[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024085619A1 - 홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 및 광학 소자 - Google Patents

홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 및 광학 소자 Download PDF

Info

Publication number
WO2024085619A1
WO2024085619A1 PCT/KR2023/016083 KR2023016083W WO2024085619A1 WO 2024085619 A1 WO2024085619 A1 WO 2024085619A1 KR 2023016083 W KR2023016083 W KR 2023016083W WO 2024085619 A1 WO2024085619 A1 WO 2024085619A1
Authority
WO
WIPO (PCT)
Prior art keywords
photopolymer
recording medium
weight
adhesive
less
Prior art date
Application number
PCT/KR2023/016083
Other languages
English (en)
French (fr)
Inventor
이연희
이한나
김민수
이인규
홍철석
정순화
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230138056A external-priority patent/KR20240054190A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202380014191.4A priority Critical patent/CN118251432A/zh
Publication of WO2024085619A1 publication Critical patent/WO2024085619A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24067Combinations of two or more layers with specific interrelation

Definitions

  • the present invention relates to a hologram recording medium, a composition for forming a photopolymer layer, and an optical element containing the hologram recording medium.
  • a hologram recording medium records information by changing the refractive index in the holographic recording layer through an exposure process, and reads the difference in the recorded refractive index to reproduce the information.
  • photopolymer compositions can be used for hologram production.
  • Photopolymers can easily store optical interference patterns as holograms by photopolymerization of photoreactive monomers. Therefore, photopolymers are used in smart devices such as mobile devices, parts of wearable displays, automotive products (e.g., head up display), holographic fingerprint recognition systems, optical lenses, mirrors, deflecting mirrors, filters, diffusion screens, diffraction members, and light guides. It can be used in a variety of fields, including holographic optical elements that function as a screen, waveguide, projection screen, and/or mask, media and light diffusion plates in optical memory systems, optical wavelength splitters, and reflective and transmissive color filters.
  • the photopolymer composition for producing a hologram includes a polymer matrix, a photoreactive monomer, and a photoinitiator system. Then, laser interference light is irradiated to the photopolymer film prepared from this composition to induce local photopolymerization of monomers.
  • refractive index modulation occurs, and a diffraction grating is created through this refractive index modulation.
  • the refractive index modulation value ( ⁇ n) is affected by the thickness and diffraction efficiency (DE) of the photopolymer film, and the angular selectivity becomes wider as the thickness becomes thinner.
  • a hologram recording medium is used as an optical element in mobile devices or automotive products (e.g., head-up display), it is placed in a high temperature/high humidity environment.
  • films with diffraction gratings generated in holographic recording media must have excellent reliability, such as heat resistance and moisture resistance, to be applicable to actual products. In this case, reliability mainly depends on matrix characteristics.
  • the hologram recording media currently used has a problem in that the adhesive strength is not achieved at the desired level in a high temperature/high humidity environment, thereby reducing reliability.
  • the present invention is to provide a hologram recording medium including a photopolymer layer with high recording efficiency and diffraction efficiency, and excellent adhesion and low haze characteristics.
  • the present invention can realize a higher refractive index modulation value even in a thin thickness range by using an adhesive additive, and can efficiently provide a photopolymer layer of the hologram recording medium with excellent reliability due to improved adhesive properties compared to the prior art.
  • the purpose is to provide a composition for forming a polymer layer.
  • the present invention is to provide an optical element including a hologram recording medium.
  • this specification provides an optical element including the hologram recording medium.
  • a polymer matrix or a precursor thereof a polymer matrix or a precursor thereof; Photoreactive monomers, including monofunctional monomers and polyfunctional monomers; Adhesive additives; and a photoinitiator; and wherein the ratio of monofunctional monomers among the photoreactive monomers is greater than 40% by weight and 70% by weight or less.
  • a hologram recording medium according to specific embodiments of the invention, a composition for forming a photopolymer layer included in the hologram recording medium, a manufacturing method thereof, and an optical element containing the same will be described.
  • (meth)acrylate means methacrylate or acrylate.
  • (co)polymer refers to a homopolymer or copolymer (including random copolymer, block copolymer, and graft copolymer).
  • a hologram refers to a recording medium in which optical information is recorded in the entire visible range and near-ultraviolet range (300-800 nm) through an exposure process, for example, in-line (Gabor )) hologram, off-axis hologram, full-aperture hologram, white light transmission hologram ("rainbow hologram”), Denisyuk hologram, biaxial reflection hologram, edge-literature ( Edge-literature includes all visual holograms such as holograms or holographic stereograms.
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. According to another embodiment, the carbon number of the alkyl group is 1 to 6. Specific examples of alkyl groups include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n.
  • -pentyl isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, etc., but is not limited to these
  • the alkylene group is a divalent functional group derived from an alkane, for example, straight chain, branched or cyclic, such as methylene group, ethylene group, propylene group, isobutylene group, sec- It may be a butylene group, tert-butylene group, pentylene group, hexylene group, etc.
  • substituted or unsubstituted refers to deuterium; halogen group; Cyano group; nitro group; hydroxyl group; carbonyl group; ester group; imide group; amide group; Primary amino group; carboxyl group; sulfonic acid group; sulfonamide group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkylthioxy group; Arylthioxy group; Alkyl sulphoxy group; Aryl sulfoxy group; silyl group; boron group; Alkyl group; Haloalkyl group; Cycloalkyl group; alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkoxysilylalkyl group; Arylphosphine group; or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups containing one or more of N, O and S atom
  • a substituent group in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.
  • a halogen group may be used as the substituent, and examples of the halogen group include a fluoro group.
  • hologram refers to a recording medium on which optical information is recorded in the entire visible light range and ultraviolet range (e.g., 300 to 1,200 nm) through an exposure process.
  • holograms herein include in-line (Gabor) holograms, off-axis holograms, full-aperture holograms, white light transmission holograms (“rainbow holograms”), Visual holograms such as Denisyuk holograms, biaxial reflection holograms, edge-literature holograms, or holographic stereograms may all be included.
  • the hologram recording medium may include a photopolymer film.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) mean the molecular weight in terms of polystyrene (unit: Da (Dalton)) measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • commonly known analysis devices, detectors such as differential refractive index detectors, and analytical columns can be used, and the commonly applied temperature Conditions, solvent, and flow rate can be applied.
  • Specific examples of the measurement conditions include a temperature of 30°C, chloroform solvent, and a flow rate of 1 mL/min.
  • a Waters PL-GPC220 instrument was used using a Polymer Laboratories PLgel MIX-B 300 mm long column, the evaluation temperature was 160°C, and 1,2,4-trichlorobenzene was used as a solvent.
  • the flow rate is 1 mL/min, the sample is prepared at a concentration of 10 mg/10 mL, and then supplied in an amount of 200 ⁇ L.
  • the values of Mw and Mn can be obtained respectively using a calibration curve formed using a polystyrene standard. .
  • Nine types of molecular weights of polystyrene standards were used: 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • a substrate adhesive protective layer; and a photopolymer layer; wherein the adhesive force between the photopolymer layer and the adhesive protective layer before light irradiation is 500 to 5,000 gf/20nm, and the haze value of the photopolymer layer measured in accordance with JIS K7136:2000 is 3. % or less, a hologram recording medium can be provided.
  • the present inventors further used a specific adhesive additive in addition to the matrix and recording monomer of the holographic recording medium in the photopolymer composition for forming the photopolymer layer included in the holographic recording medium, thereby making the photopolymer layer and the adhesive protective layer of the holographic recording medium better than before.
  • Excellent reliability can be realized by improving adhesion to the device, and diffraction efficiency and high refractive index modulation value can be realized even in thin thickness, and it has been confirmed through experiments that excellent reliability can be achieved even under high temperature/high humidity conditions. was completed.
  • the adhesive additive improves the adhesion between the photopolymer layer and the adhesive protective layer formed on the substrate after forming the photopolymer layer using the photopolymer composition, and also allows it to exhibit a specific water contact angle.
  • the adhesive additive not only ensures that the surface of the photopolymer layer is formed homogeneously, but also has low haze characteristics and may serve to prevent the surface from becoming sticky.
  • the haze value of the photopolymer layer measured in accordance with JIS K7136:2000 may be 3% or less, or 2.5% or less, or 2.0% or less, or 0.1% or more, or 0.5% or more.
  • the photopolymer layer has a haze value of 3% or less, it can have excellent optical properties and high transmittance, and can prevent the refractive index modulation value and diffraction index of the hologram recording medium from being lowered.
  • the haze value of the photopolymer layer may be a value measured before or after recording on the hologram recording medium.
  • the use of the above additive improves the coating properties of the composition for forming a photopolymer layer, showing a difference in adhesion between the photopolymer layer and the adhesive protection layer compared to the prior art, thereby providing a hologram medium with excellent reliability.
  • a hologram recording medium using a photopolymer composition containing the above adhesive additive can maintain excellent optical properties and can facilitate attachment or detachment when attaching or detaching the hologram recording medium (photopolymer film) to another medium.
  • the photopolymer composition uses a mixture of monofunctional monomers and polyfunctional monomers as photoreactive monomers, and adjusts the ratio of monofunctional monomers in the total content of the photoreactive monomers to a specific ratio, thereby forming the adhesive protective layer and the photopolymer layer. The adhesion between them can be further improved.
  • the hologram recording medium of one embodiment may be provided by sequentially forming an adhesive protective layer and a photopolymer layer on a substrate.
  • the adhesive force between the photopolymer layer and the adhesive protective layer before light irradiation may be 500 to 5,000 gf/20nm.
  • the photopolymer layer includes a crosslinked polymer matrix or its precursor, an adhesive additive, and a cured product of photoreactive monomers including monofunctional monomers and polyfunctional monomers with controlled monofunctional monomer contents, providing better adhesion protection than before.
  • the adhesion between the layer and the photopolymer layer can be improved.
  • the water contact angle of the photopolymer layer after light irradiation may be 50 to 100°.
  • the water contact angle reduction rate of the photopolymer layer after light irradiation may be lowered at a rate of 5 to 15 °/min.
  • the reduction rate of the water contact angle can be adjusted to be lowered to the above range even after light irradiation, thereby improving the adhesive force compared to the prior art. That is, films with a low water contact angle tend to have high adhesive strength.
  • the adhesion with the adhesive protective layer formed on the substrate after forming the photopolymer layer is improved, and hologram recording with a low water contact angle is achieved.
  • Media can be provided.
  • the adhesive strength can be evaluated by measuring the load applied to a width of 25 mm by conducting a 180° Peel Test using an adhesive strength measuring device (Texture Analyzer).
  • the water contact angle (surface contact angle) of the photopolymer layer can be measured using a drop shape analyzer after dropping 2 ⁇ l of H 2 O on a photopolymer layer exposed to a red light source of a certain wavelength.
  • the type of the substrate is not particularly limited, and those known in the related technical field can be used.
  • cellulose ester-based base film polyester-based base film, poly(meth)acrylate-based base film, polycarbonate-based base film, cycloolefin-based (COP) base film, glass, acrylic base film, etc.
  • substrates such as polyethylene terephthalate (PET), triacetyl cellulose (TAC), polycarbonate (PC), cycloolefin polymer (COP), and polymethyl methacrylate (PMMA) may be used.
  • the thickness of the substrate is not greatly limited and, for example, may have a thickness of 1 to 1,000 ⁇ m.
  • the adhesive protective layer can be used as a protective film for the photopolymer layer, and may include a barrier pressure sensitive adhesive (BPSA) for absorbing steps at a thickness level that has step absorbing properties on one side of the substrate.
  • BPSA barrier pressure sensitive adhesive
  • the adhesive protective layer may include a typical photocurable pressure-sensitive adhesive, but the type is not limited.
  • the pressure-sensitive adhesive may be one or more selected from the group consisting of acrylic adhesives, silicone-based adhesives, urethane-based adhesives, and rubber-based adhesives.
  • the pressure-sensitive adhesive layer includes (meth)acrylate-based resin; and a polymer containing one or more selected from the group consisting of polysiloxane.
  • the thickness of the adhesive protective layer may be 10 to 100 ⁇ m, but is not limited thereto.
  • the photopolymer layer may be formed by stacking one or more layers on the adhesive protective layer. Specifically, the photopolymer layer may be stacked in two or more layers on the adhesive protective layer.
  • the photopolymer layer is a polymer matrix or a precursor thereof; Photoreactive monomers, including monofunctional monomers and polyfunctional monomers; Adhesive additives; and a photoinitiator; and a photopolymer composition including a photoreactive monomer, and the proportion of monofunctional monomers among the photoreactive monomers may be greater than 40% by weight to 70% by weight or less, 42 to 68% by weight, or 45 to 65% by weight.
  • the adhesive additive includes a polydimethylsiloxane-based additive.
  • the adhesion between the photopolymer layer and the adhesive protective layer formed on the substrate after forming the photopolymer layer can be improved, and hydrophilicity can be imparted by exhibiting a specific water contact angle.
  • the polydimethylsiloxane-based additive has a weight average molecular weight of 100 to 10,000, and may include one or more selected from polyether-modified polydimethylsiloxane, polymethylalkylsiloxane silicone surfactant, and organic-modified silicone.
  • the polydimethylsiloxane-based additive is polyether-modified polydimethylsiloxane; Alternatively, silicone and polyether macromer modified polyacrylates can be used.
  • the adhesive additive may include 0.001 to 0.1 parts by weight based on 100 parts by weight of the polymer matrix or its precursor. If the content of the adhesive additive does not meet the above range and is too small or too much, it may not be easy to attach or detach the photopolymer film to another medium.
  • the photopolymer composition may further include a non-reactive fluorine-based compound.
  • the non-reactive fluorine-based compound can be used as a plasticizer.
  • the non-reactive fluorine-based compound may include at least one functional group selected from the group consisting of an ether group, an ester group, and an amide group, and at least two difluoromethylene groups.
  • the non-reactive fluorine-based compound may include a compound represented by the following formula (3).
  • R 11 and R 12 are each independently a difluoromethylene group
  • R 13 and R 16 are each independently a methylene group
  • R 14 and R 15 are each independently a difluoromethylene group
  • k is an integer from 1 to 10,
  • R 17 and R 18 are each independently a straight or branched alkyl group having 1 to 10 carbon atoms or a functional group of Formula 4 above,
  • R 21 , R 22 and R 23 are each independently a straight or branched alkylene group having 1 to 10 carbon atoms,
  • R 24 is a straight or branched alkyl group having 1 to 10 carbon atoms
  • l is an integer from 1 to 30.
  • R 11 and R 12 are each independently a difluoromethylene group
  • R 13 and R 16 are each independently a methylene group
  • R 14 and R 15 are each independently a difluoromethylene group
  • group, R 17 and R 18 are each independently a 2-methoxyethoxymethoxy group
  • k is an integer of 2.
  • the fluorine-based compound may be one having a lower refractive index than the photoreactive monomer.
  • the refractive index modulation can be made greater by lowering the refractive index of the polymer matrix.
  • the refractive index of the fluorine-based compound may be as low as 1.45 or less.
  • the upper limit of the refractive index of the fluorine-based compound may be, for example, 1.44 or less, 1.43 or less, 1.42 or less, 1.41 or less, 1.40 or less, 1.40 or less, 1.39 or less, 1.38 or less, or 1.37 or less
  • the lower limit of the refractive index is, for example, For example, it may be 1.30 or higher, 1.31 or higher, 1.32 or higher, 1.33 or higher, 1.34 or higher, or 1.35 or higher. Since a fluorine-based compound having a lower refractive index than the photoreactive monomer described above is used, the refractive index of the polymer matrix can be lowered, and the refractive index modulation with the photoreactive monomer can be increased.
  • the fluorine-based compound may include 20 to 75 parts by weight based on 100 parts by weight of the polymer matrix or its precursor.
  • the lower limit of the content of the fluorine-based compound may be, for example, 25 parts by weight or more, 30 parts by weight or more, 35 parts by weight or more, 40 parts by weight or more, 45 parts by weight or more, 50 parts by weight or more, or 55 parts by weight or more.
  • the upper limit may be, for example, 70 parts by weight or less, 65 parts by weight or less, 60 parts by weight or less, 55 parts by weight or less, or 50 parts by weight or less. When the above range is satisfied, it is advantageous to secure excellent optical recording characteristics.
  • the refractive index modulation value after recording may be lowered due to a lack of low-refractive components.
  • the haze may increase due to compatibility problems between components included in the photopolymer film, or problems may occur in which some fluorine-based compounds may be eluted to the surface of the coating layer.
  • the fluorine-based compound may have a weight average molecular weight of 300 or more.
  • the lower limit of the weight average molecular weight of the fluorine-based compound may be, for example, 350 or more, 400 or more, 450 or more, 500 or more, 550 or more, or 600 or more, and the upper limit may be, for example, 1000 or less, 900 or less, or 800 or less. , may be 700 or less, 600 or less, or 500 or less.
  • the weight average molecular weight means the weight average molecular weight in terms of polystyrene measured by the GPC method as described above.
  • the photopolymer layer may be irradiated with red light.
  • the photopolymer layer may be laminated in a mixed form by exposure to a red hologram.
