[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024080025A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2024080025A1
WO2024080025A1 PCT/JP2023/031737 JP2023031737W WO2024080025A1 WO 2024080025 A1 WO2024080025 A1 WO 2024080025A1 JP 2023031737 W JP2023031737 W JP 2023031737W WO 2024080025 A1 WO2024080025 A1 WO 2024080025A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
qcl
trp
pdcch
serving cell
Prior art date
Application number
PCT/JP2023/031737
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
聡 永田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024080025A1 publication Critical patent/WO2024080025A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
  • LTE 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • UL transmission control e.g., implementation of a random access procedure (or setting of timing advance)
  • UE User Equipment
  • the problem arises as to how a terminal (user terminal, User Equipment (UE)) controls UL transmission (e.g., timing advance control, etc.) for multiple transmission/reception points (or non-serving cells). If UL transmission to each transmission/reception point (or TRP of the serving cell/non-serving cell) is not appropriately controlled, the quality of communication using multiple transmission/reception points may deteriorate.
  • UE User Equipment
  • This disclosure has been made in consideration of these points, and one of its objectives is to provide a terminal, a wireless communication method, and a base station that are capable of communicating appropriately even when communicating using multiple transmission and reception points.
  • a terminal has a receiver that receives a first downlink control channel used to trigger a random access procedure for a non-serving cell, and a controller that controls reception of a second downlink control channel used to receive a response signal in the random access procedure based on at least one of a first quasi-co-location (QCL) assumption that uses a first QCL corresponding to the first downlink control channel and a second QCL assumption that uses a second QCL corresponding to a specific control resource set.
  • QCL quasi-co-location
  • communication can be performed appropriately even when multiple transmission points are used for communication.
  • FIGS. 1A to 1D are diagrams showing an example of a multi-TRP.
  • 2A and 2B are diagrams illustrating an example of inter-cell mobility.
  • 3A and 3B are diagrams illustrating an example of switching between a serving cell and an additional cell via L1/L2 signaling.
  • FIG. 4 is a diagram showing an example of configuration example 1-3 when a candidate cell is supported.
  • 5A to 5C are diagrams showing an example of switching between candidate cells/candidate cell groups by L1/L2 signaling in configuration examples 1-3 when candidate cells are supported.
  • FIG. 6 is a diagram showing an example of a timing advance group (TAG) to which cells included in a cell group belong.
  • Figure 7 shows an example of a MAC CE for a timing advance command.
  • TAG timing advance group
  • FIG. 8A and 8B are diagrams illustrating an example of QCL assumptions for the RACH procedure in the first embodiment.
  • 9A and 9B are diagrams illustrating an example of QCL assumptions for the RACH procedure in the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 14 is a diagram illustrating an example of a vehicle according to an embodiment.
  • TCI transmission configuration indication state
  • the TCI state may represent that which applies to the downlink signal/channel.
  • the equivalent of the TCI state which applies to the uplink signal/channel may be expressed as a spatial relation.
  • TCI state is information about the Quasi-Co-Location (QCL) of signals/channels and may also be called spatial reception parameters, spatial relation information, etc. TCI state may be set in the UE on a per channel or per signal basis.
  • QCL Quasi-Co-Location
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, if a signal/channel has a QCL relationship with another signal/channel, it may mean that it can be assumed that at least one of the Doppler shift, Doppler spread, average delay, delay spread, and spatial parameters (e.g., spatial Rx parameters) is identical between these different signals/channels (i.e., it is QCL with respect to at least one of these).
  • spatial parameters e.g., spatial Rx parameters
  • the spatial reception parameters may correspond to a reception beam (e.g., a reception analog beam) of the UE, and the beam may be identified based on a spatial QCL.
  • the QCL (or at least one element of the QCL) in this disclosure may be interpreted as sQCL (spatial QCL).
  • QCL types QCL types
  • QCL types A to D QCL types A to D
  • the parameters (which may be called QCL parameters) are as follows: QCL Type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread, QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and mean delay; QCL Type D (QCL-D): Spatial reception parameters.
  • QCL Type A QCL-A
  • QCL-B Doppler shift and Doppler spread
  • QCL type C QCL type C
  • QCL Type D QCL Type D
  • the UE's assumption that a Control Resource Set (CORESET), channel or reference signal is in a particular QCL (e.g., QCL type D) relationship with another CORESET, channel or reference signal may be referred to as a QCL assumption.
  • CORESET Control Resource Set
  • QCL QCL type D
  • the UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI condition or QCL assumption of the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information regarding the QCL between the target channel (in other words, the reference signal (RS) for that channel) and another signal (e.g., another RS).
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling, or a combination of these.
  • target channel/RS target channel/reference signal
  • reference RS reference signal
  • the channel for which the TCI state or spatial relationship is set (specified) may be, for example, at least one of the following: a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the RS that has a QCL relationship with the channel may be, for example, at least one of a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a sounding reference signal (SRS), a tracking CSI-RS (also called a tracking reference signal (TRS)), a QCL detection reference signal (also called a QRS), a demodulation reference signal (DMRS), etc.
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • DMRS demodulation reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be referred to as an SS/PBCH block.
  • An RS of QCL type X in a TCI state may refer to an RS that has a QCL type X relationship with a certain channel/signal (DMRS), and this RS may be called a QCL source of QCL type X in that TCI state.
  • DMRS channel/signal
  • Multi-TRP In NR, one or more transmission/reception points (TRPs) (multi-TRPs) are considered to perform DL transmission to a UE using one or more panels (multi-panels). It is also considered that a UE performs UL transmission to one or more TRPs.
  • TRPs transmission/reception points
  • multiple TRPs may correspond to the same cell identifier (cell identifier (ID)) or different cell IDs.
  • the cell ID may be a physical cell ID (e.g., PCI) or a virtual cell ID.
  • FIGS 1A-1D show examples of multi-TRP scenarios. In these examples, we assume, but are not limited to, that each TRP is capable of transmitting four different beams.
  • FIG. 1A shows an example of a case where only one TRP (TRP1 in this example) of the multi-TRP transmits to the UE (which may be called single mode, single TRP, etc.).
  • TRP1 transmits both a control signal (PDCCH) and a data signal (PDSCH) to the UE.
  • PDCCH control signal
  • PDSCH data signal
  • single TRP mode may refer to the mode when multi-TRP (mode) is not set.
  • FIG. 1B shows an example of a case where only one TRP (TRP1 in this example) of the multi-TRP transmits a control signal to the UE, and the multi-TRP transmits a data signal (which may be called a single master mode).
  • the UE receives each PDSCH transmitted from the multi-TRP based on one downlink control information (Downlink Control Information (DCI)).
  • DCI Downlink Control Information
  • FIG. 1C shows an example of a case where each of the multi-TRPs transmits a part of a control signal to the UE and the multi-TRP transmits a data signal (which may be called a master-slave mode).
  • TRP1 may transmit part 1 of the control signal (DCI) and TRP2 may transmit part 2 of the control signal (DCI).
  • Part 2 of the control signal may depend on part 1.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these parts of DCI.
  • FIG. 1D shows an example of a case where each of the multi-TRPs transmits a separate control signal to the UE, and the multi-TRP transmits a data signal (which may be called a multi-master mode).
  • a first control signal (DCI) may be transmitted from TRP1
  • a second control signal (DCI) may be transmitted from TRP2.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCIs.
  • the DCI may be called a single DCI (S-DCI, single PDCCH). Also, when multiple PDSCHs from a multi-TRP such as that shown in FIG. 1D are scheduled using multiple DCIs, these multiple DCIs may be called multiple DCIs (M-DCI, multiple PDCCHs).
  • Each TRP in a multi-TRP may transmit a different Transport Block (TB)/Code Word (CW)/different layer.
  • TB Transport Block
  • CW Code Word
  • each TRP in a multi-TRP may transmit the same TB/CW/layer.
  • Non-Coherent Joint Transmission is being considered as one form of multi-TRP transmission.
  • TRP1 modulates and maps a first codeword, and transmits a first PDSCH using a first number of layers (e.g., two layers) and a first precoding by layer mapping.
  • TRP2 modulates and maps a second codeword, and transmits a second PDSCH using a second number of layers (e.g., two layers) and a second precoding by layer mapping.
  • multiple PDSCHs (multi-PDSCHs) that are NCJTed may be defined as partially or completely overlapping with respect to at least one of the time and frequency domains.
  • the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap with each other in at least one of the time and frequency resources.
  • the first PDSCH and the second PDSCH may be assumed to be not quasi-co-located (QCL). Reception of multiple PDSCHs may be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (e.g., QCL type D).
  • QCL type D e.g., QCL type D
  • PDSCH transport block (TB) or codeword (CW) repetition across multi-TRP is supported. It is considered that repetition methods (URLLC schemes, e.g., schemes 1, 2a, 2b, 3, 4) across multi-TRP in the frequency domain, layer (spatial) domain, or time domain are supported.
  • URLLC schemes e.g., schemes 1, 2a, 2b, 3, 4
  • multi-PDSCH from multi-TRP is space division multiplexed (SDM).
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RV may be the same or different for multi-TRP.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted in one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • Such a multi-TRP scenario allows for more flexible transmission control using channels with better quality.
  • NCJT using multiple TRPs/panels may use high rank.
  • both single DCI single PDCCH, e.g., FIG. 1B
  • multiple DCI multiple PDCCH, e.g., FIG. 1D
  • the maximum number of TRPs may be 2.
  • TCI extension For single PDCCH design (mainly for ideal backhaul), TCI extension is being considered.
  • Each TCI code point in the DCI may correspond to TCI state 1 or 2.
  • the TCI field size may be the same as that of Rel. 15.
  • one TCI state without CORESETPoolIndex (also called TRP Info) is set for one CORESET.
  • a CORESET pool index is set for each CORESET.
  • TRPs transmission/reception points
  • MTRPs multi-TRPs
  • a UE performs UL transmission to one or more TRPs.
  • a UE may receive channels/signals from multiple cells/TRPs (see Figures 2A and B).
  • FIG. 2A shows an example of inter-cell mobility (e.g., Single-TRP inter-cell mobility) including non-serving cells.
  • the UE may be configured with one TRP (or single TRP) in each cell.
  • the UE receives channels/signals from the base station/TRP of cell #1, which is the serving cell, and the base station/TRP of cell #3, which is not the serving cell (non-serving cell). For example, this corresponds to a case where the UE switches/changes from cell #1 to cell #3 (e.g., fast cell switch).
  • the selection of the port (e.g., antenna port)/TRP may be performed dynamically.
  • the selection of the port (e.g., antenna port)/TRP may be performed based on the TCI state indicated or updated by the DCI/MAC CE.
  • a case is shown in which different physical cell ID (e.g., PCI) settings are supported for cell #1 and cell #3.
  • FIG. 2B shows an example of a multi-TRP scenario (e.g., multi-TRP inter-cell mobility when using multi-TRP).
  • the UE may be configured with multiple (e.g., two) TRPs (or different CORESET pool indices) in each cell.
  • the UE receives channels/signals from TRP#1 and TRP2.
  • the UE receives channels/signals from TRP#1 and TRP#2.
  • TRP#1 corresponds to physical cell ID (PCI)#1
  • TRP#2 corresponds to PCI#2.
  • the multi-TRP (TRP #1, #2) may be connected by an ideal/non-ideal backhaul to exchange information, data, etc.
  • Each TRP of the multi-TRP may transmit the same or different code words (CWs) and the same or different layers.
  • CWs code words
  • NJT non-coherent joint transmission
  • Figure 2B the case where NCJT is performed between TPRs corresponding to different PCIs is shown.
  • the same serving cell setting may be applied/set for TRP #1 and TRP #2.
  • the multiple PDSCHs (multi-PDSCHs) that are NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from TRP#1 and the second PDSCH from TRP#2 may overlap in at least one of the time and frequency resources. The first PDSCH and the second PDSCH may be used to transmit the same TB or different TBs.
  • the first PDSCH and the second PDSCH may be assumed to be not quasi-co-located (QCL). Reception of multiple PDSCHs may be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (e.g., QCL type D).
  • QCL type D e.g., QCL type D
  • Multiple PDSCHs from a multi-TRP may be scheduled using one DCI (single DCI (S-DCI), single PDCCH) (single master mode).
  • DCI single DCI
  • S-DCI single DCI
  • PDCCH single PDCCH
  • One DCI may be transmitted from one TRP of a multi-TRP.
  • a configuration that utilizes one DCI in a multi-TRP may be referred to as single DCI-based multi-TRP (mTRP/MTRP).
  • Multiple PDSCHs from a multi-TRP may be scheduled using multiple DCIs (multiple DCI (M-DCI), multiple PDCCHs) respectively (multiple master mode). Multiple DCIs may be transmitted respectively from a multi-TRP.
  • M-DCI multiple DCI
  • PDCCHs multiple PDCCHs
  • Multiple DCIs may be transmitted respectively from a multi-TRP.
  • a configuration that utilizes multiple DCIs in a multi-TRP may be called a multi-DCI-based multi-TRP (mTRP/MTRP).
  • CSI feedback may be referred to as separate feedback, separate CSI feedback, etc.
  • Separatate may be interchangeably read as “independent.”
  • the serving cell may be read as the TRP in the serving cell.
  • Layer 1/layer 2 (L1/L2) and DCI/Medium Access Control Element (MAC CE) may be read as each other.
  • MAC CE DCI/Medium Access Control Element
  • a physical cell ID (Physical Cell Identity (PCI)) different from the physical cell ID of the current serving cell may be simply referred to as a "different PCI.”
  • PCI Physical Cell Identity
  • a non-serving cell, a cell having a different PCI, and an additional cell may be read as each other.
  • Scenario 1 corresponds to, for example, multi-TRP inter-cell mobility. Note that scenario 1 may not correspond to multi-TRP inter-cell mobility. In scenario 1, for example, the following procedure is performed.
  • the UE receives from the serving cell the configuration necessary to use radio resources for data transmission and reception, including an SSB configuration for beam measurement of a TRP corresponding to a PCI different from that of the serving cell, and resources of the different PCI.
  • the UE performs beam measurements of TRPs corresponding to different PCIs and reports the beam measurement results to the serving cell.
  • the Transmission Configuration Indication (TCI) states associated with the TRPs corresponding to different PCIs are activated by L1/L2 signaling from the serving cell.
  • the UE transmits and receives using UE-dedicated channels on TRPs corresponding to different PCIs.
  • the UE must always cover the serving cell, including in the case of multi-TRP.
  • the UE must use common channels (Broadcast Control Channel (BCCH), Paging Channel (PCH)) from the serving cell, as in the conventional system.
  • BCCH Broadcast Control Channel
  • PCH Paging Channel
  • scenario 1 when the UE transmits and receives signals to and from an additional cell/TRP (TRP corresponding to the PCI of the additional cell), the serving cell (the serving cell assumed by the UE) is not changed. In other words, serving cell switching by L1/L2 is not supported.
  • the UE is configured with higher layer parameters related to the PCI of non-serving cells from the serving cell. Scenario 1 may be applied, for example, in Rel. 17.
  • Figure 3A shows an example of UE movement in Rel. 17. Assume that the UE moves from a cell (serving cell) with PCI #1 to a cell (additional cell) with PCI #3 (which overlaps with the serving cell). In this case, Rel. 17 does not support switching of the serving cell via L1/L2.
  • An additional cell is a cell that has an additional PCI that is different from the PCI of the serving cell.
  • the UE can receive/transmit UE-specific channels from the additional cell.
  • the UE needs to be within the coverage of the serving cell to receive UE common channels (e.g., system information/paging/short messages). If the UE moves out of the coverage of the serving cell, a cell switch is required, such as by handover (also called L3 mobility).
  • ⁇ Scenario 2> L1/L2 inter-cell mobility is applied.
  • the serving cell can be changed using a function such as beam control without RRC reconfiguration.
