC非连接态(即RRC空闲态或RRC非激活态)进入到RRC连接态,如果终端设备配置了第一测量准则,且终端设备在RRC非连接态不满足邻区测量放松准则,则终端设备可以启动T3YY定时器。
如果终端设备配置了第一测量准则,可以判断终端设备的当前位置L相对Lref的位置变化量是否大于s-MeasureDeltaLocation。如果当前位置L相对Lref的变化量大于s-MeasureDeltaLocation,则可以将Lref更新为终端设备的当前位置L,同时可以启动或重启T3YY定时器。
如果终端设备配置了第二测量准则,判断终端设备到服务小区卫星之间的距离与第一距离门限s-MeasureDistance的大小关系。如果终端设备到服务小区卫星之间的距离大于(或等于)第一距离门限s-MeasureDistance,则认为满足第二测量准则。
如果终端设备同时配置了第一测量准则和第二测量准则,当T3YY定时器运行时,且终端设备满足第二测量准则,则可以认为满足基于终端设备的位置的测量准则。此时,终端设备可以开启邻区测量。
如果终端设备只配置了第二测量准则,当终端设备满足第二测量准则时,则可以认为满足基于终端设备的位置的测量准则。此时,终端设备可以开启邻区测量。
邻区测量可以包括同频和/或异频测量。需要说明的是,可以根据不同的情况进一步设置开启同频或异频测量的条件,本申请对此不作限定。
上文结合图1至图5,详细描述了本申请的方法实施例,下面结合图6至图8,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图6为本申请实施例提供的一种终端设备的示意性框图。该终端设备600可以包括确定单元610。
确定单元610,可以用于根据一个或多个测量准则,确定是否执行邻区测量;其中,一个或多个测量准则包括基于终端设备的位置的测量准则。
在一种可能的实现方式中,基于终端设备的位置的测量准则包括以下中的一种或多种:第一测量准则,用于对终端设备的移动状态进行评估;以及第二测量准则,用于指示启动同频测量和/或异频测量的门限条件。
在一种可能的实现方式中,第一测量准则基于以下中的一种或多种对移动状态进行评估:第一门限,包括终端设备的位置变化量的门限和/或终端设备相对小区参考位置的距离变化量的门限;第二门限,用于指示移动状态的评估时长;终端设备的无线资源控制RRC状态;终端设备的当前位置;终端设备的参考位置;以及第一定时器,第一定时器的定时时长基于移动状态的评估时长确定。
在一种可能的实现方式中,如果第一条件满足,则终端设备的参考位置被确定或更新为终端设备的当前位置;其中,第一条件基于以下中的一种或多种确定:终端设备是否从RRC非连接态进入RRC连接态;终端设备是否配置了第一测量准则;以及终端设备的当前位置与终端设备的参考位置之间的差值与第一门限的关系。
在一种可能的实现方式中,第一条件包括以下中的一种或多种:如果终端设备从RRC非连接态进入RRC连接态,且终端设备配置了第一测量准则,则终端设备的当前位置为终端设备的参考位置的初始值;以及如果终端设备配置了第一测量准则,且终端设备的当前位置与终端设备的参考位置之间的差值大于第一门限,则终端设备的当前位置为终端设备的参考位置的更新值。
在一种可能的实现方式中,如果第二条件满足,第一定时器被启动或重启;其中,第二条件基于以下中的一种或多种确定:终端设备是否从RRC非连接态进入RRC连接态;终端设备是否配置了第一测量准则;终端设备在RRC非连接态是否满足邻区测量放松准则;以及终端设备的当前位置与终端设备的参考位置之间的差值与第一门限的关系。
在一种可能的实现方式中,第二条件包括以下中的一种或多种:如果终端设备从RRC非连接态进入RRC连接态,终端设备配置了第一测量准则,且终端设备在RRC非连接态不满足邻区测量放松准则,则启动第一定时器;以及如果终端设备配置了第一测量准则,且终端设备的当前位置与终端设备的参考位置之间的差值大于第一门限,则启动或重启第一定时器。
在一种可能的实现方式中,第二测量准则是否满足基于以下中的一种或多种确定:终端设备的当前 位置;小区参考位置;以及第三门限,第三门限为终端设备的当前位置与小区参考位置之间的距离门限。
在一种可能的实现方式中,如果终端设备的当前位置与小区参考位置之间的距离大于或等于第三门限,则满足第二测量准则。
在一种可能的实现方式中,如果终端设备未配置第一测量准则,且终端设备满足第二测量准则,则满足基于终端设备的位置的测量准则;以及如果第一测量准则关联的第一定时器处于运行状态,且终端设备满足第二测量准则,则满足基于终端设备的位置的测量准则。
在一种可能的实现方式中,如果满足基于终端设备的位置的测量准则,则启动邻区测量。
在一种可能的实现方式中,一个或多个测量准则还包括:基于小区信号质量的测量准则。
在一种可能的实现方式中,如果基于终端设备的位置的测量准则以及基于小区信号质量的测量准则中的至少一个被满足,则启动邻区测量。
