WO2024078942A1 - Mixing chamber for a gas-solid co-current downflow fluidised-bed reactor - Google Patents
Mixing chamber for a gas-solid co-current downflow fluidised-bed reactor Download PDFInfo
- Publication number
- WO2024078942A1 WO2024078942A1 PCT/EP2023/077468 EP2023077468W WO2024078942A1 WO 2024078942 A1 WO2024078942 A1 WO 2024078942A1 EP 2023077468 W EP2023077468 W EP 2023077468W WO 2024078942 A1 WO2024078942 A1 WO 2024078942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mixing chamber
- internal
- internals
- solid
- catalyst particles
- Prior art date
Links
- 238000002156 mixing Methods 0.000 title claims abstract description 95
- 239000007787 solid Substances 0.000 title claims abstract description 52
- 239000003054 catalyst Substances 0.000 claims abstract description 99
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 59
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 59
- 239000002245 particle Substances 0.000 claims abstract description 50
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 45
- 239000000203 mixture Substances 0.000 claims abstract description 28
- 238000004523 catalytic cracking Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000008569 process Effects 0.000 claims abstract description 15
- 238000009825 accumulation Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 24
- 239000003085 diluting agent Substances 0.000 description 16
- 239000003921 oil Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 7
- 238000005336 cracking Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 6
- 230000005587 bubbling Effects 0.000 description 6
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 6
- 239000010457 zeolite Substances 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000011949 solid catalyst Substances 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- -1 Ethylene, Propylene, Butene Chemical class 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000571 coke Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000005243 fluidization Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000004517 catalytic hydrocracking Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004231 fluid catalytic cracking Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 238000010517 secondary reaction Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241001223864 Sphyraena barracuda Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1872—Details of the fluidised bed reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
- B01J4/005—Feed or outlet devices as such, e.g. feeding tubes provided with baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
- B01J8/003—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/008—Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1881—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving downwards while fluidised
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/14—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
- C10G11/18—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00743—Feeding or discharging of solids
- B01J2208/00752—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00743—Feeding or discharging of solids
- B01J2208/00769—Details of feeding or discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00823—Mixing elements
- B01J2208/00831—Stationary elements
- B01J2208/0084—Stationary elements inside the bed, e.g. baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00893—Feeding means for the reactants
- B01J2208/00929—Provided with baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00938—Flow distribution elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/34—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles
Definitions
- the invention relates to the field of refining and petrochemicals and to processes and units for the chemical transformation of petroleum products, in particular hydrocarbon cuts, by Fluidized Bed Catalytic Cracking (“Fluid Catalytic Cracking” or FCC according to Anglo-Saxon terminology) for the production of light olefins (i.e., olefins comprising between 2 and 4 carbon atoms), and more particularly ethylene and propylene, and also aromatics (e.g. BTX), and more particularly paraxylene.
- Fluidized Bed Catalytic Cracking or FCC according to Anglo-Saxon terminology
- light olefins i.e., olefins comprising between 2 and 4 carbon atoms
- ethylene and propylene ethylene and propylene
- aromatics e.g. BTX
- the invention is part of the improvement of the design of the established flow zone of fluidized bed reactors with descending gas-solid co-current ("downer” or “down flow reactor” according to the Anglo-Saxon terminology), called hereinafter downflow reactors, used for example for high severity catalytic cracking (HS-FCC).
- downflow reactors used for example for high severity catalytic cracking (HS-FCC).
- Ethylene, Propylene, Butene, Butadiene and aromatics such as Benzene, Toluene and Xylene (BTX) represent the basic products for the petrochemical industry. These products are generally obtained by catalytic reforming and/or thermal cracking (steam cracking) of hydrocarbons such as naphtha, kerosene or gas oil. These compounds are also obtained by fluidized bed catalytic cracking (FCC) of hydrocarbons, such as a Vacuum Distillate (DSV, or “vacuum gas oil” or VGO according to Anglo-Saxon terminology) and/or a residue ( under vacuum or atmospheric) distillation of hydrocarbons and/or naphtha, gas oils, complete crudes.
- FCC fluidized bed catalytic cracking
- the high severity catalytic cracking (HS-FCC) process aims to increase yields of propylene and ethylene through high temperature reaction conditions, very short contact times (e.g. ⁇ 1 s), high flow rate ratios mass C of catalyst and mass flow rate O of charge (C/O).
- the HS-FCC process uses a downflow reactor, where the catalyst and feed are set in motion under gravity with a flow which approaches that of a piston type flow.
- the downward gas-solid flow in a reactor avoids back-mixing and overcracking of products while the use of high C/O ratios ensures the predominance of catalytic reactions.
- the high temperature favors the formation of reaction intermediates such as light olefins while a controlled and short contact time avoids secondary reactions which are responsible for the consumption of such intermediates.
- the initial mixture between catalyst and feed conditions the vaporization of the hydrocarbons and the gas-solid contact throughout the downflow reactor.
- the initial mixing is generally carried out in a fraction of a second with, for a typical HS-FCC, a flow rate of around 400 to 700 t/h of feed and 7000 to 21000 t/h of catalyst which requires efficient technology to have a mixing chamber that approximates a perfectly agitated zone.
- Patent FR 2 753 453 B1 describes a downward flow cracking reactor comprising a contact zone between the hydrocarbons and the catalyst, and consisting of: a mixing chamber of maximum section S2, placed in communication with means supply of regenerated catalyst through an upper orifice defining a catalyst passage section S1; and a reaction zone of maximum section S4, placed in communication with the mixing chamber by an intermediate orifice of section S3, reactor in which the ratios S2/S1 and S2/S3 are between 1.5 and 8.
- the patent FR 2 753 453 B1 also describes a bulk part arranged at the lower end of the catalyst conduit supplying the mixing chamber, the bulk part defining an upper annular orifice of the mixing chamber.
- Patent application US 2022/0016589 A1 describes a downflow reactor whose feed zone comprises an elongated bulk part on which helical blades are positioned.
- Patents US 10,889,768 B2 and US 10,767,117 B2 describe systems and processes for producing petrochemical products (e.g. ethylene and other olefins), from hydrocarbon feedstocks (e.g. crude oil), in high severity fluid catalytic cracking (HS) units. -FCC).
- petrochemical products e.g. ethylene and other olefins
- hydrocarbon feedstocks e.g. crude oil
- HS high severity fluid catalytic cracking
- a first object of the present invention is to overcome the problems of the prior art and to provide a device for catalytic cracking in a fluidized bed with downward gas-solid co-current and catalyst flow.
- homogeneous ie, in which the concentration of solid in the cross section of the reactor is substantially uniform.
- the device according to the invention makes it possible to obtain improved catalyst dispersion between the central zone and the annular zone (ie, in the proximity of the wall) of the descending gas-solid co-current reactor.
- a device for catalytic cracking in a fluidized bed with a descending gas-solid co-current comprising, from top to bottom: a pipe adapted to transport a flow catalyst particle descendant; a mixing chamber connected to the pipe and adapted to be supplied by the pipe in a downward flow, the mixing chamber comprising an internal wall, at least one first hydrocarbon feed injector and a central bulk part defining an annular zone through which the catalyst particles pass through the mixing chamber; and a downward gas-solid co-current fluidized bed reactor connected to the mixing chamber and adapted to be supplied by the mixing chamber with a mixture comprising catalyst particles and hydrocarbon feed, device in which the mixing chamber mixture comprises at least one internal (e.g. obstacle, deflector) disposed on and preferably around the central bulky part and disposed under the at least one first injector and being adapted to distribute the mixture towards the wall of the mixing chamber.
- the mixing chamber mixture comprises at least one internal (e.g. obstacle, deflector) disposed on and preferably around the central bulky part and disposed
- the internal allows the concentration of catalyst particles to be homogenized.
- the at least one internal is adapted to reduce the passage section of the annular zone from 1% to 35%.
- the at least one internal is adapted to prevent the accumulation of catalyst particles on said internal.
- the at least one internal is adapted comprises an upper surface oblique and descending towards the outside.
- the oblique upper surface of the at least one internal is straight, convex and/or concave.
- the oblique upper surface of the at least one internal forms an angle p of between 10° and 80°, relative to the horizontal.
- the at least one internal is arranged on the central bulk part at an axial distance from the first hydrocarbon feed injectors of between 0*H3 and 1*H3, H3 being the height of the at least one intern.
- the at least one internal is a plurality of internals positioned discontinuously on the central bulk part.
- the internals are in the shape of a prism, cylinder, pyramid, cone, and/or truncated cone.
- the device comprises at least one row of internals arranged at a predetermined height on the central bulk part.
- the perimeter of the central bulk room wall occupied by the row of internals is between 10% and 100%.
- the row of internals comprises between 1 and 16 internals.
- the at least one internal is of annular shape, and is positioned continuously on and around the central bulky part.
- the device comprises between 1 and 6 rows of discontinuous internals and/or between 1 and 12 annular-shaped internals arranged at a predetermined height on the central bulk part.
- a process for catalytic cracking in a fluidized bed with downward gas-solid co-current comprising the following steps: transporting a downward flow of catalyst particles in a conduct ; supplying a mixing chamber via the pipe with the downward flow, the mixing chamber comprising an internal wall, at least one first hydrocarbon feed injector and a central bulk part defining an annular zone through which the catalyst particles pass through the chamber mixture ; supplying a fluidized bed reactor with a gas-solid co-current descending through the mixing chamber with a mixture comprising catalyst particles and hydrocarbon feed; and at least partially crack the hydrocarbon feedstock in the presence of the catalyst particles in the downward gas-solid co-current fluidized bed reactor, to produce an effluent comprising at least partially coked catalyst and gaseous cracking products, in which the mixing chamber comprises at least one internal disposed under the at least one first injector and being adapted to distribute the mixture towards the mixing chamber wall.
- Figure 1 represents an FCC device according to one or more embodiments of the present invention comprising a central bulky part provided with internals for the homogenization of the catalyst flow.
- Figure 2 shows a top view of an FCC device according to one or more embodiments of the present invention comprising a mixing chamber in the shape of a truncated cone provided with an internal arranged continuously around the part of central clutter.
- Figure 3 shows a top view of an FCC device according to one or more embodiments of the present invention comprising a mixing chamber in the shape of a truncated cone provided with internals arranged discontinuously around the bulk part central.
- Figure 4 shows a 3D view of an FCC device according to one or more embodiments of the present invention comprising an internal arranged continuously around the central bulk part and a plurality of obstacles on the wall of the mixing chamber.
- Figure 5 shows sectional views of the mass fraction of the catalyst in an FCC device according to the invention A as shown in Figure 4, and in a reference FCC device B.
- the term “comprising” is synonymous with (means the same as) "include”, “include” and “contain”, and is inclusive or open and does not exclude other elements not recited. It is understood that the term “understand” includes the exclusive and closed term “consist”. Furthermore, in the present description, the terms “essentially” or “substantially” or “approximately” correspond to an approximation of ⁇ 10%, preferably ⁇ 5%, most preferably ⁇ 1%.
- the invention relates to a device and a method for fluidized bed catalytic cracking for the chemical transformation of petroleum products (FCC), used for example for high severity catalytic cracking (HS-FCC).
- FCC petroleum products
- HS-FCC high severity catalytic cracking
- An FCC unit generally treats a heavy cut from the vacuum distillation unit such as a vacuum gas oil or a vacuum residue, or even an atmospheric residue, alone or in a mixture.
- An FCC unit can also process lighter cuts such as a gasoline cut or a diesel cut, alone or in a mixture. It is also possible to process a mixture of light and heavy cuts, or even a complete rough.
- the devices and catalytic cracking processes generally use a fluidized bed reactor with descending gas-solid co-current (“downer” or “down flow reactor” according to Anglo-Saxon terminology), hereinafter called downflow reactor.
- the device for catalytic cracking in a fluidized bed with a descending gas-solid co-current comprising, from top to bottom: a pipe 1 (substantially vertical); a mixing chamber 2; and a downflow reactor 3 (substantially vertical).
- Line 1 is suitable for supplying mixing chamber 2 with solid catalyst (particles).
- Line 1 mainly transports solids, as well as a fluidization gas driven by the descending solid.
- Pipe 1 presents a flow like a supply column (“standpipe” according to Anglo-Saxon terminology) well known to those skilled in the art.
- the mixing chamber 2 is connected to the pipe 1, comprises a side/vertical wall defining a central/vertical axis Z, and is adapted to supply the downflow reactor 3 with a mixture comprising catalyst particles, a hydrocarbon feed and optionally a thinner.
- the downflow reactor 3 is connected to the mixing chamber 2 and is adapted to at least partially crack the hydrocarbon feed in the presence of the catalyst particles to produce an effluent comprising at least partially coked catalyst and gaseous cracking products, and optionally unconverted vaporized charge.
- the pipe 1 supplies the mixing chamber 2 with a descending flow 4 of (hot) catalyst particles, the mixing chamber 2 comprising a several first injectors 5 of hydrocarbon feed 6.
- the first injector(s) 5 is adapted to inject diluent (e.g. water vapor) with the load.
- the mixing chamber 2 comprises one or more second injectors 7 of diluent 8.
- the descending flow 4 comes into contact with the hydrocarbon feed 6 atomized using the or first injectors 5 and optionally with diluent 8, introduced for example by the second injector(s) 7.
- the injection of diluent 8 makes it possible to reduce the partial pressure of the hydrocarbon feed and to reduce secondary reactions.
- the injection of diluent 8 makes it possible to improve the atomization of the hydrocarbon feedstock 6.
- the diluent 8 is chosen from the group consisting of water vapor, nitrogen , CO2, light hydrocarbons (e.g. C1-C5 compounds), combustion fumes.
- the diluent 8 comprises or consists of water vapor.
- the pipe 1 has a constant section geometry, such as cylindrical, square, rectangular or hexagonal, or a variable section, such as a truncated pyramid or cone, or a combination of different geometric shapes.
- the pipe 1 is cylindrical in shape and optionally of variable diameter.
- the pipe 1 is at least partially frustoconical in shape.
- the pipe 1 comprises (in the direction of the flow of the solid catalyst): a cylindrical section, for example whose diameter is chosen to obtain a solid flow of 100 to 800 kg/(m 2 s) and preferably between 300 to 600 kg/(m 2 s); a frustoconical section (called a narrowing section) adjacent to the mixing chamber 2, the diameter of which decreases, for example in order to achieve a solid flow, without taking into account the internals, between 400 and 2000 kg/(m 2 s) and preferably between 700 and 1500 kg/(m 2 s); and optionally a second cylindrical section, for example whose diameter is chosen to obtain a solid flow, without taking into account the internals, between 400 and 2000 kg/(m 2 s) and preferably between 700 and 1500 kg/(m 2 s).
- the mixing chamber 2 has a constant section geometry, such as cylindrical, square, rectangular or hexagonal, or a variable section, such as a truncated pyramid or cone, or a combination of different geometric shapes. .
- the mixing chamber 2 is cylindrical in shape and optionally of variable diameter.
- the mixing chamber 2 is at least partially frustoconical in shape.
- the mixing chamber 2 comprises an upper limit of section S1 connecting the mixing chamber 2 to pipe 1 and a lower limit of section S2 connecting the mixing chamber 2 to the downflow reactor 3, the S1/S2 ratio being less than 0.9 and preferably less than 0.7.
- the S1/S2 ratio is between 0.4 and 0.9, preferably between 0.5 and 0.7.
- the mixing chamber 2 comprises between 2 and 12 first injectors 5, preferably between 3 and 8 first injectors 5.
- the mixing chamber 2 comprises between 2 and 12 second injectors 7, preferably between 3 and 8 second injectors 7.
- the injectors 5 and/or 7 are inclined upwards or downwards or are arranged substantially horizontally.
- the injectors 5 and/or 7 are inclined upwards, for example with an angle of between 10° and 45° relative to the horizontal.
- first injectors 5 and/or second injectors 7 are arranged in one or more horizontal rows, i.e., perpendicular to the central/vertical axis Z of the chamber. mixture 2.
- second injectors 7 are arranged below (e.g. a row) of first injectors 5.
- second injectors 7 are arranged between two rows of first injectors 5.
- the radial position of the second injectors 7 is in a separation space between the adjacent radial positions of two first injectors 5. According to one or more embodiments, the second injectors 7 are positioned approximately half the angle of separation of two first injectors 5.
- At least one first injector 5 and/or at least one second injector 7 is rotated at an angle a between 0° and 45°, and preferably between 10° and 20° with respect to the radial direction of the diameter D of the mixing chamber 2, i.e., the projection of the axis of the injectors 7 on a horizontal plane forms the angle a, with the radial direction of the diameter D of the mixing chamber 2, which is perpendicular to the central/vertical axis Z.
- the mixing chamber 2 feeds the downflow reactor 3 with a mixture of hydrocarbon feed 6, catalyst particles and optionally diluent 8.
- the hydrocarbon feed 6 and the catalyst particles give rise to to the cracking reactions which are completed in the downflow reactor 3 of a length L (along the central/vertical axis Z) to produce a hydrocarbon effluent comprising cracking products, spent catalyst and potentially part of the feed unreacted hydrocarbon.
- the downward flow reactor 3 has a constant section geometry, such as cylindrical, square, rectangular or hexagonal, preferably cylindrical. According to one or more embodiments, the downward flow reactor 3 is cylindrical in shape and optionally of variable diameter. According to one or more embodiments, the diameter of the downward flow reactor 3 is defined such that the superficial speed of the gas passing through it is between 2 m/s and 26 m/s, preferably between 6 m/s and 16 m/s. s.
- the internal wall of the mixing chamber 2 and/or the downflow reactor 3 further comprises a plurality of obstacles 9.
- the plurality of obstacles 9 is suitable for homogenizing the concentration of catalyst particles.
- the obstacles 9 make it possible to redistribute the catalyst particles which can accumulate near the walls (e.g. of the mixing chamber 2 and the downflow reactor 3).
- the obstacles 9 can be of varied geometric shapes.
- the obstacles 9 are in the shape of a prism (eg prism with a triangular, square, rectangular, hexagonal, circular or elliptical base), or a pyramid (eg pyramid with a triangular, square, rectangular, hexagonal base, circular or elliptical), or frustoconical, the obstacles 9 being positioned discontinuously, for example forming separate elements on the wall of the mixing chamber 2.
- the device according to the invention comprises at least one row of obstacles 9, relative to the central/vertical axis Z, arranged at a predetermined height of the wall internal mixing chamber 2 and/or the downflow reactor 3.