  • transmission and reception with an additional cell is possible without handover (or without performing an L3 mobility procedure). Since handover requires RRC reconnection and creates a period when data communication is not possible, by applying L1/L2 inter-cell mobility that does not require handover, data communication can be continued even when the serving cell is changed.
  • scenario 2 for example, the following procedure is performed.
  • the UE receives SSB configuration of a cell (additional cell) with a different PCI from the serving cell for beam measurement/serving cell change.
  • the UE performs beam measurements of cells using different PCIs and reports the measurement results to the serving cell.
  • the UE may receive a configuration of a cell having a different PCI (serving cell configuration) by higher layer signaling (e.g., RRC). That is, a pre-configuration regarding a serving cell change may be performed. This configuration may be performed together with the configuration in (1) or separately.
  • the TCI states of cells with different PCIs may be activated by L1/L2 signaling according to the change of serving cell. The activation of the TCI state and the change of serving cell may be performed separately.
  • the UE changes the serving cell (assumed serving cell) and starts receiving/transmitting using the pre-configured UE-specific channel and TCI state.
  • scenario 2 the serving cell (the assumed serving cell in the UE) is updated by L1/L2 signaling.
  • Scenario 2 may be applied in Rel. 18 and later.
  • Figure 3B shows an example of UE movement in Rel. 18.
  • the serving cell is switched by L1/L2.
  • the UE can receive/transmit UE-dedicated/common channels to/from the new serving cell.
  • the UE may move out of the coverage of the previous serving cell.
  • candidate cells may be configured in addition to serving cells.
  • the candidate cells may be read as target cells, additional cells, and additional PCIs.
  • One or more candidate cells (or candidate cell groups) may be associated separately with each serving cell, or one or more candidate cells (or candidate cell groups) may be commonly associated with multiple serving cells.
  • the configuration of the candidate cell (or the candidate cell group) may be configured in the same manner as the inter-cell beam management (inter-cell BM) of an existing system (e.g., before Rel. 17) using a predetermined upper layer parameter (e.g., ServingCellConfig).
  • the configuration of the candidate cell (or the candidate cell group) may reuse the carrier aggregation configuration framework (e.g., CA configuration framework) or the CHO (Conditional Handover)/CPC (Conditional PSCell Change) configuration framework.
  • the candidate cell (or candidate cell group) configured in the higher layer parameters may be instructed to the UE for activation/deactivation by the MAC CE/DCI.
  • the configuration of the candidate cell for example, at least one of the following configuration examples 1 to 3 may be applied.
  • SpCell#0, SCell#1, and SCell#2 are configured as serving cells, and an example of a candidate cell/candidate cell group configured separately from the serving cells is shown.
  • the following configuration examples 1 to 3 are merely examples, and the number of serving cells/number of candidate cells/number of candidate cell groups, the association between the serving cell and the candidate cell, etc. are not limited to these and may be changed as appropriate.
  • other configuration examples may be supported/applied in addition to/instead of configuration examples 1 to 3.
  • one or more candidate cells are associated/configured with each serving cell (or a frequency region corresponding to each serving cell) (see FIG. 4).
  • candidate cells #0-1, #0-2, and #0-3 are associated with SpCell #0 (or a frequency region corresponding to SpCell #0)
  • candidate cell #1-1 is associated with SCell #1 (or a frequency region corresponding to SCell #1)
  • candidate cells #2-1 and #2-2 are associated with SCell #2 (or a frequency region corresponding to SpCell #2).
  • Information regarding the association may be configured/instructed to the UE from the base station by RRC/MAC CE/DCI.
  • candidate cells are associated/configured with a MAC entity/MCG/SCG (see FIG. 4).
  • candidate cells #3-#8 are associated with a MAC entity/MCG/SCG.
  • candidate cells are not associated with each serving cell, but are configured with a MAC entity or a cell group (e.g., MCG/SCG).
  • Information regarding the candidate cells configured for each cell may be configured/instructed to the UE from the base station by the RRC/MAC CE/DCI.
  • the candidate cell group has one or more candidate cells.
  • a candidate cell group #1 having candidate cells #0-#2 a candidate cell group #2 having candidate cells #0 and #1, and a candidate cell group #3 having candidate cell #0 are configured.
  • At least one of information about the configured candidate cell group and information about the candidate cells included in each candidate cell group may be configured/instructed to the UE by the base station via RRC/MAC CE/DCI.
  • L1 beam indication e.g., indication by the TCI status field of the DCI
  • TCI status of an additional PCI or additional cell
  • new L1/L2 signals e.g., DCI/MAC CE
  • DCI/MAC CE new L1/L2 signals
  • An implicit indication may mean, for example, that a CORESET is updated by the MAC CE to a TCI state associated with an additional PCI.
  • An explicit indication may mean that the cell switch is directly indicated by the DCI/MAC CE.
  • a specific candidate cell may be designated as a serving cell (or switching with the serving cell may be instructed) via L1/L2 signaling.
  • Figure 5A shows a case where candidate cell #0-2 becomes an SpCell of the MCG/SCG (SpCell #0 and candidate cell #0-2 are switched) via L1/L2 signaling. It also shows a case where candidate cell #2-1 becomes an SCell of the MCG/SCG (SCell #2 and candidate cell #2-1 are switched) via L1/L2 signaling.
  • a specific candidate cell may be designated as a serving cell (or switching to the serving cell may be instructed) via L1/L2 signaling.
  • Figure 5B shows a case where candidate cell #4 becomes the SpCell of the MCG/SCG (SpCell #0 and candidate cell #4 are switched) via L1/L2 signaling.
  • a specific candidate cell group (or one or more candidate cells included in the specific candidate cell group) may be changed/updated to a serving cell group via L1/L2 signaling.
  • FIG. 5C shows a case where candidate cell group #1 (or candidate cells #0-#2 included in candidate cell group #1) becomes a serving cell group (the serving cell group and candidate cell group #1 are switched) via L1/L2 signaling.
  • candidate cells included in candidate cell group #1 here, candidate cells #0-#2
  • a candidate cell associated with SpCell #0 or a candidate cell set in the same frequency region as SpCell #0 may be set as a new SpCell.
  • the candidate cell to become the SpCell may be indicated by L1/L2 signaling.
  • the distance between the UE and each TRP may be different.
  • the multiple TRPs may be included in the same cell (e.g., a serving cell).
  • one TRP among the multiple TRPs may correspond to a serving cell and the other TRPs may correspond to a non-serving cell. In this case, it is also assumed that the distance between each TRP and the UE may be different.
  • the transmission timing of UL (Uplink) channels and/or UL signals (UL channels/signals) is adjusted by the Timing Advance (TA).
  • TA Timing Advance
  • the reception timing of UL channels/signals from different user terminals is adjusted by the radio base station (TRP: Transmission and Reception Point, also known as gNB: gNodeB, etc.).
  • the UE may control the timing of UL transmission by applying a timing advance (multiple timing advances) for each pre-configured timing advance group (TAG: Timing Advance Group).
  • TAG Timing Advance Group
  • Timing Advance Groups classified by transmission timing are supported.
  • the UE may control the UL transmission timing for each TAG, assuming that the same TA offset (or TA value) is applied to each TAG.
  • the TA offset may be set independently for each TAG.
  • the UE can independently adjust the transmission timing of cells belonging to each TAG, allowing the radio base station to align the timing of receiving uplink signals from the UE even when multiple cells are used.
  • TAGs may be configured by higher layer parameters.
  • the same timing advance value may be applied to serving cells belonging to the same TAG.
  • the timing advance group that includes the SpCell of a MAC entity may be called the Primary Timing Advance Group (PTAG), and other TAGs may be called Secondary Timing Advance Groups (STAGs).
  • PTAG Primary Timing Advance Group
  • STAGs Secondary Timing Advance Groups
  • FIG. 6 shows a case where three TAGs are configured for a cell group including SpCell and SCell#1 to #4.
  • SpCell and SCell#1 belong to the first TAG (PTAG or TAG#0)
  • SCell#2 and SCell#3 belong to the second TAG (TAG#1)
  • SCell#4 belongs to the third TAG (TAG#2).
  • the timing advance command may be notified to the UE using a MAC control element (e.g., MAC CE).
  • the TA command is a command indicating the transmission timing value of the uplink channel and is included in the MAC control element.
  • the TA command is signaled from the radio base station to the UE at the MAC layer.
  • the UE controls a predetermined timer (e.g., TA timer) based on the reception of the TA command.
  • the MAC CE for the timing advance command may include a field for a timing advance group index (e.g., TAG ID) and a field for the timing advance command (see Figure 7).
  • TAGs or TAG-IDs
  • TRPs corresponding to a certain cell (or CC).
  • CC a certain cell
  • two TAs or TAGs
  • cases are also assumed in which different TRPs corresponding to a cell share a common TAG.
  • cases are also assumed in which a MAC CE for a TA command applies to only one TRP, or in which a MAC CE for a TA command applies to multiple TRPs.
  • TRPs corresponding to different cells use different TAGs/share a common TAG.
  • TRPs corresponding to different cells use different TAGs/share a common TAG.
  • a time alignment timer (e.g., timeAlignmentTimer) may be configured for each TRP.
  • the time alignment timer may control the time at which the MAC entity considers a serving cell belonging to the associated TAG to be uplink time aligned.
  • the time alignment timer may be configured by the RRC to maintain UL time alignment.
  • a time alignment timer (e.g., timeAligusementTimer) may be maintained for UL time alignment.
  • the time alignment timer (e.g., timeAligusementTimer) is per TAG.
  • the UE receives a MAC CE (e.g., TAC MAC CE) for a timing advance command, it starts or restarts the time alignment timer associated with the indicated timing advance group (e.g., TAG), respectively.
  • the MAC entity receives the TAC MAC CE and applies a timing advance command for the indicated TAG or starts or restarts a time alignment timer associated with the indicated TAG if a predefined value (N TA ) is maintained between the indicated TAG, which may be the timing advance between DL and UL.
  • N TA a predefined value
  • TAG timing advance group
  • STAG secondary timing advance groups
  • Rel. 17 supports the application of a specific PTAG operation when a timing advance timer corresponding to a PTAG expires, and the application of a specific STAG operation when a timing advance timer corresponding to a STAG expires.
  • the following operations e.g., a specified PTAG operation/a specified STAG operation
  • the following operations e.g., a specified PTAG operation/a specified STAG operation
  • Predetermined PTAG Operation If a time alignment timer is associated with the PTAG, Flushes (discards) all HARQ buffers in all serving cells. - If configured, inform RRC to release PUCCH for all serving cells. - If set, notify RRC to release SRS. Clear all configured DL allocations and configured UL allocations. Clear the PUSCH resources for semi-persistent CSI reporting. - Allow all time alignment timers to expire while running. - Maintain NTAs for all TAGs.
  • Predetermined STAG Actions If a time alignment timer is associated with a STAG, then for all serving cells belonging to that STAG: Flush (discard) all HARQ buffers. - If configured, notify RRC to release PUCCH. - If set, notify RRC to release SRS. Clear all configured DL and UL allocations. Clear the PUSCH resources for semi-persistent CSI reporting. - Maintain the NTA of the TAG.
  • TRP control for each TRP/panel As described above, when communication is performed using multiple transmission/reception points (e.g., TRPs)/panels, it is also possible to control the timing advance (TA) for each TRP/panel.
  • TRPs transmission/reception points
  • TA timing advance
  • contention-based random access (CBRA))/contention-free random access (CFRA)) is considered/determined on a TRP or TRP TA (TA per TRP) basis.
  • the UE controls UL transmission (e.g., RACH transmission, etc.) for each TRP based on the timing advance corresponding to each TRP (or the timing advance group to which each TRP belongs).
  • UL transmission e.g., RACH transmission, etc.
  • TRP index/TRP ID may be set/instructed to the UE from the base station using RRC/MAC CE/downlink control information.
  • the UE may receive related information regarding the timing advance corresponding to each TRP (e.g., information regarding the TA value/timing advance command/time alignment timer, etc.) from the base station.
  • Each embodiment of the present disclosure may be applied/supported in at least one of intra-cell multi-TRP (Intra-cell M-TRP) and inter-cell multi-TRP (Inter-cell M-TRP).
  • Intrtra-cell M-TRP Intrtra-cell M-TRP
  • Inter-cell M-TRP Inter-cell M-TRP
  • multiple TRPs may be associated with the same cell ID.
  • the cell ID may be a physical cell ID (PCI).
  • multiple TRPs may be associated with different cell IDs (e.g., PCIs).
  • cell IDs e.g., PCIs
  • two TRPs may be interpreted as two TRPs associated with two PCIs, respectively.
  • each TRP may belong to a different TAG.
  • Multiple TRPs e.g., two TRPs
  • a TAG may contain multiple TRPs from multiple serving cells. All TRPs/serving cells in a TAG apply/maintain the same timing advance (TA)/same time alignment timer.
  • TA timing advance
  • a TAG may include one or more sub-TAGs.
  • two TRPs of a serving cell may belong to two sub-TAGs each and one TAG.
  • a sub-TAG may include multiple TRPs from multiple serving cells. All TRPs/serving cells in a sub-TAG apply/maintain the same timing advance (TA)/same time alignment timer.
  • TA timing advance
  • a TA may be applied for each TRP (or an instruction may be given on a TRP TA basis). For example, at least one of the following options may be applied:
  • a different TAG-ID may be set for each TRP, and a different MAC CE for TA command may be set for each TRP.
  • Each TAG may maintain a time alignment timer for UL time alignment.
  • Different TRPs may share a TAG.
  • a MAC CE for a TA command may only apply to one TRP.
  • the UE applies different TAs to other TRPs.
  • the UE may adjust the TA value for other TRPs (e.g., TRP#1) by a TA offset (TA_TRP_offset) based on the TA for TRP#0 (TA_TRP#0).
  • TRP#1 TA_TRP_offset
  • the MAC CE for the TA command may apply to multiple serving TRPs for the UE.
  • MAC CEs for TA commands received on a TRP/CW/PDSCH/DMRS port group may apply to the same TRP/CW/PDSCH/DMRS port group of the TAG.
  • Each TRP/CW/PDSCH/DMRS port group of the TAG maintains a time alignment timer for UL time alignment.
  • multiple timing advances will be supported in a multi-TRP (e.g., a multi-TRP using multiple DCI).
  • a multi-TRP e.g., two timing advances
  • multiple (e.g., two) timing advances may be supported for a multi-TRP (e.g., two TRPs) using multiple DCI.
  • the application of multiple timing advances to a multi-TRP may be supported in intra-cell/inter-cell multi-DCI multi-TRP scenarios, and may be supported in multiple frequency ranges (e.g., FR1 and FR2).
  • the UE performs the RACH procedure for a PDCCH order RACH, assuming that the PDCCH order and the PDCCH for RAR have the same QCL characteristics.
  • the PDCCH for RAR may be a PDCCH transmitted by the base station in response to a PRACH triggered to the UE by the PDCCH order (or transmitted from the UE).
  • the RAR may be included in the PDSCH scheduled by the PDCCH for the RAR.
  • the QCL characteristics may be interpreted as DMRS QCL characteristics.
  • the UE may assume that the PDCCH containing DCI format 1_0 and the PDCCH order have the same DMRS antenna port quasi-co-location characteristics.
  • the specific CORESET may be a CORESET associated with a Type 1 CSS set (e.g., Type 1-PDCCH CSS set).
  • the UE may assume the DMRS antenna port quasi-co-location property of the CORESET associated with the Type 1-PDCCH CSS set for reception of the PDCCH containing DCI format 1_0.
  • the RACH may be triggered for each TRP (or for each serving cell/non-serving cell).
  • a PDCCH order that triggers the RACH procedure for a TRP or a serving cell/non-serving cell
  • the PDCCH order and the PDCCH for the RAR are transmitted from different TRPs. In such a case, it is necessary to relax/change the restriction that the PDCCH order and the PDCCH for the RAR have the same DMRS QCL characteristics.
