[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024079807A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2024079807A1
WO2024079807A1 PCT/JP2022/037947 JP2022037947W WO2024079807A1 WO 2024079807 A1 WO2024079807 A1 WO 2024079807A1 JP 2022037947 W JP2022037947 W JP 2022037947W WO 2024079807 A1 WO2024079807 A1 WO 2024079807A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat source
water
conditioning system
air temperature
Prior art date
Application number
PCT/JP2022/037947
Other languages
French (fr)
Japanese (ja)
Inventor
智 赤木
勝也 谷口
Original Assignee
三菱電機株式会社
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/037947 priority Critical patent/WO2024079807A1/en
Publication of WO2024079807A1 publication Critical patent/WO2024079807A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/62Tobacco smoke

Definitions

  • This disclosure relates to an air conditioning system that circulates water from a heat source unit to an air conditioner.
  • Patent Document 1 describes an air conditioning system that circulates and supplies cold water from a central heat source unit to multiple air conditioners in parallel, with a pump for passing cold water through the parallel flow paths of each air conditioner, and each air conditioner is provided with a flow control valve that controls the flow rate of cold water passing through each air conditioner by the valve opening based on a signal from an air conditioning load detection means in the target air conditioning area, and the valve opening information of each flow control valve is input over time into an integrated control device that controls the entire system, and the valve opening information is used to determine the total air conditioning load factor of the entire group of air conditioners, and the temperature of the cold water from the central heat source unit is adjusted based on the total air conditioning load factor.
  • Patent Document 1 when adjusting the temperature of chilled water from a central heat source unit, the valve opening information of each flow control valve of each air conditioner is imported into the integrated control device.
  • the integrated control device is generally far away from each air conditioner, and many inexpensive air conditioners cannot output valve opening information of the flow control valve to the outside. Therefore, importing valve opening information of the flow control valve into the integrated control device would result in a complex system and would increase manufacturing costs.
  • This disclosure has been made to solve the problems described above, and aims to provide an air conditioning system that can be implemented with a simple configuration and at low cost.
  • the air conditioning system includes an indoor unit having a load-side heat exchanger and a flow control valve, a heat source unit having a compressor, a heat source-side heat exchanger, a water-refrigerant heat exchanger, and a heat source-side pump, a return air temperature sensor that detects the return air temperature of the indoor unit or a supply air temperature sensor that detects the supply air temperature of the indoor unit, an outlet water temperature sensor that detects the outlet water temperature of the water-refrigerant heat exchanger, and an integrated control device that controls the valve opening of the flow control valve so that the return air temperature or the supply air temperature becomes a set temperature, controls the frequency of the compressor so that the outlet water temperature becomes a target water temperature, and controls the target water temperature so that the return air temperature or the supply air temperature becomes a target value, the target value being an offset value relative to the set temperature.
  • the air conditioning system disclosed herein can be realized with a simple configuration and at low cost because there is no need to output valve opening information of the flow control valve to the outside and then import that information into the integrated control device.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to an embodiment.
  • FIG. 11 is a schematic configuration diagram of a modified example of the air conditioning system according to the embodiment.
  • FIG. 2 is a block diagram of each controlled object when the indoor unit of the air conditioning system according to the embodiment is an FCU.
  • FIG. 2 is a block diagram of each controlled object when the indoor unit of the air conditioning system according to the embodiment is an AHU.
  • FIG. 11 is a block diagram of each controlled object in comparison with a conventional example when the indoor unit of the air conditioning system according to the embodiment is an FCU.
  • FIG. 11 is a block diagram of each controlled object in comparison with a conventional example when the indoor unit of the air conditioning system according to the embodiment is an AHU.
  • FIG. 11 is a diagram showing the effect during heating operation in comparison with a conventional example of the air conditioning system according to the embodiment.
  • FIG. 11 is a diagram showing the effect during cooling operation in comparison with a conventional example of the air conditioning system according to the embodiment.
  • Embodiment Fig. 1 is a schematic diagram of an air conditioning system according to an embodiment.
  • Fig. 2 is a schematic diagram of a modified example of the air conditioning system according to the embodiment.
  • the air conditioning system according to the embodiment is a single type in which a pump is provided only on the heat source side (11a, 11b, 11c).
  • the air conditioning system may be a multiple type in which a pump is provided on each of the heat source side (11a, 11b, 11c) and the load side (101) and they are provided in series.
  • the air conditioning system according to the first embodiment includes a plurality of heat source units 10a, 10b, and 10c that generate hot and cold water by heating or cooling as heat source units.
  • the air conditioning system according to the embodiment also includes a plurality of indoor units 40a and 40b as load units.
  • the heat source units 10a, 10b, and 10c are connected in parallel with each other, and the indoor units 40a and 40b are connected in parallel with each other.
  • Each indoor unit 40a and 40b is connected in series to each heat source unit 10a, 10b, and 10c.
  • the air conditioning system according to the embodiment includes three heat source units 10a, 10b, and 10c and two indoor units 40a and 40b, but is not limited thereto.
  • the number of heat source units may be one or two, or four or more.
  • the number of indoor units may be one, or three or more.
  • Each heat source unit 10a, 10b, 10c includes heat source side pumps 11a, 11b, 11c, compressors 12a, 12b, 12c, flow path switching valves 13a, 13b, 13c, heat source side heat exchangers 14a, 14b, 14c, throttling devices 15a, 15b, 15c, water-refrigerant heat exchangers 16a, 16b, 16c, and heat source side control devices 17a, 17b, 17c.
  • the refrigerant flow paths of the compressors 12a, 12b, 12c, flow path switching valves 13a, 13b, 13c, heat source side heat exchangers 14a, 14b, 14c, throttling devices 15a, 15b, 15c, and water-refrigerant heat exchangers 16a, 16b, 16c are connected by piping to form refrigerant circuits 20a, 20b, 20c in which the refrigerant circulates.
  • Each indoor unit 40a, 40b is equipped with a load-side heat exchanger 41a, 41b, a flow control valve 42a, 42b, and a load-side control device 43a, 43b.
  • the heat source-side pumps 11a, 11b, 11c, the water flow paths of the water-refrigerant heat exchangers 16a, 16b, 16c, the load-side heat exchangers 41a, 41b, and the flow control valves 42a, 42b are connected by piping to form water circuits 30a, 30b, 30c through which water circulates.
  • the air conditioning system according to the first embodiment also includes an integrated control device 1 that communicates with each of the heat source side control devices 17a, 17b, and 17c and each of the load side control devices 43a and 43b, and controls the entire system.
  • heat source unit 10 the three heat source units 10a, 10b, and 10c will be collectively referred to as heat source unit 10, and the same will apply to their components.
  • indoor unit 40 the two indoor units 40a and 40b will be collectively referred to as indoor unit 40, and the same will apply to their components.
  • the heat source side pump 11 is driven by an inverter with variable frequency and supplies the sucked cold/hot water to the water flow path of the water-refrigerant heat exchanger 16.
  • the compressor 12 sucks in a low-temperature, low-pressure refrigerant, compresses it, and discharges a high-temperature, high-pressure refrigerant.
  • the compressor 12 is an inverter compressor whose capacity, which is the amount of discharge per unit time, is controlled by changing the operating frequency.
  • the flow path switching valve 13 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the direction of the refrigerant flow.
  • the flow path switching valve 13 may be a combination of a two-way valve and a three-way valve instead of a four-way valve.
  • the heat source side heat exchanger 14 functions as an evaporator or a condenser, and exchanges heat between the air supplied by the fan and the refrigerant to evaporate and gasify the refrigerant or condense and liquefy the refrigerant.
  • the heat source side heat exchanger 14 functions as an evaporator during heating operation and as a condenser during cooling operation.
  • the throttling device 15 reduces the pressure of the refrigerant and expands it.
  • the throttling device 15 is, for example, an electronic expansion valve that can adjust the valve opening, and by adjusting the valve opening, it controls the refrigerant pressure flowing into the water-refrigerant heat exchanger 16 during cooling operation, and controls the refrigerant pressure flowing into the heat source side heat exchanger 14 during heating operation.
  • the water-refrigerant heat exchanger 16 exchanges heat between water and refrigerant, and heats or cools the circulating water to a target temperature using the heat of the refrigerant.
  • the heat source side control device 17 controls the operating frequency of the compressor 12, the rotation speed of the heat source side pump 11, the valve opening of the throttling device 15, and the flow path switching valve 13.
  • the heat source side control device 17 is composed of, for example, dedicated hardware, or a CPU (also called a central processing unit, processing device, arithmetic unit, microprocessor, or processor) that executes a program stored in a memory unit (not shown).
  • a CPU also called a central processing unit, processing device, arithmetic unit, microprocessor, or processor
  • the heat source side control device 17 is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these.
  • Each of the functional units realized by the heat source side control device 17 may be realized by individual hardware, or each functional unit may be realized by a single piece of hardware.
  • each function executed by the heat source side control device 17 is realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are written as programs and stored in the memory unit.
  • the CPU realizes each function of the heat source side control device 17 by reading and executing the programs stored in the memory unit.
  • the storage unit stores various information, and includes, for example, a non-volatile semiconductor memory that allows data to be rewritten, such as a flash memory, an EPROM, and an EEPROM.
  • some of the functions of the heat source side control device 17 may be realized by dedicated hardware, and some by software or firmware.
  • the load side control device 43 and the integrated control device 1 have the same configuration as the heat source side control device 17 described above.