- the obstacles 9 of the row of obstacles 9, thus arranged in a “rosary”, are positioned substantially equidistant from each other. others.
- a row of obstacles 9 comprises (all) the obstacles 9 of a (horizontal) plane perpendicular to the central/vertical axis Z.
- the obstacles 9 comprise a lower part (lower end surface) wider than the upper part (upper end surface).
- the obstacles 9 are arranged to distribute the catalyst particles towards charge injection zones of the mixing chamber 2, zones more concentrated in hydrocarbons. According to one or more embodiments, the obstacles 9 comprise an upper surface oblique and descending laterally, i.e., along the wall of the mixing chamber 2.
- the obstacles 9 are arranged to distribute the catalyst particles substantially inwards (e.g. towards the central/vertical axis Z), an area more concentrated in hydrocarbons.
- the obstacles 9 comprise an upper surface which is oblique and descends from the outside towards the inside.
- obstacles 9 are arranged in the mixing chamber 2 upstream of the at least one first injector 5 of hydrocarbon feedstock 6 and/or the at least one second injector 7 of diluent 8.
- the obstacles 9 make it possible to direct the catalyst particles towards the injectors and increase the contact, in particular with the hydrocarbon feed 6.
- the radial position of the obstacles 9 in the mixing chamber 2 is in a separation space between the adjacent radial positions of two (e.g. first) injectors.
- At least part of the mixing chamber comprises a central bulky part 12 ("plug" according to Anglo-Saxon terminology) arranged substantially along the central axis /vertical Z and defining an annular zone 13 of the mixing chamber 2, through which the catalyst particles pour and/or flow into the mixing chamber 2.
- plug according to Anglo-Saxon terminology
- the central bulk part 12 covers the axial position of the first injectors 5. According to one or more embodiments, the central bulk part 12 covers the axial position of the first injectors 5 and second injectors 7.
- the central bulk part 12 makes it possible to improve the initial contact between the catalyst particles of the descending flow 4 and the hydrocarbon feedstock 6, and to improve the dispersion of the catalyst/charge mixture.
- the central bulk part 12 has a constant section geometry, such as cylindrical, square, rectangular or hexagonal, or a variable section, such as a truncated pyramid or cone, or a combination of the different geometric shapes.
- the central bulk part 12 has a cylindrical, square, rectangular or hexagonal section, preferably cylindrical, with respect to the central/vertical axis Z, and preferably axisymmetric with respect to the mixing chamber 2.
- the central bulk part 12 is of circular cylindrical shape.
- the central bulk part 12 is cylindrical in shape and optionally of variable diameter.
- the central bulk part 12 is at least partially frustoconical in shape.
- the central bulk part 12 comprises a first cylindrical section, a frustoconical section and a second cylindrical section.
- the central bulk part 12 is adapted to reduce the passage section of the mixing chamber 2 from 1% to 50% and preferably from 3% to 15% (e.g. between 6% and 12%), preferably in an axial position covering the axial position of the first injectors 5.
- the central bulk part 12 comprises a lower part of section S3 and an upper part 14 of section S4, S3 being greater than S4.
- the central bulk part 12 comprises, from top to bottom, a first cylindrical section, for example section S4, a frustoconical section, for example section S4 to S3, and a second cylindrical section, for example section S3, S3 being greater than S4.
- the central bulk part 12 extends from the pipe 1 to the mixing chamber 2.
- the central bulk part 12 extends from the pipe 1, crossing the mixing chamber mixture 2 and ends in the downflow reactor 3.
- the part of the central bulky part 12 which is located in the mixing chamber 2 has a height H1 of between 10% and 100% of the height H2 of the mixing chamber 2.
- the lower end 15 of the central bulk piece 12 is below the axial position of the lowest injectors (5, 7) and/or the upper end 16 of the central bulk piece 12 is above the axial position of the highest injectors (5, 7).
- the lower end 15 of the central bulk part 12 is in an axial position arranged below the axial position of the lowest injectors (5, 7), the lower end 15 being able to be extended to the lower end of the mixing chamber 2 or in the downward flow reactor 3.
- the upper end 16 of the central bulk part 12 is in an axial position arranged in above the axial position of the highest injectors (5, 7), the upper end 16 being able to be extended to the upper end of the mixing chamber 2 or in line 1.
- the applicant has identified that the use of a central bulky part 12 of specific shape, through the addition of one or more internals 11, makes it possible to redirect the catalyst away from the walls of the bulky part central 12 and subsequently promotes contact between the two phases.
- the at least one internal (11) is arranged on the central bulk part (12), and preferably around the central bulk part (12), and is arranged at a height (along the central/vertical axis Z) below the at least one first injector (5).
- the at least one internal 11 is adapted to homogenize the concentration of catalyst particles in the annular zone 13 of the mixing chamber 2.
- the internal(s) 11 make it possible to distribute towards the internal wall of the mixing chamber. 2 catalyst particles which can accumulate close to the wall of the central bulky part 12.
- the internals 11 make it possible to distribute the catalyst particles substantially outwards (e.g. opposite the axis central/vertical Z), zone more concentrated in hydrocarbons.
- the internal 11 is of annular shape and is positioned continuously (eg in the shape of a collar) around the central bulk piece 12, ie, axisymmetrically relative to the central bulk piece 12.
- the continuously positioned internal 11 has a section (in a vertical section along the central/vertical axis Z) in the shape of a triangle, square, rectangle, diamond, parallelogram, trapezoid, polygon, semicircle, sector, circular segment, elliptical segment, or parabolic segment, among others.
- the section of the continuous internal 11 is in the shape of a triangle, comprising for example a substantially horizontal lower side (right triangle), as shown in Figure 4.
- the internals 11 positioned discontinuously on the central bulk part are in the shape of a cube, tetrahedron, parallelepiped, prism (e.g. prism with triangular, square, rectangular, hexagonal, circular base or elliptical), or pyramid (e.g. pyramid with a triangular, square, rectangular, hexagonal, circular or elliptical base), or frustoconical, and, by forming separate elements around the central bulk piece 12.
- prism e.g. prism with triangular, square, rectangular, hexagonal, circular base or elliptical
- pyramid e.g. pyramid with a triangular, square, rectangular, hexagonal, circular or elliptical base
- frustoconical frustoconical
- the internals 11 positioned discontinuously on the central bulk piece have a section (according to a vertical section along the central/vertical axis Z) in the shape of a triangle, square, rectangle, diamond, parallelogram, trapezoid , polygon, semicircle, sector, circular segment, elliptical segment, or parabolic segment, among others.
- the section of the discontinuous internals 11 is in the shape of a triangle, comprising for example a substantially horizontal lower side (right triangle).
- the continuously positioned internal 11 has a section (in a horizontal section perpendicular to the central/vertical axis Z) in the form of a ring around the part central space requirement 12.
- the internals 11 positioned discontinuously have a section (in a horizontal section perpendicular to the central/vertical axis Z) in the shape of a cylindrical ring portion (e.g. in the shape of a collar portion) around the central bulk piece 12.
- the internal(s) 11 are arranged to avoid the accumulation of catalyst particles on the internals 11.
- the internals 11 comprise a lower part (lower end surface ) wider than the top (upper end surface).
- the internal(s) 11 comprise an upper surface which is oblique and descends laterally (towards the outside), ie, along the wall of the room central space requirement 12.
- the oblique upper surface of the internal(s) 11 is straight, convex and/or concave.
- the oblique upper surface of the internal(s) 11 forms an angle p of between 10° and 80°, preferably between 30° and 70°, such as substantially 60° relative to the horizontal, such as as shown in Figure 4.
- the at least one internal 11 is arranged on the central bulk part 12 downstream of the at least one first injector 5 of hydrocarbon feed 6 and optionally of the at least one second injector 7 of diluent 8.
- the internal(s) 11 make it possible to direct the catalyst particles towards the wall of the mixing chamber 2, under the injectors to increase contact with the hydrocarbon feedstock 6.
- the radial position of the internals 11 on the central bulk part 12 is in a separation space between the adjacent radial positions of two (e.g. first) injectors.
- the internal(s) 11 are arranged on the central bulk part 12 under the first injectors 5 of hydrocarbon feed 6, and optionally second injectors 7, at an axial distance L (high end of the or internal) of said injectors between 0*H1 and H1, and preferably between 0.1*1-11 and 0.9*H1.
- the continuous internals 11 of annular shape or the rows of discontinuous internals 11 have a height H3 of between 0.02*1-11 and 0.5*1-11, preferably between 0.05 *1-11 and 0.3*1-11, most preferably between 0.1*1-11 and 0.2*1-11.
- the device according to the invention comprises at least one row of internals 11, relative to the central/vertical axis Z, arranged at a predetermined height on the part central space requirement 12.
- the internals of the row of internals 11, thus arranged in a “rosary”, are positioned substantially equidistant from each other.
- a row of internals 11 comprises (all) the internals 11 of a (horizontal) plane perpendicular to the central/vertical axis Z.
- the perimeter of the internal wall of the central bulky part 12, occupied by the row of internals 11, is between 10% and 100% and preferably between 30% and 100%, such as from 60% to 100%.
- the continuous internal 11 of annular shape or the row of discontinuous internal 11 is adapted to reduce the passage section of the annular zone 13 from 1% to 50% and preferably from 5% to 35%, such as from 10% to 20%, relative to the passage section of the annular zone 13 devoid of internal 11.
- a row of internals 11 comprises at least 1 internal 11, for example between 2 and 16 internal 11, preferably between 3 and 8 internal 11.
- the central bulk part 12 comprises between 1 and 12 internal 11 of annular shape, such as 1 internal 11 of annular shape.
- the central bulk part 12 comprises between 1 and 6 rows of internals 11, such as 2 rows of internals 11 preferably arranged below the (e.g. first) injectors.
- the radial position of the internals 11 of a row of internals 11 is in a separation space between the radial position of two adjacent internals 11 of an adjacent row of internals 11, i.e., each row of internals 11 presents a rotation (along the central/vertical axis Z) relative to an adjacent row of internals 11.
- the radial position of the internals 11 of a row of internals 11 presents a rotation of an angle between 10° and 35°, preferably between 15° and 30°, relative to the radial position of the internals 11 of an adjacent row of internals 11, and preferably at an angle of 1807N, with N the number of internals in a row of internals 11.
- the rows internal 11 are arranged in relation to each other to together cover the entire perimeter of the central bulky part 12, in a view along the central/vertical axis Z.
- the internals 11 of annular shape or the rows of discontinuous internals 11 are positioned on axial positions with a distance (the pitch) P from each other between 0 and 75%, and preferably between 1 and 10%, of the height H2 of the mixing chamber 2.
- the distance (the pitch) P separating the axial position of two adjacent internals 11 or the rows of adjacent internals 11 is between 0*H2 and 0.75*H2, preferably between 0.01*H2 and 0.25*H2, very preferably between 0.01*H2 and 0.1*H2.
- the catalyst is a solid catalyst (e.g. particles of density, size and grain shape chosen for use in a fluidized bed).
- the densities, sizes and shapes of the catalysts for fluidized beds are known to those skilled in the art, and will not be described further.
- the catalyst may be any type of catalytic cracking catalyst.
- the catalyst is an FCC type catalyst, containing for example what is commonly called a matrix made of clay, silica or silica alumina, optionally binder, and/or zeolite, for example example from 15% to 70% weight of zeolite relative to the weight of the catalyst, preferably a Y zeolite and/or a ZSM-5 zeolite.
- the catalyst comprises a ZSM-5 zeolite.
- the grain density of the catalyst is between 1000 kg/m 3 and 2000 kg/m 3 .
- the grain density of the catalyst is between 1250 kg/m 3 and 1750 kg/m 3 .
- the catalyst comprises at least one binder (e.g. from 30% to 85% by weight) chosen from alumina, silica, silica-alumina, magnesia, titanium oxide, zirconia , clays and boron oxide, alone or in a mixture and preferably among silica, silica-alumina and clays, alone or in a mixture.
- binder e.g. from 30% to 85% by weight
- the catalyst comprises at least one doping element (e.g. from 0 to 10% by weight) chosen from phosphorus, magnesium, sodium, potassium, calcium, iron, boron, manganese , lanthanum, cerium, titanium, tungsten, molybdenum, copper, zirconium and gallium, alone or in mixture.
- doping element e.g. from 0 to 10% by weight
- the catalyst comprises and/or consists of zeolite, such as ZSM-5, optionally doped.
- the hydrocarbon feedstock 6 is a heavy feedstock, characterized by a starting boiling temperature close to 340°C, often greater than 380°C, such as a heavy cut, for example from 'a vacuum distillation unit, such as vacuum gas oil/distillate ("vacuum gas oil” or “VGO” according to Anglo-Saxon terminology) or a vacuum residue, an atmospheric residue, a vacuum gas oil from a conversion unit, such as a coking gas oil (“Heavy Coker Gas Oil” or “HCGO” according to Anglo-Saxon terminology) or a heavy cut from a hydroconversion unit in a bubbling bed or entrained bed (such as the H-Oil, LC-Fining, EST, VCC or Uniflex processes), a recycle of a hydrocracking step, alone or in a mixture.
- a vacuum distillation unit such as vacuum gas oil/distillate ("vacuum gas oil” or “VGO” according to Anglo-Saxon terminology) or a vacuum residue, an atmospheric residue, a vacuum gas oil
- the hydrocarbon feedstock 6 is a light feedstock, characterized by an end-of-boiling temperature lower than 450°C, often lower than 400°C, such as a gasoline cut or a diesel cut, for example from an atmospheric distillation unit, or from a conversion unit, such as a gasoline or a gas oil from a hydrocracking unit, or a gasoline or a gas oil from a coking unit or a gasoline or diesel from a bubbling bed or entrained bed hydroconversion unit (such as the H-Oil, LC-Fining, EST, VCC or Uniflex processes), or gasoline or diesel from a FCC, or a recycle of the FCC unit in question, alone or in mixture.
- a gasoline cut or a diesel cut for example from an atmospheric distillation unit, or from a conversion unit, such as a gasoline or a gas oil from a hydrocracking unit, or a gasoline or a gas oil from a coking unit or a gasoline or diesel from a bubbling bed or entrained bed hydrocon
- the pulverized hydrocarbon feed 6 vaporizes and endothermic cracking reactions occur along the descending flow reactor 3, thus reducing the temperature and producing: recoverable products (eg C1 gas -C4 comprising olefins; a gasoline cut comprising aromatics); optionally a light diesel cut (“Light Cycle Oil” or LCO according to Anglo-Saxon terminology); optionally a heavy diesel cut (“Heavy Cycle Oil” or HCO according to Anglo-Saxon terminology); optionally an oil in the form of a slurry (“slurry” according to Anglo-Saxon terminology); and optionally a solid residue (coke) adsorbed on the catalyst.
- recoverable products eg C1 gas -C4 comprising olefins; a gasoline cut comprising aromatics
- a light diesel cut (“Light Cycle Oil” or LCO according to Anglo-Saxon terminology)
- a heavy diesel cut (“Heavy Cycle Oil” or HCO according to Anglo-Saxon terminology”
- an oil in the form of a slurry (“slurry
- the process according to the present invention comprises a catalytic cracking step for the production of light olefins (and in particular ethylene and propylene), aromatics (and in particular benzene, toluene and xylenes), and gasoline (and optionally of LCO, HCO and slurry), by catalytic cracking of the hydrocarbon feed 6 (fed by the first injector 5) by contact with the descending flow 4 of hot catalyst particles (fed by line 1), and optionally the diluent 8 (supplied by the second injector 7) in the mixing chamber 2 then in the downflow reactor 3.
- catalytic cracking step for the production of light olefins (and in particular ethylene and propylene), aromatics (and in particular benzene, toluene and xylenes), and gasoline (and optionally of LCO, HCO and slurry), by catalytic cracking of the hydrocarbon feed 6 (fed by the first injector 5) by contact with the descending flow 4 of hot catalyst particles (fed
- the downward flow 4 of the catalyst particles in line 1 upstream of the mixing chamber 2 is in a dense fluidized regime and preferably with a mass flow greater than 200 kg/m 2 s, for for example preferably allowing a regime with descending bubbles.
- the term “dense fluidized bed” means a gas-solid fluidized bed operating in a homogeneous regime, in a bubbling regime or in a turbulent regime.
- the term “homogeneous fluidized bed” means a gas-solid fluidized bed whose gas speed is between the minimum fluidization speed and the minimum bubbling speed. These speeds depend on the properties of the solid catalyst (density, size, shape of the grains, etc.). The solid volume fraction is between a value close to 0.45 and the maximum solid volume fraction corresponding to a fixed, non-fluidized bed, generally close to 0.6.
- the term “bubbling fluidized bed” means a gas-solid fluidized bed whose gas speed is between the minimum bubbling speed and the transition speed to the turbulent regime. These speeds depend on the properties of the solid catalyst (density, size, shape of the grains, etc.). The volume fraction of solid is between a value close to 0.35 and a value close to 0.45.
- turbulent fluidized bed means a gas-solid fluidized bed whose gas speed is between the transition speed to the turbulent regime and the transport speed.
- the volume fraction of solid is between a value close to 0.25 and a value close to 0.35.
- the term “transported fluidized bed” means a gas-solid fluidized bed whose gas velocity is greater than the transport velocity.
- the volume fraction of solid is less than a value close to 0.25.
- transport speed corresponds to the speed with which essentially all the solid is carried by the gas.
- the injectors 5 are adapted to atomize the hydrocarbon feed 6 (liquid) and penetrate the catalyst flow.
- the operating conditions of the pipe 1 and/or the downflow reactor 3 are chosen from the following conditions: temperature (reactor outlet) between 520°C and 750°C and preferably below 650°C; absolute total pressure between 0.1 MPa and 0.5 MPa; mass ratio of catalyst 4 to hydrocarbon feedstock 6 C/O between 5 (kg/h)/(kg/h) and 35 (kg/h)/(kg/h) and preferably between 15 (kg/h) /(kg/h) and 30 (kg/h)/(kg/h); contact time t c between the hydrocarbon feed 6 and the catalyst less than 10 seconds, preferably between 0.5 seconds and 4 seconds; mass flow of catalyst particles of between 50 and 850 kg/(m 2 s), preferably between 400 and 750 kg/(m 2 s); and gas surface velocity of between 2 m/s and 26 m/s, preferably between 6 m/s and 16 m/s.