  • the photopolymer layer When the photopolymer layer is irradiated by the red light source, it can be irradiated within the well-known red wavelength range of 600 to 700 nm, for example, at a wavelength of 630 to 680 nm and with a light amount of 0.3 to 3.0 mW.
  • the photopolymer layer includes a cross-linked matrix.
  • the photopolymer layer may include or be formed from a composition including at least a crosslinked matrix or a precursor thereof.
  • the photopolymer layer may include or be formed from a composition comprising a crosslinked matrix or a precursor thereof, a photoreactive monomer, and a photoinitiator.
  • the photopolymer layer is a hologram recording layer and may have a thickness ranging from 5 to 50 ⁇ m.
  • the thickness of the photopolymer film may be, for example, 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, or 30 ⁇ m or more.
  • the upper limit of the thickness may be, for example, 30 ⁇ m or less or 20 ⁇ m or less, specifically 15 ⁇ m or less, 12 ⁇ m or less, or 8 ⁇ m or less.
  • the hologram recording medium of the present application has excellent refractive index modulation, diffraction efficiency, and driving reliability even when it has a thin thickness in the above-mentioned range.
  • the hologram recording medium of another embodiment has a thickness of 0.020 or more, 0.021 or more, 0.022 or more, 0.023 or more, 0.024 or more, 0.025 or more, 0.026 or more, 0.027 or more, 0.028 or more, 0.029 or more even if the photopolymer layer has a thickness of 5 to 30 ⁇ m. It is possible to implement a refractive index modulation value ( ⁇ n) of 0.030 or more. The upper limit of the refractive index modulation value is not particularly limited, but may be, for example, 0.035 or less.
  • the hologram recording medium may further include a release film between the photopolymer layer and the adhesive protective layer.
  • the hologram recording medium may include a structure in which a substrate, an adhesive protective layer, a release film, and a photopolymer layer are sequentially stacked from the bottom.
  • Figure 1 briefly shows the structure of a hologram recording medium according to an embodiment, which further includes a release film.
  • the hologram recording medium may include a structure in which a two-layer photopolymer layer (1, 2), a release film (3), an adhesive protective layer (4), and a substrate (5) are stacked. You can.
  • the release film may be formed through an adhesive protective layer, and may be formed to intersect at some ends of the entire size of the adhesive protective layer and be spaced apart at a predetermined interval.
  • the release film is a layer located between the adhesive protective layer and the photopolymer layer to serve as an indicator when peeling them off, and refers to a transparent layer attached to a portion of the end of one side of the adhesive protective layer.
  • the release film may be laminated at predetermined intervals so as to intersect in the range of 0.5 to 1 cm from the end of the adhesive protective layer.
  • the release film may be a commercially available fluorine-treated release film or a silicone-treated release film, but the type is not limited. Additionally, the thickness of the release film is not limited and can be used within a range well known in the art.
  • the total thickness of the hologram recording medium may be 40 to 100 ⁇ m.
  • the holographic recording medium can exhibit diffraction efficiency of 80% or more and haze characteristics of 3.0% or less even at a thin thickness.
  • a polymer matrix or a precursor thereof a polymer matrix or a precursor thereof; Photoreactive monomers, including monofunctional monomers and polyfunctional monomers; Adhesive additives; and a photoinitiator; wherein the ratio of monofunctional monomers among the photoreactive monomers is greater than 40% by weight to 70% by weight, 42 to 68% by weight, or 45 to 65% by weight.
  • a photopolymer composition for forming a hologram is provided. do.
  • the photopolymer composition of one embodiment includes a polymer matrix or a precursor thereof that serves as a support for the photopolymer layer formed therefrom.
  • the polymer matrix is formed by crosslinking a siloxane-based polymer containing one or more silane functional groups (Si-H) and a (meth)acrylic-based polyol. Specifically, the polymer matrix is crosslinked (meth)acrylic polyol with a siloxane-based polymer containing a silane functional group. More specifically, the hydroxy group of the (meth)acrylic polyol can form a crosslink with the silane functional group of the siloxane-based polymer through a hydrosilylation reaction.
  • the hydrosilylation reaction can proceed rapidly even at room temperature (e.g., a temperature in the range of about 15 to 30° C. without heating or reducing the temperature) under a Pt-based catalyst. Therefore, the photopolymer composition of the above embodiment can improve the manufacturing efficiency and productivity of the hologram recording medium by employing a polymer matrix that can be quickly crosslinked even at room temperature as a support.
  • the polymer matrix can increase the mobility of components (eg, photoreactive monomers or plasticizers) included in the photopolymer layer due to the flexible main chain of the siloxane-based polymer.
  • siloxane bonding with excellent heat and moisture resistance properties can facilitate securing the reliability of the photopolymer layer on which optical information is recorded and the hologram recording medium containing the same.
  • the polymer matrix may have a relatively low refractive index, thereby serving to increase the refractive index modulation of the photopolymer film.
  • the upper limit of the refractive index of the polymer matrix may be 1.53 or less, 1.52 or less, 1.51 or less, 1.50 or less, or 1.49 or less.
  • the lower limit of the refractive index of the polymer matrix may be, for example, 1.41 or more, 1.42 or more, 1.43 or more, 1.44 or more, 1.45 or more, or 1.46 or more.
  • “refractive index” may be a value measured with an Abbe refractometer at 25°C.
  • the photopolymer composition of one embodiment may include the above-described crosslinked polymer matrix or a precursor thereof.
  • the photopolymer composition may include a siloxane-based polymer, (meth)acrylic polyol, and a Pt-based catalyst.
  • the siloxane-based polymer may include a repeating unit represented by Formula 1 below and a terminal group represented by Formula 2 below.
  • R 1 and R 2 are the same or different from each other and are each independently hydrogen, halogen, or an alkyl group having 1 to 10 carbon atoms,
  • n is an integer from 1 to 10,000
  • a plurality of R 11 to R 13 are the same or different from each other, and each independently represents hydrogen, halogen, or an alkyl group having 1 to 10 carbon atoms,
  • At least one of R 1 , R 2 , and R 11 to R 13 of at least one of the repeating units represented by Formula 1 and the terminal group represented by Formula 2 is hydrogen.
  • -(O)- is bonded through oxygen (O) or directly without oxygen (O) when Si of the terminal group represented by Formula 2 is bonded to the repeating unit represented by Formula 1. It means to do.
  • alkyl group may be a straight-chain, branched-chain, or cyclic alkyl group.
  • “alkyl group” includes methyl, ethyl, propyl (e.g., n-propyl, isopropyl, etc.), butyl (e.g., n-butyl, isobutyl, tert-butyl, sec-butyl, cyclobutyl) etc.), pentyl (e.g., n-pentyl, isopentyl, neopentyl, tert-pentyl, 1,1-dimethyl-propyl, 1-ethyl-propyl, 1-methyl-butyl, cyclopentyl, etc.), hexyl (e.g., n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methylpentyl, 3,3-d
  • R 1 , R 2 and R 11 to R 13 in Formulas 1 and 2 may be methyl or hydrogen, and at least two of R 1 , R 2 and R 11 to R 13 may be hydrogen.
  • the siloxane-based polymer includes compounds in which R 1 and R 2 of Formula 1 are methyl and hydrogen, respectively, and R 11 to R 13 of Formula 2 are each independently methyl or hydrogen (for example, a terminal group is trimethyl polymethylhydrosiloxane, which is a silyl group or dimethylhydrosilyl group); Parts of R 1 and R 2 of Formula 1 are methyl and hydrogen, respectively, the remaining R 1 and R 2 are both methyl, and R 11 to R 13 of Formula 2 are each independently methyl or hydrogen (e.g., a terminal compound poly(dimethylsiloxane-co-methylhydrosiloxane) wherein the group is a trimethylsilyl group or a dimethylhydrosilyl group, or R 1 and R 2 of the formula 1 are both methyl
  • the siloxane-based compound may have a number average molecular weight (Mn) in the range of 200 to 4,000.
  • Mn number average molecular weight
  • the lower limit of the number average molecular weight of the siloxane-based polymer may be, for example, 200 or more, 250 or more, 300 or more, or 350 or more
  • the upper limit may be, for example, 3,500 or less, 3,000 or less, 2,500 or less, 2,000 or less, It may be 1,500 or less or 1,000 or less.
  • the hologram recording medium formed from the photopolymer composition has excellent optical recording properties and high temperature/high humidity conditions. It can exhibit excellent durability.
  • the number average molecular weight refers to the number average molecular weight (unit: g/mol) in terms of polystyrene measured by GPC method.
  • commonly known analysis devices, detectors such as differential refractive index detectors, and analytical columns can be used, and the commonly applied temperature Conditions, solvent, and flow rate can be applied.
  • Specific examples of the measurement conditions include a temperature of 30° C., tetrahydrofuran solvent, and a flow rate of 1 mL/min.
  • the (meth)acrylic polyol may refer to a polymer in which one or more, specifically, two or more hydroxy groups are bonded to the main chain or side chain of a (meth)acrylate polymer.
  • (meth)acrylic (based) refers to acrylic (based) and/or methacrylic (based), unless specifically stated otherwise, such as acrylic (based), methacrylic (based), or It is a term that encompasses both acrylic (based) and methacrylic (based) mixture.
  • the (meth)acrylic polyol is a homopolymer of a (meth)acrylate monomer having a hydroxy group, a copolymer of two or more (meth)acrylate monomers having a hydroxy group, or a (meth)acrylate monomer having a hydroxy group. It may be a copolymer of a monomer and a (meth)acrylate-based monomer that does not have a hydroxy group.
  • “copolymer” is a term that encompasses random copolymers, block copolymers, and graft copolymers, unless otherwise specified.
  • Examples of the (meth)acrylate-based monomer having the hydroxy group include hydroxyalkyl (meth)acrylate or hydroxyaryl (meth)acrylate, and the alkyl is an alkyl having 1 to 30 carbon atoms. , and the aryl may be an aryl having 6 to 30 carbon atoms.
  • examples of the (meth)acrylate-based monomer that does not have the hydroxy group include alkyl (meth)acrylate-based monomers or aryl (meth)acrylate-based monomers, and the alkyl has 1 to 1 carbon atoms. It is an alkyl of 30, and the aryl may be an aryl of 6 to 30 carbon atoms.
  • the (meth)acrylic polyol may have a weight average molecular weight (Mw) in the range of 150,000 to 1,000,000.
  • the weight average molecular weight means the weight average molecular weight in terms of polystyrene measured by the GPC method as described above.
  • the lower limit of the weight average molecular weight may be 150,000 or more, 200,000 or more, or 250,000 or more
  • the upper limit may be, for example, 900,000 or less, 850,000 or less, 800,000 or less, 750,000 or less, 700,000 or less, 650,000 or less, Below, It may be less than 550,000, less than 500,000, or less than 450,000.
  • the polymer matrix sufficiently functions as a support, so there is little decrease in the recording characteristics of optical information even with the passage of time, and sufficient flexibility is provided to the polymer matrix.
  • the mobility of components (eg, photoreactive monomers or plasticizers, etc.) included in the photopolymer composition can be improved to minimize the decrease in recording characteristics for optical information.
  • the hydroxyl equivalent weight of the (meth)acrylic polyol may be adjusted to an appropriate level.
  • the hydroxyl (-OH) equivalent weight of the (meth)acrylic polyol may be, for example, in the range of 500 to 3,000 g/equivalent. More specifically, the lower limit of the hydroxyl (-OH) equivalent weight of the (meth)acrylic polyol is 600 g/equivalent or more, 700 g/equivalent or more, 800 g/equivalent or more, 900 g/equivalent or more, 1000 g/equivalent or more, 1100 g/equivalent or more.
  • the upper limit of the hydroxyl group (-OH) equivalent weight of the (meth)acrylic polyol is 2900 g/equivalent or less, 2800 g/equivalent or less, 2700 g/equivalent or less, 2600 g/equivalent or less, 2500 g/equivalent or less, 2400 g/ It may be equivalent or less, 2300 g/equivalent or less, 2200 g/equivalent or less, 2100 g/equivalent or less, 2000 g/equivalent or less, or 1900 g/equivalent or less.
  • the hydroxyl (-OH) equivalent of the (meth)acrylic polyol is the equivalent (g/equivalent) of one hydroxy (hydroxy) functional group, and the weight average molecular weight of the (meth)acrylic polyol is hydroxy (hydroxy) per molecule. ) is the value divided by the number of functional groups. The smaller the equivalent value, the higher the density of functional groups, and the larger the equivalent value, the smaller the functional group density.
  • the hydroxyl (-OH) equivalent of the (meth)acrylic polyol satisfies the above range, the polymer matrix has an appropriate crosslinking density to sufficiently perform the role of a support, and the fluidity of the components included in the layer formed from the photopolymer composition is improved. Even as time passes, the initial refractive index modulation value is maintained at an excellent level without the problem of the boundaries of the diffraction gratings created after recording collapsing, thereby minimizing the decrease in recording characteristics for optical information.
  • the (meth)acrylic polyol may have a glass transition temperature (Tg) in the range of -60 to -10°C.
  • Tg glass transition temperature
  • the lower limit of the glass transition temperature may be, for example, -55 °C or higher, -50 °C or higher, -45 °C or higher, -40 °C or higher, -35 °C or higher, -30 °C or higher, or -25 °C or higher.
  • the upper limit may be, for example, -15°C or less, -20°C or less, -25°C or less, -30°C or less, or -35°C or less.
  • the glass transition temperature can be lowered without significantly lowering the modulus of the polymer matrix, thereby increasing the mobility (liquidity) of other components in the photopolymer composition and improving the moldability of the photopolymer composition.
  • the glass transition temperature can be measured using a known method, for example, DSC (Differential Scanning Calorimetry) or DMA (dynamic mechanical analysis).
  • the refractive index of the (meth)acrylic polyol may be, for example, 1.40 or more and less than 1.50.
  • the lower limit of the refractive index of the (meth)acrylic polyol may be, for example, 1.41 or more, 1.42 or more, 1.43 or more, 1.44 or more, 1.45 or more, or 1.46 or more
  • the upper limit may be, for example, 1.49 or less, 1.48 or less, It may be 1.47 or less, 1.46 or less, or 1.45 or less.
  • the refractive index of the (meth)acrylic polyol is a theoretical refractive index, using the refractive index of the monomer used to produce (meth)acrylic polyol (value measured using an Abbe refractometer at 25 °C) and the fraction (molar ratio) of each monomer. It can be calculated as:
  • the (meth)acrylic polyol and siloxane polymer are used so that the molar ratio (SiH/OH) of the silane functional group (Si-H) of the siloxane polymer to the hydroxyl group (-OH) of the (meth)acrylic polyol is 0.80 to 1.20.
  • the type and content of the siloxane-based polymer and (meth)acrylic polyol may be selected to satisfy the molar ratio when forming the polymer matrix.
  • the lower limit of the molar ratio (SiH/OH) may be, for example, 0.81 or more, 0.85 or more, 0.90 or more, 0.95 or more, 1.00 or more, or 1.05 or more, and the upper limit may be, for example, 1.19 or less, 1.15 or less, 1.10 or less, It may be 1.05 or less, 1.00 or less, or 0.95 or less.
  • the molar ratio (SiH/OH) range is satisfied, the polymer matrix is crosslinked at an appropriate crosslinking density, improving reliability under high temperature/high humidity conditions, and sufficient refractive index modulation value can be achieved.
  • the Pt-based catalyst may be, for example, Karstedt's catalyst.
  • the polymer matrix precursor may, if necessary, be a Rhodium-based, Iridium-based, Rhenium-based, Molybdenum-based, Iron-based, Nickel-based, alkali metal or alkaline earth metal-based, Lewis acids-based or Carbene-based non-metallic catalyst in addition to the Pt-based catalyst. etc. may be additionally included.
  • the photoreactive monomer includes monofunctional monomers and polyfunctional monomers.
  • the photoreactive monomer may include a polyfunctional (meth)acrylate monomer and a monofunctional (meth)acrylate monomer.
  • the monofunctional monomer ratio among the photoreactive monomers is greater than 40% by weight to 70% by weight, 42 to 68% by weight, or 45 to 65% by weight. You can. Therefore, based on a total of 100 of the photoreactive monomers, the remaining content may include multifunctional monomers.
  • the photoreactive monomer is polymerized and the refractive index increases in the portion where the polymer is relatively abundant, and the refractive index is relatively low in the portion where the polymer binder is relatively abundant, causing refractive index modulation.
  • a diffraction grating is created by this refractive index modulation.
  • an example of the multifunctional monomer is a (meth)acrylate-based ⁇ , ⁇ -unsaturated carboxylic acid derivative, such as (meth)acrylate, (meth)acrylamide, (meth)acrylonitrile, or (meth)acrylate.
  • examples include acrylic acid, etc., or compounds containing a vinyl group or thiol group.
  • An example of a polyfunctional monomer among the photoreactive monomers may be a polyfunctional (meth)acrylate monomer having a refractive index of 1.5 or more, or 1.53 or more, or 1.5 to 1.7, and the refractive index may be 1.5 or more, or 1.53 or more, or 1.5. to 1.7, the polyfunctional (meth)acrylate monomer may include a halogen atom (bromine, iodine, etc.), sulfur (S), phosphorus (P), or an aromatic ring.
  • polyfunctional (meth)acrylate monomer with a refractive index of 1.5 or more include bisphenol A modified diacrylate series, fluorene acrylate series (HR6022, etc. - Miwon), and bisphenol fluorene epoxy acrylate series (HR6100, HR6060, HR6042, etc. - Miwon). ), halogenated epoxy acrylate series (HR1139, HR3362, etc. - Miwon), etc.
  • the monofunctional monomer may be a monofunctional (meth)acrylate monomer.
  • the monofunctional (meth)acrylate monomer may contain an ether bond and a fluorene functional group inside the molecule, and specific examples of such monofunctional (meth)acrylate monomer include 2-phenylphenoxyethyl acrylate and phenoxy benzyl.
  • the multifunctional monomer may include a monofunctional monomer.
  • HR6042 may be a product containing 40% monofunctional acrylate, and the polyfunctional:monofunctional ratio may be 6:4.
  • the photoreactive monomer may have a weight average molecular weight of 50 g/mol to 1000 g/mol, or 200 g/mol to 600 g/mol.
  • the weight average molecular weight refers to the weight average molecular weight in terms of polystyrene measured by GPC method.
  • the photopolymer composition of one embodiment may include 20 to 300 parts by weight of a photoreactive monomer based on 100 parts by weight of the polymer matrix or its precursor.
  • the lower limit of the content of the photoreactive monomer may be 20 parts by weight or more, 40 parts by weight or more, 50 parts by weight or more, or 70 parts by weight or more
  • the upper limit is 300 parts by weight or less, 200 parts by weight or less, and 150 parts by weight or less. It may be less than or equal to 100 parts by weight.
  • the content of the polymer matrix which is the standard, means the content (weight) of the (meth)acrylic polyol and siloxane-based polymer forming the matrix.
  • the photopolymer composition of this embodiment includes a photoinitiator.
  • the photoinitiator is a compound that is activated by light or actinic radiation and initiates the polymerization of a compound containing a photoreactive functional group such as the photoreactive monomer.
  • photoinitiators can be used without significant limitations, but specific examples thereof include radical photopolymerization initiators, photocationic polymerization initiators, or photoanionic polymerization initiators.
