WO2024084915A1 - Rubber composition - Google Patents
Rubber composition Download PDFInfo
- Publication number
- WO2024084915A1 WO2024084915A1 PCT/JP2023/035372 JP2023035372W WO2024084915A1 WO 2024084915 A1 WO2024084915 A1 WO 2024084915A1 JP 2023035372 W JP2023035372 W JP 2023035372W WO 2024084915 A1 WO2024084915 A1 WO 2024084915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber
- aromatic
- weight
- rubber composition
- parts
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 114
- 239000005060 rubber Substances 0.000 title claims abstract description 109
- 239000000203 mixture Substances 0.000 title claims abstract description 83
- 125000003118 aryl group Chemical group 0.000 claims abstract description 53
- 229920001515 polyalkylene glycol Polymers 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 claims description 56
- 239000011347 resin Substances 0.000 claims description 56
- 239000003208 petroleum Substances 0.000 claims description 52
- 229920006272 aromatic hydrocarbon resin Polymers 0.000 claims description 24
- 239000000945 filler Substances 0.000 claims description 19
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 17
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 17
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 14
- 229910052794 bromium Inorganic materials 0.000 claims description 14
- 229920001577 copolymer Polymers 0.000 claims description 14
- 239000003607 modifier Substances 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 11
- 239000004793 Polystyrene Substances 0.000 claims description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims description 9
- 229920002223 polystyrene Polymers 0.000 claims description 9
- 229920000459 Nitrile rubber Polymers 0.000 claims description 8
- 239000005062 Polybutadiene Substances 0.000 claims description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 8
- 238000005227 gel permeation chromatography Methods 0.000 claims description 8
- -1 polybutylene Polymers 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 8
- 239000011787 zinc oxide Substances 0.000 claims description 8
- 229920006026 co-polymeric resin Polymers 0.000 claims description 7
- 239000002202 Polyethylene glycol Substances 0.000 claims description 6
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 6
- 229920002857 polybutadiene Polymers 0.000 claims description 6
- 244000043261 Hevea brasiliensis Species 0.000 claims description 5
- 229920003049 isoprene rubber Polymers 0.000 claims description 5
- 229920003052 natural elastomer Polymers 0.000 claims description 5
- 229920001194 natural rubber Polymers 0.000 claims description 5
- 229920001451 polypropylene glycol Polymers 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 4
- 229920001748 polybutylene Polymers 0.000 claims description 2
- 239000013032 Hydrocarbon resin Substances 0.000 abstract description 9
- 229920006270 hydrocarbon resin Polymers 0.000 abstract description 9
- 239000012763 reinforcing filler Substances 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 9
- 101000692259 Homo sapiens Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 Proteins 0.000 description 8
- 102100026066 Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 Human genes 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 101000987219 Sus scrofa Pregnancy-associated glycoprotein 1 Proteins 0.000 description 8
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000004073 vulcanization Methods 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 7
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 239000000806 elastomer Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 235000021355 Stearic acid Nutrition 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 229920006271 aliphatic hydrocarbon resin Polymers 0.000 description 4
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 150000003505 terpenes Chemical class 0.000 description 4
- 235000007586 terpenes Nutrition 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 239000004636 vulcanized rubber Substances 0.000 description 4
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002174 Styrene-butadiene Substances 0.000 description 3
- QROGIFZRVHSFLM-QHHAFSJGSA-N [(e)-prop-1-enyl]benzene Chemical compound C\C=C\C1=CC=CC=C1 QROGIFZRVHSFLM-QHHAFSJGSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- REQPQFUJGGOFQL-UHFFFAOYSA-N dimethylcarbamothioyl n,n-dimethylcarbamodithioate Chemical compound CN(C)C(=S)SC(=S)N(C)C REQPQFUJGGOFQL-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- NFWSQSCIDYBUOU-UHFFFAOYSA-N methylcyclopentadiene Chemical compound CC1=CC=CC1 NFWSQSCIDYBUOU-UHFFFAOYSA-N 0.000 description 3
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 3
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- LRTOHSLOFCWHRF-UHFFFAOYSA-N 1-methyl-1h-indene Chemical compound C1=CC=C2C(C)C=CC2=C1 LRTOHSLOFCWHRF-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- GUOAPVPPPVLIQQ-UHFFFAOYSA-N dimethyldicyclopentadiene Chemical compound C1=CC2CC1C1C2C(C)C(C)=C1 GUOAPVPPPVLIQQ-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000051 modifying effect Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 2
- 229960002447 thiram Drugs 0.000 description 2
- 229920003067 (meth)acrylic acid ester copolymer Polymers 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- WHEIBFYABJHSOM-UHFFFAOYSA-N 2-methyl-5-phenylpenta-2,4-dienoic acid Chemical compound OC(=O)C(C)=CC=CC1=CC=CC=C1 WHEIBFYABJHSOM-UHFFFAOYSA-N 0.000 description 1
- QWJWPDHACGGABF-UHFFFAOYSA-N 5,5-dimethylcyclopenta-1,3-diene Chemical compound CC1(C)C=CC=C1 QWJWPDHACGGABF-UHFFFAOYSA-N 0.000 description 1
- FEIQOMCWGDNMHM-UHFFFAOYSA-N 5-phenylpenta-2,4-dienoic acid Chemical compound OC(=O)C=CC=CC1=CC=CC=C1 FEIQOMCWGDNMHM-UHFFFAOYSA-N 0.000 description 1
- 102100024003 Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 Human genes 0.000 description 1
- 102100026291 Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 Human genes 0.000 description 1
- 101710112065 Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 Proteins 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- PIXXETNNRFPDKM-UHFFFAOYSA-N C(C(C)C)O.B(F)(F)F Chemical compound C(C(C)C)O.B(F)(F)F PIXXETNNRFPDKM-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- 101100380306 Homo sapiens ASAP1 gene Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 101150003633 PAG2 gene Proteins 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical class CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229920005557 bromobutyl Polymers 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229920005555 halobutyl Polymers 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 125000004817 pentamethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229920003066 styrene-(meth)acrylic acid ester copolymer Polymers 0.000 description 1
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920006346 thermoplastic polyester elastomer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L45/00—Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L57/00—Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
Definitions
- the present invention relates to a new rubber composition that contains an aromatic hydrocarbon resin, a filler, and a polyalkylene glycol in the rubber, and in particular to a new rubber composition that has excellent grip and tear resistance and properties suitable for use in shoe soles, as well as soles and shoes that contain the rubber composition, and a sole rubber modifier that is an aromatic petroleum resin.
- shoes are required to have high grip properties in a variety of environments, including on dry ground and on wet ground due to rain.
- a method for improving the grip of shoes for example, by blending activated carbon with rubber, when the sole of the shoe comes into contact with the ground via a water film, air is released from the pores of the activated carbon due to distortion of the sole, forming an area where the sole of the shoe comes into direct contact with the ground, thereby improving the grip on wet ground (hereinafter sometimes referred to as wet grip) (see, for example, Patent Document 1).
- wet grip wet grip
- Patent Document 2 a terpene resin with natural rubber and brominated butyl rubber
- the present invention aims to solve these problems and provide a novel rubber composition that improves grip and tear resistance, a sole and a shoe that contain the rubber composition, and a sole rubber modifier that is an aromatic petroleum resin.
- a rubber composition in which a filler, an aromatic hydrocarbon resin, and a polyalkylene glycol are blended in specific ratios with respect to a rubber component exhibits particularly excellent grip properties and tear resistance, and also exhibits performance suitable for use in shoe soles, thereby completing the present invention. That is, the present invention resides in the following [1] to [11].
- a rubber composition comprising 100 parts by weight of a rubber component (A), 5 to 100 parts by weight of a filler (B), 1 to 50 parts by weight of an aromatic hydrocarbon resin (C), and 0.1 to 10 parts by weight of a polyalkylene glycol (D).
- the rubber component (A) is at least one rubber selected from the group consisting of natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber.
- the aromatic hydrocarbon resin (C) is at least one aromatic hydrocarbon resin selected from aromatic petroleum resins, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer resins, each having a bromine value (Br2/100g) of 20 to 60g in accordance with JIS K2605.
- the aromatic hydrocarbon resin (C) is at least one aromatic hydrocarbon resin selected from the group consisting of aromatic petroleum resins having a softening point of 80 to 130°C, a weight average molecular weight of 500 to 6,000 as calculated in terms of standard polystyrene by gel permeation chromatography, and aromatic group components of 10 to 100 mol%, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer resins.
- a shoe sole comprising the rubber composition according to any one of [1] to [6].
- a rubber modifier for modifying sole rubber characterized in that the modifier is an aromatic petroleum resin having a bromine number ( Br2 /100g) of 20 to 60g according to JIS K2605, a softening point of 80 to 130°C, a weight average molecular weight of 500 to 6000 in terms of standard polystyrene measured by gel permeation chromatography, and an aromatic group component of 10 to 100 mol%.
- the sole rubber modifier according to [9] characterized in that the aromatic petroleum resin is at least one aromatic petroleum resin selected from the group consisting of aromatic petroleum resins, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer petroleum resins.
- the present invention by blending a filler, an aromatic hydrocarbon resin, and a polyalkylene glycol with the rubber component, it is possible to provide a shoe sole that exhibits particularly excellent grip and tear resistance, a rubber composition suitable for shoes, and even a modifier for sole rubber.
- the rubber component (A) constituting the rubber composition of the present invention may be any rubber that belongs to the category generally called rubber, and examples thereof include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene diene rubber, butyl rubber, halogenated butyl rubber, acrylonitrile butadiene rubber, chloroprene rubber, silicone rubber, styrene-based elastomer (TPS), olefin-based elastomer (TPO), urethane-based elastomer (TPU), polyester-based elastomer (TPEE), polyamide-based elastomer (TPA), polybutadiene-based elastomer (RB), polyvinyl chloride (PVC), ethylene/vinyl acetate copolymer (EVA), etc.
- natural rubber isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene prop
- natural rubber isoprene rubber, butadiene rubber, styrene butadiene rubber, and acrylonitrile butadiene rubber are preferable because they are particularly excellent in tensile strength and durability and are suitable for items such as shoe soles that require grip and durability.
- These rubber components (A) may be used alone or in combination of two or more kinds. The use of a combination of two or more kinds is preferred since it is particularly suitable for shoe soles and the like, which require gripping properties and durability.
- the filler (B) constituting the rubber composition of the present invention can be any of those generally compounded in rubber, such as silica, carbon black, calcium carbonate, talc, clay, mica, alumina, zinc oxide, magnesium oxide, aluminum hydroxide, glass fiber, glass beads, glass balloons, and carbon fiber.
- reinforcing fillers such as silica, carbon black, calcium carbonate, and zinc oxide are preferred, as they can increase the tensile strength and durability of the rubber composition and are suitable for use in products that require grip and durability, such as shoe soles.
- fillers (B) may be used alone or in combination of two or more types, and are preferably used in combination of two or more types, as they are particularly suitable for use in products that require grip and durability, such as shoe soles.
- the amount of filler (B) to be compounded in this case is preferably 5 to 100 parts by weight, and more preferably 10 to 70 parts by weight, based on the rubber component (A).
- the filler (B) is less than 5 parts by weight, the tensile strength and durability will be poor. On the other hand, if it exceeds 100 parts by weight, the processability will be poor.
- the aromatic hydrocarbon resin (C) constituting the rubber composition of the present invention may be any hydrocarbon resin containing aromatics as a component thereof, and examples thereof include homopolymer resins, copolymer resins, and mixed resins thereof that contain aromatic monomers such as styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, vinyltoluene, divinylbenzene, indene, and methylindene as polymerization components.
- aromatic monomers may be aromatic component fractions, which are fractions (sometimes referred to as C9 fractions) that are obtained by thermal decomposition of petroleum and have a boiling point range of 140 to 280°C.
- the copolymerization component may be any monomer capable of copolymerization with an aromatic monomer, such as olefins, dienes, (meth)acrylic acids, (meth)acrylic acid esters, vinyl chloride, vinylidene chloride, vinyl fluoride, or an aliphatic fraction obtained by thermal decomposition of petroleum, which has a boiling point range of 20 to 110°C (sometimes referred to as a C5 fraction).
- an aromatic monomer such as olefins, dienes, (meth)acrylic acids, (meth)acrylic acid esters, vinyl chloride, vinylidene chloride, vinyl fluoride, or an aliphatic fraction obtained by thermal decomposition of petroleum, which has a boiling point range of 20 to 110°C (sometimes referred to as a C5 fraction).
- Examples of monomers constituting the aliphatic fraction include linear aliphatics such as isoprene and piperylene; and cyclic aliphatics such as cyclopentadiene, methylcyclopentadiene, dicyclopentadiene, methyldicyclopentadiene, and dimethyldicyclopentadiene.
- aromatic hydrocarbon resin (C) examples include polystyrene, polystyrene oligomer, ⁇ -methylstyrene oligomer, styrene- ⁇ -methylstyrene copolymer, styrene-acrylonitrile copolymer, styrene-acrylic acid (ester) copolymer, styrene-methacrylic acid (ester) copolymer, ⁇ -methylstyrene-acrylonitrile copolymer, ⁇ -methylstyrene-acrylic acid (ester) copolymer, ⁇ -methylstyrene-methacrylic acid (ester) copolymer, aromatic petroleum resin which is a polymer of aromatic component fraction, aliphatic-aromatic petroleum resin which is a copolymer of aliphatic component fraction and aromatic component fraction, aromatic-dicyclopentadiene copolymer resin which is a copolymer of aromatic component
- the aromatic hydrocarbon resin (C) preferably has a bromine number in the range of 20 to 60 gBr2 /100 g, particularly 25 to 50 gBr2 /100 g, as measured in accordance with JIS K2605, in order to provide a rubber composition having particularly high tear resistance and crosslink density.
- the aromatic hydrocarbon resin (C) preferably has a softening point in the range of 80 to 130° C., particularly 85 to 125° C., since this results in a rubber composition with excellent processability.
- the weight average molecular weight (sometimes referred to as Mw) measured in terms of standard polystyrene using gel permeation chromatography (sometimes referred to as GPC) is preferably in the range of 500 to 6000, particularly 600 to 4000.
- the aromatic hydrocarbon resin (C) is preferably an aromatic petroleum resin having a bromine number (Br 2 /100g) of 20 to 60g, a softening point of 80 to 130°C, an Mw of 500 to 6000, and 10 to 100 mol% aromatic group components, as measured in accordance with JIS K2605, since it is a modifier for sole rubber that can provide sole rubber with particularly excellent grip and tear resistance, and more preferably an aromatic petroleum resin having a bromine number (Br 2 /100g) of 25 to 50g, a softening point of 85 to 125°C, an Mw of 600 to 4000, and 35 to 100 mol% aromatic group components.
- aromatic petroleum resins include aromatic petroleum resins, aliphatic-aromatic petroleum resins, aromatic-dicyclopentadiene copolymer petroleum resins, etc., and examples of the aromatic group components in these resins include styrene components, ⁇ -methylstyrene components, ⁇ -methylstyrene components, vinyltoluene components, indene components, methylindene components, etc.
- aromatic petroleum resins include resins obtained from aromatic component fractions, which are fractions (sometimes referred to as C9 fractions) having a boiling point range of 140 to 280°C obtained by thermal decomposition of petroleum.
- examples of aliphatic-aromatic petroleum resins include petroleum resins that are copolymers of an aliphatic component fraction (sometimes referred to as a C5 fraction) obtained by thermal decomposition of petroleum and an aromatic component fraction, the fraction having a boiling point range of 20 to 110°C.
