[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024090326A1 - 光学系、表示装置、および光学系の製造方法 - Google Patents

光学系、表示装置、および光学系の製造方法 Download PDF

Info

Publication number
WO2024090326A1
WO2024090326A1 PCT/JP2023/037880 JP2023037880W WO2024090326A1 WO 2024090326 A1 WO2024090326 A1 WO 2024090326A1 JP 2023037880 W JP2023037880 W JP 2023037880W WO 2024090326 A1 WO2024090326 A1 WO 2024090326A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
light
pupil
optical system
reconstruction
Prior art date
Application number
PCT/JP2023/037880
Other languages
English (en)
French (fr)
Inventor
圭一郎 石原
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023179469A external-priority patent/JP2024065027A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2024090326A1 publication Critical patent/WO2024090326A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/136Reflex reflectors plural reflecting elements forming part of a unitary body

Definitions

  • the present invention relates to an optical system, a display device, and a method for manufacturing an optical system.
  • Patent Document 1 relates to a light guide for a virtual image display device that guides image light from an image display element and emits it to display a virtual image, and discloses a retroreflecting section that reverses the traveling direction of image light guided within the light guide member of the light guide.
  • Patent Document 2 discloses a display system in which a retroreflector is arranged on the opposite surface of a waveguide layer.
  • Patent Documents 1 and 2 use a light guide plate, which makes it possible to realize a thin observation optical system, but the light utilization efficiency of the light guide plate (the proportion of light that reaches the observer's eye out of the light projected by the projection unit) is low. As a result, it is difficult to realize a brightness that can be used in bright environments such as outdoors, and to reduce the weight of the battery.
  • the present invention can therefore provide a thin optical system with high light utilization efficiency.
  • An optical system is an optical system that guides light from a display element to an eye point, the optical system having a projection unit that projects the light from the display element, and a light guide element that guides the light from the projection unit to the eye point, the eye point is located outside the light guide element, the projection unit forms a first pupil, and the light guide element has a reflection unit that forms a second pupil at the eye point in a first cross section parallel to a first direction, where f (mm) is a focal length of the reflection unit in the first cross section, and A1 (mm) is an air-equivalent distance on the optical axis from a reflecting surface of the reflection unit to the first pupil, 0 ⁇ A1/f ⁇ 0.5 The following condition is satisfied.
  • the present invention makes it possible to provide a thin optical system with high light utilization efficiency.
  • FIG. 1 is a schematic diagram of a display device in each embodiment.
  • 5A to 5C are diagrams illustrating the function of a light guide plate in each embodiment.
  • FIG. 2 is a front view of the light guide plate according to the first embodiment.
  • FIG. 2 is a side view of the light guide plate according to the first embodiment.
  • FIG. 2 is a perspective view of a light guide plate according to the first embodiment.
  • FIG. 2 is a cross-sectional view of a reconstruction mirror in the first embodiment.
  • FIG. 11 is a cross-sectional view of a reconstruction mirror as a first modified example of the first embodiment.
  • FIG. 11 is a cross-sectional view of a reconstruction mirror as a second modified example of the first embodiment.
  • FIG. 11 is a cross-sectional view of a reconstruction mirror as a third modified example of the first embodiment.
  • FIG. 11 is a cross-sectional view of a reconstruction mirror as a fourth modified example of the first embodiment.
  • FIG. 13 is a cross-sectional view of a reconstruction mirror as a fifth modified example of the first embodiment.
  • FIG. 2 is a diagram illustrating the arrangement of a reconstruction mirror in the first embodiment.
  • FIG. 11 is an explanatory diagram of a pupil reconstruction mirror unit in the second embodiment.
  • FIG. 11 is a cross-sectional view of a light guide plate according to a second embodiment.
  • FIG. 11 is a perspective view of a first pupil reconstruction mirror in the second embodiment.
  • 13 is a flowchart showing a method for manufacturing a light guide plate according to a third embodiment.
  • 13A to 13C are explanatory diagrams of components that constitute a light guide plate in a third embodiment.
  • 13A and 13B are diagrams illustrating pupil reconstruction in the second embodiment.
  • 13 is an explanatory diagram of a light guide plate using a two-dimensional pupil reconstruction mirror as a modified example of the second embodiment.
  • FIG. 1 is a schematic diagram of the display device 100.
  • the display device 100 is configured to include a projection unit 10 and a light guide plate (light guide element) 20.
  • the horizontal direction (for example, the direction from the right eye of the observer to the left eye) is the X-axis direction (first direction)
  • the vertical direction is the Y-axis direction (second direction)
  • the direction perpendicular to the X-axis and Y-axis (the direction from the eye point 31 and the observer's eye 30 to the light guide plate 20) is the Z-axis direction.
  • a cross section including the X-axis and Z-axis is the first cross section
  • a cross section including the Y-axis and Z-axis is the second cross section
  • a cross section including the X-axis and Y-axis is the third cross section.
  • the projection unit 10 has a display element 11 such as an OLED (Organic Light Emitting Diode), and a projection optical system (projection unit) 12.
  • the projection optical system 12 has a free-form prism, and realizes a high acceptance angle and compactness.
  • this embodiment is not limited to this, and the projection optical system 12 may be configured using a general optical system instead of the free-form prism.
  • the light guide plate 20 is configured to form a second pupil EP C that reconstructs a first pupil (exit pupil) EP of the projection unit 10 (projection optical system 12) at the position of an eye point 31 (pupil of the observer's eye 30) in a one-dimensional direction (for example, in a first cross section parallel to the first direction).
  • the projection optical system 12 and the light guide plate 20 configure an optical system (observation optical system) that guides light from the display element 11 to the eye point 31.
  • the light beam entering the light guide plate 20 from the projection optical system 12 has a width equivalent to the thickness of the light guide plate 20 in the thickness direction of the light guide plate 20, and has a light beam width narrower than the width of the light guide plate 20 in the width direction of the light guide plate.
  • Such a light beam travels while being internally reflected inside the light guide plate 20 (the two light guide substrates (e.g., the planar substrates 291 and 292 in FIG. 17) that hold the pupil reconstruction mirror 24).
  • the light beam in the width direction of the light guide plate is responsible for the light beam in the first cross section (horizontal cross section), and the light beam in the thickness direction of the light guide plate is responsible for the light beam in the second cross section (vertical cross section).
  • the ratio of the angles of view in the horizontal cross section (X-axis cross section) and the vertical cross section (Y-axis cross section) of the display device 100 is 16:9.
  • the light guide plate 20 forms the second pupil EP C by reconstructing the first pupil (exit pupil) EP in the horizontal cross section.
  • this embodiment is not limited to this, and the second pupil EP C may be formed in the vertical cross section (Y-axis cross section) instead of in the horizontal cross section.
  • FIG. 2 is an explanatory diagram of the function of the light guide plate 20.
  • the light guide plate 20 is a pupil reconstruction light guide plate that forms a second pupil EP C by reconstructing the first pupil (exit pupil) EP of the projection unit 10 (projection optical system 12) at an eye point 31 where the observer's eye 30 is located.
  • the state in which the second pupil EP C similar to the first pupil (exit pupil) EP of the projection unit 10 is reconstructed at the position of the eye point 31 may be referred to as "pupil reconstruction".
  • the light guide plate 20 has a pupil reconstruction mirror (reflection unit) 24, and forms a second pupil EP C that reconstructs the first pupil EP of the projection unit 10 at an eyepoint 31 in a one-dimensional direction (within the first cross section, or in a second cross section perpendicular to the first cross section, the horizontal direction or the vertical direction).
  • the reflection surface of the pupil reconstruction mirror 24 is inclined with respect to the surface of the light guide substrate in the second cross section, and light reflected by the pupil reconstruction mirror 24 transmits through the light guide substrate and is emitted to the outside of the light guide plate 20.
  • the mirror 24 includes a plurality of reflection surfaces arranged in a second direction perpendicular to the first direction, and the angles formed between the plurality of reflection surfaces and the surface of the light guide substrate are the same.
  • the observer places the eye 30 at the eye point 31. This makes it possible to reduce wasted light that does not enter the observer's eye 30, and therefore to increase the ratio of light that reaches the observer's eye 30 out of the light projected from the projection unit 10 (the light utilization efficiency of the light guide plate 20).
  • the location where the second pupil EP C is formed is the position of the eye point 31, but if it is located somewhat close to the eye point 31, the effect of this embodiment can be sufficiently obtained.
  • the pupil reconstruction mirror 24 has a pupil reconstruction function in a one-dimensional direction (first direction, horizontal direction)
  • the following configuration is preferable. That is, in a direction in which the pupil reconstruction mirror 24 does not have the pupil reconstruction function (second direction, vertical direction), a configuration is preferable in which light is made incident on the pupil reconstruction mirror 24 at an angle other than perpendicular and reflected in a direction different from the incident direction. This makes it possible to arrange the second pupil EP C in a location different from the first pupil EP, making it possible to form the second pupil at an eyepoint outside the light guide element.
  • the pupil reconstruction mirror (mirror) 24 reconstructs a new pupil while keeping the light beam approximately parallel by reflecting it twice on the pupil reconstruction mirror.
  • the focal length of the pupil reconstruction mirror 24 at the first cross section is f (mm) and the air-equivalent distance on the optical axis from the reflecting surface of the pupil reconstruction mirror 24 (for example, the center of the reflecting surface) to the first pupil EP is A1 (mm)
  • the optical system according to this embodiment satisfies the following conditional formula (1).
  • the optical axis corresponds to the optical path of the principal ray projected onto the YZ cross section
  • the air-equivalent distance corresponds to the actual distance (for A1, the optical path length of the principal ray when projected onto the cross section)/refractive index of the light-guiding element.
  • Conditional formula (1) means that the focal length of the pupil reconstruction mirror 24 is longer than twice the optical path length (A1) and the power (refractive power) of the pupil reconstruction mirror 24 is sufficiently small.
  • the optical element is divided into multiple pieces to reduce the plate thickness of the light guide element.
  • the distance from the first pupil to each optical element is different.
  • the light guide element uses power (refractive power) to form a conjugate pupil
  • the distance from the first pupil to each optical element is different, which causes a problem that the convergence of the light beam differs for each divided optical element.
  • the power is changed for each divided optical element, the convergence of the light beam can be made uniform, but the angle of view is expanded/contracted for each divided optical element, causing a deviation in the angle of view.
  • the power of the pupil reconstruction mirror to satisfy conditional formula (1), the light beam can be directed to the second pupil without changing the convergence of the light beam and without changing the angle of view, even if the pupil reconstruction mirror is composed of multiple optical elements.
  • conditional formula (1) is set as shown in the following conditional formula (1a).
  • conditional expression (1) is set as in the following conditional expression (1b).
  • Conditional expression (1b) means that the refractive power of the pupil reconstruction mirror 24 is zero (non-power). In this embodiment, by making the pupil reconstruction mirror 24 non-powered, it is possible to reconstruct the pupil while keeping the incident light as a parallel light beam, thereby achieving better optical performance.
  • Fig. 3 is a front view of the light guide plate 20.
  • Fig. 4 is a side view of the light guide plate 20.
  • Fig. 5(a) and (b) are perspective views of the light guide plate 20.