  • a PDCCH order from TRP#1 triggers a RACH to TRP#2, and an RAR is transmitted from TRP#2.
  • an RAR is transmitted from TRP#2.
  • a PDCCH order from TRP#2 triggers a RACH to TRP#2 and an RAR is sent from TRP#1.
  • This example may occur in inter-cell multi-TRP (e.g., inter-cell M-TRP) cases when the UE cannot receive a Type 1 CSS set from the TRP of a non-serving cell.
  • the inventors therefore focused on cases where RACH is triggered for each TRP, and studied the RACH procedure in such cases (e.g., the QCL (e.g., DMRS QCL characteristics) in the RACH procedure), and came up with one aspect of the present embodiment.
  • the QCL e.g., DMRS QCL characteristics
  • the inventors focused on cases in which a RACH for a non-serving cell is triggered, and considered the RACH procedure in such cases (e.g., the QCL (e.g., DMRS QCL characteristics) in the RACH procedure), and came up with another aspect of this embodiment.
  • the QCL e.g., DMRS QCL characteristics
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control
  • update commands activation/deactivation commands, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
  • the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • index identifier
  • indicator indicator
  • resource ID etc.
  • sequence list, set, group, cluster, subset, etc.
  • TRP
  • the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be read as interchangeable.
  • ID spatial relationship information
  • TCI state and TCI may be read as interchangeable.
  • TRP CORESET pool index (CORESETPoolIndex)
  • CORESETPoolIndex ID related to TRP
  • TAG ID ID related to TRP
  • TCI state group ID related to TRP
  • TAG ID ID related to TRP
  • TCI state group ID related to TRP
  • TAG ID ID related to TRP
  • TCI state group ID related to TRP
  • TAG ID ID related to TRP
  • TCI state group TCI state group
  • spatial relationship group QCL source RS group
  • DL RS group DL RS group
  • path loss RS group path loss RS group
  • PCI for inter-cell multi-TRP
  • being associated with different TRPs being associated with different CORESET pool indices (CORESETPoolIndex), being associated with different TRP IDs, being associated with different IDs related to TRPs, being associated with different TAG IDs, being associated with different TCI state groups, being associated with different spatial relationship groups, being associated with different QCL source RS groups, being associated with different DL RS groups, being associated with different path loss RS groups, being associated with different PCIs (for inter-cell multi-TRP) may be read as interchangeable.
  • CORESETPoolIndex CORESET pool indices
  • Each embodiment of the present disclosure may be applied to at least one of intra-cell multi-TRP and inter-cell multi-TRP.
  • intra-cell multi-TRP may mean that the activated TCI states of multiple (e.g., two) TRPs are associated with the same PCI.
  • inter-cell multi-TRP may mean that the activated TCI states of multiple (e.g., two) TRPs are associated with different PCIs.
  • multiple (e.g., two) TRPs may mean multiple (e.g., two) TRPs associated with multiple (e.g., two) PCIs.
  • non-serving cell additional cell, candidate cell, and target cell may be interpreted as interchangeable.
  • the following embodiments may be applied when a RACH procedure is configured/supported for each TRP (or for each serving cell/additional cell/non-serving cell).
  • the following embodiments may be applied when a timing advance/timing advance group is configured/supported for each TRP (or for each serving cell/additional cell/non-serving cell).
  • the UE may assume QCL (e.g., DMRS QCL) characteristics in the RACH procedure based on at least one of Alt. 1-0 and Alt. 1-1 below.
  • QCL e.g., DMRS QCL
  • the UE may assume that the first PDCCH and the second PDCCH it receives in the RACH procedure have the same DMRS QCL characteristics.
  • the first PDCCH may be a PDCCH order (or a PDCCH corresponding to a PDCCH order) that triggers a RACH procedure.
  • the second PDCCH may be a PDCCH for an RAR (or a PDCCH that schedules a PDSCH used to transmit an RAR).
  • the PDCCH for an RAR may be interpreted as a DCI format (e.g., DCI format 1_0) in which the CRC is scrambled by the corresponding RA-RNTI in response to a RACH transmission.
  • the UE When receiving a PDCCH for RAR transmitted from a base station in response to a PRACH triggered by a PDCCH order, the UE may assume the DMRS QCL characteristics to be used for receiving the PDCCH order (see Figure 8A).
  • Alt. 1-0 may apply the same mechanism as the QCL characteristics of the RACH procedure for a specific cell in existing systems (e.g., before Rel. 17).
  • the UE may assume that the case in which the first PDCCH and the second PDCCH received in the RACH procedure have different DMRS QCL characteristics is supported.
  • the first PDCCH may be a PDCCH order (or a PDCCH corresponding to a PDCCH order) that triggers the RACH procedure.
  • the second PDCCH may be a PDCCH for the RAR (or a PDCCH that schedules a PDSCH used to transmit the RAR).
  • the UE may receive a PDCCH order assuming a first QCL, and may assume a second QCL obtained (or provided) separately from the first QCL when receiving a PDCCH for RAR transmitted from the base station in response to a PRACH triggered by the PDCCH order (see FIG. 8B).
  • the UE may assume the DMRS QCL characteristics of a given CORESET for receiving the PDCCH for RAR.
  • the given CORESET may be, for example, a CORESET associated with a given CSS (e.g., Type 1-PDCCH CSS) set.
  • a different QCL assumption (e.g., Alt.1-0/Alt.1-1) may be applied to each scenario in which the RACH procedure is performed.
  • a scenario may be read as a condition, an application condition, or a setting condition.
  • different QCL assumptions may be applied to the RACH procedure in the first scenario and the RACH procedure in the second scenario.
  • Alt. 1-0 e.g., see FIG. 8A
  • Alt. 1-1 e.g., see FIG. 8B
  • the scenarios may be classified based on the CORESET pool indexes corresponding to the PDCCH order and the PDCCH for RAR, respectively.
  • the scenarios may be classified based on the type of cell/PCI (e.g., serving cell (or serving cell PCI)/additional cell (or additional cell PCI)) corresponding to the PDCCH order and the PDCCH for RAR, respectively.
  • serving cell or serving cell PCI
  • additional cell PCI additional cell
  • the multiple scenarios in which the RACH procedure is performed may be at least one of the following scenarios #1-1 to #1-10.
  • the first scenario may include one or more scenarios
  • the second scenario may include one or more other scenarios.
  • Scenario #1-1 may be a scenario in which intra-cell multi-TRP (e.g., intra-cell M-TRP) is configured/supported.
  • intra-cell multi-TRP e.g., intra-cell M-TRP
  • Scenario #1-2 may be a scenario in which an inter-cell multi-TRP (e.g., Inter-cell M-TRP) is configured/supported.
  • an inter-cell multi-TRP e.g., Inter-cell M-TRP
  • Scenario #1-3 may be scenarios in which, in intra-cell multi-TRP/inter-cell multi-TRP, the PDCCH order and the PDCCH for RAR are associated with different CORESET pool indices.
  • a PDCCH order may be transmitted in a first CORESET corresponding to a first CORESET pool index
  • a PDCCH for RAR may be transmitted in a second CORESET corresponding to a second CORESET pool index.
  • Alt. 1-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, Alt. 1-0) may also be applied.
  • Scenario #1-4 Scenarios #1-4 may be scenarios in which, in intra-cell multi-TRP/inter-cell multi-TRP, the PDCCH order and the PDCCH for RAR are associated with the same CORESET pool index.
  • the PDCCH order and the PDCCH for RAR may each be transmitted in a CORESET corresponding to the first CORESET pool index.
  • Alt. 1-0 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, Alt. 1-1) may also be applied.
  • Scenario #1-5 may be scenarios in which, in intra-cell multi-TRP/inter-cell multi-TRP, the PDCCH order is associated with a first CORESET pool index (e.g., #0) and the PDCCH for RAR is associated with a second CORESET pool index (e.g., #1).
  • a first CORESET pool index e.g., #0
  • a second CORESET pool index e.g., #1
  • Alt. 1-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, Alt. 1-0) may also be applied.
  • Scenario #1-6 may be scenarios in which, in intra-cell multi-TRP/inter-cell multi-TRP, the PDCCCH order is associated with the second CORESET pool index (e.g., #1) and the PDCCCH for RAR is associated with the first CORESET pool index (e.g., #0).
  • the PDCCCH order is associated with the second CORESET pool index (e.g., #1)
  • the PDCCCH for RAR is associated with the first CORESET pool index (e.g., #0).
  • Alt. 1-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, Alt. 1-0) may also be applied.
  • Scenario #1-7 may be scenarios in which both the PDCCH order and the PDCCH for RAR are associated with a first CORESET pool index (e.g., #0) in intra-cell multi-TRP/inter-cell multi-TRP.
  • scenarios #1-7 may be scenarios in which both the PDCCH order and the PDCCH for RAR are associated with a second CORESET pool index (e.g., #1) in intra-cell multi-TRP/inter-cell multi-TRP.
  • Alt. 1-0 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, Alt. 1-1) may also be applied.
  • Scenario #1-8 may be scenarios in which, in an inter-cell multi-TRP (e.g., Inter-cell M-TRP), a PDCCH order is associated with an additional PCI (e.g., additional PCI), and a PDCCH for RAR is associated with a serving cell PCI.
  • the additional PCI e.g., additional PCI
  • the additional PCI may be read as a non-serving cell PCI, a candidate cell PCI, or a target cell PCI.
  • Alt. 1-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, Alt. 1-0) may also be applied.
  • Scenario #1-9 may be scenarios in which, in an inter-cell multi-TRP (e.g., Inter-cell M-TRP), the PDCCH order is associated with a serving cell PCI and the PDCCH for RAR is associated with an additional PCI (e.g., additional PCI).
  • an inter-cell multi-TRP e.g., Inter-cell M-TRP
  • the PDCCH order is associated with a serving cell PCI
  • the PDCCH for RAR is associated with an additional PCI (e.g., additional PCI).
  • Alt. 1-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, Alt. 1-0) may also be applied.
  • Scenario #1-10 may be a scenario in which, in an inter-cell multi-TRP (e.g., Inter-cell M-TRP), both the PDCCH order and the PDCCH for RAR are associated with a serving cell PCI.
  • scenarios #1-10 may be a scenario in which, in an inter-cell multi-TRP (e.g., Inter-cell M-TRP), both the PDCCH order and the PDCCH for RAR are associated with an additional PCI (e.g., additional PCI).
  • Alt. 1-0 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, Alt. 1-1) may also be applied.
  • scenarios #1-1 to #1-10 may not be supported, and some of the scenarios may be supported.
  • the scenarios supported by each UE may be determined based on the UE capabilities. In this case, the UE may not assume some scenarios (for example, scenarios that the UE does not support).
  • the first QCL assumption e.g., Alt. 1-0
  • the second QCL assumption e.g., Alt. 1-1
  • QCL assumptions the applicable/supportable QCL assumptions are not limited to these.
  • other QCL assumptions e.g., a third QCL assumption
  • scenarios #1-1 to #1-10 are given as examples, but applicable scenarios are not limited to these. Other scenarios may be additionally applied/supported, and two or more of scenarios #1-1 to #1-10 may be combined into one scenario.
  • the first embodiment may be applied to a specific cell (e.g., an SpCell) or to other cells (e.g., an SCell).
  • a specific cell e.g., an SpCell
  • SCell e.g., an SCell
  • the first embodiment makes it possible to appropriately control the QCL assumptions applied in the RACH procedure, even when the RACH procedure is supported for each TRP.
  • Second Embodiment In the second embodiment, an example of a QCL assumption applied in the case of a RACH procedure (e.g., PRACH transmission) for a non-serving cell will be described.
  • the second embodiment may be applied in combination with the first embodiment.
  • the second embodiment may be applied to QCL assumptions between PDCCH orders and PDCCH for RAR when a RACH procedure (e.g., PRACH transmission) for a non-serving cell is supported in inter-cell mobility.
  • the non-serving cell (or candidate cell) may correspond to a different frequency than the current serving cell.
  • the UE may assume a QCL (e.g., DMRS QCL) characteristic for the RACH procedure based on at least one of Alt. 2-0 and Alt. 2-1 below.
  • QCL e.g., DMRS QCL
  • the UE may assume that the first PDCCH and the second PDCCH it receives in the RACH procedure have the same DMRS QCL characteristics.
  • the first PDCCH may be a PDCCH order (or a PDCCH corresponding to a PDCCH order) that triggers a RACH procedure.
  • the second PDCCH may be a PDCCH for an RAR (or a PDCCH that schedules a PDSCH used to transmit an RAR).
  • the PDCCH for an RAR may be interpreted as a DCI format (e.g., DCI format 1_0) in which the CRC is scrambled by the corresponding RA-RNTI in response to a RACH transmission.
  • the UE When receiving a PDCCH for RAR transmitted from a base station in response to a PRACH triggered by a PDCCH order, the UE may assume the DMRS QCL characteristics to be used for receiving the PDCCH order (see Figure 9A).
  • Alt. 2-0 may apply the same mechanism as the QCL characteristics of the RACH procedure for a specific cell (e.g., SpCell) in existing systems (e.g., before Rel. 17).
  • the UE may assume that the case in which the first PDCCH and the second PDCCH received in the RACH procedure have different DMRS QCL characteristics is supported.
  • the first PDCCH may be a PDCCH order (or a PDCCH corresponding to a PDCCH order) that triggers the RACH procedure.
  • the second PDCCH may be a PDCCH for the RAR (or a PDCCH that schedules a PDSCH used to transmit the RAR).
  • the UE may receive a PDCCH order assuming a first QCL, and may assume a second QCL obtained (or provided) separately from the first QCL when receiving a PDCCH for RAR transmitted from the base station in response to a PRACH triggered by the PDCCH order (see FIG. 9B).
  • the UE may assume the DMRS QCL characteristics of a given CORESET for receiving the PDCCH for RAR.
  • the given CORESET may be, for example, a CORESET associated with a given CSS (e.g., Type 1-PDCCH CSS) set.
  • the specified CSS (e.g., Type 1-PDCCH CSS) set may be Option 2a or Option 2b below. Whether Option 2a or Option 2b is applied may be defined in the specification, may be set by the base station to the UE by a higher layer parameter, or may be selected depending on the scenario.
  • the predefined CSS (e.g., Type 1-PDCCH CSS) set may be the Type 1-PDCCH CSS set from the non-serving cell for which the RACH is triggered, in which case the Type 1-PDCCH CSS set may be provided/configured separately for each non-serving cell.
  • the predetermined CSS (eg, Type 1-PDCCH CSS) set may be the Type 1-PDCCH CSS set from the serving cell.
  • Option 2b may be applied when a non-serving cell corresponds to the same frequency as the serving cell.
  • a different QCL assumption (e.g., Alt. 2-0/Alt. 2-1) may be applied to each scenario in which the RACH procedure is performed. For example, different QCL assumptions may be applied to the RACH procedure in the first scenario and the RACH procedure in the second scenario. As an example, Alt. 2-0 may be applied to the first scenario, and Alt. 2-1 may be applied to the second scenario.
  • the scenarios may be classified based on the type of cell/PCI (e.g., serving cell (or serving cell PCI)/additional cell (or additional cell PCI)) corresponding to the PDCCH order and the PDCCH for RAR, respectively.
  • the scenarios may be classified based on the frequency corresponding to a non-serving cell/the frequency corresponding to a serving cell (e.g., whether the frequency of the non-serving cell is the same as the frequency of the serving cell).
  • the multiple scenarios in which the RACH procedure is performed may be at least one of the following scenarios #2-1 to #2-5.
  • the first scenario may include one or more scenarios
  • the second scenario may include one or more other scenarios.
  • Scenario #2-1 may be a scenario in which the PDCCH order is associated with an additional PCI (e.g., an additional PCI) and the PDCCH for RAR is associated with a serving cell PCI.
  • an additional PCI e.g., an additional PCI
  • option 2a of Alt. 2-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, option 2b of Alt. 2-0/Alt. 2-1) may also be applied.