  • the load-side heat exchanger 41 exchanges heat between hot and cold water sent from the heat source unit 10 and air supplied by a fan to heat or cool the air.
  • the load-side heat exchanger 41 heats the air during heating operation and cools the air during cooling operation.
  • the heated or cooled air is then supplied to the space to be air-conditioned (indoors) to perform heating or cooling.
  • the flow rate control valve 42 is an electronic valve that can adjust the valve opening, and is a valve that adjusts the water flow rate passing through the installed piping.
  • the flow rate control valve 42 adjusts the water circulation amount of each water circuit 30a, 30b, 30c, thereby adjusting the hot and cold heat supply capacity to the space to be air-conditioned (indoors).
  • the load-side control device 43 controls the valve opening of the flow rate control valve 42.
  • the air conditioning system also includes a bypass circuit 50 provided in parallel with the indoor unit 40 to avoid a blocked state that would occur if all of the multiple flow rate control valves 42a, 42b were fully closed.
  • the bypass circuit 50 is provided with a bypass flow control valve 51 for adjusting the water flow rate of the bypass circuit 50.
  • a load-side pump 101 for adjusting the water flow rate on the load side is provided on the load side, and the water flow rate of the bypass circuit 50 is adjusted by coordinated control of the load-side pump 101 and the heat source-side pump 11, so the bypass flow control valve 51 can be omitted.
  • Outlet water temperature sensors 18a, 18b, 18c are provided on the outlet side of the water flow path of the water-refrigerant heat exchangers 16a, 16b, 16c to detect the outlet water temperature Tout of the water-refrigerant heat exchangers 16a, 16b, 16c.
  • Return air temperature sensors 44a, 44b are provided on the intake ports of the indoor units 40a, 40b to detect the return air temperature RA of the indoor units 40a, 40b.
  • Supply air temperature sensors 45a, 45b are provided on the exhaust ports of the indoor units 40a, 40b to detect the supply air temperature SA of the indoor units 40a, 40b.
  • the simplex air conditioning system shown in FIG. 1 is provided with a differential pressure gauge 61 for measuring the bypass differential pressure ⁇ P of the bypass circuit 50, i.e., the differential pressure of water between the upstream side and downstream side of the bypass circuit 50, and a load side flow meter 71 for measuring the total water flow rate on the load side.
  • the load side flow meter 71 is provided, for example, downstream of the junction of the cold and hot water flowing through each load side heat exchanger 41a, 41b on the load side of the water circuits 30a, 30b, 30c.
  • the heat source side flow meter 91 is provided, for example, downstream of the junction of the cold and hot water flowing through each load side heat exchanger 41a, 41b on the heat source side of the water circuits 30a, 30b, 30c.
  • a means for measuring the differential pressure between the upstream and downstream sides of each water-refrigerant heat exchanger 16a, 16b, 16c i.e., the water pressure difference between the upstream and downstream sides of each water-refrigerant heat exchanger 16a, 16b, 16c, may be provided so that the water flow rate of each heat source unit 10a, 10b, 10c can be obtained.
  • the water flow rate of each heat source unit 10a, 10b, 10c is obtained as being proportional to, for example, a proportionality coefficient of the differential pressure (for example, 0.5 power).
  • the proportionality coefficient of the differential pressure is determined by testing at the design stage, etc.
  • FIG. 3 is a block diagram of each control object when the indoor unit 40 of the air conditioning system according to the embodiment is an FCU.
  • FIG. 4 is a block diagram of each control object when the indoor unit 40 of the air conditioning system according to the embodiment is an AHU.
  • FIG. 5 is a block diagram of each control object compared with a conventional example when the indoor unit 40 of the air conditioning system according to the embodiment is an FCU.
  • FIG. 6 is a block diagram of each control object compared with a conventional example when the indoor unit 40 of the air conditioning system according to the embodiment is an AHU.
  • FIG. 7 is a diagram showing the effect during heating operation compared with the conventional example of the air conditioning system according to the embodiment.
  • FIG. 8 is a diagram showing the effect during cooling operation compared with the conventional example of the air conditioning system according to the embodiment.
  • Control target is indoor unit 40
  • the return air temperature RA ( ⁇ indoor temperature) to the indoor unit 40, which is an FCU
  • the valve opening of the flow rate control valve 42 is the manipulated variable.
  • the target value of the return air temperature RA, which is the controlled quantity, is the set temperature Tset. Note that this set temperature Tset is set by the user. That is, the valve opening of the flow rate control valve 42 is manipulated so that the return air temperature RA becomes the set temperature Tset.
  • the supply air temperature SA from the indoor unit 40 is the controlled quantity
  • the valve opening of the flow rate control valve 42 is the manipulated variable.
  • the target value of the supply air temperature SA which is the controlled quantity
  • Tset is set in advance. That is, the valve opening of the flow rate control valve 42 is manipulated so that the supply air temperature SA becomes the set temperature Tset.
  • a damper (not shown) is provided to adjust the amount of air supplied from the air outlet, and the opening degree is controlled based on the return air temperature RA.
  • the set temperature Tset which is the target value for the operation of the flow rate control valve 42, may be set to, for example, 16° C. in cooling operation so that the air is sufficiently cold, or to 45° C. in heating operation so that the user does not feel chilly.
  • Control target is heat source unit 10] 3 and 4
  • the outlet water temperature Tout of the water-refrigerant heat exchanger 16 is a controlled variable
  • the frequency of the compressor 12 is a manipulated variable.
  • the target value of the outlet water temperature Tout, which is the controlled variable is a target water temperature Twtg, which will be described later. That is, the frequency of the compressor 12 is manipulated so that the outlet water temperature Tout becomes the target water temperature Twtg.
  • the heat source side pump 11 and the bypass flow control valve 51 are operated in coordination so that the bypass differential pressure ⁇ P becomes the target differential pressure ⁇ Ptgt.
  • the coordinated operation of the heat source side pump 11 and the bypass flow control valve 51 is generally an exclusive operation that emphasizes energy saving, in which, for example, when the bypass differential pressure ⁇ P is less than the target differential pressure ⁇ Ptgt, the valve closing operation of the bypass flow control valve 51 takes precedence over increasing the speed of the heat source side pump 11, and when the bypass differential pressure ⁇ P is more than the target differential pressure ⁇ Ptgt, the deceleration of the heat source side pump 11 takes precedence over the valve opening operation of the bypass flow control valve 51.
  • the target differential pressure ⁇ Ptgt is obtained by tuning the actual air conditioning system. For example, when the flow control valve 42 is fully open, the differential pressure before and after the heat source unit 10, i.e., the differential pressure of water between the upstream and downstream sides of the heat source unit 10, is measured when the rated flow rate flows through the indoor unit 40, and this value is set as the target differential pressure ⁇ Ptgt.
  • the heat source pump 11 is operated in the same manner as in the simplex air conditioning system described above.
  • the load pump 101 is operated so that the differential pressure between its upstream and downstream sides, that is, the differential pressure of water between the upstream and downstream sides of the load pump 101, becomes the target differential pressure ⁇ Ptgt required to flow cold and hot water to the load side indoor unit 40.
  • the heat source pump 11 is operated so as to minimize the flow rate of the bypass circuit 50.
  • the heat source pump 11 is operated so that the measurement value of the heat source side flow meter 91 is slightly larger than the measurement value of the load side flow meter 71.
  • the operation of the valve opening of the flow control valve 42 and the frequency of the compressor 12 is basically the same as in the simplex air conditioning system described above.
  • the target water temperature Twtg is operated so that energy saving is improved within a range where the cooling and heating are not insufficient. That is, in the case of cooling operation, the target water temperature Twtg is operated so as to be higher, and in the case of heating operation, the target water temperature Twtg is operated so as to be lower.
  • the controlled amount of the operation of the target water temperature Twtg is the same as the controlled amount of the operation of the flow rate control valve 42. That is, as shown in FIG. 3, when the indoor unit 40 is an FCU, the return air temperature RA to the indoor unit 40, which is an FCU, is the controlled amount, and the target water temperature Twtg is the manipulated amount.
  • the target value of the return air temperature RA which is the controlled amount
  • the target value of the return air temperature RA is generally a value offset to the set temperature Tset set by the user, that is, the set temperature Tset ⁇ .
  • the supply air temperature SA from the indoor unit 40 which is an AHU
  • the target water temperature Twtg is the manipulated amount.
  • the target value of the supply air temperature SA which is a controlled variable, is generally an offset value relative to the set temperature Tset set by the user, that is, the set temperature Tset ⁇ .
  • the set temperature Tset ⁇ which is the target value for the operation of the target water temperature Twtg, is set to a value (Tset+ ⁇ ) offset to a higher temperature than the set temperature Tset during cooling operation, and to a value (Tset- ⁇ ) offset to a lower temperature than the set temperature Tset during heating operation, compared to the set temperature Tset, which is the target value for the operation of the flow rate control valve 42.
  • the target water temperature Twtg is a fixed value
  • the valve opening of the flow control valve 42 is operated so that the return air temperature RA or the supply air temperature SA becomes the set temperature Tset
  • the frequency of the compressor 12 is operated so that the outlet water temperature Tout becomes the target water temperature Twtg.
  • the target water temperature Twtg is a variable value
  • the valve opening of the flow control valve 42 and the target water temperature Twtg are operated so that the return air temperature RA or the supply air temperature SA becomes the set temperature Tset
  • the frequency of the compressor 12 is operated so that the outlet water temperature Tout becomes the target water temperature Twtg.