  • photo radical polymerization initiator examples include imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocene, aluminate complexes, organic peroxides, N-alkoxy pyridinium salts, and thioxanthone. Derivatives, amine derivatives, etc. can be mentioned.
  • the photo radical polymerization initiator includes 1,3-di(t-butyldioxycarbonyl)benzophenone, 3,3',4,4''-tetrakis(t-butyldioxycarbonyl)benzophenone, 3-phenyl-5-isoxazolone, 2-mercapto benzimidazole, bis(2,4,5-triphenyl)imidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one (Product name: Irgacure 651 / Manufacturer: BASF), 1-hydroxy-cyclohexyl-phenyl -ketone (product name: Irgacure 184 / manufacturer: BASF), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (product name: Irgacure 369 / manufacturer: BASF), and bis( ⁇ 5-2, 4-cyclopentadiene-1-yl)-bis(2,6-difluoride
  • photocationic polymerization initiator examples include diazonium salt, sulfonium salt, or iodonium salt, such as sulfonic acid ester, imide sulfonate, and dialkyl-4.
  • iodonium salt such as sulfonic acid ester, imide sulfonate, and dialkyl-4.
  • -Hydroxy sulfonium salt aryl sulfonic acid-p-nitrobenzyl ester, silanol-aluminum complex, ( ⁇ 6-benzene)( ⁇ 5-cyclopentadienyl)iron (II), etc.
  • benzoin tosylate, 2,5-dinitro benzyl tosylate, N-tosylphthalic acid imide, etc. are also included.
  • photocationic polymerization initiator examples include Cyracure UVI-6970, Cyracure UVI-6974 and Cyracure UVI-6990 (manufacturer: Dow Chemical Co. in USA), Irgacure 264 and Irgacure 250 (manufacturer: BASF), or CIT-1682. (Manufacturer: Nippon Soda) and other commercially available products.
  • photoanionic polymerization initiator examples include borate salt, for example, butyryl chlorine butyltriphenylborate (BUTYRYL CHOLINE BUTYLTRIPHENYLBORATE). More specific examples of the photoanionic polymerization initiator include commercially available products such as Borate V (manufacturer: Spectra group).
  • the photopolymer composition of the above embodiment may use a monomolecular (Type I) or bimolecular (Type II) initiator.
  • Type I systems for free radical photopolymerization include, for example, aromatic ketone compounds in combination with tertiary amines, such as benzophenones, alkylbenzophenones, 4,4'-bis(dimethylamino)benzophenone (Michler's ) ketones), anthrones and halogenated benzophenones or mixtures of the above types.
  • the bimolecular (Type II) initiators include benzoin and its derivatives, benzyl ketals, acylphosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylophosphine oxide, phenylgly.
  • Oxyl esters, camphorquinone, alpha-aminoalkylphenone, alpha-,alpha-dialkoxyacetophenone, 1-[4-(phenylthio)phenyl]octane-1,2-dione 2-(O-benzoyloxime) and alpha -Hydroxyalkylphenone, etc. can be mentioned.
  • the photopolymer composition may include the initiator in the range of 0.1 to 10.0 parts by weight, based on 100 parts by weight of the polymer matrix component.
  • the lower limit of the content of the initiator is, for example, 0.2 parts by weight or more, 0.3 parts by weight or more, 0.4 parts by weight or more, 0.5 parts by weight or more, 0.6 parts by weight or more, 0.7 parts by weight or more, 0.8 parts by weight or more, or 0.9 parts by weight. parts or more, and the upper limit may be, for example, 5.0 parts by weight or less.
  • the photopolymer composition for forming a hologram may further include a non-reactive fluorine-based compound. Specific details of the non-reactive fluorine-based compound are as described above.
  • the adhesive additive may include a polydimethylsiloxane-based additive.
  • polydimethylsiloxane-based additives all of the above-described content is included.
  • the proportion of monofunctional monomers among the photoreactive monomers may be greater than 40% by weight to 70% by weight or less, 42 to 68% by weight, or 45 to 65% by weight, and in this case, monofunctional monomers and polyfunctional monomers
  • monofunctional acrylate-based monomers can be additionally used to achieve the above-mentioned weight ratio.
  • the additionally used monofunctional acrylate-based monomer can also serve as an adhesive additive to improve adhesion, and when used with a polydimethylsiloxane-based additive, the adhesion improvement effect and optical performance can be further improved.
  • the additionally used adhesive additive may be the same as the monofunctional monomer.
  • the acrylate-based monomers include 2-phenylphenoxyethyl acrylate, phenoxy benzyl (meth)acrylate, o-phenylphenol ethylene oxide (meth)acrylate, benzyl (meth)acrylate, and 2-(phenyl between O)ethyl (meth)acrylate, biphenylmethyl (meth)acrylate, etc. are mentioned.
  • the photopolymer composition may further include one or more selected from the group consisting of dyes, catalysts, anti-foaming agents, and plasticizers.
  • the photopolymer composition may further include a photosensitive dye.
  • the photosensitive dye serves as a sensitizing dye that sensitizes the photoinitiator. More specifically, the photosensitive dye also acts as an initiator that initiates polymerization of monomers and crosslinking monomers by being stimulated by light irradiated on the photopolymer composition. can do.
  • the photopolymer composition may include 0.01% to 30% by weight, or 0.05% to 20% by weight, of a photosensitive dye.
  • Examples of the photosensitive dye are not greatly limited, and various commonly known compounds can be used. Specific examples of the photosensitive dye include sulfonium derivative of ceramidonin, new methylene blue, thioerythrosine triethylammonium, and 6-acetylamino-2-methylcera.
  • the photopolymer composition may contain a commonly known catalyst to promote polymerization of the polymer matrix or photoreactive monomer.
  • a commonly known catalyst to promote polymerization of the polymer matrix or photoreactive monomer.
  • the catalyst include Platinium-based catalysts such as Karstedt, Rhodium-based catalysts, Iridium-based catalysts, Rhenium-based catalysts, Molybdenum-based catalysts, Iron-based catalysts, Nickel-based catalysts, and alkali metal or alkaline earth metal catalysts.
  • Platinium-based catalysts such as Karstedt, Rhodium-based catalysts, Iridium-based catalysts, Rhenium-based catalysts, Molybdenum-based catalysts, Iron-based catalysts, Nickel-based catalysts, and alkali metal or alkaline earth metal catalysts.
  • non-metallic catalysts Lewis acids or carbene catalysts can be used.
  • the photopolymer composition may further include other additives.
  • the other additives include anti-foaming agents or phosphate-based plasticizers, and the anti-foaming agents include silicone-based reactive additives, examples of which include Tego Rad 2500.
  • the plasticizer include phosphate compounds such as tributyl phosphate, and the plasticizer may be added with the above-mentioned fluorine-based compound at a weight ratio of 1:5 to 5:1.
  • the plasticizer may have a refractive index of less than 1.5 and a molecular weight of 700 or less.
  • the photopolymer composition may further include an organic solvent.
  • organic solvent include ketones, alcohols, acetates, and ethers, or mixtures of two or more thereof.
  • organic solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, and isobutyl ketone; Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, or t-butanol; Acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; ethers such as tetrahydrofuran or propylene glycol monomethyl ether; Or a mixture of two or more types thereof may be mentioned.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, and isobutyl ketone
  • Alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol
  • the organic solvent may be added at the time of mixing each component included in the photopolymer composition, or may be included in the photopolymer composition while each component is added in a dispersed or mixed state in the organic solvent. If the content of the organic solvent in the photopolymer composition is too small, the flowability of the photopolymer composition may decrease and defects such as streaks may occur in the final manufactured film. In addition, when an excessive amount of the organic solvent is added, the solid content is lowered, and coating and film formation are not sufficiently performed, which may deteriorate the physical properties or surface characteristics of the film, and defects may occur during drying and curing processes. Accordingly, the photopolymer composition may include an organic solvent so that the total solid concentration of the components included is 1% to 70% by weight, or 2% to 50% by weight.
  • the photopolymer composition may include a solvent so that the concentration of the total solid content of the components included in the composition is 1 to 70% by weight.
  • the solvent has a concentration of the total solid content of the components included in the composition of 2% by weight or more, 5% by weight or more, 10% by weight or more, or 20% by weight or more, and 65% by weight or less, 60% by weight or less, and 55% by weight.
  • the solvent may be included in an amount of less than or equal to 50% by weight. If the solvent content in the composition is too small, the flowability of the composition may be reduced, which may cause defects such as streaks in the final manufactured film. In addition, if an excessive amount of solvent is added, the solid content is lowered and coating and film formation are not sufficiently performed, which may deteriorate the physical properties or surface characteristics of the photopolymer film and cause defects during the drying and curing process.
  • the photopolymer composition can be used for hologram recording purposes.
  • a hologram recording medium including a photopolymer layer in a state in which no visual hologram is recorded can be manufactured through a process of mixing and curing the photopolymer composition, and through a predetermined exposure process.
  • a visual hologram can be recorded on the medium.
  • a visual hologram can be recorded on a medium provided through the process of mixing and curing the photopolymer composition using known devices and methods under commonly known conditions.
  • the method for manufacturing the hologram recording medium includes forming a photopolymer film by applying a photopolymer composition to a substrate; And it may include recording optical information by irradiating a coherent laser to a predetermined area of the photopolymer film to polymerize photoreactive monomers including monofunctional monomers and polyfunctional monomers included in the photopolymer film.
  • the photopolymer composition may be the photopolymer composition of the above-described embodiment, and since the photopolymer composition has been described in detail previously, detailed description will be omitted here.
  • a photopolymer composition containing the above-described composition can first be prepared.
  • a commonly known mixer, stirrer, or mixer can be used to mix each component without any restrictions. And, this mixing process may be performed at a temperature ranging from 0°C to 100°C, a temperature ranging from 10°C to 80°C, or a temperature ranging from 20°C to 60°C.
  • the prepared photopolymer composition may be applied to the substrate to form a coating film formed from the photopolymer composition.
  • the coating film can be dried naturally at room temperature or at a temperature ranging from 30 to 80 °C. Through this process, a hydrosilylation reaction can be induced between the hydroxyl group of the (meth)acrylic polyol that remains unreacted and the silane functional group of the siloxane-based polymer.
  • an optical element including a hologram recording medium can be provided.
  • optical elements include optical lenses, mirrors, deflecting mirrors, filters, diffusion screens, diffraction members, light guides, waveguides, holographic optical elements having the functions of projection screens and/or masks, media and light of optical memory systems. Examples include diffusion plates, optical wavelength splitters, reflective and transmissive color filters, etc.
  • An example of an optical element including the hologram recording medium may be a hologram display device.
  • the holographic display device includes a light source unit, an input unit, an optical system, and a display unit.
  • the light source unit is a part that emits a laser beam used to provide, record, and reproduce 3D image information of an object from the input unit and the display unit.
  • the input unit is a part that inputs three-dimensional image information of the object to be recorded in the display unit in advance.
  • the three-dimensional image information of the object such as the intensity and phase of light for each space, is input to an electrically addressed liquid crystal SLM (SLM).
  • SLM electrically addressed liquid crystal SLM
  • Dimensional information can be input, and an input beam can be used in this case.
  • the optical system may be composed of a mirror, polarizer, beam splitter, beam shutter, lens, etc., and the optical system may include an input beam that sends the laser beam emitted from the light source to the input unit, a recording beam that sends the laser beam to the display unit, a reference beam, an erase beam, and a reader. It can be distributed through chulbim, etc.
  • the display unit can receive 3D image information of an object from an input unit, record it on a hologram plate made of an optically driven SLM (optically addressed SLM), and reproduce the 3D image of the object.
  • 3D image information of the object can be recorded through interference between the input beam and the reference beam.
  • the 3D image information of the object recorded on the hologram plate can be reproduced as a 3D image by a diffraction pattern generated by the read beam, and an erase beam can be used to quickly remove the formed diffraction pattern. Meanwhile, the hologram plate can be moved between a position where a 3D image is input and a position where it is played.
  • a hologram recording medium has a photopolymer layer that not only has excellent recording efficiency, but also realizes a higher refractive index modulation value even in a thin thickness range, has improved adhesion between adhesive protective layers, and has low haze characteristics, making it more reliable than the conventional one. can be provided.
  • a hologram recording medium and optical element that implement a higher refractive index modulation value even in a thin thickness range and have low haze characteristics and excellent adhesion characteristics can be provided.
  • Figure 1 briefly shows the structure of a hologram recording medium according to one implementation.
  • 132 g of butyl acrylate, 420 g of ethyl acrylate, and 48 g of hydroxybutyl acrylate were added to a 2 L jacketed reactor, and diluted with 1200 g of ethyl acetate. .
  • the reaction temperature was set to 60-70°C, and stirring was performed for about 30 minutes to 1 hour.
  • An additional 0.42 g of n-dodecyl mercaptan (n-DDM) was added, and stirring was continued for another 30 minutes.
  • the photopolymer composition was applied to a 40 ⁇ m thick TAC substrate with a wet film thickness of 15 ⁇ m at 1.2 m/min to coat it to a 15 ⁇ m thickness, and dried at 80°C for 10 minutes to give a thickness of approximately 15 ⁇ m.
  • a ⁇ m non-stick photopolymer layer was formed. After drying, the photopolymer coating thickness is about 15 ⁇ m, and the refractive index (n) of the photopolymer is about 1.501. Then, the sample was left in a dark room under constant temperature and humidity conditions of about 25°C and 50RH% relative humidity for more than 24 hours.
  • the photopolymer layer prepared in this way was incorporated by exposure to a red hologram using the slanted recording method.
  • a photopolymer film was manufactured by laminating a BPSA adhesive protection layer (4) of the same size to a thickness of 25 ⁇ m on a slide glass (5) of 0.70 mm thickness and size of 10 Mold release film (MRF) films 3 were laminated at predetermined intervals so as to intersect about 0.5 to 1 cm from the end of the adhesive protective layer.
  • MRF Mold release film
  • the release film is first laminated to a thickness of 25 mm so that the photopolymer layer (2) touches the adhesive protective layer formed by crossing the end of the adhesive protective layer, and then the photopolymer layer (1) is again placed on top of the photopolymer layer (2).
  • the final hologram recording medium (photopolymer film) with the structure shown in Figure 1 was manufactured by performing secondary lamination to a thickness of 25 mm (width 25 mm, length 80 mm, thickness 55 ⁇ m).
  • a photopolymer composition and a hologram recording medium therefrom were prepared in the same manner as in Example 1, except that the added components were changed as shown in Table 1 below.
  • the release film (3) and the adhesive protective layer (4) were peeled off, and the adhesive force between the photopolymer layer (2) and the adhesive protective layer (4) was measured with an adhesive force meter, and the results are shown in Table 2. It was.
  • the adhesion tester performed a 180°Peel Test using the Texture Analyzer equipment to measure the load applied to a width of 25 mm to evaluate the adhesion.
  • holographic recording medium sample 2 ⁇ l of H 2 O was dropped on the photopolymer layer exposed to a 660 nm red light source (light quantity 3.0 mJ), and then the water contact angle of the photopolymer layer was measured using a drop shape analyzer. surface contact angle) was measured.
  • the reflection spectrum of the recorded photopolymer was measured using a UV-VIS spectrophotometer (SolidSpec-3700, Shimadzu), the reflection peak was confirmed, and the diffraction efficiency was measured.
  • the photopolymer coated surface prepared in each of the above examples and comparative examples was laminated to a glass slide, and fixed so that the laser passed through the glass surface first when recording.
  • Holographic recording is achieved through the interference of two coherent lights (reference light and object light), and in transmission type recording, both beams are incident on the same plane of the sample. Diffraction efficiency changes depending on the angle of incidence of the two beams, and when the angle of incidence of the two beams is the same, it becomes non-slanted. In non-slanted recording, the angle of incidence of both beams is the same relative to the normal, so the diffraction grating is generated perpendicular to the film.
  • ⁇ (%) ⁇ P D / (P D + P T ) ⁇
  • Equation 2 ⁇ is the diffraction efficiency
  • P D is the output amount of the diffracted beam of the sample after recording (mW/cm2)
  • P T is the output amount of the transmitted beam of the sample after recording (mW/cm2).
  • the refractive index modulation value ( ⁇ n) can be calculated from the following general formula 2.
  • d is the thickness of the photopolymer layer
  • ⁇ n is the refractive index modulation value
  • ⁇ (DE) is the diffraction efficiency
  • is the recording wavelength
  • Haze was measured at the recording site of the recorded photopolymer using a HAZE METER (“NDH-5000” manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with JIS K7136:2000. The measurement light was incident on the substrate side of the hologram recording medium.
  • the hologram recording medium manufactured from the photopolymer composition of an example according to one embodiment of the invention has excellent adhesive strength as the photopolymer composition contains a specific adhesive additive, and has a refractive index modulation value ( ⁇ n) of 0.020 or more. ), and at the same time, it was confirmed to have excellent diffraction efficiency and low haze value.
  • the surface of the hologram recording medium provided with the composition of Comparative Example 1 was confirmed to be excessively sticky, and also had a relatively high haze value. It was confirmed that it has. In other words, it was confirmed that the hologram recording medium provided in Comparative Example 1 not only had low transparency, but also had the problem of surface components being easily smeared on other substrates or other parts.
  • the hologram recording media provided by the compositions of Comparative Examples 2 and 3 contained different types of additives from those of the Examples, and thus had poorer results compared to the Examples in terms of adhesion.
  • the comparative examples show similar refractive index modulation values and diffraction coefficients as the examples, they have a higher haze value than the examples or have poor adhesion, making it difficult to attach or detach the hologram recording medium to another medium. This may cause performance degradation of the recording medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Holo Graphy (AREA)