  • the light guide plate 20 has a light guide substrate 21, a head (incident portion) 22, a folding mirror (first reflecting portion) 23, and a pupil reconstruction mirror (extraction mirror) 24.
  • the folding mirror 23 is a first reflecting section that deflects light from the projection optical system 12.
  • the pupil reconstruction mirror 24 is a second reflecting section that has two inner surfaces facing each other and emits the first reflecting surface and the light reflected by the two inner surfaces to the outside of the light guide plate 20.
  • the first reflecting section includes a first reflecting surface that is perpendicular to the two inner surfaces
  • the second reflecting section includes a plurality of reflecting surfaces that are arranged in a direction parallel to the two inner surfaces, and the first reflecting surface is inclined with respect to the direction parallel to the two inner surfaces in a cross section parallel to the two inner surfaces.
  • the pupil reconstruction mirror 24 has a first reflective mirror 241, a second reflective mirror 242, and a third reflective mirror 243.
  • Three reflective mirrors 241, 242, and 243 are arranged to reduce the thickness of the light guide plate 20, and each of the reflective mirrors 241, 242, and 243 forms a second pupil that reconstructs the first pupil EP.
  • this embodiment is not limited to this, and the number of reflective mirrors that make up the pupil reconstruction mirror 24 may be other than three.
  • the first pupil (exit pupil) EP of the projection optical system 12 is formed inside the light guide plate 20 (at the base (tip) 22a of the head 22).
  • Light from the projection optical system 12 is guided toward the folding mirror 23, reflected by the folding mirror 23, and reflected by the pupil reconstruction mirror 24 to emit a light beam outside the light guide plate 20.
  • the observation optical system of this embodiment can form a second pupil EP C , which is a reconstruction of the first pupil (exit pupil) EP of the projection unit 10, at the position of the eye point 31 outside the light guide plate 20 in the horizontal direction.
  • each of the three reflex mirrors 241, 242, and 243 is a right-angle mirror array in which a plurality of right-angle mirrors are arranged along a first direction (horizontal direction in the local coordinate system of the reflex mirror), in which the angle between two reflecting surfaces is a right angle.
  • the three reflex mirrors 241, 242, and 243 are arranged along the vertical direction (first direction). That is, the pupil reconstruction mirror 24 includes a plurality of right-angle mirrors, each of which has two reflecting surfaces that form a right angle with each other in the first cross section, and the plurality of right-angle mirrors are arranged along the first direction.
  • the air-equivalent distance from the reflecting surface of the pupil reconstruction mirror 24 to the first pupil (exit pupil) EP (the base 22a of the head 22) of the projection unit 10 is A1 (mm)
  • the air-equivalent distance on the optical axis from the reflecting surface of the pupil reconstruction mirror 24 to the eye point (pupil) 31 is A2 (mm).
  • the eye point 31 is the position where the second pupil EP C is formed, and corresponds to the position of the observer's eye 30 in this embodiment.
  • the eye point 31 is located, for example, at a distance of about 12 mm to 18 mm from the exit surface of the light guide plate 20 (eye relief is 12 mm to 18 mm), but is not limited to this and varies depending on the size of the display device and whether or not it is compatible with vision correction glasses.
  • the distance from the position of the root 22a of the head 22 in the light-guiding substrate 21 to the position of the folding mirror 23 is defined as L1a.
  • the distance from the position of the folding mirror 23 in the light-guiding substrate 21 to the position of the pupil reconstruction mirror 24 is defined as L1b.
  • the refractive index of the light-guiding substrate 21 based on the d-line is defined as N.
  • the distance from the position of the pupil reconstruction mirror 24 in the light guide substrate 21 (in this embodiment, the center position of the pupil reconstruction mirror 24 in the thickness direction of the light guide plate 20, or the center position of the second retrorefractive mirror 242) to the position of the exit surface 20a of the light guide plate 20 is defined as L2a.
  • the distance from the exit surface 20a of the light guide plate 20 to the eye point 31 in air is defined as L2b.
  • the relationship between the air-equivalent distances A1 and A2 satisfy the following conditional expression (2).
  • the distance L1b when multiple retroreflecting mirrors are provided on the light-guiding substrate 21, it is preferable that the distance L1b to all (three in this embodiment) retroreflecting mirrors (for example, the distance to the center of the first retroreflecting mirror 241) satisfies conditional expression (2).
  • conditional formula (2) is set as shown in the following conditional formula (2a).
  • conditional expression (2) is set as in the following conditional expression (2b).
  • Figs. 6(a) and (b) are cross-sectional views of a recursive mirror 241 constituting the pupil reconstruction mirror.
  • the recursive mirror 241 is configured by arranging a plurality of right-angle mirrors 25 in the X-axis direction (horizontal direction) in the local coordinates of the recursive mirror.
  • the heights (distances) from the valleys to the peaks (mountains) of the plurality of right-angle mirrors 25 are the same (constant in the horizontal direction).
  • Each of the multiple right-angle mirrors 25 has a first mirror 25a and a second mirror 25b arranged perpendicular to each other.
  • the first mirror 25a forms the inner surface of the right-angle mirror 25 (the surface closer to the center C).
  • the second mirror 25b forms the outer surface of the right-angle mirror 25 (the surface farther from the center C).
  • the right-angle mirror 25 is non-powered because it is composed of two plane mirrors. Therefore, it can reflect the parallel light beam incident on the right-angle mirror 25 as it is.
  • the retroreflection mirror 241, which is an arrangement of multiple right-angle mirrors 25, can reconstruct the second pupil by reflecting the light beam emitted from the exit pupil of the projection optical system (not shown). In this way, the retroreflection mirror 241 can fulfill the function of the pupil reconstruction mirror 24.
  • the pupil reconstruction mirror using the right-angle mirror array is non-powered, even if it is divided vertically, the pupil can be reconstructed without changing the convergence of the light beam or the angle of view at each retrorefractive mirror.
  • the retroreflecting mirror 241 shown in FIG. 6(b) can achieve pupil reconstruction in the horizontal direction, but a large gap G1 occurs between the light beams reflected from the retroreflecting mirror 241. As a result, the gap G1 between the light beams may appear as shading in the displayed image, resulting in artifacts.
  • Figs. 7(a) to (c) are cross-sectional views of the pupil reconstruction mirror 24a.
  • the pupil reconstruction mirror 24a is configured so that, of the two surfaces of the two right-angle mirrors 25, the width of the inner surface (first mirror 25a) is wider than the width of the outer surface (second mirror 25b).
  • the base portion of the outer surface is cut, and the cut surface 28 is formed so as to be parallel to the reflected light.
  • the pupil reconstruction mirror 24a is configured so that the right-angle mirror 25 becomes higher as it approaches the periphery (outside) from the center C (inside).
  • the width of the first mirror 25a is wider than the width of the second mirror 25b.
  • at least one of the second mirrors 25b has a cut surface 28 that is cut at an angle different from the mirror surface.
  • the height (distance) from the valley to the apex (peak) of each of the multiple right-angle mirrors 25 becomes higher (larger) as it approaches the periphery from the center C of the pupil reconstruction mirror 24.
  • the gap G2 of the light beam reflected by the pupil reconstruction mirror 24a can be made smaller than the gap G1 of the light beam reflected by the pupil reconstruction mirror 24. Also, by forming the cut surface 28 of the outer surface (second mirror 25b) of the right-angle mirror 25 so as to be parallel to the reflected light, it is possible to minimize the gap G2. Also, as shown in FIG. 7(c), the pupil reconstruction mirror 24a is configured so that the light beam reflected by one surface (inner surface) of the right-angle mirror 25 passes through the other surface (outer surface), passes through one surface (inner surface) of the adjacent right-angle mirror 25, and is reflected by the other surface (outer surface).
  • the right-angle mirror 25 is formed so as to become higher as it approaches the outside (periphery) from the inside (center C), even if the light reflected to the outside travels obliquely, the amount reflected by the right-angle mirror 25 increases again.
  • Figs. 8(a) and (b) are cross-sectional views of the pupil reconstruction mirror 24b.
  • the pupil reconstruction mirror 24b is configured so that, of the two surfaces of the two right-angle mirrors 25, the width of the inner surface (first mirror 25a) is wider than the width of the outer surface (second mirror 25b).
  • the base of the outer surface is cut, and the cut surface 29 is arranged perpendicular to the arrangement direction (horizontal direction) of the right-angle mirrors 25 (the normal direction of the cut surface 29 is parallel to the arrangement direction of the right-angle mirrors 25).
  • the pupil reconstruction mirror 24b is configured so that the right-angle mirrors 25 become higher as they approach from the center C (inside) to the periphery (outside).
  • the gap G3 of the light beam reflected by the pupil reconstruction mirror 24b can be made smaller than the gap G1 of the light beam reflected by the pupil reconstruction mirror 24.
  • the gap G3 of the light beam reflected by the pupil reconstruction mirror 24b is slightly larger than the gap G2 of the light beam reflected by the pupil reconstruction mirror 24a, but the pupil reconstruction mirror 24b is easier to mold than the pupil reconstruction mirror 24a.
  • Figures 9(a) and (b) are cross-sectional views of the pupil reconstruction mirror 24c.
  • the rotation angle of each of the two right-angle mirrors 25 of the pupil reconstruction mirror 24c increases (rotates inward) as it approaches the periphery from the center C. That is, as shown in Figure 9(a), the angles of the multiple right-angle mirrors 25 differ depending on the distance from the center C of the pupil reconstruction mirror 24c.
  • the center may be disposed at a position shifted from the center of the width of the pupil reconstruction mirror 24c.
  • each right-angle mirror 25 is configured so that a light ray parallel to the chief ray of the field of view light beam reaching each right-angle mirror 25 enters the end of the first mirror 25a, is reflected, and enters the end of the second mirror 25b and is reflected. It is preferable that the angle error of each right-angle mirror is 5° or less. This configuration makes it possible to reduce the gap G4 of the light beam reflected by the pupil reconstruction mirror 24c shown in FIG. 9(b) compared to the gap G1 of the light beam reflected by the pupil reconstruction mirror 24 shown in FIG. 6(b).
  • FIG. 10 is a cross-sectional view of the pupil reconstruction mirror 24d.
  • the pupil reconstruction mirror 24d has light shielding members 26a arranged between adjacent right-angle mirrors (at the positions of the valleys of each right-angle mirror) so as to extend to the positions of the peaks of each right-angle mirror.
  • Each of the multiple light shielding members 26a is arranged parallel to the field of view light flux (so that the normal direction of the surface of the light shielding members 26a deviates from the arrangement direction (horizontal direction) of the right-angle mirrors as it approaches the periphery from the center C).
  • FIG. 11 is a cross-sectional view of the pupil reconstruction mirror 24e.
  • the pupil reconstruction mirror 24e has light shielding members 26b arranged between adjacent right-angle mirrors (at the positions of the valleys of each right-angle mirror) so as to extend to the positions of the peaks of each right-angle mirror.
  • the multiple light shielding members 26b are arranged so that the normal direction of the surfaces of the light shielding members 26b is parallel to the arrangement direction (horizontal direction) of the right-angle mirrors. Therefore, according to this modified example, manufacturing by mold molding is easier than that of the pupil reconstruction mirror 24d having the light shielding members 26a.
  • Figure 12(a) is a diagram showing the arrangement of the multiple reflective mirrors in this embodiment.
  • the multiple reflective mirrors are arranged so that they have the same phase as each other in the vertical direction (with the peaks and valleys of the right-angle mirrors that make up the reflective mirrors 241, 242, and 243 aligned).
  • this embodiment is not limited to this, and for example, a configuration such as that shown in Figure 12(b) may be adopted.
  • FIG. 12(b) is a diagram showing the arrangement of multiple reflective mirrors 241, 242, and 243 as a modified example of this embodiment.