- Examples of monomers that constitute the aliphatic component fraction include linear aliphatics such as isoprene and piperylene; and cyclic aliphatics such as cyclopentadiene, methylcyclopentadiene, dicyclopentadiene, methyldicyclopentadiene, and dimethyldicyclopentadiene.
- aromatic-dicyclopentadiene copolymerized petroleum resins include petroleum resins that are copolymers of dicyclopentadienes and the aromatic component fraction, the dicyclopentadienes being cyclopentadiene, methylcyclopentadiene, dicyclopentadiene, dimethylcyclopentadiene, and the like.
- the amount of aromatic hydrocarbon resin (C) is 1 to 50 parts by weight, and preferably 1 to 20 parts by weight, per 100 parts by weight of rubber component (A). If it is less than 1 part by weight, the resulting composition will have poor gripping properties. On the other hand, if it exceeds 50 parts by weight, the resulting composition will have poor tensile strength.
- the rubber composition of the present invention is a rubber component (A) that further contains polyalkylene glycol (D) in addition to filler (B) and aromatic hydrocarbon resin (C), and the inclusion of polyalkylene glycol (D) results in excellent dispersibility of the filler (B).
- polyalkylene glycol (D) examples include polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer, polytetramethylene glycol, and polyethylene glycol-polytetramethylene glycol copolymer.
- polyethylene glycols with a weight average molecular weight in the range of 500 to 8000 as measured in terms of standard polystyrene by gel permeation chromatography are preferred, and polyethylene glycols in the range of 1000 to 6000 are particularly preferred, as they result in rubber compositions with particularly excellent mechanical properties.
- the amount of polyalkylene glycol (D) is preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 7 parts by weight, relative to the rubber component (A). If it is less than 0.1 part by weight, the filler will not disperse well, and the moldability and mechanical properties will be poor. On the other hand, if it exceeds 10 parts by weight, the heat resistance and durability will be poor.
- the rubber composition of the present invention may contain a silane coupling agent.
- the silane coupling agent is not particularly limited, and examples thereof include sulfide-based, mercapto-based, epoxy-based, vinyl-based, acryloyl-based, methacryloyl-based, and amino-based silane coupling agents. These may be used alone or in combination. Among them, sulfide-based and mercapto-based silane coupling agents, which have excellent tensile strength, are preferred.
- the rubber composition of the present invention may be compounded with a crosslinking agent.
- the crosslinking agent in this case is not particularly limited, and examples thereof include sulfur, organic peroxides, and thiuram-based crosslinking agents.
- a crosslinking accelerator may be compounded together with the crosslinking agent.
- the crosslinking accelerator is not particularly limited, and examples thereof include thiazole-based, thiuram-based, thiourea-based, sulfenamide-based, dithiocarbamic acid-based, guanidine-based, and mixtures thereof.
- compounding agents normally used in the rubber industry such as softeners, plasticizers, flame retardants, antioxidants, stearic acid, etc.
- the rubber composition of the present invention can be prepared by blending the rubber component (A), the filler (B), the aromatic hydrocarbon resin (C), the polyalkylene glycol (D), and various compounding ingredients appropriately selected as necessary, and mixing them using a mixing method such as a Banbury mixer, a pressure kneader, an open roll, etc.
- the unvulcanized compound thus obtained can be formed into a sheet using, for example, a calendar, a roll, an extruder, etc., and then crosslinked in a heat medium to produce a vulcanized rubber composition.
- the rubber composition of the present invention exhibits excellent grip and tear resistance, and can therefore be used in a variety of rubber applications, such as rolls, rugs, tubes, grips, handles, and shoe soles.
- it can provide soles that require high grip for safety in addition to excellent durability and comfort, sports shoes, dress shoes, casual shoes, boots, sneakers, sandals, slippers, rubber boots, safety shoes, etc., having the same, and sports shoes and shoes such as golf shoes, running shoes, soccer shoes, tennis shoes, basketball shoes, baseball shoes, and jogging shoes, which require grip during exercise and durability to withstand use in harsh environments.
- Rubber Composition Compounding Components Rubber Component (A) Styrene butadiene rubber (hereinafter sometimes referred to as SBR): (product name) Nipol 1502, manufactured by Nippon Zeon. Butadiene rubber (hereinafter sometimes referred to as BR): (product name) Nipol BR1220, manufactured by Nippon Zeon. Isoprene rubber (hereinafter sometimes referred to as IR): (product name) Nipol IR2200, manufactured by Nippon Zeon.
- SBR Styrene butadiene rubber
- BR butadiene rubber
- IR Isoprene rubber
- Silica Nipsil VN3 (product name) manufactured by Tosoh Silica.
- Calcium carbonate Heavy calcium carbonate, made by Maruo Calcium.
- Zinc oxide manufactured by Sakai Chemical Industry Co., Ltd. (product name) zinc oxide type 1.
- Aromatic Hydrocarbon Resin (C) Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C1): Petrotack 90 (product name), manufactured by Tosoh Corporation. Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C2): Petrotack 100V (product name), manufactured by Tosoh Corporation. Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C3): Petokol LX (product name), manufactured by Tosoh Corporation. Aromatic hydrocarbon resin (hereinafter, sometimes referred to as C4): NOVARES TP100 (product name) manufactured by RAIN CARBON. Aliphatic hydrocarbon resin: Eneos (product name) T-REZ RA100.
- Terpene resin Yasuhara Chemical (product name) YS Resin PX1150.
- Aromatic-containing hydrocarbon resin hereinafter, sometimes referred to as "hydrocarbon resin 5"
- NOVARES TL10 product name
- Silane coupling agent Evonik (product name) Si69.
- Oil Idemitsu Kosan (product name) Diana Process Oil PW-90.
- Stearic acid NOF Corporation (product name) NAA-180.
- Antioxidant Nocrac 200 Crystal (product name) manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
- Sulfur Sulfax 5 (product name) manufactured by Tsurumi Chemical Industry Co., Ltd.
- Vulcanization accelerator hereeinafter, sometimes referred to as MBTS: Noccela DM-P (product name), manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
- Vulcanization accelerator (hereinafter sometimes referred to as MBT): Noccela MP (product name) manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
- Vulcanization accelerator (hereinafter, sometimes referred to as TMTM): Noccela TS (product name), manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
- a friction tester (TRIBOGEAR friction and wear tester TYPE: 38 manufactured by Shinto Scientific Co., Ltd.) was used to measure the static friction coefficient by sliding a spherical aluminum probe on a test piece having a length of 100 mm, a width of 25 mm, and a thickness of 2 mm.
- the measurement conditions were an ambient temperature of 23°C, a probe vertical load of 4.9 N, and a sliding speed of 60 mm/min.
- the static friction coefficient value when the probe was slid horizontally on the surface of the test piece was used as an index of dry grip properties.
- the surface of the test piece was wetted with water, and the static friction coefficient value when similarly measured was used as an index of wet grip properties.
- Example 1 100 parts by weight of SBR were mixed with 10 parts by weight of C1, 3 parts by weight of PAG1, 50 parts by weight of silica, 5 parts by weight of zinc oxide (55 parts by weight as the total of the fillers), 5 parts by weight of oil, 1 part by weight of antioxidant, and 2 parts by weight of stearic acid in a Banbury mixer (manufactured by Toyo Seiki, (product name) BR600). Then, 1.5 parts by weight of sulfur, 2 parts by weight of MBTS, and 0.4 parts by weight of MBT were added, and the mixture was subjected to finish mixing and then sheeting using an 8-inch roll to obtain an unvulcanized rubber composition.
- the rubber composition was then vulcanized using a steam heating press at a temperature of 150° C. for 30 minutes to obtain a vulcanized rubber composition.
- the measurement results of grip property and tear resistance are shown in Table 2.
- the rubber composition obtained was excellent in dry grip property, wet grip property and tear resistance.
- Comparative Example 1 A composition was obtained in the same manner as in Example 1, except that C1 was not contained, and the composition was evaluated. The results are shown in Table 3. The resulting rubber composition was poor in dry grip property, wet grip property and tear resistance. Comparative Example 2 A composition was obtained and evaluated in the same manner as in Example 1, except that an aliphatic hydrocarbon resin was used instead of C1. The results are shown in Table 3. The resulting composition was poor in dry grip property, wet grip property and tear resistance. Comparative Example 3 A composition was obtained and evaluated in the same manner as in Example 4, except that a terpene resin was used instead of C4. The results are shown in Table 3. The resulting composition was poor in dry grip property, wet grip property and tear resistance.
- Comparative Example 4 A composition was obtained in the same manner as in Example 1, except that PAG1 was not contained, and the composition was evaluated. The results are shown in Table 3. The resulting composition had poor tear resistance.
- Comparative Example 5 A composition was obtained in the same manner as in Example 1, except that 15 parts by weight of PAG1 was contained, and the composition was evaluated. The results are shown in Table 3. The resulting composition had poor tear resistance.
- Comparative Example 6 A composition was obtained in the same manner as in Example 1, except that it contained 60 parts by weight of C1, 15 parts by weight of calcium carbonate, 1 part by weight of MBTS, and 0.2 parts by weight of TMTM, and the composition was evaluated. The results are shown in Table 3. The resulting rubber composition had poor tear resistance.
- Example 10 A 2-liter glass autoclave was charged with 25% by weight of C5 fraction (3% by weight of C4 components, 50% by weight of pentanes, 20% by weight of pentenes, 12% by weight of isoprene, 7% by weight of piperylene, 8% by weight of cyclopentadiene) obtained by cracking naphtha as a raw material oil, and 75% by weight of C9 fraction (13% by weight of styrene, 6% by weight of ⁇ -methylstyrene, 8% by weight of ⁇ -methylstyrene, 11% by weight of vinyltoluene, 16% by weight of indene, 31% by weight of C10 olefins, 15% by weight of C9 saturated aromatics) as a raw material oil.
- C5 fraction 3% by weight of C4 components, 50% by weight of pentanes, 20% by weight of pentenes, 12% by weight of isoprene, 7% by weight of piperylene, 8% by weight of
- Example 11 Aliphatic-aromatic petroleum resin 2 (hereinafter, sometimes referred to as petroleum resin 2) was obtained in the same manner as in Example 1, except that the C5 fraction was 57% by weight and the C9 fraction was 43% by weight.
- the obtained petroleum resin 2 had an aromatic group component of 41 mol%, a bromine number of 42 g, a softening point of 97°C, and a weight average molecular weight of 3500. The results are shown in Table 4.
- a rubber composition was prepared in the same manner as in Example 11, except that the obtained petroleum resin 2 was used as a modifier for sole rubber, and the evaluation results are shown in Table 5.
- the obtained rubber composition was excellent in dry grip property, wet grip property, and tear resistance, and was suitable as a sole rubber.
- Example 12 Aromatic petroleum resin 3 (hereinafter, sometimes referred to as petroleum resin 3) was obtained in the same manner as in Example 1, except that the C9 fraction was 100% by weight.
- the obtained petroleum resin 3 had an aromatic group component of 100 mol%, a bromine number of 25 g, a softening point of 95° C., and a weight average molecular weight of 1400. The results are shown in Table 4.
- a rubber composition was prepared in the same manner as in Example 11, except that the obtained petroleum resin 3 was used as a modifier for sole rubber, and the evaluation results are shown in Table 5.
- the obtained rubber composition was excellent in dry grip property, wet grip property, and tear resistance, and was suitable as a sole rubber.
- Comparative Example 7 A rubber composition was prepared in the same manner as in Example 10, except that C4 (aromatic group component 90 mol %, bromine number 15 g, softening point 100° C., weight average molecular weight 1770) was used and PAG1 was not used, and the evaluation results are shown in Table 5. The obtained rubber composition was poor in dry grip property, wet grip property and tear resistance, and was not suitable as a sole rubber.
- C4 aromatic group component 90 mol %, bromine number 15 g, softening point 100° C., weight average molecular weight 1770
- Comparative Example 8 A rubber composition was prepared in the same manner as in Example 11, except that an aliphatic hydrocarbon resin (aromatic group content 0 mol%, bromine number 27 g, softening point 96° C., weight average molecular weight 3100) was used and PAG1 was not used, and the evaluation results are shown in Table 5. The obtained rubber composition had poor tear resistance.
- an aliphatic hydrocarbon resin aromatic group content 0 mol%, bromine number 27 g, softening point 96° C., weight average molecular weight 3100
- Comparative Example 9 A rubber composition was prepared in the same manner as in Example 11, except that Hydrocarbon resin 5 (aromatic group component 100 mol %, bromine number 6 g, softening point 10° C., weight average molecular weight 320) was used and PAG1 was not used, and the evaluation results are shown in Table 2.
- the obtained rubber composition was poor in dry grip property, wet grip property and tear resistance, and was not suitable as a sole rubber.
- the entire contents of the claims, specifications, drawings and abstracts of Japanese Patent Application No. 2022-167701 and Japanese Patent Application No. 2022-167702 filed on October 19, 2022 are hereby cited and incorporated as the disclosure of the specification of the present invention.
- the novel rubber composition of the present invention has excellent grip and tear resistance, making it suitable for use in shoe soles, etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Provided are a novel rubber composition that exhibits excellent gripping performance and tear resistance, and a shoe sole comprising the rubber composition. The rubber composition is characterized by comprising, per 100 parts by weight of a rubber component (A): 5-100 parts by weight of a reinforcing filler (B), 1-50 parts by weight of an aromatic-containing hydrocarbon resin (C), and 0.1-10 parts by weight of polyalkylene glycol (D).
Description
本発明は、ゴムに芳香族含有炭化水素樹脂、充填剤及びポリアルキレングリコールを含む新規なゴム組成物に関するものであり、特にグリップ性および耐引裂性に優れ、靴底用として適した特性を有する新規なゴム組成物、それを構成材とする靴底、靴、更には芳香族性石油樹脂であるソールゴム用改質剤に関するものである。
The present invention relates to a new rubber composition that contains an aromatic hydrocarbon resin, a filler, and a polyalkylene glycol in the rubber, and in particular to a new rubber composition that has excellent grip and tear resistance and properties suitable for use in shoe soles, as well as soles and shoes that contain the rubber composition, and a sole rubber modifier that is an aromatic petroleum resin.
靴には、耐久性や快適性に加えて、乾燥した地面、雨天により水で濡れた地面等の様々な環境下においても高いグリップ性を発現することが求められている。
そこで、靴のグリップ性を向上させる方法として、例えばゴムに活性炭を配合することで、靴底が水膜を介して地面と接する際に靴底の歪によって活性炭の孔から空気が放出され、靴底と地面が直接的に接する領域が形成され、濡れた地面でのグリップ性(以下、ウェットグリップ性と称する場合がある。)が向上すること(例えば、特許文献1参照。)、また、天然ゴム及び臭素化ブチルゴムに対し、テルペン樹脂を配合することで、グリップ性及び耐久性を向上すること(例えば、特許文献2参照。)、さらに、ニトリル-ブタジエンゴムに対し、Tgが20℃より高い炭化水素樹脂、及びTgが-20℃より低いオイルを特定量配合することで、液体(水、油、脂肪、血液、石鹸等)で濡れた床上でのグリップ性を担保すること(例えば、特許文献3参照。)、等の提案がなされている。 In addition to durability and comfort, shoes are required to have high grip properties in a variety of environments, including on dry ground and on wet ground due to rain.