在一种可能的实现方式中,小区参考位置包括以下中的一种或多种:终端设备的服务小区的中心位置;以及终端设备的服务小区对应的卫星的位置。
图7为本申请实施例提供的一种网络设备的示意性框图。该网络设备700可以包括配置单元710。
配置单元710,可以用于配置一个或多个测量准则,一个或多个测量准则用于确定是否执行邻区测量;其中,一个或多个测量准则包括基于终端设备的位置的测量准则。
在一种可能的实现方式中,基于终端设备的位置的测量准则包括以下中的一种或多种:第一测量准则,用于对终端设备的移动状态进行评估;以及第二测量准则,用于指示启动同频测量和/或异频测量的门限条件。
在一种可能的实现方式中,第一测量准则基于以下中的一种或多种对移动状态进行评估:第一门限,包括终端设备的位置变化量的门限和/或终端设备相对小区参考位置的距离变化量的门限;第二门限,用于指示移动状态的评估时长;终端设备的无线资源控制RRC状态;终端设备的当前位置;终端设备的参考位置;以及第一定时器,第一定时器的定时时长基于移动状态的评估时长确定。
在一种可能的实现方式中,如果第一条件满足,则终端设备的参考位置被确定或更新为终端设备的当前位置;其中,第一条件基于以下中的一种或多种确定:终端设备是否从RRC非连接态进入RRC连接态;终端设备是否配置了第一测量准则;以及终端设备的当前位置与终端设备的参考位置之间的差值与第一门限的关系。
在一种可能的实现方式中,第一条件包括以下中的一种或多种:如果终端设备从RRC非连接态进入RRC连接态,且终端设备配置了第一测量准则,则终端设备的当前位置为终端设备的参考位置的初始值;以及如果终端设备配置了第一测量准则,且终端设备的当前位置与终端设备的参考位置之间的差值大于第一门限,则终端设备的当前位置为终端设备的参考位置的更新值。
在一种可能的实现方式中,如果第二条件满足,第一定时器被启动或重启;其中,第二条件基于以下中的一种或多种确定:终端设备是否从RRC非连接态进入RRC连接态;终端设备是否配置了第一测量准则;终端设备在RRC非连接态是否满足邻区测量放松准则;以及终端设备的当前位置与终端设备的参考位置之间的差值与第一门限的关系。
在一种可能的实现方式中,第二条件包括以下中的一种或多种:如果终端设备从RRC非连接态进入RRC连接态,终端设备配置了第一测量准则,且终端设备在RRC非连接态不满足邻区测量放松准则,则启动第一定时器;以及如果终端设备配置了第一测量准则,且终端设备的当前位置与终端设备的参考位置之间的差值大于第一门限,则启动或重启第一定时器。
在一种可能的实现方式中,第二测量准则是否满足基于以下中的一种或多种确定:终端设备的当前位置;小区参考位置;以及第三门限,第三门限为终端设备的当前位置与小区参考位置之间的距离门限。
在一种可能的实现方式中,如果终端设备的当前位置与小区参考位置之间的距离大于或等于第三门限,则满足第二测量准则。
在一种可能的实现方式中,如果终端设备未配置第一测量准则,且终端设备满足第二测量准则,则满足基于终端设备的位置的测量准则;以及如果第一测量准则关联的第一定时器处于运行状态,且终端设备满足第二测量准则,则满足基于终端设备的位置的测量准则。
在一种可能的实现方式中,如果满足基于终端设备的位置的测量准则,则启动邻区测量。
在一种可能的实现方式中,一个或多个测量准则还包括:基于小区信号质量的测量准则。
在一种可能的实现方式中,如果基于终端设备的位置的测量准则以及基于小区信号质量的测量准则中的至少一个被满足,则启动邻区测量。
在一种可能的实现方式中,小区参考位置包括以下中的一种或多种:终端设备的服务小区的中心位置;以及终端设备的服务小区对应的卫星的位置。
图8是本申请实施例的通信装置的示意性结构图。图8中的虚线表示该单元或模块为可选的。该装 置800可用于实现上述方法实施例中描述的方法。装置800可以是芯片、终端设备或网络设备。
装置800可以包括一个或多个处理器810。该处理器810可支持装置800实现前文方法实施例所描述的方法。该处理器810可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置800还可以包括一个或多个存储器820。存储器820上存储有程序,该程序可以被处理器810执行,使得处理器810执行前文方法实施例所描述的方法。存储器820可以独立于处理器810也可以集成在处理器810中。
装置800还可以包括收发器830。处理器810可以通过收发器830与其他设备或芯片进行通信。例如,处理器810可以通过收发器830与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端设备或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端设备或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端设备或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (66)