- the contact time t c is defined as the product of the solid volume fraction £ s by the bed height H s (eg reactor height L), divided by the superficial gas velocity vsg, this integrating all along the height of the bed, as defined below in the mathematical formula Math 1.
- a quantity of diluent 8 (e.g. nitrogen and/or water vapor) is added to the charge to reduce the partial pressure of hydrocarbons of the charge and the diluent is introduced at a rate of one quantity representing 0% or 0.1% to 40% by weight, preferably 1% to 35% by weight and preferably between 1% and 30% by weight relative to the mass of the hydrocarbon filler 6.
- diluent 8 e.g. nitrogen and/or water vapor
- the gaseous products and the catalyst, and optionally the unconverted vaporized feed are separated in the gas/solid separator (not shown) containing a dense fluidized bed where cracking reactions can continue.
- the operating conditions of the separator are chosen from the following conditions: temperature (reactor outlet) between 500°C and 750°C, preferably between 550°C and 700°C, so even more preferred between 580°C and 685°C; absolute total pressure between 0.1 MPa and 0.5 MPa and preferably between 0.1 MPa and 0.4 MPa and preferably between 0.1 MPa and 0.3 MPa; mass ratio of the catalyst to the feed (unconverted vaporized feed and gaseous products) C/O between 5 (kg/h)/(kg/h) and 40 (kg/h)/(kg/h); contact time t c between the charge and the catalyst between 500 milliseconds (ms) and 10 seconds; and partial pressure of the hydrocarbons of the charge (PPHcharge) between 0.01 MPa and 0.3 MPa, preferably between 0.02 MPa and 0.2 MPa and preferably between 0.05 MPa and 0.15 MPa.
- temperature reactor outlet
- absolute total pressure between 0.1 MPa and 0.5 MPa and preferably between 0.1 MP
- the coked catalyst is sent to an optional stripper (not shown) to strip the hydrocarbons remaining adsorbed on the surface of the catalyst by means of a second diluent.
- the operating conditions of the stripper are chosen from the following conditions: residence time of the catalyst in the stripper: between 10 seconds and 180 seconds, preferably between 30 seconds and 120 seconds; superficial gas velocity between the minimum fluidization speed and the transition speed to the turbulent regime, for example between 0.01 m/s and 0.5 m/s, preferably between 0.15 m/s and 0.4 m/ s ; solid flow between 25 kg/m 2 s and 200 kg/m 2 s, preferably between 50 kg/m 2 s and 150 kg/m 2 s and preferably between 50 kg/m 2 s and 100 kg/m 2 s ; temperature between 500°C and 750°C, preferably between 550°C and 650°C; absolute total pressure between 0.1 MPa and 0.5 MPa and preferably between 0.1 MPa and 0.4 MPa and preferably between 0.1 MPa and 0.3 MPa; solid volume fraction between 0.25 and 0.6, preferably between 0.4 and 0.6.
- the coked solid is transported into a regenerator (not shown) in which an air supply burns the coke from the catalyst to produce a hot regenerated catalyst and combustion gases , the hot regenerated catalyst being able to supply the descending flow 4 with hot catalyst particles.
- the operating conditions of the regenerator are chosen from the following conditions: superficial gas speed between 0.1 m/s and 2 m/s, preferably 0.2 m/s and 1.5 m/s s ; residence time of the catalyst between 30 seconds and 20 minutes, preferably between 1 minute and 10 minutes. temperature between 500°C and 840°C, preferably between 650°C and 750°C.
- the device according to the invention A and the reference device B comprise: a pipe 1, composed of a cylindrical section, a narrowing cone and a cylindrical section; a frustoconical mixing chamber 2 (S3/S4 being less than 1) comprising a bulky part 12 defining an annular zone 13; a cylindrical downflow reactor 3 having a length of 4.07 m and an internal diameter of 0.42 m, and comprising two rows of 8 obstacles in the shape of triangular prisms; four first injectors 5 of hydrocarbon feed 6 positioned countercurrent to the downward flow 3 of catalyst particles with an angle of 30° upwards relative to horizontal, the projection of the first injectors 5 on a horizontal plane being perpendicular to the tangent from mixing chamber 2; four second injectors 7 of diluent 8 (water vapor) positioned against the current of the downward flow 3 of catalyst particles with an angle of 30° upwards relative to the horizontal, the projection of the second injectors 7 on a horizontal plane forming an angle of 45° with the tangent of the mixing
- the device according to the invention has an internal 11 of annular shape positioned continuously (e.g. in the form of a flange of triangular section with a horizontal base) around the central bulky part 12.
- the reference device B does not have any internals positioned on the bulky part 12.
- the configurations of the device according to the invention A and of the reference device B were simulated in CFD with the Barracuda ⁇ tool under the following operating conditions: the catalyst flow of 729 kg/m 2 s; the catalyst has a diameter dso of 73 pm and a grain density of 1418 kg/m 3 (ie, group A of the Geldart classification); the air flow rate of 1.85 kg/s has a ratio between the first injectors 5 to the second injectors 7 of 70/30; the first injectors 5 are positioned 0.3 m above the upper end of the downflow reactor 3; the angle of rotation between the first injectors 5 and the second injectors 7 is 45°; the gas speed leaving the injectors is 90 m/s for the first injectors 5 and 76 m/s for the second injectors 7; the flow is under ambient conditions without reaction; a bulky part 12 is positioned in the center of the mixing chamber 2.
- Figure 5 presents the Mass Fraction of Particles, denoted FMP, for the two configurations A and B of the device according to the invention A and of the reference device B, respectively.
- FMP Mass Fraction of Particles
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
The invention relates to a device and a process for gas-solid co-current downflow fluidised-bed catalytic cracking comprising/using: a pipeline (1) suitable for carrying a downflow (4) of catalyst particles; a mixing chamber (2) connected to and fed by the pipeline with catalyst particles and comprising an inner wall, at least one first injector (5) of hydrocarbon feed (6) and a central bulk part (12) defining an annular zone (13) through which the catalyst particles pass through the mixing chamber; and a gas-solid co-current downflow fluidised bed reactor (3) fed by the mixing chamber with a mixture comprising catalyst particles and hydrocarbon feed, wherein the central bulk part comprises at least one internal element (11) arranged under the at least one first injector and being suitable for distributing the mixture towards the wall of the mixing chamber.
Description
Chambre de mélange pour réacteur à lit fluidisé à co-courant gaz-solide descendant. Mixing chamber for fluidized bed reactor with downward gas-solid co-current.
Domaine technique Technical area
L'invention concerne le domaine du raffinage et de la pétrochimie et des procédés et unités de transformation chimique de produits pétroliers, notamment de coupes hydrocarbonées, par Craquage Catalytique en lit Fluidisé (« Fluid Catalytic Cracking » ou FCC selon la terminologie anglo-saxonne) pour la production d’oléfines légères (i.e. , oléfines comprenant entre 2 et 4 atomes de carbone), et plus particulièrement d’éthylène et de propylène, et aussi d’aromatiques (e.g. BTX), et plus particulièrement de paraxylène. The invention relates to the field of refining and petrochemicals and to processes and units for the chemical transformation of petroleum products, in particular hydrocarbon cuts, by Fluidized Bed Catalytic Cracking (“Fluid Catalytic Cracking” or FCC according to Anglo-Saxon terminology) for the production of light olefins (i.e., olefins comprising between 2 and 4 carbon atoms), and more particularly ethylene and propylene, and also aromatics (e.g. BTX), and more particularly paraxylene.
Technique antérieure Prior art
L’invention s’inscrit dans l’amélioration du design de la zone à flux établi des réacteurs à lit fluidisé à co-courant gaz-solide descendant (« downer » ou « down flow reactor » selon la terminologie anglo-saxonne), nommés ci-après réacteurs à flux descendant, utilisés par exemple pour le craquage catalytique à haute sévérité (HS-FCC). The invention is part of the improvement of the design of the established flow zone of fluidized bed reactors with descending gas-solid co-current ("downer" or "down flow reactor" according to the Anglo-Saxon terminology), called hereinafter downflow reactors, used for example for high severity catalytic cracking (HS-FCC).
Éthylène, Propylène, Butène, Butadiène et les aromatiques tels que le Benzène, Toluène et Xylène (BTX) représentent les produits de base pour l’industrie pétrochimique. Ces produits sont généralement obtenus par le reformage catalytique et/ou le craquage thermique (vapocraquage ou « steam cracking » en anglais) d’hydrocarbures tels que naphta, kérosène ou gazole. Ces composés sont également obtenus par un craquage catalytique en lit fluidisé (FCC) d’hydrocarbures, tels qu’un Distillât Sous Vide (DSV, ou « vacuum gas oil » ou VGO selon la terminologie anglo-saxonne) et/ou un résidu (sous vide ou atmosphérique) de distillation d’hydrocarbures et/ou de naphta, de gazoles, bruts complets. Ethylene, Propylene, Butene, Butadiene and aromatics such as Benzene, Toluene and Xylene (BTX) represent the basic products for the petrochemical industry. These products are generally obtained by catalytic reforming and/or thermal cracking (steam cracking) of hydrocarbons such as naphtha, kerosene or gas oil. These compounds are also obtained by fluidized bed catalytic cracking (FCC) of hydrocarbons, such as a Vacuum Distillate (DSV, or “vacuum gas oil” or VGO according to Anglo-Saxon terminology) and/or a residue ( under vacuum or atmospheric) distillation of hydrocarbons and/or naphtha, gas oils, complete crudes.
Le procédé de craquage catalytique à haute sévérité (HS-FCC) vise à augmenter les rendements en propylène et éthylène à travers des conditions de réaction à haute température, temps de contact très courts (e.g. ~1 s), des rapports élevés entre le débit massique C de catalyseur et le débit massique O de charge (C/O). The high severity catalytic cracking (HS-FCC) process aims to increase yields of propylene and ethylene through high temperature reaction conditions, very short contact times (e.g. ~1 s), high flow rate ratios mass C of catalyst and mass flow rate O of charge (C/O).
Les inconvénients associés avec un réacteur FCC classique à lit fluidisé à co-courant gaz- solide ascendant (« riser » selon la terminologie anglo-saxonne) tels que le rétro-mélange (« back-mixing » selon la terminologie anglo-saxonne) et l’accumulation de catalyseur au voisinage de la paroi avec pour conséquence un surcraquage des hydrocarbures et la formation excessive de coke, d’hydrogène, de méthane et d’éthane ne permettent pas de favoriser la production des oléfines dans des conditions à haute sévérité. The disadvantages associated with a conventional fluidized bed FCC reactor with ascending gas-solid co-current (“riser” according to Anglo-Saxon terminology) such as back-mixing (“back-mixing” according to Anglo-Saxon terminology) and the accumulation of catalyst in the vicinity of the wall with the consequence of overcracking of the hydrocarbons and the excessive formation of coke, hydrogen, methane and ethane do not make it possible to promote the production of olefins under high severity conditions.
Afin de surmonter ces inconvénients, le procédé HS-FCC utilise un réacteur à flux descendant, où le catalyseur et la charge sont mises en mouvement sous l’effet de la gravité avec un
écoulement qui approche celui d’un écoulement de type piston. L’écoulement gaz-solide descendant dans un réacteur évite le rétro-mélange et le surcraquage des produits tandis que l’utilisation de ratios élevés de C/O assure la prédominance des réactions catalytiques. La température élevée favorise la formation des intermédiaires de réactions tels que les oléfines légères alors qu’un temps de contact contrôlé et court évite les réactions secondaires qui sont responsable de la consommation de tels intermédiaires. In order to overcome these drawbacks, the HS-FCC process uses a downflow reactor, where the catalyst and feed are set in motion under gravity with a flow which approaches that of a piston type flow. The downward gas-solid flow in a reactor avoids back-mixing and overcracking of products while the use of high C/O ratios ensures the predominance of catalytic reactions. The high temperature favors the formation of reaction intermediates such as light olefins while a controlled and short contact time avoids secondary reactions which are responsible for the consumption of such intermediates.
En revanche, l’écoulement gaz-solide descendant présente plusieurs défis technologiques majeurs, dont un défi important correspond à l’écoulement dans la chambre de mélange. En effet, le mélange initial entre catalyseur et charge conditionne la vaporisation des hydrocarbures et le contact gaz-solide tout au long du réacteur à flux descendant. Le mélange initial est généralement effectué en une fraction de seconde avec, pour un HS-FCC typique, un débit de l’ordre de 400 à 700 t/h de charge et 7000 à 21000 t/h de catalyseur ce qui nécessite une technologie efficace pour avoir une chambre de mélange qui se rapproche d’une zone parfaitement agitée. In contrast, downward gas-solid flow presents several major technological challenges, of which a significant challenge corresponds to the flow in the mixing chamber. Indeed, the initial mixture between catalyst and feed conditions the vaporization of the hydrocarbons and the gas-solid contact throughout the downflow reactor. The initial mixing is generally carried out in a fraction of a second with, for a typical HS-FCC, a flow rate of around 400 to 700 t/h of feed and 7000 to 21000 t/h of catalyst which requires efficient technology to have a mixing chamber that approximates a perfectly agitated zone.
Le brevet FR 2 753 453 B1 décrit un réacteur de craquage à flux descendant comprenant une zone de mise en contact entre les hydrocarbures et le catalyseur, et étant constituée : d'une chambre de mélange de section maximale S2, mise en communication avec des moyens d'alimentation en catalyseur régénéré par un orifice supérieur définissant une section de passage du catalyseur S1 ; et d'une zone réactionnelle de section maximale S4, mise en communication avec la chambre de mélange par un orifice intermédiaire de section S3, réacteur dans lequel les rapports S2/S1 et S2/S3 sont compris entre 1 ,5 et 8. Le brevet FR 2 753 453 B1 décrit également une pièce d'encombrement disposée à l'extrémité inférieure du conduit de catalyseur alimentant la chambre de mélange, la pièce d'encombrement définissant un orifice annulaire supérieur de la chambre de mélange. Patent FR 2 753 453 B1 describes a downward flow cracking reactor comprising a contact zone between the hydrocarbons and the catalyst, and consisting of: a mixing chamber of maximum section S2, placed in communication with means supply of regenerated catalyst through an upper orifice defining a catalyst passage section S1; and a reaction zone of maximum section S4, placed in communication with the mixing chamber by an intermediate orifice of section S3, reactor in which the ratios S2/S1 and S2/S3 are between 1.5 and 8. The patent FR 2 753 453 B1 also describes a bulk part arranged at the lower end of the catalyst conduit supplying the mixing chamber, the bulk part defining an upper annular orifice of the mixing chamber.
La demande brevet US 2022/0016589 A1 décrit un réacteur à flux descendant dont la zone d’alimentation comprend une pièce d’encombrement allongée sur laquelle sont positionnées des aubes hélicoïdales. Patent application US 2022/0016589 A1 describes a downflow reactor whose feed zone comprises an elongated bulk part on which helical blades are positioned.
Les brevets US 10,889,768 B2 et US 10,767,117 B2 décrivent des systèmes et des procédés de production de produits pétrochimiques (e.g. éthylène et autres oléfines), à partir charges hydrocarbonées (e.g. pétrole brut), dans des unités de craquage catalytique fluide à haute sévérité (HS-FCC). Patents US 10,889,768 B2 and US 10,767,117 B2 describe systems and processes for producing petrochemical products (e.g. ethylene and other olefins), from hydrocarbon feedstocks (e.g. crude oil), in high severity fluid catalytic cracking (HS) units. -FCC).
Résumé de l’invention Summary of the invention
Dans le contexte précédemment décrit, un premier objet de la présente invention est de surmonter les problèmes de l’art antérieur et de fournir un dispositif pour le craquage catalytique en lit fluidisé à co-courant gaz-solide descendant à écoulement de catalyseur
homogène, i.e., dans lequel la concentration de solide dans la section transversale du réacteur est sensiblement uniforme. En effet, le dispositif selon l’invention permet d’obtenir une dispersion de catalyseur améliorée entre la zone centrale et la zone annulaire (i.e., dans la proximité de la paroi) du réacteur à co-courant gaz-solide descendant. In the context previously described, a first object of the present invention is to overcome the problems of the prior art and to provide a device for catalytic cracking in a fluidized bed with downward gas-solid co-current and catalyst flow. homogeneous, ie, in which the concentration of solid in the cross section of the reactor is substantially uniform. Indeed, the device according to the invention makes it possible to obtain improved catalyst dispersion between the central zone and the annular zone (ie, in the proximity of the wall) of the descending gas-solid co-current reactor.
Selon un premier aspect, les objets précités, ainsi que d’autres avantages, sont obtenus par un dispositif pour le craquage catalytique en lit fluidisé à co-courant gaz-solide descendant comprenant, de haut en bas : une conduite adaptée pour transporter un flux descendant de particules de catalyseur ; une chambre de mélange connectée à la conduite et adaptée pour être alimentée par la conduite en flux descendant, la chambre de mélange comprenant une paroi interne, au moins un premier injecteur de charge hydrocarbonée et une pièce d’encombrement centrale définissant une zone annulaire par laquelle les particules de catalyseur traversent la chambre de mélange ; et un réacteur à lit fluidisé à co-courant gaz-solide descendant connecté à la chambre de mélange et adapté pour être alimenté par la chambre de mélange en un mélange comprenant des particules de catalyseur et de la charge hydrocarbonée, dispositif dans lequel la chambre de mélange comprend au moins un interne (e.g. obstacle, déflecteur) disposé sur et préférablement autour de la pièce d'encombrement centrale et disposé sous l’au moins un premier injecteur et étant adapté pour distribuer le mélange vers la paroi de la chambre de mélange. According to a first aspect, the aforementioned objects, as well as other advantages, are obtained by a device for catalytic cracking in a fluidized bed with a descending gas-solid co-current comprising, from top to bottom: a pipe adapted to transport a flow catalyst particle descendant; a mixing chamber connected to the pipe and adapted to be supplied by the pipe in a downward flow, the mixing chamber comprising an internal wall, at least one first hydrocarbon feed injector and a central bulk part defining an annular zone through which the catalyst particles pass through the mixing chamber; and a downward gas-solid co-current fluidized bed reactor connected to the mixing chamber and adapted to be supplied by the mixing chamber with a mixture comprising catalyst particles and hydrocarbon feed, device in which the mixing chamber mixture comprises at least one internal (e.g. obstacle, deflector) disposed on and preferably around the central bulky part and disposed under the at least one first injector and being adapted to distribute the mixture towards the wall of the mixing chamber.