In view of this, as a method for improving the grip of shoes, for example, by blending activated carbon with rubber, when the sole of the shoe comes into contact with the ground via a water film, air is released from the pores of the activated carbon due to distortion of the sole, forming an area where the sole of the shoe comes into direct contact with the ground, thereby improving the grip on wet ground (hereinafter sometimes referred to as wet grip) (see, for example, Patent Document 1). Also, by blending a terpene resin with natural rubber and brominated butyl rubber, the grip and durability are improved (see, for example, Patent Document 2). Furthermore, by blending specific amounts of a hydrocarbon resin with a Tg higher than 20° C. and an oil with a Tg lower than −20° C. with nitrile-butadiene rubber, the grip on floors wet with liquids (water, oil, fat, blood, soap, etc.) is ensured (see, for example, Patent Document 3).
そこで、靴のグリップ性を向上させる方法として、例えばゴムに活性炭を配合することで、靴底が水膜を介して地面と接する際に靴底の歪によって活性炭の孔から空気が放出され、靴底と地面が直接的に接する領域が形成され、濡れた地面でのグリップ性(以下、ウェットグリップ性と称する場合がある。)が向上すること(例えば、特許文献1参照。)、また、天然ゴム及び臭素化ブチルゴムに対し、テルペン樹脂を配合することで、グリップ性及び耐久性を向上すること(例えば、特許文献2参照。)、さらに、ニトリル-ブタジエンゴムに対し、Tgが20℃より高い炭化水素樹脂、及びTgが-20℃より低いオイルを特定量配合することで、液体(水、油、脂肪、血液、石鹸等)で濡れた床上でのグリップ性を担保すること(例えば、特許文献3参照。)、等の提案がなされている。 In addition to durability and comfort, shoes are required to have high grip properties in a variety of environments, including on dry ground and on wet ground due to rain.
In view of this, as a method for improving the grip of shoes, for example, by blending activated carbon with rubber, when the sole of the shoe comes into contact with the ground via a water film, air is released from the pores of the activated carbon due to distortion of the sole, forming an area where the sole of the shoe comes into direct contact with the ground, thereby improving the grip on wet ground (hereinafter sometimes referred to as wet grip) (see, for example, Patent Document 1). Also, by blending a terpene resin with natural rubber and brominated butyl rubber, the grip and durability are improved (see, for example, Patent Document 2). Furthermore, by blending specific amounts of a hydrocarbon resin with a Tg higher than 20° C. and an oil with a Tg lower than −20° C. with nitrile-butadiene rubber, the grip on floors wet with liquids (water, oil, fat, blood, soap, etc.) is ensured (see, for example, Patent Document 3).
しかし、靴には様々な生活場面における快適性、安全性の向上が求められており、グリップ性を向上した靴への要求は常に求められ続けており、特許文献1~3のいずれの提案においても、満足には至っておらず、さらなるグリップ性の向上が要求され続けている。また同時に、耐久性向上への要求も付加され耐引裂性や引張強度等の機械特性の向上も求められている。
そこで、本発明は、これら課題を解決し、特にグリップ性および耐引裂性を改善する新規なゴム組成物、それを構成材とする靴底、靴、更には芳香族性石油樹脂であるソールゴム用改質剤を提供することを目的とするものである。 However, shoes are required to be more comfortable and safer in various aspects of life, and there is a constant demand for shoes with improved grip, and the proposals in Patent Documents 1 to 3 have not been satisfactory, so there is a continuing demand for further improvements in grip. At the same time, there is also a demand for improved durability, and improvements in mechanical properties such as tear resistance and tensile strength are also required.
Therefore, the present invention aims to solve these problems and provide a novel rubber composition that improves grip and tear resistance, a sole and a shoe that contain the rubber composition, and a sole rubber modifier that is an aromatic petroleum resin.
そこで、本発明は、これら課題を解決し、特にグリップ性および耐引裂性を改善する新規なゴム組成物、それを構成材とする靴底、靴、更には芳香族性石油樹脂であるソールゴム用改質剤を提供することを目的とするものである。 However, shoes are required to be more comfortable and safer in various aspects of life, and there is a constant demand for shoes with improved grip, and the proposals in Patent Documents 1 to 3 have not been satisfactory, so there is a continuing demand for further improvements in grip. At the same time, there is also a demand for improved durability, and improvements in mechanical properties such as tear resistance and tensile strength are also required.
Therefore, the present invention aims to solve these problems and provide a novel rubber composition that improves grip and tear resistance, a sole and a shoe that contain the rubber composition, and a sole rubber modifier that is an aromatic petroleum resin.
本発明者らは、前記課題を解決すべく鋭意検討を進めた結果、ゴム成分に対し、充填剤、芳香族含有炭化水素樹脂、ポリアルキレングリコールを特定の割合で配合するゴム組成物が、特に優れたグリップ性および耐引裂性を発揮し、靴底用としても適する性能を発揮するものとなることを見出し、本発明を完成させるに至った。
即ち、本発明は、以下の[1]乃至[11]に存する。 As a result of intensive research into solving the above problems, the inventors have discovered that a rubber composition in which a filler, an aromatic hydrocarbon resin, and a polyalkylene glycol are blended in specific ratios with respect to a rubber component exhibits particularly excellent grip properties and tear resistance, and also exhibits performance suitable for use in shoe soles, thereby completing the present invention.
That is, the present invention resides in the following [1] to [11].
即ち、本発明は、以下の[1]乃至[11]に存する。 As a result of intensive research into solving the above problems, the inventors have discovered that a rubber composition in which a filler, an aromatic hydrocarbon resin, and a polyalkylene glycol are blended in specific ratios with respect to a rubber component exhibits particularly excellent grip properties and tear resistance, and also exhibits performance suitable for use in shoe soles, thereby completing the present invention.
That is, the present invention resides in the following [1] to [11].
[1] ゴム成分(A)100重量部に対し、充填剤(B)5~100重量部、芳香族含有炭化水素樹脂(C)1~50重量部、ポリアルキレングリコール(D)0.1~10重量部を含むことを特徴とするゴム組成物。
[2] ゴム成分(A)が、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴムから選ばれる少なくとも1種のゴムであることを特徴とする[1]に記載のゴム組成物。
[3] 充填剤(B)が、シリカ、カーボンブラック、炭酸カルシウム、酸化亜鉛から選ばれる少なくとも1種の充填剤であることを特徴とする[1]又は[2]に記載のゴム組成物。
[4] 芳香族含有炭化水素樹脂(C)が、JIS K2605に準拠した臭素価(Br2/100g)が20~60gの芳香族系石油樹脂、脂肪族-芳香族系石油樹脂、芳香族-ジシクロペンタジエン類共重合樹脂から選ばれる少なくとも1種の芳香族含有炭化水素樹脂であることを特徴とする[1]~[3]のいずれかに記載のゴム組成物。
[5] 芳香族含有炭化水素樹脂(C)が、軟化点が80~130℃、ゲル浸透クロマトグラフィーによる標準ポリスチレン換算値の重量平均分子量が500~6000であり、芳香族基成分10~100モル%を有する芳香族系石油樹脂、脂肪族-芳香族系石油樹脂、芳香族-ジシクロペンタジエン類共重合樹脂から選ばれる少なくとも1種の芳香族含有炭化水素樹脂であることを特徴とする[1]~[4]のいずれかに記載のゴム組成物。 [1] A rubber composition comprising 100 parts by weight of a rubber component (A), 5 to 100 parts by weight of a filler (B), 1 to 50 parts by weight of an aromatic hydrocarbon resin (C), and 0.1 to 10 parts by weight of a polyalkylene glycol (D).
[2] The rubber composition according to [1], wherein the rubber component (A) is at least one rubber selected from the group consisting of natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber.
[3] The rubber composition according to [1] or [2], wherein the filler (B) is at least one filler selected from the group consisting of silica, carbon black, calcium carbonate, and zinc oxide.
[4] The rubber composition according to any one of [ 1] to [3], characterized in that the aromatic hydrocarbon resin (C) is at least one aromatic hydrocarbon resin selected from aromatic petroleum resins, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer resins, each having a bromine value (Br2/100g) of 20 to 60g in accordance with JIS K2605.
[5] The rubber composition according to any one of [1] to [4], characterized in that the aromatic hydrocarbon resin (C) is at least one aromatic hydrocarbon resin selected from the group consisting of aromatic petroleum resins having a softening point of 80 to 130°C, a weight average molecular weight of 500 to 6,000 as calculated in terms of standard polystyrene by gel permeation chromatography, and aromatic group components of 10 to 100 mol%, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer resins.
[2] ゴム成分(A)が、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴムから選ばれる少なくとも1種のゴムであることを特徴とする[1]に記載のゴム組成物。
[3] 充填剤(B)が、シリカ、カーボンブラック、炭酸カルシウム、酸化亜鉛から選ばれる少なくとも1種の充填剤であることを特徴とする[1]又は[2]に記載のゴム組成物。
[4] 芳香族含有炭化水素樹脂(C)が、JIS K2605に準拠した臭素価(Br2/100g)が20~60gの芳香族系石油樹脂、脂肪族-芳香族系石油樹脂、芳香族-ジシクロペンタジエン類共重合樹脂から選ばれる少なくとも1種の芳香族含有炭化水素樹脂であることを特徴とする[1]~[3]のいずれかに記載のゴム組成物。
[5] 芳香族含有炭化水素樹脂(C)が、軟化点が80~130℃、ゲル浸透クロマトグラフィーによる標準ポリスチレン換算値の重量平均分子量が500~6000であり、芳香族基成分10~100モル%を有する芳香族系石油樹脂、脂肪族-芳香族系石油樹脂、芳香族-ジシクロペンタジエン類共重合樹脂から選ばれる少なくとも1種の芳香族含有炭化水素樹脂であることを特徴とする[1]~[4]のいずれかに記載のゴム組成物。 [1] A rubber composition comprising 100 parts by weight of a rubber component (A), 5 to 100 parts by weight of a filler (B), 1 to 50 parts by weight of an aromatic hydrocarbon resin (C), and 0.1 to 10 parts by weight of a polyalkylene glycol (D).
[2] The rubber composition according to [1], wherein the rubber component (A) is at least one rubber selected from the group consisting of natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber.
[3] The rubber composition according to [1] or [2], wherein the filler (B) is at least one filler selected from the group consisting of silica, carbon black, calcium carbonate, and zinc oxide.
[4] The rubber composition according to any one of [ 1] to [3], characterized in that the aromatic hydrocarbon resin (C) is at least one aromatic hydrocarbon resin selected from aromatic petroleum resins, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer resins, each having a bromine value (Br2/100g) of 20 to 60g in accordance with JIS K2605.
[5] The rubber composition according to any one of [1] to [4], characterized in that the aromatic hydrocarbon resin (C) is at least one aromatic hydrocarbon resin selected from the group consisting of aromatic petroleum resins having a softening point of 80 to 130°C, a weight average molecular weight of 500 to 6,000 as calculated in terms of standard polystyrene by gel permeation chromatography, and aromatic group components of 10 to 100 mol%, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer resins.
[6] ポリアルキレングリコール(D)が、重量平均分子量が500~8000のポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリテトラメチレングリコールから選ばれる少なくとも1種のポリアルキレングリコールであることを特徴とする[1]~[5]のいずれかに載のゴム組成物。
[7] [1]~[6]のいずれかに記載のゴム組成物を含むことを特徴とする靴底。
[8] [7]に記載の靴底を有することを特徴とする靴。
[9] ソールゴムを改質するゴム改質剤であって、JIS K2605に準拠した臭素価(Br2/100g)が20~60g、軟化点が80~130℃、ゲル浸透クロマトグラフィーによる標準ポリスチレン換算値の重量平均分子量が500~6000であり、芳香族基成分10~100モル%を有する芳香族性石油樹脂であることを特徴とするソールゴム用改質剤。
[10] 芳香族性石油樹脂が、芳香族系石油樹脂、脂肪族-芳香族系石油樹脂及び芳香族-ジシクロペンタジエン共重合石油樹脂からなる群より選択される少なくとも1種の芳香族性石油樹脂であることを特徴とする[9]に記載のソールゴム用改質剤。
[11] ソールゴムがスポーツシューズのソールゴムであることを特徴とする[9]又は[10]に記載のソールゴム用改質剤。 [6] The rubber composition according to any one of [1] to [5], wherein the polyalkylene glycol (D) is at least one polyalkylene glycol selected from polyethylene glycol, polypropylene glycol, polybutylene glycol, and polytetramethylene glycol, each having a weight average molecular weight of 500 to 8,000.
[7] A shoe sole comprising the rubber composition according to any one of [1] to [6].
[8] A shoe having the sole described in [7].
[9] A rubber modifier for modifying sole rubber, characterized in that the modifier is an aromatic petroleum resin having a bromine number ( Br2 /100g) of 20 to 60g according to JIS K2605, a softening point of 80 to 130°C, a weight average molecular weight of 500 to 6000 in terms of standard polystyrene measured by gel permeation chromatography, and an aromatic group component of 10 to 100 mol%.
[10] The sole rubber modifier according to [9], characterized in that the aromatic petroleum resin is at least one aromatic petroleum resin selected from the group consisting of aromatic petroleum resins, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer petroleum resins.
[11] The sole rubber modifier according to [9] or [10], wherein the sole rubber is a sole rubber for sports shoes.
[7] [1]~[6]のいずれかに記載のゴム組成物を含むことを特徴とする靴底。
[8] [7]に記載の靴底を有することを特徴とする靴。
[9] ソールゴムを改質するゴム改質剤であって、JIS K2605に準拠した臭素価(Br2/100g)が20~60g、軟化点が80~130℃、ゲル浸透クロマトグラフィーによる標準ポリスチレン換算値の重量平均分子量が500~6000であり、芳香族基成分10~100モル%を有する芳香族性石油樹脂であることを特徴とするソールゴム用改質剤。
[10] 芳香族性石油樹脂が、芳香族系石油樹脂、脂肪族-芳香族系石油樹脂及び芳香族-ジシクロペンタジエン共重合石油樹脂からなる群より選択される少なくとも1種の芳香族性石油樹脂であることを特徴とする[9]に記載のソールゴム用改質剤。
[11] ソールゴムがスポーツシューズのソールゴムであることを特徴とする[9]又は[10]に記載のソールゴム用改質剤。 [6] The rubber composition according to any one of [1] to [5], wherein the polyalkylene glycol (D) is at least one polyalkylene glycol selected from polyethylene glycol, polypropylene glycol, polybutylene glycol, and polytetramethylene glycol, each having a weight average molecular weight of 500 to 8,000.
[7] A shoe sole comprising the rubber composition according to any one of [1] to [6].
[8] A shoe having the sole described in [7].
[9] A rubber modifier for modifying sole rubber, characterized in that the modifier is an aromatic petroleum resin having a bromine number ( Br2 /100g) of 20 to 60g according to JIS K2605, a softening point of 80 to 130°C, a weight average molecular weight of 500 to 6000 in terms of standard polystyrene measured by gel permeation chromatography, and an aromatic group component of 10 to 100 mol%.
[10] The sole rubber modifier according to [9], characterized in that the aromatic petroleum resin is at least one aromatic petroleum resin selected from the group consisting of aromatic petroleum resins, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer petroleum resins.
[11] The sole rubber modifier according to [9] or [10], wherein the sole rubber is a sole rubber for sports shoes.
本発明によれば、ゴム成分に充填剤、芳香族含有炭化水素樹脂、ポリアルキレングリコールを配合することで、特に優れたグリップ性および耐引裂性を発揮する靴底、靴に適したゴム組成物、更にはソールゴム用改質剤を提供することが可能となる。
According to the present invention, by blending a filler, an aromatic hydrocarbon resin, and a polyalkylene glycol with the rubber component, it is possible to provide a shoe sole that exhibits particularly excellent grip and tear resistance, a rubber composition suitable for shoes, and even a modifier for sole rubber.