  1. 一种用于邻区测量的方法,其特征在于,包括:
    终端设备根据一个或多个测量准则,确定是否执行邻区测量;其中,所述一个或多个测量准则包括基于所述终端设备的位置的测量准则。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述终端设备的位置的测量准则包括以下中的一种或多种:
    第一测量准则,用于对所述终端设备的移动状态进行评估;以及
    第二测量准则,用于指示启动同频测量和/或异频测量的门限条件。
  3. 根据权利要求2所述的方法,其特征在于,所述第一测量准则基于以下中的一种或多种对所述移动状态进行评估:
    第一门限,包括所述终端设备的位置变化量的门限和/或所述终端设备相对小区参考位置的距离变化量的门限;
    第二门限,用于指示所述移动状态的评估时长;
    所述终端设备的无线资源控制RRC状态;
    所述终端设备的当前位置;
    所述终端设备的参考位置;以及
    第一定时器,所述第一定时器的定时时长基于所述移动状态的评估时长确定。
  4. 根据权利要求3所述的方法,其特征在于,如果第一条件满足,则所述终端设备的参考位置被确定或更新为所述终端设备的当前位置;
    其中,所述第一条件基于以下中的一种或多种确定:
    所述终端设备是否从RRC非连接态进入RRC连接态;
    所述终端设备是否配置了所述第一测量准则;以及
    所述终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。
  5. 根据权利要求4所述的方法,其特征在于,所述第一条件包括以下中的一种或多种:
    如果所述终端设备从RRC非连接态进入RRC连接态,且所述终端设备配置了所述第一测量准则,则所述终端设备的当前位置为所述终端设备的参考位置的初始值;以及
    如果所述终端设备配置了所述第一测量准则,且所述终端设备的当前位置与所述终端设备的参考位置之间的差值大于所述第一门限,则所述终端设备的当前位置为所述终端设备的参考位置的更新值。
  6. 根据权利要求3或4所述的方法,其特征在于,如果第二条件满足,所述第一定时器被启动或重启;
    其中,所述第二条件基于以下中的一种或多种确定:
    所述终端设备是否从RRC非连接态进入RRC连接态;
    所述终端设备是否配置了所述第一测量准则;
    所述终端设备在RRC非连接态是否满足邻区测量放松准则;以及
    所述终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。
  7. 根据权利要求6所述的方法,其特征在于,所述第二条件包括以下中的一种或多种:
    如果所述终端设备从RRC非连接态进入RRC连接态,所述终端设备配置了所述第一测量准则,且所述终端设备在RRC非连接态不满足邻区测量放松准则,则启动所述第一定时器;以及
    如果所述终端设备配置了所述第一测量准则,且所述终端设备的当前位置与所述终端设备的参考位置之间的差值大于所述第一门限,则启动或重启所述第一定时器。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,所述第二测量准则是否满足基于以下中的一种或多种确定:
    所述终端设备的当前位置;
    小区参考位置;以及
    第三门限,所述第三门限为所述终端设备的当前位置与所述小区参考位置之间的距离门限。
  9. 根据权利要求8所述的方法,其特征在于,如果所述终端设备的当前位置与所述小区参考位置之间的距离大于或等于所述第三门限,则满足所述第二测量准则。
  10. 根据权利要求2-9中任一项所述的方法,其特征在于:
    如果所述终端设备未配置所述第一测量准则,且所述终端设备满足所述第二测量准则,则满足基于所述终端设备的位置的测量准则;以及
    如果所述第一测量准则关联的第一定时器处于运行状态,且所述终端设备满足所述第二测量准则, 则满足基于所述终端设备的位置的测量准则。
  11. 根据权利要求10所述的方法,其特征在于,如果满足基于所述终端设备的位置的测量准则,则启动所述邻区测量。
  12. 根据权利要求1-10中任一项所述的方法,其特征在于,所述一个或多个测量准则还包括:基于小区信号质量的测量准则。
  13. 根据权利要求12所述的方法,其特征在于,如果基于所述终端设备的位置的测量准则以及所述基于小区信号质量的测量准则中的至少一个被满足,则启动所述邻区测量。
  14. 根据权利要求3-9中任一项所述的方法,其特征在于,所述小区参考位置包括以下中的一种或多种:
    所述终端设备的服务小区的中心位置;以及
    所述终端设备的服务小区对应的卫星的位置。
  15. 一种用于邻区测量的方法,其特征在于,包括:
    网络设备配置一个或多个测量准则,所述一个或多个测量准则用于确定是否执行邻区测量;其中,所述一个或多个测量准则包括基于终端设备的位置的测量准则。
  16. 根据权利要求15所述的方法,其特征在于,所述基于所述终端设备的位置的测量准则包括以下中的一种或多种:
    第一测量准则,用于对所述终端设备的移动状态进行评估;以及
    第二测量准则,用于指示启动同频测量和/或异频测量的门限条件。
  17. 根据权利要求16所述的方法,其特征在于,所述第一测量准则基于以下中的一种或多种对所述移动状态进行评估:
    第一门限,包括所述终端设备的位置变化量的门限和/或所述终端设备相对小区参考位置的距离变化量的门限;
    第二门限,用于指示所述移动状态的评估时长;
    所述终端设备的无线资源控制RRC状态;
    所述终端设备的当前位置;
    所述终端设备的参考位置;以及
    第一定时器,所述第一定时器的定时时长基于所述移动状态的评估时长确定。
  18. 根据权利要求17所述的方法,其特征在于,如果第一条件满足,则所述终端设备的参考位置被确定或更新为所述终端设备的当前位置;
    其中,所述第一条件基于以下中的一种或多种确定:
    所述终端设备是否从RRC非连接态进入RRC连接态;
    所述终端设备是否配置了所述第一测量准则;以及
    所述终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。
  19. 根据权利要求18所述的方法,其特征在于,所述第一条件包括以下中的一种或多种:
    如果所述终端设备从RRC非连接态进入RRC连接态,且所述终端设备配置了所述第一测量准则,则所述终端设备的当前位置为所述终端设备的参考位置的初始值;以及
    如果所述终端设备配置了所述第一测量准则,且所述终端设备的当前位置与所述终端设备的参考位置之间的差值大于所述第一门限,则所述终端设备的当前位置为所述终端设备的参考位置的更新值。
  20. 根据权利要求17或18所述的方法,其特征在于,如果第二条件满足,所述第一定时器被启动或重启;
    其中,所述第二条件基于以下中的一种或多种确定:
    所述终端设备是否从RRC非连接态进入RRC连接态;
    所述终端设备是否配置了所述第一测量准则;
    所述终端设备在RRC非连接态是否满足邻区测量放松准则;以及
    所述终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。
  21. 根据权利要求20所述的方法,其特征在于,所述第二条件包括以下中的一种或多种:
    如果所述终端设备从RRC非连接态进入RRC连接态,所述终端设备配置了所述第一测量准则,且所述终端设备在RRC非连接态不满足邻区测量放松准则,则启动所述第一定时器;以及
    如果所述终端设备配置了所述第一测量准则,且所述终端设备的当前位置与所述终端设备的参考位置之间的差值大于所述第一门限,则启动或重启所述第一定时器。
  22. 根据权利要求16-21中任一项所述的方法,其特征在于,所述第二测量准则是否满足基于以下中的一种或多种确定:
    所述终端设备的当前位置;
    小区参考位置;以及
    第三门限,所述第三门限为所述终端设备的当前位置与所述小区参考位置之间的距离门限。
  23. 根据权利要求22所述的方法,其特征在于,如果所述终端设备的当前位置与所述小区参考位置之间的距离大于或等于所述第三门限,则满足所述第二测量准则。
  24. 根据权利要求16-23中任一项所述的方法,其特征在于:
    如果所述终端设备未配置所述第一测量准则,且所述终端设备满足所述第二测量准则,则满足基于所述终端设备的位置的测量准则;以及
    如果所述第一测量准则关联的第一定时器处于运行状态,且所述终端设备满足所述第二测量准则,则满足基于所述终端设备的位置的测量准则。
  25. 根据权利要求24所述的方法,其特征在于,如果满足基于所述终端设备的位置的测量准则,则启动所述邻区测量。
  26. 根据权利要求15-24中任一项所述的方法,其特征在于,所述一个或多个测量准则还包括:基于小区信号质量的测量准则。
  27. 根据权利要求26所述的方法,其特征在于,如果基于所述终端设备的位置的测量准则以及基于小区信号质量的测量准则中的至少一个被满足,则启动所述邻区测量。
  28. 根据权利要求17-23中任一项所述的方法,其特征在于,所述小区参考位置包括以下中的一种或多种:
    所述终端设备的服务小区的中心位置;以及
    所述终端设备的服务小区对应的卫星的位置。