Abstract

본 발명은, 광 조사전에 상기 포토폴리머층 및 상기 접착 보호층 간의 접착력이 500 내지 5,000 gf/20nm이고, 상기 포토폴리머층의 헤이즈값이 3% 이하인 홀로그램 기록 매체와 상기 홀로그램 기록 매체를 포함하는 광학 소자에 관한 것이다.

Description

홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 및 광학 소자
관련 출원과의 상호 인용
본 출원은 2022년 10월 18일자 대한민국 특허 출원 제 10-2022-0134345호 및 2023년 10월 16일자 대한민국 특허 출원 제10-2023-0138056호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 상기 홀로그램 기록 매체를 포함하는 광학 소자에 관한 것이다.
홀로그램(hologram) 기록 매체는 노광 과정을 통하여 홀로그래픽 기록층 내 굴절률을 변화시킴으로써 정보를 기록하고, 이와 같이 기록된 굴절률의 차이를 판독하여 정보를 재생한다.
이와 관련하여, 포토폴리머 조성물은 홀로그램 제조에 사용될 수 있다. 포토폴리머는 광반응성 단량체의 광중합에 의하여 광 간섭 패턴을 홀로그램으로 용이하게 저장할 수 있다. 따라서, 포토폴리머는 모바일 기기와 같은 스마트 기기, 웨어러블 디스플레이의 부품, 차량용품(예컨대, head up display), 홀로그래픽 지문 인식 시스템, 광학 렌즈, 거울, 편향 거울, 필터, 확산 스크린, 회절 부재, 도광체, 도파관, 영사 스크린 및/또는 마스크의 기능을 갖는 홀로그래픽 광학 소자, 광메모리 시스템의 매질과 광확산판, 광파장 분할기, 반사형, 투과형 컬러필터 등 다양한 분야에 사용될 수 있다.
구체적으로, 홀로그램 제조용 포토폴리머 조성물은 고분자 매트릭스, 광반응성 단량체 및 광개시제계를 포함한다. 그리고, 이러한 조성물로부터 제조된 포토폴리머 필름에 대하여 레이저 간섭광을 조사하여 국부적인 단량체의 광중합을 유도한다.
이러한 국부적인 광중합 과정을 통해 굴절률 변조가 생기게 되며, 이러한 굴절률 변조에 의해서 회절 격자가 생성된다. 굴절률 변조값(△n)은 포토폴리머 필름의 두께와 회절 효율(DE)에 영향을 받으며, 각도 선택성은 두께가 얇을수록 넓어지게 된다.
최근에는 높은 회절 효율과 안정적으로 홀로그램을 유지할 수 있는 재료 개발에 대한 요구가 높아지고 있고, 얇은 두께를 가지면서도 회절 효율과 굴절률 변조값이 큰 포토폴리머 필름의 제조를 위한 다양한 시도가 이루어지고 있다.
한편, 홀로그램 기록 매체가 모바일 기기나 차량용품(예: Head-up display) 등의 용도에서 광학 소자(optical element)로 사용되는 경우에는 고온/고습 환경에 놓이게 된다.
또한, 홀로그램 기록 매체에서 회절 격자가 생성된 필름은 내열, 내습 등의 신뢰성이 우수해야 실제 제품에 적용 가능하며, 이때 신뢰성은 주로 매트릭스 특성에 의존한다.
그러나, 현재 사용되는 홀로그램 기록 매체는 고온/고습 환경에서 접착력이 원하는 수준으로 발휘되지 못하여 신뢰성이 저하되는 문제가 있다.
따라서, 주변의 다양한 사용 환경에도 기록 효율 및 신뢰성이 모두 우수한 포토폴리머 필름 및 이를 포함하는 홀로그램 기록 매체 등에 대한 개발의 필요성이 요구된다.
본 발명은 높은 기록 효율 및 회절 효율을 가지면서, 우수한 접착력 및 낮은 헤이즈 특성을 갖는 포토폴리머층을 포함하는 홀로그램 기록 매체를 제공하기 위한 것이다.
또한, 본 발명은 접착 첨가제를 사용하여 얇은 두께 범위에서도 보다 높은 굴절율 변조값을 구현할 수 있고, 종래보다 접착 특성이 개선되어 신뢰성이 우수한 상기 홀로그램 기록 매체의 포토폴리머층을 효율적으로 제공할 수 있는 포토폴리머층 형성용 조성물을 제공하기 위한 것이다.
또한, 본 발명은 홀로그램 기록 매체를 포함한 광학 소자를 제공하기 위한 것이다.
본 명세서에서는, 기재; 접착 보호층; 및 포토폴리머층;을 포함하고, 광 조사전에 상기 포토폴리머층 및 상기 접착 보호층 간의 접착력이 500 내지 5,000 gf/20nm이고, JIS K7136:2000에 준거하여 측정한 상기 포토폴리머층의 헤이즈값이 3% 이하인, 홀로그램 기록 매체를 제공한다.
또한, 본 명세서에서는 상기 홀로그램 기록 매체를 포함하는 광학 소자를 제공한다.
또한, 본 명세서에서는, 고분자 매트릭스 또는 이의 전구체; 단관능 단량체 및 다관능 단량체를 포함한 광반응성 단량체; 접착 첨가제; 및 광 개시제;를 포함하고, 상기 광반응성 단량체 중 단관능 단량체 비율이 40중량% 초과 내지 70 중량% 이하인, 홀로그램 형성용 포토폴리머 조성물을 제공한다.
이하 발명의 구체적인 구현예에 따른 홀로그램 기록 매체, 홀로그램 기록 매체에 포함된 포토폴리머층 형성용 조성물, 이의 제조 방법 및 이를 포함하는 광학 소자 등에 대해 설명하기로 한다.
본 명세서에서, (메트)아크릴레이트는 메타크릴레이트 또는 아크릴레이트를 의미한다.
본 명세서에서, (공)중합체는 단독중합체 또는 공중합체(랜덤공중합체, 블록공중합체, 그라프트 공중합체를 포함)를 의미한다.
또한, 본 명세서에서, 홀로그램(hologram)은 노광 과정을 통하여 전체 가시 범위 및 근자외선 범위(300-800 nm)에서 광학적 정보가 기록된 기록 미디어를 의미하며, 예를 들어 인-라인 (가버(Gabor)) 홀로그램, 이축(off-axis) 홀로그램, 완전-천공(full-aperture) 이전 홀로그램, 백색광 투과 홀로그램 ("무지개 홀로그램"), 데니슈크(Denisyuk) 홀로그램, 이축 반사 홀로그램, 엣지-리터러츄어(edge-literature) 홀로그램 또는 홀로그래피 스테레오그램(stereogram) 등의 시각적 홀로그램(visual hologram)을 모두 포함한다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 알킬렌기는 알케인(alkane)으로부터 유래한 2가의 작용기로, 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸렌기, 에틸렌기, 프로필렌기, 이소부틸렌기, sec-부틸렌기, tert-부틸렌기, 펜틸렌기, 헥실렌기 등이 될 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 시아노기; 니트로기; 히드록시기; 카르보닐기; 에스테르기; 이미드기; 아미드기; 1차 아미노기; 카르복시기; 술폰산기; 술폰아미드기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 할로알킬기; 시클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알콕시실릴알킬기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다. 바람직하게는 상기 치환기로는 할로겐기를 사용할 수 있으며, 상기 할로겐기의 예로는 플루오로기를 들 수 있다.
본 명세서에서 「홀로그램(hologram)」은, 특별히 달리 언급하지 않는 이상, 노광 과정을 통해 전체 가시광선 범위와 자외선 범위(예: 300 내지 1,200 nm)에서 광학 정보가 기록된 기록 미디어를 의미한다. 예를 들어, 본 명세서의 홀로그램으로는 인-라인 (가버(Gabor)) 홀로그램, 이축(off-axis) 홀로그램, 완전-천공(full-aperture) 이전 홀로그램, 백색광 투과 홀로그램 ("무지개 홀로그램"), 데니슈크(Denisyuk) 홀로그램, 이축 반사 홀로그램, 엣지-리터러츄어(edge-literature) 홀로그램 또는 홀로그래피 스테레오그램(stereogram) 등의 시각적 홀로그램(visual hologram)이 모두 포함될 수 있다.
또한, 본 발명에서 홀로그램 기록 매체는 포토폴리머 필름을 포함할 수 있다.
또한, 본 명세서에서, 중량 평균 분자량(Mw) 및 수평균 분자량(Mn)은 겔 투과 크로마토그래피(GPC) 법에 의해 측정한 폴리스티렌 환산의 분자량(단위: Da(Dalton))을 의미한다. 상기 GPC 법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예로, 30℃의 온도, 클로로포름 용매(Chloroform) 및 1 mL/min의 flow rate를 들 수 있다. 상기 측정 조건의 구체적인 예를 들면, Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여, 평가 온도는 160 ℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로, 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하며, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 각각 구할 수 있다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
발명의 일 구현예에 따르면, 기재; 접착 보호층; 및 포토폴리머층;을 포함하고, 광 조사전에 상기 포토폴리머층 및 상기 접착 보호층 간의 접착력이 500 내지 5,000 gf/20nm이고, JIS K7136:2000에 준거하여 측정한 상기 포토폴리머층의 헤이즈값이 3% 이하인, 홀로그램 기록 매체가 제공될 수 있다.
본 발명자들은 홀로그램 기록 매체에 포함된 포토폴리머층 형성을 위한 포토폴리머 조성물에 홀로그램 기록 매체의 매트릭스, 기록용 모노머 외에 특정 접착 첨가제를 더 사용함으로써, 종래보다 홀로그램 기록 매체의 포토폴리머 층과 접착 보호층과의 접착력이 향상되어 우수한 신뢰성을 구현할 수 있으며, 또한 얇은 두께에서도 회절효율과 높은 굴절률 변조값을 구현할 수 있고, 고온/고습 조건에서도 신뢰성이 우수한 효과를 구현할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다.
상기 접착 첨가제는 포토폴리머 조성물을 이용한 포토폴리머층 형성 후 기재에 형성된 접착 보호층과 포토폴리머층 사이의 접착력을 개선하고, 또한 특정 수접촉각을 나타낼 수 있도록 한다.
또한, 상기 접착 첨가제는 포토폴리머층의 표면이 균질하게 형성되게 할 뿐만 아니라 낮은 헤이즈 특성을 갖게 하고, 표면이 끈적해지는 것을 방지하는 역할을 할 수도 있다.
보다 구체적으로, JIS K7136:2000에 준거하여 측정한 상기 포토폴리머층의 헤이즈값이 3% 이하, 또는 2.5 % 이하, 또는 2.0% 이하, 또는 0.1%이상, 0.5% 이상 일수 있다. 상기 포토폴리머층이 상술한 3% 이하의 헤이즈 값을 갖음에 따라서, 우수한 광학 특성 및 높은 투과성을 가질 수 있으며, 홀로그램 기록 매체의 굴절률 변조값과 회절율이 저하되는 현상을 방지할 수 있다.
상기 포토폴리머층의 헤이즈값은 홀로그램 기록 매체의 기록 이전 또는 기록 이후에 측정한 값일 수 있다.
즉, 상기 첨가제의 사용으로 포토폴리머층 형성용 조성물의 코팅성이 개선되어 종래보다 포토폴리머층과 접착 보호층간의 접착력에서 차이를 나타내어 신뢰성이 우수한 홀로그램 매체를 제공할 수 있다.
따라서, 상기 접착 첨가제를 포함한 포토폴리머 조성물을 이용한 홀로그램 기록 매체는 우수한 광학 특성을 유지할 수 있으며, 홀로그램 기록 매체 (포토폴리머 필름)을 타매개체에 탈 부착시 부착 혹은 탈착을 용이하게 할 수 있다.
또한, 상기 포토폴리머 조성물은 단관능 단량체와 다관능 단량체의 혼합물을 광반응성 단량체로 사용하고, 상기 광반응성 단량체의 총 함량 중 단관능 단량체 비율을 특정 비율로 조절함으로써 상기 접착 보호층과 포토폴리머층 사이의 접착력을 더욱 향상시킬 수 있다.
상기 일 구현예의 상기 홀로그램 기록 매체는 기재 상에 접착보호층 및 포토폴리머층을 차례로 형성하여 제공될 수 있다.
이러한 홀로그램 기록 매체에서, 광 조사전에 상기 포토폴리머층 및 상기 접착 보호층 간의 접착력이 500 내지 5,000 gf/20nm 일 수 있다.
구체적으로, 상기 포토폴리머층은 가교형 고분자 매트릭스 또는 이의 전구체, 접착 첨가제와 단관능 단량체의 함량이 조절된 단관능 단량체 및 다관능 단량체를 포함한 광반응성 단량체의 경화물을 포함하여, 종래보다 접착 보호층과 포토폴리머층간의 접착력이 개선될 수 있다.
또한, 홀로그램 기록 매체에서, 광 조사 이후에 상기 포토폴리머층의 수접촉각이 50 내지 100°일 수 있다.
또한, 상기 접착 보호층과 이형 필름을 박리했을 때, 상기 포토폴리머층은 광 조사 후에 수접촉각 감소율이 5 내지 15 °/min의 속도로 낮아질 수 있다.
상기 접착력과 수접촉각을 구현함에 따라, 광조사 후에도 수접촉각 감소율이 상기 범위로 낮아지도록 조절할 수 있어서 종래보다 접착력을 개선할 수 있다. 즉, 수접촉각이 낮은 필름이 접착력이 높아지는 경향성을 나타내는데, 상기 일 구현예의 포토폴리머 조성물을 사용하면, 포토폴리머층 형성 후 기재에 형성된 접착 보호층과의 접착력이 향상되고, 수접촉각이 낮은 홀로그램 기록 매체를 제공할 수 있다.
이때, 상기 접착력은 접착력 측정기(Texture Analyzer) 장비를 이용하여 180°Peel Test를 진행하여 폭 25mm에 걸리는 하중을 측정하여 평가할 수 있다.
상기 수접촉각은 일정 파장의 적색 광원에 노출된 포토폴리머층에 H2O를 2㎕ 적하한 후, 접촉각 측정기 (drop shape analyzer)로 포토폴리머층의 수접촉각 (표면 접촉각)을 측정할 수 있다.
상기 일 구현에의 홀로그램 기록 매체에서, 각 구성 성분을 구체적으로 설명한다.
상기 기재의 종류는 특별히 제한되지 않고, 관련 기술 분야에서 공지된 것이 사용될 수 있다. 예를 들어, 셀룰로오스에스테르계 기재 필름, 폴리에스테르계 기재 필름, 폴리(메트)아크릴레이트계 기재 필름, 폴리카보네이트계 기재 필름, 사이클로올레핀계(COP) 기재 필름, 유리(glass), 아크릴계 기재필름 등이 사용될 수 있다. 구체적으로 PET(polyethylene terephthalate), TAC(triacetyl cellulose), PC(polycarbonate), COP(cycloolefin polymer), 폴리메틸메타크릴레이트(PMMA) 등의 기재가 사용될 수 있다.
상기 기재의 두께가 크게 한정되는 것은 아니며, 예를 들어 1 내지 1,000㎛의 두께를 가질 수 있다.
상기 접착 보호층은 포토폴리머층의 보호 필름으로 사용할 수 있으며, 기재 일면에서 단차 흡수성을 갖는 두께 수준으로 단차 흡수를 위한 점착층(barrier pressure sensitive adhesive, BPSA)을 포함할 수 있다.
상기 접착 보호층은 통상의 광경화형 감압 점착제를 포함할 수 있으나, 그 종류가 제한되지 않는다. 예를 들어, 상기 감압 접착제는 아크릴계 점착제, 실리콘계 점착제, 우레탄계 점착제 및 고무계 점착제로 이루어진 군에서 선택되는 1 이상일 수 있다. 구체적으로, 상기 감압 점착제층은 (메트)아크릴레이트계 수지; 및 폴리 실록산으로 이루어진 군에서 선택되는 1 이상을 포함하는 중합체를 포함할 수 있다.
상기 접착 보호층의 두께는 10 내지 100㎛일 수 있으나, 이에 제한되지 않는다.
상기 포토폴리머층은 접착 보호층 상에 1층 이상으로 적층되어 형성될 수 있으며, 구체적으로, 상기 포토폴리머층은 접착 보호층 상에 2층 이상 적층될 수 있다.
상기 포토폴리머층은 고분자 매트릭스 또는 이의 전구체; 단관능 단량체 및 다관능 단량체를 포함한 광반응성 단량체; 접착 첨가제; 및 광 개시제;를 포함하는 포토폴리머 조성물을 포함하고, 상기 광반응성 단량체 중 단관능 단량체 비율이 40중량% 초과 내지 70 중량% 이하, 42 내지 68중량%, 또는 45 내지 65중량%일 수 있다.
상기 접착 첨가제는 폴리디메틸실록산계 첨가제를 포함한다.
폴리디메틸실록산계 첨가제를 포함함에 따라서, 포토폴리머층 형성 후 기재에 형성된 접착 보호층과 포토폴리머층 사이의 접착력을 개선하고, 또한 특정 수접촉각을 나타내어 친수성을 부여할 수 있다.
상기 폴리디메틸실록산계 첨가제는 100 내지 10000의 중량평균분자량을 가지며, 폴리에테르 변성 폴리디메틸실록산, 폴리메틸알킬실록산 실리콘 계면활성제 및 유기변성 실리콘에서 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 폴리디메틸실록산계 첨가제는 폴리에테르 변성 폴리디메틸실록산; 또는 실리콘 및 폴리에테르 마크로머 변성 폴리아크릴레이트를 사용할 수 있다.
또한, 상기 접착 첨가제는 상기 고분자 매트릭스 또는 이의 전구체 100중량부 대비 0.001 내지 0.1 중량부를 포함할 수 있다. 상기 접착 첨가제의 함량이 상기 범위를 만족하지 않아 그 함량이 너무 적거나 많은 경우, 포토폴리머 필름을 타 매개체에 탈부착시 부착 혹은 탈착이 용이하지 않을 수 있다.
상기 포토폴리머 조성물은 비반응성 불소계 화합물을 더 포함할 수 있다. 상기 비반응성 불소계 화합물은 가소제로 사용될 수 있다.
구체적으로, 상기 비반응성 불소계 화합물은 에테르기, 에스터기 및 아마이드기로 이루어진 군에서 선택된 1종 이상의 작용기 및 2 이상의 다이플루오로메틸렌기를 포함할 수 있다.
더 구체적으로, 상기 비반응성 불소계 화합물은 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2023016083-appb-img-000001
상기 화학식 3에서,
R11 및 R12는 각각 독립적으로 다이플루오로메틸렌기이며,
R13 및 R16은 각각 독립적으로 메틸렌기이고,
R14 및 R15는 각각 독립적으로 다이플루오로메틸렌기이며,
k은 1 내지 10의 정수이고,
R17 및 R18은 각각 독립적으로 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기이거나 또는 상기 화학식 4의 작용기이고,
[화학식 4]
Figure PCTKR2023016083-appb-img-000002
상기 화학식 4에서,
R21, R22 및 R23는 각각 독립적으로 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이고,
R24는 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기이고,
l은 1 내지 30의 정수이다.
보다 구체적으로, 상기 화학식 3의 R11 및 R12는 각각 독립적으로 다이플루오로메틸렌기이며, R13 및 R16은 각각 독립적으로 메틸렌기이고, R14 및 R15는 각각 독립적으로 다이플루오로메틸렌기이며, R17 및 R18은 각각 독립적으로 2-메톡시에톡시메톡시기이고, k는 2의 정수이다.