  • the second reflective mirror 242 is arranged so as to have a different phase in the vertical direction from the first reflective mirror 241 and the second reflective mirror 242. According to this modified example, it is possible to provide a higher quality image by reducing the gap formed between the first reflective mirror 241 or the third reflective mirror 243 and the second reflective mirror 242 and reducing artifacts.
  • a second embodiment of the present invention will be described.
  • a light guide plate (one-dimensional pupil reconstruction light guide plate) 20 that forms a second pupil at the eye point 31 by reconstructing the exit pupil of the projection optical system 12 only in a one-dimensional direction (for example, the horizontal direction) has been described.
  • a light guide plate (two-dimensional pupil reconstruction light guide plate) that forms a second pupil at the eye point 31 by reconstructing the exit pupil of the projection optical system 12 in two-dimensional directions (for example, both the horizontal and vertical directions) will be described.
  • FIGS 13(a) and (b) are explanatory diagrams of the pupil reconstruction mirror unit 34 in this embodiment.
  • the light guide plate of this embodiment has a plurality of two-dimensional pupil reconstruction mirror units 34 arranged two-dimensionally along the horizontal direction (X-axis direction) and vertical direction (Y-axis direction), i.e., two-dimensional pupil reconstruction mirrors.
  • one pupil reconstruction mirror unit 34 constituting the two-dimensional pupil reconstruction mirror has a right-angle mirror 25 consisting of a first mirror 25a and a second mirror 25b that are orthogonal to each other, and a plane mirror (third mirror) 51.
  • the plane mirror 51 is, for example, a half mirror.
  • the plane mirror 51 is disposed to form an angle ⁇ (degrees) with the edge line 41 of the right-angle mirror 25. It is preferable that the angle ⁇ (degrees) satisfies the following conditional expression (3), for example, to reduce the gap in the light beam from a direction that includes a vertical component.
  • conditional formula (3) is set as shown in the following conditional formula (3a).
  • conditional expression (3) is set as in the following conditional expression (3b).
  • pupil reconstruction is achieved in the horizontal direction using the right-angle mirror 25, and pupil reconstruction is achieved in the vertical direction using the right-angle mirror 25 and the plane mirror 51 arranged to form an angle ⁇ with respect to the edge line 41 of the right-angle mirror 25. This makes it possible to reconstruct the second pupil in two directions, the horizontal direction and the vertical direction.
  • the light beams of each field of view emitted from the exit pupil of the projection optical system are reflected by a right-angle mirror array, and the second pupil is reconstructed using the reflectivity of the right-angle mirror array.
  • the two-dimensional pupil reconstruction mirror is positioned so that the ridge line 41 of the right-angle mirror 25 is parallel to the incident light.
  • the incident light is first reflected by the plane mirror 51, and then reflected by the two surfaces of the right-angle mirror 25, with the reflected light being reflected in a direction approximately parallel to the plane mirror 51.
  • Figure 18 shows pupil reconstruction by the pupil reconstruction mirror unit 34 in a vertical cross section.
  • the interval between each field-of-view light beam narrows as the reflected field-of-view light beam travels, and each field-of-view light beam gathers and overlaps at approximately the same position to form the second pupil EPc.
  • the plane mirror 51 is set to the above-mentioned ⁇ with respect to the ridge line 41 of the right-angle mirror 25, the second pupil can be reconstructed in a different location from the first pupil in the vertical cross section.
  • a second pupil can be formed by reconstructing the first pupil (exit pupil) of the projection optical system in two-dimensional directions in the horizontal and vertical cross sections. If the second pupil is formed at the eyepoint position, light from the display element can be efficiently guided to the observer's eye. This can further improve the light utilization efficiency.
  • FIG. 14 is a cross-sectional view (YZ cross-section) of a light guide plate (light guide element) 70 having a two-dimensional pupil reconstruction mirror 35 in this embodiment.
  • the two-dimensional pupil reconstruction mirror 35 is formed by a plurality of pupil reconstruction mirror units 34 arranged along the horizontal and vertical directions on a light guide substrate 71.
  • the two-dimensional pupil reconstruction mirror 35 is formed by forming a first pupil reconstruction mirror with a plurality of pupil reconstruction mirror units 34 arranged in a row along the horizontal direction, and arranging the first pupil reconstruction mirror in a row along the vertical direction.
  • the first pupil reconstruction mirror has 39 pupil reconstruction mirror units 34 arranged along the horizontal direction (X-axis direction).
  • the number of pupil reconstruction mirror units 34 is not limited to this.
  • the two-dimensional pupil reconstruction mirror 35 is configured by arranging 12 first pupil reconstruction mirrors along the vertical direction (Y-axis direction) on a cylindrical surface 72 formed on a light-guiding substrate 71.
  • the number of first pupil reconstruction mirrors is not limited to this.
  • the pupil reconstruction mirror units 34 it is preferable to arrange the pupil reconstruction mirror units 34 by rotating them inward even partially, without being limited to the arrangement on the cylindrical surface 72. With this configuration, it is possible to form a second pupil while reducing the gap in the light beam reflected by the two-dimensional pupil reconstruction mirror 35 in two directions, the horizontal direction and the vertical direction.
  • FIG. 19 illustrates a light-guiding substrate 71 that uses a two-dimensional pupil reconstruction mirror that enables Maxwellian viewing.
  • each pupil reconstruction mirror unit 34 is set to 2 mm or less, and adjacent pupil reconstruction mirror units 34 are spaced apart and arranged sparsely within the third cross section including the X-axis and Y-axis of the light-guiding substrate 71. This makes it possible to configure a light guide plate using a two-dimensional pupil reconstruction mirror that enables Maxwellian vision by setting the light flux reflected by each pupil reconstruction mirror unit to 1 mm or less.
  • Fig. 16 is a flowchart showing a manufacturing method of the light guide plate 20.
  • Figs. 17(a) and (b) are explanatory diagrams of the components constituting the light guide plate 20, with Fig. 17(a) showing the first light guide section 201 and Fig. 17(b) showing the second light guide section 202. Note that this embodiment describes a manufacturing method of the light guide plate 20 described in the first embodiment, but is also applicable to other light guide plates such as the light guide plate 70 described in the second embodiment.
  • a first light-guiding section 201 having a light-guiding substrate 21, a head (incident section) 22, and a pupil reconstruction mirror 24 is formed (first formation step).
  • a reflective film or half-mirror film is formed on the reflective surface 27 of the pupil reconstruction mirror 24.
  • the characteristics of the reflective film or half-mirror film are made different for each pupil reconstruction mirror 24 in order to adjust the brightness according to the angle of view of the displayed image (so that the brightness of the displayed image seen by the observer is constant).
  • the characteristics of the reflective film or half-mirror film are, for example, transmittance characteristics and reflectance characteristics.
  • the reflectance of the film formed on the lower pupil reconstruction mirror 24 is increased and the transmittance is decreased.
  • the reflectance of the film formed on the third reflex mirror 243 is higher than the reflectance of the film formed on the first reflex mirror 241
  • the transmittance of the film formed on the third reflex mirror 243 is lower than the transmittance of the film formed on the first reflex mirror 241.
  • the head (incident portion) 22 may be formed integrally with the light-guiding substrate 21, or may be formed separately and then bonded to the light-guiding substrate 21.
  • the former makes it easier to achieve positional accuracy between the light-guiding substrate 21 and the head (incident portion) 22, while the latter has the advantage of improving surface accuracy during molding because the difference in thickness within the molded part is smaller.
  • a second light guide section 202 is formed having a pupil reconstruction mirror interpolation section 84 having a similar shape to the pupil reconstruction mirror 24 (second formation step).
  • step S103 the first light guiding section formed in step S101 and the second light guiding section formed in step S102 are bonded together using an adhesive to form the light guiding plate 20 (third formation step).
  • the pupil reconstruction mirror 24 and the pupil reconstruction mirror interpolation section 84 are bonded together to form the light guiding plate 20.
  • an adhesive with a refractive index similar to that of the molded product the visibility of the bonding surface is reduced, making it difficult to recognize the presence of the pupil reconstruction mirror 24, which is an internal structure of the light guiding plate 20, and the transparency of the bonded molded product can be improved.
  • the light guide plate 20 is divided into two molded parts (first light guide section 201, second light guide section 202) with the reflective surface or half mirror surface as the boundary.
  • a reflective film or half mirror film is deposited on one molded part (first light guide section 201), and the other molded part (second light guide section 202) is given a shape similar to the reflective surface or half mirror surface.
  • a gap of 0.05 mm is provided between the two, and the positioning protrusion 85 abuts against the positioning surface 281 when the two are joined together.
  • the inclination of the light-guiding flat surface 86 on the opposite side to the eyepoint of the second light-guiding part 202 is set to be parallel to an accuracy of less than one arc minute relative to the flat substrate 291 on the opposite side to the eyepoint (flat substrate 292) of the light-guiding substrate 21 of the first light-guiding part 201.
  • the molded part (first light-guiding section 201) that is closer to eyepoint 31.
  • the light beam reflected by the flat substrate 292 on the side closer to eyepoint 31 is reflected by the pupil reconstruction mirror 24 and guided to the eyepoint 31.
  • the bonding surface of the reflective film or half-mirror film becomes the molded part, and the bonding surface of the molded part becomes the surface on which deposition is directly performed, making it easier to obtain good reflection characteristics.
  • the molded product provided with the reflective surface or half mirror surface is the same molded product as the light-guiding substrate 21. This is because the light-guiding substrate 21 is thicker than the pupil reconstruction mirror section, and it is easier to stabilize the surface precision and tilt precision by providing the reflective surface 27 of the pupil reconstruction mirror 24 in the first light-guiding section 201 where the light-guiding substrate 21 exists. On the other hand, it is preferable to provide the pupil reconstruction mirror interpolation section 84, which does not require surface precision, in the second light-guiding section 202, which tends to be thin.
  • the light guide plate 20 is manufactured by bonding two molded products (the first light guide section 201 and the second light guide section 202), so that the light guide plate 20 can be produced with both high mass productivity and optical performance.
  • a first light guiding section 201 is formed, which has a light guiding substrate 21, a head (incident section) 22, a pupil reconstruction mirror 24, and a pupil reconstruction mirror interpolation section 84 of a similar shape (first formation step).
  • step S102 a second light guiding section 202 having a pupil reconstruction mirror 24 is formed (second formation step).
  • step S103 the first light guiding section formed in step S101 and the second light guiding section formed in step S102 are joined together using an adhesive to form the light guiding plate 20 (third formation step).
  • deposition is performed on the pupil reconstruction mirror 24 of the second light guiding section 202 .
  • the second light guiding section 202 is smaller than the first light guiding section 201, it is possible to install a large number of second light guiding sections 202 in a deposition furnace, and it is possible to increase the number of films that can be formed in one deposition process, which has the advantage of reducing costs.
  • the optical system of each embodiment has a light guide plate (pupil reconstruction light guide plate) that forms a second pupil at the position of the observer's eye by reconstructing the first pupil of the projection unit, so that it is possible to reduce the weight of the battery while realizing brightness that can be used in bright environments such as outdoors. Therefore, according to each embodiment, it is possible to provide a thin optical system, display device, and method for manufacturing an optical system that has high light utilization efficiency (the proportion of light that reaches the observer's eye out of the light projected by the projection unit).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