  29. 一种终端设备,其特征在于,包括:
    确定单元,用于根据一个或多个测量准则,确定是否执行邻区测量;其中,所述一个或多个测量准则包括基于所述终端设备的位置的测量准则。
  30. 根据权利要求29所述的终端设备,其特征在于,所述基于所述终端设备的位置的测量准则包括以下中的一种或多种:
    第一测量准则,用于对所述终端设备的移动状态进行评估;以及
    第二测量准则,用于指示启动同频测量和/或异频测量的门限条件。
  31. 根据权利要求30所述的终端设备,其特征在于,所述第一测量准则基于以下中的一种或多种对所述移动状态进行评估:
    第一门限,包括所述终端设备的位置变化量的门限和/或所述终端设备相对小区参考位置的距离变化量的门限;
    第二门限,用于指示所述移动状态的评估时长;
    所述终端设备的无线资源控制RRC状态;
    所述终端设备的当前位置;
    所述终端设备的参考位置;以及
    第一定时器,所述第一定时器的定时时长基于所述移动状态的评估时长确定。
  32. 根据权利要求31所述的终端设备,其特征在于,如果第一条件满足,则所述终端设备的参考位置被确定或更新为所述终端设备的当前位置;
    其中,所述第一条件基于以下中的一种或多种确定:
    所述终端设备是否从RRC非连接态进入RRC连接态;
    所述终端设备是否配置了所述第一测量准则;以及
    所述终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第一条件包括以下中的一种或多种:
    如果所述终端设备从RRC非连接态进入RRC连接态,且所述终端设备配置了所述第一测量准则,则所述终端设备的当前位置为所述终端设备的参考位置的初始值;以及
    如果所述终端设备配置了所述第一测量准则,且所述终端设备的当前位置与所述终端设备的参考位置之间的差值大于所述第一门限,则所述终端设备的当前位置为所述终端设备的参考位置的更新值。
  34. 根据权利要求31或32所述的终端设备,其特征在于,如果第二条件满足,所述第一定时器被启动或重启;
    其中,所述第二条件基于以下中的一种或多种确定:
    所述终端设备是否从RRC非连接态进入RRC连接态;
    所述终端设备是否配置了所述第一测量准则;
    所述终端设备在RRC非连接态是否满足邻区测量放松准则;以及
    所述终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第二条件包括以下中的一种或多种:
    如果所述终端设备从RRC非连接态进入RRC连接态,所述终端设备配置了所述第一测量准则,且所述终端设备在RRC非连接态不满足邻区测量放松准则,则启动所述第一定时器;以及
    如果所述终端设备配置了所述第一测量准则,且所述终端设备的当前位置与所述终端设备的参考位置之间的差值大于所述第一门限,则启动或重启所述第一定时器。
  36. 根据权利要求30-35中任一项所述的终端设备,其特征在于,所述第二测量准则是否满足基于以下中的一种或多种确定:
    所述终端设备的当前位置;
    小区参考位置;以及
    第三门限,所述第三门限为所述终端设备的当前位置与所述小区参考位置之间的距离门限。
  37. 根据权利要求36所述的终端设备,其特征在于,如果所述终端设备的当前位置与所述小区参考位置之间的距离大于或等于所述第三门限,则满足所述第二测量准则。
  38. 根据权利要求30-37中任一项所述的终端设备,其特征在于:
    如果所述终端设备未配置所述第一测量准则,且所述终端设备满足所述第二测量准则,则满足基于所述终端设备的位置的测量准则;以及
    如果所述第一测量准则关联的第一定时器处于运行状态,且所述终端设备满足所述第二测量准则,则满足基于所述终端设备的位置的测量准则。
  39. 根据权利要求38所述的终端设备,其特征在于,如果满足基于所述终端设备的位置的测量准则,则启动所述邻区测量。
  40. 根据权利要求29-38中任一项所述的终端设备,其特征在于,所述一个或多个测量准则还包括:基于小区信号质量的测量准则。
  41. 根据权利要求40所述的终端设备,其特征在于,如果基于所述终端设备的位置的测量准则以及所述基于小区信号质量的测量准则中的至少一个被满足,则启动所述邻区测量。
  42. 根据权利要求31-37中任一项所述的终端设备,其特征在于,所述小区参考位置包括以下中的一种或多种:
    所述终端设备的服务小区的中心位置;以及
    所述终端设备的服务小区对应的卫星的位置。
  43. 一种网络设备,其特征在于,包括:
    配置单元,用于配置一个或多个测量准则,所述一个或多个测量准则用于确定是否执行邻区测量;其中,所述一个或多个测量准则包括基于终端设备的位置的测量准则。