  • the valve opening of the flow control valve 42 and the target water temperature Twtg do not change once they have reached their target values.
  • the valve opening of the flow control valve 42 automatically changes in a direction toward energy conservation until the valve opening degree reaches full opening, or until the target water temperature Twtg reaches the settable limit value. Therefore, compared to conventional control methods, the control method according to the embodiment can improve energy conservation to a degree that does not result in insufficient cooling or heating.
  • the indoor unit 40 with the largest unachieved temperature width i.e., the largest difference between the set temperature Tset and the return air temperature RA or supply air temperature SA
  • the indoor unit 40 with the largest unachieved temperature width i.e., the largest difference between the set temperature Tset and the return air temperature RA or supply air temperature SA
  • the indoor unit 40 with the largest unachieved temperature width i.e., the largest difference between the set temperature Tset and the return air temperature RA or supply air temperature SA
  • the indoor unit 40 with the largest unachieved temperature width i.e., the largest difference between the set temperature Tset and the return air temperature RA or supply air temperature SA
  • the characteristic operation of the duplex air conditioning system according to the embodiment is the same as described above.
  • the target value is offset so that it does not overlap with the dead band.
  • the set temperature Tset and the set temperature Tset ⁇ are offset to a value that does not overlap with the dead band.
  • the target water temperature Twtg when the controlled quantity exceeds the target value, the target water temperature Twtg changes to the energy saving side, and when the controlled quantity falls short of the target value, the target water temperature Twtg changes to the side of increasing the cooling/heating capacity, but in order to quickly recover when the controlled quantity temporarily falls short of the target value and becomes incooled or insufficient to heat, the absolute value of the range by which the operation quantity is changed relative to the absolute value of the control deviation of the controlled quantity may be made larger than when the target value is exceeded.
  • the range of change in the target water temperature Twtg is made larger when the return air temperature RA or the supply air temperature SA does not reach the set temperature Tset than when it exceeds it.
  • not reaching the target value means that the controlled quantity has not reached the target value, i.e., the controlled quantity ⁇ the target value
  • overreaching the target value means that the controlled quantity exceeds the target value, i.e., the controlled quantity > the target value.
  • the air conditioning system includes an indoor unit 40 having a load-side heat exchanger 41 and a flow control valve 42, a heat source unit 10 having a compressor 12, a heat source-side heat exchanger 14, a water-refrigerant heat exchanger 16, and a heat source-side pump 11, a return air temperature sensor 44 that detects the return air temperature RA of the indoor unit 40 or a supply air temperature sensor 45 that detects the supply air temperature SA of the indoor unit 40, an outlet water temperature sensor 18 that detects the outlet water temperature Tout of the water-refrigerant heat exchanger 16, and a heat source-side control device 17 that controls the valve opening of the flow control valve 42 so that the return air temperature RA or the supply air temperature SA becomes the set temperature Tset, controls the frequency of the compressor 12 so that the outlet water temperature Tout becomes the target water temperature Twtg, and controls the target water temperature Twtg so that the return air temperature RA or the supply air temperature SA becomes the target value, and the target value is a value offset from the set temperature Tset.
  • the air conditioning system of the embodiment there is no need to output valve opening information of the flow control valve 42 to the outside and import that information into the integrated control device 1 that controls the entire system, so it can be realized with a simple configuration and low cost, and it is also possible to introduce this system into existing buildings.
  • the target water temperature Twtg is controlled so that the return air temperature RA or the supply air temperature SA is a value offset from the set temperature Tset, it is possible to improve energy conservation within a range that does not result in insufficient cooling or heating.
  • the integrated control device 1 increases the range of change in the target water temperature Twtg when the return air temperature RA or the supply air temperature SA does not reach the set temperature Tset compared to when it exceeds the set temperature Tset.
  • the air conditioning system according to the embodiment can quickly recover from the situation where the controlled variable temporarily does not reach the target value, resulting in insufficient cooling or heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning system provided with: an indoor unit having a load-side heat exchanger and a flow regulating valve; a heat source unit having an compressor, a heat source-side heat exchanger, a water-refrigerant heat exchanger, and a heat source-side pump; a return air temperature sensor for detecting a return air temperature of the indoor unit or a supply air temperature sensor for detecting a supply air temperature of the indoor unit; an outlet water temperature sensor for detecting an outlet water temperature of the water-refrigerant heat exchanger; and an integrated control device that controls the opening degree of the flow regulating valve so as to make the return or supply air temperature to be a set temperature, controls the frequency of the compressor so as to make the outlet water temperature to be a target water temperature, and controls the target water temperature so as to make the return or supply air temperature to be a target value, wherein the target value is a value offset with respect to the set temperature.

Description

空気調和システムAir Conditioning System
 本開示は、熱源機から空気調和機に水を循環供給する空気調和システムに関するものである。 This disclosure relates to an air conditioning system that circulates water from a heat source unit to an air conditioner.
 従来、各空気調和機を通る冷水の流量を弁開度により制御する流量調整弁を設ける方式の空気調和システムが提案されている(例えば、特許文献1参照)。  Conventionally, air conditioning systems have been proposed that use flow control valves to control the flow rate of cold water passing through each air conditioner by changing the valve opening (see, for example, Patent Document 1).
 特許文献1は、中央熱源機から複数の空気調和機に並列的に冷水を循環供給する空気調和設備であって、前記各空気調和機の並列流路に冷水を通すポンプを設け、対象の空気調和領域における空調負荷検出手段の信号に基づき、各空気調和機を通る冷水の流量を弁開度により制御する流量調整弁を各空気調和機に設け、経時ごとに各流量調整弁の弁開度情報を、システム全体を制御する統合制御装置に取り込み、その弁開度情報を用いて空気調和機群全体の空調全負荷率を求めるとともに、その空調全負荷率に基づいて中央熱源機からの冷水温度を調整している。 Patent Document 1 describes an air conditioning system that circulates and supplies cold water from a central heat source unit to multiple air conditioners in parallel, with a pump for passing cold water through the parallel flow paths of each air conditioner, and each air conditioner is provided with a flow control valve that controls the flow rate of cold water passing through each air conditioner by the valve opening based on a signal from an air conditioning load detection means in the target air conditioning area, and the valve opening information of each flow control valve is input over time into an integrated control device that controls the entire system, and the valve opening information is used to determine the total air conditioning load factor of the entire group of air conditioners, and the temperature of the cold water from the central heat source unit is adjusted based on the total air conditioning load factor.
特開2007-147094号公報JP 2007-147094 A
 特許文献1は、中央熱源機からの冷水温度を調整する際に、各空気調和機の各流量調整弁の弁開度情報を統合制御装置に取り込んでいるが、一般的に統合制御装置から各空気調和機までは距離が離れていることが多く、また、廉価な空気調和機では、流量調整弁の弁開度情報を外部に出力できないものが多い。そのため、流量調整弁の弁開度情報を統合制御装置に取り込むようにするにはシステムが複雑になり、また、製造コストが増大するという課題があった。 In Patent Document 1, when adjusting the temperature of chilled water from a central heat source unit, the valve opening information of each flow control valve of each air conditioner is imported into the integrated control device. However, the integrated control device is generally far away from each air conditioner, and many inexpensive air conditioners cannot output valve opening information of the flow control valve to the outside. Therefore, importing valve opening information of the flow control valve into the integrated control device would result in a complex system and would increase manufacturing costs.
 本開示は、以上のような課題を解決するためになされたもので、簡素な構成かつ低コストで実現可能な空気調和システムを提供することを目的としている。 This disclosure has been made to solve the problems described above, and aims to provide an air conditioning system that can be implemented with a simple configuration and at low cost.
 本開示に係る空気調和システムは、負荷側熱交換器および流量調整弁を有する室内機と、圧縮機、熱源側熱交換器、水冷媒熱交換器、および熱源側ポンプを有する熱源機と、前記室内機の還気温度を検知する還気温度センサまたは前記室内機の給気温度を検知する給気温度センサと、前記水冷媒熱交換器の出口水温を検知する出口水温センサと、前記還気温度または前記給気温度が設定温度となるように前記流量調整弁の弁開度を制御し、前記出口水温が目標水温となるように前記圧縮機の周波数を制御し、前記還気温度または前記給気温度が目標値となるように前記目標水温を制御する統合制御装置と、を備え、前記目標値は、前記設定温度に対してオフセットした値である。 The air conditioning system according to the present disclosure includes an indoor unit having a load-side heat exchanger and a flow control valve, a heat source unit having a compressor, a heat source-side heat exchanger, a water-refrigerant heat exchanger, and a heat source-side pump, a return air temperature sensor that detects the return air temperature of the indoor unit or a supply air temperature sensor that detects the supply air temperature of the indoor unit, an outlet water temperature sensor that detects the outlet water temperature of the water-refrigerant heat exchanger, and an integrated control device that controls the valve opening of the flow control valve so that the return air temperature or the supply air temperature becomes a set temperature, controls the frequency of the compressor so that the outlet water temperature becomes a target water temperature, and controls the target water temperature so that the return air temperature or the supply air temperature becomes a target value, the target value being an offset value relative to the set temperature.
 本開示に係る空気調和システムによれば、流量調整弁の弁開度情報を外部に出力して、その情報を統合制御装置に取り込む必要がないため、簡素な構成かつ低コストで実現可能となる。 The air conditioning system disclosed herein can be realized with a simple configuration and at low cost because there is no need to output valve opening information of the flow control valve to the outside and then import that information into the integrated control device.