Avantageusement, l’interne permet d’homogénéiser la concentration en particules de catalyseur. Advantageously, the internal allows the concentration of catalyst particles to be homogenized.
Selon un ou plusieurs modes de réalisation, l’au moins un interne est adapté pour réduire la section de passage de la zone annulaire de 1 % à 35%. According to one or more embodiments, the at least one internal is adapted to reduce the passage section of the annular zone from 1% to 35%.
Selon un ou plusieurs modes de réalisation, l’au moins un interne est adapté pour éviter l’accumulation de particules de catalyseur sur ledit interne. According to one or more embodiments, the at least one internal is adapted to prevent the accumulation of catalyst particles on said internal.
Selon un ou plusieurs modes de réalisation, l’au moins un interne est adapté comprend une surface supérieure oblique et descendante vers l’extérieur. According to one or more embodiments, the at least one internal is adapted comprises an upper surface oblique and descending towards the outside.
Selon un ou plusieurs modes de réalisation, la surface supérieure oblique de l’au moins un interne est droite, convexe et/ou concave. According to one or more embodiments, the oblique upper surface of the at least one internal is straight, convex and/or concave.
Selon un ou plusieurs modes de réalisation, la surface supérieure oblique de l’au moins un interne forme un angle p compris entre 10° et 80°, par rapport l’horizontale.
Selon un ou plusieurs modes de réalisation, l’au moins un interne est disposé sur la pièce d'encombrement centrale à une distance axiale des premiers injecteurs de charge hydrocarbonée comprise entre 0*H3 et 1*H3, H3 étant la hauteur de l’au moins un interne.According to one or more embodiments, the oblique upper surface of the at least one internal forms an angle p of between 10° and 80°, relative to the horizontal. According to one or more embodiments, the at least one internal is arranged on the central bulk part at an axial distance from the first hydrocarbon feed injectors of between 0*H3 and 1*H3, H3 being the height of the at least one intern.
Selon un ou plusieurs modes de réalisation, l’au moins un interne est une pluralité d’internes positionnés de façon discontinue sur la pièce d'encombrement centrale. According to one or more embodiments, the at least one internal is a plurality of internals positioned discontinuously on the central bulk part.
Selon un ou plusieurs modes de réalisation, les internes sont en forme de prisme, de cylindre, de pyramide, de cône, et/ou de tronc de cône. According to one or more embodiments, the internals are in the shape of a prism, cylinder, pyramid, cone, and/or truncated cone.
Selon un ou plusieurs modes de réalisation, le dispositif comprend au moins une rangée d’internes disposés à une hauteur prédéterminée sur la pièce d'encombrement centrale.According to one or more embodiments, the device comprises at least one row of internals arranged at a predetermined height on the central bulk part.
Selon un ou plusieurs modes de réalisation, le périmètre de la paroi de pièce d’encombrement centrale occupé par la rangée d’internes, est compris entre 10% et 100%. According to one or more embodiments, the perimeter of the central bulk room wall occupied by the row of internals is between 10% and 100%.
Selon un ou plusieurs modes de réalisation, la rangée d’internes comprend entre 1 et 16 internes. According to one or more embodiments, the row of internals comprises between 1 and 16 internals.
Selon un ou plusieurs modes de réalisation, l’au moins un interne est de forme annulaire, et est positionné de façon continue sur et autour de la pièce d'encombrement centrale. According to one or more embodiments, the at least one internal is of annular shape, and is positioned continuously on and around the central bulky part.
Selon un ou plusieurs modes de réalisation, le dispositif comprend entre 1 et 6 rangées d’internes discontinus et/ou entre 1 et 12 internes de forme annulaire disposés à une hauteur prédéterminée sur la pièce d'encombrement centrale. According to one or more embodiments, the device comprises between 1 and 6 rows of discontinuous internals and/or between 1 and 12 annular-shaped internals arranged at a predetermined height on the central bulk part.
Selon un deuxième aspect, les objets précités, ainsi que d’autres avantages, sont obtenus par un procédé pour le craquage catalytique en lit fluidisé à co-courant gaz-solide descendant comprenant les étapes suivantes : transporter un flux descendant de particules de catalyseur dans une conduite ; alimenter une chambre de mélange par la conduite avec le flux descendant, la chambre de mélange comprenant une paroi interne, au moins un premier injecteur de charge hydrocarbonée et une pièce d’encombrement centrale définissant une zone annulaire par laquelle les particules de catalyseur traversent la chambre de mélange ; alimenter un réacteur à lit fluidisé à co-courant gaz-solide descendant par la chambre de mélange en un mélange comprenant des particules de catalyseur et de la charge hydrocarbonée ; et craquer au moins partiellement la charge hydrocarbonée en présence des particules de catalyseur dans le réacteur à lit fluidisé à co-courant gaz-solide descendant, pour produire un effluent comprenant du catalyseur au moins partiellement coké et des produits gazeux de craquage,
dans lequel la chambre de mélange comprend au moins un interne disposé sous l’au moins un premier injecteur et étant adapté pour distribuer le mélange vers la paroi de chambre de mélange. According to a second aspect, the aforementioned objects, as well as other advantages, are obtained by a process for catalytic cracking in a fluidized bed with downward gas-solid co-current comprising the following steps: transporting a downward flow of catalyst particles in a conduct ; supplying a mixing chamber via the pipe with the downward flow, the mixing chamber comprising an internal wall, at least one first hydrocarbon feed injector and a central bulk part defining an annular zone through which the catalyst particles pass through the chamber mixture ; supplying a fluidized bed reactor with a gas-solid co-current descending through the mixing chamber with a mixture comprising catalyst particles and hydrocarbon feed; and at least partially crack the hydrocarbon feedstock in the presence of the catalyst particles in the downward gas-solid co-current fluidized bed reactor, to produce an effluent comprising at least partially coked catalyst and gaseous cracking products, in which the mixing chamber comprises at least one internal disposed under the at least one first injector and being adapted to distribute the mixture towards the mixing chamber wall.
D'autres caractéristiques et avantages de l'invention des aspects précités, apparaîtront à la lecture de la description ci-après et d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après. Other characteristics and advantages of the invention of the aforementioned aspects will appear on reading the description below and non-limiting examples of embodiments, with reference to the figures appended and described below.
Liste des figures List of Figures
La figure 1 représente un dispositif FCC selon un ou plusieurs modes de réalisation de la présente invention comprenant une pièce d’encombrement centrale munie d’internes pour l’homogénéisation de l’écoulement de catalyseur. Figure 1 represents an FCC device according to one or more embodiments of the present invention comprising a central bulky part provided with internals for the homogenization of the catalyst flow.
La figure 2 montre une vue de dessus d’un dispositif FCC selon un ou plusieurs modes de réalisation de la présente invention comprenant une chambre de mélange en forme de tronc de cône munie d’un interne disposé de façon continue autour de la pièce d'encombrement centrale. Figure 2 shows a top view of an FCC device according to one or more embodiments of the present invention comprising a mixing chamber in the shape of a truncated cone provided with an internal arranged continuously around the part of central clutter.
La figure 3 montre une vue de dessus d’un dispositif FCC selon un ou plusieurs modes de réalisation de la présente invention comprenant une chambre de mélange en forme de tronc de cône munie d’internes disposés de façon discontinue autour de la pièce d'encombrement centrale. Figure 3 shows a top view of an FCC device according to one or more embodiments of the present invention comprising a mixing chamber in the shape of a truncated cone provided with internals arranged discontinuously around the bulk part central.
La figure 4 montre une vue en 3D d’un dispositif FCC selon un ou plusieurs modes de réalisation de la présente invention comprenant un interne disposé de façon continue autour de la pièce d'encombrement centrale et une pluralité d’obstacles sur la paroi de la chambre de mélange. Figure 4 shows a 3D view of an FCC device according to one or more embodiments of the present invention comprising an internal arranged continuously around the central bulk part and a plurality of obstacles on the wall of the mixing chamber.
La figure 5 montre des vues en coupe de la fraction massique du catalyseur dans un dispositif FCC selon l’invention A comme représenté sur la figure 4, et dans un dispositif FCC de référence B. Figure 5 shows sectional views of the mass fraction of the catalyst in an FCC device according to the invention A as shown in Figure 4, and in a reference FCC device B.
Description détaillée de l'invention Detailed description of the invention
Des modes de réalisation selon les aspects précités vont maintenant être décrits en détail. Dans la description détaillée suivante, de nombreux détails spécifiques sont exposés afin de fournir une compréhension plus approfondie du dispositif et du procédé selon la présente invention. Cependant, il apparaîtra à l’homme du métier que le dispositif peut être mis en œuvre sans ces détails spécifiques. Dans d’autres cas, des caractéristiques bien connues n’ont pas été décrites en détail pour éviter de compliquer inutilement la description. Embodiments according to the aforementioned aspects will now be described in detail. In the following detailed description, numerous specific details are set forth in order to provide a more in-depth understanding of the device and method according to the present invention. However, it will appear to those skilled in the art that the device can be implemented without these specific details. In other cases, well-known features have not been described in detail to avoid unnecessarily complicating the description.
Dans la présente description, le terme « comprendre » est synonyme de (signifie la même chose que) « comporter », « inclure » et « contenir », et est inclusif ou ouvert et n’exclut pas
d’autres éléments non récités. Il est entendu que le terme « comprendre » inclut le terme exclusif et fermé « consister ». En outre, dans la présente description, les termes « essentiellement » ou « sensiblement » ou « environ » correspondent à une approximation de ± 10%, préférablement de ± 5%, très préférablement de ± 1%. In this description, the term "comprising" is synonymous with (means the same as) "include", "include" and "contain", and is inclusive or open and does not exclude other elements not recited. It is understood that the term “understand” includes the exclusive and closed term “consist”. Furthermore, in the present description, the terms "essentially" or "substantially" or "approximately" correspond to an approximation of ± 10%, preferably ± 5%, most preferably ± 1%.
L'invention porte sur un dispositif et un procédé de craquage catalytique en lit fluidisé pour la transformation chimique de produits pétroliers (FCC), utilisés par exemple pour le craquage catalytique à haute sévérité (HS-FCC). The invention relates to a device and a method for fluidized bed catalytic cracking for the chemical transformation of petroleum products (FCC), used for example for high severity catalytic cracking (HS-FCC).
Une unité FCC traite généralement une coupe lourde issue de l'unité de distillation sous vide comme un gazole sous vide ou un résidu sous vide, ou encore un résidu atmosphérique, seuls ou en mélange. Une unité FCC peut également traiter des coupes plus légères telles qu’une coupe essence ou une coupe gazole, seuls ou en mélange. Il est également possible de traiter un mélange de coupes légères et lourdes, ou encore un brut complet. Afin d’augmenter les rendements en propylène et éthylène en utilisant des conditions de réaction à haute sévérité (haute température, temps de contact très courts, rapports C/O élevés entre le débit C de catalyseur et le débit O de charge), les dispositifs et procédés de craquage catalytique utilisent généralement un réacteur à lit fluidisé à co-courant gaz-solide descendant (« downer » ou « down flow reactor » selon la terminologie anglo-saxonne), nommé ci-après réacteur à flux descendant. An FCC unit generally treats a heavy cut from the vacuum distillation unit such as a vacuum gas oil or a vacuum residue, or even an atmospheric residue, alone or in a mixture. An FCC unit can also process lighter cuts such as a gasoline cut or a diesel cut, alone or in a mixture. It is also possible to process a mixture of light and heavy cuts, or even a complete rough. In order to increase the yields of propylene and ethylene using high severity reaction conditions (high temperature, very short contact times, high C/O ratios between the catalyst flow rate C and the feed flow rate O), the devices and catalytic cracking processes generally use a fluidized bed reactor with descending gas-solid co-current ("downer" or "down flow reactor" according to Anglo-Saxon terminology), hereinafter called downflow reactor.
Il arrive cependant que l’écoulement gaz-solide descendant présente plusieurs défis technologiques, dont parvenir à obtenir un écoulement et un mélange homogène dans la section à flux établi du réacteur descendant. However, sometimes downward gas-solid flow presents several technological challenges, including achieving homogeneous flow and mixing in the steady flow section of the descending reactor.
Afin de surmonter ces inconvénients, des améliorations de la technologie des réacteurs à flux descendant décrits dans le brevet FR 2 753 453 B1 ont été identifiées, pour répondre au défi présenté ci-dessus à travers un agencement spécifique d’injecteurs de charge hydrocarbonée, et optionnellement d’injecteurs de diluant, pour améliorer le contact entre le catalyseur et les hydrocarbures dans la chambre de mélange. In order to overcome these drawbacks, improvements in the downflow reactor technology described in patent FR 2 753 453 B1 have been identified, to respond to the challenge presented above through a specific arrangement of hydrocarbon feed injectors, and optionally diluent injectors, to improve contact between the catalyst and the hydrocarbons in the mixing chamber.
Le dispositif selon l’invention The device according to the invention
En référence à la figure 1 , le dispositif pour le craquage catalytique en lit fluidisé à co-courant gaz-solide descendant comprenant, de haut en bas : une conduite 1 (sensiblement verticale) ; une chambre de mélange 2 ; et un réacteur à flux descendant 3 (sensiblement vertical). With reference to Figure 1, the device for catalytic cracking in a fluidized bed with a descending gas-solid co-current comprising, from top to bottom: a pipe 1 (substantially vertical); a mixing chamber 2; and a downflow reactor 3 (substantially vertical).
La conduite 1 est adaptée pour alimenter la chambre de mélange 2 avec du catalyseur solide (particules). La conduite 1 transporte principalement du solide, ainsi qu’un gaz de fluidisation
entraîné par le solide descendant. La conduite 1 présente un écoulement comme une colonne d’alimentation (« standpipe » selon la terminologie anglo-saxonne) bien connue de l’homme de métier. Line 1 is suitable for supplying mixing chamber 2 with solid catalyst (particles). Line 1 mainly transports solids, as well as a fluidization gas driven by the descending solid. Pipe 1 presents a flow like a supply column (“standpipe” according to Anglo-Saxon terminology) well known to those skilled in the art.
La chambre de mélange 2 est connectée à la conduite 1 , comprend une paroi latérale/verticale définissant un axe central/vertical Z, et est adaptée pour alimenter le réacteur à flux descendant 3 avec un mélange comprenant des particules de catalyseur, une charge hydrocarbonée et optionnellement un diluant. The mixing chamber 2 is connected to the pipe 1, comprises a side/vertical wall defining a central/vertical axis Z, and is adapted to supply the downflow reactor 3 with a mixture comprising catalyst particles, a hydrocarbon feed and optionally a thinner.
Le réacteur à flux descendant 3 est connecté à la chambre de mélange 2 et est adapté pour craquer au moins partiellement la charge hydrocarbonée en présence des particules de catalyseur pour produire un effluent comprenant du catalyseur au moins partiellement coké et des produits gazeux de craquage, et optionnellement de la charge vaporisée non convertie.The downflow reactor 3 is connected to the mixing chamber 2 and is adapted to at least partially crack the hydrocarbon feed in the presence of the catalyst particles to produce an effluent comprising at least partially coked catalyst and gaseous cracking products, and optionally unconverted vaporized charge.
Spécifiquement, en référence à la figure 1 , la conduite 1 alimente la chambre de mélange 2 d’un flux descendant 4 de particules de catalyseur (chaud), la chambre de mélange 2 comprenant un plusieurs premiers injecteurs 5 de charge hydrocarbonée 6. Selon un ou plusieurs modes de réalisation, le ou les premiers injecteurs 5 est adapté pour injecter du diluant (e.g. vapeur d’eau) avec la charge. Selon un ou plusieurs modes de réalisation, la chambre de mélange 2 comprend un ou plusieurs deuxièmes injecteurs 7 de diluant 8. Dans la chambre de mélange 2, le flux descendant 4 entre en contact avec la charge hydrocarbonée 6 atomisée à l’aide du ou des premiers injecteurs 5 et optionnellement avec du diluant 8, introduit par exemple par le ou les deuxièmes injecteurs 7. Specifically, with reference to Figure 1, the pipe 1 supplies the mixing chamber 2 with a descending flow 4 of (hot) catalyst particles, the mixing chamber 2 comprising a several first injectors 5 of hydrocarbon feed 6. According to a or several embodiments, the first injector(s) 5 is adapted to inject diluent (e.g. water vapor) with the load. According to one or more embodiments, the mixing chamber 2 comprises one or more second injectors 7 of diluent 8. In the mixing chamber 2, the descending flow 4 comes into contact with the hydrocarbon feed 6 atomized using the or first injectors 5 and optionally with diluent 8, introduced for example by the second injector(s) 7.
Avantageusement, l’injection de diluant 8 permet de réduire la pression partielle de la charge hydrocarbonée et de réduire les réactions secondaires. Avantageusement, l’injection de diluant 8 permet d’améliorer l’atomisation de la charge hydrocarbonée 6. Selon un ou plusieurs modes de réalisation, le diluant 8 est choisi parmi le groupe consistant en de la vapeur d’eau, de l’azote, du CO2, des hydrocarbures légers (e.g. composés en C1-C5), des fumées de combustion. Selon un ou plusieurs modes de réalisation, le diluant 8 comprend ou consiste en de la vapeur d’eau. Advantageously, the injection of diluent 8 makes it possible to reduce the partial pressure of the hydrocarbon feed and to reduce secondary reactions. Advantageously, the injection of diluent 8 makes it possible to improve the atomization of the hydrocarbon feedstock 6. According to one or more embodiments, the diluent 8 is chosen from the group consisting of water vapor, nitrogen , CO2, light hydrocarbons (e.g. C1-C5 compounds), combustion fumes. According to one or more embodiments, the diluent 8 comprises or consists of water vapor.