  44. 根据权利要求43所述的网络设备,其特征在于,所述基于所述终端设备的位置的测量准则包括以下中的一种或多种:
    第一测量准则,用于对所述终端设备的移动状态进行评估;以及
    第二测量准则,用于指示启动同频测量和/或异频测量的门限条件。
  45. 根据权利要求44所述的网络设备,其特征在于,所述第一测量准则基于以下中的一种或多种对所述移动状态进行评估:
    第一门限,包括所述终端设备的位置变化量的门限和/或所述终端设备相对小区参考位置的距离变化量的门限;
    第二门限,用于指示所述移动状态的评估时长;
    所述终端设备的无线资源控制RRC状态;
    所述终端设备的当前位置;
    所述终端设备的参考位置;以及
    第一定时器,所述第一定时器的定时时长基于所述移动状态的评估时长确定。
  46. 根据权利要求45所述的网络设备,其特征在于,如果第一条件满足,则所述终端设备的参考位置被确定或更新为所述终端设备的当前位置;
    其中,所述第一条件基于以下中的一种或多种确定:
    所述终端设备是否从RRC非连接态进入RRC连接态;
    所述终端设备是否配置了所述第一测量准则;以及
    所述终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。
  47. 根据权利要求46所述的网络设备,其特征在于,所述第一条件包括以下中的一种或多种:
    如果所述终端设备从RRC非连接态进入RRC连接态,且所述终端设备配置了所述第一测量准则,则所述终端设备的当前位置为所述终端设备的参考位置的初始值;以及
    如果所述终端设备配置了所述第一测量准则,且所述终端设备的当前位置与所述终端设备的参考位置之间的差值大于所述第一门限,则所述终端设备的当前位置为所述终端设备的参考位置的更新值。
  48. 根据权利要求45或46所述的网络设备,其特征在于,如果第二条件满足,所述第一定时器被启动或重启;
    其中,所述第二条件基于以下中的一种或多种确定:
    所述终端设备是否从RRC非连接态进入RRC连接态;
    所述终端设备是否配置了所述第一测量准则;
    所述终端设备在RRC非连接态是否满足邻区测量放松准则;以及
    所述终端设备的当前位置与所述终端设备的参考位置之间的差值与所述第一门限的关系。
  49. 根据权利要求48所述的网络设备,其特征在于,所述第二条件包括以下中的一种或多种:
    如果所述终端设备从RRC非连接态进入RRC连接态,所述终端设备配置了所述第一测量准则,且所述终端设备在RRC非连接态不满足邻区测量放松准则,则启动所述第一定时器;以及
    如果所述终端设备配置了所述第一测量准则,且所述终端设备的当前位置与所述终端设备的参考位置之间的差值大于所述第一门限,则启动或重启所述第一定时器。
  50. 根据权利要求44-49中任一项所述的网络设备,其特征在于,所述第二测量准则是否满足基于以下中的一种或多种确定:
    所述终端设备的当前位置;
    小区参考位置;以及
    第三门限,所述第三门限为所述终端设备的当前位置与所述小区参考位置之间的距离门限。
  51. 根据权利要求50所述的网络设备,其特征在于,如果所述终端设备的当前位置与所述小区参考位置之间的距离大于或等于所述第三门限,则满足所述第二测量准则。
  52. 根据权利要求44-51中任一项所述的网络设备,其特征在于:
    如果所述终端设备未配置所述第一测量准则,且所述终端设备满足所述第二测量准则,则满足基于所述终端设备的位置的测量准则;以及
    如果所述第一测量准则关联的第一定时器处于运行状态,且所述终端设备满足所述第二测量准则,则满足基于所述终端设备的位置的测量准则。
  53. 根据权利要求52所述的网络设备,其特征在于,如果满足基于所述终端设备的位置的测量准则,则启动所述邻区测量。
  54. 根据权利要求43-52中任一项所述的网络设备,其特征在于,所述一个或多个测量准则还包括:基于小区信号质量的测量准则。
  55. 根据权利要求54所述的网络设备,其特征在于,如果基于所述终端设备的位置的测量准则以及基于小区信号质量的测量准则中的至少一个被满足,则启动所述邻区测量。
  56. 根据权利要求45-51中任一项所述的网络设备,其特征在于,所述小区参考位置包括以下中的一种或多种:
    所述终端设备的服务小区的中心位置;以及
    所述终端设备的服务小区对应的卫星的位置。
  57. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述终端设备执行如权利要求1-14中任一项所述的方法。
  58. 一种网络设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述网络设备执行如权利要求15-28中任一项所述的方法。