  • Scenario #2-2 may be a scenario in which the PDCCH order is associated with a serving cell PCI and the PDCCH for RAR is associated with an additional PCI (e.g., an additional PCI).
  • an additional PCI e.g., an additional PCI
  • option 2b of Alt. 2-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, option 2a of Alt. 2-0/Alt. 2-1) may also be applied.
  • Scenario #2-3 may be a scenario in which both the PDCCH order and the PDCCH for RAR are associated with a serving cell PCI, or scenario #2-3 may be a scenario in which both the PDCCH order and the PDCCH for RAR are associated with an additional PCI (e.g., additional PCI).
  • additional PCI e.g., additional PCI
  • Alt. 2-0 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, options 2a/2b of Alt. 2-1) may also be applied.
  • Scenario #2-4 Scenarios #2-4 may be scenarios in which a non-serving cell corresponds to the same frequency as the serving cell.
  • option 2b of Alt. 2-0/Alt. 2-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, option 2a of Alt. 2-1) may also be applied.
  • Scenario #2-5 Scenarios #2-5 may be scenarios in which a non-serving cell corresponds to a different frequency than the serving cell.
  • option 2a of Alt. 2-1 may be applied.
  • this is not limited to this, and other QCL assumptions (for example, option 2b of Alt. 2-0/Alt. 2-1) may also be applied.
  • the second embodiment may be applied under at least one of the following conditions 2-1 and 2-2.
  • the PDCCH (PDCCH order) that triggers the PRACH may be received on a PCI that corresponds to the serving cell PCI.
  • the PDCCH (PDCCH order) that triggers the PRACH may be received on a PCI that corresponds to the additional PCI.
  • the PDCCH (PDCCH order) that triggers the PRACH may be received in a cell corresponding to the SpCell (eg, PCell/PSCell) or a cell corresponding to the same frequency as the SpCell.
  • the PDCCH (PDCCH order) that triggers the PRACH may be received in the SCell or a cell corresponding to the same frequency as the SCell.
  • scenarios #2-1 to #2-5 may not be supported, and only some of the scenarios may be supported.
  • the scenarios that each UE supports may be determined based on the UE capabilities. In this case, the UE may not need to consider some scenarios (e.g., scenarios that the UE does not support).
  • QCL assumption e.g., Alt. 2-0/Alt. 2-1
  • scenario may be defined in the specifications, or may be set by the base station to the UE using higher layer parameters/DCI, etc.
  • the first QCL assumption e.g., Alt. 2-0
  • the second QCL assumption e.g., Alt. 2-1
  • QCL assumptions the applicable/supportable QCL assumptions are not limited to these.
  • other QCL assumptions e.g., third QCL assumptions
  • scenarios #2-1 to #2-5 are given as examples, but applicable scenarios are not limited to these. Other scenarios may be additionally applied/supported, and two or more of scenarios #2-1 to #2-5 may be combined into one scenario.
  • the second embodiment makes it possible to appropriately control the QCL assumptions applied in a RACH procedure even when the RACH procedure is triggered for a non-serving cell.
  • any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received by the UE from the BS) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
  • NW network
  • BS base station
  • the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
  • LCID Logical Channel ID
  • the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
  • notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
  • the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
  • the notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
  • At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following: Supporting two TAs for multi-TRP; Supporting two TAs for intra-cell multi-TRP (e.g. intra-cell M-TRP); Supporting two TAs for inter-cell multi-TRP (e.g., inter-cell M-TRP); - Supporting L1/L2 inter-cell mobility (e.g., L1/L2 inter-cell mobility).
  • the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier Spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
  • the specific information may be information indicating the activation of multiple TAs for multi-TRP, information indicating the activation of multiple TAs for intra-cell multi-TRP, information indicating the activation of multiple TAs for inter-cell multi-TRP, information indicating the activation of L1/L2 inter-cell mobility, any RRC parameter for a specific release (e.g., Rel. 18/19), etc.
  • the UE may apply, for example, the behavior of Rel. 15/16/17.
  • a terminal having a receiving unit that receives a first downlink control channel used to trigger a random access procedure, and a control unit that controls reception of a second downlink control channel used to receive a response signal in the random access procedure based on at least one of a first quasi-co-location (QCL) assumption that uses a first QCL corresponding to the first downlink control channel and a second QCL assumption that uses a second QCL corresponding to a specific control resource set when a random access procedure for each transmitting/receiving point is supported.
  • QCL quasi-co-location
  • a terminal having: a receiving unit that receives a first downlink control channel used to trigger a random access procedure for a non-serving cell; and a control unit that controls reception of a second downlink control channel used to receive a response signal in the random access procedure based on at least one of a first quasi-co-location (QCL) assumption that uses a first QCL corresponding to the first downlink control channel and a second QCL assumption that uses a second QCL corresponding to a specific control resource set.
  • QCL quasi-co-location
  • Appendix 2-3 The terminal described in Appendix 2-1 or Appendix 2-2, wherein the control unit determines whether to apply the first QCL assumption or the second QCL assumption to receive the second downlink control channel based on at least one of the type of cell to which the first downlink control channel corresponds and the type of cell to which the second downlink control channel corresponds.
  • Appendix 2-4 A terminal described in any of Supplementary Notes 2-1 to 2-3, wherein the control unit determines whether to apply the first QCL assumption or the second QCL assumption to receive the second downlink control channel based on at least one of a frequency corresponding to the non-serving cell and a frequency corresponding to a serving cell.
  • Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
  • FIG. 10 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • 5G NR 5th generation mobile communication system New Radio
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • gNBs NR base stations
  • N-DC Dual Connectivity
  • the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
  • a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the multiple base stations 10.
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
  • wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication e.g., NR communication
  • base station 11 which corresponds to the upper station
  • IAB Integrated Access Backhaul
  • base station 12 which corresponds to a relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10.
  • the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
  • NF Network Functions
  • UPF User Plane Function
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • LMF Location Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio access method may also be called a waveform.
  • other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
  • a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SIB System Information Block
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc.
  • SIB System Information Block
  • PUSCH User data, upper layer control information, etc.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
  • the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
  • the PDSCH may be interpreted as DL data
  • the PUSCH may be interpreted as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • the CORESET corresponds to the resources to search for DCI.
  • the search space corresponds to the search region and search method of PDCCH candidates.
  • One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
  • a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
  • the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
  • UCI uplink control information
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • SR scheduling request
  • the PRACH may transmit a random access preamble for establishing a connection with a cell.
  • downlink, uplink, etc. may be expressed without adding "link.”
  • various channels may be expressed without adding "Physical” to the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
  • the SS, SSB, etc. may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
  • the base station 11 is a diagram showing an example of a configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
  • the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
  • the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
  • the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
  • the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the control unit 110 to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transceiver unit 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • channel coding which may include error correction coding
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
  • the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
  • the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • FFT Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • the transceiver 120 may perform measurements on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
  • the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • devices included in the core network 30 e.g., network nodes providing NF
  • other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transceiver unit 120 may transmit a first downlink control channel used to trigger a random access procedure.
  • the control unit 110 may control the transmission of a second downlink control channel used to receive a response signal in the random access procedure based on at least one of a first quasi-co-location (QCL) assumption using a first QCL corresponding to the first downlink control channel and a second QCL assumption using a second QCL corresponding to a specific control resource set.
  • QCL quasi-co-location
  • the transceiver 120 may transmit a first downlink control channel used to trigger a random access procedure for a non-serving cell.