Selon un ou plusieurs modes de réalisation, la conduite 1 est de géométrie à section constante, comme cylindrique, carrée, rectangulaire ou hexagonale, ou à section variable, comme un tronc de pyramide ou de cône, ou une combinaison des différentes formes géométriques. Selon un ou plusieurs modes de réalisation, la conduite 1 est de forme cylindrique et optionnellement de diamètre variable. Selon un ou plusieurs modes de réalisation, la conduite 1 est de forme au moins partiellement tronconique. Selon un ou plusieurs modes de réalisation, la conduite 1 comprend (dans le sens de l’écoulement du catalyseur solide) : un tronçon cylindrique, par exemple dont le diamètre est choisi pour obtenir un flux de solide de 100 à
800 kg/(m2s) et de préférence entre 300 à 600 kg/(m2s) ; un tronçon tronconique (dit de rétrécissement) adjacent la chambre de mélange 2, dont le diamètre diminue, par exemple afin d’atteindre un flux de solide, sans prise en compte des internes, entre 400 et 2000 kg/(m2s) et de préférence entre 700 et 1500 kg/(m2s) ; et optionnellement un deuxième tronçon cylindrique, par exemple dont le diamètre est choisi pour obtenir un flux de solide, sans prise en compte des internes, entre 400 et 2000 kg/(m2s) et de préférence entre 700 et 1500 kg/(m2s). According to one or more embodiments, the pipe 1 has a constant section geometry, such as cylindrical, square, rectangular or hexagonal, or a variable section, such as a truncated pyramid or cone, or a combination of different geometric shapes. According to one or more embodiments, the pipe 1 is cylindrical in shape and optionally of variable diameter. According to one or more embodiments, the pipe 1 is at least partially frustoconical in shape. According to one or more embodiments, the pipe 1 comprises (in the direction of the flow of the solid catalyst): a cylindrical section, for example whose diameter is chosen to obtain a solid flow of 100 to 800 kg/(m 2 s) and preferably between 300 to 600 kg/(m 2 s); a frustoconical section (called a narrowing section) adjacent to the mixing chamber 2, the diameter of which decreases, for example in order to achieve a solid flow, without taking into account the internals, between 400 and 2000 kg/(m 2 s) and preferably between 700 and 1500 kg/(m 2 s); and optionally a second cylindrical section, for example whose diameter is chosen to obtain a solid flow, without taking into account the internals, between 400 and 2000 kg/(m 2 s) and preferably between 700 and 1500 kg/(m 2 s).
Selon un ou plusieurs modes de réalisation, la chambre de mélange 2 est de géométrie à section constante, comme cylindrique, carrée, rectangulaire ou hexagonale, ou à section variable, comme un tronc de pyramide ou de cône, ou une combinaison des différentes formes géométriques. Selon un ou plusieurs modes de réalisation, la chambre de mélange 2 est de forme cylindrique et optionnellement de diamètre variable. Selon un ou plusieurs modes de réalisation, la chambre de mélange 2 est de forme au moins partiellement tronconique. Selon un ou plusieurs modes de réalisation, la chambre de mélange 2 comprend une limite supérieure de section S1 connectant la chambre de mélange 2 à la conduite 1 et une limite inférieure de section S2 connectant la chambre de mélange 2 au réacteur à flux descendant 3, le rapport S1/S2 étant inférieur à 0,9 et préférablement inférieur à 0,7. Selon un ou plusieurs modes de réalisation, le rapport S1/S2 est compris entre 0,4 et 0,9, préférablement entre 0,5 et 0,7. According to one or more embodiments, the mixing chamber 2 has a constant section geometry, such as cylindrical, square, rectangular or hexagonal, or a variable section, such as a truncated pyramid or cone, or a combination of different geometric shapes. . According to one or more embodiments, the mixing chamber 2 is cylindrical in shape and optionally of variable diameter. According to one or more embodiments, the mixing chamber 2 is at least partially frustoconical in shape. According to one or more embodiments, the mixing chamber 2 comprises an upper limit of section S1 connecting the mixing chamber 2 to pipe 1 and a lower limit of section S2 connecting the mixing chamber 2 to the downflow reactor 3, the S1/S2 ratio being less than 0.9 and preferably less than 0.7. According to one or more embodiments, the S1/S2 ratio is between 0.4 and 0.9, preferably between 0.5 and 0.7.
Selon un ou plusieurs modes de réalisation, la chambre de mélange 2 comprend entre 2 et 12 premiers injecteurs 5, préférablement entre 3 et 8 premiers injecteurs 5. According to one or more embodiments, the mixing chamber 2 comprises between 2 and 12 first injectors 5, preferably between 3 and 8 first injectors 5.
Selon un ou plusieurs modes de réalisation, la chambre de mélange 2 comprend entre 2 et 12 deuxièmes injecteurs 7, préférablement entre 3 et 8 deuxièmes injecteurs 7. According to one or more embodiments, the mixing chamber 2 comprises between 2 and 12 second injectors 7, preferably between 3 and 8 second injectors 7.
Selon un ou plusieurs modes de réalisation, les injecteurs 5 et/ou 7 sont inclinés vers le haut ou le bas ou sont sensiblement disposés horizontalement. According to one or more embodiments, the injectors 5 and/or 7 are inclined upwards or downwards or are arranged substantially horizontally.
Selon un ou plusieurs modes de réalisation, les injecteurs 5 et/ou 7 sont inclinés vers le haut, par exemple avec un angle compris entre 10° et 45° par rapport à l’horizontale. According to one or more embodiments, the injectors 5 and/or 7 are inclined upwards, for example with an angle of between 10° and 45° relative to the horizontal.
En référence à la figure 1 , selon un ou plusieurs modes de réalisation, des premiers injecteurs 5 et/ou des deuxième injecteurs 7 sont disposés selon une ou plusieurs rangées horizontales, i.e. , perpendiculairement à l’axe central/vertical Z de la chambre de mélange 2. Selon un ou plusieurs modes de réalisation, des deuxièmes injecteurs 7 sont disposés au-dessous (e.g. d’une rangée) de premiers injecteurs 5. Selon un ou plusieurs modes de réalisation, des deuxièmes injecteurs 7 sont disposés entre deux rangées de premiers injecteurs 5. With reference to Figure 1, according to one or more embodiments, first injectors 5 and/or second injectors 7 are arranged in one or more horizontal rows, i.e., perpendicular to the central/vertical axis Z of the chamber. mixture 2. According to one or more embodiments, second injectors 7 are arranged below (e.g. a row) of first injectors 5. According to one or more embodiments, second injectors 7 are arranged between two rows of first injectors 5.
Selon un ou plusieurs modes de réalisation, la position radiale des deuxièmes injecteurs 7 est dans un espace de séparation entre les positions radiales adjacentes de deux premiers
injecteurs 5. Selon un ou plusieurs modes de réalisation, les deuxièmes injecteurs 7 sont positionnés sensiblement à moitié de l’angle de séparation de deux premiers injecteurs 5.According to one or more embodiments, the radial position of the second injectors 7 is in a separation space between the adjacent radial positions of two first injectors 5. According to one or more embodiments, the second injectors 7 are positioned approximately half the angle of separation of two first injectors 5.
En référence aux figures 2 et 3, selon un ou plusieurs modes de réalisation, au moins un premier injecteur 5 et/ou au moins un deuxième injecteur 7 est tourné selon un angle a compris entre 0° et 45°, et de préférence compris entre 10° et 20°par rapport à la direction radiale du diamètre D de la chambre de mélange 2, i.e., la projection de l’axe des injecteurs 7 sur un plan horizontal forme l’angle a, avec la direction radiale du diamètre D de la chambre de mélange 2, qui est perpendiculaire à l’axe central/vertical Z. With reference to Figures 2 and 3, according to one or more embodiments, at least one first injector 5 and/or at least one second injector 7 is rotated at an angle a between 0° and 45°, and preferably between 10° and 20° with respect to the radial direction of the diameter D of the mixing chamber 2, i.e., the projection of the axis of the injectors 7 on a horizontal plane forms the angle a, with the radial direction of the diameter D of the mixing chamber 2, which is perpendicular to the central/vertical axis Z.
En référence à la figure 1 , la chambre de mélange 2 alimente le réacteur à flux descendant 3 avec un mélange de charge hydrocarbonée 6, de particules de catalyseur et optionnellement de diluant 8. Avantageusement, la charge hydrocarbonée 6 et les particules de catalyseur donnent lieu aux réactions de craquage qui se complètent dans le réacteur à flux descendant 3 d’une longueur L (selon l’axe central/vertical Z) pour produire un effluent hydrocarboné comprenant des produits de craquage, du catalyseur usé et potentiellement une partie de la charge hydrocarbonée n’ayant pas réagi. With reference to Figure 1, the mixing chamber 2 feeds the downflow reactor 3 with a mixture of hydrocarbon feed 6, catalyst particles and optionally diluent 8. Advantageously, the hydrocarbon feed 6 and the catalyst particles give rise to to the cracking reactions which are completed in the downflow reactor 3 of a length L (along the central/vertical axis Z) to produce a hydrocarbon effluent comprising cracking products, spent catalyst and potentially part of the feed unreacted hydrocarbon.
Selon un ou plusieurs modes de réalisation, le réacteur à flux descendant 3 est de géométrie à section constante, comme cylindrique, carrée, rectangulaire ou hexagonale, préférablement cylindrique. Selon un ou plusieurs modes de réalisation, le réacteur à flux descendant 3 est de forme cylindrique et optionnellement de diamètre variable. Selon un ou plusieurs modes de réalisation, le diamètre du réacteur à flux descendant 3 est défini tel que la vitesse superficielle du gaz le traversant soit compris entre 2 m/s et 26 m/s, préférentiellement entre 6 m/s et 16 m/s. According to one or more embodiments, the downward flow reactor 3 has a constant section geometry, such as cylindrical, square, rectangular or hexagonal, preferably cylindrical. According to one or more embodiments, the downward flow reactor 3 is cylindrical in shape and optionally of variable diameter. According to one or more embodiments, the diameter of the downward flow reactor 3 is defined such that the superficial speed of the gas passing through it is between 2 m/s and 26 m/s, preferably between 6 m/s and 16 m/s. s.
En référence à la figure 4, selon un ou plusieurs modes de réalisation, la paroi interne de chambre de mélange 2 et/ou du réacteur à flux descendant 3 comprend en outre une pluralité d’obstacles 9. Avantageusement, la pluralité d’obstacles 9 est adaptée pour homogénéiser la concentration en particules de catalyseur. Spécifiquement, les obstacles 9 permettent de redistribuer les particules de catalyseur qui peuvent s’accumuler proche des parois (e.g. de la chambre de mélange 2 et du réacteur à flux descendant 3). With reference to Figure 4, according to one or more embodiments, the internal wall of the mixing chamber 2 and/or the downflow reactor 3 further comprises a plurality of obstacles 9. Advantageously, the plurality of obstacles 9 is suitable for homogenizing the concentration of catalyst particles. Specifically, the obstacles 9 make it possible to redistribute the catalyst particles which can accumulate near the walls (e.g. of the mixing chamber 2 and the downflow reactor 3).
Les obstacles 9 peuvent être de formes géométriques variées. Selon un ou plusieurs modes de réalisation, les obstacles 9 sont en forme de prisme (e.g. prisme à base triangulaire, carrée, rectangulaire, hexagonale, circulaire ou elliptique), ou de pyramide (e.g. pyramide à base triangulaire, carrée, rectangulaire, hexagonale, circulaire ou elliptique), ou tronconique, les obstacles 9 étant positionnés de façon discontinue, en formant par exemple des éléments séparés sur la paroi de chambre de mélange 2.
En référence à la figure 4, selon un ou plusieurs modes de réalisation, le dispositif selon l’invention comprend au moins une rangée d’obstacles 9, par rapport à l’axe central/vertical Z, disposés à une hauteur prédéterminée de la paroi interne de chambre de mélange 2 et/ou du réacteur à flux descendant 3. Selon un ou plusieurs modes de réalisation, les obstacles 9 de la rangée d’obstacles 9, ainsi disposés en « chapelet », sont positionnés sensiblement à équidistance les uns des autres. Avantageusement, une rangée d’obstacles 9 comprend (tous) les obstacles 9 d’un plan (horizontal) perpendiculaire à l’axe central/vertical Z. The obstacles 9 can be of varied geometric shapes. According to one or more embodiments, the obstacles 9 are in the shape of a prism (eg prism with a triangular, square, rectangular, hexagonal, circular or elliptical base), or a pyramid (eg pyramid with a triangular, square, rectangular, hexagonal base, circular or elliptical), or frustoconical, the obstacles 9 being positioned discontinuously, for example forming separate elements on the wall of the mixing chamber 2. With reference to Figure 4, according to one or more embodiments, the device according to the invention comprises at least one row of obstacles 9, relative to the central/vertical axis Z, arranged at a predetermined height of the wall internal mixing chamber 2 and/or the downflow reactor 3. According to one or more embodiments, the obstacles 9 of the row of obstacles 9, thus arranged in a “rosary”, are positioned substantially equidistant from each other. others. Advantageously, a row of obstacles 9 comprises (all) the obstacles 9 of a (horizontal) plane perpendicular to the central/vertical axis Z.
Selon un ou plusieurs modes de réalisation, les obstacles 9 comprennent une partie inférieure (surface d’extrémité inférieure) plus large que la partie supérieure (surface d’extrémité supérieure). According to one or more embodiments, the obstacles 9 comprise a lower part (lower end surface) wider than the upper part (upper end surface).
Selon un ou plusieurs modes de réalisation, les obstacles 9 sont agencés pour distribuer les particules de catalyseur vers des zones d’injection de charge de la chambre de mélange 2, zones plus concentrées en hydrocarbures. Selon un ou plusieurs modes de réalisation, les obstacles 9 comprennent une surface supérieure oblique et descendante latéralement, i.e., le long de la paroi de chambre de mélange 2. According to one or more embodiments, the obstacles 9 are arranged to distribute the catalyst particles towards charge injection zones of the mixing chamber 2, zones more concentrated in hydrocarbons. According to one or more embodiments, the obstacles 9 comprise an upper surface oblique and descending laterally, i.e., along the wall of the mixing chamber 2.
Selon un ou plusieurs modes de réalisation, les obstacles 9 sont agencés pour distribuer les particules de catalyseur sensiblement vers l’intérieur (e.g. vers l’axe central/vertical Z), zone plus concentrée en hydrocarbures. Selon un ou plusieurs modes de réalisation, les obstacles 9 comprennent une surface supérieure oblique et descendante de l’extérieur vers l’intérieur.According to one or more embodiments, the obstacles 9 are arranged to distribute the catalyst particles substantially inwards (e.g. towards the central/vertical axis Z), an area more concentrated in hydrocarbons. According to one or more embodiments, the obstacles 9 comprise an upper surface which is oblique and descends from the outside towards the inside.
Selon un ou plusieurs modes de réalisation, des obstacles 9 sont disposés dans la chambre de mélange 2 en amont de l’au moins un premier injecteur 5 de charge hydrocarbonée 6 et/ou de l’au moins un deuxième injecteur 7 de diluant 8. According to one or more embodiments, obstacles 9 are arranged in the mixing chamber 2 upstream of the at least one first injector 5 of hydrocarbon feedstock 6 and/or the at least one second injector 7 of diluent 8.
Avantageusement, les obstacles 9 permettent de diriger les particules de catalyseur vers les injecteurs et augmentent le contact, notamment avec la charge hydrocarbonée 6. Selon un ou plusieurs modes de réalisation, la position radiale des obstacles 9 dans la chambre de mélange 2 est dans un espace de séparation entre les positions radiales adjacentes de deux (e.g. premiers) injecteurs. Advantageously, the obstacles 9 make it possible to direct the catalyst particles towards the injectors and increase the contact, in particular with the hydrocarbon feed 6. According to one or more embodiments, the radial position of the obstacles 9 in the mixing chamber 2 is in a separation space between the adjacent radial positions of two (e.g. first) injectors.
En référence aux figures 1 à 4, selon l’invention, au moins une partie de la chambre de mélange comprend une pièce d'encombrement centrale 12 (« plug » selon la terminologie anglo-saxonne) disposée sensiblement le long de l’axe central/vertical Z et définissant une zone annulaire 13 de la chambre de mélange 2, par lequel les particules de catalyseur de déversent et/ou s’écoulent dans la chambre de mélange 2. With reference to Figures 1 to 4, according to the invention, at least part of the mixing chamber comprises a central bulky part 12 ("plug" according to Anglo-Saxon terminology) arranged substantially along the central axis /vertical Z and defining an annular zone 13 of the mixing chamber 2, through which the catalyst particles pour and/or flow into the mixing chamber 2.
Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 couvre la position axiale des premiers injecteurs 5. Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 couvre la position axiale des premiers injecteurs 5 et des
deuxièmes injecteurs 7. Avantageusement, la pièce d'encombrement centrale 12 permet d’améliorer le contact initial entre les particules de catalyseur du flux descendant 4 et la charge hydrocarbonée 6, et d’améliorer la dispersion du mélange catalyseur/charge. According to one or more embodiments, the central bulk part 12 covers the axial position of the first injectors 5. According to one or more embodiments, the central bulk part 12 covers the axial position of the first injectors 5 and second injectors 7. Advantageously, the central bulk part 12 makes it possible to improve the initial contact between the catalyst particles of the descending flow 4 and the hydrocarbon feedstock 6, and to improve the dispersion of the catalyst/charge mixture.
Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 est de géométrie à section constante, comme cylindrique, carrée, rectangulaire ou hexagonale, ou à section variable, comme un tronc de pyramide ou de cône, ou une combinaison des différentes formes géométriques. Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 présente une section cylindrique, carrée, rectangulaire ou hexagonale, préférablement cylindrique, par rapport à l’axe central/vertical Z, et préférablement axisymétrique par rapport à la chambre de mélange 2. Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 est de forme cylindrique circulaire. Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 est de forme cylindrique et optionnellement de diamètre variable. Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 est de forme au moins partiellement tronconique. Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 comprend une première section cylindrique, une section tronconique et une deuxième section cylindrique. According to one or more embodiments, the central bulk part 12 has a constant section geometry, such as cylindrical, square, rectangular or hexagonal, or a variable section, such as a truncated pyramid or cone, or a combination of the different geometric shapes. According to one or more embodiments, the central bulk part 12 has a cylindrical, square, rectangular or hexagonal section, preferably cylindrical, with respect to the central/vertical axis Z, and preferably axisymmetric with respect to the mixing chamber 2. According to one or more embodiments, the central bulk part 12 is of circular cylindrical shape. According to one or more embodiments, the central bulk part 12 is cylindrical in shape and optionally of variable diameter. According to one or more embodiments, the central bulk part 12 is at least partially frustoconical in shape. According to one or more embodiments, the central bulk part 12 comprises a first cylindrical section, a frustoconical section and a second cylindrical section.
Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 est adaptée pour réduire la section de passage de la chambre de mélange 2 de 1% à 50% et de préférence de 3% à 15% (e.g. entre 6% et 12%), préférablement à une position axiale couvrant la position axiale des premiers injecteurs 5. According to one or more embodiments, the central bulk part 12 is adapted to reduce the passage section of the mixing chamber 2 from 1% to 50% and preferably from 3% to 15% (e.g. between 6% and 12%), preferably in an axial position covering the axial position of the first injectors 5.
Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 comprend une partie inférieure de section S3 et une partie supérieure 14 de section S4, S3 étant supérieur à S4. Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 comprend, de haut en bas, une première section cylindrique, par exemple section S4, une section tronconique, par exemple de section S4 à S3, et une deuxième section cylindrique, par exemple section S3, S3 étant supérieur à S4. According to one or more embodiments, the central bulk part 12 comprises a lower part of section S3 and an upper part 14 of section S4, S3 being greater than S4. According to one or more embodiments, the central bulk part 12 comprises, from top to bottom, a first cylindrical section, for example section S4, a frustoconical section, for example section S4 to S3, and a second cylindrical section, for example section S3, S3 being greater than S4.
Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 s’étend de la conduite 1 à la chambre de mélange 2. Préférablement, la pièce d'encombrement centrale 12 s’étend de la conduite 1 , traverser la chambre de mélange 2 et se termine dans le réacteur à flux descendant 3. According to one or more embodiments, the central bulk part 12 extends from the pipe 1 to the mixing chamber 2. Preferably, the central bulk part 12 extends from the pipe 1, crossing the mixing chamber mixture 2 and ends in the downflow reactor 3.
Selon un ou plusieurs modes de réalisation, la partie de la pièce d'encombrement centrale 12 qui se trouve dans la chambre de mélange 2 présente une hauteur H1 comprise entre 10% et 100% de la hauteur H2 de la chambre de mélange 2. Selon un ou plusieurs modes de réalisation, l’extrémité basse 15 de la pièce d'encombrement centrale 12 est en dessous de la
position axiale des injecteurs (5, 7) les plus bas et/ou l’extrémité haute 16 de la pièce d'encombrement centrale 12 est en dessus de la position axiale des injecteurs (5, 7) les plus hauts. According to one or more embodiments, the part of the central bulky part 12 which is located in the mixing chamber 2 has a height H1 of between 10% and 100% of the height H2 of the mixing chamber 2. According one or more embodiments, the lower end 15 of the central bulk piece 12 is below the axial position of the lowest injectors (5, 7) and/or the upper end 16 of the central bulk piece 12 is above the axial position of the highest injectors (5, 7).
Selon un ou plusieurs modes de réalisation, l’extrémité basse 15 de la pièce d'encombrement centrale 12 est à position axiale disposée en dessous de la position axiale des injecteurs (5, 7) les plus bas, l’extrémité basse 15 pouvant être prolongée jusqu’à l’extrémité basse de la chambre de mélange 2 ou dans le réacteur à flux descendant 3. Selon un ou plusieurs modes de réalisation, l’extrémité haute 16 de la pièce d'encombrement centrale 12 est à position axiale disposée en dessus de la position axiale des injecteurs (5, 7) les plus hauts, l’extrémité haute 16 pouvant être prolongée jusqu’à l’extrémité haute de la chambre de mélange 2 ou dans la conduite 1. According to one or more embodiments, the lower end 15 of the central bulk part 12 is in an axial position arranged below the axial position of the lowest injectors (5, 7), the lower end 15 being able to be extended to the lower end of the mixing chamber 2 or in the downward flow reactor 3. According to one or more embodiments, the upper end 16 of the central bulk part 12 is in an axial position arranged in above the axial position of the highest injectors (5, 7), the upper end 16 being able to be extended to the upper end of the mixing chamber 2 or in line 1.
La demanderesse a identifié qu’une pénétration inefficace de la charge hydrocarbonée 6 dans le flux descendant 4 de particules de catalyseur peut se traduire par une partie du catalyseur qui ne se mélange pas avec la charge hydrocarbonée et continue à descendre tout le long des parois de la pièce d'encombrement centrale 12. Le flux de particules solides descendant autour des parois de la pièce d'encombrement centrale 12 peut se traduire par une concentration importante de solide dans la zone centrale du réacteur à flux descendant 3, ce qui pénalise le contact avec la charge hydrocarbonée 6 pour la réaction catalytique. The applicant has identified that inefficient penetration of the hydrocarbon filler 6 into the descending flow 4 of catalyst particles can result in a portion of the catalyst which does not mix with the hydrocarbon filler and continues to descend all along the walls of the catalyst. the central bulk part 12. The flow of solid particles descending around the walls of the central bulk part 12 can result in a significant concentration of solid in the central zone of the downward flow reactor 3, which penalizes contact with the hydrocarbon feedstock 6 for the catalytic reaction.
Avantageusement, la demanderesse a identifié que l’utilisation d’une pièce d'encombrement centrale 12 de forme spécifique, à travers l’ajout d’un ou plusieurs internes 11 , permet de rediriger le catalyseur loin des parois de la pièce d'encombrement centrale 12 et favorise ultérieurement le contact entre les deux phases. Advantageously, the applicant has identified that the use of a central bulky part 12 of specific shape, through the addition of one or more internals 11, makes it possible to redirect the catalyst away from the walls of the bulky part central 12 and subsequently promotes contact between the two phases.
En référence aux figures 1 à 4, selon l’invention, l’au moins un interne (11) est disposé sur la pièce d'encombrement centrale (12), et préférablement autour de la pièce d'encombrement centrale (12), et est disposé à une hauteur (selon l’axe central/vertical Z) en dessous de l’au moins un premier injecteur (5). Avantageusement, l’au moins un interne 11 est adapté pour homogénéiser la concentration en particules de catalyseur dans la zone annulaire 13 de la chambre de mélange 2. Spécifiquement, le ou les internes 11 permettent de distribuer vers la paroi interne de la chambre de mélange 2 des particules de catalyseur qui peuvent s’accumuler proche de la paroi de la pièce d'encombrement centrale 12. Avantageusement, les internes 11 permettent de distribuer les particules de catalyseur sensiblement vers l’extérieur (e.g. à l’opposé de l’axe central/vertical Z), zone plus concentrée en hydrocarbures.With reference to Figures 1 to 4, according to the invention, the at least one internal (11) is arranged on the central bulk part (12), and preferably around the central bulk part (12), and is arranged at a height (along the central/vertical axis Z) below the at least one first injector (5). Advantageously, the at least one internal 11 is adapted to homogenize the concentration of catalyst particles in the annular zone 13 of the mixing chamber 2. Specifically, the internal(s) 11 make it possible to distribute towards the internal wall of the mixing chamber. 2 catalyst particles which can accumulate close to the wall of the central bulky part 12. Advantageously, the internals 11 make it possible to distribute the catalyst particles substantially outwards (e.g. opposite the axis central/vertical Z), zone more concentrated in hydrocarbons.
En référence par exemple à la figure 2, selon un ou plusieurs modes de réalisation, l’interne 11 est de forme annulaire et est positionné de façon continue (e.g. en forme de collerette)
autour de la pièce d'encombrement centrale 12, i.e., de façon axisymétrique par rapport à la pièce d'encombrement centrale 12. With reference for example to Figure 2, according to one or more embodiments, the internal 11 is of annular shape and is positioned continuously (eg in the shape of a collar) around the central bulk piece 12, ie, axisymmetrically relative to the central bulk piece 12.
Selon un ou plusieurs modes de réalisation, l’interne 11 positionné de façon continue présente une section (selon une coupe verticale le long de l’axe central/vertical Z) en forme de triangle, carré, rectangle, losange, parallélogramme, trapèze, polygone, demi-cercle, secteur, segment circulaire, segment elliptique, ou segment parabolique, entre autres. Selon un ou plusieurs modes de réalisation, la section de l’interne 11 continu est en forme de triangle, comprenant par exemple un côté inférieur sensiblement horizontal (triangle rectangle), comme montré sur la figure 4. According to one or more embodiments, the continuously positioned internal 11 has a section (in a vertical section along the central/vertical axis Z) in the shape of a triangle, square, rectangle, diamond, parallelogram, trapezoid, polygon, semicircle, sector, circular segment, elliptical segment, or parabolic segment, among others. According to one or more embodiments, the section of the continuous internal 11 is in the shape of a triangle, comprising for example a substantially horizontal lower side (right triangle), as shown in Figure 4.
Selon un ou plusieurs modes de réalisation, les internes 11 positionnés de façon discontinue sur la pièce d'encombrement centrale sont en forme de cube, de tétraèdre, de parallélépipède, de prisme (e.g. prisme à base triangulaire, carrée, rectangulaire, hexagonale, circulaire ou elliptique), ou de pyramide (e.g. pyramide à base triangulaire, carrée, rectangulaire, hexagonale, circulaire ou elliptique), ou tronconique, et, en formant des éléments séparés autour de la pièce d'encombrement centrale 12. Selon un ou plusieurs modes de réalisation, les internes 11 positionnés de façon discontinue sur la pièce d'encombrement centrale présentent une section (selon une coupe verticale le long de l’axe central/vertical Z) en forme de triangle, carré, rectangle, losange, parallélogramme, trapèze, polygone, demi-cercle, secteur, segment circulaire, segment elliptique, ou segment parabolique, entre autres. Selon un ou plusieurs modes de réalisation, la section des internes 11 discontinus est en forme de triangle, comprenant par exemple un côté inférieur sensiblement horizontal (triangle rectangle). According to one or more embodiments, the internals 11 positioned discontinuously on the central bulk part are in the shape of a cube, tetrahedron, parallelepiped, prism (e.g. prism with triangular, square, rectangular, hexagonal, circular base or elliptical), or pyramid (e.g. pyramid with a triangular, square, rectangular, hexagonal, circular or elliptical base), or frustoconical, and, by forming separate elements around the central bulk piece 12. According to one or more modes embodiment, the internals 11 positioned discontinuously on the central bulk piece have a section (according to a vertical section along the central/vertical axis Z) in the shape of a triangle, square, rectangle, diamond, parallelogram, trapezoid , polygon, semicircle, sector, circular segment, elliptical segment, or parabolic segment, among others. According to one or more embodiments, the section of the discontinuous internals 11 is in the shape of a triangle, comprising for example a substantially horizontal lower side (right triangle).
En référence à la figure 2, selon un ou plusieurs modes de réalisation, l’interne 11 positionné de façon continue présente une section (selon une coupe horizontale perpendiculaire à l’axe central/vertical Z) en forme d’anneau autour de la pièce d'encombrement centrale 12. With reference to Figure 2, according to one or more embodiments, the continuously positioned internal 11 has a section (in a horizontal section perpendicular to the central/vertical axis Z) in the form of a ring around the part central space requirement 12.
En référence par exemple à la figure 3, selon un ou plusieurs modes de réalisation, les internes 11 positionnés de façon discontinue présentent une section (selon une coupe horizontale perpendiculaire à l’axe central/vertical Z) de forme de portion d’anneau cylindrique (e.g. en forme de portion de collerette) autour de la pièce d'encombrement centrale 12. With reference for example to Figure 3, according to one or more embodiments, the internals 11 positioned discontinuously have a section (in a horizontal section perpendicular to the central/vertical axis Z) in the shape of a cylindrical ring portion (e.g. in the shape of a collar portion) around the central bulk piece 12.
Selon un ou plusieurs modes de réalisation, le ou les internes 11 sont agencés pour éviter l’accumulation de particules de catalyseur sur les internes 11. Selon un ou plusieurs modes de réalisation, les internes 11 comprennent une partie inférieure (surface d’extrémité inférieure) plus large que la partie supérieure (surface d’extrémité supérieure). Selon un ou plusieurs modes de réalisation, le ou les internes 11 comprennent une surface supérieure oblique et descendante latéralement (vers l’extérieur), i.e., le long de la paroi de la pièce
d'encombrement centrale 12. Selon un ou plusieurs modes de réalisation, la surface supérieure oblique du ou des internes 11 est droite, convexe et/ou concave. Selon un ou plusieurs modes de réalisation, la surface supérieure oblique du ou des internes 11 forme un angle p compris entre 10° et 80°, préférablement compris entre 30° et 70°, tel que sensiblement 60° par rapport l’horizontale, tel que montré sur la figure 4. According to one or more embodiments, the internal(s) 11 are arranged to avoid the accumulation of catalyst particles on the internals 11. According to one or more embodiments, the internals 11 comprise a lower part (lower end surface ) wider than the top (upper end surface). According to one or more embodiments, the internal(s) 11 comprise an upper surface which is oblique and descends laterally (towards the outside), ie, along the wall of the room central space requirement 12. According to one or more embodiments, the oblique upper surface of the internal(s) 11 is straight, convex and/or concave. According to one or more embodiments, the oblique upper surface of the internal(s) 11 forms an angle p of between 10° and 80°, preferably between 30° and 70°, such as substantially 60° relative to the horizontal, such as as shown in Figure 4.
Selon un ou plusieurs modes de réalisation, l’au moins un interne 11 est disposé sur la pièce d'encombrement centrale 12 en aval de l’au moins un premier injecteur 5 de charge hydrocarbonée 6 et optionnellement de l’au moins un deuxième injecteur 7 de diluant 8. Avantageusement, le ou les internes 11 permettent de diriger les particules de catalyseur vers la paroi de la chambre de mélange 2, sous les injecteurs pour augmenter le contact avec la charge hydrocarbonée 6. Selon un ou plusieurs modes de réalisation, la position radiale des internes 11 sur la pièce d'encombrement centrale 12 est dans un espace de séparation entre les positions radiales adjacentes de deux (e.g. premiers) injecteurs. According to one or more embodiments, the at least one internal 11 is arranged on the central bulk part 12 downstream of the at least one first injector 5 of hydrocarbon feed 6 and optionally of the at least one second injector 7 of diluent 8. Advantageously, the internal(s) 11 make it possible to direct the catalyst particles towards the wall of the mixing chamber 2, under the injectors to increase contact with the hydrocarbon feedstock 6. According to one or more embodiments, the radial position of the internals 11 on the central bulk part 12 is in a separation space between the adjacent radial positions of two (e.g. first) injectors.
Selon un ou plusieurs modes de réalisation, le ou les internes 11 sont disposés sur la pièce d'encombrement centrale 12 sous les premiers injecteurs 5 de charge hydrocarbonée 6, et optionnellement des deuxièmes injecteurs 7, à une distance axiale L (extrémité haute du ou des internes) desdits injecteurs comprise entre 0*H1 et H1 , et de préférence entre 0,1*1-11 et 0,9*H1. According to one or more embodiments, the internal(s) 11 are arranged on the central bulk part 12 under the first injectors 5 of hydrocarbon feed 6, and optionally second injectors 7, at an axial distance L (high end of the or internal) of said injectors between 0*H1 and H1, and preferably between 0.1*1-11 and 0.9*H1.
Selon un ou plusieurs modes de réalisation, les internes 11 continus de forme annulaire ou les rangées d’internes 11 discontinus présentent une hauteur H3 comprise entre 0,02*1-11 et 0,5*1-11 , préférablement entre 0,05*1-11 et 0,3*1-11 , très préférablement entre 0,1*1-11 et 0,2*1-11.According to one or more embodiments, the continuous internals 11 of annular shape or the rows of discontinuous internals 11 have a height H3 of between 0.02*1-11 and 0.5*1-11, preferably between 0.05 *1-11 and 0.3*1-11, most preferably between 0.1*1-11 and 0.2*1-11.
En référence à la figure 3, selon un ou plusieurs modes de réalisation, le dispositif selon l’invention comprend au moins une rangée d’internes 11 , par rapport à l’axe central/vertical Z, disposée à une hauteur prédéterminée sur la pièce d'encombrement centrale 12. Selon un ou plusieurs modes de réalisation, les internes de la rangée d’internes 11 , ainsi disposés en « chapelet », sont positionnés sensiblement à équidistance les uns des autres. Avantageusement, une rangée d’internes 11 comprend (tous) les internes 11 d’un plan (horizontal) perpendiculaire à l’axe central/vertical Z. With reference to Figure 3, according to one or more embodiments, the device according to the invention comprises at least one row of internals 11, relative to the central/vertical axis Z, arranged at a predetermined height on the part central space requirement 12. According to one or more embodiments, the internals of the row of internals 11, thus arranged in a “rosary”, are positioned substantially equidistant from each other. Advantageously, a row of internals 11 comprises (all) the internals 11 of a (horizontal) plane perpendicular to the central/vertical axis Z.
Selon un ou plusieurs modes de réalisation, le périmètre de la paroi interne de la pièce d'encombrement centrale 12, occupé par la rangée d’internes 11 , est compris entre 10% et 100% et de préférence entre 30% et 100%, tel que de 60% à 100%. According to one or more embodiments, the perimeter of the internal wall of the central bulky part 12, occupied by the row of internals 11, is between 10% and 100% and preferably between 30% and 100%, such as from 60% to 100%.
Selon un ou plusieurs modes de réalisation, l’interne 11 continus de forme annulaire ou la rangée d’internes 11 discontinus est adapté pour réduire la section de passage de la zone annulaire 13 de 1 % à 50% et de préférence de 5% à 35%, tel que de 10% à 20%, par rapport à la section de passage de la zone annulaire 13 dépourvue d’interne 11.
Selon un ou plusieurs modes de réalisation, une rangée d’internes 11 comprend au moins 1 internes 11 , par exemple entre 2 et 16 internes 11 , de préférence entre 3 et 8 internes 11.According to one or more embodiments, the continuous internal 11 of annular shape or the row of discontinuous internal 11 is adapted to reduce the passage section of the annular zone 13 from 1% to 50% and preferably from 5% to 35%, such as from 10% to 20%, relative to the passage section of the annular zone 13 devoid of internal 11. According to one or more embodiments, a row of internals 11 comprises at least 1 internal 11, for example between 2 and 16 internal 11, preferably between 3 and 8 internal 11.
Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 comprend entre 1 et 12 internes 11 de forme annulaire, tel que 1 interne 11 de forme annulaire. According to one or more embodiments, the central bulk part 12 comprises between 1 and 12 internal 11 of annular shape, such as 1 internal 11 of annular shape.
Selon un ou plusieurs modes de réalisation, la pièce d'encombrement centrale 12 comprend entre 1 et 6 rangées d’internes 11 , tel que 2 rangées d’internes 11 préférablement disposées au-dessous des (e.g. premiers) injecteurs. According to one or more embodiments, the central bulk part 12 comprises between 1 and 6 rows of internals 11, such as 2 rows of internals 11 preferably arranged below the (e.g. first) injectors.