【課題】光利用効率が高い薄型の光学系を提供する。 【解決手段】表示素子(11)からの光をアイポイント(31)へ導光する光学系であって、表示素子からの前記光を投射する投射部(12)と、投射部からの光をアイポイントへ導光する導光素子(20)とを有し、アイポイントは、導光素子の外部に位置し、投射部は、第1瞳(EP)を形成し、導光素子は、第1方向に平行な第1断面においてアイポイントに第2瞳(EPc)を形成する反射部(24)を備え、反射部の第1断面における焦点距離をf(mm)、反射部の反射面から第1瞳までの光軸上での空気換算距離をA1(mm)とするとき、 0≦A1/f<0.5 なる条件式を満足する。

Description

光学系、表示装置、および光学系の製造方法
 本発明は、光学系、表示装置、および光学系の製造方法に関する。
 従来、AR(Augmented Reality)グラスなどに用いられ、ハーフミラー積層型導光板または回折型導光板などの導光板を備えた観察光学系が知られている。特許文献1には、画像表示素子からの画像光を導光して虚像を表示するために射出する虚像表示装置用のライトガイドに関し、ライトガイドの導光部材内を導光する画像光の進行方向を反転させる再帰反射部が開示されている。特許文献2には、導波路層の反対表面に再帰反射器が配置されたディスプレイシステムが開示されている。
特開2017-146447号公報 国際公開第2020/112836号
 特許文献1および特許文献2に開示された構成では、導光板が用いられているため、薄型の観察光学系を実現することができるが、導光板の光利用効率(投射部により投射された光のうち観察者の眼に届く光の割合)が低い。その結果、屋外等の明るい環境下で使用可能な明るさを実現することや、バッテリーを軽量化することが難しい。
 そこで本発明は、光利用効率が高い薄型の光学系を提供することができる。
 本発明の一側面としての光学系は、表示素子からの光をアイポイントへ導光する光学系であって、前記表示素子からの前記光を投射する投射部と、前記投射部からの光を前記アイポイントへ導光する導光素子とを有し、前記アイポイントは、前記導光素子の外部に位置し、前記投射部は、第1瞳を形成し、前記導光素子は、第1方向に平行な第1断面において前記アイポイントに第2瞳を形成する反射部を備え、前記反射部の前記第1断面における焦点距離をf(mm)、前記反射部の反射面から前記第1瞳までの光軸上での空気換算距離をA1(mm)とするとき、
  0≦A1/f<0.5
なる条件式を満足する。
 本発明の他の目的及び特徴は、以下の実施形態において説明される。
 本発明によれば、光利用効率が高い薄型の光学系を提供することができる。
各実施形態における表示装置の概略図である。 各実施形態における導光板の機能の説明図である。 第1実施形態における導光板の正面図である。 第1実施形態における導光板の側面図である。 第1実施形態における導光板の斜視図である。 第1実施形態における再構成ミラーの断面図である。 第1実施形態の第1変形例としての再構成ミラーの断面図である。 第1実施形態の第2変形例としての再構成ミラーの断面図である。 第1実施形態の第3変形例としての再構成ミラーの断面図である。 第1実施形態の第4変形例としての再構成ミラーの断面図である。 第1実施形態の第5変形例としての再構成ミラーの断面図である。 第1実施形態における再構成ミラーの配置構成図である。 第2実施形態における瞳再構成ミラーユニットの説明図である。 第2実施形態における導光板の断面図である。 第2実施形態における第1瞳再構成ミラーの斜視図である。 第3実施形態における導光板の製造方法を示すフローチャートである。 第3実施形態における導光板を構成する部品の説明図である。 第2実施形態における瞳再構成の様子を示す図である。 第2実施形態の変形例としての2次元瞳再構成ミラーを用いた導光板の説明図である。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照符号を付し、重複する説明は省略する。
 (第1実施形態)
 まず、図1を参照して、本実施形態における表示装置100について説明する。図1は、表示装置100の概略図である。表示装置100は、投射部10および導光板(導光素子)20を備えて構成される。以下の説明において、水平方向(例えば、観察者の右眼から左眼へ向かう方向)をX軸方向(第1方向)、垂直方向をY軸方向(第2方向)、X軸およびY軸と直交する方向(アイポイント31、観察者の眼30から導光板20へ向かう方向)をZ軸方向とする。また、X軸とZ軸を含む断面を第1断面、Y軸とZ軸を含む断面を第2断面、X軸とY軸を含む断面を第3断面とする。
 投射部10は、OLED(Organic Light Emitting Diode)などの表示素子11、および投射光学系(投射部)12を有する。投射光学系12は、自由曲面プリズムを有し、高取込角および小型化を実現している。ただし本実施形態は、これに限定されるものではなく、自由曲面プリズムに代えて、一般的な光学系を用いて投射光学系12を構成してもよい。導光板20は、1次元方向(例えば第1方向に平行な第1断面内)において、アイポイント31(観察者の眼30の瞳孔)の位置に投射部10(投射光学系12)の第1瞳(射出瞳)EPを再構成した第2瞳EPを形成するように構成されている。本実施形態において、投射光学系12および導光板20により、表示素子11からの光をアイポイント31へ導光する光学系(観察光学系)が構成される。
 投射光学系12から導光板20の内部へ入射した光束は、導光板20の厚み方向においては導光板20の厚みに相当する幅を有し、導光板の幅方向においては導光板20の幅よりも狭い光束幅を有する。このような光束は、導光板20内(瞳再構成ミラー24を保持する二つの導光基板(例えば、図17中の平面基板291、292))を内面反射しながら進む。導光板を射出した光束において、導光板の幅方向の光束が第1断面(水平断面)内、導光板の厚み方向の光束が第2断面(垂直断面)内の光束を担う。
 本実施形態において、表示装置100の水平断面(X軸断面)および垂直断面(Y軸断面)における画角の比率は16:9である。光利用効率を向上させる為には、少なくとも画角が広い方向に第2瞳EPを形成することが好ましいため、導光板20は、水平断面内において第1瞳(射出瞳)EPを再構成した第2瞳EPを形成する。ただし本実施形態は、これに限定されるものではなく、水平断面内に代えて、垂直断面(Y軸断面)内に、第2瞳EPを形成するように構成してもよい。
 次に、図2を参照して、導光板20の機能について説明する。図2は、導光板20の機能の説明図である。導光板20は、観察者の眼30を配置するアイポイント31に投射部10(投射光学系12)の第1瞳(射出瞳)EPを再構成した第2瞳EPを形成する瞳再構成導光板である。なお本実施形態において、投射部10の第1瞳(射出瞳)EPと同様な第2瞳EPをアイポイント31の位置に再構成される状態を「瞳再構成」という場合がある。第1瞳を結像した共役像としての第2瞳を形成するのではなく、第1瞳から放出され拡散した画角光束が再び集まって重なる状態を示す。このとき、画角光束は結像の影響は受けず、ノンパワーのため、第1瞳から平行光束で放出された光は、平行光束のまま第2瞳に集結する。
 導光板20は、瞳再構成ミラー(反射部)24を有し、1次元方向(第1断面内、または第1断面に垂直な第2断面、水平方向または垂直方向)において、投射部10の第1瞳EPを再構成した第2瞳EPをアイポイント31に形成する。瞳再構成ミラー24の反射面は、第2断面において、導光基板の表面に対して傾斜し、瞳再構成ミラー24で反射した光が導光基板を透過して導光板20の外部に出射する。ミラー24は、第1方向に垂直な第2方向において配列された複数の反射面を含み、複数の反射面と導光基板の表面との成す角度は、互いに同じである。
 観察者は、眼30をアイポイント31に配置する。これにより、観察者の眼30に入らない無駄な光を低減することができるため、投射部10から投射された光のうち観察者の眼30に届く光の割合(導光板20の光利用効率)を高めることが可能である。第2瞳EPを形成する場所はアイポイント31の位置であるが、ある程度近傍であれば本実施形態の効果を十分に得ることができる。
 なお、瞳再構成ミラー24が1次元方向(第1方向、水平方向)において瞳再構成機能を有する場合、以下のような構成が好ましい。すなわち、瞳再構成ミラー24の瞳再構成機能を有さない方向(第2方向、垂直方向)においては、瞳再構成ミラー24に垂直以外の角度で光を入射させ、入射方向とは異なる方向に反射させる構成が好ましい。これにより、第2瞳EPを、第1瞳EPとは異なる場所に配置することができるので、導光素子の外側にあるアイポイントに第2瞳を形成することが可能となる。
 本実施形態における瞳再構成ミラー(ミラー)24は、瞳再構成ミラーで2回反射することで略平行光束のまま、新しい瞳を再構成する。ここで、瞳再構成ミラー24の第1断面における焦点距離をf(mm)、瞳再構成ミラー24の反射面(例えば、反射面の中心)から第1瞳EPまでの光軸上での空気換算距離をA1(mm)とするとき、本実施形態に係る光学系は以下の条件式(1)を満足する。
  0.0≦A1/f<0.5 …(1)
 ここで、光軸とは、主光線の光路をYZ断面に投影したものに相当し、空気換算距離とは、実際の距離(A1については当該断面に投影したときの主光線の光路長)/導光素子の屈折率に相当する。
 条件式(1)は、瞳再構成ミラー24の焦点距離が光路長(A1)の2倍よりも長く、瞳再構成ミラー24の持つパワー(屈折力)が十分に小さいということを意味する。