  • the control unit 110 may control the transmission of a second downlink control channel used to receive a response signal in the random access procedure based on at least one of a first quasi-co-location (QCL) assumption using a first QCL corresponding to the first downlink control channel and a second QCL assumption using a second QCL corresponding to a specific control resource set.
  • QCL quasi-co-location
  • the user terminal 12 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
  • the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver 220 may be configured as an integrated transceiver, or may be composed of a transmitter and a receiver.
  • the transmitter may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiver may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
  • RLC layer processing e.g., RLC retransmission control
  • MAC layer processing e.g., HARQ retransmission control
  • the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • Whether or not to apply DFT processing may be based on the settings of transform precoding.
  • the transceiver unit 220 transmission processing unit 2211
  • the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
  • the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
  • the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
  • the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
  • the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transceiver unit 220 may receive a first downlink control channel used to trigger a random access procedure.
  • the control unit 210 may control reception of a second downlink control channel used to receive a response signal in the random access procedure based on at least one of a first quasi-co-location (QCL) assumption using a first QCL corresponding to the first downlink control channel and a second QCL assumption using a second QCL corresponding to a specific control resource set.
  • QCL quasi-co-location
  • the control unit 210 may determine the QCL assumption to be used for the second downlink control channel based on a scenario in which the random access procedure is applied. For example, the control unit 210 may determine whether the first QCL assumption or the second QCL assumption is to be applied to the reception of the second downlink control channel based on at least one of the control resource set pool index to which the first downlink control channel corresponds and the control resource set pool index to which the second downlink control channel corresponds. Alternatively, the control unit 210 may determine whether the first QCL assumption or the second QCL assumption is to be applied to the reception of the second downlink control channel based on at least one of the type of cell to which the first downlink control channel corresponds and the type of cell to which the second downlink control channel corresponds.
  • the control unit 210 may receive a first downlink control channel used to trigger a random access procedure for a non-serving cell.
  • the control unit 210 may control reception of a second downlink control channel used to receive a response signal in the random access procedure based on at least one of a first quasi-co-location (QCL) assumption using a first QCL corresponding to the first downlink control channel and a second QCL assumption using a second QCL corresponding to a specific control resource set.
  • QCL quasi-co-location
  • the control unit 210 may determine the QCL assumption to be used for the second downlink control channel based on a scenario in which the random access procedure is applied. For example, the control unit 210 may determine whether the first QCL assumption or the second QCL assumption is to be applied to the reception of the second downlink control channel based on at least one of the type of cell to which the first downlink control channel corresponds and the type of cell to which the second downlink control channel corresponds. Alternatively, the control unit 210 may determine whether the first QCL assumption or the second QCL assumption is to be applied to the reception of the second downlink control channel based on at least one of the frequency corresponding to the non-serving cell and the frequency corresponding to the serving cell.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
  • Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically EPROM
  • RAM Random Access Memory
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • a channel, a symbol, and a signal may be read as mutually interchangeable.
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
  • the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
  • the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
  • one subframe may be called a TTI
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input/output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • Network may refer to the devices included in the network (e.g., base stations).
  • precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
  • Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
  • the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body in question may also be a moving body that moves autonomously based on an operating command.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned
  • at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 14 is a diagram showing an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
  • various sensors including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service unit 59 including a communication module 60.
  • the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
  • the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
  • the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
  • the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
  • various information/services e.g., multimedia information/multimedia services
  • the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
  • the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the above-mentioned base station 10, user terminal 20, etc.
  • the communication module 60 may be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
  • the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
  • the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
  • the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the user terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
  • the uplink channel, downlink channel, etc. may be read as the sidelink channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station 10 may be configured to have the functions of the user terminal 20 described above.
  • operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal
  • Future Radio Access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
  • Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
  • “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
  • judgment may also be considered to mean “deciding” to take some kind of action.
  • the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connected” may be read as "access.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、非サービングセルに対するランダムアクセス手順のトリガに利用される第1の下り制御チャネルを受信する受信部と、前記第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、前記ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの受信を制御する制御部と、を有する。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、Rel.17/5Gより後の無線通信システム)では、サービングセルにおいて複数の送受信ポイント(例えば、マルチTRP(Multi-TRP(MTRP)))を利用した通信を制御すること、又は、非サービングセル(non-serving cell)を含む複数セル間モビリティ(inter-cell mobility)に基づいて通信を制御することが想定される。
 この場合、送受信ポイント毎、又は、サービングセルと非サービングセル毎に、UL送信の制御(例えば、ランダムアクセス手順の実施(又は、タイミングアドバンスの設定))を行うことも想定される。しかし、端末(ユーザ端末(user terminal)、User Equipment(UE))が複数の送受信ポイント(又は、非サービングセル)に対してUL送信の制御(例えば、タイミングアドバンスの制御等)をどのように行うかが問題となる。各送受信ポイント(又は、サービングセル/非サービングセルのTRP)へのUL送信が適切に制御されない場合、複数の送受信ポイントを利用した通信の品質が劣化するおそれがある。
 本開示はかかる点に鑑みてなされたものであり、複数の送受信ポイントを利用して通信を行う場合であっても通信を適切に行うことが可能な端末、無線通信方法及び基地局を提供することを目的の一つとする。
 本開示の一態様に係る端末は、非サービングセルに対するランダムアクセス手順のトリガに利用される第1の下り制御チャネルを受信する受信部と、前記第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、前記ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの受信を制御する制御部と、を有する。
 本開示の一態様によれば、複数の送信ポイントを利用して通信を行う場合であっても通信を適切に行うことができる。
図1A-図1Dは、マルチTRPの一例を示す図である。 図2A及び図2Bは、セル間モビリティの一例を示す図である。 図3A及び図3Bは、L1/L2シグナリングによるサービングセルと追加セル間の切り替えの一例を示す図である。 図4は、候補セルがサポートされる場合の設定例1-3の一例を示す図である。 図5A-図5Cは、候補セルがサポートされる場合の設定例1-3においてL1/L2シグナリングによる候補セル/候補セルグループの切り替えが行われる場合の一例を示す図である。 図6は、セルグループに含まれるセルが属するタイミングアドバンスグループ(TAG)の一例を示す図である。 図7は、タイミングアドバンスコマンド用のMAC CEの一例を示す図である。 図8A及び図8Bは、第1の実施形態におけるRACH手順のQCL想定の一例を示す図である。 図9A及び図9Bは、第2の実施形態におけるRACH手順のQCL想定の一例を示す図である。 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図11は、一実施形態に係る基地局の構成の一例を示す図である。 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図14は、一実施形態に係る車両の一例を示す図である。
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
 なお、TCI状態の適用対象となるチャネル/信号は、ターゲットチャネル/参照信号(target channel/RS)、単にターゲットなどと呼ばれてもよく、上記別の信号はリファレンス参照信号(reference RS)、ソースRS(source RS)、単にリファレンスなどと呼ばれてもよい。
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下りリンク共有チャネル(Physical Downlink Shared Channel(PDSCH))、下りリンク制御チャネル(Physical Downlink Control Channel(PDCCH))、上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))、上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)、復調用参照信号(DeModulation Reference Signal(DMRS))、などの少なくとも1つであってもよい。
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルID(例えば、PCI)でもよいし、仮想セルIDでもよい。
 図1A-1Dは、マルチTRPシナリオの一例を示す図である。これらの例において、各TRPは4つの異なるビームを送信可能であると想定するが、これに限られない。
 図1Aは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して送信を行うケース(シングルモード、シングルTRPなどと呼ばれてもよい)の一例を示す。この場合、TRP1は、UEに制御信号(PDCCH)及びデータ信号(PDSCH)の両方を送信する。
 本開示において、シングルTRPモードは、マルチTRP(モード)が設定されない場合のモードを意味してもよい。
 図1Bは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(シングルマスタモードと呼ばれてもよい)の一例を示す。UEは、1つの下り制御情報(Downlink Control Information(DCI))に基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1Cは、マルチTRPのそれぞれがUEに対して制御信号の一部を送信し、当該マルチTRPがデータ信号を送信するケース(マスタスレーブモードと呼ばれてもよい)の一例を示す。TRP1では制御信号(DCI)のパート1が送信され、TRP2では制御信号(DCI)のパート2が送信されてもよい。制御信号のパート2はパート1に依存してもよい。UEは、これらのDCIのパートに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1Dは、マルチTRPのそれぞれがUEに対して別々の制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(マルチマスタモードと呼ばれてもよい)の一例を示す。TRP1では第1の制御信号(DCI)が送信され、TRP2では第2の制御信号(DCI)が送信されてもよい。UEは、これらのDCIに基づいて、当該マルチTRPから送信される各PDSCHを受信する。
 図1BのようなマルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)を、1つのDCIを用いてスケジュールする場合、当該DCIは、シングルDCI(S-DCI、シングルPDCCH)と呼ばれてもよい。また、図1DのようなマルチTRPからの複数のPDSCHを、複数のDCIを用いてそれぞれスケジュールする場合、これらの複数のDCIは、マルチDCI(M-DCI、マルチPDCCH(multiple PDCCH))と呼ばれてもよい。
 マルチTRPの各TRPからは、それぞれ異なるトランスポートブロック(Transport Block(TB))/コードワード(Code Word(CW))/異なるレイヤが送信されてもよい。あるいは、マルチTRPの各TRPからは、同一のTB/CW/レイヤが送信されてもよい。
 マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が検討されている。NCJTにおいて、例えば、TRP1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。