  59. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-14中任一项所述的方法。
  60. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求15-28中任一项所述的方法。
  61. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-14中任一项所述的方法。
  62. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求15-28中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-14中任一项所述的方法。
  64. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求15-28中任一项所述的方法。
  65. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-14中任一项所述的方法。
  66. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求15-28中任一项所述的方法。
PCT/CN2022/129617 2022-11-03 2022-11-03 用于邻区测量的方法、终端设备和网络设备 WO2024092639A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129617 WO2024092639A1 (zh) 2022-11-03 2022-11-03 用于邻区测量的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129617 WO2024092639A1 (zh) 2022-11-03 2022-11-03 用于邻区测量的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2024092639A1 true WO2024092639A1 (zh) 2024-05-10

Family

ID=90929443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129617 WO2024092639A1 (zh) 2022-11-03 2022-11-03 用于邻区测量的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2024092639A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631359A (zh) * 2009-08-06 2010-01-20 中兴通讯股份有限公司 一种移动终端邻区测量配置方法及系统
CN111031582A (zh) * 2019-12-12 2020-04-17 紫光展锐(重庆)科技有限公司 邻区检测方法、装置、终端设备及存储介质
CN113473552A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种rrm测量方法及设备
CN113490227A (zh) * 2021-07-22 2021-10-08 珠海市魅族科技有限公司 邻区测量的控制方法、装置、电子设备及存储介质
CN113596933A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 测量方法、装置及系统
WO2022027296A1 (zh) * 2020-08-05 2022-02-10 华为技术有限公司 一种通信方法及其设备
CN114868456A (zh) * 2020-03-31 2022-08-05 Oppo广东移动通信有限公司 一种无线资源管理测量方法、电子设备及存储介质
CN115088290A (zh) * 2020-01-29 2022-09-20 哲库科技有限公司 无线接入技术间小区测量

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631359A (zh) * 2009-08-06 2010-01-20 中兴通讯股份有限公司 一种移动终端邻区测量配置方法及系统
CN111031582A (zh) * 2019-12-12 2020-04-17 紫光展锐(重庆)科技有限公司 邻区检测方法、装置、终端设备及存储介质
CN115088290A (zh) * 2020-01-29 2022-09-20 哲库科技有限公司 无线接入技术间小区测量