 導光素子では、光学素子を複数に分割して導光素子の板厚を薄くしている。瞳を再構成する光学素子が複数に分割された場合、第1瞳から各光学素子までの距離が異なる。この状況で、導光素子がパワー(屈折力)を使って共役な瞳を形成した場合、第1瞳から各光学素子までの距離が異なるため分割した光学素子毎に光束の収束度が異なる問題が発生する。分割した光学素子毎にパワーを変更した場合、光束の収束度を揃えることはできるが、分割した光学素子毎に画角が拡大/縮小され、画角のずれが発生する。これに対して、条件式(1)を満たすように瞳再構成ミラーのパワーを設定することで、瞳再構成ミラーを複数の光学素子で構成しても、光束の収束度を変えることなく略平行光束のまま、画角においても変更なく第2瞳へ向かわせることができる。
 好ましくは、条件式(1)の数値範囲は、以下の条件式(1a)のように設定される。
  0.0≦A1/f<0.3 …(1a)
 より好ましくは、条件式(1)の数値範囲は、以下の条件式(1b)のように設定される。条件式(1b)は、瞳再構成ミラー24の屈折力がゼロ(ノンパワー)であることを意味する。本実施形態においては、瞳再構成ミラー24をノンパワーとすることで、入射光を平行光束としたまま瞳を再構成することができ、より良好な光学性能を実現している。
  A/f=0.0 …(1b)
 次に、図3乃至図5(a)、(b)を参照して、導光板20の構成について説明する。図3は、導光板20の正面図である。図4は、導光板20の側面図である。図5(a)、(b)は、導光板20の斜視図である。図3および図4に示されるように、導光板20は、導光基板21、ヘッド(入射部)22、折り返しミラー(第1反射部)23、および瞳再構成ミラー(取出ミラー)24を有する。
 折り返しミラー23は、投射光学系12からの光を偏向する第1反射部である。瞳再構成ミラー24は、互いに対向する二つの内面と、第1反射面および該二つの内面で反射した光を導光板20の外部に射出する第2反射部である。第1反射部は、前記二つの内面に垂直な第1反射面を含み、第2反射部は、前記二つの内面に平行な方向において配列された複数の反射面を含み、第1反射面は、前記二つの内面に平行な断面において、前記二つの内面に平行な方向に対して傾斜している。
 瞳再構成ミラー24は、第1再帰ミラー241、第2再帰ミラー242、および第3再帰ミラー243を有する。導光板20の板厚を薄くするために再帰ミラー241、242、243を3枚配置し、それぞれの再帰ミラー241、242、243が第1瞳EPを再構成した第2瞳を形成している。ただし本実施形態は、これに限定されるものではなく、瞳再構成ミラー24を構成する再帰ミラーの数は3つ以外であってもよい。
 図3および図5(a)に示されるように、投射光学系12の第1瞳(射出瞳)EPは、導光板20の内部(ヘッド22の付根(先端部)22aの位置)に形成される。投射光学系12からの光は、折り返しミラー23へ向けて導光し、折り返しミラー23で反射されて、瞳再構成ミラー24で反射されて導光板20の外側に光束を射出する。
 本実施形態の観察光学系は、折り返しミラー23を使って導光板内の光路を折り畳んでおり、折り返しミラー23前後の光路の成す角度θc=69°と鋭角に設定している。これにより、導光板の垂直方向(Y軸方向)の高さ(距離)が小さくなるように構成している。また、投射光学系の第1瞳(射出瞳)EPから折り返しミラー23へ向かう光路の角度θa=21°とし、水平方向(θa=0°)から上向きの角度で導光させる。これにより、折り返しミラー23の傾斜角をθb=34°と45°よりも水平方向に近づけることにより、折り返しミラー23の終端の高さを小さく抑えている。
 本実実施形態の観察光学系は、水平方向において、投射部10の第1瞳(射出瞳)EPを再構成した第2瞳EPを、導光板20の外部のアイポイント31の位置に形成することができる。図5(b)に示されるように、3つの再帰ミラー241、242、243はそれぞれ、二つの反射面の第1方向(再帰ミラーのローカル座標における水平方向)の成す角が直角な直角ミラーを第1方向に沿って複数配置した直角ミラーアレイである。本実施形態では、垂直方向(第1方向)に沿って、3つの再帰ミラー241、242、243が配置されている。すなわち瞳再構成ミラー24は、第1断面において互いに成す角度が直角である二つの反射面を夫々が備える複数の直角ミラーを含み、複数の直角ミラーは第1方向に沿って配列されている。
 ここで、瞳再構成ミラー24の反射面から投射部10の第1瞳(射出瞳)EP(ヘッド22の付根22a)までの空気換算距離をA1(mm)、瞳再構成ミラー24の反射面からアイポイント(瞳孔)31までの光軸上での空気換算距離をA2(mm)とする。アイポイント31は、第2瞳EPが形成される位置であり、本実施形態では観察者の眼30の位置に相当する。アイポイント31は、例えば、導光板20の射出面から12mm~18mm程度の距離に位置する(アイレリーフが12mm~18mm)が、これに限定されるものではなく、表示装置の大きさや、視力矯正眼鏡に対応しているか否かによっても変わる。
 図3に示されるように、導光基板21内でのヘッド22の付根22aの位置から折り返しミラー23の位置までの距離をL1aとする。また、導光基板21内での折り返しミラー23の位置から瞳再構成ミラー24の位置(本実施形態では第2再帰ミラー242の中心、観察者の眼30の高さ位置に相当、画角中心の主光線が瞳再構成ミラー24に到達する位置でもよい)までの距離をL1bとする。また、d線を基準とした導光基板21の屈折率をNとする。このとき空気換算距離A1は、A1=(L1a/N)+(L1b/N)で表される。
 図4に示されるように、導光基板21内での瞳再構成ミラー24の位置(本実施形態では、導光板20の厚み方向における瞳再構成ミラー24の中央位置、または第2再帰ミラー242の中央位置)から導光板20の射出面20aの位置までの距離をL2aとする。また、空気中での導光板20の射出面20aからアイポイント31までの距離をL2bとする。このとき空気換算距離A2は、A2=(L2a/N)+L2bで表される。
 本実施形態において、投射光学系12の第1瞳(射出瞳)EPをアイポイント31の位置に再構成する(瞳再構成を実現する)には、空気換算距離A1、A2の関係が以下の条件式(2)を満足することが好ましい。
  0.5<A2/A1<2.0 …(2)
 条件式(2)の上限値を超えると、観察者の眼30よりも前側に瞳が形成され、広い画角で映像を見ることができない(同時に見える画角が狭くなる)ため、好ましくない。一方、条件式(2)の下限値を超えると、観察者の眼30よりも後側に瞳が形成され、広い画角で映像を見ることができない(同時に見える画角が狭くなる)ため、好ましくない。また、距離L1bに関し、導光基板21に複数の再帰ミラーが設けられている場合には、全て(本実施形態では3つ)の再帰ミラーのまでの距離L1b(例えば、第1再帰ミラー241の中心までの距離など)に関して条件式(2)を満足することが好ましい。
 より好ましくは、条件式(2)の数値範囲は、以下の条件式(2a)のように設定される。
  0.6<A2/A1<1.5 …(2a)
 更に好ましくは、条件式(2)の数値範囲は、以下の条件式(2b)のように設定される。
  0.8<A2/A1<1.2 …(2b)
 次に、図6(a)、(b)を参照して、本実施形態における瞳再構成ミラー24の構成について説明する。図6(a)、(b)は、瞳再構成ミラーを構成する再帰ミラー241の断面図である。図6(a)に示されるように、再帰ミラー241は、再帰ミラーのローカル座標におけるX軸方向(水平方向)において、直角ミラー25をX軸方向に複数配列して構成されている。すなわち、水平方向(X軸方向)に沿った断面(第1断面)において、複数の直角ミラー25の夫々の谷部から頂部(山部)までの高さ(距離)は、互いに同じ(水平方向において一定)である。
 複数の直角ミラー25はそれぞれ、互いに直交して配置された第1ミラー25aと第2ミラー25bとを有する。第1ミラー25aは、直角ミラー25の内側面(中心部Cに近い側の面)を構成する。第2ミラー25bは、直角ミラー25の外側面(中心部Cから遠い側の面)を構成する。
 図6(b)に示される再帰ミラー241によれば、水平断面内において、直角ミラー25に入射した光は、第2ミラー25bと第1ミラー25aで反射して、入射した光と同じ方向に反射される。このように、直角ミラー25で反射される光は元の方向に戻る再帰性の性質がある。
 また、直角ミラー25は2枚の平面ミラーから構成されるので、ノンパワーである。その為、直角ミラー25に入射した平行光束を平行光束のまま反射することができる。直角ミラー25を複数配置した再帰ミラー241は、図示しない投射光学系の射出瞳から放出された光束を反射することで第2瞳を再構成することができる。このように、再帰ミラー241は瞳再構成ミラー24の機能を果たすことができる。
 また、直角ミラーアレイを用いた瞳再構成ミラーはノンパワーなので、垂直方向に分割した場合においても、各再帰ミラーにおける光束の収束度や画角を変化させることなく瞳を再構成できる。
 一方、図6(b)に示した再帰ミラー241は、水平方向における瞳再構成を実現することができるが、再帰ミラー241から反射した光束間に大きい隙間G1が生じる。その結果、光束の隙間G1が表示画像の濃淡として写り込み、アーティファクトとなる可能性がある。