実施の形態に係る空気調和システムの概略構成図である。1 is a schematic configuration diagram of an air conditioning system according to an embodiment. 実施の形態に係る空気調和システムの変形例の概略構成図である。FIG. 11 is a schematic configuration diagram of a modified example of the air conditioning system according to the embodiment. 実施の形態に係る空気調和システムの室内機がFCUである場合の各制御対象のブロック線図である。FIG. 2 is a block diagram of each controlled object when the indoor unit of the air conditioning system according to the embodiment is an FCU. 実施の形態に係る空気調和システムの室内機がAHUである場合の各制御対象のブロック線図である。FIG. 2 is a block diagram of each controlled object when the indoor unit of the air conditioning system according to the embodiment is an AHU. 実施の形態に係る空気調和システムの室内機がFCUである場合の従来例と比較した各制御対象のブロック線図である。FIG. 11 is a block diagram of each controlled object in comparison with a conventional example when the indoor unit of the air conditioning system according to the embodiment is an FCU. 実施の形態に係る空気調和システムの室内機がAHUである場合の従来例と比較した各制御対象のブロック線図である。FIG. 11 is a block diagram of each controlled object in comparison with a conventional example when the indoor unit of the air conditioning system according to the embodiment is an AHU. 実施の形態に係る空気調和システムの従来例と比較した暖房運転時の効果を示す図である。FIG. 11 is a diagram showing the effect during heating operation in comparison with a conventional example of the air conditioning system according to the embodiment. 実施の形態に係る空気調和システムの従来例と比較した冷房運転時の効果を示す図である。FIG. 11 is a diagram showing the effect during cooling operation in comparison with a conventional example of the air conditioning system according to the embodiment.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Below, an embodiment of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the embodiment described below. Also, the size relationships of the components in the drawings may differ from the actual ones.
 実施の形態.
 図1は、実施の形態に係る空気調和システムの概略構成図である。図2は、実施の形態に係る空気調和システムの変形例の概略構成図である。実施の形態に係る空気調和システムは、図1に示すように、ポンプが熱源側(11a、11b、11c)のみに設けられた単式である。ただし、図2に示すように、ポンプが熱源側(11a、11b、11c)および負荷側(101)にそれぞれ設けられ、それらが直列に設けられた複式でもよい。
Embodiment
Fig. 1 is a schematic diagram of an air conditioning system according to an embodiment. Fig. 2 is a schematic diagram of a modified example of the air conditioning system according to the embodiment. As shown in Fig. 1, the air conditioning system according to the embodiment is a single type in which a pump is provided only on the heat source side (11a, 11b, 11c). However, as shown in Fig. 2, the air conditioning system may be a multiple type in which a pump is provided on each of the heat source side (11a, 11b, 11c) and the load side (101) and they are provided in series.
 図1に示すように、実施の形態1に係る空気調和システムは、熱源側ユニットとして、加熱または冷却により冷温水を生成する複数の熱源機10a、10b、10cを備えている。また、実施の形態に係る空気調和システムは、負荷側ユニットとして、複数の室内機40a、40bを備えている。複数の熱源機10a、10b、10cは、互いに並列に接続されており、複数の室内機40a、40bは、互いに並列に接続されている。そして、各室内機40a、40bは、各熱源機10a、10b、10cに対して直列に接続されている。なお、実施の形態に係る空気調和システムは、3台の熱源機10a、10b、10cと2台の室内機40a、40bとを備えているが、それに限定されない。熱源機は1台または2台でもよいし、4台以上でもよい。また、室内機は1台でもよいし、3台以上でもよい。 As shown in FIG. 1, the air conditioning system according to the first embodiment includes a plurality of heat source units 10a, 10b, and 10c that generate hot and cold water by heating or cooling as heat source units. The air conditioning system according to the embodiment also includes a plurality of indoor units 40a and 40b as load units. The heat source units 10a, 10b, and 10c are connected in parallel with each other, and the indoor units 40a and 40b are connected in parallel with each other. Each indoor unit 40a and 40b is connected in series to each heat source unit 10a, 10b, and 10c. The air conditioning system according to the embodiment includes three heat source units 10a, 10b, and 10c and two indoor units 40a and 40b, but is not limited thereto. The number of heat source units may be one or two, or four or more. The number of indoor units may be one, or three or more.
 各熱源機10a、10b、10cは、熱源側ポンプ11a、11b、11cと、圧縮機12a、12b、12cと、流路切替弁13a、13b、13cと、熱源側熱交換器14a、14b、14cと、絞り装置15a、15b、15cと、水冷媒熱交換器16a、16b、16cと、熱源側制御装置17a、17b、17cとを備えている。そして、圧縮機12a、12b、12c、流路切替弁13a、13b、13c、熱源側熱交換器14a、14b、14c、絞り装置15a、15b、15c、および、水冷媒熱交換器16a、16b、16cの冷媒流路が配管で接続され、冷媒が循環する冷媒回路20a、20b、20cが構成されている。 Each heat source unit 10a, 10b, 10c includes heat source side pumps 11a, 11b, 11c, compressors 12a, 12b, 12c, flow path switching valves 13a, 13b, 13c, heat source side heat exchangers 14a, 14b, 14c, throttling devices 15a, 15b, 15c, water- refrigerant heat exchangers 16a, 16b, 16c, and heat source side control devices 17a, 17b, 17c. The refrigerant flow paths of the compressors 12a, 12b, 12c, flow path switching valves 13a, 13b, 13c, heat source side heat exchangers 14a, 14b, 14c, throttling devices 15a, 15b, 15c, and water- refrigerant heat exchangers 16a, 16b, 16c are connected by piping to form refrigerant circuits 20a, 20b, 20c in which the refrigerant circulates.
 また、各室内機40a、40bは、負荷側熱交換器41a、41bと、流量調整弁42a、42bと、負荷側制御装置43a、43bとを備えている。そして、熱源側ポンプ11a、11b、11c、水冷媒熱交換器16a、16b、16cの水流路、負荷側熱交換器41a、41b、および、流量調整弁42a、42bが配管で接続され、水が循環する水回路30a、30b、30cが構成されている。 Each indoor unit 40a, 40b is equipped with a load- side heat exchanger 41a, 41b, a flow control valve 42a, 42b, and a load- side control device 43a, 43b. The heat source- side pumps 11a, 11b, 11c, the water flow paths of the water- refrigerant heat exchangers 16a, 16b, 16c, the load- side heat exchangers 41a, 41b, and the flow control valves 42a, 42b are connected by piping to form water circuits 30a, 30b, 30c through which water circulates.
 また、実施の形態1に係る空気調和システムは、各熱源側制御装置17a、17b、17cおよび各負荷側制御装置43a、43bと通信を行い、システム全体を制御する統合制御装置1を備えている。 The air conditioning system according to the first embodiment also includes an integrated control device 1 that communicates with each of the heat source side control devices 17a, 17b, and 17c and each of the load side control devices 43a and 43b, and controls the entire system.
 なお、以下において、3台の熱源機10a、10b、10cの総称を熱源機10とし、それらの構成要素についても同様とする。また、2台の室内機40a、40bの総称を室内機40とし、それらの構成要素についても同様とする。 In the following, the three heat source units 10a, 10b, and 10c will be collectively referred to as heat source unit 10, and the same will apply to their components. Furthermore, the two indoor units 40a and 40b will be collectively referred to as indoor unit 40, and the same will apply to their components.
 熱源側ポンプ11は、インバーターによって周波数可変に駆動され、吸入した冷温水を水冷媒熱交換器16の水流路に供給する。圧縮機12は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機12は、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバーター圧縮機である。流路切替弁13は、例えば四方弁であり、冷媒の流れの方向を切り替えることで、冷房運転と暖房運転とを切り替えるものである。なお、流路切替弁13として、四方弁に代えて二方弁および三方弁の組み合わせなどを用いてもよい。熱源側熱交換器14は、蒸発器または凝縮器として機能し、ファンによって供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化または凝縮液化するものである。熱源側熱交換器14は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。絞り装置15は、冷媒を減圧して膨張させるものである。絞り装置15は、例えば弁開度を調整することができる電子式膨張弁であり、弁開度を調整することによって、冷房運転時では水冷媒熱交換器16に流入する冷媒圧力を制御し、暖房運転時では熱源側熱交換器14に流入する冷媒圧力を制御する。水冷媒熱交換器16は、水と冷媒との間で熱交換を行い、冷媒の熱で循環水を目的の温度に加熱または冷却するものである。熱源側制御装置17は、圧縮機12の運転周波数、熱源側ポンプ11の回転数、絞り装置15の弁開度、および、流路切替弁13を制御するものである。 The heat source side pump 11 is driven by an inverter with variable frequency and supplies the sucked cold/hot water to the water flow path of the water-refrigerant heat exchanger 16. The compressor 12 sucks in a low-temperature, low-pressure refrigerant, compresses it, and discharges a high-temperature, high-pressure refrigerant. The compressor 12 is an inverter compressor whose capacity, which is the amount of discharge per unit time, is controlled by changing the operating frequency. The flow path switching valve 13 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the direction of the refrigerant flow. Note that the flow path switching valve 13 may be a combination of a two-way valve and a three-way valve instead of a four-way valve. The heat source side heat exchanger 14 functions as an evaporator or a condenser, and exchanges heat between the air supplied by the fan and the refrigerant to evaporate and gasify the refrigerant or condense and liquefy the refrigerant. The heat source side heat exchanger 14 functions as an evaporator during heating operation and as a condenser during cooling operation. The throttling device 15 reduces the pressure of the refrigerant and expands it. The throttling device 15 is, for example, an electronic expansion valve that can adjust the valve opening, and by adjusting the valve opening, it controls the refrigerant pressure flowing into the water-refrigerant heat exchanger 16 during cooling operation, and controls the refrigerant pressure flowing into the heat source side heat exchanger 14 during heating operation. The water-refrigerant heat exchanger 16 exchanges heat between water and refrigerant, and heats or cools the circulating water to a target temperature using the heat of the refrigerant. The heat source side control device 17 controls the operating frequency of the compressor 12, the rotation speed of the heat source side pump 11, the valve opening of the throttling device 15, and the flow path switching valve 13.