상기 불소계 화합물로는 광반응성 단량체에 비해 낮은 굴절률을 갖는 것이 사용될 수 있다. 이러한 경우, 고분자 매트릭스의 굴절률을 낮추어 굴절률 변조를 보다 크게 할 수 있다.
상기 불소계 화합물의 굴절률은 1.45 이하의 낮은 굴절률을 가질 수 있다. 구체적으로, 상기 불소계 화합물의 굴절률의 상한은 예를 들어 1.44 이하, 1.43 이하, 1.42 이하, 1.41 이하, 1.40 이하, 1.40 이하, 1.39 이하, 1.38 이하 또는 1.37 이하일 수 있고, 상기 굴절률의 하한은 예를 들어, 1.30 이상, 1.31 이상, 1.32 이상, 1.33 이상, 1.34 이상 또는 1.35 이상일 수 있다. 상술한 광반응성 단량체 보다 낮은 굴절률을 갖는 불소계 화합물을 사용하기 때문에, 고분자 매트릭스의 굴절률을 보다 낮출 수 있고, 광반응성 단량체와의 굴절률 변조를 보다 크게 할 수 있다.
상기 불소계 화합물은 고분자 매트릭스 또는 이의 전구체 100 중량부를 기준으로, 상기 불소계 화합물을 20 내지 75 중량부 범위로 포함할 수 있다. 구체적으로, 상기 불소계 화합물의 함량 하한은 예를 들어, 25 중량부 이상, 30 중량부 이상, 35 중량부 이상, 40 중량부 이상, 45 중량부 이상, 50 중량부 이상 또는 55 중량부 이상일 수 있고, 그 상한은 예를 들어, 70 중량부 이하, 65 중량부 이하, 60 중량부 이하, 55 중량부 이하 또는 50 중량부 이하 일 수 있다. 상기 범위를 만족하는 경우, 우수한 광학 기록 특성을 확보하는데 유리하다. 상기 불소계 화합물의 함량이 상기 범위 미만인 경우에는, 저굴절 성분의 부족으로 인해 기록 후의 굴절률 변조값이 낮아질 수 있다. 그리고, 상기 불소계 화합물 함량이 상기 범위를 초과하는 경우에는 포토폴리머 필름에 포함되는 성분들 간 상용성 문제로 헤이즈가 높아지거나 일부 불소계 화합물이 코팅층의 표면으로 용출되는 문제가 발생할 수 있다.
상기 불소계 화합물은 중량평균분자량은 300 이상일 수 있다. 구체적으로, 불소계 화합물의 중량평균 분자량 하한은 예를 들어, 350 이상, 400 이상, 450 이상, 500 이상, 550 이상 또는 600 이상일 수 있고, 그 상한은 예를 들어, 1000 이하, 900 이하, 800 이하, 700 이하, 600 이하 또는 500 이하일 수 있다. 굴절률 변조, 다른 성분과의 상용성, 불소계 화합물의 용출 문제 등을 고려할 때, 상기 중량평균분자량 범위를 만족하는 것이 바람직하다. 이때, 상기 중량평균분자량은, 상술한 바와 같은 GPC법에 의해 측정한 폴리스티렌 환산의 중량평균분자량을 의미한다.
상기 포토폴리머층은 적색 광원에 의해 광 조사될 수 있다. 상기 포토폴리머층은 적색 홀로그램 노출에 의해 혼입된 형태로 적층될 수 있다. 상기 적색 광원에 의한 포토폴리머층의 광조사시, 잘 알려진 600 내지 700nm 적색 파장 범위 내에서 조사될 수 있고, 일례를 들면 630 내지 680 nm의 파장에서 0.3 내지 3.0 mW의 광량으로 조사될 수 있다.
또한, 상기 포토폴리머층은 가교형 매트릭스를 포함한다. 예를 들면, 상기 포토폴리머층은 적어도 가교형 매트릭스 또는 이의 전구체를 포함하는 조성물을 포함하거나 그 조성물로부터 형성된 것일 수 있다. 본 출원에 관한 구체예에서, 상기 포토폴리머층은 가교형 매트릭스 또는 이의 전구체, 광반응성 단량체, 및 광개시제를 포함하는 조성물을 포함하거나 그 조성물로부터 형성될 수 있다.
이러한 홀로그램 기록 매체에서, 상기 포토폴리머층은 홀로그램 기록층으로서, 5 내지 50 ㎛ 범위의 두께를 가질 수 있다. 구체적으로, 상기 포토폴리머 필름의 두께는 예를 들어, 5 ㎛ 이상, 10 ㎛ 이상, 15 ㎛ 이상 또는 30 ㎛ 이상 일 수 있다. 그리고, 상기 두께의 상한은 예를 들어, 30 ㎛ 이하 또는 20 ㎛ 이하, 구체적으로는 15 ㎛ 이하, 12 ㎛ 이하, 또는 8 ㎛ 이하일 수 있다. 본 출원의 홀로그램 기록 매체는 상술한 범위의 얇은 두께를 갖는 경우에도, 굴절률 변조, 회절 효율 및 구동 신뢰성이 우수하다.
상기 다른 일 구현예의 홀로그램 기록 매체는 포토폴리머 층의 두께가 5 내지 30 ㎛로 얇더라도 0.020 이상, 0.021이상, 0.022 이상, 0.023 이상, 0.024 이상, 0.025 이상, 0.026 이상, 0.027 이상, 0.028 이상, 0.029 이상 또는 0.030 이상의 굴절율 변조값(Δn)을 구현할 수 있다. 상기 굴절률 변조값의 상한은 특별히 제한되지 않으나, 예를 들면, 0.035 이하일 수 있다.
발명의 다른 구현예에 따라, 상기 홀로그램 기록 매체는 상기 포토폴리머층과 접착 보호층 사이에는 이형 필름을 더 포함할 수 있다.
따라서, 상기 홀로그램 기록 매체는 아래로부터 기재, 접착 보호층, 이형 필름 및 포토폴리머층이 차례로 적층된 구조를 포함할 수 있다.
도 1은 이형필름을 더 포함하는 일 구현예에 따른 홀로그램 기록 매체의 구조를 간략히 도시한 것이다.
도 1에 도시된 바와 같이, 홀로그램 기록 매체는 2층으로 적층된 포토폴리머층 (1, 2), 이형 필름 (3), 접착 보호층 (4) 및 기재 (5)가 적층된 구조를 포함할 수 있다.
상기 이형 필름은 접착 보호층을 매개로 형성될 수 있고, 접착 보호층의 전체 크기 중 일부 끝단에서 교차하여 소정의 간격으로 이격되어 형성될 수 있다.
구체적으로, 상기 이형 필름은 접착 보호층과 포토폴리머층의 사이에 위치하여 이들의 박리시 지표 역할을 하기 위한 층으로서, 접착 보호층의 일면의 끝단 일부에 부착하는 투명층을 의미한다.
발명의 일 구현예에 따라, 상기 이형 필름은 상기 접착 보호층의 끝단에서 0.5 내지 1cm 범위에서 교차하도록 소정 간격으로 이격되어 적층될 수 있다.
또한, 상기 이형 필름은 시판되는 불소 처리 이형 필름, 실리콘 처리 이형 필름을 사용할 수 있으나, 그 종류가 제한되지 않는다. 또한, 상기 이형 필름의 두께는 제한되지 않고 이 분야에 잘 알려진 범위 내에서 사용할 수 있다.
상기 홀로그램 기록 매체의 전체 두께는 40 내지 100㎛일 수 있다.
상기 홀로그램 기록 매체는 얇은 두께에서도 80% 이상의 회절 효율, 및 3.0% 이하의 헤이즈 특성을 나타낼 수 있다.
한편, 발명의 다른 구현예에 따르면, 고분자 매트릭스 또는 이의 전구체; 단관능 단량체 및 다관능 단량체를 포함한 광반응성 단량체; 접착 첨가제; 및 광 개시제;를 포함하고, 상기 광반응성 단량체 중 단관능 단량체 비율이 40중량% 초과 내지 70 중량% 이하, 42 내지 68중량%, 또는 45 내지 65중량%인, 홀로그램 형성용 포토폴리머 조성물이 제공된다.
상기 일 구현예의 포토폴리머 조성물은 이로부터 형성되는 포토폴리머 층의 지지체 역할을 하는 고분자 매트릭스 또는 이의 전구체를 포함한다.
상기 고분자 매트릭스는 실란 작용기(Si-H)를 1이상 포함하는 실록산계 고분자 및 (메트)아크릴계 폴리올이 가교 결합하여 형성된 것이다. 구체적으로, 상기 고분자 매트릭스는 (메트)아크릴계 폴리올을 실란 작용기를 포함하는 실록산계 고분자로 가교시킨 것이다. 보다 구체적으로, 상기 (메트)아크릴계 폴리올의 히드록시기는 실록산계 고분자의 실란 작용기와 히드로실릴레이션(hydrosilylation) 반응을 통해 가교 결합을 형성할 수 있다. 상기 히드로실릴레이션 반응은 Pt 계열의 촉매 하에서 상온(예를 들어, 가온 또는 감온되지 않은 상태의 온도로서 약 15 내지 30 ℃ 범위의 온도)에서도 빠르게 진행될 수 있다. 따라서, 상기 일 구현예의 포토폴리머 조성물은 지지체로서 상온에서도 빠르게 가교될 수 있는 고분자 매트릭스를 채용함에 따라 홀로그램 기록 매체의 제조 효율이나 생산성을 향상시킬 수 있다.
상기 고분자 매트릭스는 실록산계 고분자의 유연한 주쇄로 인해 포토폴리머 층에 포함된 성분(예컨대, 광반응성 단량체 또는 가소제 등)의 유동성(mobility)을 높일 수 있다. 또한, 내열 및 내습열 특성이 우수한 실록산 결합은 광학 정보가 기록된 포토폴리머 층 및 이를 포함하는 홀로그램 기록 매체의 신뢰성 확보를 용이하게 할 수 있다.
또한, 상기 고분자 매트릭스는 상대적으로 낮은 굴절률을 가질 수 있고, 그로 인해 상기 포토폴리머 필름의 굴절률 변조를 높이는 역할을 할 수 있다. 예를 들어, 상기 고분자 매트릭스의 굴절률 상한은 1.53 이하, 1.52 이하, 1.51 이하, 1.50 이하 또는 1.49 이하일 수 있다. 그리고, 상기 고분자 매트릭스의 굴절률 하한은 예를 들어, 1.41 이상, 1.42 이상, 1.43 이상 1.44 이상, 1.45 이상 또는 1.46 이상일 수 있다. 본 명세서에서 「굴절률」이란 25 ℃에서 Abbe 굴절계로 측정한 값일 수 있다.
상기 일 구현예의 포토폴리머 조성물은 상술한 가교된 형태의 고분자 매트릭스를 포함하거나 또는 이의 전구체를 포함할 수 있다. 상기 포토폴리머 조성물이 고분자 매트릭스의 전구체를 포함하는 경우 실록산계 고분자, (메트)아크릴계 폴리올 및 Pt 계열 촉매를 포함할 수 있다.
구체적인 일례를 들면, 상기 실록산계 고분자는 하기 화학식 1로 표시되는 반복 단위 및 하기 화학식 2로 표시되는 말단기를 포함할 수 있다.
[화학식 1]
Figure PCTKR2023016083-appb-img-000003
상기 화학식 1에서,
복수의 R1 및 R2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐 또는 탄소수 1 내지 10의 알킬기이고,
n은 1 내지 10,000의 정수이며,
[화학식 2]
Figure PCTKR2023016083-appb-img-000004
상기 화학식 2에서,
복수의 R11 내지 R13은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐 또는 탄소수 1 내지 10의 알킬기이고,
상기 화학식 1로 표시되는 반복 단위 중 적어도 하나의 반복 단위와 상기 화학식 2로 표시되는 말단기 중 어느 한 쪽의 말단기의 R1, R2 및 R11 내지 R13 중 적어도 하나는 수소이다.
상기 화학식 2에서 -(O)-는 상기 화학식 2로 표시되는 말단기의 Si이 상기 화학식 1로 표시되는 반복 단위에 결합할 때 산소(O)를 매개로 결합하거나 혹은 산소(O) 없이 직접 결합하는 것을 의미한다.
본 명세서에서 「알킬기」는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 비제한적인 예로, 본 명세서에서 「알킬기」는 메틸, 에틸, 프로필(예컨대, n-프로필, 이소프로필 등), 부틸(예컨대, n-부틸, 이소부틸, tert-부틸, sec-부틸, 시클로부틸 등), 펜틸(예컨대, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 1,1-디메틸-프로필, 1-에틸-프로필, 1-메틸-부틸, 시클로펜틸 등), 헥실(예컨대, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸펜틸, 3,3-디메틸부틸, 1-에틸-부틸, 2-에틸부틸, 시클로펜틸메틸, 시클로헥실 등), 헵틸(예컨대, n-헵틸, 1-메틸헥실, 4-메틸헥실, 5-메틸헥실, 시클로헥실메틸 등), 옥틸(예컨대, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸 등), 노닐(예컨대, n-노닐, 2,2-디메틸헵틸 등) 등일 수 있다.
일 예로, 상기 화학식 1 및 2의 R1, R2 및 R11 내지 R13는 메틸 또는 수소이고, 복수의 R1, R2 및 R11 내지 R13 중 적어도 2 이상은 수소일 수 있다. 보다 구체적으로, 상기 실록산계 고분자로는 상기 화학식 1의 R1 및 R2가 각각 메틸 및 수소이고, 상기 화학식 2의 R11 내지 R13가 각각 독립적으로 메틸 또는 수소인 화합물(예컨대, 말단기가 트리메틸실릴기 또는 디메틸히드로실릴기인 폴리메틸히드로실록산); 상기 화학식 1의 일부 R1 및 R2가 각각 메틸 및 수소이고, 나머지 R1 및 R2가 모두 메틸이며, 상기 화학식 2의 R11 내지 R13가 각각 독립적으로 메틸 또는 수소인 화합물(예컨대, 말단기가 트리메틸실릴기 또는 디메틸히드로실릴기인 폴리(디메틸실록산-co-메틸히드로실록산); 또는 상기 화학식 1의 R1 및 R2가 모두 메틸이고, 상기 화학식 2의 R11 내지 R13 중 적어도 하나가 수소이고 나머지가 각각 독립적으로 메틸 또는 수소인 화합물(예컨대, 말단기 중 어느 한쪽 혹은 모두가 디메틸히드로실릴기인 폴리디메틸실록산)일 수 있다.
상기 실록산계 화합물은, 일 예로, 200 내지 4,000 범위의 수평균분자량(Mn)을 가질 수 있다. 구체적으로, 상기 실록산계 고분자의 수평균분자량 하한은 예를 들어, 200 이상, 250 이상, 300 이상 또는 350 이상일 수 있고, 그 상한은 예를 들어, 3,500 이하, 3,000 이하, 2,500 이하, 2,000 이하, 1,500 이하 또는 1,000 이하일 수 있다. 상기 실록산계 고분자의 수평균분자량이 상기 범위를 만족하는 경우에는 상온 또는 그 이상의 온도에서 이루어지는 (메트)아크릴계 폴리올과의 가교 과정에서 실록산계 고분자가 휘발되면서 매트릭스 가교도가 낮아지거나, 혹은 상기 실록산계 고분자가 다른 포토폴리머 조성물의 성분들과 상용성이 좋지 못하여 이러한 성분들과 상분리가 발생하는 등의 문제를 방지함으로써, 상기 포토폴리머 조성물로부터 형성된 홀로그램 기록 매체가 우수한 광학 기록 특성 및 고온/고습 조건에서의 우수한 내구성을 나타내게 할 수 있다.
상기 수평균분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 수 평균 분자량(단위: g/mol)을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 수평균분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있고, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예로, 30 ℃의 온도, 테트라히드로퓨란 용매(Tetrahydrofuran) 및 1 mL/min의 flow rate를 들 수 있다.
상기 (메트)아크릴계 폴리올은 (메트)아크릴레이트계 고분자의 주쇄 또는 측쇄에 1 이상, 구체적으로는 2 이상의 히드록시기가 결합된 중합체를 의미할 수 있다. 본 명세서에서 「(메트)아크릴(계)」란, 특별히 달리 언급하지 않는 이상, 아크릴(계) 및/또는 메타크릴(계)을 지칭하는 것으로, 아크릴(계), 메타크릴(계), 또는 아크릴(계)와 메트크릴(계)의 혼합 모두 아우르는 용어이다.
상기 (메트)아크릴계 폴리올은 히드록시기를 갖는 (메트)아크릴레이트계 단량체의 단독 중합체이거나, 2 종 이상의 히드록시기를 갖는 (메트)아크릴레이트계 단량체의 공중합체이거나, 혹은 히드록시기를 갖는 (메트)아크릴레이트계 단량체 및 히드록시기를 갖지 않는 (메트)아크릴레이트계 단량체의 공중합체일 수 있다. 본 명세서에서 「공중합체」는, 특별히 달리 언급하지 않는 이상, 랜덤 공중합체, 블록 공중합체 및 그라프트 공중합체를 모두 아우르는 용어이다.
상기 히드록시기를 갖는 (메트)아크릴레이트계 단량체로는, 예를 들면, 히드록시알킬 (메트)아크릴레이트 또는 히드록시아릴 (메트)아크릴레이트 등을 들 수 있으며, 상기 알킬은 탄소수 1 내지 30의 알킬이고, 상기 아릴은 탄소수 6 내지 30의 아릴일 수 있다. 또한, 상기 히드록시기를 갖지 않는 (메트)아크릴레이트계 단량체로는, 예를 들면, 알킬 (메트)아크릴레이트계 단량체 또는 아릴 (메트)아크릴레이트계 단량체 등을 들 수 있으며, 상기 알킬은 탄소수 1 내지 30의 알킬이고, 상기 아릴은 탄소수 6 내지 30의 아릴일 수 있다.
상기 (메트)아크릴계 폴리올은, 일 예로, 150,000 내지 1,000,000 범위 내의 중량평균분자량(Mw)을 가질 수 있다. 상기 중량평균분자량은, 상술한 바와 같은 GPC법에 의해 측정한 폴리스티렌 환산의 중량평균분자량을 의미한다. 예를 들어, 상기 중량평균분자량의 하한은 150,000 이상, 200,000 이상 또는 250,000 이상일 수 있고, 그 상한은 예를 들어, 900,000 이하, 850,000 이하, 800,000 이하, 750,000 이하, 700,000 이하, 650,000 이하, 600,000 이하, 550,000 이하, 500,000 또는 450,000 이하일 수 있다. 상기 (메트)아크릴계 폴리올의 중량평균분자량이 상기 범위를 만족하는 경우 고분자 매트릭스가 지지체 기능을 충분히 발휘하여 사용 시간이 경과하더라도 광학 정보에 대한 기록 특성의 감소가 적으며, 고분자 매트릭스에 충분한 유연성을 부여하여 상기 포토폴리머 조성물에 포함된 성분(예컨대, 광반응성 단량체 또는 가소제 등)의 유동성(mobility)을 향상시켜 광학 정보에 대한 기록 특성 감소를 최소화할 수 있다.
상기 실록산계 고분자에 의한 상기 (메트)아크릴계 폴리올의 가교 밀도를 홀로그램 기록 매체의 기능 확보에 유리한 수준으로 조절하기 위해, 상기 (메트)아크릴계 폴리올의 수산기 당량은 적절한 수준으로 조절될 수 있다.