 次に、図7(a)~(c)を参照して、本実施形態の第1変形例としての瞳再構成ミラー24aの構成について説明する。図7(a)~(c)は、瞳再構成ミラー24aの断面図である。図7(a)に示されるように、瞳再構成ミラー24aは、二つの直角ミラー25の2面のうち、内側面(第1ミラー25a)の幅が外側面(第2ミラー25b)の幅よりも広くなるように構成されている。また、外側面の根元部はカットされており、カット面28は反射光と平行になるように形成されている。また瞳再構成ミラー24aは、中心部C(内側)から周辺部(外側)へ近づくにつれて直角ミラー25が高くなるように構成されている。
 すなわち本変形例では、水平方向に沿った断面において、複数の直角ミラー25の少なくとも一つは、第1ミラー25aの幅が第2ミラー25bの幅よりも広い。また、第2ミラー25bの少なくとも一つは、ミラー面とは異なる角度にカットされたカット面28を有する。また、複数の直角ミラー25の夫々の谷部から頂部(山部)までの高さ(距離)は、瞳再構成ミラー24の中心部Cから周辺部に近づくにつれて高くなる(大きくなる)。
 このような構成により、図7(b)に示されるように、瞳再構成ミラー24で反射される光束の隙間G1と比較して、瞳再構成ミラー24aで反射される光束の隙間G2を小さくできる。また、直角ミラー25の外側面(第2ミラー25b)のカット面28を反射光と平行になるように形成することにより、隙間G2を最小にすることが可能となる。また、図7(c)に示されるように、瞳再構成ミラー24aは、直角ミラー25の一方の面(内側面)で反射した光束が他方の面(外側面)を透過し、隣接する直角ミラー25の一方の面(内側面)を透過して他方の面(外側面)で反射するように構成されている。これにより、光利用効率を例えば10%程度高めることができる。また瞳再構成ミラー24aによれば、内側(中心部C)から外側(周辺部)へ近づくにつれて直角ミラー25が高くなるように形成されているため、外側に反射した光が斜めに進んだ場合でも、再び直角ミラー25で反射される量が増加する。
 次に、図8(a)、(b)を参照して、本実施形態の第2変形例としての瞳再構成ミラー24bの構成について説明する。図8(a)、(b)は、瞳再構成ミラー24bの断面図である。図8(a)に示されるように、瞳再構成ミラー24bは、二つの直角ミラー25の2面のうち、内側面(第1ミラー25a)の幅が外側面(第2ミラー25b)の幅よりも広くなるように構成されている。また、外側面の根元部はカットされており、カット面29は直角ミラー25の配列方向(水平方向)に対して垂直に配置されている(カット面29の法線方向は、直角ミラー25の配列方向と平行である)。また瞳再構成ミラー24bは、中心部C(内側)から周辺部(外側)へ近づくにつれて直角ミラー25が高くなるように構成されている。
 このような構成により、図8(b)に示されるように、瞳再構成ミラー24で反射される光束の隙間G1と比較して、瞳再構成ミラー24bで反射される光束の隙間G3を小さくできる。なお、瞳再構成ミラー24bで反射される光束の隙間G3は、瞳再構成ミラー24aで反射される光束の隙間G2よりも僅かに大きいが、瞳再構成ミラー24bは、瞳再構成ミラー24aと比較して、成型時の型加工が容易になる。
 次に、図9(a)、(b)を参照して、本実施形態の第3変形例としての瞳再構成ミラー24cの構成について説明する。図9(a)、(b)は、瞳再構成ミラー24cの断面図である。本変形例において、水平方向に沿った断面において、瞳再構成ミラー24cは、中心部Cから周辺部へ近づくにつれて、二つの直角ミラー25の夫々の回転角が大きくなる(内向きに回転する)。すなわち図9(a)に示されるように、複数の直角ミラー25の角度は、瞳再構成ミラー24cの中心部Cからの距離に応じて異なる。中心部は瞳再構成ミラー24cの幅の中心からずれた位置に配置しても良い。好ましくは、各直角ミラー25に到達する画角光束の主光線と平行な光線が第1ミラー25aの端部に入射し反射して第2ミラー25bの端部へ入射し反射するように各直角ミラー25の角度が構成されている。各直角ミラーの角度誤差は5°以下とするのが良い。このような構成により、図6(b)に示された瞳再構成ミラー24で反射される光束の隙間G1と比較して、図9(b)に示された瞳再構成ミラー24cで反射される光束の隙間G4を小さくできる。
 次に、図10を参照して、本実施形態の第4変形例としての瞳再構成ミラー24dの構成について説明する。図10は、瞳再構成ミラー24dの断面図である。図10に示されるように、瞳再構成ミラー24dは、瞳再構成ミラー24cの構成に加えて、互いに隣接する直角ミラーの間(各直角ミラーの谷部の位置)に、各直角ミラーの山部の位置まで延びるように配置された遮光部材26aを有する。複数の遮光部材26aはそれぞれ、画角光束と平行に(中心部Cから周辺部に近づくにつれて、遮光部材26aの面の法線方向が直角ミラーの配列方向(水平方向)から離れるように)配置されている。
 各直角ミラーの角度が変化する瞳再構成ミラー24cでは、表示光が透過して隣の直交ミラーで反射した場合、ゴースト光になり得る。一方、本変形例の構成によれば、隣接する直角ミラーからの光をカット(遮光)してゴーストの発生を低減することができる。また、瞳再構成ミラー24dで反射したシースルー光が観察者の眼30の方向に向かうとゴースト光になる。このため本変形例によれば、光学シースルー光の反射光をカットしてゴーストの発生を低減することができる。
 次に、図11を参照して、本実施形態の第5変形例としての瞳再構成ミラー24eの構成について説明する。図11は、瞳再構成ミラー24eの断面図である。図11に示されるように、瞳再構成ミラー24eは、瞳再構成ミラー24cの構成に加えて、隣接する直角ミラーの間(各直角ミラーの谷部の位置)に、各直角ミラーの山部の位置まで延びるように配置された遮光部材26bを有する。複数の遮光部材26bは、遮光部材26bの面の法線方向が直角ミラーの配列方向(水平方向)と平行であるように配置されている。このため本変形例によれば、遮光部材26aを有する瞳再構成ミラー24dと比較して、金型成形による製造が容易になる。
 次に、図12(a)、(b)を参照して、本実施形態における再構成ミラーを構成する複数の再帰ミラー(第1再帰ミラー241、第2再帰ミラー242、第3再帰ミラー243)の配置構成について説明する。図12(a)は、本実施形態における複数の再帰ミラーの配置構成図である。図12(a)に示されるように、複数の再帰ミラーは、垂直方向において、互いに同一の位相を有するように(再帰ミラー241、242、243を構成する直角ミラーの山部および谷部のそれぞれの位置が合わせられた状態で)配置されている。ただし本実施形態は、これに限定されるものではなく、例えば、図12(b)に示されるような構成を採用してもよい。
 図12(b)は、本実施形態の変形例としての複数の再帰ミラー241、242、243の配置構成図である。図12(b)に示されるように、本変形例では、第2再帰ミラー242は、垂直方向において、第1再帰ミラー241および第2再帰ミラー242と異なる位相を有するように配置されている。本変形例によれば、第1再帰ミラー241または第3再帰ミラー243と第2再帰ミラー242との間に形成される隙間を減らしてアーティファクトを減少させることで、より高画質な画像を提供することができる。
 本実施形態によれば、光利用効率が高い薄型の観察光学系を提供することができる。なお、本実施形態にて説明した各条件または変形例などは、後述する第2実施形態にも適用可能である。
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。第1実施形態では、1次元方向(例えば水平方向)においてのみ、アイポイント31に投射光学系12の射出瞳を再構成した第2瞳を形成する導光板(1次元瞳再構成導光板)20を説明した。一方、本実施形態では、2次元方向(例えば水平方向および垂直方向の両方)において、アイポイント31に投射光学系12の射出瞳を再構成した第2瞳を形成する導光板(2次元瞳再構成導光板)について説明する。
 まず、図13(a)、(b)を参照して、本実施形態における2次元瞳再構成ミラーユニット34について説明する。図13(a)、(b)は、本実施形態における瞳再構成ミラーユニット34の説明図である。本実施形態の導光板は、水平方向(X軸方向)および垂直方向(Y軸方向)に沿って2次元状に配置された複数の2次元瞳再構成ミラーユニット34、すなわち2次元瞳再構成ミラーを有する。図13(a)に示されるように、2次元瞳再構成ミラーを構成する一つの瞳再構成ミラーユニット34は、互いに直交する第1ミラー25aおよび第2ミラー25bからなる直角ミラー25と、平面ミラー(第3ミラー)51とを有する。平面ミラー51は、例えばハーフミラーである。
 図13(b)に示されるように、平面ミラー51は、直角ミラー25の稜線41に対して角度θ(度)をなすように配置されている。角度θ(度)は、例えば垂直方向の成分を含む方向からの光束の隙間を小さくするため、以下の条件式(3)を満足することが好ましい。
  40<θ<80 …(3)
 条件式(3)の上限値または下限値を超えると、例えば垂直方向の成分を含む方向からの光束の隙間を十分に小さくできないため、好ましくない。
 より好ましくは、条件式(3)の数値範囲は、以下の条件式(3a)のように設定される。
  50<θ<70 … (3a)
 更に好ましくは、条件式(3)の数値範囲は、以下の条件式(3b)のように設定される。
  θ=60 … (3b)
 このように本実施形態において、水平方向においては直角ミラー25を用いて瞳再構成を実現し、垂直方向においては直角ミラー25と直角ミラー25の稜線41に対して角度θをなすように配置された平面ミラー51を用いて瞳再構成を実現する。これにより、水平方向および垂直方向の二つの方向において第2瞳を再構成することができる。