以下に本発明を詳細に説明する。
本発明のゴム組成物を構成するゴム成分(A)としては、一般にゴムと称される範疇に属するものであればよく、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、シリコーンゴム、スチレン系エラストマー(TPS)、オレフィン系エラストマー(TPO)、ウレタン系エラストマー(TPU)、ポリエステル系エラストマー(TPEE)、ポリアミド系エラストマー(TPA)、ポリブタジエン系エラストマー(RB)、ポリ塩化ビニル(PVC)、エチレン/酢酸ビニルコポリマー(EVA)等が挙げられる。中でも、特に引張強度や耐久性にも優れ、靴底等のグリップ性と耐久性を要求されるものに適したものとなることから、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴムであることが好ましい。また、これらゴム成分(A)は、単独で使用しても、2種類以上を組み合わせて使用してもよく、特に靴底等のグリップ性と耐久性を要求されるものに適したものとなることから、これらを2種以上で組み合わせて用いたものが好ましい。 The present invention will be described in detail below.
The rubber component (A) constituting the rubber composition of the present invention may be any rubber that belongs to the category generally called rubber, and examples thereof include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene diene rubber, butyl rubber, halogenated butyl rubber, acrylonitrile butadiene rubber, chloroprene rubber, silicone rubber, styrene-based elastomer (TPS), olefin-based elastomer (TPO), urethane-based elastomer (TPU), polyester-based elastomer (TPEE), polyamide-based elastomer (TPA), polybutadiene-based elastomer (RB), polyvinyl chloride (PVC), ethylene/vinyl acetate copolymer (EVA), etc. Among them, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, and acrylonitrile butadiene rubber are preferable because they are particularly excellent in tensile strength and durability and are suitable for items such as shoe soles that require grip and durability. These rubber components (A) may be used alone or in combination of two or more kinds. The use of a combination of two or more kinds is preferred since it is particularly suitable for shoe soles and the like, which require gripping properties and durability.
本発明のゴム組成物を構成するゴム成分(A)としては、一般にゴムと称される範疇に属するものであればよく、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリロニトリルブタジエンゴム、クロロプレンゴム、シリコーンゴム、スチレン系エラストマー(TPS)、オレフィン系エラストマー(TPO)、ウレタン系エラストマー(TPU)、ポリエステル系エラストマー(TPEE)、ポリアミド系エラストマー(TPA)、ポリブタジエン系エラストマー(RB)、ポリ塩化ビニル(PVC)、エチレン/酢酸ビニルコポリマー(EVA)等が挙げられる。中でも、特に引張強度や耐久性にも優れ、靴底等のグリップ性と耐久性を要求されるものに適したものとなることから、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴムであることが好ましい。また、これらゴム成分(A)は、単独で使用しても、2種類以上を組み合わせて使用してもよく、特に靴底等のグリップ性と耐久性を要求されるものに適したものとなることから、これらを2種以上で組み合わせて用いたものが好ましい。 The present invention will be described in detail below.
The rubber component (A) constituting the rubber composition of the present invention may be any rubber that belongs to the category generally called rubber, and examples thereof include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, ethylene propylene diene rubber, butyl rubber, halogenated butyl rubber, acrylonitrile butadiene rubber, chloroprene rubber, silicone rubber, styrene-based elastomer (TPS), olefin-based elastomer (TPO), urethane-based elastomer (TPU), polyester-based elastomer (TPEE), polyamide-based elastomer (TPA), polybutadiene-based elastomer (RB), polyvinyl chloride (PVC), ethylene/vinyl acetate copolymer (EVA), etc. Among them, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, and acrylonitrile butadiene rubber are preferable because they are particularly excellent in tensile strength and durability and are suitable for items such as shoe soles that require grip and durability. These rubber components (A) may be used alone or in combination of two or more kinds. The use of a combination of two or more kinds is preferred since it is particularly suitable for shoe soles and the like, which require gripping properties and durability.
本発明のゴム組成物を構成する充填剤(B)は、ゴムに一般的に配合されるものを挙げることが出来、例えばシリカ、カーボンブラック、炭酸カルシウム、タルク、クレー、マイカ、アルミナ、酸化亜鉛、酸化マグネシウム、水酸化アルミニウム、ガラス繊維、ガラスビーズ、ガラスバルーン、炭素繊維等を挙げることができる。中でも、ゴム組成物の引張強度、耐久性を高めることができ、靴底等のグリップ性と耐久性を要求されるものに適したものとなることから、シリカ、カーボンブラック、炭酸カルシウム、酸化亜鉛等の補強用充填剤であることが好ましい。また、これら充填剤(B)は、単独で使用しても、2種類以上を組み合わせて使用してもよく、特に靴底等のグリップ性と耐久性を要求されるものに適したものとなることから、これらを2種以上で組み合わせて用いたものが好ましい。その際の充填剤(B)の配合量は、ゴム成分(A)に対し、5~100重量部、特に10~70重量部であることが好ましい。ここで、充填剤(B)が5重量部未満である場合、引張強度、耐久性に劣るものとなる。一方、100重量部を越える場合、加工性に劣るものとなる。
The filler (B) constituting the rubber composition of the present invention can be any of those generally compounded in rubber, such as silica, carbon black, calcium carbonate, talc, clay, mica, alumina, zinc oxide, magnesium oxide, aluminum hydroxide, glass fiber, glass beads, glass balloons, and carbon fiber. Among them, reinforcing fillers such as silica, carbon black, calcium carbonate, and zinc oxide are preferred, as they can increase the tensile strength and durability of the rubber composition and are suitable for use in products that require grip and durability, such as shoe soles. These fillers (B) may be used alone or in combination of two or more types, and are preferably used in combination of two or more types, as they are particularly suitable for use in products that require grip and durability, such as shoe soles. The amount of filler (B) to be compounded in this case is preferably 5 to 100 parts by weight, and more preferably 10 to 70 parts by weight, based on the rubber component (A). Here, if the filler (B) is less than 5 parts by weight, the tensile strength and durability will be poor. On the other hand, if it exceeds 100 parts by weight, the processability will be poor.
本発明のゴム組成物を構成する芳香族含有炭化水素樹脂(C)は、芳香族をその成分として含む炭化水素樹脂であればよく、例えばスチレン、α-メチルスチレン、β-メチルスチレン、ビニルトルエン、ジビニルベンゼン、インデン、メチルインデン等の芳香族単量体を重合成分として含む単独重合樹脂、共重合樹脂、それらの混合樹脂を挙げることができ、これら芳香族単量体は、石油類の熱分解により得られる沸点範囲が140~280℃の範囲にある留分(C9留分と称することもある。)である芳香族成分留分であってもよい。また、共重合体である場合の共重合成分としては、芳香族単量体との共重合が可能であれば如何なるものであってもよく、例えばオレフィン類、ジエン類、(メタ)アクリル酸類、(メタ)アクリル酸エステル類、塩化ビニル、塩化ビニリデン、フッ化ビニル等、更には石油類の熱分解により得られる沸点範囲が20~110℃の範囲にある留分(C5留分と称することもある。)である脂肪族成分留分であってもよく、脂肪族成分留分を構成する単量体としては、例えばイソプレン、ピペリレン等の鎖状脂肪族;シクロペンタジエン、メチルシクロペンタジエン、ジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン等の環状脂肪族が挙げられる。
The aromatic hydrocarbon resin (C) constituting the rubber composition of the present invention may be any hydrocarbon resin containing aromatics as a component thereof, and examples thereof include homopolymer resins, copolymer resins, and mixed resins thereof that contain aromatic monomers such as styrene, α-methylstyrene, β-methylstyrene, vinyltoluene, divinylbenzene, indene, and methylindene as polymerization components. These aromatic monomers may be aromatic component fractions, which are fractions (sometimes referred to as C9 fractions) that are obtained by thermal decomposition of petroleum and have a boiling point range of 140 to 280°C. In the case of a copolymer, the copolymerization component may be any monomer capable of copolymerization with an aromatic monomer, such as olefins, dienes, (meth)acrylic acids, (meth)acrylic acid esters, vinyl chloride, vinylidene chloride, vinyl fluoride, or an aliphatic fraction obtained by thermal decomposition of petroleum, which has a boiling point range of 20 to 110°C (sometimes referred to as a C5 fraction). Examples of monomers constituting the aliphatic fraction include linear aliphatics such as isoprene and piperylene; and cyclic aliphatics such as cyclopentadiene, methylcyclopentadiene, dicyclopentadiene, methyldicyclopentadiene, and dimethyldicyclopentadiene.
そして、該芳香族含有炭化水素樹脂(C)の具体的例示としては、ポリスチレン、ポリスチレンオリゴマー、α-メチルスチレンオリゴマー、スチレン-α-メチルスチレン共重合体、スチレン-アクリロニトリル共重合体、スチレン-アクリル酸(エステル)共重合体、スチレン-メタクリル酸(エステル)共重合体、α-メチルスチレン-アクリロニトリル共重合体、α-メチルスチレン-アクリル酸(エステル)共重合体、α-メチルスチレン-メタクリル酸(エステル)共重合体、芳香族成分留分の重合物である芳香族系石油樹脂、脂肪族成分留分と芳香族成分留分の共重合物である脂肪族-芳香族系石油樹脂、芳香族成分留分とジシクロペンタジエン類との共重合物である芳香族-ジシクロペンタジエン類共重合樹脂等を挙げることができ、特にゴム成分との相溶性に優れ、その改質効果に優れたものとなることから芳香族系石油樹脂、脂肪族-芳香族系石油樹脂、芳香族-ジシクロペンタジエン類共重合樹脂であることが好ましい。
Specific examples of the aromatic hydrocarbon resin (C) include polystyrene, polystyrene oligomer, α-methylstyrene oligomer, styrene-α-methylstyrene copolymer, styrene-acrylonitrile copolymer, styrene-acrylic acid (ester) copolymer, styrene-methacrylic acid (ester) copolymer, α-methylstyrene-acrylonitrile copolymer, α-methylstyrene-acrylic acid (ester) copolymer, α-methylstyrene-methacrylic acid (ester) copolymer, aromatic petroleum resin which is a polymer of aromatic component fraction, aliphatic-aromatic petroleum resin which is a copolymer of aliphatic component fraction and aromatic component fraction, aromatic-dicyclopentadiene copolymer resin which is a copolymer of aromatic component fraction and dicyclopentadienes, etc., and aromatic petroleum resin, aliphatic-aromatic petroleum resin, and aromatic-dicyclopentadiene copolymer resin are particularly preferred because they have excellent compatibility with rubber components and provide excellent modifying effects.
そして、該芳香族含有炭化水素樹脂(C)としては、ゴム組成物とした際に特に耐引裂性、高架橋密度のものとなることからJIS K2605に準拠して測定した臭素価20~60gBr2/100gの範囲のものであることが好ましく、特に25~50gBr2/100gの範囲のものであることが好ましい。
また、該芳香族含有炭化水素樹脂(C)としては、特に加工性に優れるゴム組成物となることから、軟化点80~130℃の範囲のものが好ましく、特に85~125℃の範囲のものが好ましい。更に、ゲル浸透クロマトグラフィー(GPCと記す場合もある。)を用い、標準ポリスチレン換算値として測定した際の重量平均分子量(Mwと記す場合もある。)が500~6000の範囲のものが好ましく、特に600~4000の範囲のものが好ましい。 The aromatic hydrocarbon resin (C) preferably has a bromine number in the range of 20 to 60 gBr2 /100 g, particularly 25 to 50 gBr2 /100 g, as measured in accordance with JIS K2605, in order to provide a rubber composition having particularly high tear resistance and crosslink density.
The aromatic hydrocarbon resin (C) preferably has a softening point in the range of 80 to 130° C., particularly 85 to 125° C., since this results in a rubber composition with excellent processability. Furthermore, the weight average molecular weight (sometimes referred to as Mw) measured in terms of standard polystyrene using gel permeation chromatography (sometimes referred to as GPC) is preferably in the range of 500 to 6000, particularly 600 to 4000.
また、該芳香族含有炭化水素樹脂(C)としては、特に加工性に優れるゴム組成物となることから、軟化点80~130℃の範囲のものが好ましく、特に85~125℃の範囲のものが好ましい。更に、ゲル浸透クロマトグラフィー(GPCと記す場合もある。)を用い、標準ポリスチレン換算値として測定した際の重量平均分子量(Mwと記す場合もある。)が500~6000の範囲のものが好ましく、特に600~4000の範囲のものが好ましい。 The aromatic hydrocarbon resin (C) preferably has a bromine number in the range of 20 to 60 gBr2 /100 g, particularly 25 to 50 gBr2 /100 g, as measured in accordance with JIS K2605, in order to provide a rubber composition having particularly high tear resistance and crosslink density.
The aromatic hydrocarbon resin (C) preferably has a softening point in the range of 80 to 130° C., particularly 85 to 125° C., since this results in a rubber composition with excellent processability. Furthermore, the weight average molecular weight (sometimes referred to as Mw) measured in terms of standard polystyrene using gel permeation chromatography (sometimes referred to as GPC) is preferably in the range of 500 to 6000, particularly 600 to 4000.
更に、該芳香族含有炭化水素樹脂(C)としては、特にグリップ性及び耐引裂性に優れるソールゴムを提供できるソールゴム用改質剤となることからJIS K2605に準拠して測定した臭素価(Br2/100g)が20~60g、軟化点が80~130℃、Mwが500~6000であり、芳香族基成分10~100モル%を有する芳香族性石油樹脂であることが好ましく、更に臭素価(Br2/100g)が25~50g、軟化点が85~125℃、Mwが600~4000であり、芳香族基成分35~100モル%を有する芳香族性石油樹脂であることが好ましい。このような芳香族性石油樹脂の具体的例示としては、例えば芳香族系石油樹脂、脂肪族-芳香族系石油樹脂、芳香族-ジシクロペンタジエン共重合石油樹脂等を挙げることができ、その際の芳香族基成分としては、例えばスチレン成分、α-メチルスチレン成分、β-メチルスチレン成分、ビニルトルエン成分、インデン成分、メチルインデン成分等を挙げることができる。そして、芳香族系石油樹脂としては、石油類の熱分解により得られる沸点範囲が140~280℃の範囲にある留分(C9留分と称することもある。)である芳香族成分留分より得られる樹脂を挙げることができる。また、脂肪族-芳香族系石油樹脂としては、石油類の熱分解により得られる沸点範囲が20~110℃の範囲にある留分(C5留分と称することもある。)である脂肪族成分留分と該芳香族成分留分との共重合である石油樹脂を挙げることができ、その際の脂肪族成分留分を構成する単量体としては、例えばイソプレン、ピペリレン等の鎖状脂肪族;シクロペンタジエン、メチルシクロペンタジエン、ジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン等の環状脂肪族が挙げられる。更に、芳香族-ジシクロペンタジエン共重合石油樹脂としては、ジシクロペンタジエン類と該芳香族成分留分との共重合である石油樹脂を挙げることができ、その際のジシクロペンタジエン類としては、シクロペンタジエン、メチルシクロペンタジエン、ジシクロペンタジエン、ジメチルシクロペンタジエン等を挙げることができる。
Furthermore, the aromatic hydrocarbon resin (C) is preferably an aromatic petroleum resin having a bromine number (Br 2 /100g) of 20 to 60g, a softening point of 80 to 130°C, an Mw of 500 to 6000, and 10 to 100 mol% aromatic group components, as measured in accordance with JIS K2605, since it is a modifier for sole rubber that can provide sole rubber with particularly excellent grip and tear resistance, and more preferably an aromatic petroleum resin having a bromine number (Br 2 /100g) of 25 to 50g, a softening point of 85 to 125°C, an Mw of 600 to 4000, and 35 to 100 mol% aromatic group components. Specific examples of such aromatic petroleum resins include aromatic petroleum resins, aliphatic-aromatic petroleum resins, aromatic-dicyclopentadiene copolymer petroleum resins, etc., and examples of the aromatic group components in these resins include styrene components, α-methylstyrene components, β-methylstyrene components, vinyltoluene components, indene components, methylindene components, etc. Examples of aromatic petroleum resins include resins obtained from aromatic component fractions, which are fractions (sometimes referred to as C9 fractions) having a boiling point range of 140 to 280°C obtained by thermal decomposition of petroleum. In addition, examples of aliphatic-aromatic petroleum resins include petroleum resins that are copolymers of an aliphatic component fraction (sometimes referred to as a C5 fraction) obtained by thermal decomposition of petroleum and an aromatic component fraction, the fraction having a boiling point range of 20 to 110°C. Examples of monomers that constitute the aliphatic component fraction include linear aliphatics such as isoprene and piperylene; and cyclic aliphatics such as cyclopentadiene, methylcyclopentadiene, dicyclopentadiene, methyldicyclopentadiene, and dimethyldicyclopentadiene. In addition, examples of aromatic-dicyclopentadiene copolymerized petroleum resins include petroleum resins that are copolymers of dicyclopentadienes and the aromatic component fraction, the dicyclopentadienes being cyclopentadiene, methylcyclopentadiene, dicyclopentadiene, dimethylcyclopentadiene, and the like.