구체적으로, 상기 (메트)아크릴계 폴리올의 수산기(-OH) 당량은, 예를 들어, 500 내지 3,000 g/equivalent 범위 내일 수 있다. 보다 구체적으로, 상기 (메트)아크릴계 폴리올의 수산기(-OH) 당량 하한은 600 g/equivalent 이상, 700 g/equivalent 이상, 800 g/equivalent 이상, 900 g/equivalent 이상, 1000 g/equivalent 이상, 1100 g/equivalent 이상, 1200 g/equivalent 이상, 1300 g/equivalent 이상, 1400 g/equivalent 이상, 1500 g/equivalent 이상, 1600 g/equivalent 이상, 1700 g/equivalent 이상 또는 1750 g/equivalent 이상일 수 있다. 그리고, 상기 (메트)아크릴 폴리올의 수산기(-OH) 당량 상한은 2900 g/equivalent 이하, 2800 g/equivalent 이하, 2700 g/equivalent 이하, 2600 g/equivalent 이하, 2500 g/equivalent 이하, 2400 g/equivalent 이하, 2300 g/equivalent 이하, 2200 g/equivalent 이하, 2100 g/equivalent 이하, 2000 g/equivalent 이하 또는 1900 g/equivalent 이하일 수 있다. 상기 (메트)아크릴계 폴리올의 수산기(-OH) 당량은 히드록시(hydroxy) 작용기 한 개에 대한 당량(g/equivalent)이고, 상기(메트)아크릴계 폴리올의 중량평균분자량을 1 분자당 히드록시(hydroxy) 작용기의 수로 나눈 값이다. 상기 당량값이 작을수록 작용기의 밀도가 높으며, 상기 당량값이 클수록 작용기 밀도가 작아진다. 상기(메트)아크릴계 폴리올의 수산기(-OH) 당량이 상기 범위를 만족하는 경우 고분자 매트릭스가 적절한 가교 밀도를 가져 지지체로서의 역할을 충분히 수행하며, 포토폴리머 조성물로부터 형성된 층에 포함되는 성분들의 유동성이 향상되어 기록 후 생성된 회절 격자들의 경계면이 무너지는 문제없이 시간이 경과하더라도 초기의 굴절률 변조값을 우수한 수준으로 유지하여 광학 정보에 대한 기록 특성의 감소를 최소화할 수 있다.
상기 (메트)아크릴계 폴리올은, 예를 들면, - 60 내지 - 10 ℃ 범위의 유리전이온도(Tg)를 가질 수 있다. 구체적으로, 상기 유리전이온도의 하한은 예를 들어, - 55 ℃ 이상, - 50 ℃ 이상, - 45 ℃ 이상, - 40 ℃ 이상, - 35 ℃ 이상, - 30 ℃ 이상 또는 - 25 ℃ 이상일 수 있고, 그 상한은 예를 들어, -15 ℃ 이하, - 20 ℃ 이하, - 25 ℃ 이하, - 30 ℃ 이하, 또는 - 35 ℃ 이하일 수 있다. 상기 유리전이온도 범위를 만족하는 경우, 고분자 매트릭스의 모듈러스를 크게 저하시키지 않으면서도 유리전이온도를 낮추어 포토폴리머 조성물 내의 다른 성분들의 이동성(유동성)을 높이고, 포토폴리머 조성물의 성형성도 개선할 수 있다. 상기 유리전이온도는 공지된 방법, 예를 들어 DSC (Differential Scanning Calorimetry) 또는 DMA (dynamic mechanical analysis)와 같은 방법을 이용하여 측정될 수 있다.
상기 (메트)아크릴계 폴리올의 굴절률은, 예를 들면, 1.40 이상 1.50 미만일 수 있다. 구체적으로, 상기 (메트)아크릴 폴리올의 굴절률 하한은 예를 들어, 1.41 이상, 1.42 이상, 1.43 이상, 1.44 이상, 1.45 이상 또는 1.46 이상일 수 있고, 그 상한은 예를 들어, 1.49 이하, 1.48 이하, 1.47 이하, 1.46 이하 또는 1.45 이하일 수 있다. 상기 (메트)아크릴계 폴리올이 상술한 범위의 굴절률을 가질 경우 굴절률 변조를 높이는데 기여할 수 있다. 상기 (메트)아크릴계 폴리올의 굴절률은 이론적인 굴절률로서, (메트)아크릴계 폴리올 제조에 사용되는 단량체의 굴절률(25 ℃에서 Abbe 굴절률계를 이용하여 측정한 값)과 각 단량체의 분율(몰비)을 사용하여 계산될 수 있다.
상기 (메트)아크릴계 폴리올과 실록산계 고분자는 (메트)아크릴계 폴리올의 히드록시기(-OH)에 대한 실록산계 고분자의 실란 작용기(Si-H)의 몰 비율(SiH/OH)이 0.80 내지 1.20이 되도록 사용될 수 있다. 즉, 상기 고분자 매트릭스 형성 시 상기 몰 비율을 만족하도록, 실록산계 고분자와 (메트)아크릴계 폴리올의 종류와 함량이 선택될 수 있다. 상기 몰 비율(SiH/OH)의 하한은 예를 들어, 0.81 이상, 0.85 이상, 0.90 이상, 0.95 이상, 1.00 이상 또는 1.05 이상일 수 있고, 그 상한은 예를 들어 1.19 이하, 1.15 이하, 1.10 이하, 1.05 이하, 1.00 이하 또는 0.95 이하일 수 있다. 상기 몰 비율(SiH/OH) 범위를 만족하는 경우 고분자 매트릭스가 적절한 가교 밀도로 가교되어 고온/고습 조건에서의 신뢰성이 향상되고, 충분한 굴절률 변조값을 구현할 수 있다.
상기 Pt 계열 촉매는, 일 예로, Karstedt's catalyst 등일 수 있다. 상기 고분자 매트릭스 전구체는, 필요에 따라, Pt 계열 촉매 외에 Rhodium 계열, Iridium 계열, Rhenium 계열, Molybdenum 계열, Iron 계열, Nickel 계열, 알칼리 금속 또는 알칼리 토금속 계열, Lewis acids 계열 또는 Carbene 계열의 비금속 계열의 촉매 등을 추가로 포함할 수 있다.
상기 광반응성 단량체는 단관능 단량체 및 다관능 단량체를 포함한다.
구체적으로, 상기 광반응성 단량체는 다관능 (메트)아크릴레이트 단량체 및 단관능 (메트)아크릴레이트 단량체를 포함할 수 있다.
또한, 상기 포토폴리머 조성물에서 상기 광반응성 단량체 중 단관능 단량체 비율이 상기 광반응성 단량체 중 단관능 단량체 비율이 40중량% 초과 내지 70 중량% 이하, 42 내지 68중량%, 또는 45 내지 65중량%일 수 있다. 따라서 상기 광반응성 단량체의 총합 100을 기준으로 나머지 함량은 다관능 단량체를 포함할 수 있다.
상술한 바와 같이, 상기 포토폴리머 조성물의 광중합 과정에서 광반응성 단량체가 중합되어 폴리머가 상대적으로 많이 존재하는 부분에서는 굴절율이 높아지고, 고분자 바인더가 상대적으로 많이 존재하는 부분에서는 굴절율이 상대적으로 낮아져서 굴절율 변조가 생기게 되며, 이러한 굴절율 변조에 의해서 회절 격자가 생성된다.
구체적으로, 상기 다관능 단량체의 일 예로는 (메트)아크릴레이트계 α,β-불포화 카르복실산 유도체, 예컨대 (메트)아크릴레이트, (메트)아크릴아미드, (메트)아크릴로니트릴 또는 (메트)아크릴산 등이나, 또는 비닐기(vinyl) 또는 씨올기(thiol)를 포함한 화합물을 들 수 있다.
상기 광반응성 단량체 중 다관능 단량체의 일 예로 굴절율이 1.5 이상, 또는 1.53이상, 또는 1.5 내지 1.7인 다관능 (메트)아크릴레이트 단량체를 들 수 있으며, 이러한 굴절율이 1.5 이상, 또는 1.53이상, 또는 1.5 내지 1.7인 다관능 (메트)아크릴레이트 단량체는 Halogen 원자(bromine, iodine 등), 황(S), 인(P), 또는 방향족 고리(aromatic ring)을 포함할 수 있다.
상기 굴절율이 1.5 이상인 다관능 (메트)아크릴레이트 단량체의 보다 구체적인 예로는 bisphenol A modified diacrylate계열, fluorene acrylate 계열(HR6022 등 - Miwon社), bisphenol fluorene epoxy acrylate계열 (HR6100, HR6060, HR6042 등 - Miwon社), Halogenated epoxy acrylate계열 (HR1139, HR3362 등 - Miwon社) 등을 들 수 있다.
상기 단관능 단량체의 일 예로 단관능 (메트)아크릴레이트 단량체를 들 수 있다. 상기 단관능 (메트)아크릴레이트 단량체는 분자 내부에 에테르 결합 및 플루오렌 작용기를 포함할 수 있으며, 이러한 단관능 (메트)아크릴레이트 단량체의 구체적인 예로는 2-페닐페녹시에틸아크릴레이트, 페녹시 벤질 (메트)아크릴레이트, o-페닐페놀 에틸렌 옥사이드 (메트)아크릴레이트, 벤질 (메트)아크릴레이트, 2-(페닐사이오)에틸 (메트)아크릴레이트, 또는 바이페닐메틸 (메트)아크릴레이트 등을 들 수 있다.
이때 다관능성 단량체는 단관능성 단량체를 포함할 수 있다. 예를 들어, HR6042는 단관능 아크릴레이트 40% 함유 제품일 수 있는 바, 다관능: 단관능 비율이 6:4일 수 있다.
한편, 상기 광반응성 단량체는 50 g/mol 내지 1000 g/mol, 또는 200 g/mol 내지 600 g/mol의 중량평균분자량을 가질 수 있다. 상기 중량평균분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다.
상기 일 구현예의 포토폴리머 조성물은 광반응성 단량체를 상기 고분자 매트릭스 또는 이의 전구체 100 중량부에 대하여 20 내지 300 중량부로 포함할 수 있다. 예를 들어, 상기 광반응성 단량체의 함량 하한은 20 중량부 이상, 40 중량부 이상, 50 중량부 이상, 또는 70 중량부 이상 이상일 수 있고, 그 상한은 300 중량부 이하, 200 중량부 이하, 150 중량부 이하, 또는 100 중량부 이하일 수 있다. 이때, 기준이 되는 고분자 매트릭스의 함량은, 매트릭스를 형성하는 (메트)아크릴계 폴리올과 실록산계 고분자의 함량(중량)을 합한 함량을 의미한다. 상기 범위를 만족하는 경우, 우수한 광학 기록 특성과 고온/고습 환경에서의 내구성을 확보하는데 유리하다.
상기 구현예의 포토폴리머 조성물은 광개시제를 포함한다. 상기 광개시제는 빛 또는 화학방사선에 의해 활성화되는 화합물이며, 상기 광반응성 단량체 등 광반응성 작용기를 함유한 화합물의 중합을 개시한다.
상기 광개시제로는 통상적으로 알려진 광개시제를 큰 제한 없이 사용할 수 있으나, 이의 구체적인 예로는 광 라디칼 중합 개시제, 광양이온 중합 개시제, 또는 광음이온 중합 개시제를 들 수 있다.
상기 광 라디칼 중합 개시제의 구체적인 예로는, 이미다졸 유도체, 비스이미 다졸 유도체, N-아릴 글리신 유도체, 유기 아지드 화합물, 티타노센, 알루미네이트 착물, 유기 과산화물, N- 알콕시 피리디늄 염, 티옥산톤 유도체, 아민 유도체 등을 들 수 있다. 보다 구체적으로, 상기 광 라디칼 중합 개시제로는 1,3-di(t-butyldioxycarbonyl)benzophenone, 3,3',4,4''-tetrakis(t-butyldioxycarbonyl)benzophenone, 3-phenyl-5-isoxazolone, 2-mercapto benzimidazole, bis(2,4,5-triphenyl)imidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one (제품명: Irgacure 651 / 제조사: BASF), 1-hydroxy-cyclohexyl-phenyl-ketone (제품명:Irgacure 184 / 제조사: BASF), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (제품명: Irgacure 369 / 제조사: BASF), 및 bis(η5-2,4-cyclopentadiene-1-yl)-bis(2,6-difluoro-3-(1H-pyrrole-1-yl)-phenyl)titanium (제품명: Irgacure 784 제조사: BASF), Ebecryl P-115(제조사 : SK entis) 등을 들 수 있다.
상기 광양이온 중합 개시제로는, 디아조늄염(diazonium salt), 설포늄염(sulfonium salt), 또는 요오드늄(iodonium salt)을 들 수 있고, 예를 들면 술폰산 에스테르, 이미드 술포 네이트, 디알킬-4-히드록시 술포늄 염, 아릴 술폰산-p-니트로 벤질 에스테르, 실라놀-알루미늄 착물, (η6- 벤젠) (η5-시클로 펜타디에닐)철 (II) 등을 들 수 있다. 또한, 벤조인 토실레이트, 2,5-디니트로 벤질 토실레이트, N- 토실프탈산 이미드 등도 들 수 있다. 상기 광양이온 중합 개시제의 보다 구체적인 예로는, Cyracure UVI-6970, Cyracure UVI-6974 및 Cyracure UVI-6990 (제조사: Dow Chemical Co. in USA)이나 Irgacure 264 및 Irgacure 250 (제조사: BASF) 또는 CIT-1682 (제조사:Nippon Soda) 등의 시판 제품을 들 수 있다.
상기 광음이온 중합 개시제로는, 보레이트염(Borate salt)을 들 수 있고, 예를 들면 부티릴 클로린 부틸트리페닐보레이트(BUTYRYL CHOLINE BUTYLTRIPHENYLBORATE) 등을 들 수 있다. 상기 광음이온 중합 개시제의 보다 구체적인 예로는, Borate V(제조사: Spectra group) 등의 시판 제품을 들 수 있다.
또한, 상기 구현예의 포토폴리머 조성물은 일분자 (유형 I) 또는 이분자 (유형 II) 개시제를 사용할 수도 있다. 상기 자유 라디칼 광중합을 위한 (유형 I) 시스템은 예를 들면 3차 아민과 조합된 방향족 케톤 화합물, 예컨대 벤조페논, 알킬벤조페논, 4,4'-비스(디메틸아미노)벤조페논 (미힐러(Michler's) 케톤), 안트론 및 할로겐화 벤조페논 또는 상기 유형의 혼합물이다. 상기 이분자 (유형 II) 개시제로는 벤조인 및 그의 유도체, 벤질 케탈, 아실포스파인 옥시드, 예컨대 2,4,6-트리메틸벤조일디페닐포스파인 옥시드, 비스아실로포스파인 옥시드, 페닐글리옥실 에스테르, 캄포퀴논, 알파-아미노알킬페논, 알파-,알파-디알콕시아세토페논, 1-[4-(페닐티오)페닐]옥탄-1,2-디온 2-(O-벤조일옥심) 및 알파-히드록시알킬페논 등을 들 수 있다.
상기 포토폴리머 조성물은 상기 고분자 매트릭스 성분 100 중량부 기준으로, 상기 개시제를 0.1 내지 10.0 중량부 범위로 포함할 수 있다. 구체적으로, 상기 개시제의 함량 하한은 예를 들어, 0.2 중량부 이상, 0.3 중량부 이상, 0.4 중량부 이상, 0.5 중량부 이상, 0.6 중량부 이상, 0.7 중량부 이상, 0.8 중량부 이상 또는 0.9 중량부 이상일 수 있고, 그 상한은 예를 들어, 5.0 중량부 이하일 수 있다. 상기 범위를 만족하는 경우, 광학 기록 특성과 고온/고습 내구성을 확보하는데 유리하다.
한편, 상기 홀로그램 형성용 포토폴리머 조성물은 비반응성 불소계 화합물을 더 포함할 수 있다. 상기 비반응성 불소계 화합물의 구체적인 내용은 상술한 바와 같다.
한편, 상기 접착 첨가제는 폴리디메틸실록산계 첨가제를 포함할 수 있다. 폴리디메틸실록산계 첨가제에 관해서는 상술한 내용을 모두 포함한다.
상술한 바와 같이, 상기 광반응성 단량체 중 단관능 단량체 비율이 40중량% 초과 내지 70 중량% 이하, 42 내지 68중량%, 또는 45 내지 65중량%일 수 있고, 이때 단관능 단량체 및 다관능 단량체를 함께 포함하는 제품에 더하여 단관능 아크릴레이트계 단량체를 추가로 사용하여 상술한 중량비를 맞출 수 있다.
추가적으로 사용되는 단관능 아크릴레이트계 단량체는 접착력을 향상시키기 위한 접착 첨가제의 역할도 할 수 있으며, 폴리디메틸실록산계 첨가제와 함께 사용시, 접착 향상 효과와 광학 성능을 더욱 개선할 수 있다.
상기 추가로 사용되는 접착 첨가제는 단관능 단량체와 동일한 것일 수 있다. 이에, 상기 아크릴레이트계 단량체는 2-페닐페녹시에틸아크릴레이트, 페녹시 벤질 (메트)아크릴레이트, o-페닐페놀 에틸렌 옥사이드 (메트)아크릴레이트, 벤질 (메트)아크릴레이트, 2-(페닐사이오)에틸 (메트)아크릴레이트, 또는 바이페닐메틸 (메트)아크릴레이트 등을 들 수 있다.
또한, 상기 포토폴리머 조성물은 염료, 촉매, 소포제 및 가소제로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있다.
구체적으로, 상기 포토폴리머 조성물은 광감응 염료를 더 포함할 수 있다. 상기 광감응 염료는 상기 광개시제를 증감시키는 증감 색소의 역할을 하는데, 보다 구체적으로 상기 광감응 염료는 광중합체 조성물에 조사된 빛에 의하여 자극되어 모노머 및 가교 모노머의 중합을 개시하는 개시제의 역할도 함께 할 수 있다. 상기 포토폴리머 조성물은 광감응 염료 0.01중량% 내지 30중량%, 또는 0.05중량% 내지 20중량% 포함할 수 있다.
상기 광감응 염료의 예가 크게 한정되는 것은 아니며, 통상적으로 알려진 다양한 화합물을 사용할 수 있다. 상기 광감응 염료의 구체적인 예로는, 세라미도닌의 술포늄 유도체(sulfonium derivative), 뉴 메틸렌 블루(new methylene blue), 티오에리트로신 트리에틸암모늄(thioerythrosine triethylammonium), 6-아세틸아미노-2-메틸세라미도닌(6-acetylamino-2-methylceramidonin), 에오신(eosin), 에리트로신(erythrosine), 로즈 벵갈(rose bengal), 티오닌(thionine), 베이직 옐로우(baseic yellow), 피나시놀 클로라이드(Pinacyanol chloride), 로다민 6G(rhodamine 6G), 갈로시아닌(gallocyanine), 에틸 바이올렛(ethyl violet), 빅토리아 블루 R(Victoria blue R), 셀레스틴 블루(Celestine blue), 퀴날딘 레드(QuinaldineRed), 크리스탈 바이올렛(crystal violet), 브릴리언트 그린(Brilliant Green), 아스트라존 오렌지 G(Astrazon orange G), 다로우 레드(darrow red), 피로닌 Y(pyronin Y), 베이직 레드 29(basic red 29), 피릴륨I(pyrylium iodide), 사프라닌 O(Safranin O), 시아닌, 메틸렌 블루, 아주레 A(Azure A), 또는 이들의 2이상의 조합을 들 수 있다.
상기 포토폴리머 조성물은 상기 고분자 매트릭스나 광반응성 단량체의 중합을 촉진하기 위하여 통상적으로 알려진 촉매를 포함할 수 있다. 상기 촉매로는 Karstedt 같은 Platinium 계열이나 Rhodium 계열, Iridium 계열, Rhenium 계열, Molybdenum 계열, Iron 계열, Nickel 계열 촉매나 알칼리 금속이나 알칼리 토금속 촉매를 예로 들 수 있다. 비금속 계열 촉매로는 Lewis acids 계열이나 Carbene 계열 촉매 등이 사용될 수 있다.
상기 포토폴리머 조성물은 기타 첨가제를 더 포함할 수 있다.
상기 기타의 첨가제의 예로는 소포제 또는 포스페이트계 가소제를 들 수 있고, 상기 소포제로는 실리콘계 반응성 첨가제를 사용할 수 있으며, 이의 예로 Tego Rad 2500을 들 수 있다. 상기 가소제의 예로는 트리부틸 포스페이트와 같은 포스페이트 화합물을 들 수 있으며, 상기 가소제는 상술한 불소계 화합물과 함께 1:5 내지 5:1의 중량비율로 첨가될 수 있다. 상기 가소제는 굴절률이 1.5미만이며, 분자량이 700이하일 수 있다.
상기 포토폴리머 조성물은 유기 용매를 더 포함할 수 있다. 상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 혼합물을 들 수 있다.