 より具体的には、水平方向に関しては投射光学系の射出瞳から放出された各画角光束を直角ミラーアレイで反射することで、直角ミラーアレイの再帰性の機能を使って、第2瞳を再構成する。
 垂直方向に関しては、直角ミラー25の稜線41に対して平面ミラー51をθ=60°に設定した場合で説明する。直角ミラー25の稜線41が入射光と平行となるように2次元瞳再構成ミラーを配置する。入射光は先ず平面ミラー51で反射された後、直角ミラー25の二つの面で反射すると、反射光は平面ミラー51と略平行な方向に反射される。
 図18に垂直断面内における瞳再構成ミラーユニット34での瞳再構成の様子を示す。投射光学系の第1瞳EPから放出され拡散した各画角光束が、それぞれ異なる瞳再構成ミラーユニット34で反射すると、反射した画角光束は進行する毎に各画角光束の間隔が狭くなり、各画角光束が略同じ位置に集まって重なり、第2瞳EPcを形成する。この様に垂直方向においても、2次元瞳再構成ミラーを用いると、投射光学系の第1瞳を再構成した第2瞳を形成することができる。また、直角ミラー25の稜線41に対して平面ミラー51を上述のθとしているので、垂直断面内において、第2瞳を第1瞳とは異なる場所に再構成することができる。
 本実施形態では、水平断面内と垂直断面内の2次元方向において、投射光学系の第1瞳(射出瞳)を再構成した第2瞳を形成することができる。第2瞳をアイポイントの位置に形成すれば、表示素子からの光を観察者の眼に効率良く導くことができる。これにより、光利用効率を更に向上させることができる。
 図14は、本実施形態における2次元瞳再構成ミラー35を有する導光板(導光素子)70の断面図(YZ断面)である。導光板70は、導光基板71において、水平方向および垂直方向に沿って配列された複数の瞳再構成ミラーユニット34により、2次元瞳再構成ミラー35が構成される。本実施形態において、2次元瞳再構成ミラー35は、水平方向に沿って一列に配列された複数の瞳再構成ミラーユニット34で第1瞳再構成ミラーを構成し、第1瞳再構成ミラーを垂直方向に沿って一列に配列することにより構成される。
 図15は、第1瞳再構成ミラーの斜視図である。図15に示されるように、第1瞳再構成ミラーは、水平方向(X軸方向)に沿って配列された39個の瞳再構成ミラーユニット34を有する。ただし、瞳再構成ミラーユニット34の数は、これに限定されるものではない。図14に示されるように、2次元瞳再構成ミラー35は、導光基板71に形成された円筒面72上に、垂直方向(Y軸方向)に沿って12個の第1瞳再構成ミラーを配置することで構成される。ただし、第1瞳再構成ミラーの数は、これに限定されるものではない。瞳再構成ミラーユニット34を円筒面72上に配置することにより、垂直方向においても中心部から周辺部へ近づくにつれて、瞳再構成ミラーユニット34の回転角が大きくなる(内向きに回転する)ように構成している。円筒面72上の配置に限らず、瞳再構成ミラーユニット34を部分的にでも内向きに回転させて配置すると良い。このような構成により、水平方向および垂直方向の二つの方向において、2次元瞳再構成ミラー35で反射した光束の隙間を小さくしつつ第2瞳を形成することができる。
 第2実施形態の変形例として、図19にマクスウェル視を可能とした2次元瞳再構成ミラーを用いた導光基板71を説明する。
 瞳再構成ミラーユニット34の一つ当たりのサイズを2mm以下とし、導光基板71のX軸とY軸を含む第3断面内において、隣り合う瞳再構成ミラーユニット34の間隔を空けて、まばらに配置する。これにより、各瞳再構成ミラーユニットで反射される光束を1mm以下としてマクスウェル視を可能とした2次元瞳再構成ミラーを用いた導光板を構成することができる。
 (第3実施形態)
 次に、図16および図17を参照して、本実施形態における観察光学系(導光板20)の製造方法について説明する。図16は、導光板20の製造方法を示すフローチャートである。図17(a)、(b)は導光板20を構成する部品の説明図であり、図17(a)は第1導光部201、図17(b)は第2導光部202をそれぞれ示す。なお本実施形態は、第1実施形態にて説明した導光板20の製造方法について説明するが、第2実施形態にて説明した導光板70などの他の導光板にも適用可能である。
 まずステップS101において、導光基板21とヘッド(入射部)22と瞳再構成ミラー24とを有する第1導光部201を形成する(第1形成ステップ)。このとき、瞳再構成ミラー24の反射面27に、反射膜またはハーフミラー膜を形成する。第1導光部201が複数の瞳再構成ミラー24を有する場合、表示像の画角に応じた明るさを調整するため(観察者から見える表示像の明るさが一定となるように)、反射膜またはハーフミラー膜の特性を瞳再構成ミラー24ごとに異ならせる。ここで、反射膜またはハーフミラー膜の特性とは、例えば、透過率特性および反射率特性である。すなわち、下側の瞳再構成ミラー24に形成される膜の反射率を高くし、かつ透過率を低くする。例えば、第3再帰ミラー243に形成される膜の反射率は第1再帰ミラー241に形成される膜の反射率よりも高く、第3再帰ミラー243に形成される膜の透過率は第1再帰ミラー241に形成される膜の透過率よりも低い。これに限ったものではなく、同一の特性のハーフミラーを用いてもよい。
 また、ヘッド(入射部)22は導光基板21と一体化して形成してもよいし、別体として形成した後、導光基板21に接合してもよい。射出成形で形成する場合、前者ならば導光基板21とヘッド(入射部)22との位置精度が出しやすく、後者ならば成形部品内の厚みの差が小さくなるため、成形時の面精度が良くなるメリットがある。
 続いてステップS102において、瞳再構成ミラー24と類似形状の瞳再構成ミラー補間部84を有する第2導光部202を形成する(第2形成ステップ)。
 続いてステップS103において、ステップS101にて形成された第1導光部と、ステップS102にて形成された第2導光部とを接着剤を用いて接合して、導光板20を形成する(第3形成ステップ)。このとき、瞳再構成ミラー24と瞳再構成ミラー補間部84とを接合して導光板20を形成する。このとき、成形品と同様の屈折率を有する接着剤を使うことにより、接合面の視認性を低下させて導光板20の内部構造として成る瞳再構成ミラー24の存在を認識しづらくし、接合した成形品の透明性を向上させることができる。
 このように、導光板20は、反射面またはハーフミラー面を境に二つの成形品(第1導光部201、第2導光部202)に分割する。そして、一方の成形品(第1導光部201)に反射膜またはハーフミラー膜を蒸着し、他方の成形品(第2導光部202)は反射面またはハーフミラー面の形状に類似した形状とする。両者の間に0.05mmの隙間を設け、両者を接合する際に位置決め突起85が位置決め面281に当接する構成としている。
 これにより、一方の成形品に対して、他方の成形品を精度良く配置している。具体的には、第1導光部201の導光基板21のアイポイント(平面基板292)と反対側の平面基板291に対して、第2導光部202のアイポイントとは反対側にある導光平面86の傾きを1分以下の精度で平行出しをしている。
 分割した成形品のうち、アイポイント31に近い方の成形品(第1導光部201)に反射面またはハーフミラー面を設けるのが良い。導光板20の中では、アイポイント31に近い側の平面基板292で反射した光束が瞳再構成ミラー24で反射してアイポイント31に導光する。このため、反射膜やハーフミラー膜の接合面が成形品となり、接合面が成形品の方が直接蒸着する面となり、良好な反射特性を得られ易い。
 また、反射面またはハーフミラー面を設けた成形品は、導光基板21と同一成形品とするのが良い。それは、導光基板21は瞳再構成ミラー部よりも厚く、導光基板21が存在する第1導光部201に瞳再構成ミラー24の反射面27を設けた方が面精度や傾き精度が安定し易い為である。一方、薄くなりがちな第2導光部202には面精度を必要としない瞳再構成ミラー補間部84を設けるのが良い。
 本実施形態によれば、二つの成形品(第1導光部201と第2導光部202)を貼り合わせることで導光板20を製造するため、導光板20の量産性および光学性能を両立させることができる。
 本実施形態の変形例としては、下記のステップで製造してもよい。
 ステップS101において、導光基板21とヘッド(入射部)22と瞳再構成ミラー24と類似形状の瞳再構成ミラー補間部84を有する第1導光部201を形成する(第1形成ステップ)。
 続いてステップS102において、瞳再構成ミラー24を有する第2導光部202を形成する(第2形成ステップ)。
 続いてステップS103において、ステップS101にて形成された第1導光部と、ステップS102にて形成された第2導光部とを接着剤を用いて接合して、導光板20を形成する(第3形成ステップ)。
 本変形例では、第2導光部202の瞳再構成ミラー24に蒸着する。
この場合、第2導光部202は第1導光部201よりも小さいので、蒸着窯に数多くの第2導光部202を設置することが可能となり、1回の蒸着工程で成膜できる数量を増やすことができる。これにより、コストダウンが図れるメリットがある。
 各実施形態の光学系は、観察者の眼の位置に投射部の第1瞳を再構成した第2瞳を観察者の眼の位置に形成する導光板(瞳再構成の導光板)を有するため、屋外などの明るい環境下で使用可能な明るさを実現しつつバッテリーを軽量化することができる。このため各実施形態によれば、光利用効率(投射部により投射された光のうち観察者の眼に届く光の割合)が高い薄型の光学系、表示装置、および光学系の製造方法を提供することが可能である。
 以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。