 マルチTRP/パネルを用いるNCJTは、高ランクを用いる可能性がある。複数TRPの間の理想的(ideal)及び非理想的(non-ideal)のバックホール(backhaul)をサポートするために、シングルDCI(シングルPDCCH、例えば、図1B)及びマルチDCI(マルチPDCCH、例えば、図1D)の両方がサポートされてもよい。シングルDCI及びマルチDCIの両方に対し、TRPの最大数が2であってもよい。
 シングルPDCCH設計(主に理想バックホール用)に対し、TCIの拡張が検討されている。DCI内の各TCIコードポイントは1又は2のTCI状態に対応してもよい。TCIフィールドサイズはRel.15のものと同じであってもよい。
 Rel.15で規定されるPDCCH/CORESETについて、CORESETプールインデックス(CORESETPoolIndex)(TRP情報(TRP Info)と呼ばれてもよい)なしの1つのTCI状態が、1つのCORESETに設定される。
 Rel.16で規定されるPDCCH/CORESETのエンハンスメントについて、マルチDCIに基づくマルチTRPでは、各CORESETに対して、CORESETプールインデックスが設定される。
(セル間モビリティ)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(MTRP)))が、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
 UEは、セル間モビリティ(例えば、L1/L2 inter cell mobility)において、複数のセル/TRPからのチャネル/信号を受信することが考えられる(図2A、B参照)。
 図2Aは、ノンサービングセルを含むセル間モビリティ(例えば、Single-TRP inter-cell mobility)の一例を示している。UEは、各セルにおいて1つのTRP(又は、シングルTRP)が設定されてもよい。ここでは、UEは、サービングセルとなるセル#1の基地局/TRPと、サービングセルでない(非サービングセル/Non-serving cellとなる)セル#3の基地局/TRPとからチャネル/信号を受信する場合を示している。例えば、UEがセル#1からセル#3にスイッチ/切り替えする場合(例えば、fast cell switch)に相当する。
 この場合、ポート(例えば、アンテナポート)/TRPの選択又がダイナミックに行われてもよい。ポート(例えば、アンテナポート)/TRPの選択又は、DCI/MAC CEにより指示又はアップデートされるTCI状態に基づいて行われてもよい。ここでは、セル#1とセル#3に対して、異なる物理セルID(例えば、PCI)の設定がサポートされる場合を示している。
 図2Bは、マルチTRPシナリオ(例えば、マルチTRPを利用する場合のセル間モビリティ(Multi-TRP inter-cell mobility))の一例を示している。UEは、各セルにおいて複数(例えば、2個)のTRP(又は、異なるCORESETプールインデックス)が設定されてもよい。ここでは、UEは、TRP#1とTRP2からチャネル/信号を受信する場合を示している。また、ここでは、TRP#1が物理セルID(PCI)#1に対応し、TRP#2がPCI#2に対応する場合を示している。
 マルチTRP(TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ同一又は異なるコードワード(Code Word(CW))と、同一又は異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、図2Bに示すように、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。ここでは、異なるPCIに対応するTPR間でNCJTが行われる場合を示している。なお、TRP#1とTRP#2に対して、同じサービングセル設定が適用/設定されてもよい。
 NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、TRP#1からの第1のPDSCHと、TRP#2からの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。第1のPDSCHと第2のPDSCHは、同じTBの送信に利用されてもよいし、異なるTBの送信に利用されてもよい。
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI(S-DCI)、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード)。1つのDCIは、マルチTRPの1つのTRPから送信されてもよい。マルチTRPにおいて1つのDCIを利用する構成は、シングルDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。
 マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI(M-DCI)、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード)。複数のDCIは、マルチTRPからそれぞれ送信されてもよい。マルチTRPにおいて複数のDCIを利用する構成は、マルチDCIベースのマルチTRP(mTRP/MTRP)と呼ばれてもよい。
 UEは、異なるTRPに対して、それぞれのTRPに関する別々のCSI報告(CSIレポート)を送信すると想定してもよい。このようなCSIフィードバックは、セパレートフィードバック、セパレートCSIフィードバックなどと呼ばれてもよい。本開示において、「セパレート」は、「独立した(independent)」と互いに読み替えられてもよい。
 セル間モビリティにおいて、以下のシナリオ1又はシナリオ2が考えられる。なお、本開示において、サービングセルは、サービングセル内のTRPに読み替えられてもよい。layer1/layer2(L1/L2)、DCI/Medium Access Control Control Element(MAC CE)は、互いに読み替えられてもよい。本開示において、現在のサービングセルの物理セルID(Physical Cell Identity(PCI))とは異なるPCIを、単に「異なるPCI」と記載することがある。非サービングセル、異なるPCIを有するセル、追加セルは、互いに読み替えられてもよい。
<シナリオ1>
 シナリオ1は、例えば、マルチTRPのセル間モビリティに対応する。なお、シナリオ1は、マルチTRPのセル間モビリティに対応しないシナリオであってもよい。シナリオ1では、例えば、以下の手順が行われる。
(1)UEは、サービングセルから、当該サービングセルとは異なるPCIに対応するTRPのビーム測定用のSSBの設定、及び異なるPCIのリソースを含む、データ送受信に無線リソースを使用するために必要な設定を受信する。
(2)UEは、異なるPCIに対応するTRPのビーム測定を実行し、ビーム測定結果をサービングセルに報告する。
(3)上記の報告に基づいて、異なるPCIに対応するTRPに関連付けられた送信設定指示(Transmission Configuration Indication(TCI))状態が、サービングセルからのL1/L2シグナリングによって、アクティブ化される。
(4)UEは、異なるPCIに対応するTRP上のUE個別(dedicated)チャネルを使用して送受信する。
(5)UEは、マルチTRPの場合も含めて、常にサービングセルをカバーしている必要がある。UEは、従来システムと同様に、サービングセルからの共通チャネル(ブロードキャスト制御チャネル(BCCH:Broadcast Control Channel)、ページングチャネル(PCH:Paging Channel))などを使用する必要がある。
 シナリオ1では、UEが、追加セル/TRP(追加セルのPCIに対応するTRP)と信号を送受信するときに、サービングセル(UEにおけるサービングセルの想定)は変更されない。つまり、L1/L2によるサービングセルの切り替えはサポートされない。UEは、サービングセルから、非サービングセルのPCIに関連する上位レイヤパラメータを設定される。シナリオ1は、例えば、Rel.17において適用されてもよい。
 図3Aは、Rel.17におけるUEの移動の例を示す図である。UEが、PCI#1のセル(サービングセル)からPCI#3のセル(追加セル)(サービングセルに重複する)に移動する場合を想定する。この場合、Rel.17では、L1/L2によるサービングセルの切り替えはサポートされていない。
 追加セルは、サービングセルのPCIとは異なる追加PCIを持つセルである。UEは、追加セルからUE専用チャネルを受信/送信することができる。UEは、UE共通チャネル(例えば、システム情報/ページング/ショートメッセージ)を受信するために、サービングセルのカバレッジ内にいる必要がある。UEがサービングセルのカバレッジ外に移動する場合、ハンドオーバー(L3モビリティとも呼ぶ)等によりセルの切り替えが必要となる。
<シナリオ2>
 シナリオ2では、L1/L2セル間モビリティを適用する。L1/L2セル間モビリティでは、RRC再設定せずに、ビーム制御などの機能を用いてサービングセル変更が可能である。言い換えると、ハンドオーバーせず(又は、L3モビリティ手順を行わず)に、追加セルとの送受信が可能である。ハンドオーバーのためにはRRC再接続が必要になるなど、データ通信不可期間が生じるので、ハンドオーバー不要なL1/L2セル間モビリティを適用することにより、サービングセル変更の際にもデータ通信を継続することができる。シナリオ2では、例えば、以下の手順が行われる。
(1)UEは、サービングセルから、ビーム測定/サービングセルの変更のために、異なるPCIを持つセル(追加セル)のSSBの設定を受信する。
(2)UEは、異なるPCIを使用したセルのビーム測定を実行し、測定結果をサービングセルに報告する。
(3)UEは、異なるPCIを持つセルの設定(サービングセル設定)を、上位レイヤシグナリング(例えばRRC)によって受信してもよい。つまり、サービングセル変更に関する事前設定が行われてもよい。この設定は、(1)における設定とともに行われてもよいし、別々に行われてもよい。
(4)上記の報告に基づいて、異なるPCIを持つセルのTCI状態は、サービングセルの変更に従ってL1/L2シグナリングによってアクティブ化されてもよい。TCI状態のアクティブ化及びサービングセルの変更は、別々に行われてもよい。
(5)UEは、サービングセル(サービングセルの想定)を変更し、予め設定されたUE個別のチャネルとTCI状態を使用して受信/送信を開始する。
 つまり、シナリオ2では、サービングセル(UEにおけるサービングセルの想定)がL1/L2シグナリングによって更新される。シナリオ2は、Rel.18以降において適用されてもよい。
 図3Bは、Rel.18におけるUEの移動の例を示す図である。Rel.18では、サービングセルはL1/L2により切り替えられる。UEは、新しいサービングセルとの間で、UE専用チャネル/共通チャネルを受信/送信することができる。UEは、以前のサービングセルのカバレッジから外れてもよい。
(候補セルの設定)
 L1/L2セル間モビリティにおいて、サービングセルに加えて、候補セルが設定されてもよい。本開示において、候補セルは、ターゲットセル、追加セル、追加PCIと読み替えられてもよい。1以上の候補セル(又は、候補セルグループ)が、各サービングセルに別々に関連付けられてもよいし、1以上の候補セル(又は、候補セルグループ)が、複数のサービングセルに共通に関連づけられてもよい。
 候補セル(又は、候補セルグループ)の設定は、所定の上位レイヤパラメータ(例えば、ServingCellConfig)を利用して、既存システム(例えば、Rel.17以前の)のセル間ビームマネジメント(inter-cell BM)と同様に設定されてもよい。あるいは、候補セル(又は、候補セルグループ)の設定は、キャリアアグリゲーション設定のフレームワーク(例えば、CA configuration framework)、又はCHO(Conditional Handover)/CPC(Conditional PSCell Change)設定のフレームワークが再利用されてもよい。
 上位レイヤパラメータで設定された候補セル(又は、候補セルグループ)は、MAC CE/DCIによりアクティベーション/ディアクティベーションがUEに指示されてもよい。
 候補セルの設定(又は、サービングセルとの関連づけ)として、例えば、以下の設定例1~設定例3の少なくとも一つが適用されてもよい。ここでは、サービングセルとして、SpCell#0、SCell#1、SCell#2が設定され、サービングセルとは別に設定される候補セル/候補セルグループの一例を示す。以下の設定例1~設定例3は、一例であり、サービングセル数/候補セル数/候補セルグループ数、サービングセルと候補セル間の関連づけ等は、これに限られず適宜変更されてもよい。あるいは、設定例1~設定例3に加えて/代えて他の設定例がサポート/適用されてもよい。
[設定例1]
 設定例1は、各サービングセル(又は、各サービングセルにそれぞれ対応する周波数領域)に対して、1以上の候補セルがそれぞれ関連付けられる/設定される(図4参照)。ここでは、SpCell#0(又は、SpCell#0に対応する周波数領域)に対して候補セル#0-1、#0-2、#0-3が関連付けられ、SCell#1(又は、SCell#1に対応する周波数領域)に対して候補セル#1-1が関連付けられ、SCell#2(又は、SpCell#2に対応する周波数領域)に対して候補セル#2-1、#2-2が関連づけられる場合を示している。当該関連づけに関する情報は、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
[設定例2]
 設定例2は、MACエンティティ/MCG/SCGに対して、候補セルが関連付けられる/設定される(図4参照)。ここでは、MACエンティティ/MCG/SCGに対して、候補セル#3-#8が関連付けられる場合を示している。この場合、各サービングセルに対して候補セルが関連付けられるのではなく、MACエンティティ又はセルグループ(例えば、MCG/SCG)に対して候補セルが設定される。各セルに設定される候補セルに関する情報は、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
[設定例3]
 設定例3では、1以上の候補セルグループが設定される(図4参照)。候補セルグループは、1以上の候補セルを有している。ここでは、候補セル#0-#2を有する候補セルグループ#1、候補セル#0、#1を有する候補セルグループ#2、候補セル#0を有する候補セルグループ#3が設定される場合を示している。設定される候補セルグループに関する情報及び各候補セルグループに含まれる候補セルに関する情報の少なくとも一つ、RRC/MAC CE/DCIにより基地局からUEに設定/指示されてもよい。
[サービングセル切り替え]
 既存システム(例えば、Rel.17)では、追加PCI(又は、追加セル)のTCI状態に関するL1ビーム指示(例えば、DCIのTCI状態フィールドによる指示)がサポートされる。
 Rel.18以降では、サービングセルの切り替え(例えば、serving cell switch)を指示する新規のL1/L2信号(例えば、DCI/MAC CE)がサポートされることが想定される。当該指示として、暗示的な指示と明示的な指示の少なくとも一つがサポートされることが想定されてもよい。暗示的な指示は、例えば、あるCORESETが、MAC CEにより追加のPCIに関連づけられたTCI状態に更新されることを意味してもよい。明示的な指示は、DCI/MAC CEによりセルの切り替えが直接指示されることを意味してもよい。
 例えば、候補セルの設定例1において、L1/L2シグナリングを介して、所定の候補セルがサービングセルに指定(又は、サービングセルとの切り替えが指示)されてもよい。図5Aでは、L1/L2シグナリングにより、候補セル#0-2がMCG/SCGのSpCellとなる(SpCell#0と候補セル#0-2が切り替えられる)場合を示している。また、L1/L2シグナリングにより、候補セル#2-1がMCG/SCGのSCellとなる(SCell#2と候補セル#2-1が切り替えられる)場合を示している。
 あるいは、候補セルの設定例2において、L1/L2シグナリングを介して、所定の候補セルがサービングセルに指定(又は、サービングセルとの切り替えが指示)されてもよい。図5Bでは、L1/L2シグナリングにより、候補セル#4がMCG/SCGのSpCellとなる(SpCell#0と候補セル#4が切り替えられる)場合を示している。
 あるいは、候補セルの設定例3において、L1/L2シグナリングを介して、所定の候補セルグループ(又は、当該所定の候補セルグループに含まれる1以上の候補セル)がサービングセルグループに変更/更新されてもよい。図5Cでは、L1/L2シグナリングにより、候補セルグループ#1(又は、候補セルグループ#1に含まれる候補セル#0-#2)がサービングセルグループとなる(サービングセルグループと候補セルグループ#1が切り替えられる)場合を示している。候補セルグループ#1に含まれる候補セル(ここでは、候補セル#0-#2)のうち、SpCell#0に関連づけられる候補セル又はSpCell#0と同じ周波数領域に設定される候補セル(ここでは、候補セル#0)が新規のSpCellに設定されてもよい。あるいは、SpCellとなる候補セルがL1/L2シグナリングにより指示されてもよい。
(タイミングアドバンスグループ)
 複数のTRPを利用する場合にはUEと各TRP間との距離がそれぞれ異なるケースも生じる。複数のTRPは、同じセル(例えば、サービングセル)に含まれてもよい。あるいは、複数のTRPのうち、あるTRPがサービングセルに相当し、他のTRPが非サービングセルに相当してもよい。この場合、各TRPとUE間の距離が異なることも想定される。
 既存システムでは、UL(Uplink)チャネル及び/又はUL信号(ULチャネル/信号)の送信タイミングは、タイミングアドバンス(TA:Timing Advance)によって調整される。異なるユーザ端末(UE:User Terminal)からのULチャネル/信号の受信タイミングは、無線基地局(TRP:Transmission and Reception Point、gNB:gNodeB等ともいう)側で調整される。
 UEは、あらかじめ設定されたタイミングアドバンスグループ(TAG:Timing Advance Group)毎に、タイミングアドバンス(マルチプルタイミングアドバンス)を適用してUL送信のタイミング制御を行ってもよい。
 マルチプルタイミングアドバンスを適用する場合、送信タイミングで分類されるタイミングアドバンスグループ(TAG:Timing Advance Group)をサポートする。UEは、TAG毎に同じTAオフセット(又は、TA値)が適用されると想定して各TAGにおけるUL送信タイミングを制御してもよい。つまり、TAオフセットは、TAG毎にそれぞれ独立して設定されてもよい。
 マルチプルタイミングアドバンスを適用する場合、UEが各TAGに属するセルの送信タイミングを独立に調整することにより、複数のセルを利用する場合であっても、無線基地局においてUEからの上りリンク信号受信タイミングを合わせることができる。
 TAG(例えば、同じTAGに属するサービングセル)は、上位レイヤパラメータにより設定されてもよい。同じTAGに属するサービングセルに対して、同じタイミングアドバンス値が適用されてもよい。MACエンティティのSpCellを含むタイミングアドバンスグループはプライマリタイミングアドバンスグループ(PTAG)と呼ばれ、それ以外のTAGはセカンダリタイミングアドバンスグループ(STAG)と呼ばれてもよい。
 既存システム(例えば、Rel.16 NR)では、セルグループ(例えば、MCG/SCG)毎に最大4個のTAGの設定がサポートされる(図6参照)。図6では、SpCellとSCell#1~#4を含むセルグループに対して、3個のTAGが設定される場合を示している。ここでは、SpCellとSCell#1が第1のTAG(PTAG又はTAG#0)に属し、SCell#2とSCell#3が第2のTAG(TAG#1)に属し、SCell#4が第3のTAG(TAG#2)に属する場合を示している。
 タイミングアドバンスコマンド(TA command)がMAC制御要素(例えば、MAC CE)を利用してUEに通知されてもよい。TAコマンドは、上りチャネルの送信タイミング値を示すコマンドであり、MAC制御要素に含まれる。TAコマンドは、無線基地局からUEに対してMACレイヤでシグナリングされる。UEは、TAコマンドの受信に基づいて所定タイマ(例えば、TAタイマ)を制御する。
 タイミングアドバンスコマンド用のMAC CE(TAC MAC CE)は、タイミングアドバンスグループインデックス(例えば、TAG ID)用のフィールドと、タイミングアドバンスコマンド用のフィールドと、を含む構成であってもよい(図7参照)。
 一方で、将来の無線通信システムでは、あるセル(又はCC)に対応する1以上のTRPに対して異なるTAG(又は、TAG-ID)が設定されるケースが想定される。例えば、マルチDCIを利用するマルチTRPオペレーションについて、UL送信に2つのTA(又は、TAG)がサポートされることが想定される。
 あるいは、あるセルに対応する異なるTRPが共通のTAGをシェアするケースも想定される。あるいは、TAコマンド用のMAC CEが1つのTRPのみに適用されるケース、又はTAコマンド用のMAC CEが複数のTRPに適用されるケースも想定される。
 あるいは、異なるセルにそれぞれ対応するTRPが異なるTAGを利用する/共通のTAGをシェアするケースも想定される。例えば、インターセルモビリティにおいて、サービングセル(又は、サービングセルのTRP)と非サービングセル(又は、非サービングセルのTRP)に対して、共通/異なるタイミングアドバンスに基づいてUL送信を制御することも想定される。
 このように、Rel.18以降のMIMOでは、マルチDCIを利用したマルチTRP動作において、2つのTRPに対する2つのタイミングアドバンス(TA)をサポートすることも想定される。
 TRP単位でTAGが設定/制御される場合、タイムアライメントタイマ(例えば、timeAlignmentTimer)がTRP毎に設定されてもよい。タイムアライメントタイマは、MACエンティティが、関連づけられたTAGに属するサービングセルがアップリンク時間調整(例えば、uplink time aligned)されているとみなす時間を制御してもよい。例えば、ULタイムアライメントを維持(例えば、maintenance)するためにタイムアライメントタイマがRRCにより設定されてもよい。
 タイムアライメントタイマ(例えば、timeAlignementTimer)は、ULタイムアライメントに対して維持されてもよい。Rel.17において、タイムアライメントタイマ(例えば、timeAlignementTimer)は、TAG毎に対応する。UEは、タイミングアドバンスコマンド用のMAC CE(例えば、TAC MAC CE)を受信した場合、指示されたタイミングアドバンスグループ(例えば、TAG)にそれぞれ関連するタイムアライメントタイマを開始又は再開(リスタート)する。
 MACエンティティは、TAC MAC CEを受信し、かつ指示されたTAGとの間で所定値(NTA)が維持されている場合、指示されたTAGに対するタイミングアドバンスコマンドを適用する、あるいは、指示されたTAGに関連するタイムアライメントタイマを開始又は再起動(リスタート)する。所定値(NTA)は、DLとUL間のタイミングアドバンスであってもよい。
 タイムアライメントタイマが満了(expire)した場合の動作は、PTAGとSTAGでそれぞれ別々に定義されてもよい。なお、MACエンティティのSpCellを含むタイミングアドバンスグループ(TAG)をプライマリタイミングアドバンスグループ(PTAG)と呼び、それ以外のTAGをセカンダリタイミングアドバンスグループ(STAG)と呼んでもよい。