이러한 유기 용매의 구체적인 예로는, 메틸에틸케톤, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, n-프로판올, i-프로판올, n-부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2종 이상의 혼합물을 들 수 있다.
상기 유기 용매는 상기 포토폴리머 조성물에 포함되는 각 성분들을 혼합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 혼합된 상태로 첨가되면서 상기 포토폴리머 조성물에 포함될 수 있다. 상기 포토폴리머 조성물 중 유기 용매의 함량이 너무 작으면, 상기 포토폴리머 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 충분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 포토폴리머 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량% 내지 70중량%, 또는 2 중량% 내지 50중량%가 되도록 유기 용매를 포함할 수 있다.
구체적으로, 상기 포토폴리머 조성물은, 조성물에 포함되는 성분 전체 고형분의 농도가 1 내지 70 중량%가 되도록 용매를 포함할 수 있다. 구체적으로, 상기 용매는 조성물에 포함되는 성분 전체 고형분의 농도가 2 중량% 이상, 5 중량% 이상, 10 중량% 이상 또는 20 중량% 이상이고, 65 중량% 이하, 60 중량% 이하, 55 중량% 이하 또는 50 중량% 이하가 되도록 용매를 포함할 수 있다. 상기 조성물 중 용매의 함량이 지나치게 적으면 상기 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 용매가 과량 과량 첨가되는 경우에는 고형분 함량이 낮아져, 코팅 및 성막이 충분히 되지 않아서 포토폴리머 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다.
상기 포토폴리머 조성물은 홀로그램기록 용도로 사용될 수 있다.
또한, 발명의 일 구현예에 따르면, 상기 포토폴리머 조성물을 혼합 및 경화하는 과정을 통해서 시각적 홀로그램이 기록되지 않는 상태의 포토폴리머층을 포함한 홀로그램 기록 매체를 제조할 수 있으며, 소정의 노출 과정을 통해서 상기 매체 상에 시각적 홀로그램를 기록할 수 있다.
상기 포토폴리머 조성물을 혼합 및 경화하는 과정을 통하여 제공되는 매체에, 통상적으로 알려진 조건 하에 공지의 장치 및 방법을 이용하여 시각적 홀로그램을 기록할 수 있다.
일례를 들면, 상기 홀로그램 기록 매체의 제조방법은 포토폴리머 조성물을 기재에 도포하여 포토폴리머 필름을 형성하는 단계; 및 상기 포토폴리머 필름의 소정 영역에 가간섭성 레이저를 조사하여 상기 포토폴리머 필름에 포함된 단관능 단량체 및 다관능 단량체를 포함한 광반응성 단량체를 중합시켜 광학 정보를 기록하는 단계를 포함할 수 있다.
상기 포토폴리머 조성물은 상술한 일 구현예의 포토폴리머 조성물일 수 있으며, 포토폴리머 조성물에 대해서는 앞서 상세히 설명하였으므로 여기서는 자세한 설명을 생략한다.
상기 포토폴리머 필름을 형성하는 단계에서는 우선 상술한 구성을 포함하는 포토폴리머 조성물을 제조할 수 있다. 상기 포토폴리머 조성물을 제조하는 경우에, 각 성분의 혼합에는 통상적으로 알려진 혼합기, 교반기 또는 믹서 등을 별 다른 제한 없이 사용할 수 있다. 그리고, 이러한 혼합 과정은 0 ℃ 내지 100 ℃ 범위의 온도, 10 ℃ 내지 80 ℃ 범위의 온도, 또는 20 ℃ 내지 60 ℃ 범위의 온도에서 이루어질 수 있다.
상기 포토폴리머 필름을 형성하는 단계에서는 준비된 포토폴리머 조성물을 기재에 도포하여 포토폴리머 조성물로부터 형성된 도막을 형성할 수 있다. 상기 도막은 상온에서 자연스럽게 건조되거나 혹은 30 내지 80 ℃ 범위의 온도에서 건조될 수 있다. 이러한 과정을 통해 반응하지 않고 남아있는 (메트)아크릴계 폴리올의 히드록시기와 실록산계 고분자의 실란 작용기의 히드로실릴레이션 반응을 유도할 수 있다.
한편, 발명의 또 다른 구현예에 따르면, 홀로그램 기록 매체를 포함한 광학 소자가 제공될 수 있다.
상기 광학 소자의 구체적인 예로는 광학 렌즈, 거울, 편향 거울, 필터, 확산 스크린, 회절 부재, 도광체, 도파관, 영사 스크린 및/또는 마스크의 기능을 갖는 홀로그래픽 광학 소자, 광메모리 시스템의 매질과 광확산판, 광파장 분할기, 반사형, 투과형 컬러필터 등을 들수 있다.
상기 홀로그램 기록 매체를 포함한 광학 소자의 일 예로 홀로그램 디스플레이 장치를 들 수 있다.
상기 홀로그램 디스플레이 장치는 광원부, 입력부, 광학계 및 표시부를 포함한다. 상기 광원부는 입력부 및 표시부에서 물체의 3차원 영상 정보를 제공, 기록 및 재생하는데 사용되는 레이저빔을 조사하는 부분이다. 또한, 상기 입력부는 표시부에 기록할 물체의 3차원 영상 정보를 미리 입력하는 부분이며, 예를 들어, 전기 구동 액정 SLM(electrically addressed liquid crystal SLM)에 공간별 빛의 세기와 위상과 같은 물체의 3차원 정보를 입력할 수 있고, 이때 입력빔이 사용될 수 있다. 상기 광학계는 미러, 편광기, 빔스플리터, 빔셔터, 렌즈 등으로 구성될 수 있으며, 상기 광학계는 광원부에서 방출되는 레이저빔을 입력부로 보내는 입력빔, 표시부로 보내는 기록빔, 기준빔, 소거빔, 독출빔 등으로 분배할 수 있다.
상기 표시부는 입력부로부터 물체의 3차원 영상 정보를 전달받아서 광학 구동 SLM(optically addressed SLM)으로 이루어진 홀로그램 플레이트에 기록하고, 물체의 3차원 영상을 재생할 수 있다. 이때, 입력빔과 기준빔의 간섭을 통하여 물체의 3차원 영상 정보를 기록할 수 있다. 상기 홀로그램 플레이트에 기록된 물체의 3차원 영상 정보는 독출빔이 생성하는 회절 패턴에 의해 3차원 영상으로 재생될 수 있고, 소거빔은 형성된 회절 패턴을 빠르게 제거하기 위해 사용될 수 있다. 한편, 상기 홀로그램 플레이트는 3차원 영상을 입력하는 위치와 재생하는 위치 사이에서 이동될 수 있다.
본 명세서에서는 기록 효율이 우수할 뿐 아니라 얇은 두께 범위에서도 보다 높은 굴절율 변조값을 구현하고, 접착 보호층간의 접착력이 개선되고 낮은 헤이즈 특성을 가져서 종래보다 신뢰성이 우수한 포토폴리머층을 갖는 홀로그램 기록 매체가 제공될 수 있다.
또한, 본 명세서에서는, 얇은 두께 범위에서도 보다 높은 굴절율 변조값을 구현하고, 낮은 헤이즈 특성 및 우수한 접착 특성을 갖는 홀로그램 기록 매체 및 광학 소자가 제공될 수 있다.
도 1은 일 구현예에 따른 홀로그램 기록 매체의 구조를 간략히 도시한 것이다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
[제조예]
제조예 1: (메트)아크릴계 폴리올의 제조
2 L 자켓 반응기에 부틸 아크릴레이트(butyl acrylate) 132 g, 에틸 아크릴레이트(ethyl acrylate) 420 g, 히드록시부틸 아크릴레이트(hydroxybutyl acrylate) 48 g을 넣고, 에틸 아세테이트(ethyl acetate) 1200 g으로 희석하였다. 60~70 ℃로 반응 온도를 셋팅하고, 30 분 내지 1 시간 정도 교반을 진행하였다. n-도데실 머캅탄(n-DDM) 0.42 g을 추가로 넣고, 30 분 정도 더 교반을 진행하였다. 이후, 중합 개시제인 AIBN 0.24 g을 넣고, 반응 온도에서 4 시간 이상 중합을 진행하여 잔류 아크릴레이트 함량이 1 % 미만이 될 때까지 유지하여, 히드록시기가 분지쇄에 위치한 (메트)아크릴레이트계 공중합체 (중량평균분자량 약 300,000, OH 당량 약 1802 g/equivalent)를 제조하였다.
제조예 2: 불소계 화합물의 제조
1000 mL 플라스크에 2,2'-{oxybis[(1,1,2,2-tetrafluoroethane-2,1-diyl)oxy]}bis(2,2-difluoroethan-1-ol) 20.51 g을 넣어준 후, 테트라히드로퓨란 500 g에 녹여 0 ℃에서 교반하면서 sodium hydride (60 % dispersion in mineral oil) 4.40 g을 여러 차례에 걸쳐 조심스럽게 첨가하였다. 0 ℃에서 20 분 교반한 후, 2-methoxyethoxymethyl chloride 12.50 mL를 천천히 dropping 하였다. 1H NMR로 반응물이 모두 소모된 것이 확인되면, 디클로로메탄을 이용한 work-up을 통해 순도 95 % 이상의 액상 생성물 29 g을 98 %의 수율로 수득하였다. 제조된 불소계 화합물의 중량평균분자량은 586 이고, Abbe 굴절계로 측정된 굴절률은 1.361 이다.
[실시예 및 비교예: 포토폴리머 조성물 및 홀로그램 매체의 제조]
[실시예 1: 포토폴리머 조성물 및 홀로그램 기록 매체의 제조]
(1) 포토폴리머 조성물의 제조 (암실 조건에서 제조)
실록산계 고분자로서 trimethylsilyl terminated poly(methylhydrosiloxane) (Sigma-Aldrich社 제조, 수평균분자량: 약 390) 0.48 g 및 제조예 1에서 제조된 (메트)아크릴계 폴리올 28.0 g (30 중량%)을 먼저 혼합하여 혼합액을 제조하였다(SiH/OH 몰 비율 = 1.0).
그리고, 하기 표1에 기재된 바와 같이, 포토폴리머 조성물에서 광반응성 단량체 중 단관능 단량체 비율이 약 46중량%가 되도록 준비하였다. 즉, 상기 광반응성 단량체로서 다관능 단량체(HR6042(다관능:단관능=6:4); Miwon社, 굴절률 1.6) 14.5g, 단관능 단량체(2-Phenylphenoxyethyl acrylate) 1.6g, 접착 첨가제로서 BYK 331 (독일 베셀 소재 비크 가르드너 (Byk Gardner)) 0.11g, 을 첨가하여 서로 치밀하게 혼합하였다.
이후, 상기 혼합물에 공개시제인 Borate V 0.21g H-Nu 254 0.05g, 광감응 염료 H-Nu 640 0.08g, 제조예 2의 불소계 화합물 9.1 g 및 용매로 메틸에틸케톤, 메탄올, EA 및 메틸아이소부틸케톤(MIBK)을 3:2:4:4의 비율로 첨가한 후에 상기 혼합물을 빛을 차단한 상태에서 Paste 믹서로 약 10분간 다시 치밀하게 혼합하였다.
이어서, 매트릭스 가교를 위해, Karstedt(Pt 계열) 촉매 0.25g (2 중량%)를 첨가하고 상온에서 30분 이상 치밀하게 혼합하여 액상 가교를 통해 포토폴리머 조성물(광중합성 조성물)을 제조하였다.
(2) 홀로그램 기록 매체의 제조
상기 포토폴리머 조성물을 meyer bar를 이용하여, 습윤 필름 두께가 15 ㎛인 40 ㎛ 두께의 TAC 기재에 1.2 m/분으로 적용하여 15 ㎛ 두께로 코팅하고, 80℃에서 10분동안 건조시켜 두께 대략 15 ㎛의 비-점착 포토폴리머층을 형성하였다. 건조 후 포토폴리머의 코팅 두께는 약 15 ㎛ 이며, 포토폴리머의 굴절률(n)은 약 1.501 이다. 그리고, 약 25 ℃ 및 50RH%의 상대 습도의 항온 항습 조건의 암실에서 샘플을 24시간 이상 방치하였다.
이렇게 제조된 포토폴리머층에 대하여 Slanted 기록방법으로 적색 홀로그램 노출에 의해 혼입되도록 하였다.
이어서, 0.70 mm 두께 및 10X10 cm 크기의 slide 글라스(5)에 동일크기의 BPSA 접착 보호층(4)을 25 ㎛ 두께로 적층하여 포토폴리머 필름을 제조한 후, 박리시 지표 역할을 위해 60㎛ 이형 필름(Mold release film, MRF) 필름(3)을 상기 접착 보호층의 끝단에서 0.5 내지 1cm 정도 교차하도록 소정 간격으로 이격시켜 적층하였다.
이후, 상기 이형 필름이 접착 보호층의 끝단에서 교차하여 형성된 접착 보호층 상에 상기 포토폴리머층(2)이 닿도록 25 mm 두께로 1차 적층 후, 그 위에 다시 포토폴리머층(1)이 닿도록 25 mm두께로 2차 적층을 진행하여 도 1의 구조의 최종 홀로그램 기록 매체(포토폴리머 필름)를 제조하였다(폭 25 mm, 길이 80 mm, 두께 55 ㎛).
[실시예 2 내지 6 및 비교예 1 내지 3: 포토폴리머 조성물 및 홀로그램 기록 매체의 제조]
첨가 성분을 하기 표 1에 기재된 바와 같이 달리한 것을 제외하고 실시예 1과 동일한 방법으로 포토폴리머 조성물 및 이로부터 홀로그램 기록 매체를 제조하였다.
광중합성 단량체
(기록 단량체)
접착 첨가제 단관능 아크릴레이트계 단량체 (추가) 광중합성 단량체 중 단관능 아크릴레이트계 단량의 비율 (중량%)
실시예 1 HR6042
14.5g
BYK 331
0.11g
2-페닐페녹시에틸
아크릴레이트, 1.6g
약 46 중량%
실시예 2 HR604212.9g BYK 331
0.11g
2-페닐페녹시에틸
아크릴레이트, 3.2g
약 52 중량%
실시예 3 HR604211.3g BYK 331
0.11g
2-페닐페녹시에틸
아크릴레이트, 4.8g
약 58 중량%
실시예 4 HR60429.7g BYK 331
0.11g
2-페닐페녹시에틸
아크릴레이트, 6.4g
약 64 중량%
실시예 5 HR604214.5g BYK 3565
0.11g
2-페닐페녹시에틸
아크릴레이트, 1.6g
약 46 중량%
실시예 6 HR604212.9g BYK 3565
0.11g
2-페닐페녹시에틸
아크릴레이트, 3.2g
약 52 중량%
비교예 1 HR6042
16.1
0 0 40중량%
비교예 2 HR6042
16.1
BYK 3550
0.11g
0 40중량%
비교예 3 HR604216.1 BYK 310
0.11g
0 40중량%
* HR6042 (다관능 아크릴레이트계 단량체: 단관능 아크릴레이트계 단량체 6:4의 중량비로 포함)
[실험예: 홀로그래픽 기록(홀로그램 기록 매체의 물성 및 성능 평가)]
상기 실시예 및 비교예에 대하여 다음 방법으로 물성을 평가하여 그 결과를 표 2에 나타내었다.
(1) 접착성 평가
상기 홀로그램 기록 매체 샘플에서, 이형 필름(3) 및 접착 보호층 (4)을 박리하여 포토폴리머층 (2)과 접착 보호층(4) 간의 접착력을 접착력 측정기로 측정하여 그 결과를 표 2에 나타내었다. 접착력 측정기는 Texture Analyzer 장비를 이용하여 180°Peel Test를 진행하여 폭 25mm에 걸리는 하중을 측정하여 접착성을 평가하였다.
(2) 수접촉각 측정
상기 홀로그램 기록 매체 샘플에 대하여, 660 nm의 적색 광원(광량 3.0 mJ)에 노출된 포토폴리머층에 H2O를 2㎕ 적하한 후, 접촉각 측정기 (drop shape analyzer)로 포토폴리머층의 수접촉각 (표면 접촉각)을 측정하였다.
(3) 회절 효율 측정 (Diffractive Efficiency, DE) (단위 %)
상기 포토폴리머 조성물을 이용한 홀로그램 기록 매체 샘플에 대하여, UV-VIS 분광광도계(Shimadzu社 SolidSpec-3700)를 이용하여 기록된 포토폴리머의 반사 스펙트럼을 측정하여 반사 피크를 확인하여 회절 효율을 측정하였다.
구체적으로, 상기 실시예 및 비교예 각각에서 제조된 포토폴리머 코팅면을 slide 글라스에 라미네이트 하고, 기록시 레이저가 유리면을 먼저 통과하도록 고정하였다.
두 간섭광(참조광 및 물체광)의 간섭을 통해서 홀로그래픽을 기록하며, 투과형 기록은 두 빔을 샘플의 동일면에 입사하였다. 두 빔의 입사각에 따라 회절 효율은 변하게 되며, 두 빔의 입사각이 동일한 경우 non-slanted가 된다. non-slanted 기록은 두빔의 입사각이 법선 기준으로 동일하므로, 회절 격자는 필름에 수직하게 생성된다.
532nm 파장의 레이저를 사용하여 투과형 non-slanted 방식으로 기록(2θ=45°)하며, 하기 식 2로 회절 효율(η)을 계산하였다.
[식 2]
η(%) = {PD / (PD + PT)} X 100
상기 식 2에서, η은 회절 효율이고, PD는 기록 후 샘플의 회절된 빔의 출력량(mW/㎠)이고, PT는 기록 후 샘플의 투과된 빔의 출력량(mW/㎠)이다.
(4) 굴절률 변조값(Δn) 측정
투과형 홀로그램의 Lossless Dielectric grating은 하기 일반식2로부터 굴절율 변조값(Δn)을 계산할 수 있다.
[일반식 2]
Figure PCTKR2023016083-appb-img-000005
상기 일반식2에서, d는 포토폴리머층의 두께이고, Δn은 굴절율 변조값이며, η(DE)은 회절 효율이고, λ는 기록 파장이다.
(5) 헤이즈
헤이즈는 기록된 포토폴리머의 기록 부위를 JIS K7136:2000에 준거하여 HAZE METER(니혼덴쇼쿠고교사제 「NDH-5000」)를 사용하여 측정했다. 측정광은 홀로그램 기록 매체의 기재 측면으로 입사되었다.
구분 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 비교예1 비교예2 비교예3
포토폴리머층 (2)과 접착 보호층(4) 간의 접착력 (gf/25mm) 1200 1300 1400 1400 600 650 600 15 16
광조사 후
수접촉각 (°)
68 66 66 65 74 74 80 85 84
회절 효율 DE(%) 38 37 35 31 35 32 32 38 39
Δn 0.024 0.023 0.022 0.020 0.025 0.020 0.022 0.023 0.024
헤이즈 (%) 1.9 1.9 2.0 2.0 1.9 1.9 4.8 2.0 2.3
상기 표 2를 참조하면, 발명의 일 구현예에 따른 실시예의 포토폴리머 조성물로부터 제조된 홀로그램 기록 매체는 포토폴리머 조성물에 특정 접착 첨가제를 포함함에 따라, 접착력이 우수하고, 0.020 이상의 굴절률 변조값(Δn)을 갖는 동시에, 우수한 회절 효율 및 낮인 헤이즈 값을 가진다는 점이 확인되었다.이에 반하여, 비교예1의 조성물로 제공되는 홀로그램 기록 매체의 표면은 지나치게 끈적한 것으로 확인하였고, 또한 상대적으로 높은 수치의 헤이즈값을 갖는다는 점이 확인되었다. 즉, 비교예1에서 제공되는 홀로그램 기록 매체는 낮은 투명성을 가질 뿐만 아니라, 다른 기재나 다른 부분에 표면 성분들이 잘 묻어나오는 문제가 있는 것으로 확인되었다.
또한, 비교예 2 및 3의 조성물에 의하여 제공되는 홀로그램 기록 매체는 실시예와 다른 종류의 첨가제를 포함하여 접착력 면에서 실시예에 비해 결과가 모두 불량한 것으로 확인되었다.
따라서, 비교예들이 실시예들과 유사한 굴절률 변조값과 회절율을 나타내더라도, 실시예들보다 높은 헤이즈값을 갖거나 접착력이 불량하여 홀로그램 기록 매체를 타 매개체에 탈 부착시 부착 혹은 탈착이 어려워 홀로그램 기록 매체의 성능 저하를 초래할 수 있다.