 熱源側制御装置17は、例えば、専用のハードウェア、または記憶部(図示せず)に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、プロセッサともいう)で構成される。熱源側制御装置17が専用のハードウェアである場合、熱源側制御装置17は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。熱源側制御装置17が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。熱源側制御装置17がCPUの場合、熱源側制御装置17が実行する各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアはプログラムとして記述され、記憶部に格納される。CPUは、記憶部に格納されたプログラムを読み出して実行することにより、熱源側制御装置17の各機能を実現する。ここで、記憶部は、各種情報を記憶するものであり、例えば、フラッシュメモリ、EPROM、および、EEPROMなどの、データの書き換え可能な不揮発性の半導体メモリを備えている。なお、熱源側制御装置17の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。なお、負荷側制御装置43および統合制御装置1も上記の熱源側制御装置17と同じ構成である。 The heat source side control device 17 is composed of, for example, dedicated hardware, or a CPU (also called a central processing unit, processing device, arithmetic unit, microprocessor, or processor) that executes a program stored in a memory unit (not shown). When the heat source side control device 17 is dedicated hardware, the heat source side control device 17 is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these. Each of the functional units realized by the heat source side control device 17 may be realized by individual hardware, or each functional unit may be realized by a single piece of hardware. When the heat source side control device 17 is a CPU, each function executed by the heat source side control device 17 is realized by software, firmware, or a combination of software and firmware. The software and firmware are written as programs and stored in the memory unit. The CPU realizes each function of the heat source side control device 17 by reading and executing the programs stored in the memory unit. Here, the storage unit stores various information, and includes, for example, a non-volatile semiconductor memory that allows data to be rewritten, such as a flash memory, an EPROM, and an EEPROM. Note that some of the functions of the heat source side control device 17 may be realized by dedicated hardware, and some by software or firmware. Note that the load side control device 43 and the integrated control device 1 have the same configuration as the heat source side control device 17 described above.
 負荷側熱交換器41は、熱源機10から送水される冷温水とファンによって供給される空気との間で熱交換を行い、空気を加熱または冷却するものである。負荷側熱交換器41は、暖房運転時には空気を加熱し、冷房運転時には空気を冷却する。そして、加熱あるいは冷却された空気が空調対象空間(室内)へ供給され、暖房あるいは冷房が行われる。流量調整弁42は、弁開度を調整することができる電子式の弁であり、設けられた配管を通過する水流量を調整する弁である。流量調整弁42によって各水回路30a、30b、30cの水循環量を調節することで、空調対象空間(室内)への冷温熱供給能力が調節される。負荷側制御装置43は、流量調整弁42の弁開度を制御するものである。 The load-side heat exchanger 41 exchanges heat between hot and cold water sent from the heat source unit 10 and air supplied by a fan to heat or cool the air. The load-side heat exchanger 41 heats the air during heating operation and cools the air during cooling operation. The heated or cooled air is then supplied to the space to be air-conditioned (indoors) to perform heating or cooling. The flow rate control valve 42 is an electronic valve that can adjust the valve opening, and is a valve that adjusts the water flow rate passing through the installed piping. The flow rate control valve 42 adjusts the water circulation amount of each water circuit 30a, 30b, 30c, thereby adjusting the hot and cold heat supply capacity to the space to be air-conditioned (indoors). The load-side control device 43 controls the valve opening of the flow rate control valve 42.
 また、実施の形態に係る空気調和システムは、複数の流量調整弁42a、42bが全て全閉となった場合の閉塞状態を回避するため、室内機40と並列して設けられたバイパス回路50を備えている。 The air conditioning system according to the embodiment also includes a bypass circuit 50 provided in parallel with the indoor unit 40 to avoid a blocked state that would occur if all of the multiple flow rate control valves 42a, 42b were fully closed.
 また、図1に示す単式の空調システムでは、バイパス回路50には、バイパス回路50の水流量を調整するためのバイパス用流量調整弁51が設けられている。一方、図2に示す複式の空調システムでは、負荷側の水流量を調節するための負荷側ポンプ101が負荷側に設けられており、負荷側ポンプ101と熱源側ポンプ11との連携制御によりバイパス回路50の水流量を調節するため、バイパス用流量調整弁51は省略することができる。 In addition, in the simplex air conditioning system shown in FIG. 1, the bypass circuit 50 is provided with a bypass flow control valve 51 for adjusting the water flow rate of the bypass circuit 50. On the other hand, in the duplex air conditioning system shown in FIG. 2, a load-side pump 101 for adjusting the water flow rate on the load side is provided on the load side, and the water flow rate of the bypass circuit 50 is adjusted by coordinated control of the load-side pump 101 and the heat source-side pump 11, so the bypass flow control valve 51 can be omitted.
 水冷媒熱交換器16a、16b、16cの水流路の出口側には、水冷媒熱交換器16a、16b、16cの出口水温Toutを検知する出口水温センサ18a、18b、18cが設けられている。室内機40a、40bの吸い込み口には、室内機40a、40bの還気温度RAを検知する還気温度センサ44a、44bが設けられている。室内機40a、40bの吹き出し口には、室内機40a、40bの給気温度SAを検知する給気温度センサ45a、45bが設けられている。 Outlet water temperature sensors 18a, 18b, 18c are provided on the outlet side of the water flow path of the water- refrigerant heat exchangers 16a, 16b, 16c to detect the outlet water temperature Tout of the water- refrigerant heat exchangers 16a, 16b, 16c. Return air temperature sensors 44a, 44b are provided on the intake ports of the indoor units 40a, 40b to detect the return air temperature RA of the indoor units 40a, 40b. Supply air temperature sensors 45a, 45b are provided on the exhaust ports of the indoor units 40a, 40b to detect the supply air temperature SA of the indoor units 40a, 40b.
 また、図1に示す単式の空調システムでは、バイパス回路50の差圧すなわちバイパス回路50の上流側と下流側との間の水の差圧であるバイパス差圧ΔPを計測する差圧計61、および、負荷側の合計水流量を計測する負荷側流量計71を備えている。ここで、負荷側流量計71は、例えば水回路30a、30b、30cの負荷側において各負荷側熱交換器41a、41bを流れる冷温水の合流点よりも下流側に設けられている。一方、図2に示す複式の空調システムでは、差圧計61および負荷側流量計71に加え、熱源側の合計水流量を計測する熱源側流量計91を備えている。ここで、熱源側流量計91は、例えば水回路30a、30b、30cの熱源側において各負荷側熱交換器41a、41bを流れる冷温水の合流点よりも下流側に設けられている。なお、熱源側流量計91に代えて、各熱源機10a、10b、10cの水流量を求められるように、各水冷媒熱交換器16a、16b、16cの前後差圧すなわち各水冷媒熱交換器16a、16b、16cの上流側と下流側との間に水の差圧を計測する手段を設けてもよい。ここで、各熱源機10a、10b、10cの水流量は、例えば差圧の比例係数(例えば0.5乗)に比例するものとして求める。なお、差圧の比例係数は、設計段階の試験などにより決定する。 The simplex air conditioning system shown in FIG. 1 is provided with a differential pressure gauge 61 for measuring the bypass differential pressure ΔP of the bypass circuit 50, i.e., the differential pressure of water between the upstream side and downstream side of the bypass circuit 50, and a load side flow meter 71 for measuring the total water flow rate on the load side. Here, the load side flow meter 71 is provided, for example, downstream of the junction of the cold and hot water flowing through each load side heat exchanger 41a, 41b on the load side of the water circuits 30a, 30b, 30c. On the other hand, the duplex air conditioning system shown in FIG. 2 is provided with a heat source side flow meter 91 for measuring the total water flow rate on the heat source side in addition to the differential pressure gauge 61 and the load side flow meter 71. Here, the heat source side flow meter 91 is provided, for example, downstream of the junction of the cold and hot water flowing through each load side heat exchanger 41a, 41b on the heat source side of the water circuits 30a, 30b, 30c. Instead of the heat source side flow meter 91, a means for measuring the differential pressure between the upstream and downstream sides of each water- refrigerant heat exchanger 16a, 16b, 16c, i.e., the water pressure difference between the upstream and downstream sides of each water- refrigerant heat exchanger 16a, 16b, 16c, may be provided so that the water flow rate of each heat source unit 10a, 10b, 10c can be obtained. Here, the water flow rate of each heat source unit 10a, 10b, 10c is obtained as being proportional to, for example, a proportionality coefficient of the differential pressure (for example, 0.5 power). The proportionality coefficient of the differential pressure is determined by testing at the design stage, etc.