CN113473552A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 一种rrm测量方法及设备
CN114868456A (zh) * 2020-03-31 2022-08-05 Oppo广东移动通信有限公司 一种无线资源管理测量方法、电子设备及存储介质
CN113596933A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 测量方法、装置及系统
WO2022027296A1 (zh) * 2020-08-05 2022-02-10 华为技术有限公司 一种通信方法及其设备
CN113490227A (zh) * 2021-07-22 2021-10-08 珠海市魅族科技有限公司 邻区测量的控制方法、装置、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "[Offline-513] Summary of offline related to measurement relaxation criteria", 3GPP DRAFT; R2-1911620 [OFFLINE-518] SUMMARY OF OFFLINE RELATED TO MEASUREMENT RELAXATION CRITERIA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 30 August 2019 (2019-08-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051769327 *

Similar Documents

Publication Publication Date Title
WO2022143564A1 (zh) 一种小区选择方法及装置
US20220322176A1 (en) Cell Reselection Method and System, and Apparatus
US20230239767A1 (en) Network access method, network access apparatus, terminal, and network-side device
US20230164685A1 (en) Access Control Method and Apparatus for Terminal Device
WO2021027423A1 (zh) 一种通信方法及装置
US20240323851A1 (en) Communication method, terminal device, and network device
CN114424618B (zh) 小区测量的方法与通信装置
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
WO2023245486A1 (zh) 邻小区测量方法、装置、设备、存储介质及程序产品
WO2024092639A1 (zh) 用于邻区测量的方法、终端设备和网络设备
WO2022206557A1 (zh) 一种通信方法及装置
WO2023159472A1 (zh) 通信方法及终端设备
US20230397068A1 (en) Method for wireless communication, terminal, and storage medium
WO2024016238A1 (zh) 无线通信的方法及装置
WO2023130221A1 (zh) 通信方法、终端设备以及网络设备
WO2024174243A1 (zh) 无线通信的方法和装置
CN115699873A (zh) 中继节点切换方法、终端设备和网络设备
WO2024148617A1 (zh) 用于无线通信的方法、终端设备及网络设备
WO2024148465A1 (zh) 测量方法和终端设备
WO2023205938A1 (zh) 通信方法、终端以及网络设备
WO2023130245A1 (zh) 通信方法、终端设备及网络设备
WO2023206517A1 (zh) Ntn中的邻小区测量方法、装置、设备及存储介质
WO2024152978A1 (zh) 测量预测方法与装置、终端设备、网络设备和芯片
US20240224106A1 (en) Communication method, communication device and chip
WO2024032669A1 (zh) 一种用于非地面网络的通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963950

Country of ref document: EP

Kind code of ref document: A1