Claims (20)

  1.  表示素子からの光をアイポイントへ導光する光学系であって、
     前記表示素子からの前記光を投射する投射部と、
     前記投射部からの光を前記アイポイントへ導光する導光素子と、を有し、
     前記アイポイントは、前記導光素子の外部に位置し、
     前記投射部は、第1瞳を形成し、
     前記導光素子は、第1方向に平行な第1断面において前記アイポイントに第2瞳を形成する反射部を備え、
     前記反射部の前記第1断面における焦点距離をf(mm)、前記反射部の反射面から前記第1瞳までの光軸上での空気換算距離をA1(mm)とするとき、
      0≦A1/f<0.5
    なる条件式を満足することを特徴とする光学系。
  2.  前記反射面から前記アイポイントまでの光軸上での空気換算距離をA2(mm)とするとき、
      0.5<A2/A1<2.0
    なる条件式を満足することを特徴とする請求項1に記載の光学系。
  3.  前記導光素子は、前記反射部を保持する導光基板を備え、
     前記反射面は、前記第1断面に垂直な第2断面において、前記導光基板の表面に対して傾斜し、
     前記反射部で反射した光が前記導光基板を透過して前記導光素子の外部に出射することを特徴とする請求項1または2に記載の光学系。
  4.  前記反射部は、前記第1方向に垂直な第2方向において配列された複数の反射面を含み、該複数の反射面と前記導光基板の表面との成す角度は、互いに同じであることを特徴とする請求項3に記載の光学系。
  5.  前記反射部は、前記第1断面において互いに成す角度が直角である二つの反射面を夫々が備える複数の直角ミラーを含み、該複数の直角ミラーは前記第1方向に沿って配列されていることを特徴とする請求項1乃至4のいずれか一項に記載の光学系。
  6.  前記第1断面において、前記複数の直角ミラーの夫々の谷部から頂部までの距離は互いに同じであることを特徴とする請求項5に記載の光学系。
  7.  前記第1断面において、前記複数の直角ミラーの夫々の谷部から頂部までの距離は、前記反射部の中心部から周辺部に近づくにつれて大きくなることを特徴とする請求項5または6に記載の光学系。
  8.  前記複数の直角ミラーの夫々の内側の反射面を第1ミラー、外側の反射面を第2ミラーとするとき、前記第1ミラーの幅が前記第2ミラーの幅よりも広いことを特徴とする請求項5乃至7のいずれか一項に記載の光学系。
  9.  前記複数の直角ミラーを構成する前記第2ミラーの少なくとも一つは、ミラー面とは異なる角度にカットされたカット面を有することを特徴とする請求項8に記載の光学系。
  10.  前記第1断面において、前記複数の直角ミラーの夫々の角度は、中心部から周辺部へ近づくにつれて、回転角が大きくなることを特徴とする請求項5乃至9のいずれか一項に記載の光学系。
  11.  前記複数の直角ミラーのうち互いに隣接する直角ミラーの間に配置された遮光部材を更に有することを特徴とする請求項5乃至10のいずれか一項に記載の光学系。
  12.  表示素子からの光をアイポイントへ導光する光学系であって、
     前記表示素子からの前記光を投射する投射部と、
     前記投射部からの光を前記アイポイントへ導光する導光素子と、を有し、
     前記アイポイントは、前記導光素子の外部に位置し、
     前記投射部は、第1瞳を形成し、
     前記導光素子は、第1方向に平行な第1断面および該第1断面に垂直な第2断面において、前記アイポイントに第2瞳を形成する反射部を有することを特徴とする光学系。
  13.  前記反射部は、第1ミラーと第2ミラーの前記第1方向の成す角が直角な直角ミラーを前記第1方向に沿って複数配置した直角ミラーアレイと、平面の第3ミラーとを有し、
     前記第1ミラーと前記第2ミラーとの間にある稜線と前記第3ミラーとの成す角をθ(度)とするとき、
      40<θ<80
    なる条件式を満足することを特徴とする請求項12に記載の光学系。
  14.  前記第3ミラーは、ハーフミラーであることを特徴とする請求項13に記載の光学系。
  15.  直角ミラーアレイと前記第3ミラーとで2次元瞳再構成ミラーが構成され、
     前記2次元瞳再構成ミラーは、第2方向に複数配置されていることを特徴とする請求項12乃至14のいずれか一項に記載の光学系。
  16.  前記第2方向に配置された各2次元瞳再構成ミラーは、前記第2断面における傾きが互いに異なることを特徴とする請求項15に記載の光学系。
  17.  表示素子からの光をアイポイントへ導光する光学系であって、
     前記表示素子からの前記光を投射する投射部と、
     前記投射部からの光を前記アイポイントへ導光する導光素子と、を有し、
     前記アイポイントは、前記導光素子の外部に位置し、
     前記導光素子は、前記投射部からの光を偏向する第1反射部と、互いに対向する二つの内面と、該第1反射部および該二つの内面で反射した光を前記導光素子の外部に射出する第2反射部とを備え、
     前記第1反射部は、前記二つの内面に垂直な第1反射面を含み、
     前記第2反射部は、前記二つの内面に平行な方向において配列された複数の反射面を含み、
     前記第1反射面は、前記二つの内面に平行な断面において、前記二つの内面に平行な前記方向に対して傾斜していることを特徴とする光学系。
  18.  前記二つの内面に平行な前記断面において、前記投射部から前記第1反射部へ向かう光路と、前記第1反射部から前記第2反射部へ向かう光路との成す角は鋭角であることを特徴とする請求項17に記載の光学系。
  19.  導光基板と瞳再構成ミラーとを有する第1導光部を形成する第1形成ステップと、
     前記瞳再構成ミラーに類似する形状の瞳再構成ミラー補間部を有する第2導光部を形成する第2形成ステップと、
     前記第1導光部と前記第2導光部とを接合して導光素子を形成する第3形成ステップと、を有し、
     前記第1形成ステップにおいて、前記瞳再構成ミラーのミラー面に反射膜またはハーフミラー膜を形成し、
     前記第3形成ステップにおいて、前記瞳再構成ミラーと前記瞳再構成ミラー補間部とを接合して前記導光素子を形成することを特徴とする光学系の製造方法。
  20.  瞳再構成ミラーを有する第1導光部を形成する第1形成ステップと、
     導光基板と前記瞳再構成ミラーに類似する形状の瞳再構成ミラー補間部を有する第2導光部を形成する第2形成ステップと、
     前記第1導光部と前記第2導光部とを接合して導光素子を形成する第3形成ステップと、を有し、
     前記第1形成ステップにおいて、前記瞳再構成ミラーのミラー面に反射膜またはハーフミラー膜を形成し、
     前記第3形成ステップにおいて、前記瞳再構成ミラーと前記瞳再構成ミラー補間部とを接合して前記導光素子を形成することを特徴とする光学系の製造方法。
PCT/JP2023/037880 2022-10-28 2023-10-19 光学系、表示装置、および光学系の製造方法 WO2024090326A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022173225 2022-10-28
JP2022-173225 2022-10-28
JP2023179469A JP2024065027A (ja) 2022-10-28 2023-10-18 光学系、表示装置、および光学系の製造方法
JP2023-179469 2023-10-18

Publications (1)

Publication Number Publication Date
WO2024090326A1 true WO2024090326A1 (ja) 2024-05-02

Family

ID=90830863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037880 WO2024090326A1 (ja) 2022-10-28 2023-10-19 光学系、表示装置、および光学系の製造方法

Country Status (1)

Country Link
WO (1) WO2024090326A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097498A1 (ja) * 2003-04-28 2004-11-11 Nikon Corporation イメージコンバイナ及び画像表示装置
US20200379254A1 (en) * 2017-12-18 2020-12-03 tooz technologies GmbH Optical system for transmitting a source image
JP2022524013A (ja) * 2019-03-08 2022-04-27 トーツ・テクノロジーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 仮想イメージを生成するための光学システムと、スマートグラス
JP2023121413A (ja) * 2022-02-21 2023-08-31 株式会社リコー 虚像表示装置用光学系、虚像表示装置及びヘッドマウントディスプレイ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097498A1 (ja) * 2003-04-28 2004-11-11 Nikon Corporation イメージコンバイナ及び画像表示装置
US20200379254A1 (en) * 2017-12-18 2020-12-03 tooz technologies GmbH Optical system for transmitting a source image
JP2022524013A (ja) * 2019-03-08 2022-04-27 トーツ・テクノロジーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 仮想イメージを生成するための光学システムと、スマートグラス
JP2023121413A (ja) * 2022-02-21 2023-08-31 株式会社リコー 虚像表示装置用光学系、虚像表示装置及びヘッドマウントディスプレイ

Similar Documents

Publication Publication Date Title
KR102699716B1 (ko) 2차원 확장이 가능한 도광 광학 소자를 포함하는 광학 시스템
US8970961B2 (en) Display device comprising multifunction glass, production method and optical element having a fresnel structure
US8456744B2 (en) Beam combiner for use in a head-mounted display device and beam splitter
CN114690431B (zh) 平视显示装置
JP5879886B2 (ja) 虚像表示装置及びその製造方法
JP2021535444A (ja) 二次元の拡張を有する導光光学素子を含む光学システム
JP6409401B2 (ja) 導光装置及び虚像表示装置
CN107238926B (zh) 光学元件、显示装置、以及光学元件的制造方法
US20110299049A1 (en) Projection type display apparatus
US10371950B2 (en) Imaging optical unit for generating a virtual image and smartglasses
JP2017003845A (ja) 導光装置及び虚像表示装置
CN113436560A (zh) 成像光学系统及显示装置
US9465218B2 (en) Display device comprising multifunction glass, production method and optical element having a Fresnel structure
US12099188B2 (en) Optical system for generating a virtual image, and smartglasses
JP7375374B2 (ja) 虚像表示装置及び導光装置
JP3164742B2 (ja) 光走査装置
WO2024090326A1 (ja) 光学系、表示装置、および光学系の製造方法
JP2024065027A (ja) 光学系、表示装置、および光学系の製造方法
JP2018054782A (ja) 光学素子および表示装置
US12072535B2 (en) Display device
US8879157B2 (en) Observation optical system and image display apparatus
US20220066218A1 (en) Virtual image display device and optical unit
CN117518343A (zh) 一种二维阵列波导系统
JP2002287078A (ja) イメージコンバイナ及びこれを用いた画像表示装置
US20230350201A1 (en) Method for manufacturing substrate-guided elements for compact head-mounted display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882531

Country of ref document: EP

Kind code of ref document: A1