 図3は、実施の形態に係る空気調和システムの室内機40がFCUである場合の各制御対象のブロック線図である。図4は、実施の形態に係る空気調和システムの室内機40がAHUである場合の各制御対象のブロック線図である。図5は、実施の形態に係る空気調和システムの室内機40がFCUである場合の従来例と比較した各制御対象のブロック線図である。図6は、実施の形態に係る空気調和システムの室内機40がAHUである場合の従来例と比較した各制御対象のブロック線図である。図7は、実施の形態に係る空気調和システムの従来例と比較した暖房運転時の効果を示す図である。図8は、実施の形態に係る空気調和システムの従来例と比較した冷房運転時の効果を示す図である。 FIG. 3 is a block diagram of each control object when the indoor unit 40 of the air conditioning system according to the embodiment is an FCU. FIG. 4 is a block diagram of each control object when the indoor unit 40 of the air conditioning system according to the embodiment is an AHU. FIG. 5 is a block diagram of each control object compared with a conventional example when the indoor unit 40 of the air conditioning system according to the embodiment is an FCU. FIG. 6 is a block diagram of each control object compared with a conventional example when the indoor unit 40 of the air conditioning system according to the embodiment is an AHU. FIG. 7 is a diagram showing the effect during heating operation compared with the conventional example of the air conditioning system according to the embodiment. FIG. 8 is a diagram showing the effect during cooling operation compared with the conventional example of the air conditioning system according to the embodiment.
 次に、実施の形態に係る単式の空気調和システムの基本的な動作について説明する。 Next, we will explain the basic operation of the single-type air conditioning system according to the embodiment.
[制御対象が室内機40]
 図3に示すように、室内機40がFCU(ファンコイルユニット)の場合、FCUである室内機40への還気温度RA(≒室内の温度)を被制御量として、流量調整弁42の弁開度が操作量となる。また、被制御量である還気温度RAの目標値は、設定温度Tsetである。なお、この設定温度Tsetは、ユーザによって設定される。つまり、還気温度RAが設定温度Tsetとなるように、流量調整弁42の弁開度が操作される。また、図4に示すように、室内機40がAHU(エアハンドリングユニット)の場合、AHUである室内機40からの給気温度SAを被制御量として、流量調整弁42の弁開度が操作量となる。また、被制御量である給気温度SAの目標値は、設定温度Tsetである。なお、この設定温度Tsetは、あらかじめ設定される。つまり、給気温度SAが設定温度Tsetとなるように、流量調整弁42の弁開度が操作される。また、室内機40がAHUである場合には、吹き出し口から供給される風量を調整するためのダンパ(図示せず)が設けられており、還気温度RAに基づいて、開度が操作される。なお、室内機40がAHUの場合、流量調整弁42の操作の目標値である設定温度Tsetは、例えば、冷房運転であれば十分に冷えた風となるように16℃に設定したり、暖房運転であればユーザが肌寒さを感じないように45℃に設定したりするとよい。
[Control target is indoor unit 40]
As shown in FIG. 3, when the indoor unit 40 is an FCU (fan coil unit), the return air temperature RA (≒ indoor temperature) to the indoor unit 40, which is an FCU, is the controlled quantity, and the valve opening of the flow rate control valve 42 is the manipulated variable. The target value of the return air temperature RA, which is the controlled quantity, is the set temperature Tset. Note that this set temperature Tset is set by the user. That is, the valve opening of the flow rate control valve 42 is manipulated so that the return air temperature RA becomes the set temperature Tset. As shown in FIG. 4, when the indoor unit 40 is an AHU (air handling unit), the supply air temperature SA from the indoor unit 40, which is an AHU, is the controlled quantity, and the valve opening of the flow rate control valve 42 is the manipulated variable. The target value of the supply air temperature SA, which is the controlled quantity, is the set temperature Tset. Note that this set temperature Tset is set in advance. That is, the valve opening of the flow rate control valve 42 is manipulated so that the supply air temperature SA becomes the set temperature Tset. Furthermore, if the indoor unit 40 is an AHU, a damper (not shown) is provided to adjust the amount of air supplied from the air outlet, and the opening degree is controlled based on the return air temperature RA. If the indoor unit 40 is an AHU, the set temperature Tset, which is the target value for the operation of the flow rate control valve 42, may be set to, for example, 16° C. in cooling operation so that the air is sufficiently cold, or to 45° C. in heating operation so that the user does not feel chilly.
[制御対象が熱源機10]
 図3および図4に示すように、水冷媒熱交換器16の出口水温Toutを被制御量として、圧縮機12の周波数が操作量となる。また、被制御量である出口水温Toutの目標値は、後述する目標水温Twtgである。つまり、出口水温Toutが目標水温Twtgとなるように、圧縮機12の周波数が操作される。
[Control target is heat source unit 10]
3 and 4, the outlet water temperature Tout of the water-refrigerant heat exchanger 16 is a controlled variable, and the frequency of the compressor 12 is a manipulated variable. The target value of the outlet water temperature Tout, which is the controlled variable, is a target water temperature Twtg, which will be described later. That is, the frequency of the compressor 12 is manipulated so that the outlet water temperature Tout becomes the target water temperature Twtg.
 また、実施の形態に係る単式の空気調和システムにおいて、熱源側ポンプ11およびバイパス用流量調整弁51は、バイパス差圧ΔPが目標差圧ΔPtgtとなるように連携して操作される。熱源側ポンプ11およびバイパス用流量調整弁51の連携操作としては、例えば、バイパス差圧ΔPが目標差圧ΔPtgtより不足している場合は熱源側ポンプ11の増速よりバイパス用流量調整弁51の弁閉動作が優先され、バイパス差圧ΔPが目標差圧ΔPtgtより過剰の場合はバイパス用流量調整弁51の弁開動作より熱源側ポンプ11の減速が優先されるような、省エネ性を重視した排他的な操作が一般的である。ここで、目標差圧ΔPtgtは、実際の空気調和システムをチューニングすることにより求められ、例えば、流量調整弁42の弁開度が全開時に、室内機40に定格流量が流れる際の熱源機10の前後差圧すなわち熱源機10の上流側と下流側との間に水の差圧を測定し、その値を目標差圧ΔPtgtに設定する。 Furthermore, in the single air conditioning system according to the embodiment, the heat source side pump 11 and the bypass flow control valve 51 are operated in coordination so that the bypass differential pressure ΔP becomes the target differential pressure ΔPtgt. The coordinated operation of the heat source side pump 11 and the bypass flow control valve 51 is generally an exclusive operation that emphasizes energy saving, in which, for example, when the bypass differential pressure ΔP is less than the target differential pressure ΔPtgt, the valve closing operation of the bypass flow control valve 51 takes precedence over increasing the speed of the heat source side pump 11, and when the bypass differential pressure ΔP is more than the target differential pressure ΔPtgt, the deceleration of the heat source side pump 11 takes precedence over the valve opening operation of the bypass flow control valve 51. Here, the target differential pressure ΔPtgt is obtained by tuning the actual air conditioning system. For example, when the flow control valve 42 is fully open, the differential pressure before and after the heat source unit 10, i.e., the differential pressure of water between the upstream and downstream sides of the heat source unit 10, is measured when the rated flow rate flows through the indoor unit 40, and this value is set as the target differential pressure ΔPtgt.
 また、実施の形態に係る複式の空気調和システムにおいて、熱源側ポンプ11は上述した単式の空気調和システムと同じように操作される。また、負荷側ポンプ101はその前後差圧すなわち負荷側ポンプ101の上流側と下流側との間の水の差圧を被制御量として、その差圧が負荷側の室内機40に冷温水を流すのに必要な目標差圧ΔPtgtとなるように操作される。熱源側ポンプ11は、バイパス回路50の流量を最小化するように操作される。例えば、熱源側ポンプ11は、負荷側流量計71の計測値より熱源側流量計91の計測値が僅かに大きくなるように操作される。なお、流量調整弁42の弁開度および圧縮機12の周波数の操作は、基本的に上述した単式の空気調和システムと変わらない。 In the duplex air conditioning system according to the embodiment, the heat source pump 11 is operated in the same manner as in the simplex air conditioning system described above. The load pump 101 is operated so that the differential pressure between its upstream and downstream sides, that is, the differential pressure of water between the upstream and downstream sides of the load pump 101, becomes the target differential pressure ΔPtgt required to flow cold and hot water to the load side indoor unit 40. The heat source pump 11 is operated so as to minimize the flow rate of the bypass circuit 50. For example, the heat source pump 11 is operated so that the measurement value of the heat source side flow meter 91 is slightly larger than the measurement value of the load side flow meter 71. The operation of the valve opening of the flow control valve 42 and the frequency of the compressor 12 is basically the same as in the simplex air conditioning system described above.
 次に、実施の形態に係る単式の空気調和システムの特徴的な動作について説明する。 Next, we will explain the characteristic operation of the single-type air conditioning system according to the embodiment.