Claims (13)

  1. 기재; 접착 보호층; 및 포토폴리머층;을 포함하고,
    광 조사전에 상기 포토폴리머층 및 상기 접착 보호층 간의 접착력이 500 내지 5,000 gf/20nm이고,
    JIS K7136:2000에 준거하여 측정한 상기 포토폴리머층의 헤이즈값이 3% 이하인,
    홀로그램 기록 매체.
  2. 제1항에 있어서,
    광 조사 이후에 상기 포토폴리머층의 수접촉각이 50 내지 100°인, 홀로그램 기록 매체.
  3. 제1항에 있어서,
    상기 접착 보호층 및 포토폴리머층 사이에 이형 필름을 더 포함하는 홀로그램 기록 매체.
  4. 제3항에 있어서,
    상기 이형 필름은 접착 보호층과 포토폴리머층 사이를 박리하기 위해 교차하도록 적층되는, 홀로그램 기록 매체.
  5. 제3항에 있어서,
    상기 이형 필름은 상기 접착 보호층의 끝단에서 0.5 내지 1cm 범위에서 교차하도록 소정 간격으로 이격되어 적층되는 홀로그램 기록 매체.
  6. 제1항에 있어서,
    상기 접착 보호층은 아크릴계 점착제, 실리콘계 점착제, 우레탄계 점착제 및 고무계 점착제로 이루어진 군에서 선택되는 1 이상을 포함하는, 홀로그램 기록 매체.
  7. 제1항에 있어서,
    상기 포토폴리머층은 고분자 매트릭스 또는 이의 전구체; 단관능 단량체 및 다관능 단량체를 포함한 광반응성 단량체; 접착 첨가제; 및 광 개시제;를 포함하는 포토폴리머 조성물을 포함하고,
    상기 광반응성 단량체 중 단관능 단량체 비율이 40중량% 초과 내지 70 중량% 이하인,
    홀로그램 기록 매체.
  8. 제7항에 있어서,
    상기 접착 첨가제는 폴리디메틸실록산계 첨가제를 포함하는, 홀로그램 기록 매체.
  9. 제7항에 있어서,
    상기 포토폴리머 조성물은 비반응성 불소계 화합물을 더 포함하는, 홀로그램 기록 매체.
  10. 제1항의 홀로그램 기록 매체를 포함하는 광학 소자.
  11. 고분자 매트릭스 또는 이의 전구체; 단관능 단량체 및 다관능 단량체를 포함한 광반응성 단량체; 접착 첨가제; 및 광 개시제;를 포함하고,
    상기 광반응성 단량체 중 단관능 단량체 비율이 40중량% 초과 내지 70 중량% 이하인, 홀로그램 형성용 포토폴리머 조성물.
  12. 제11항에 있어서,
    상기 접착 첨가제는 폴리디메틸실록산계 첨가제를 포함하는, 홀로그램 형성용 포토폴리머 조성물.
  13. 제11항에 있어서,
    상기 홀로그램 형성용 포토폴리머 조성물은 비반응성 불소계 화합물을 더 포함하는,
    홀로그램 형성용 포토폴리머 조성물.
PCT/KR2023/016083 2022-10-18 2023-10-17 홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 및 광학 소자 WO2024085619A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380014191.4A CN118251432A (zh) 2022-10-18 2023-10-17 全息记录介质、用于形成光聚合物层的组合物和光学元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220134345 2022-10-18
KR10-2022-0134345 2022-10-18
KR10-2023-0138056 2023-10-16
KR1020230138056A KR20240054190A (ko) 2022-10-18 2023-10-16 홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 및 광학 소자

Publications (1)

Publication Number Publication Date
WO2024085619A1 true WO2024085619A1 (ko) 2024-04-25

Family

ID=90738269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016083 WO2024085619A1 (ko) 2022-10-18 2023-10-17 홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 및 광학 소자

Country Status (1)

Country Link
WO (1) WO2024085619A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243078A (ja) * 2005-02-28 2006-09-14 Fuji Xerox Co Ltd ホログラム記録媒体
US8715889B2 (en) * 2009-02-12 2014-05-06 Bayer Materialscience Ag Photopolymer compositions as printable formulations
US20150212487A1 (en) * 2012-08-24 2015-07-30 Dai Nippon Printing Co., Ltd. Photosensitive composition for volume hologram recording, photosensitive substrate for volume hologram recording, and volume hologram recorded medium
CN106232651A (zh) * 2014-04-25 2016-12-14 科思创德国股份有限公司 作为全息光聚合物组合物中的书写单体的芳族二醇醚
KR102106544B1 (ko) * 2017-10-16 2020-05-04 주식회사 엘지화학 포토폴리머 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243078A (ja) * 2005-02-28 2006-09-14 Fuji Xerox Co Ltd ホログラム記録媒体
US8715889B2 (en) * 2009-02-12 2014-05-06 Bayer Materialscience Ag Photopolymer compositions as printable formulations
US20150212487A1 (en) * 2012-08-24 2015-07-30 Dai Nippon Printing Co., Ltd. Photosensitive composition for volume hologram recording, photosensitive substrate for volume hologram recording, and volume hologram recorded medium
CN106232651A (zh) * 2014-04-25 2016-12-14 科思创德国股份有限公司 作为全息光聚合物组合物中的书写单体的芳族二醇醚
KR102106544B1 (ko) * 2017-10-16 2020-05-04 주식회사 엘지화학 포토폴리머 조성물

Similar Documents

Publication Publication Date Title
WO2022169307A1 (ko) 홀로그램 형성용 포토폴리머 조성물, 홀로그램 기록 매체, 및 광학 소자
WO2020055096A1 (ko) 홀로그램 매체
WO2020067668A1 (ko) 홀로그램 매체
WO2021002648A1 (ko) 포토폴리머 조성물
KR102156872B1 (ko) 포토폴리머 조성물
WO2024085619A1 (ko) 홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 및 광학 소자
WO2024106773A1 (ko) 포토폴리머 조성물, 포토폴리머 필름, 홀로그램 기록 매체, 광학 소자 및 홀로그래픽 기록 방법
WO2024096361A1 (ko) 홀로그램 기록 매체 및 이를 포함하는 광학 소자
WO2024117657A1 (ko) 포토폴리머 필름, 포토폴리머 필름 형성용 조성물, 홀로그램 기록 매체 및 광학 소자
WO2024096357A1 (ko) 불소계 화합물, 광중합성 조성물, 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자
WO2024096358A1 (ko) 홀로그램 기록 매체 및 이를 포함하는 광학 소자
WO2024096359A1 (ko) 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자
WO2024096356A1 (ko) 불소계 화합물, 광중합성 조성물, 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자
WO2024096360A1 (ko) 포토폴리머 조성물, 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자
WO2020122678A1 (ko) 포토폴리머 조성물
WO2021101264A1 (ko) 함질소 헤테로방향족 포함 아조벤젠 화합물 및 이를 포함하는 청색 홀로그램 기록용 조성물
KR20240054190A (ko) 홀로그램 기록 매체, 포토폴리머층 형성용 조성물, 및 광학 소자
WO2020153638A1 (ko) 포토폴리머 조성물
KR20240064264A (ko) 포토폴리머 조성물, 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자
KR20240064249A (ko) 포토폴리머 조성물, 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자
WO2024107034A1 (ko) 광반응성 고분자 조성물, 이를 포함하는 광 기록 매체, 이를 이용한 3차원 구조체의 제조 방법
CN118251432A (zh) 全息记录介质、用于形成光聚合物层的组合物和光学元件
KR20240050765A (ko) 포토폴리머 조성물, 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자
KR20240064265A (ko) 포토폴리머 조성물, 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자
KR20240064250A (ko) 포토폴리머 조성물, 홀로그램 기록 매체, 이의 제조 방법 및 이를 포함하는 광학 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380014191.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18710498

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23880196

Country of ref document: EP

Kind code of ref document: A1