該芳香族含有炭化水素樹脂(C)の配合量は、ゴム成分(A)100重量部に対して、1~50重量部であり、好ましくは1~20重量部である。ここで、1重量部未満である場合、得られる組成物は、グリップ性の改善効果に乏しいものとなる。一方、50重量部を超える場合、得られる組成物は引張強度に劣るものとなる。
The amount of aromatic hydrocarbon resin (C) is 1 to 50 parts by weight, and preferably 1 to 20 parts by weight, per 100 parts by weight of rubber component (A). If it is less than 1 part by weight, the resulting composition will have poor gripping properties. On the other hand, if it exceeds 50 parts by weight, the resulting composition will have poor tensile strength.
本発明のゴム組成物は、ゴム成分(A)に対し、充填剤(B)および芳香族含有炭化水素樹脂(C)に加えて、さらにポリアルキレングリコール(D)を配合するものであり、ポリアルキレングリコール(D)を含むことにより充填剤(B)の分散性に優れるものとなる。ポリアルキレングリコール(D)としては特に限定はなく、例えばポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、ポリテトラメチレングリコール、ポリエチレングリコール-ポリテトラメチレングリコール共重合体等を挙げることができる。中でも、特に機械的特性に優れるゴム組成物となることからゲル浸透クロマトグラフィーによる標準ポリスチレン換算値として測定した際の重量平均分子量が500~8000の範囲のポリエチレングリコールが好ましく、特に1000~6000の範囲のポリエチレングリコールが好ましい。
The rubber composition of the present invention is a rubber component (A) that further contains polyalkylene glycol (D) in addition to filler (B) and aromatic hydrocarbon resin (C), and the inclusion of polyalkylene glycol (D) results in excellent dispersibility of the filler (B). There are no particular limitations on the polyalkylene glycol (D), and examples of the polyalkylene glycol include polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer, polytetramethylene glycol, and polyethylene glycol-polytetramethylene glycol copolymer. Among these, polyethylene glycols with a weight average molecular weight in the range of 500 to 8000 as measured in terms of standard polystyrene by gel permeation chromatography are preferred, and polyethylene glycols in the range of 1000 to 6000 are particularly preferred, as they result in rubber compositions with particularly excellent mechanical properties.
ポリアルキレングリコール(D)の配合量は、ゴム成分(A)に対し、0.1~10重量部であり、特に0.5~7重量部であることが好ましい。ここで、0.1重量部未満である場合、充填剤の分散性に劣り、成形性、機械的特性に劣るものとなる。一方、10重量部を越えるものである場合、耐熱性、耐久性に劣るものとなる。
The amount of polyalkylene glycol (D) is preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 7 parts by weight, relative to the rubber component (A). If it is less than 0.1 part by weight, the filler will not disperse well, and the moldability and mechanical properties will be poor. On the other hand, if it exceeds 10 parts by weight, the heat resistance and durability will be poor.
さらに、本発明のゴム組成物は、シランカップリング剤を含有してもよい。シランカップリング剤としては、特に限定されるものではなく、スルフィド系、メルカプト系、エポキシ系、ビニル系、アクリロイル系、メタクリロイル系、アミノ系シランカップリング剤等が挙げられる。また、これらは単独で使用しても、混合して使用しても良い。なかでも引張強度の優れるスルフィド系、メルカプト系シランカップリング剤が好ましい。
本発明のゴム組成物は、架橋剤を配合することができる。この際の架橋剤としては、特に限定されるものではなく、例えば硫黄、有機過酸化物、チウラム系架橋剤などが挙げられる。また、架橋剤とともに架橋促進剤を配合することができ、架橋促進剤としては、特に限定されるものではなく、例えばチアゾール系、チウラム系、チオウレア系、スルフェンアミド系、ジチオカルバミン酸系、グアニジン系および、これらの混合系などの架橋促進剤が挙げられる。 Furthermore, the rubber composition of the present invention may contain a silane coupling agent. The silane coupling agent is not particularly limited, and examples thereof include sulfide-based, mercapto-based, epoxy-based, vinyl-based, acryloyl-based, methacryloyl-based, and amino-based silane coupling agents. These may be used alone or in combination. Among them, sulfide-based and mercapto-based silane coupling agents, which have excellent tensile strength, are preferred.
The rubber composition of the present invention may be compounded with a crosslinking agent. The crosslinking agent in this case is not particularly limited, and examples thereof include sulfur, organic peroxides, and thiuram-based crosslinking agents. In addition, a crosslinking accelerator may be compounded together with the crosslinking agent. The crosslinking accelerator is not particularly limited, and examples thereof include thiazole-based, thiuram-based, thiourea-based, sulfenamide-based, dithiocarbamic acid-based, guanidine-based, and mixtures thereof.
本発明のゴム組成物は、架橋剤を配合することができる。この際の架橋剤としては、特に限定されるものではなく、例えば硫黄、有機過酸化物、チウラム系架橋剤などが挙げられる。また、架橋剤とともに架橋促進剤を配合することができ、架橋促進剤としては、特に限定されるものではなく、例えばチアゾール系、チウラム系、チオウレア系、スルフェンアミド系、ジチオカルバミン酸系、グアニジン系および、これらの混合系などの架橋促進剤が挙げられる。 Furthermore, the rubber composition of the present invention may contain a silane coupling agent. The silane coupling agent is not particularly limited, and examples thereof include sulfide-based, mercapto-based, epoxy-based, vinyl-based, acryloyl-based, methacryloyl-based, and amino-based silane coupling agents. These may be used alone or in combination. Among them, sulfide-based and mercapto-based silane coupling agents, which have excellent tensile strength, are preferred.
The rubber composition of the present invention may be compounded with a crosslinking agent. The crosslinking agent in this case is not particularly limited, and examples thereof include sulfur, organic peroxides, and thiuram-based crosslinking agents. In addition, a crosslinking accelerator may be compounded together with the crosslinking agent. The crosslinking accelerator is not particularly limited, and examples thereof include thiazole-based, thiuram-based, thiourea-based, sulfenamide-based, dithiocarbamic acid-based, guanidine-based, and mixtures thereof.
本発明のゴム組成物には、さらに、ゴム工業界で通常使用される配合剤、例えば、軟化剤、可塑剤、難燃剤、酸化防止剤、ステアリン酸などを適宜選択して、通常の配合量の範囲内で使用することができる。
そして、本発明のゴム組成物は、上記ゴム成分(A)、充填剤(B)、芳香族含有炭化水素樹脂(C)、ポリアルキレングリコール(D)、必要に応じて適宜選択した各種配合剤を配合して、バンバリー型ミキサー、加圧ニーダー、オープンロールなどの混合方法を用いて混合し得ることができる。さらに、得られた未加硫配合物は、例えば、カレンダー、ロール、押し出し機等を利用して、シート状に成形した後、熱媒体中で架橋することにより加硫ゴム組成物として製造することができる。 In the rubber composition of the present invention, furthermore, compounding agents normally used in the rubber industry, such as softeners, plasticizers, flame retardants, antioxidants, stearic acid, etc., can be appropriately selected and used within the usual compounding amount range.
The rubber composition of the present invention can be prepared by blending the rubber component (A), the filler (B), the aromatic hydrocarbon resin (C), the polyalkylene glycol (D), and various compounding ingredients appropriately selected as necessary, and mixing them using a mixing method such as a Banbury mixer, a pressure kneader, an open roll, etc. Furthermore, the unvulcanized compound thus obtained can be formed into a sheet using, for example, a calendar, a roll, an extruder, etc., and then crosslinked in a heat medium to produce a vulcanized rubber composition.
そして、本発明のゴム組成物は、上記ゴム成分(A)、充填剤(B)、芳香族含有炭化水素樹脂(C)、ポリアルキレングリコール(D)、必要に応じて適宜選択した各種配合剤を配合して、バンバリー型ミキサー、加圧ニーダー、オープンロールなどの混合方法を用いて混合し得ることができる。さらに、得られた未加硫配合物は、例えば、カレンダー、ロール、押し出し機等を利用して、シート状に成形した後、熱媒体中で架橋することにより加硫ゴム組成物として製造することができる。 In the rubber composition of the present invention, furthermore, compounding agents normally used in the rubber industry, such as softeners, plasticizers, flame retardants, antioxidants, stearic acid, etc., can be appropriately selected and used within the usual compounding amount range.
The rubber composition of the present invention can be prepared by blending the rubber component (A), the filler (B), the aromatic hydrocarbon resin (C), the polyalkylene glycol (D), and various compounding ingredients appropriately selected as necessary, and mixing them using a mixing method such as a Banbury mixer, a pressure kneader, an open roll, etc. Furthermore, the unvulcanized compound thus obtained can be formed into a sheet using, for example, a calendar, a roll, an extruder, etc., and then crosslinked in a heat medium to produce a vulcanized rubber composition.
本発明のゴム組成物は、優れたグリップ性、耐引裂性を発現することから、ロール、敷物、チューブ、グリップ、ハンドル、靴底等の各種ゴム用途に適用することができ、中でも優れた耐久性や快適性に加えて、安全性として高いグリップ性の要求される靴底、それを有するスポーツシューズ、ドレスシューズ、カジュアルシューズ、ブーツ、スニーカー、サンダル、スリッパ、ゴム長靴、安全靴等、特に運動時のグリップ性が要求され、過酷な環境下での使用に耐えうる耐久性も要求されるゴルフシューズ、ランニングシューズ、サッカーシューズ、テニスシューズ、バスケットシューズ、野球シューズ、ジョギングシューズ等のスポーツシューズ、靴を提供とすることができる。
The rubber composition of the present invention exhibits excellent grip and tear resistance, and can therefore be used in a variety of rubber applications, such as rolls, rugs, tubes, grips, handles, and shoe soles. In particular, it can provide soles that require high grip for safety in addition to excellent durability and comfort, sports shoes, dress shoes, casual shoes, boots, sneakers, sandals, slippers, rubber boots, safety shoes, etc., having the same, and sports shoes and shoes such as golf shoes, running shoes, soccer shoes, tennis shoes, basketball shoes, baseball shoes, and jogging shoes, which require grip during exercise and durability to withstand use in harsh environments.
以下に、実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例、比較例において用いた原材料、分析、評価法は下記の通りである。
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. The raw materials, analysis, and evaluation methods used in the examples and comparative examples are as follows.
1.ゴム組成物配合成分
1)ゴム成分(A)
スチレンブタジエンゴム(以下、SBRと記す場合がある。):日本ゼオン製 (商品名)Nipol 1502。
ブタジエンゴム(以下、BRと記す場合がある。):日本ゼオン製 (商品名)Nipol BR1220。
イソプレンゴム(以下、IRと記す場合がある。):日本ゼオン製 (商品名)Nipol IR2200。 1. Rubber Composition Compounding Components 1) Rubber Component (A)
Styrene butadiene rubber (hereinafter sometimes referred to as SBR): (product name) Nipol 1502, manufactured by Nippon Zeon.
Butadiene rubber (hereinafter sometimes referred to as BR): (product name) Nipol BR1220, manufactured by Nippon Zeon.
Isoprene rubber (hereinafter sometimes referred to as IR): (product name) Nipol IR2200, manufactured by Nippon Zeon.
1)ゴム成分(A)
スチレンブタジエンゴム(以下、SBRと記す場合がある。):日本ゼオン製 (商品名)Nipol 1502。
ブタジエンゴム(以下、BRと記す場合がある。):日本ゼオン製 (商品名)Nipol BR1220。
イソプレンゴム(以下、IRと記す場合がある。):日本ゼオン製 (商品名)Nipol IR2200。 1. Rubber Composition Compounding Components 1) Rubber Component (A)
Styrene butadiene rubber (hereinafter sometimes referred to as SBR): (product name) Nipol 1502, manufactured by Nippon Zeon.
Butadiene rubber (hereinafter sometimes referred to as BR): (product name) Nipol BR1220, manufactured by Nippon Zeon.
Isoprene rubber (hereinafter sometimes referred to as IR): (product name) Nipol IR2200, manufactured by Nippon Zeon.
2)充填剤(B)
シリカ:東ソー・シリカ製 (商品名)Nipsil VN3。
炭酸カルシウム:丸尾カルシウム製、重質炭酸カルシウム。
酸化亜鉛:堺化学工業製 (商品名)酸化亜鉛1種。 2) Filler (B)
Silica: Nipsil VN3 (product name) manufactured by Tosoh Silica.
Calcium carbonate: Heavy calcium carbonate, made by Maruo Calcium.
Zinc oxide: manufactured by Sakai Chemical Industry Co., Ltd. (product name) zinc oxide type 1.
シリカ:東ソー・シリカ製 (商品名)Nipsil VN3。
炭酸カルシウム:丸尾カルシウム製、重質炭酸カルシウム。
酸化亜鉛:堺化学工業製 (商品名)酸化亜鉛1種。 2) Filler (B)
Silica: Nipsil VN3 (product name) manufactured by Tosoh Silica.
Calcium carbonate: Heavy calcium carbonate, made by Maruo Calcium.
Zinc oxide: manufactured by Sakai Chemical Industry Co., Ltd. (product name) zinc oxide type 1.
3)芳香族含有炭化水素樹脂(C)
芳香族含有炭化水素樹脂(以下、C1と記す場合がある。):東ソー(株)製 (商品名)ペトロタック90。
芳香族含有炭化水素樹脂(以下、C2と記す場合がある。):東ソー製(株) (商品名)ペトロタック100V。
芳香族含有炭化水素樹脂(以下、C3と記す場合がある。):東ソー(株)製 (商品名)ペトコールLX。
芳香族含有炭化水素樹脂(以下、C4と記す場合がある。):RAIN CARBON製 (商品名)NOVARES TP100。
脂肪族炭化水素樹脂:エネオス製 (商品名)T-REZ RA100。
テルペン系樹脂:ヤスハラケミカル製 (商品名)YSレジン PX1150。
芳香族含有炭化水素樹脂(以下、炭化水素樹脂5と記すこともある。);RAIN CARBON製 (商品名)NOVARES TL10。 3) Aromatic Hydrocarbon Resin (C)
Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C1): Petrotack 90 (product name), manufactured by Tosoh Corporation.
Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C2): Petrotack 100V (product name), manufactured by Tosoh Corporation.
Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C3): Petokol LX (product name), manufactured by Tosoh Corporation.
Aromatic hydrocarbon resin (hereinafter, sometimes referred to as C4): NOVARES TP100 (product name) manufactured by RAIN CARBON.
Aliphatic hydrocarbon resin: Eneos (product name) T-REZ RA100.
Terpene resin: Yasuhara Chemical (product name) YS Resin PX1150.
Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as "hydrocarbon resin 5"); NOVARES TL10 (product name), manufactured by RAIN CARBON.
芳香族含有炭化水素樹脂(以下、C1と記す場合がある。):東ソー(株)製 (商品名)ペトロタック90。
芳香族含有炭化水素樹脂(以下、C2と記す場合がある。):東ソー製(株) (商品名)ペトロタック100V。
芳香族含有炭化水素樹脂(以下、C3と記す場合がある。):東ソー(株)製 (商品名)ペトコールLX。
芳香族含有炭化水素樹脂(以下、C4と記す場合がある。):RAIN CARBON製 (商品名)NOVARES TP100。
脂肪族炭化水素樹脂:エネオス製 (商品名)T-REZ RA100。
テルペン系樹脂:ヤスハラケミカル製 (商品名)YSレジン PX1150。
芳香族含有炭化水素樹脂(以下、炭化水素樹脂5と記すこともある。);RAIN CARBON製 (商品名)NOVARES TL10。 3) Aromatic Hydrocarbon Resin (C)
Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C1): Petrotack 90 (product name), manufactured by Tosoh Corporation.
Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C2): Petrotack 100V (product name), manufactured by Tosoh Corporation.
Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as C3): Petokol LX (product name), manufactured by Tosoh Corporation.
Aromatic hydrocarbon resin (hereinafter, sometimes referred to as C4): NOVARES TP100 (product name) manufactured by RAIN CARBON.
Aliphatic hydrocarbon resin: Eneos (product name) T-REZ RA100.
Terpene resin: Yasuhara Chemical (product name) YS Resin PX1150.
Aromatic-containing hydrocarbon resin (hereinafter, sometimes referred to as "hydrocarbon resin 5"); NOVARES TL10 (product name), manufactured by RAIN CARBON.
C1,C2,C3,C4,脂肪族炭化水素樹脂、テルペン系樹脂、更には芳香族含有炭化水素樹脂の評価・分析方法を以下に示し、その結果を表1、表4に示す。
<臭素価>
JIS K2605を準拠し測定した。
<軟化点>
JIS K-2207を準拠し測定した。
<重量平均分子量>
標準ポリスチレンを標準物質としてゲル浸透クロマトグラフィーにより、重量平均分子量(Mw)を測定した。
<芳香族基成分>
重クロロホルム中、室温下におけるプロトンNMRスペクトル測定を行った。6.3~7.6ppmに位置する芳香族基成分に由来するピークの面積比率より芳香族基成分を求めた。 The evaluation and analysis methods for C1, C2, C3, C4, aliphatic hydrocarbon resins, terpene resins, and aromatic hydrocarbon resins are shown below, and the results are shown in Tables 1 and 4.
<Bromine number>
The measurement was performed in accordance with JIS K2605.
<Softening point>
The measurement was carried out in accordance with JIS K-2207.
<Weight average molecular weight>
The weight average molecular weight (Mw) was measured by gel permeation chromatography using standard polystyrene as the standard substance.
<Aromatic Group Component>
Proton NMR spectrum was measured in deuterated chloroform at room temperature. The aromatic group components were determined from the area ratio of the peaks attributable to the aromatic group components located at 6.3 to 7.6 ppm.
<臭素価>
JIS K2605を準拠し測定した。
<軟化点>
JIS K-2207を準拠し測定した。
<重量平均分子量>
標準ポリスチレンを標準物質としてゲル浸透クロマトグラフィーにより、重量平均分子量(Mw)を測定した。
<芳香族基成分>
重クロロホルム中、室温下におけるプロトンNMRスペクトル測定を行った。6.3~7.6ppmに位置する芳香族基成分に由来するピークの面積比率より芳香族基成分を求めた。 The evaluation and analysis methods for C1, C2, C3, C4, aliphatic hydrocarbon resins, terpene resins, and aromatic hydrocarbon resins are shown below, and the results are shown in Tables 1 and 4.
<Bromine number>
The measurement was performed in accordance with JIS K2605.
<Softening point>
The measurement was carried out in accordance with JIS K-2207.
<Weight average molecular weight>
The weight average molecular weight (Mw) was measured by gel permeation chromatography using standard polystyrene as the standard substance.
<Aromatic Group Component>
Proton NMR spectrum was measured in deuterated chloroform at room temperature. The aromatic group components were determined from the area ratio of the peaks attributable to the aromatic group components located at 6.3 to 7.6 ppm.
4)ポリアルキレングリコール(D)
ポリエチレングリコール(以下、PAG1と記す場合がある。):日油製 (商品名)PEG#4000(Mw3100g/mol)。
ポリエチレングリコール(以下、PAG2と記す場合がある。):シグマ-アルドリッチ製 (商品名)ポリエチレングリコール 10000(Mw9000g/mol)。
ポリプロピレングリコール(以下、PAG3と記す場合がある。):日油製 (商品名)ユニオールD-4000(Mw=4000g/mol)。 4) Polyalkylene glycol (D)
Polyethylene glycol (hereinafter, sometimes referred to as PAG1): NOF Corp. (product name) PEG #4000 (Mw 3100 g/mol).
Polyethylene glycol (hereinafter, sometimes referred to as PAG2): Sigma-Aldrich (product name) Polyethylene glycol 10000 (Mw 9000 g/mol).
Polypropylene glycol (hereinafter, sometimes referred to as PAG3): NOF Corp. (trade name) Uniol D-4000 (Mw=4000 g/mol).
ポリエチレングリコール(以下、PAG1と記す場合がある。):日油製 (商品名)PEG#4000(Mw3100g/mol)。
ポリエチレングリコール(以下、PAG2と記す場合がある。):シグマ-アルドリッチ製 (商品名)ポリエチレングリコール 10000(Mw9000g/mol)。
ポリプロピレングリコール(以下、PAG3と記す場合がある。):日油製 (商品名)ユニオールD-4000(Mw=4000g/mol)。 4) Polyalkylene glycol (D)
Polyethylene glycol (hereinafter, sometimes referred to as PAG1): NOF Corp. (product name) PEG #4000 (Mw 3100 g/mol).
Polyethylene glycol (hereinafter, sometimes referred to as PAG2): Sigma-Aldrich (product name) Polyethylene glycol 10000 (Mw 9000 g/mol).
Polypropylene glycol (hereinafter, sometimes referred to as PAG3): NOF Corp. (trade name) Uniol D-4000 (Mw=4000 g/mol).
5)その他配合剤
シランカップリング剤:エボニック製 (商品名)Si69。
オイル:出光興産製 (商品名)ダイアナプロセスオイル PW-90。
ステアリン酸:日油製 (商品名)NAA-180。
酸化防止剤:大内新興化学工業製 (商品名)ノクラック200クリスタル。
硫黄:鶴見化学工業製 (商品名)サルファックス5。
加硫促進剤(以下、MBTSと記す場合がある。):大内新興化学工業製 (商品名)ノクセラーDM-P。
加硫促進剤(以下、MBTと記す場合がある。):大内新興化学工業製 (商品名)ノクセラーM-P。
加硫促進剤(以下、TMTMと記す場合がある。):大内新興化学工業製 (商品名)ノクセラーTS。 5) Other compounding agents: Silane coupling agent: Evonik (product name) Si69.
Oil: Idemitsu Kosan (product name) Diana Process Oil PW-90.
Stearic acid: NOF Corporation (product name) NAA-180.
Antioxidant: Nocrac 200 Crystal (product name) manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
Sulfur: Sulfax 5 (product name) manufactured by Tsurumi Chemical Industry Co., Ltd.
Vulcanization accelerator (hereinafter, sometimes referred to as MBTS): Noccela DM-P (product name), manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
Vulcanization accelerator (hereinafter sometimes referred to as MBT): Noccela MP (product name) manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
Vulcanization accelerator (hereinafter, sometimes referred to as TMTM): Noccela TS (product name), manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
シランカップリング剤:エボニック製 (商品名)Si69。
オイル:出光興産製 (商品名)ダイアナプロセスオイル PW-90。
ステアリン酸:日油製 (商品名)NAA-180。
酸化防止剤:大内新興化学工業製 (商品名)ノクラック200クリスタル。
硫黄:鶴見化学工業製 (商品名)サルファックス5。
加硫促進剤(以下、MBTSと記す場合がある。):大内新興化学工業製 (商品名)ノクセラーDM-P。
加硫促進剤(以下、MBTと記す場合がある。):大内新興化学工業製 (商品名)ノクセラーM-P。
加硫促進剤(以下、TMTMと記す場合がある。):大内新興化学工業製 (商品名)ノクセラーTS。 5) Other compounding agents: Silane coupling agent: Evonik (product name) Si69.
Oil: Idemitsu Kosan (product name) Diana Process Oil PW-90.
Stearic acid: NOF Corporation (product name) NAA-180.
Antioxidant: Nocrac 200 Crystal (product name) manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
Sulfur: Sulfax 5 (product name) manufactured by Tsurumi Chemical Industry Co., Ltd.
Vulcanization accelerator (hereinafter, sometimes referred to as MBTS): Noccela DM-P (product name), manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
Vulcanization accelerator (hereinafter sometimes referred to as MBT): Noccela MP (product name) manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
Vulcanization accelerator (hereinafter, sometimes referred to as TMTM): Noccela TS (product name), manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
2.評価・分析方法
<ドライグリップ性、ウェットグリップ性>
摩擦試験機(新東科学社製 トライボギア摩擦摩耗試験機TYPE:38)を使用し、長さ100mm、幅25mm、厚さ2mmの試験片上に球状のアルミ製プローブを滑らせることによって、静摩擦係数を測定した。その際の測定条件は、雰囲気温度23℃、プローブ垂直荷重4.9N、滑り速度60mm/minとし、水平方向に試験片の表面上を滑らせた際の静摩擦係数値をドライグリップ性の指標とした。また、試験片の表面を水で濡らして、同様に測定した際の静摩擦係数値をウェットグリップ性の指標とした。 2. Evaluation and analysis methods <Dry grip, wet grip>
A friction tester (TRIBOGEAR friction and wear tester TYPE: 38 manufactured by Shinto Scientific Co., Ltd.) was used to measure the static friction coefficient by sliding a spherical aluminum probe on a test piece having a length of 100 mm, a width of 25 mm, and a thickness of 2 mm. The measurement conditions were an ambient temperature of 23°C, a probe vertical load of 4.9 N, and a sliding speed of 60 mm/min. The static friction coefficient value when the probe was slid horizontally on the surface of the test piece was used as an index of dry grip properties. In addition, the surface of the test piece was wetted with water, and the static friction coefficient value when similarly measured was used as an index of wet grip properties.
<ドライグリップ性、ウェットグリップ性>
摩擦試験機(新東科学社製 トライボギア摩擦摩耗試験機TYPE:38)を使用し、長さ100mm、幅25mm、厚さ2mmの試験片上に球状のアルミ製プローブを滑らせることによって、静摩擦係数を測定した。その際の測定条件は、雰囲気温度23℃、プローブ垂直荷重4.9N、滑り速度60mm/minとし、水平方向に試験片の表面上を滑らせた際の静摩擦係数値をドライグリップ性の指標とした。また、試験片の表面を水で濡らして、同様に測定した際の静摩擦係数値をウェットグリップ性の指標とした。 2. Evaluation and analysis methods <Dry grip, wet grip>
A friction tester (TRIBOGEAR friction and wear tester TYPE: 38 manufactured by Shinto Scientific Co., Ltd.) was used to measure the static friction coefficient by sliding a spherical aluminum probe on a test piece having a length of 100 mm, a width of 25 mm, and a thickness of 2 mm. The measurement conditions were an ambient temperature of 23°C, a probe vertical load of 4.9 N, and a sliding speed of 60 mm/min. The static friction coefficient value when the probe was slid horizontally on the surface of the test piece was used as an index of dry grip properties. In addition, the surface of the test piece was wetted with water, and the static friction coefficient value when similarly measured was used as an index of wet grip properties.
<耐引裂性>
JIS K6252を準拠して測定した。
実施例1
SBR100重量部に対し、C1を10重量部、PAG1を3重量部、シリカ50重量部,酸化亜鉛5重量部(充填剤の合計として55重量部)、更にオイル5重量部、酸化防止剤1重量部、ステアリン酸2重量部を、バンバリーミキサー(東洋精機製、(商品名)BR600)にて、混練りした。続いて硫黄1.5重量部、MBTSを2重量部、MBTを0.4重量部を添加し、仕上げ練りを行った後、8インチロールを用いてシーティングして未加硫ゴム組成物を得た。
更に蒸気加熱プレスを用い、加硫温度150℃、加硫時間30分で加硫し加硫ゴム組成物を得た。グリップ性、耐引裂性の測定結果を表2に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に優れるものであった。 <Tear resistance>
The measurement was performed in accordance with JIS K6252.
Example 1
100 parts by weight of SBR were mixed with 10 parts by weight of C1, 3 parts by weight of PAG1, 50 parts by weight of silica, 5 parts by weight of zinc oxide (55 parts by weight as the total of the fillers), 5 parts by weight of oil, 1 part by weight of antioxidant, and 2 parts by weight of stearic acid in a Banbury mixer (manufactured by Toyo Seiki, (product name) BR600). Then, 1.5 parts by weight of sulfur, 2 parts by weight of MBTS, and 0.4 parts by weight of MBT were added, and the mixture was subjected to finish mixing and then sheeting using an 8-inch roll to obtain an unvulcanized rubber composition.
The rubber composition was then vulcanized using a steam heating press at a temperature of 150° C. for 30 minutes to obtain a vulcanized rubber composition. The measurement results of grip property and tear resistance are shown in Table 2. The rubber composition obtained was excellent in dry grip property, wet grip property and tear resistance.
JIS K6252を準拠して測定した。
実施例1
SBR100重量部に対し、C1を10重量部、PAG1を3重量部、シリカ50重量部,酸化亜鉛5重量部(充填剤の合計として55重量部)、更にオイル5重量部、酸化防止剤1重量部、ステアリン酸2重量部を、バンバリーミキサー(東洋精機製、(商品名)BR600)にて、混練りした。続いて硫黄1.5重量部、MBTSを2重量部、MBTを0.4重量部を添加し、仕上げ練りを行った後、8インチロールを用いてシーティングして未加硫ゴム組成物を得た。
更に蒸気加熱プレスを用い、加硫温度150℃、加硫時間30分で加硫し加硫ゴム組成物を得た。グリップ性、耐引裂性の測定結果を表2に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に優れるものであった。 <Tear resistance>
The measurement was performed in accordance with JIS K6252.