Selon un ou plusieurs modes de réalisation, la position radiale des internes 11 d’une rangée d’internes 11 est dans un espace de séparation entre la position radiale de deux internes 11 adjacents d’une rangée d’internes 11 adjacente, i.e., chaque rangée d’internes 11 présente une rotation (selon l’axe central/vertical Z) par rapport à une rangée d’internes 11 adjacente. Selon un ou plusieurs modes de réalisation, la position radiale des internes 11 d’une rangée d’internes 11 présente une rotation d’un angle compris entre 10° et 35°, de préférence entre 15° et 30°, par rapport à la position radiale des internes 11 d’une rangée d’internes 11 adjacente, et de manière préférée à un angle de 1807N, avec N le nombre d’internes dans une rangée d’internes 11. Selon un ou plusieurs modes de réalisation, les rangées d’internes 11 sont disposées les unes par rapport aux autres pour couvrir ensemble tout le périmètre de la pièce d'encombrement centrale 12, selon une vue selon l’axe central/vertical Z. According to one or more embodiments, the radial position of the internals 11 of a row of internals 11 is in a separation space between the radial position of two adjacent internals 11 of an adjacent row of internals 11, i.e., each row of internals 11 presents a rotation (along the central/vertical axis Z) relative to an adjacent row of internals 11. According to one or more embodiments, the radial position of the internals 11 of a row of internals 11 presents a rotation of an angle between 10° and 35°, preferably between 15° and 30°, relative to the radial position of the internals 11 of an adjacent row of internals 11, and preferably at an angle of 1807N, with N the number of internals in a row of internals 11. According to one or more embodiments, the rows internal 11 are arranged in relation to each other to together cover the entire perimeter of the central bulky part 12, in a view along the central/vertical axis Z.
En référence à la figure 1 , selon un ou plusieurs modes de réalisation, les internes 11 de forme annulaire ou les rangées d’internes 11 discontinus sont positionnés sur des positions axiales avec une distance (le pas) P les unes des autres comprise entre 0 et 75 %, et de préférence entre 1 et 10 %, de la hauteur H2 de la chambre de mélange 2. Selon un ou plusieurs modes de réalisation, la distance (le pas) P séparant la position axiale de deux internes 11 adjacents ou les rangées d’internes 11 adjacentes est comprise entre 0*H2 et 0,75*H2, préférablement entre 0,01*H2 et 0,25*H2, très préférablement entre 0,01*H2 et 0,1*H2. With reference to Figure 1, according to one or more embodiments, the internals 11 of annular shape or the rows of discontinuous internals 11 are positioned on axial positions with a distance (the pitch) P from each other between 0 and 75%, and preferably between 1 and 10%, of the height H2 of the mixing chamber 2. According to one or more embodiments, the distance (the pitch) P separating the axial position of two adjacent internals 11 or the rows of adjacent internals 11 is between 0*H2 and 0.75*H2, preferably between 0.01*H2 and 0.25*H2, very preferably between 0.01*H2 and 0.1*H2.
Le catalyseur The catalyst
Le catalyseur est un catalyseur solide (e.g. particules de densité, taille et forme des grains choisies pour utilisation en lit fluidisé). Les densités, tailles et formes des catalyseurs pour lits fluidisés sont connus de l’homme du métier, et ne seront pas décrites davantage. Le catalyseur peut être tout type de catalyseur de craquage catalytique. The catalyst is a solid catalyst (e.g. particles of density, size and grain shape chosen for use in a fluidized bed). The densities, sizes and shapes of the catalysts for fluidized beds are known to those skilled in the art, and will not be described further. The catalyst may be any type of catalytic cracking catalyst.
Selon un ou plusieurs modes de réalisation, le catalyseur est un catalyseur de type FCC, contenant par exemple ce qui est couramment appelé une matrice faite d’argile, de silice ou de silice alumine, optionnellement de liant, et/ou de zéolithe, par exemple de 15% à 70% poids
de zéolithe par rapport au poids du catalyseur, préférablement une zéolithe Y et/ou une zéolithe ZSM-5. Selon un ou plusieurs modes de réalisation, le catalyseur comprend une zéolithe ZSM-5. Selon un ou plusieurs modes de réalisation, la densité de grain du catalyseur est comprise entre 1000 kg/m3 et 2000 kg/m3. Selon un ou plusieurs modes de réalisation, la densité de grain du catalyseur est comprise entre 1250 kg/m3 et 1750 kg/m3. According to one or more embodiments, the catalyst is an FCC type catalyst, containing for example what is commonly called a matrix made of clay, silica or silica alumina, optionally binder, and/or zeolite, for example example from 15% to 70% weight of zeolite relative to the weight of the catalyst, preferably a Y zeolite and/or a ZSM-5 zeolite. According to one or more embodiments, the catalyst comprises a ZSM-5 zeolite. According to one or more embodiments, the grain density of the catalyst is between 1000 kg/m 3 and 2000 kg/m 3 . According to one or more embodiments, the grain density of the catalyst is between 1250 kg/m 3 and 1750 kg/m 3 .
Selon un ou plusieurs modes de réalisation, le catalyseur comprend au moins un liant (e.g. de 30% à 85% poids) choisi parmi l’alumine, la silice, la silice-alumine, la magnésie, l’oxyde de titane, la zircone, les argiles et l’oxyde de bore, seul ou en mélange et de préférence parmi la silice, la silice-alumine et les argiles, seul ou en mélange. According to one or more embodiments, the catalyst comprises at least one binder (e.g. from 30% to 85% by weight) chosen from alumina, silica, silica-alumina, magnesia, titanium oxide, zirconia , clays and boron oxide, alone or in a mixture and preferably among silica, silica-alumina and clays, alone or in a mixture.
Selon un ou plusieurs modes de réalisation, le catalyseur comprend au moins un élément dopant (e.g. de 0 à 10% poids) choisi parmi le phosphore, le magnésium, le sodium, le potassium, le calcium, le fer, le bore, le manganèse, le lanthane, le cérium, le titane, le tungstène, le molybdène, le cuivre, le zirconium et le gallium, seul ou en mélange. According to one or more embodiments, the catalyst comprises at least one doping element (e.g. from 0 to 10% by weight) chosen from phosphorus, magnesium, sodium, potassium, calcium, iron, boron, manganese , lanthanum, cerium, titanium, tungsten, molybdenum, copper, zirconium and gallium, alone or in mixture.
Selon un ou plusieurs modes de réalisation, le catalyseur comprend et/ou est constitué de zéolithe, telle que la ZSM-5, optionnellement dopée. According to one or more embodiments, the catalyst comprises and/or consists of zeolite, such as ZSM-5, optionally doped.
La charge Load
Selon un ou plusieurs modes de réalisation, la charge hydrocarbonée 6 est une charge lourde, caractérisée par une température de début d’ébullition proche de 340°C, souvent supérieure à 380°C, telle qu’une coupe lourde, par exemple issue d’une unité de distillation sous vide, telle que du gazole/distillat sous vide (« vacuum gas oil » ou « VGO » selon la terminologie anglo-saxonne) ou un résidu sous vide, un résidu atmosphérique, un gazole sous vide issu d’une unité de conversion, telle qu’un gasoil de cokéfaction (« Heavy Coker Gas Oil » ou « HCGO » selon la terminologie anglo-saxonne) ou une coupe lourde issue d’une unité d’hydroconversion en lit bouillonnant ou en lit entrainé (telle que les procédés H-Oil, LC-Fining, EST, VCC ou Uniflex), un recycle d’une étape d’hydrocraquage, seuls ou en mélange. According to one or more embodiments, the hydrocarbon feedstock 6 is a heavy feedstock, characterized by a starting boiling temperature close to 340°C, often greater than 380°C, such as a heavy cut, for example from 'a vacuum distillation unit, such as vacuum gas oil/distillate ("vacuum gas oil" or "VGO" according to Anglo-Saxon terminology) or a vacuum residue, an atmospheric residue, a vacuum gas oil from a conversion unit, such as a coking gas oil (“Heavy Coker Gas Oil” or “HCGO” according to Anglo-Saxon terminology) or a heavy cut from a hydroconversion unit in a bubbling bed or entrained bed ( such as the H-Oil, LC-Fining, EST, VCC or Uniflex processes), a recycle of a hydrocracking step, alone or in a mixture.
Selon un ou plusieurs modes de réalisation, la charge hydrocarbonée 6 est une charge légère, caractérisée par une température de fin d’ébullition inférieure de 450°C, souvent inférieure à 400°C, telle qu’une coupe essence ou une coupe gazole, par exemple issue d’une unité de distillation atmosphérique, ou issue d’une unité de conversion, telle qu’une essence ou un gasoil d’une unité d’hydrocraquage, ou une essence ou un gasoil d’une unité de cokéfaction ou une essence ou un gasoil d’une unité d’hydroconversion en lit bouillonnant ou en lit entrainé (telle que les procédés H-Oil, LC-Fining, EST, VCC ou Uniflex), ou une essence ou un gasoil issue d’une unité de FCC, ou un recycle de l’unité de FCC en question, seuls ou en mélange. Selon un ou plusieurs modes de réalisation, il est également possible de traiter un mélange de coupes légères et lourdes, ou encore un brut complet.
Au contact du flux descendant 4 de particules de catalyseur chaud, la charge hydrocarbonée 6 pulvérisée se vaporise et des réactions endothermiques de craquage se produisent le long du réacteur à flux descendant 3 diminuant ainsi la température et produisant : des produits valorisables (e.g. du gaz C1-C4 comprenant des oléfines ; une coupe essence comprenant des aromatiques) ; optionnellement une coupe gasoil léger (« Light Cycle Oil » ou LCO selon la terminologie anglo-saxonne) ; optionnellement une coupe gasoil lourd (« Heavy Cycle Oil » ou HCO selon la terminologie anglo-saxonne) ; optionnellement une huile en forme de boue (« slurry » selon la terminologie anglo- saxonne) ; et optionnellement un résidu solide (coke) adsorbé sur le catalyseur. According to one or more embodiments, the hydrocarbon feedstock 6 is a light feedstock, characterized by an end-of-boiling temperature lower than 450°C, often lower than 400°C, such as a gasoline cut or a diesel cut, for example from an atmospheric distillation unit, or from a conversion unit, such as a gasoline or a gas oil from a hydrocracking unit, or a gasoline or a gas oil from a coking unit or a gasoline or diesel from a bubbling bed or entrained bed hydroconversion unit (such as the H-Oil, LC-Fining, EST, VCC or Uniflex processes), or gasoline or diesel from a FCC, or a recycle of the FCC unit in question, alone or in mixture. According to one or more embodiments, it is also possible to process a mixture of light and heavy cuts, or even a complete stock. On contact with the descending flow 4 of hot catalyst particles, the pulverized hydrocarbon feed 6 vaporizes and endothermic cracking reactions occur along the descending flow reactor 3, thus reducing the temperature and producing: recoverable products (eg C1 gas -C4 comprising olefins; a gasoline cut comprising aromatics); optionally a light diesel cut (“Light Cycle Oil” or LCO according to Anglo-Saxon terminology); optionally a heavy diesel cut (“Heavy Cycle Oil” or HCO according to Anglo-Saxon terminology); optionally an oil in the form of a slurry (“slurry” according to Anglo-Saxon terminology); and optionally a solid residue (coke) adsorbed on the catalyst.
Le procédé selon l’invention The process according to the invention
Le procédé selon la présente invention comprend une étape de craquage catalytique de production d’oléfines légères (et en particulier en éthylène et en propylène), d’aromatiques (et en particulier benzène, toluène et xylènes), et d’essence (et optionnellement de LCO, HCO et slurry), par craquage catalytique de la charge hydrocarbonée 6 (alimentée par le premier injecteur 5) par mise en contact avec le flux descendant 4 de particules de catalyseur chaud (alimenté par la conduite 1), et optionnellement le diluant 8 (alimentée par le deuxième injecteur 7) dans la chambre de mélange 2 puis dans le réacteur à flux descendant 3. The process according to the present invention comprises a catalytic cracking step for the production of light olefins (and in particular ethylene and propylene), aromatics (and in particular benzene, toluene and xylenes), and gasoline (and optionally of LCO, HCO and slurry), by catalytic cracking of the hydrocarbon feed 6 (fed by the first injector 5) by contact with the descending flow 4 of hot catalyst particles (fed by line 1), and optionally the diluent 8 (supplied by the second injector 7) in the mixing chamber 2 then in the downflow reactor 3.
Selon un ou plusieurs modes de réalisation, le flux descendant 4 des particules de catalyseur dans la conduite 1 en amont de la chambre de mélange 2 est en régime fluidisé dense et de préférence avec un flux massique supérieur à 200 kg/m2s, pour par exemple permettre préférablement un régime avec les bulles descendantes. According to one or more embodiments, the downward flow 4 of the catalyst particles in line 1 upstream of the mixing chamber 2 is in a dense fluidized regime and preferably with a mass flow greater than 200 kg/m 2 s, for for example preferably allowing a regime with descending bubbles.
Dans la présente demande, le terme « lit fluidisé dense » signifie un lit fluidisé gaz-solide fonctionnant en régime homogène, en régime bouillonnant ou en régime turbulent. In the present application, the term “dense fluidized bed” means a gas-solid fluidized bed operating in a homogeneous regime, in a bubbling regime or in a turbulent regime.
Dans la présente demande, le terme « lit fluidisé homogène » signifie un lit fluidisé gaz-solide dont la vitesse de gaz est comprise entre la vitesse minimum de fluidisation et la vitesse minimum de bullage. Ces vitesses dépendent des propriétés du catalyseur solide (densité, taille, forme des grains...). La fraction volumique de solide est comprise entre une valeur proche de 0,45 et la fraction volumique de solide maximale correspondant à un lit fixe, non fluidisé, généralement proche de 0,6.
Dans la présente demande, le terme « lit fluidisé bouillonnant » signifie un lit fluidisé gaz-solide dont la vitesse de gaz est comprise entre la vitesse minimum de bullage et la vitesse de transition au régime turbulent. Ces vitesses dépendent des propriétés du catalyseur solide (densité, taille, forme des grains...). La fraction volumique de solide est comprise entre une valeur proche de 0,35 et une valeur proche de 0,45. In the present application, the term “homogeneous fluidized bed” means a gas-solid fluidized bed whose gas speed is between the minimum fluidization speed and the minimum bubbling speed. These speeds depend on the properties of the solid catalyst (density, size, shape of the grains, etc.). The solid volume fraction is between a value close to 0.45 and the maximum solid volume fraction corresponding to a fixed, non-fluidized bed, generally close to 0.6. In the present application, the term “bubbling fluidized bed” means a gas-solid fluidized bed whose gas speed is between the minimum bubbling speed and the transition speed to the turbulent regime. These speeds depend on the properties of the solid catalyst (density, size, shape of the grains, etc.). The volume fraction of solid is between a value close to 0.35 and a value close to 0.45.
Dans la présente demande, le terme « lit fluidisé turbulent » signifie un lit fluidisé gaz-solide dont la vitesse de gaz est comprise entre la vitesse de transition au régime turbulent et la vitesse de transport. La fraction volumique de solide est comprise entre une valeur proche de 0,25 et une valeur proche de 0,35. In the present application, the term “turbulent fluidized bed” means a gas-solid fluidized bed whose gas speed is between the transition speed to the turbulent regime and the transport speed. The volume fraction of solid is between a value close to 0.25 and a value close to 0.35.
Dans la présente demande, le terme « lit fluidisé transporté » signifie un lit fluidisé gaz-solide dont la vitesse de gaz est supérieure à la vitesse de transport. La fraction volumique de solide est inférieure à une valeur proche de 0,25. Dans la présente demande, le terme « vitesse de transport » correspond à la vitesse avec laquelle essentiellement tout le solide est entrainé par le gaz. In the present application, the term “transported fluidized bed” means a gas-solid fluidized bed whose gas velocity is greater than the transport velocity. The volume fraction of solid is less than a value close to 0.25. In the present application, the term “transport speed” corresponds to the speed with which essentially all the solid is carried by the gas.
Selon un ou plusieurs modes de réalisation, les injecteurs 5 sont adaptés pour atomiser la charge hydrocarbonée 6 (liquide) et pénétrer le flux du catalyseur. According to one or more embodiments, the injectors 5 are adapted to atomize the hydrocarbon feed 6 (liquid) and penetrate the catalyst flow.
Selon un ou plusieurs modes de réalisation, les conditions opératoires de la conduite 1 et/ou du réacteur à flux descendant 3 sont choisies parmi les conditions suivantes : température (de sortie de réacteur) comprise entre 520°C et 750°C et de préférence inférieure à 650°C ; pression totale absolue comprise entre 0,1 MPa et 0,5 MPa ; rapport massique du catalyseur 4 sur la charge hydrocarbonée 6 C/O compris entre 5 (kg/h)/(kg/h) et 35 (kg/h)/(kg/h) et de préférence entre 15 (kg/h)/(kg/h) et 30 (kg/h)/(kg/h) ; temps de contact tc entre la charge hydrocarbonée 6 et le catalyseur inférieur à 10 secondes, préférablement compris entre 0,5 secondes et 4 secondes ; flux massique de particules de catalyseur compris entre 50 et 850 kg/(m2s), de préférence entre 400 et 750 kg/(m2s) ; et vitesse superficielle gaz comprise entre 2 m/s et 26 m/s, de préférence entre 6 m/s et 16 m/s. According to one or more embodiments, the operating conditions of the pipe 1 and/or the downflow reactor 3 are chosen from the following conditions: temperature (reactor outlet) between 520°C and 750°C and preferably below 650°C; absolute total pressure between 0.1 MPa and 0.5 MPa; mass ratio of catalyst 4 to hydrocarbon feedstock 6 C/O between 5 (kg/h)/(kg/h) and 35 (kg/h)/(kg/h) and preferably between 15 (kg/h) /(kg/h) and 30 (kg/h)/(kg/h); contact time t c between the hydrocarbon feed 6 and the catalyst less than 10 seconds, preferably between 0.5 seconds and 4 seconds; mass flow of catalyst particles of between 50 and 850 kg/(m 2 s), preferably between 400 and 750 kg/(m 2 s); and gas surface velocity of between 2 m/s and 26 m/s, preferably between 6 m/s and 16 m/s.
Dans la présente description, le temps de contact tc est défini comme le produit de la fraction volumique solide £s par la hauteur de lit Hs (e.g. hauteur de réacteur L), divisé par la vitesse superficielle du gaz vsg, cela intégré tout au long de la hauteur du lit, tel que défini ci-après dans la formule mathématique Math 1.