[制御対象が空気調和システム]
 実施の形態では、目標水温Twtgが、不冷および不暖とならない範囲で省エネルギー性が向上するように操作される。つまり、冷房運転なら目標水温Twtgが高くなるように操作され、暖房運転なら目標水温Twtgが低くなるように操作される。具体的には、目標水温Twtgの操作の被制御量は、流量調整弁42の操作の被制御量と同じものを採用する。つまり、図3に示すように、室内機40がFCUの場合、FCUである室内機40への還気温度RAを被制御量として、目標水温Twtgが操作量となる。また、被制御量である還気温度RAの目標値は、一般的にユーザが設定する設定温度Tsetにオフセットした値、つまり設定温度Tset±αである。また、図4に示すように、室内機40がAHUの場合、AHUである室内機40からの給気温度SAを被制御量として、目標水温Twtgが操作量となる。また、被制御量である給気温度SAの目標値は、一般的にユーザが設定する設定温度Tsetに対してオフセットした値、つまり設定温度Tset±αである。なお、目標水温Twtgの操作の目標値である設定温度Tset±αは、流量調整弁42の操作の目標値である設定温度Tsetと比べて、冷房運転時は設定温度Tsetに対して高温側にオフセットした値(Tset+α)、暖房運転時は設定温度Tsetに対して低温側にオフセットした値(Tset-α)に設定する。
[Control target is air conditioning system]
In the embodiment, the target water temperature Twtg is operated so that energy saving is improved within a range where the cooling and heating are not insufficient. That is, in the case of cooling operation, the target water temperature Twtg is operated so as to be higher, and in the case of heating operation, the target water temperature Twtg is operated so as to be lower. Specifically, the controlled amount of the operation of the target water temperature Twtg is the same as the controlled amount of the operation of the flow rate control valve 42. That is, as shown in FIG. 3, when the indoor unit 40 is an FCU, the return air temperature RA to the indoor unit 40, which is an FCU, is the controlled amount, and the target water temperature Twtg is the manipulated amount. In addition, the target value of the return air temperature RA, which is the controlled amount, is generally a value offset to the set temperature Tset set by the user, that is, the set temperature Tset±α. In addition, as shown in FIG. 4, when the indoor unit 40 is an AHU, the supply air temperature SA from the indoor unit 40, which is an AHU, is the controlled amount, and the target water temperature Twtg is the manipulated amount. Furthermore, the target value of the supply air temperature SA, which is a controlled variable, is generally an offset value relative to the set temperature Tset set by the user, that is, the set temperature Tset±α. The set temperature Tset±α, which is the target value for the operation of the target water temperature Twtg, is set to a value (Tset+α) offset to a higher temperature than the set temperature Tset during cooling operation, and to a value (Tset-α) offset to a lower temperature than the set temperature Tset during heating operation, compared to the set temperature Tset, which is the target value for the operation of the flow rate control valve 42.
 流量調整弁42の開度信号を演算装置に取り込まない場合、図5~図8の各(a)に示すように従来の第一制御方法では、目標水温Twtgが固定値であり、還気温度RAまたは給気温度SAが設定温度Tsetとなるように流量調整弁42の弁開度が操作され、出口水温Toutが目標水温Twtgとなるように圧縮機12の周波数が操作されていた。また、図5~図8の各(b)に示すように従来の第二制御方法では、目標水温Twtgが可変値であり、還気温度RAまたは給気温度SAが設定温度Tsetとなるように流量調整弁42の弁開度および目標水温Twtgが操作され、出口水温Toutが目標水温Twtgとなるように圧縮機12の周波数が操作されていた。しかし、これらの制御方法では、流量調整弁42の弁開度および目標水温Twtgが目標値に到達していると変化しない。 When the opening signal of the flow control valve 42 is not input to the calculation device, as shown in each of (a) of Figures 5 to 8, in the conventional first control method, the target water temperature Twtg is a fixed value, the valve opening of the flow control valve 42 is operated so that the return air temperature RA or the supply air temperature SA becomes the set temperature Tset, and the frequency of the compressor 12 is operated so that the outlet water temperature Tout becomes the target water temperature Twtg. Also, as shown in each of (b) of Figures 5 to 8, in the conventional second control method, the target water temperature Twtg is a variable value, the valve opening of the flow control valve 42 and the target water temperature Twtg are operated so that the return air temperature RA or the supply air temperature SA becomes the set temperature Tset, and the frequency of the compressor 12 is operated so that the outlet water temperature Tout becomes the target water temperature Twtg. However, in these control methods, the valve opening of the flow control valve 42 and the target water temperature Twtg do not change once they have reached their target values.
 それに対して、図5~図8の各(c)に示すように実施の形態に係る制御方法では、流量調整弁42の弁開度が全開になるまで、または、目標水温Twtgが設定可能な限界値に至るまで、自動的に省エネルギーに向かう方向に変化する。そのため、実施の形態に係る制御方法では、従来の制御方法に比べて、不冷および不暖とならない範囲で省エネルギー性を向上させることができる。 In contrast, as shown in each of (c) of Figures 5 to 8, in the control method according to the embodiment, the valve opening of the flow control valve 42 automatically changes in a direction toward energy conservation until the valve opening degree reaches full opening, or until the target water temperature Twtg reaches the settable limit value. Therefore, compared to conventional control methods, the control method according to the embodiment can improve energy conservation to a degree that does not result in insufficient cooling or heating.
 なお、空気調和システムが室内機40を複数備えており、それぞれの設定温度Tset、あるいは還気温度RAまたは給気温度SAが異なる場合は、例えば、その未達温度幅、つまり設定温度Tsetと還気温度RAまたは給気温度SAとの差が最も大きい室内機40を代表として、その室内機40の設定温度Tsetと還気温度RAまたは給気温度SAとを用いて、上記に示した制御を行えばよい。 In addition, if the air conditioning system has multiple indoor units 40 and each has a different set temperature Tset or a different return air temperature RA or supply air temperature SA, then, for example, the indoor unit 40 with the largest unachieved temperature width, i.e., the largest difference between the set temperature Tset and the return air temperature RA or supply air temperature SA, can be used as a representative and the above-described control can be performed using the set temperature Tset and return air temperature RA or supply air temperature SA of that indoor unit 40.
 なお、実施の形態に係る複式の空気調和システムの特徴的な動作について上記と同様である。 The characteristic operation of the duplex air conditioning system according to the embodiment is the same as described above.
 また、流量調整弁42および目標水温Twtgの操作において、被制御量に不感帯が設けられている場合は、目標値が不感帯に重ならないようにオフセットする。つまり、設定温度Tsetおよび設定温度Tset±αに対してオフセットし、不感帯に重ならない値にする。 In addition, when operating the flow rate control valve 42 and the target water temperature Twtg, if a dead band is set for the controlled variable, the target value is offset so that it does not overlap with the dead band. In other words, the set temperature Tset and the set temperature Tset±α are offset to a value that does not overlap with the dead band.
 また、実施の形態では、目標水温Twtgの操作に関して、被制御量が目標値過達の時は目標水温Twtgが省エネ側に変化し、被制御量が目標値未達の時は目標水温Twtgが冷房/暖房能力が増加する側に変化するが、被制御量が一時的に目標値未達により不冷あるいは不暖の状態となった際に迅速にリカバリーできるように、被制御量の制御偏差の絶対値に対して操作量を変化させる幅の絶対値を、目標値過達時よりも大きくしてもよい。つまり、還気温度RAまたは給気温度SAが設定温度Tsetに対して過達時よりも未達時の方が、目標水温Twtgの変化幅を大きくする。ここで、目標値未達とは、被制御量が目標値に達していないこと、つまり被制御量<目標値を意味し、目標値過達とは、被制御量が目標値を超えていること、つまり被制御量>目標値を意味する。 Furthermore, in the embodiment, with regard to the operation of the target water temperature Twtg, when the controlled quantity exceeds the target value, the target water temperature Twtg changes to the energy saving side, and when the controlled quantity falls short of the target value, the target water temperature Twtg changes to the side of increasing the cooling/heating capacity, but in order to quickly recover when the controlled quantity temporarily falls short of the target value and becomes incooled or insufficient to heat, the absolute value of the range by which the operation quantity is changed relative to the absolute value of the control deviation of the controlled quantity may be made larger than when the target value is exceeded. In other words, the range of change in the target water temperature Twtg is made larger when the return air temperature RA or the supply air temperature SA does not reach the set temperature Tset than when it exceeds it. Here, "not reaching the target value" means that the controlled quantity has not reached the target value, i.e., the controlled quantity < the target value, and "overreaching the target value" means that the controlled quantity exceeds the target value, i.e., the controlled quantity > the target value.
 以上、実施の形態に係る空気調和システムは、負荷側熱交換器41および流量調整弁42を有する室内機40と、圧縮機12、熱源側熱交換器14、水冷媒熱交換器16、および熱源側ポンプ11を有する熱源機10と、室内機40の還気温度RAを検知する還気温度センサ44または室内機40の給気温度SAを検知する給気温度センサ45と、水冷媒熱交換器16の出口水温Toutを検知する出口水温センサ18と、還気温度RAまたは給気温度SAが設定温度Tsetとなるように流量調整弁42の弁開度を制御し、出口水温Toutが目標水温Twtgとなるように圧縮機12の周波数を制御し、還気温度RAまたは給気温度SAが目標値となるように目標水温Twtgを制御する熱源側制御装置17と、を備え、目標値は、設定温度Tsetに対してオフセットした値である。 The air conditioning system according to the embodiment includes an indoor unit 40 having a load-side heat exchanger 41 and a flow control valve 42, a heat source unit 10 having a compressor 12, a heat source-side heat exchanger 14, a water-refrigerant heat exchanger 16, and a heat source-side pump 11, a return air temperature sensor 44 that detects the return air temperature RA of the indoor unit 40 or a supply air temperature sensor 45 that detects the supply air temperature SA of the indoor unit 40, an outlet water temperature sensor 18 that detects the outlet water temperature Tout of the water-refrigerant heat exchanger 16, and a heat source-side control device 17 that controls the valve opening of the flow control valve 42 so that the return air temperature RA or the supply air temperature SA becomes the set temperature Tset, controls the frequency of the compressor 12 so that the outlet water temperature Tout becomes the target water temperature Twtg, and controls the target water temperature Twtg so that the return air temperature RA or the supply air temperature SA becomes the target value, and the target value is a value offset from the set temperature Tset.