Example 1
100 parts by weight of SBR were mixed with 10 parts by weight of C1, 3 parts by weight of PAG1, 50 parts by weight of silica, 5 parts by weight of zinc oxide (55 parts by weight as the total of the fillers), 5 parts by weight of oil, 1 part by weight of antioxidant, and 2 parts by weight of stearic acid in a Banbury mixer (manufactured by Toyo Seiki, (product name) BR600). Then, 1.5 parts by weight of sulfur, 2 parts by weight of MBTS, and 0.4 parts by weight of MBT were added, and the mixture was subjected to finish mixing and then sheeting using an 8-inch roll to obtain an unvulcanized rubber composition.
The rubber composition was then vulcanized using a steam heating press at a temperature of 150° C. for 30 minutes to obtain a vulcanized rubber composition. The measurement results of grip property and tear resistance are shown in Table 2. The rubber composition obtained was excellent in dry grip property, wet grip property and tear resistance.
実施例2~9
ゴム組成物とする際の配合及びその量を表2に示す通りとした以外は、実施例1と同様の方法にて、未加硫ゴム組成物、加硫ゴム組成物を得、その評価を行った。その結果を表2に示す。 Examples 2 to 9
Unvulcanized and vulcanized rubber compositions were obtained and evaluated in the same manner as in Example 1, except that the formulation and amounts of the rubber compositions were as shown in Table 2. The results are shown in Table 2.
ゴム組成物とする際の配合及びその量を表2に示す通りとした以外は、実施例1と同様の方法にて、未加硫ゴム組成物、加硫ゴム組成物を得、その評価を行った。その結果を表2に示す。 Examples 2 to 9
Unvulcanized and vulcanized rubber compositions were obtained and evaluated in the same manner as in Example 1, except that the formulation and amounts of the rubber compositions were as shown in Table 2. The results are shown in Table 2.
比較例1
C1を含まない点以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣るものであった。
比較例2
C1の代わりに、脂肪族系炭化水素樹脂を用いた以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られた組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣るものであった。
比較例3
C4の代わりにテルペン樹脂を用いた以外は、実施例4と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られた組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣るものであった。 Comparative Example 1
A composition was obtained in the same manner as in Example 1, except that C1 was not contained, and the composition was evaluated. The results are shown in Table 3.
The resulting rubber composition was poor in dry grip property, wet grip property and tear resistance.
Comparative Example 2
A composition was obtained and evaluated in the same manner as in Example 1, except that an aliphatic hydrocarbon resin was used instead of C1. The results are shown in Table 3.
The resulting composition was poor in dry grip property, wet grip property and tear resistance.
Comparative Example 3
A composition was obtained and evaluated in the same manner as in Example 4, except that a terpene resin was used instead of C4. The results are shown in Table 3.
The resulting composition was poor in dry grip property, wet grip property and tear resistance.
C1を含まない点以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣るものであった。
比較例2
C1の代わりに、脂肪族系炭化水素樹脂を用いた以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られた組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣るものであった。
比較例3
C4の代わりにテルペン樹脂を用いた以外は、実施例4と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られた組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣るものであった。 Comparative Example 1
A composition was obtained in the same manner as in Example 1, except that C1 was not contained, and the composition was evaluated. The results are shown in Table 3.
The resulting rubber composition was poor in dry grip property, wet grip property and tear resistance.
Comparative Example 2
A composition was obtained and evaluated in the same manner as in Example 1, except that an aliphatic hydrocarbon resin was used instead of C1. The results are shown in Table 3.
The resulting composition was poor in dry grip property, wet grip property and tear resistance.
Comparative Example 3
A composition was obtained and evaluated in the same manner as in Example 4, except that a terpene resin was used instead of C4. The results are shown in Table 3.
The resulting composition was poor in dry grip property, wet grip property and tear resistance.
比較例4
PAG1を含まない点以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られた組成物は、耐引裂性に劣るものであった。
比較例5
PAG1を15重量部含有するものとした以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られた組成物は、耐引裂性に劣るものであった。
比較例6
C1を60重量部、炭酸カルシウムを15重量部、MBTSを1重量部、TMTMを0.2重量部含有するものとした以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られたゴム組成物は、耐引裂性に劣るものであった。 Comparative Example 4
A composition was obtained in the same manner as in Example 1, except that PAG1 was not contained, and the composition was evaluated. The results are shown in Table 3.
The resulting composition had poor tear resistance.
Comparative Example 5
A composition was obtained in the same manner as in Example 1, except that 15 parts by weight of PAG1 was contained, and the composition was evaluated. The results are shown in Table 3.
The resulting composition had poor tear resistance.
Comparative Example 6
A composition was obtained in the same manner as in Example 1, except that it contained 60 parts by weight of C1, 15 parts by weight of calcium carbonate, 1 part by weight of MBTS, and 0.2 parts by weight of TMTM, and the composition was evaluated. The results are shown in Table 3.
The resulting rubber composition had poor tear resistance.
PAG1を含まない点以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られた組成物は、耐引裂性に劣るものであった。
比較例5
PAG1を15重量部含有するものとした以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られた組成物は、耐引裂性に劣るものであった。
比較例6
C1を60重量部、炭酸カルシウムを15重量部、MBTSを1重量部、TMTMを0.2重量部含有するものとした以外は、実施例1と同様の方法により組成物を得、その評価を行った。その結果を表3に示す。
得られたゴム組成物は、耐引裂性に劣るものであった。 Comparative Example 4
A composition was obtained in the same manner as in Example 1, except that PAG1 was not contained, and the composition was evaluated. The results are shown in Table 3.
The resulting composition had poor tear resistance.
Comparative Example 5
A composition was obtained in the same manner as in Example 1, except that 15 parts by weight of PAG1 was contained, and the composition was evaluated. The results are shown in Table 3.
The resulting composition had poor tear resistance.
Comparative Example 6
A composition was obtained in the same manner as in Example 1, except that it contained 60 parts by weight of C1, 15 parts by weight of calcium carbonate, 1 part by weight of MBTS, and 0.2 parts by weight of TMTM, and the composition was evaluated. The results are shown in Table 3.
The resulting rubber composition had poor tear resistance.
実施例10
内容積2リットルのガラス製オートクレーブに、原料油としてナフサの分解により得たC5留分(C4成分3重量%、ペンタン類50重量%、ペンテン類20重量%、イソプレン12重量%、ピペリレン7重量%、シクロペンタジエン8重量%)25重量%、C9留分(スチレン13重量%、α-メチルスチレン6重量%、β-メチルスチレン8重量%、ビニルトルエン11重量%、インデン16重量%、C10オレフィン類31重量%、C9飽和芳香族類15重量%)75重量%からなる原料油を調製し仕込んだ。次に、窒素雰囲気下で40℃に調節した後、フリーデルクラフツ型触媒として三フッ化ホウ素イソブタノール錯体を原料油100重量部に対して、1.6重量部加えて2時間重合した。その後、苛性ソーダ水溶液で触媒を失活・除去し、油相を回収し、該油相より未反応原料油を蒸留除去することにより、芳香族基成分72モル%、臭素価34g、軟化点101℃、重量平均分子量1700の脂肪族-芳香族系石油樹脂1(以下、石油樹脂1と称する場合がある。)を得た。結果を表4に示す。 Example 10
A 2-liter glass autoclave was charged with 25% by weight of C5 fraction (3% by weight of C4 components, 50% by weight of pentanes, 20% by weight of pentenes, 12% by weight of isoprene, 7% by weight of piperylene, 8% by weight of cyclopentadiene) obtained by cracking naphtha as a raw material oil, and 75% by weight of C9 fraction (13% by weight of styrene, 6% by weight of α-methylstyrene, 8% by weight of β-methylstyrene, 11% by weight of vinyltoluene, 16% by weight of indene, 31% by weight of C10 olefins, 15% by weight of C9 saturated aromatics) as a raw material oil. Next, after adjusting to 40°C under a nitrogen atmosphere, 1.6 parts by weight of boron trifluoride isobutanol complex was added as a Friedel-Crafts type catalyst relative to 100 parts by weight of the raw material oil, and polymerization was carried out for 2 hours. Thereafter, the catalyst was deactivated and removed with an aqueous caustic soda solution, the oil phase was recovered, and the unreacted feed oil was removed by distillation from the oil phase to obtain an aliphatic-aromatic petroleum resin 1 (hereinafter sometimes referred to as petroleum resin 1) having an aromatic group component of 72 mol%, a bromine number of 34 g, a softening point of 101° C., and a weight average molecular weight of 1700. The results are shown in Table 4.
内容積2リットルのガラス製オートクレーブに、原料油としてナフサの分解により得たC5留分(C4成分3重量%、ペンタン類50重量%、ペンテン類20重量%、イソプレン12重量%、ピペリレン7重量%、シクロペンタジエン8重量%)25重量%、C9留分(スチレン13重量%、α-メチルスチレン6重量%、β-メチルスチレン8重量%、ビニルトルエン11重量%、インデン16重量%、C10オレフィン類31重量%、C9飽和芳香族類15重量%)75重量%からなる原料油を調製し仕込んだ。次に、窒素雰囲気下で40℃に調節した後、フリーデルクラフツ型触媒として三フッ化ホウ素イソブタノール錯体を原料油100重量部に対して、1.6重量部加えて2時間重合した。その後、苛性ソーダ水溶液で触媒を失活・除去し、油相を回収し、該油相より未反応原料油を蒸留除去することにより、芳香族基成分72モル%、臭素価34g、軟化点101℃、重量平均分子量1700の脂肪族-芳香族系石油樹脂1(以下、石油樹脂1と称する場合がある。)を得た。結果を表4に示す。 Example 10
A 2-liter glass autoclave was charged with 25% by weight of C5 fraction (3% by weight of C4 components, 50% by weight of pentanes, 20% by weight of pentenes, 12% by weight of isoprene, 7% by weight of piperylene, 8% by weight of cyclopentadiene) obtained by cracking naphtha as a raw material oil, and 75% by weight of C9 fraction (13% by weight of styrene, 6% by weight of α-methylstyrene, 8% by weight of β-methylstyrene, 11% by weight of vinyltoluene, 16% by weight of indene, 31% by weight of C10 olefins, 15% by weight of C9 saturated aromatics) as a raw material oil. Next, after adjusting to 40°C under a nitrogen atmosphere, 1.6 parts by weight of boron trifluoride isobutanol complex was added as a Friedel-Crafts type catalyst relative to 100 parts by weight of the raw material oil, and polymerization was carried out for 2 hours. Thereafter, the catalyst was deactivated and removed with an aqueous caustic soda solution, the oil phase was recovered, and the unreacted feed oil was removed by distillation from the oil phase to obtain an aliphatic-aromatic petroleum resin 1 (hereinafter sometimes referred to as petroleum resin 1) having an aromatic group component of 72 mol%, a bromine number of 34 g, a softening point of 101° C., and a weight average molecular weight of 1700. The results are shown in Table 4.
また、SBR70重量部、IR15重量部、BR15重量部(ゴム成分合計100重量部)に対し、得られた石油樹脂1をソールゴム用改質剤として10重量部、シリカ50重量部、炭酸カルシウム15重量部、オイル5重量部、酸化亜鉛5重量部、PAG1を3重量部、酸化防止剤1重量部、ステアリン酸2重量部を、バンバリーミキサー(東洋精機製、(商品名)BR600)にて、混練りした。続いて硫黄1.5重量部、加硫促進剤(MBTS)1重量部、加硫促進剤(MBT)0.4重量部、加硫促進剤(TMTM)0.2重量部を添加し、仕上げ練りを行った後、8インチロールを用いてシーティングして未加硫ゴム組成物を得た。更に蒸気加熱プレスを用い、加硫温度150℃、加硫時間30分で加硫し加硫ゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に優れ、ソールゴムとして適したものであった。
Also, 70 parts by weight of SBR, 15 parts by weight of IR, and 15 parts by weight of BR (total rubber components 100 parts by weight) were mixed with 10 parts by weight of the obtained petroleum resin 1 as a sole rubber modifier, 50 parts by weight of silica, 15 parts by weight of calcium carbonate, 5 parts by weight of oil, 5 parts by weight of zinc oxide, 3 parts by weight of PAG1, 1 part by weight of antioxidant, and 2 parts by weight of stearic acid in a Banbury mixer (manufactured by Toyo Seiki, (product name) BR600). Next, 1.5 parts by weight of sulfur, 1 part by weight of vulcanization accelerator (MBTS), 0.4 parts by weight of vulcanization accelerator (MBT), and 0.2 parts by weight of vulcanization accelerator (TMTM) were added, and the mixture was mixed for finishing, followed by sheeting using an 8-inch roll to obtain an unvulcanized rubber composition. Furthermore, the mixture was vulcanized using a steam heating press at a vulcanization temperature of 150°C and a vulcanization time of 30 minutes to prepare a vulcanized rubber composition, and the evaluation results are shown in Table 5. The resulting rubber composition had excellent dry grip properties, wet grip properties, and tear resistance, making it suitable for use as sole rubber.
実施例11
C5留分57重量%、C9留分43重量%とした以外は、実施例1と同様の方法により、脂肪族-芳香族系石油樹脂2(以下、石油樹脂2と称する場合がある。)を得た。得られた石油樹脂2は、芳香族基成分41モル%、臭素価42g、軟化点97℃、重量平均分子量3500であった。結果を表4に示す。
また、得られた石油樹脂2をソールゴム用改質剤とした以外は、実施例11と同様の方法にてゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に優れ、ソールゴムとして適したものであった。 Example 11
Aliphatic-aromatic petroleum resin 2 (hereinafter, sometimes referred to as petroleum resin 2) was obtained in the same manner as in Example 1, except that the C5 fraction was 57% by weight and the C9 fraction was 43% by weight. The obtained petroleum resin 2 had an aromatic group component of 41 mol%, a bromine number of 42 g, a softening point of 97°C, and a weight average molecular weight of 3500. The results are shown in Table 4.
In addition, a rubber composition was prepared in the same manner as in Example 11, except that the obtained petroleum resin 2 was used as a modifier for sole rubber, and the evaluation results are shown in Table 5. The obtained rubber composition was excellent in dry grip property, wet grip property, and tear resistance, and was suitable as a sole rubber.
C5留分57重量%、C9留分43重量%とした以外は、実施例1と同様の方法により、脂肪族-芳香族系石油樹脂2(以下、石油樹脂2と称する場合がある。)を得た。得られた石油樹脂2は、芳香族基成分41モル%、臭素価42g、軟化点97℃、重量平均分子量3500であった。結果を表4に示す。
また、得られた石油樹脂2をソールゴム用改質剤とした以外は、実施例11と同様の方法にてゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に優れ、ソールゴムとして適したものであった。 Example 11
Aliphatic-aromatic petroleum resin 2 (hereinafter, sometimes referred to as petroleum resin 2) was obtained in the same manner as in Example 1, except that the C5 fraction was 57% by weight and the C9 fraction was 43% by weight. The obtained petroleum resin 2 had an aromatic group component of 41 mol%, a bromine number of 42 g, a softening point of 97°C, and a weight average molecular weight of 3500. The results are shown in Table 4.
In addition, a rubber composition was prepared in the same manner as in Example 11, except that the obtained petroleum resin 2 was used as a modifier for sole rubber, and the evaluation results are shown in Table 5. The obtained rubber composition was excellent in dry grip property, wet grip property, and tear resistance, and was suitable as a sole rubber.