 例えば、Rel.17において、PTAGに対応するタイミングアドバンスタイマが満了した場合、所定のPTAG用動作が適用され、STAGに対応するタイミングアドバンスタイマが満了した場合、所定のSTAG用動作が適用されることがサポートされている。
 例えば、タイムアライメントタイマが満了した場合、以下の動作(例えば、所定のPTAG用動作/所定のSTAG用動作)が行われてもよい。
[所定のPTAG用動作]
 タイムアライメントタイマがPTAGと関連づけられている場合、
・全てのサービングセルの全てのHARQバッファをフラッシュ(廃棄)する。
・もし設定されている場合、全てのサービングセルに対してPUCCHをリリースするようにRRCに通知する。
・もし設定されている場合、SRSをリリースするようにRRCに通知する。
・設定されたDL割当てと設定されたUL割当てを全てクリアする。
・セミパーシステントCSI報告用のPUSCHリソースをクリアする。
・ランニング中のタイムアライメントタイマを全て満了させる。
・全てのTAGのNTAを維持する。
[所定のSTAG用動作]
 タイムアライメントタイマがSTAGと関連づけられている場合、当該TAGに属する全てのサービングセルに対して、
・全てのHARQバッファをフラッシュ(廃棄)する。
・もし設定されている場合、PUCCHをリリースするようにRRCに通知する。
・もし設定されている場合、SRSをリリースするようにRRCに通知する。
・設定されたDLの割当てとULの割当てを全てクリアする。
・セミパーシステントCSI報告用のPUSCHリソースをクリアする。
・当該TAGのNTAを維持する。
(TRP/パネル単位のTA制御)
 上述したように、複数の送受信ポイント(例えば、TRP)/パネルを利用して通信を行う場合、TRPごと/パネルごとにタイミングアドバンス(TA)を制御することも想定される。
 Rel.18以降のNRでは、PDCCHオーダによってトリガされるRACH、及び、UEによってトリガされるRACHについて、衝突型ランダムアクセス(Contention based Random Access(CBRA))/非衝突型ランダムアクセス(Contention Free Random Access(CFRA))が、TRP単位又はTRP TA(TRPごとのTA)単位で考慮/決定されることが考えられる。
 TRP毎に(又は、TRP単位で)タイミングアドバンスの適用/設定がサポートされる場合、UEは、各TRPに対応するタイミングアドバンス(又は、各TRPが属するタイミングアドバンスグループ)に基づいて、各TRPにおけるUL送信(例えば、RACH送信等)を制御する。
 各サービングセルに対応するTRPに関する情報(例えば、TRPインデックス/TRP ID)は、RRC/MAC CE/下り制御情報を利用して基地局からUEに設定/指示されてもよい。UEは、各TRPに対応するタイミングアドバンスに関する関連情報(例えば、TA値/タイミングアドバンスコマンド/タイムアライメントタイマ等に関する情報)を基地局から受信してもよい。
 本開示の各実施形態は、セル内マルチTRP(Intra-cell M-TRP)とセル間マルチTRP(Inter-cell M-TRP)の少なくとも一方において適用/サポートされてもよい。
 セル内マルチTRPにおいて、複数のTRP(又は、複数のTRPのアクティブ化されたTCI状態)は、同じセルIDに関連づけられてもよい。セルIDは、物理セルID(PCI)であってもよい。
 セル間マルチTRPにおいて、複数のTRP(又は、複数のTRPのアクティブ化されたTCI状態)は、異なるセルID(例えば、PCI)に関連づけられてもよい。例えば、セル間マルチTRPにおいて、2つのTRPは、それぞれ2つのPCIに関連づけられた2つのTRPと読み替えられてもよい。
 TRP毎に(又は、TRP単位で)タイミングアドバンスの適用/設定がサポートされる場合、各TRPが異なるTAGに属してもよい。サービングセルの複数のTRP(例えば、2つのTRP)がそれぞれ2つのTAGに属してもよい。TAGは、複数のサービングセルからの複数のTRPを含んでもよい。TAG内の全てのTRP/サービングセルは、同じタイミングアドバンス(TA)/同じタイムアライメントタイマを適用/維持する。
 本開示において、TAGに1以上のサブTAGが含まれてもよい。例えば、サービングセルの2つのTRPがそれぞれ2つのサブTAGに属すると共に、1つのTAGに属してもよい。サブTAGは、複数のサービングセルからの複数のTRPを含んでもよい。サブTAG内の全てのTRP/サービングセルは、同じタイミングアドバンス(TA)/同じタイムアライメントタイマを適用/維持する。
 例えば、TRP毎にTAがそれぞれ適用され(又は、TRP TA単位の指示が行われ)てもよい。例えば、以下のオプションの少なくとも一つが適用されてもよい。
[オプション1]
 TRP毎に異なるTAG-IDを設定し、TRP毎に異なるTAコマンド用MAC CEを設定してもよい。各TAGは、ULタイムアライメント用にタイムアライメントタイマを維持してもよい。
[オプション2]
 異なるTRPがTAGを共有してもよい。TAコマンド用MAC CEは1つのTRPにのみ適用されてもよい。UEは、他のTRPに対して異なるTAを適用する。例えば、UEは、TRP#0用のTA(TA_TRP#0)に基づいて、TAオフセット(TA_TRP_offset)により他のTRP(例えば、TRP#1)用のTA値を調整してもよい。
 この場合、複数のTRPのULタイムアライメントに対して1つのタイムアライメントタイマだけが存在してもよい。これは、複数のTRPのULタイムアライメントが同時に維持又は失われることを意味してもよい。
[オプション3]
 TAGを1つにしてもよい。TAコマンド用MAC CEは、UEに対する複数のサービングTRPに適用されてもよい。
[オプション4]
 TAGを1つにしてもよい。TRP/CW/PDSCH/DMRSポートグループで受信したTAコマンド用MAC CEは、TAGの同じTRP/CW/PDSCH/DMRSポートグループに適用されてもよい。TAGの各TRP/CW/PDSCH/DMRSポートグループは、ULタイムアライメント用のタイムアライメントタイマを維持する。
 このように、Rel.18以降では、マルチTRP(例えば、マルチDCIを利用したマルチTRP)において、複数のタイミングアドバンスがサポートされることも想定される。例えば、マルチDCIを利用したマルチTRP(例えば、2つのTRP)に対して複数(例えば、2つ)のタイミングアドバンスがサポートされてもよい。また、マルチTRPに対する複数のタイミングアドバンスの適用は、セル内/セル間マルチDCIマルチTRPシナリオでサポートされてもよいし、複数の周波数レンジ(例えば、FR1とFR2)においてサポートされてもよい。
 ところで、上述のようなマルチTRPにおけるTRP(又は、TRP TA)ごとのRACH手順において、どのようにRACH手順を行うかについて十分な検討が行われていない。
 既存システム(例えば、Rel.17以前)では、特定のセル(例えば、SpCell)に対するRACH手順について、PDCCHオーダのRACHに対して、UEは、PDCCHオーダと、RAR用のPDCCHと、が同じQCL特性を有すると想定してRACH手順を行う。RAR用のPDCCHは、PDCCHオーダによりUEにトリガされた(又は、UEから送信された)PRACHに応答して基地局が送信するPDCCHであってもよい。当該RAR用のPDCCHによりスケジュールされるPDSCHにRARが含まれてもよい。QCL特性は、DMRS QCL特性と読み替えられてもよい。
 具体的には、UEがSpCellに対するCFRA手順をトリガするPDCCHオーダにより開始されたPRACH送信に応答して、対応するRA-RNTIによりCRCスクランブルされたDCIフォーマット1_0の検出を行う場合、UEは、DCIフォーマット1_0を含むPDCCHとPDCCHオーダとが同じDMRSアンテナポート疑似コロケーション特性を有すると想定してもよい。
 また、既存システム(例えば、Rel.17以前)では、他のセル(例えば、SCell)に対するRACH手順について、特定のセルのような制限はなく、UEは、RAR用のPDCCHの受信に対して、所定のCORESETのQCLを利用することがサポートされる。所定のCORESETは、タイプ1CSSセット(例えば、タイプ1-PDCCH CSSセット)に関連づけられるCORESETであってもよい。
 具体的には、UEがSCellに対するCFRA手順をトリガするPDCCHオーダにより開始されたPRACH送信に応答して、対応するRA-RNTIによりCRCスクランブルされたDCIフォーマット1_0の検出を行う場合、UEは、DCIフォーマット1_0を含むPDCCHの受信用のタイプ1-PDCCH CSSセットに関連づけられたCORESETのDMRSアンテナポート疑似コロケーション特性を想定してもよい。
 ところで、TRP毎のTA(又は、サービングセルと非サービングセルのTA)を取得するためには、TRP毎(又は、サービングセル/非サービングセル毎)のRACHがトリガされてもよい。TRP(又は、サービングセル/非サービングセル)へのRACH手順トリガするPDCCHオーダについて、PDCCHオーダとRAR用のPDCCHが異なるTRPから送信されるケースも考えられる。このようなケースにおいて、PDCCHオーダとRAR用のPDCCHが同じDMRS QCL特性を有するという制限を緩和/変更する必要がある。
 例えば、TRP#1からのPDCCHオーダがTRP#2へのRACHをトリガし、RARがTRP#2から送信されることがサポートされてもよい。この場合、任意のTRPからのPDCCHオーダを介して任意のTRPへのRACHをトリガすることが可能となり、RACH手順の柔軟性を高めることができる。
 他の例として、TRP#2からのPDCCHオーダがTRP#2へのRACHをトリガし、RARがTRP#1から送信されることがサポートされてもよい。この例は、UEが非サービングセルのTRPからタイプ1CSSセットを受信できない場合に、セル間マルチTRP(例えば、inter-cell M-TRP)ケースにおいて生じる可能性がある。
 そこで、本発明者らは、TRP毎にRACHがトリガされるケースに着目し、かかる場合のRACH手順(例えば、当該RACH手順におけるQCL(例えば、DMRS QCL特性))について検討して本実施の形態の一態様を着想した。
 あるいは、本発明者らは、非サービングセルに対するRACHがトリガされるケースに着目し、かかる場合のRACH手順(例えば、当該RACH手順におけるQCL(例えば、DMRS QCL特性))について検討して本実施の形態の他の態様を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。
 本開示において、TRP、CORESETプールインデックス(CORESETPoolIndex)、TRP ID、TRPに関するID、TAG ID、TCI状態のグループ、空間関係のグループ、QCLソースRSのグループ、DL RSのグループ、パスロスRSのグループ、(セル間マルチTRP用の)PCI、は互いに読み替えられてもよい。
 本開示において、異なるTRPに関連付けられること、異なるCORESETプールインデックス(CORESETPoolIndex)に関連付けられること、異なるTRP IDに関連付けられること、異なるTRPに関するIDに関連付けられること、異なるTAG IDに関連付けられること、異なるTCI状態のグループに関連付けられること、異なる空間関係のグループに関連付けられること、異なるQCLソースRSのグループに関連付けられること、異なるDL RSのグループに関連付けられること、異なるパスロスRSのグループに関連付けられること、異なる(セル間マルチTRP用の)PCIに関連付けられること、は互いに読み替えられてもよい。
 本開示の各実施形態は、セル内(intra-cell)マルチTRP及びセル間(inter-cell)マルチTRPの少なくとも一方に適用されてもよい。
 本開示において、セル内(intra-cell)マルチTRPは、複数(例えば、2つ)のTRPのアクティベートされるTCI状態(activated TCI states)が、同じPCIに関連付けられることを意味してもよい。
 本開示において、セル間(inter-cell)マルチTRPは、複数(例えば、2つ)のTRPのアクティベートされるTCI状態(activated TCI states)が、異なるPCIに関連付けられることを意味してもよい。
 本開示において、セル間(inter-cell)マルチTRPの場合、複数(例えば、2つ)のTRPは、複数(例えば、2つ)のPCIに関連付けられる複数(例えば、2つ)のTRPを意味してもよい。
 本開示において、非サービングセル、追加セル、候補セル、ターゲットセルは互いに読み替えられてもよい。
 以下の実施形態は、TRP毎(又は、サービングセル/追加セル/非サービングセル毎)のRACH手順が設定/サポートされる場合に適用されてもよい。あるいは、以下の実施形態は、TRP毎(又は、サービングセル/追加セル/非サービングセル毎)のタイミングアドバンス/タイミングアドバンスグループが設定/サポートされる場合に適用されてもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態では、特定のセル(例えば、SpCell)に対してマルチDCIベースのマルチTRPがサポート/設定/有効化され、PDCCHオーダが当該特定のセルのRACH手順をトリガする場合に適用されるQCL想定の一例について説明する。
 マルチDCIベースのマルチTRPが設定される特定のセルに対して、PDCCHオーダによりRACH手順(又は、PRACH/RACH)がトリガされる場合、UEは、以下のAlt.1-0及びAlt.1-1の少なくとも一つに基づいて、RACH手順におけるQCL(例えば、DMRS QCL)特性を想定してもよい。
[Alt.1-0]
 UEは、RACH手順において受信する第1のPDCCHと第2のPDCCHが同じDMRS QCL特性を有すると想定してもよい。
 第1のPDCCHは、RACH手順をトリガするPDCCHオーダ(又は、PDCCHオーダに対応するPDCCH)であってもよい。第2のPDCCHは、RAR用のPDCCH(又は、RARの送信に利用されるPDSCHをスケジュールするPDCCH)であってもよい。本開示において、RAR用のPDCCHは、RACH送信に応答して、対応するRA-RNTIによりCRCがスクランブルされるDCIフォーマット(例えば、DCIフォーマット1_0)と読み替えられてもよい。
 UEは、PDCCHオーダによりトリガされたPRACHに応答して基地局から送信されるRAR用のPDCCHの受信において、当該PDCCHオーダの受信に利用するDMRS QCL特性を想定してもよい(図8A参照)。Alt.1-0は、既存システム(例えば、Rel.17以前)における特定のセルに対するRACH手順のQCL特性と同じメカニズムが適用されてもよい。
[Alt.1-1]
 UEは、RACH手順において受信する第1のPDCCHと第2のPDCCHが異なるDMRS QCL特性を有するケースがサポートされると想定してもよい。
 第1のPDCCHは、RACH手順をトリガするPDCCHオーダ(又は、PDCCHオーダに対応するPDCCH)であってもよい。第2のPDCCHは、RAR用のPDCCH(又は、RARの送信に利用されるPDSCHをスケジュールするPDCCH)であってもよい。
 例えば、UEは、第1のQCLを想定してPDCCHオーダを受信し、PDCCHオーダによりトリガされたPRACHに応答して基地局から送信されるRAR用のPDCCHの受信において第1のQCLと別に取得した(又は、提供された)第2のQCLを想定してもよい(図8B参照)。
 UEは、RAR用のPDCCHの受信について、所定のCORESETのDMRS QCL特性を想定してもよい。所定のCORESETは、例えば、所定のCSS(例えば、タイプ1-PDCCH CSS)セットに関連づけられたCORESETであってもよい。
[シナリオ毎のQCL想定]
 RACH手順が行われるシナリオ毎に異なるQCL想定(例えば、Alt.1-0/Alt.1-1)が適用されてもよい。本開示において、シナリオは、条件、適用条件、設定条件と読み替えられてもよい。
 例えば、第1のシナリオにおけるRACH手順と、第2のシナリオにおけるRACH手順と、において異なるQCL想定が適用されてもよい。一例として、第1のシナリオにAlt.1-0(例えば、図8A参照)が適用され、第2のシナリオにAlt.1-1(例えば、図8B参照)が適用されてもよい。
 シナリオは、PDCCHオーダとRAR用PDCCHにそれぞれ対応するCORESETプールインデックスに基づいて分類されてもよい。あるいは、シナリオは、PDCCHオーダとRAR用PDCCHにそれぞれ対応するセル/PCIのタイプ(例えば、サービングセル(又は、サービングセルPCI)/追加セル(又は、追加セルPCI))に基づいて分類されてもよい。
 例えば、RACH手順が行われる複数のシナリオは、以下のシナリオ#1-1~シナリオ#1-10の少なくとも一つであってもよい。第1のシナリオに1以上のシナリオが含まれ、第2のシナリオに他の1以上のシナリオが含まれてもよい。
《シナリオ#1-1》
 シナリオ#1-1は、セル内マルチTRP(例えば、Intra-cell M-TRP)が設定/サポートされるシナリオであってもよい。
《シナリオ#1-2》
 シナリオ#1-2は、セル間マルチTRP(例えば、Inter-cell M-TRP)が設定/サポートされるシナリオであってもよい。
《シナリオ#1-3》
 シナリオ#1-3は、セル内マルチTRP/セル間マルチTRPにおいて、PDCCHオーダと、RAR用のPDCCHと、が異なるCORESETプールインデックスに関連づけられるシナリオであってもよい。
 例えば、第1のCORESETプールインデックスに対応する第1のCORESETでPDCCHオーダが送信され、第2のCORESETプールインデックスに対応する第2のCORESETでRAR用のPDCCHが送信される場合であってもよい。
 シナリオ#1-3において、例えば、Alt.1-1が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.1-0)が適用されてもよい。
《シナリオ#1-4》
 シナリオ#1-4は、セル内マルチTRP/セル間マルチTRPにおいて、PDCCHオーダと、RAR用のPDCCHと、が同じCORESETプールインデックスに関連づけられるシナリオであってもよい。
 例えば、PDCCHオーダとRAR用のPDCCHが、第1のCORESETプールインデックスに対応するCORESETでそれぞれ送信される場合であってもよい。
 シナリオ#1-4において、例えば、Alt.1-0が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.1-1)が適用されてもよい。
《シナリオ#1-5》
 シナリオ#1-5は、セル内マルチTRP/セル間マルチTRPにおいて、PDCCHオーダが第1のCORESETプールインデックス(例えば、#0)に関連づけられ、RAR用のPDCCHが第2のCORESETプールインデックス(例えば、#1)に関連づけられるシナリオであってもよい。
 シナリオ#1-5において、例えば、Alt.1-1が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.1-0)が適用されてもよい。
《シナリオ#1-6》
 シナリオ#1-6は、セル内マルチTRP/セル間マルチTRPにおいて、PDCCHオーダが第2のCORESETプールインデックス(例えば、#1)に関連づけられ、RAR用のPDCCHが第1のCORESETプールインデックス(例えば、#0)に関連づけられるシナリオであってもよい。
 シナリオ#1-6において、例えば、Alt.1-1が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.1-0)が適用されてもよい。
《シナリオ#1-7》
 シナリオ#1-7は、セル内マルチTRP/セル間マルチTRPにおいて、PDCCHオーダとRAR用のPDCCHの両方が、第1のCORESETプールインデックス(例えば、#0)に関連づけられるシナリオであってもよい。又は、シナリオ#1-7は、セル内マルチTRP/セル間マルチTRPにおいて、PDCCHオーダとRAR用のPDCCHの両方が、第2のCORESETプールインデックス(例えば、#1)に関連づけられるシナリオであってもよい。
 シナリオ#1-7において、例えば、Alt.1-0が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.1-1)が適用されてもよい。
《シナリオ#1-8》
 シナリオ#1-8は、セル間マルチTRP(例えば、Inter-cell M-TRP)において、PDCCHオーダが追加PCI(例えば、additional PCI)に関連づけられ、RAR用のPDCCHがサービングセルPCIに関連づけられるシナリオであってもよい。本開示において、追加PCI(例えば、additional PCI)は、非サービングセルPCI、候補セルPCI、又はターゲットセルPCIと読み替えられてもよい。
 シナリオ#1-8において、例えば、Alt.1-1が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.1-0)が適用されてもよい。
《シナリオ#1-9》
 シナリオ#1-9は、セル間マルチTRP(例えば、Inter-cell M-TRP)において、PDCCHオーダがサービングセルPCIに関連づけられ、RAR用のPDCCHが追加PCI(例えば、additional PCI)に関連づけられるシナリオであってもよい。
 シナリオ#1-9において、例えば、Alt.1-1が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.1-0)が適用されてもよい。
《シナリオ#1-10》
 シナリオ#1-10は、セル間マルチTRP(例えば、Inter-cell M-TRP)において、PDCCHオーダとRAR用のPDCCHの両方が、サービングセルPCIに関連づけられるシナリオであってもよい。又は、シナリオ#1-10は、セル間マルチTRP(例えば、Inter-cell M-TRP)において、PDCCHオーダとRAR用のPDCCHの両方が、追加PCI(例えば、additional PCI)に関連づけられるシナリオであってもよい。
 シナリオ#1-10において、例えば、Alt.1-0が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.1-1)が適用されてもよい。
[バリエーション]
 シナリオ#1-1~シナリオ#1-10の全てがサポートされず、一部のシナリオがサポートされてもよい。例えば、UE能力に基づいて、各UEがサポートするシナリオが決定されてもよい。この場合、UEは、一部のシナリオ(例えば、当該UEがサポートしないシナリオ)を想定しなくてもよい。
 また、いずれのシナリオにどのQCL想定(例えば、Alt.1-0/Alt.1-1)が適用されるかは、仕様で定義されてもよいし、上位レイヤパラメータ/DCI等により基地局からUEに設定されてもよい。
 なお、第1の実施形態では、QCL想定として第1のQCL想定(例えば、Alt.1-0)と第2のQCL想定(例えば、Alt.1-1)の2つのケースを示したが、適用/サポート可能なQCL想定はこれに限られない。例えば、他のQCL想定(例えば、第3のQCL想定)が適用/サポートされてもよい。
 また、第1の実施形態では、シナリオ#1-1~シナリオ#1-10を例に挙げたが、適用可能なシナリオはこれに限られない。他のシナリオが追加で適用/サポートされてもよいし、シナリオ#1-1~シナリオ#1-10のうち2以上のシナリオが1つのシナリオに集約されてもよい。
 第1の実施形態は、特定セル(例えば、SpCell)に適用されてもよいし、他のセル(例えば、SCell)に対して適用されてもよい。
 第1の実施形態により、TRP毎にRACH手順がサポートされる場合であっても、RACH手順において適用するQCL想定を適切に制御することが可能となる。
<第2の実施形態>