 実施の形態に係る空気調和システムによれば、流量調整弁42の弁開度情報を外部に出力して、その情報をシステム全体を制御する統合制御装置1に取り込む必要がないため、簡素な構成かつ低コストで実現可能となり、また、既築向けに本システムを導入することが可能となる。また、還気温度RAまたは給気温度SAが設定温度Tsetにオフセットした値となるように目標水温Twtgを制御するため、不冷および不暖とならない範囲で省エネルギー性を向上させることができる。 According to the air conditioning system of the embodiment, there is no need to output valve opening information of the flow control valve 42 to the outside and import that information into the integrated control device 1 that controls the entire system, so it can be realized with a simple configuration and low cost, and it is also possible to introduce this system into existing buildings. In addition, since the target water temperature Twtg is controlled so that the return air temperature RA or the supply air temperature SA is a value offset from the set temperature Tset, it is possible to improve energy conservation within a range that does not result in insufficient cooling or heating.
 また、実施の形態に係る空気調和システムにおいて、統合制御装置1は、還気温度RAまたは給気温度SAが設定温度Tsetに対して過達時よりも未達時の方が、目標水温Twtgの変化幅を大きくする。 In addition, in the air conditioning system according to the embodiment, the integrated control device 1 increases the range of change in the target water temperature Twtg when the return air temperature RA or the supply air temperature SA does not reach the set temperature Tset compared to when it exceeds the set temperature Tset.
 実施の形態に係る空気調和システムによれば、被制御量が一時的に目標値未達により不冷あるいは不暖の状態となった際のリカバリーを迅速に行うことができる。 The air conditioning system according to the embodiment can quickly recover from the situation where the controlled variable temporarily does not reach the target value, resulting in insufficient cooling or heating.
 1 統合制御装置、10 熱源機、10a~10c 熱源機、11 熱源側ポンプ、11a~11c 熱源側ポンプ、12 圧縮機、12a~12c 圧縮機、13 流路切替弁、13a~13c 流路切替弁、14 熱源側熱交換器、14a~14c 熱源側熱交換器、15 絞り装置、15a~15c 絞り装置、16 水冷媒熱交換器、16a~16c 水冷媒熱交換器、17 熱源側制御装置、17a~17c 熱源側制御装置、18 出口水温センサ、18a~18c 出口水温センサ、20a~20c 冷媒回路、30a~30c 水回路、40 室内機、40a~40b 室内機、41 負荷側熱交換器、41a~41b 負荷側熱交換器、42 流量調整弁、42a~42b 流量調整弁、43 負荷側制御装置、43a~43b 負荷側制御装置、44 還気温度センサ、44a~44b 還気温度センサ、45 給気温度センサ、45a~45b 給気温度センサ、
50 バイパス回路、51 バイパス用流量調整弁、61 差圧計、71 負荷側流量計、91 熱源側流量計、101 負荷側ポンプ。
1 Integrated control device, 10 Heat source device, 10a to 10c Heat source device, 11 Heat source side pump, 11a to 11c Heat source side pump, 12 Compressor, 12a to 12c Compressor, 13 Flow path switching valve, 13a to 13c Flow path switching valve, 14 Heat source side heat exchanger, 14a to 14c Heat source side heat exchanger, 15 Throttle device, 15a to 15c Throttle device, 16 Water refrigerant heat exchanger, 16a to 16c Water refrigerant heat exchanger, 17 Heat source side control device, 17a to 17c Heat source side control device, 18 Outlet water temperature sensor, 18a to 18c Outlet water temperature sensor, 20a to 20c Refrigerant circuit, 30a to 30c Water circuit, 40 Indoor unit, 40a to 40b Indoor unit, 41 Load side heat exchanger, 41a to 41b Load side heat exchanger, 42 Flow control valve, 42a to 42b flow control valve, 43 load side control device, 43a to 43b load side control device, 44 return air temperature sensor, 44a to 44b return air temperature sensor, 45 supply air temperature sensor, 45a to 45b supply air temperature sensor,
50 bypass circuit, 51 bypass flow control valve, 61 differential pressure gauge, 71 load side flow meter, 91 heat source side flow meter, 101 load side pump.

Claims (3)

  1.  負荷側熱交換器および流量調整弁を有する室内機と、
     圧縮機、熱源側熱交換器、水冷媒熱交換器、および熱源側ポンプを有する熱源機と、
     前記室内機の還気温度を検知する還気温度センサまたは前記室内機の給気温度を検知する給気温度センサと、
     前記水冷媒熱交換器の出口水温を検知する出口水温センサと、
     前記還気温度または前記給気温度が設定温度となるように前記流量調整弁の弁開度を制御し、前記出口水温が目標水温となるように前記圧縮機の周波数を制御し、前記還気温度または前記給気温度が目標値となるように前記目標水温を制御する統合制御装置と、を備え、
     前記目標値は、前記設定温度に対してオフセットした値である
     空気調和システム。
    an indoor unit having a load-side heat exchanger and a flow control valve;
    a heat source unit having a compressor, a heat source side heat exchanger, a water-refrigerant heat exchanger, and a heat source side pump;
    A return air temperature sensor that detects the return air temperature of the indoor unit or a supply air temperature sensor that detects the supply air temperature of the indoor unit;
    An outlet water temperature sensor that detects an outlet water temperature of the water-refrigerant heat exchanger;
    an integrated control device that controls a valve opening degree of the flow control valve so that the return air temperature or the supply air temperature becomes a set temperature, controls a frequency of the compressor so that the outlet water temperature becomes a target water temperature, and controls the target water temperature so that the return air temperature or the supply air temperature becomes a target value;
    The air conditioning system, wherein the target value is an offset value with respect to the set temperature.
  2.  前記統合制御装置は、
     前記還気温度または前記給気温度が前記設定温度に対して過達時よりも未達時の方が、前記目標水温の変化幅を大きくする
     請求項1に記載の空気調和システム。
    The integrated control device includes:
    The air conditioning system according to claim 1 , wherein the range of change in the target water temperature is made larger when the return air temperature or the supply air temperature does not reach the set temperature than when it exceeds the set temperature.
  3.  冷房運転および暖房運転が可能な空気調和システムであって、
     前記目標値は、冷房運転時には前記設定温度に対して高温側にオフセットした値であり、暖房運転時には前記設定温度に対して低温側にオフセットした値である
     請求項1または2に記載の空気調和システム。
    An air conditioning system capable of cooling and heating operations,
    The air conditioning system according to claim 1 or 2, wherein the target value is a value offset to a higher temperature side with respect to the set temperature during cooling operation, and is a value offset to a lower temperature side with respect to the set temperature during heating operation.
PCT/JP2022/037947 2022-10-12 2022-10-12 Air conditioning system WO2024079807A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037947 WO2024079807A1 (en) 2022-10-12 2022-10-12 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037947 WO2024079807A1 (en) 2022-10-12 2022-10-12 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2024079807A1 true WO2024079807A1 (en) 2024-04-18

Family

ID=90668957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037947 WO2024079807A1 (en) 2022-10-12 2022-10-12 Air conditioning system

Country Status (1)

Country Link
WO (1) WO2024079807A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528922A (en) * 2005-02-02 2008-07-31 松下電工株式会社 Environmental equipment control system
WO2019116599A1 (en) * 2017-12-12 2019-06-20 日本ピーマック株式会社 Air-conditioning device and air-conditioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528922A (en) * 2005-02-02 2008-07-31 松下電工株式会社 Environmental equipment control system
WO2019116599A1 (en) * 2017-12-12 2019-06-20 日本ピーマック株式会社 Air-conditioning device and air-conditioning system

Similar Documents

Publication Publication Date Title
JP2723953B2 (en) Air conditioner
US20230065130A1 (en) Air conditioning system
JP2007333219A (en) Multi-type air-conditioning system
CN110094858B (en) Control method and device of air conditioner electronic expansion valve, computer product and air conditioner
CN112432267A (en) Heat pump system with dehumidification function and control method thereof
KR950003124B1 (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
EP3961126B1 (en) Multi-air conditioner for heating and cooling operations
KR20210100461A (en) Air conditioning apparatus
WO2024079807A1 (en) Air conditioning system
KR20120114997A (en) Air conditoner
JP2013002749A (en) Air conditioning device
JP4179783B2 (en) Air conditioner
JP7374633B2 (en) Air conditioners and air conditioning systems
US10465935B2 (en) Air-conditioning apparatus
KR20150009201A (en) A heat pump system and a control method the same
JP2000018766A (en) Air conditioner
JP2006266677A (en) Air conditioner
WO2024150272A1 (en) Air conditioning system
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
WO2022239212A1 (en) Air conditioner and air conditioning system
JP3661014B2 (en) Refrigeration equipment
JP2893844B2 (en) Air conditioner
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JP6938950B2 (en) Air conditioning system
JP7533557B2 (en) Air Conditioning Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962027

Country of ref document: EP

Kind code of ref document: A1