実施例12
C9留分100重量%とした以外は、実施例1と同様の方法により、芳香族系石油樹脂3(以下、石油樹脂3と称する場合がある。)を得た。得られた石油樹脂3は、芳香族基成分100モル%、臭素価25g、軟化点95℃、重量平均分子量1400であった。結果を表4に示す。
また、得られた石油樹脂3をソールゴム用改質剤とした以外は、実施例11と同様の方法にてゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に優れ、ソールゴムとして適したものであった。 Example 12
Aromatic petroleum resin 3 (hereinafter, sometimes referred to as petroleum resin 3) was obtained in the same manner as in Example 1, except that the C9 fraction was 100% by weight. The obtained petroleum resin 3 had an aromatic group component of 100 mol%, a bromine number of 25 g, a softening point of 95° C., and a weight average molecular weight of 1400. The results are shown in Table 4.
In addition, a rubber composition was prepared in the same manner as in Example 11, except that the obtained petroleum resin 3 was used as a modifier for sole rubber, and the evaluation results are shown in Table 5. The obtained rubber composition was excellent in dry grip property, wet grip property, and tear resistance, and was suitable as a sole rubber.
C9留分100重量%とした以外は、実施例1と同様の方法により、芳香族系石油樹脂3(以下、石油樹脂3と称する場合がある。)を得た。得られた石油樹脂3は、芳香族基成分100モル%、臭素価25g、軟化点95℃、重量平均分子量1400であった。結果を表4に示す。
また、得られた石油樹脂3をソールゴム用改質剤とした以外は、実施例11と同様の方法にてゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に優れ、ソールゴムとして適したものであった。 Example 12
Aromatic petroleum resin 3 (hereinafter, sometimes referred to as petroleum resin 3) was obtained in the same manner as in Example 1, except that the C9 fraction was 100% by weight. The obtained petroleum resin 3 had an aromatic group component of 100 mol%, a bromine number of 25 g, a softening point of 95° C., and a weight average molecular weight of 1400. The results are shown in Table 4.
In addition, a rubber composition was prepared in the same manner as in Example 11, except that the obtained petroleum resin 3 was used as a modifier for sole rubber, and the evaluation results are shown in Table 5. The obtained rubber composition was excellent in dry grip property, wet grip property, and tear resistance, and was suitable as a sole rubber.
比較例7
C4(芳香族基成分90モル%、臭素価15g、軟化点100℃、重量平均分子量1770)を用い、PAG1を用いなかった以外は、実施例10と同様の方法にてゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣り、ソールゴムとして適さないものであった。 Comparative Example 7
A rubber composition was prepared in the same manner as in Example 10, except that C4 (aromatic group component 90 mol %, bromine number 15 g, softening point 100° C., weight average molecular weight 1770) was used and PAG1 was not used, and the evaluation results are shown in Table 5. The obtained rubber composition was poor in dry grip property, wet grip property and tear resistance, and was not suitable as a sole rubber.
C4(芳香族基成分90モル%、臭素価15g、軟化点100℃、重量平均分子量1770)を用い、PAG1を用いなかった以外は、実施例10と同様の方法にてゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣り、ソールゴムとして適さないものであった。 Comparative Example 7
A rubber composition was prepared in the same manner as in Example 10, except that C4 (aromatic group component 90 mol %, bromine number 15 g, softening point 100° C., weight average molecular weight 1770) was used and PAG1 was not used, and the evaluation results are shown in Table 5. The obtained rubber composition was poor in dry grip property, wet grip property and tear resistance, and was not suitable as a sole rubber.
比較例8
脂肪族炭化水素樹脂(芳香族基成分0モル%、臭素価27g、軟化点96℃、重量平均分子量3100)を用い、PAG1を用いなかった以外は、実施例11と同様の方法にてゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、耐引裂性に劣るものであった。 Comparative Example 8
A rubber composition was prepared in the same manner as in Example 11, except that an aliphatic hydrocarbon resin (aromatic group content 0 mol%, bromine number 27 g, softening point 96° C., weight average molecular weight 3100) was used and PAG1 was not used, and the evaluation results are shown in Table 5. The obtained rubber composition had poor tear resistance.
脂肪族炭化水素樹脂(芳香族基成分0モル%、臭素価27g、軟化点96℃、重量平均分子量3100)を用い、PAG1を用いなかった以外は、実施例11と同様の方法にてゴム組成物を調製し、評価した結果を表5に示す。得られたゴム組成物は、耐引裂性に劣るものであった。 Comparative Example 8
A rubber composition was prepared in the same manner as in Example 11, except that an aliphatic hydrocarbon resin (aromatic group content 0 mol%, bromine number 27 g, softening point 96° C., weight average molecular weight 3100) was used and PAG1 was not used, and the evaluation results are shown in Table 5. The obtained rubber composition had poor tear resistance.
比較例9
炭化水素樹脂5(芳香族基成分100モル%、臭素価6g、軟化点10℃、重量平均分子量320)を用い、PAG1を用いなかった以外は、実施例11と同様の方法にてゴム組成物を調製し、評価した結果を表2に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣り、ソールゴムとして適さないものであった。
なお、2022年10月19日に出願された日本国特許出願2022-167701号及び日本国特許出願2022-167702号の特許請求の範囲、明細書、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Comparative Example 9
A rubber composition was prepared in the same manner as in Example 11, except that Hydrocarbon resin 5 (aromatic group component 100 mol %, bromine number 6 g, softening point 10° C., weight average molecular weight 320) was used and PAG1 was not used, and the evaluation results are shown in Table 2. The obtained rubber composition was poor in dry grip property, wet grip property and tear resistance, and was not suitable as a sole rubber.
In addition, the entire contents of the claims, specifications, drawings and abstracts of Japanese Patent Application No. 2022-167701 and Japanese Patent Application No. 2022-167702 filed on October 19, 2022 are hereby cited and incorporated as the disclosure of the specification of the present invention.
炭化水素樹脂5(芳香族基成分100モル%、臭素価6g、軟化点10℃、重量平均分子量320)を用い、PAG1を用いなかった以外は、実施例11と同様の方法にてゴム組成物を調製し、評価した結果を表2に示す。得られたゴム組成物は、ドライグリップ性、ウェットグリップ性、耐引裂性に劣り、ソールゴムとして適さないものであった。
なお、2022年10月19日に出願された日本国特許出願2022-167701号及び日本国特許出願2022-167702号の特許請求の範囲、明細書、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 Comparative Example 9
A rubber composition was prepared in the same manner as in Example 11, except that Hydrocarbon resin 5 (aromatic group component 100 mol %, bromine number 6 g, softening point 10° C., weight average molecular weight 320) was used and PAG1 was not used, and the evaluation results are shown in Table 2. The obtained rubber composition was poor in dry grip property, wet grip property and tear resistance, and was not suitable as a sole rubber.
In addition, the entire contents of the claims, specifications, drawings and abstracts of Japanese Patent Application No. 2022-167701 and Japanese Patent Application No. 2022-167702 filed on October 19, 2022 are hereby cited and incorporated as the disclosure of the specification of the present invention.
本発明の新規なゴム組成物は、グリップ性と耐引裂性に優れるものであり、靴底などに好適に使用できる。
The novel rubber composition of the present invention has excellent grip and tear resistance, making it suitable for use in shoe soles, etc.
Claims (11)
- ゴム成分(A)100重量部に対し、充填剤(B)5~100重量部、芳香族含有炭化水素樹脂(C)1~50重量部、ポリアルキレングリコール(D)0.1~10重量部を含むことを特徴とするゴム組成物。 A rubber composition characterized by containing 100 parts by weight of rubber component (A), 5 to 100 parts by weight of filler (B), 1 to 50 parts by weight of aromatic hydrocarbon resin (C), and 0.1 to 10 parts by weight of polyalkylene glycol (D).
- ゴム成分(A)が、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴムから選ばれる少なくとも1種のゴムであることを特徴とする請求項1に記載のゴム組成物。 The rubber composition according to claim 1, characterized in that the rubber component (A) is at least one type of rubber selected from natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber.
- 充填剤(B)が、シリカ、カーボンブラック、炭酸カルシウム、酸化亜鉛から選ばれる少なくとも1種の充填剤であることを特徴とする請求項1又は2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, characterized in that the filler (B) is at least one filler selected from silica, carbon black, calcium carbonate, and zinc oxide.
- 芳香族含有炭化水素樹脂(C)が、JIS K2605に準拠した臭素価(Br2/100g)が20~60gの芳香族系石油樹脂、脂肪族-芳香族系石油樹脂、芳香族-ジシクロペンタジエン類共重合樹脂から選ばれる少なくとも1種の芳香族含有炭化水素樹脂であることを特徴とする請求項1~3のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, characterized in that the aromatic hydrocarbon resin (C) is at least one aromatic hydrocarbon resin selected from aromatic petroleum resins, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer resins, each having a bromine value (Br 2 /100 g) of 20 to 60 g according to JIS K2605.
- 芳香族含有炭化水素樹脂(C)が、軟化点が80~130℃、ゲル浸透クロマトグラフィーによる標準ポリスチレン換算値の重量平均分子量が500~6000であり、芳香族基成分10~100モル%を有する芳香族系石油樹脂、脂肪族-芳香族系石油樹脂、芳香族-ジシクロペンタジエン類共重合樹脂から選ばれる少なくとも1種の芳香族含有炭化水素樹脂であることを特徴とする請求項1~4のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, characterized in that the aromatic hydrocarbon resin (C) has a softening point of 80 to 130°C, a weight average molecular weight of 500 to 6000 as converted into standard polystyrene by gel permeation chromatography, and is at least one aromatic hydrocarbon resin selected from aromatic petroleum resins having 10 to 100 mol% aromatic group components, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer resins.
- ポリアルキレングリコール(D)が、重量平均分子量が500~8000のポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリテトラメチレングリコールから選ばれる少なくとも1種のポリアルキレングリコールであることを特徴とする請求項1~5のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, characterized in that the polyalkylene glycol (D) is at least one polyalkylene glycol selected from polyethylene glycol, polypropylene glycol, polybutylene glycol, and polytetramethylene glycol, each having a weight average molecular weight of 500 to 8000.
- 請求項1~6のいずれかに記載のゴム組成物を含むことを特徴とする靴底。 A shoe sole comprising the rubber composition according to any one of claims 1 to 6.
- 請求項7に記載の靴底を有することを特徴とする靴。 A shoe having the sole described in claim 7.
- ソールゴムを改質するゴム改質剤であって、JIS K2605に準拠した臭素価(Br2/100g)が20~60g、軟化点が80~130℃、ゲル浸透クロマトグラフィーによる標準ポリスチレン換算値の重量平均分子量が500~6000であり、芳香族基成分10~100モル%を有する芳香族性石油樹脂であることを特徴とするソールゴム用改質剤。 The sole rubber modifier is an aromatic petroleum resin having a bromine number ( Br2 /100g) of 20 to 60g in accordance with JIS K2605, a softening point of 80 to 130°C, a weight average molecular weight of 500 to 6000 in terms of standard polystyrene measured by gel permeation chromatography, and an aromatic group component of 10 to 100 mol%.
- 芳香族性石油樹脂が、芳香族系石油樹脂、脂肪族-芳香族系石油樹脂及び芳香族-ジシクロペンタジエン共重合石油樹脂からなる群より選択される少なくとも1種の芳香族性石油樹脂であることを特徴とする請求項9に記載のソールゴム用改質剤。 The sole rubber modifier according to claim 9, characterized in that the aromatic petroleum resin is at least one aromatic petroleum resin selected from the group consisting of aromatic petroleum resins, aliphatic-aromatic petroleum resins, and aromatic-dicyclopentadiene copolymer petroleum resins.
- ソールゴムがスポーツシューズのソールゴムであることを特徴とする請求項9又は10に記載のソールゴム用改質剤。 The sole rubber modifier according to claim 9 or 10, characterized in that the sole rubber is a sole rubber for sports shoes.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022167702A JP2024060372A (en) | 2022-10-19 | 2022-10-19 | Sole rubber modifier |
JP2022-167702 | 2022-10-19 | ||
JP2022-167701 | 2022-10-19 | ||
JP2022167701A JP2024060371A (en) | 2022-10-19 | 2022-10-19 | Rubber composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024084915A1 true WO2024084915A1 (en) | 2024-04-25 |
Family
ID=90737612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/035372 WO2024084915A1 (en) | 2022-10-19 | 2023-09-28 | Rubber composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024084915A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014001322A (en) * | 2012-06-19 | 2014-01-09 | Yokohama Rubber Co Ltd:The | Rubber composition for high attenuation rubber bearing and high attenuation rubber bearing |
JP2014234448A (en) * | 2013-05-31 | 2014-12-15 | 株式会社ブリヂストン | Rubber composition |
CN109456515A (en) * | 2018-11-19 | 2019-03-12 | 陶伟珍 | A kind of wearability sole rubber material and preparation method thereof |
CN109824950A (en) * | 2019-01-21 | 2019-05-31 | 茂泰(福建)鞋材有限公司 | A kind of acid-fast alkali-proof rubber soles and preparation method thereof |
-
2023
- 2023-09-28 WO PCT/JP2023/035372 patent/WO2024084915A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014001322A (en) * | 2012-06-19 | 2014-01-09 | Yokohama Rubber Co Ltd:The | Rubber composition for high attenuation rubber bearing and high attenuation rubber bearing |
JP2014234448A (en) * | 2013-05-31 | 2014-12-15 | 株式会社ブリヂストン | Rubber composition |
CN109456515A (en) * | 2018-11-19 | 2019-03-12 | 陶伟珍 | A kind of wearability sole rubber material and preparation method thereof |
CN109824950A (en) * | 2019-01-21 | 2019-05-31 | 茂泰(福建)鞋材有限公司 | A kind of acid-fast alkali-proof rubber soles and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4883172B2 (en) | Rubber composition for tire | |
JP5198746B2 (en) | Rubber composition and pneumatic tire using the same | |
US3630974A (en) | Ternary rubber blend | |
EP1345990A1 (en) | Colorable elastomeric composition | |
JP5088456B1 (en) | Rubber composition for tire tread | |
TWI824674B (en) | Rubber composition, manufacturing method and tire product | |
WO2021033747A1 (en) | Sulfur-containing unsaturated hydrocarbon polymer, method for manufacturing same, additive for rubber, rubber composition, and tire | |
CN103649203A (en) | Rubber composition, crosslinked rubber composition, pneumatic tire, and method for producing isobutylene polymer | |
WO2022255314A1 (en) | Petroleum resin, additive for rubber, uncrosslinked rubber composition, and crosslinked rubber | |
EP4324880A2 (en) | Dual composition block copolymers | |
US5512638A (en) | Curing systems for compositions containing halogenated copolymers of isobutylene and para-methylstrene | |
US4324866A (en) | Thermoplastic elastomer composition | |
WO2005087858A1 (en) | Rubber composition and pneumatic tire using same | |
KR20060042463A (en) | A composition of slip resistant shoe outsole using slow recovery of polymers | |
WO2024084915A1 (en) | Rubber composition | |
JP7293892B2 (en) | rubber composition | |
JP2024060371A (en) | Rubber composition | |
JP2024060372A (en) | Sole rubber modifier | |
JP7469589B2 (en) | Rubber composition for tires and pneumatic tire using same | |
JP7533075B2 (en) | C5-dicyclopentadiene copolymer resin | |
JP7529960B2 (en) | Rubber composition for tires and pneumatic tire using same | |
JP6791277B2 (en) | Rubber composition for tires and pneumatic tires using it | |
KR101121061B1 (en) | Rubber composite with enhanced abrasion resistance and ground contact force and out sol and shoes using thereof | |
JP2024118775A (en) | Rubber composition | |
JP7545852B2 (en) | Rubber composition for studless tires and studless tire using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23879563 Country of ref document: EP Kind code of ref document: A1 |