 第2の実施形態では、非サービングセルに対するRACH手順(例えば、PRACH送信)場合に適用されるQCL想定の一例について説明する。第2の実施形態は、第1の実施形態と組み合わせて適用されてもよい。
 第2の実施形態は、セル間モビリティ(例えば、inter-cell mobility)において、非サービングセルに対するRACH手順(例えば、PRACH送信)がサポートされる場合、PDCCHオーダとRAR用のPDCCH間のQCL想定に適用されてもよい。非サービングセル(又は、候補セル)は、現在のサービングセルと異なる周波数に対応してもよい。
 セル間モビリティについて、PDCCHオーダにより非サービングセル(又は、候補セル)に対するRACH手順がトリガされる場合、UEは、以下のAlt.2-0及びAlt.2-1の少なくとも一つに基づいて、当該RACH手順におけるQCL(例えば、DMRS QCL)特性を想定してもよい。
[Alt.2-0]
 UEは、RACH手順において受信する第1のPDCCHと第2のPDCCHが同じDMRS QCL特性を有すると想定してもよい。
 第1のPDCCHは、RACH手順をトリガするPDCCHオーダ(又は、PDCCHオーダに対応するPDCCH)であってもよい。第2のPDCCHは、RAR用のPDCCH(又は、RARの送信に利用されるPDSCHをスケジュールするPDCCH)であってもよい。本開示において、RAR用のPDCCHは、RACH送信に応答して、対応するRA-RNTIによりCRCがスクランブルされるDCIフォーマット(例えば、DCIフォーマット1_0)と読み替えられてもよい。
 UEは、PDCCHオーダによりトリガされたPRACHに応答して基地局から送信されるRAR用のPDCCHの受信において、当該PDCCHオーダの受信に利用するDMRS QCL特性を想定してもよい(図9A参照)。Alt.2-0は、既存システム(例えば、Rel.17以前)における特定のセル(例えば、SpCell)に対するRACH手順のQCL特性と同じメカニズムが適用されてもよい。
[Alt.2-1]
 UEは、RACH手順において受信する第1のPDCCHと第2のPDCCHが異なるDMRS QCL特性を有するケースがサポートされると想定してもよい。
 第1のPDCCHは、RACH手順をトリガするPDCCHオーダ(又は、PDCCHオーダに対応するPDCCH)であってもよい。第2のPDCCHは、RAR用のPDCCH(又は、RARの送信に利用されるPDSCHをスケジュールするPDCCH)であってもよい。
 例えば、UEは、第1のQCLを想定してPDCCHオーダを受信し、PDCCHオーダによりトリガされたPRACHに応答して基地局から送信されるRAR用のPDCCHの受信において第1のQCLと別に取得した(又は、提供された)第2のQCLを想定してもよい(図9B参照)。
 UEは、RAR用のPDCCHの受信について、所定のCORESETのDMRS QCL特性を想定してもよい。所定のCORESETは、例えば、所定のCSS(例えば、タイプ1-PDCCH CSS)セットに関連づけられたCORESETであってもよい。
 所定のCSS(例えば、タイプ1-PDCCH CSS)セットは、以下のオプション2a又はオプション2bであってもよい。オプション2aとオプション2bのいずれを適用するかは、仕様で定義されてもよいし、上位レイヤパラメータにより基地局からUEに設定されてもよいし、シナリオに応じて選択されてもよい。
《オプション2a》
 所定のCSS(例えば、タイプ1-PDCCH CSS)セットは、RACHがトリガされた非サービングセルからのタイプ1-PDCCH CSSセットであってもよい。この場合、タイプ1-PDCCH CSSセットは、非サービングセル毎に別々に提供/設定されてもよい。
《オプション2b》
 所定のCSS(例えば、タイプ1-PDCCH CSS)セットは、サービングセルからのタイプ1-PDCCH CSSセットであってもよい。オプション2bは、非サービングセルが、サービングセルと同じ周波数に対応する場合に適用されてもよい。
[シナリオ毎のQCL想定]
 RACH手順が行われるシナリオ毎に異なるQCL想定(例えば、Alt.2-0/Alt.2-1)が適用されてもよい。例えば、第1のシナリオにおけるRACH手順と、第2のシナリオにおけるRACH手順と、において異なるQCL想定が適用されてもよい。一例として、第1のシナリオにAlt.2-0が適用され、第2のシナリオにAlt.2-1が適用されてもよい。
 シナリオは、PDCCHオーダとRAR用PDCCHにそれぞれ対応するセル/PCIのタイプ(例えば、サービングセル(又は、サービングセルPCI)/追加セル(又は、追加セルPCI))に基づいて分類されてもよい。あるいは、シナリオは、非サービングセルに対応する周波数/サービングセルに対応する周波数(例えば、非サービングセルの周波数がサービングセルの周波数と同じであるか否か)に基づいて分類されてもよい。
 例えば、RACH手順が行われる複数のシナリオは、以下のシナリオ#2-1~シナリオ#2-5の少なくとも一つであってもよい。第1のシナリオに1以上のシナリオが含まれ、第2のシナリオに他の1以上のシナリオが含まれてもよい。
《シナリオ#2-1》
 シナリオ#2-1は、PDCCHオーダが追加PCI(例えば、additional PCI)に関連づけられ、RAR用のPDCCHがサービングセルPCIに関連づけられるシナリオであってもよい。
 シナリオ#2-1において、例えば、Alt.2-1のオプション2aが適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.2-0/Alt.2-1のオプション2b)が適用されてもよい。
《シナリオ#2-2》
 シナリオ#2-2は、PDCCHオーダがサービングセルPCIに関連づけられ、RAR用のPDCCHが追加PCI(例えば、additional PCI)に関連づけられるシナリオであってもよい。
 シナリオ#2-2において、例えば、Alt.2-1のオプション2bが適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.2-0/Alt.2-1のオプション2a)が適用されてもよい。
《シナリオ#2-3》
 シナリオ#2-3は、PDCCHオーダとRAR用のPDCCHの両方が、サービングセルPCIに関連づけられるシナリオであってもよい。又は、シナリオ#2-3は、PDCCHオーダとRAR用のPDCCHの両方が、追加PCI(例えば、additional PCI)に関連づけられるシナリオであってもよい。
 シナリオ#2-3において、例えば、Alt.2-0が適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.2-1のオプション2a/2b)が適用されてもよい。
《シナリオ#2-4》
 シナリオ#2-4は、非サービングセルが、サービングセルと同じ周波数に対応するシナリオであってもよい。
 シナリオ#2-4において、例えば、Alt.2-0/Alt.2-1のオプション2bが適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.2-1のオプション2a)が適用されてもよい。
《シナリオ#2-5》
 シナリオ#2-5は、非サービングセルが、サービングセルと異なる周波数に対応するシナリオであってもよい。
 シナリオ#2-5において、例えば、Alt.2-1のオプション2aが適用されてもよい。もちろんこれに限られず他のQCL想定(例えば、Alt.2-0/Alt.2-1のオプション2b)が適用されてもよい。
[バリエーション]
 第2の実施形態は、以下の条件2-1及び条件2-2の少なくとも一つにおいて適用されてもよい。
《条件2-1》
 PRACHをトリガするPDCCH(PDCCHオーダー)は、サービングセルPCIに対応するPCIで受信されてもよい。
 あるいは、PRACHをトリガするPDCCH(PDCCHオーダー)は、追加PCIに対応するPCIで受信されてもよい。
《条件2-2》
 PRACHをトリガするPDCCH(PDCCHオーダー)は、SpCell(例えば、PCell/PSCell)に対応するセル、又はSpCellと同じ周波数に対応するセルで受信されてもよい。
 あるいは、PRACHをトリガするPDCCH(PDCCHオーダー)は、SCell、又はSCellと同じ周波数に対応するセルで受信されてもよい。
 シナリオ#2-1~シナリオ#2-5の全てがサポートされず、一部のシナリオがサポートされてもよい。例えば、UE能力に基づいて、各UEがサポートするシナリオが決定されてもよい。この場合、UEは、一部のシナリオ(例えば、当該UEがサポートしないシナリオ)を想定しなくてもよい。
 また、いずれのシナリオにどのQCL想定(例えば、Alt.2-0/Alt.2-1)が適用されるかは、仕様で定義されてもよいし、上位レイヤパラメータ/DCI等により基地局からUEに設定されてもよい。
 なお、第2の実施形態では、QCL想定として第1のQCL想定(例えば、Alt.2-0)と第2のQCL想定(例えば、Alt.2-1)の2つのケースを示したが、適用/サポート可能なQCL想定はこれに限られない。例えば、他のQCL想定(例えば、第3のQCL想定)が適用/サポートされてもよい。
 また、第2の実施形態では、シナリオ#2-1~シナリオ#2-5を例に挙げたが、適用可能なシナリオはこれに限られない。他のシナリオが追加で適用/サポートされてもよいし、シナリオ#2-1~シナリオ#2-5のうち2以上のシナリオが1つのシナリオに集約されてもよい。
 第2の実施形態により、非サービングセルに対するRACH手順がトリガされる場合であっても、当該RACH手順において適用するQCL想定を適切に制御することが可能となる。
<補足>
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・マルチTRPに対する2つのTAをサポートすること、
 ・セル内マルチTRP(例えば、intra-cell M-TRP)に対する2つのTAをサポートすること、
 ・セル間マルチTRP(例えば、inter-cell M-TRP)に対する2つのTAをサポートすること、
 ・L1/L2セル間モビリティ(例えば、L1/L2 inter-cell mobility)をサポートすること。
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、マルチTRP用の複数のTAを有効化することを示す情報、セル内マルチTRP用の複数のTAを有効化することを示す情報、セル間マルチTRP用の複数のTAを有効化することを示す情報、L1/L2セル間モビリティを有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16/17の動作を適用してもよい。
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1-1]
 ランダムアクセス手順のトリガに利用される第1の下り制御チャネルを受信する受信部と、送受信ポイント毎のランダムアクセス手順がサポートされる場合、前記第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、前記ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの受信を制御する制御部と、を有する端末。
[付記1-2]
 前記制御部は、前記ランダムアクセス手順が適用されるシナリオに基づいて、前記第2の下り制御チャネルに利用するQCL想定を判断する付記1-1に記載の端末。
[付記1-3]
 前記制御部は、前記第1の下り制御チャネルが対応する制御リソースセットプールインデックス及び前記第2の下り制御チャネルが対応する制御リソースセットプールインデックスの少なくとも一つに基づいて、前記第2の下り制御チャネルの受信に前記第1のQCL想定と前記第2のQCL想定のいずれを適用するかを判断する付記1-1又は付記1-2に記載の端末。
[付記1-4]
 前記制御部は、前記第1の下り制御チャネルが対応するセルのタイプ及び前記第2の下り制御チャネルが対応するセルのタイプの少なくとも一つに基づいて、前記第2の下り制御チャネルの受信に前記第1のQCL想定と前記第2のQCL想定のいずれを適用するかを判断する付記1-1から付記1-3のいずれかに記載の端末。
[付記2-1]
 非サービングセルに対するランダムアクセス手順のトリガに利用される第1の下り制御チャネルを受信する受信部と、前記第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、前記ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの受信を制御する制御部と、を有する端末。
[付記2-2]
 前記制御部は、前記ランダムアクセス手順が適用されるシナリオに基づいて、前記第2の下り制御チャネルに利用するQCL想定を判断する付記2-1に記載の端末。
[付記2-3]
 前記制御部は、前記第1の下り制御チャネルが対応するセルのタイプ及び前記第2の下り制御チャネルが対応するセルのタイプの少なくとも一つに基づいて、前記第2の下り制御チャネルの受信に前記第1のQCL想定と前記第2のQCL想定のいずれを適用するかを判断する付記2-1又は付記2-2に記載の端末。
[付記2-4]
 前記制御部は、前記非サービングセルに対応する周波数及びサービングセルに対応する周波数の少なくとも一つに基づいて、前記第2の下り制御チャネルの受信に前記第1のQCL想定と前記第2のQCL想定のいずれを適用するかを判断する付記2-1から付記2-3のいずれかに記載の端末。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、ランダムアクセス手順のトリガに利用される第1の下り制御チャネルを送信してもよい。制御部110は、送受信ポイント毎のランダムアクセス手順がサポートされる場合、第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの送信を制御してもよい。送受信ポイント毎のランダムアクセス手順がサポートされる場合は、送受信ポイント毎のTAの設定がサポートされる場合であってもよい。
 送受信部120は、非サービングセルに対するランダムアクセス手順のトリガに利用される第1の下り制御チャネルを送信してもよい。制御部110は、第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの送信を制御してもよい。
(ユーザ端末)
 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、ランダムアクセス手順のトリガに利用される第1の下り制御チャネルを受信してもよい。制御部210は、送受信ポイント毎のランダムアクセス手順がサポートされる場合、第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの受信を制御してもよい。送受信ポイント毎のランダムアクセス手順がサポートされる場合は、送受信ポイント毎のTAの設定がサポートされる場合であってもよい。
 制御部210は、ランダムアクセス手順が適用されるシナリオに基づいて、第2の下り制御チャネルに利用するQCL想定を判断してもよい。例えば、制御部210は、第1の下り制御チャネルが対応する制御リソースセットプールインデックス及び第2の下り制御チャネルが対応する制御リソースセットプールインデックスの少なくとも一つに基づいて、第2の下り制御チャネルの受信に第1のQCL想定と第2のQCL想定のいずれを適用するかを判断してもよい。あるいは、制御部210は、第1の下り制御チャネルが対応するセルのタイプ及び第2の下り制御チャネルが対応するセルのタイプの少なくとも一つに基づいて、第2の下り制御チャネルの受信に第1のQCL想定と第2のQCL想定のいずれを適用するかを判断してもよい。
 制御部210は、非サービングセルに対するランダムアクセス手順のトリガに利用される第1の下り制御チャネルを受信してもよい。制御部210は、第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの受信を制御してもよい。
 制御部210は、ランダムアクセス手順が適用されるシナリオに基づいて、第2の下り制御チャネルに利用するQCL想定を判断してもよい。例えば、制御部210は、第1の下り制御チャネルが対応するセルのタイプ及び第2の下り制御チャネルが対応するセルのタイプの少なくとも一つに基づいて、第2の下り制御チャネルの受信に第1のQCL想定と第2のQCL想定のいずれを適用するかを判断してもよい。あるいは、制御部210は、非サービングセルに対応する周波数及びサービングセルに対応する周波数の少なくとも一つに基づいて、第2の下り制御チャネルの受信に第1のQCL想定と第2のQCL想定のいずれを適用するかを判断してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 図14は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
 本出願は、2022年10月11日出願の特願2022-163516に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  非サービングセルに対するランダムアクセス手順のトリガに利用される第1の下り制御チャネルを受信する受信部と、
     前記第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、前記ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの受信を制御する制御部と、を有する端末。
  2.  前記制御部は、前記ランダムアクセス手順が適用されるシナリオに基づいて、前記第2の下り制御チャネルに利用するQCL想定を判断する請求項1に記載の端末。
  3.  前記制御部は、前記第1の下り制御チャネルが対応するセルのタイプ及び前記第2の下り制御チャネルが対応するセルのタイプの少なくとも一つに基づいて、前記第2の下り制御チャネルの受信に前記第1のQCL想定と前記第2のQCL想定のいずれを適用するかを判断する請求項1に記載の端末。
  4.  前記制御部は、前記非サービングセルに対応する周波数及びサービングセルに対応する周波数の少なくとも一つに基づいて、前記第2の下り制御チャネルの受信に前記第1のQCL想定と前記第2のQCL想定のいずれを適用するかを判断する請求項1に記載の端末。
  5.  非サービングセルに対するランダムアクセス手順のトリガに利用される第1の下り制御チャネルを受信する工程と、
     前記第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、前記ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの受信を制御する工程と、を有する端末の無線通信方法。
  6.  非サービングセルに対するランダムアクセス手順のトリガに利用される第1の下り制御チャネルを送信する送信部と、
     前記第1の下り制御チャネルに対応する第1の疑似コロケーション(QCL)を利用する第1のQCL想定及び特定の制御リソースセットに対応する第2のQCLを利用する第2のQCL想定の少なくとも一つに基づいて、前記ランダムアクセス手順における応答信号の受信に利用される第2の下り制御チャネルの送信を制御する制御部と、を有する基地局。
PCT/JP2023/031737 2022-10-11 2023-08-31 端末、無線通信方法及び基地局 WO2024080025A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163516 2022-10-11
JP2022163516 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024080025A1 true WO2024080025A1 (ja) 2024-04-18

Family

ID=90669433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031737 WO2024080025A1 (ja) 2022-10-11 2023-08-31 端末、無線通信方法及び基地局

Country Status (1)

Country Link
WO (1) WO2024080025A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176091A1 (ja) * 2021-02-18 2022-08-25 株式会社Nttドコモ 端末、無線通信方法及び基地局

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176091A1 (ja) * 2021-02-18 2022-08-25 株式会社Nttドコモ 端末、無線通信方法及び基地局

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On L1/L2 centric inter-cell mobility", 3GPP TSG RAN WG2 #114-E R2-2105999, 10 May 2021 (2021-05-10), XP052004026 *
NTT DOCOMO, INC: "Discussion on multi-beam operation", 3GPP TSG RAN WG1 #106-E R1-2107838, 6 August 2021 (2021-08-06), XP052033635 *
QUALCOMM INCORPORATED: "Enhancements on Multi-beam Operation", 3GPP TSG RAN WG1 #102-E R1-2006790, 8 August 2020 (2020-08-08), XP051918240 *

Similar Documents

Publication Publication Date Title
WO2024095415A1 (ja) 端末、無線通信方法及び基地局
WO2024080025A1 (ja) 端末、無線通信方法及び基地局
WO2024080024A1 (ja) 端末、無線通信方法及び基地局
WO2024134882A1 (ja) 端末、無線通信方法及び基地局
WO2024134881A1 (ja) 端末、無線通信方法及び基地局
WO2024181364A1 (ja) 端末、無線通信方法及び基地局
WO2024181363A1 (ja) 端末、無線通信方法及び基地局
WO2024069821A1 (ja) 端末、無線通信方法及び基地局
WO2024069822A1 (ja) 端末、無線通信方法及び基地局
WO2024069823A1 (ja) 端末、無線通信方法及び基地局
WO2024069820A1 (ja) 端末、無線通信方法及び基地局
WO2024106365A1 (ja) 端末、無線通信方法及び基地局
WO2024106364A1 (ja) 端末、無線通信方法及び基地局
WO2024181395A1 (ja) 端末、無線通信方法及び基地局
WO2024075273A1 (ja) 端末、無線通信方法及び基地局
WO2024095480A1 (ja) 端末、無線通信方法及び基地局
WO2024095481A1 (ja) 端末、無線通信方法及び基地局
WO2024085128A1 (ja) 端末、無線通信方法及び基地局
WO2024085129A1 (ja) 端末、無線通信方法及び基地局
WO2024181531A1 (ja) 端末、無線通信方法及び基地局
WO2024225243A1 (ja) 端末、無線通信方法及び基地局
WO2024127581A1 (ja) 端末、無線通信方法及び基地局
WO2024225239A1 (ja) 端末、無線通信方法及び基地局
WO2024209585A1 (ja) 端末、無線通信方法及び基地局
WO2024161597A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877033

Country of ref document: EP

Kind code of ref document: A1