Math 1
In the present description, the contact time t c is defined as the product of the solid volume fraction £ s by the bed height H s (eg reactor height L), divided by the superficial gas velocity vsg, this integrating all along the height of the bed, as defined below in the mathematical formula Math 1. Math 1
Selon un ou plusieurs modes de réalisation, une quantité de diluant 8 (e.g. azote et/ou vapeur d’eau) est ajoutée à la charge pour réduire la pression partielle d’hydrocarbures de la charge et le diluant est introduit à raison d’une quantité représentant 0% ou 0,1% à 40% poids, de préférence 1% à 35% poids et de manière préférée comprise entre 1% et 30% poids par rapport à la masse de la charge hydrocarbonée 6. According to one or more embodiments, a quantity of diluent 8 (e.g. nitrogen and/or water vapor) is added to the charge to reduce the partial pressure of hydrocarbons of the charge and the diluent is introduced at a rate of one quantity representing 0% or 0.1% to 40% by weight, preferably 1% to 35% by weight and preferably between 1% and 30% by weight relative to the mass of the hydrocarbon filler 6.
Selon un ou plusieurs modes de réalisation, à l’issue de l’étape de craquage catalytique dans le réacteur à flux descendant 3, les produits gazeux et le catalyseur, et optionnellement la charge vaporisée non convertie, sont séparés dans le séparateur gaz/solide (non représenté) renfermant un lit fluidisé dense où les réactions de craquage peuvent se poursuivre. According to one or more embodiments, at the end of the catalytic cracking step in the downflow reactor 3, the gaseous products and the catalyst, and optionally the unconverted vaporized feed, are separated in the gas/solid separator (not shown) containing a dense fluidized bed where cracking reactions can continue.
Selon un ou plusieurs modes de réalisation, les conditions opératoires du séparateur sont choisies parmi les conditions suivantes : température (de sortie de réacteur) comprise entre 500°C et 750°C, de préférence entre 550°C et 700°C, de manière encore plus préférée entre 580°C et 685°C ; pression totale absolue comprise entre 0,1 MPa et 0,5 MPa et de préférence entre 0,1 MPa et 0,4 MPa et de manière préférée entre 0,1 MPa et 0,3 MPa ; rapport massique du catalyseur sur la charge (charge vaporisée non convertie et produits gazeux) C/O compris entre 5 (kg/h)/(kg/h) et 40 (kg/h)/(kg/h) ; temps de contact tc entre la charge et le catalyseur compris entre 500 millisecondes (ms) et 10 secondes ; et pression partielle des hydrocarbures de la charge (PPHcharge) comprise entre 0,01 MPa et 0,3 MPa, de préférence entre 0,02 MPa et 0,2 MPa et de manière préférée entre 0,05 MPa et 0,15 MPa. According to one or more embodiments, the operating conditions of the separator are chosen from the following conditions: temperature (reactor outlet) between 500°C and 750°C, preferably between 550°C and 700°C, so even more preferred between 580°C and 685°C; absolute total pressure between 0.1 MPa and 0.5 MPa and preferably between 0.1 MPa and 0.4 MPa and preferably between 0.1 MPa and 0.3 MPa; mass ratio of the catalyst to the feed (unconverted vaporized feed and gaseous products) C/O between 5 (kg/h)/(kg/h) and 40 (kg/h)/(kg/h); contact time t c between the charge and the catalyst between 500 milliseconds (ms) and 10 seconds; and partial pressure of the hydrocarbons of the charge (PPHcharge) between 0.01 MPa and 0.3 MPa, preferably between 0.02 MPa and 0.2 MPa and preferably between 0.05 MPa and 0.15 MPa.
Selon un ou plusieurs modes de réalisation, en sortie du séparateur le catalyseur coké est envoyé vers un strippeur optionnel (non représenté) pour stripper les hydrocarbures restés adsorbés à la surface du catalyseur au moyen d’un deuxième diluant. According to one or more embodiments, at the outlet of the separator the coked catalyst is sent to an optional stripper (not shown) to strip the hydrocarbons remaining adsorbed on the surface of the catalyst by means of a second diluent.
Selon un ou plusieurs modes de réalisation, les conditions opératoires du strippeur sont choisies parmi les conditions suivantes : temps de séjour du catalyseur dans le strippeur : entre 10 secondes et 180 secondes, préférentiellement entre 30 secondes et 120 secondes ;
vitesse superficielle de gaz entre la vitesse minimale de fluidisation et la vitesse de transition au régime turbulent, par exemple entre 0,01 m/s et 0,5 m/s, préférentiellement entre 0,15 m/s et 0,4 m/s ; flux solide entre 25 kg/m2s et 200 kg/m2s, préférentiellement entre 50 kg/m2s et 150 kg/m2s et de manière préférée entre 50 kg/m2s et 100 kg/m2s ; température entre 500°C et 750°C, préférentiellement entre 550°C et 650°C ; pression totale absolue comprise entre 0,1 MPa et 0,5 MPa et de préférence entre 0,1 MPa et 0,4 MPa et de manière préférée entre 0,1 MPa et 0,3 MPa ; fraction volumique solide entre 0,25 et 0,6, préférentiellement entre 0,4 et 0,6. According to one or more embodiments, the operating conditions of the stripper are chosen from the following conditions: residence time of the catalyst in the stripper: between 10 seconds and 180 seconds, preferably between 30 seconds and 120 seconds; superficial gas velocity between the minimum fluidization speed and the transition speed to the turbulent regime, for example between 0.01 m/s and 0.5 m/s, preferably between 0.15 m/s and 0.4 m/ s ; solid flow between 25 kg/m 2 s and 200 kg/m 2 s, preferably between 50 kg/m 2 s and 150 kg/m 2 s and preferably between 50 kg/m 2 s and 100 kg/m 2 s ; temperature between 500°C and 750°C, preferably between 550°C and 650°C; absolute total pressure between 0.1 MPa and 0.5 MPa and preferably between 0.1 MPa and 0.4 MPa and preferably between 0.1 MPa and 0.3 MPa; solid volume fraction between 0.25 and 0.6, preferably between 0.4 and 0.6.
Selon un ou plusieurs modes de réalisation, en sortie du séparateur ou du strippeur, le solide coké est transporté dans un régénérateur (non représenté) dans lequel une alimentation en air brûle le coke du catalyseur pour produire un catalyseur régénéré chaud et des gaz de combustion, le catalyseur régénéré chaud pouvant alimenter le flux descendant 4 en particules de catalyseur chaud. According to one or more embodiments, at the outlet of the separator or stripper, the coked solid is transported into a regenerator (not shown) in which an air supply burns the coke from the catalyst to produce a hot regenerated catalyst and combustion gases , the hot regenerated catalyst being able to supply the descending flow 4 with hot catalyst particles.
Selon un ou plusieurs modes de réalisation, les conditions opératoires du régénérateur sont choisies parmi les conditions suivantes : vitesse superficielle de gaz entre 0,1 m/s et 2 m/s, préférentiellement 0,2 m/s et 1 ,5 m/s ; temps de séjour du catalyseur entre 30 secondes et 20 minutes, préférentiellement entre 1 minute et 10 minutes. température entre 500°C et 840°C, préférentiellement entre 650°C et 750°C. According to one or more embodiments, the operating conditions of the regenerator are chosen from the following conditions: superficial gas speed between 0.1 m/s and 2 m/s, preferably 0.2 m/s and 1.5 m/s s ; residence time of the catalyst between 30 seconds and 20 minutes, preferably between 1 minute and 10 minutes. temperature between 500°C and 840°C, preferably between 650°C and 750°C.
Exemples Examples
En référence à la figure 5, les écoulements dans un dispositif selon l’invention A et un dispositif de référence B opérant dans les conditions sans réaction ont été comparés afin d’étudier l’hydrodynamique. With reference to Figure 5, the flows in a device according to the invention A and a reference device B operating under reaction-free conditions were compared in order to study the hydrodynamics.
Le dispositif selon l’invention A et le dispositif de référence B comprennent : une conduite 1 , composé d’un tronçon cylindrique, d’un cône de rétrécissement et d’un tronçon cylindrique ; une chambre de mélange 2 tronconique (S3/S4 étant inférieur à 1) comprenant une pièce d'encombrement 12 définissant une zone annulaire 13 ; un réacteur à flux descendant 3 cylindrique présentant une longueur de 4.07 m et un diamètre interne de 0,42 m, et comprenant deux rangées de 8 obstacles en forme de prismes triangulaires ;
quatre premier injecteurs 5 de charge hydrocarbonée 6 positionnés en contre-courant du flux descendant 3 de particules de catalyseur avec un angle de 30° vers le haut par rapport à horizontale, la projection des premier injecteurs 5 sur un plan horizontal étant perpendiculaire à la tangente de la chambre de mélange 2 ; quatre deuxièmes injecteurs 7 de diluant 8 (vapeur d’eau) positionnés en contre-courant du flux descendant 3 de particules de catalyseur avec un angle de 30° vers le haut par rapport à l’horizontale, la projection des deuxièmes injecteurs 7 sur un plan horizontal formant un angle de 45° avec la tangente de la chambre de mélange 2, les premiers injecteurs 5 et deuxièmes injecteurs 7 étant positionnés de façon alternée (sur un plan horizontal). The device according to the invention A and the reference device B comprise: a pipe 1, composed of a cylindrical section, a narrowing cone and a cylindrical section; a frustoconical mixing chamber 2 (S3/S4 being less than 1) comprising a bulky part 12 defining an annular zone 13; a cylindrical downflow reactor 3 having a length of 4.07 m and an internal diameter of 0.42 m, and comprising two rows of 8 obstacles in the shape of triangular prisms; four first injectors 5 of hydrocarbon feed 6 positioned countercurrent to the downward flow 3 of catalyst particles with an angle of 30° upwards relative to horizontal, the projection of the first injectors 5 on a horizontal plane being perpendicular to the tangent from mixing chamber 2; four second injectors 7 of diluent 8 (water vapor) positioned against the current of the downward flow 3 of catalyst particles with an angle of 30° upwards relative to the horizontal, the projection of the second injectors 7 on a horizontal plane forming an angle of 45° with the tangent of the mixing chamber 2, the first injectors 5 and second injectors 7 being positioned alternately (on a horizontal plane).
Le dispositif selon l’invention présente un interne 11 de forme annulaire positionné de façon continue (e.g. en forme de collerette de section triangulaire à base horizontale) autour de la pièce d'encombrement centrale 12. The device according to the invention has an internal 11 of annular shape positioned continuously (e.g. in the form of a flange of triangular section with a horizontal base) around the central bulky part 12.
Le dispositif de référence B ne présente aucun interne positionné sur la pièce d'encombrement 12. The reference device B does not have any internals positioned on the bulky part 12.
Les configurations du dispositif selon l’invention A et du dispositif de référence B ont été simulées en CFD avec l’outil Barracuda© dans les conditions opératoires suivantes : le flux du catalyseur de de 729 kg/m2s ; le catalyseur présente un diamètre dso de 73 pm et une densité de grain de 1418 kg/m3 (i.e. , groupe A de la classification de Geldart) ; le débit d’air de 1 ,85 kg/s présente un ratio entre les premiers injecteurs 5 sur les deuxièmes injecteurs 7 de 70/30 ; les premiers injecteurs 5 sont positionnés à 0,3 m au-dessus de l’extrémité supérieure du réacteur à flux descendant 3 ; l’angle de rotation entre les premiers injecteurs 5 et les deuxièmes injecteurs 7 est de 45°; la vitesse de gaz en sortie des injecteurs est de 90 m/s pour les premiers injecteurs 5 et 76 m/s pour les deuxièmes injecteurs 7 ; l’écoulement est dans les conditions ambiantes sans réaction ; une pièce d'encombrement 12 est positionné au centre de la chambre de mélange 2.The configurations of the device according to the invention A and of the reference device B were simulated in CFD with the Barracuda© tool under the following operating conditions: the catalyst flow of 729 kg/m 2 s; the catalyst has a diameter dso of 73 pm and a grain density of 1418 kg/m 3 (ie, group A of the Geldart classification); the air flow rate of 1.85 kg/s has a ratio between the first injectors 5 to the second injectors 7 of 70/30; the first injectors 5 are positioned 0.3 m above the upper end of the downflow reactor 3; the angle of rotation between the first injectors 5 and the second injectors 7 is 45°; the gas speed leaving the injectors is 90 m/s for the first injectors 5 and 76 m/s for the second injectors 7; the flow is under ambient conditions without reaction; a bulky part 12 is positioned in the center of the mixing chamber 2.
La figure 5 présente la Fraction Massique des Particules, notée FMP, pour les deux configurations A et B du dispositif selon l’invention A et du dispositif de référence B, respectivement. Avantageusement, la distribution radiale du solide tout au long du réacteur à flux descendant 3 est toujours plus homogène pour le dispositif selon l’invention A par rapport
au dispositif de référence B. En outre, il est à noter une concentration importante du solide sur la zone centrale du réacteur à flux descendant 3, et une concentration faible du solide le long de la paroi du réacteur à flux descendant 3, pour le dispositif de référence B par rapport au dispositif selon l’invention A.
Figure 5 presents the Mass Fraction of Particles, denoted FMP, for the two configurations A and B of the device according to the invention A and of the reference device B, respectively. Advantageously, the radial distribution of the solid throughout the downward flow reactor 3 is always more homogeneous for the device according to the invention A compared to to the reference device B. In addition, it should be noted a significant concentration of the solid in the central zone of the downward flow reactor 3, and a low concentration of the solid along the wall of the downward flow reactor 3, for the device reference B in relation to the device according to the invention A.
Claims
1. Dispositif pour le craquage catalytique en lit fluidisé à co-courant gaz-solide descendant comprenant, de haut en bas : 1. Device for catalytic cracking in a fluidized bed with a descending gas-solid co-current comprising, from top to bottom:
- une conduite (1) adaptée pour transporter un flux descendant (4) de particules de catalyseur ; - a pipe (1) adapted to transport a downward flow (4) of catalyst particles;
- une chambre de mélange (2) connectée à la conduite (1) et adaptée pour être alimentée par la conduite (1) en flux descendant (4), la chambre de mélange (2) comprenant une paroi interne, au moins un premier injecteur (5) de charge hydrocarbonée (6) et une pièce d’encombrement centrale (12) définissant une zone annulaire (13) par laquelle les particules de catalyseur traversent la chambre de mélange (2) ; et - a mixing chamber (2) connected to the pipe (1) and adapted to be supplied by the pipe (1) with a downward flow (4), the mixing chamber (2) comprising an internal wall, at least one first injector (5) hydrocarbon feedstock (6) and a central bulk part (12) defining an annular zone (13) through which the catalyst particles pass through the mixing chamber (2); And
- un réacteur à lit fluidisé à co-courant gaz-solide descendant (3) connecté à la chambre de mélange (2) et adapté pour être alimenté par la chambre de mélange (2) en un mélange comprenant des particules de catalyseur et de la charge hydrocarbonée (6), dispositif dans lequel la chambre de mélange (2) comprend au moins un interne (11) sur et préférablement autour de la pièce d'encombrement centrale (12) et disposé sous l’au moins un premier injecteur (5) et étant adapté pour distribuer le mélange vers la paroi de la chambre de mélange (2). - a fluidized bed reactor with descending gas-solid co-current (3) connected to the mixing chamber (2) and adapted to be supplied by the mixing chamber (2) with a mixture comprising catalyst particles and hydrocarbon feed (6), device in which the mixing chamber (2) comprises at least one internal (11) on and preferably around the central bulk part (12) and arranged under the at least one first injector (5 ) and being adapted to distribute the mixture towards the wall of the mixing chamber (2).
2. Dispositif selon la revendication 1 , dans lequel l’au moins un interne (11) est adapté pour réduire la section de passage de la zone annulaire (13) de 1 % à 35%. 2. Device according to claim 1, in which the at least one internal (11) is adapted to reduce the passage section of the annular zone (13) from 1% to 35%.
3. Dispositif selon la revendication 1 ou la revendication 2, dans lequel l’au moins un interne (11) est adapté pour éviter l’accumulation de particules de catalyseur sur ledit interne (11). 3. Device according to claim 1 or claim 2, wherein the at least one internal (11) is adapted to prevent the accumulation of catalyst particles on said internal (11).
4. Dispositif selon l’une quelconque des revendications précédentes, dans lequel l’au moins un interne (11) comprend une surface supérieure oblique et descendante vers l’extérieur. 4. Device according to any one of the preceding claims, wherein the at least one internal (11) comprises an upper surface which is oblique and descends towards the outside.
5. Dispositif selon la revendication 4, dans lequel la surface supérieure oblique de l’au moins un interne (11) est droite, convexe et/ou concave. 5. Device according to claim 4, in which the oblique upper surface of the at least one internal (11) is straight, convex and/or concave.
6. Dispositif selon la revendication 4 ou la revendication 5, dans lequel la surface supérieure oblique de l’au moins un interne (11) forme un angle p compris entre 10° et 80°, par rapport l’horizontale. 6. Device according to claim 4 or claim 5, in which the oblique upper surface of the at least one internal (11) forms an angle p of between 10° and 80°, relative to the horizontal.
7. Dispositif selon l’une quelconque des revendications précédentes, dans lequel l’au moins un interne (11) est disposé sur la pièce d'encombrement centrale (12) à une distance axiale
(L) des premiers injecteurs (5) de charge hydrocarbonée (6) comprise entre 0*H3 et 1*H3, H3 étant la hauteur de l’au moins un interne (11). Dispositif selon l’une quelconque des revendications précédentes, dans lequel l’au moins un interne (11) est une pluralité d’internes (11) positionnés de façon discontinue sur la pièce d'encombrement centrale (12). Dispositif selon la revendication 8, dans lequel les internes (11) sont en forme de prisme, de cylindre, de pyramide, de cône, et/ou de tronc de cône. Dispositif selon la revendication 8 ou la revendication 9, comprenant au moins une rangée d’internes (11) disposés à une hauteur prédéterminée sur la pièce d'encombrement centrale (12). Dispositif selon la revendication 10, dans lequel le périmètre de la paroi de pièce d’encombrement centrale (12) occupé par la rangée d’internes (11), est compris entre 10% et 100%. Dispositif selon la revendication 10 ou la revendication 11 , dans lequel la rangée d’internes (11) comprend entre 1 et 16 internes (11). Dispositif selon l’une quelconque des revendications 1 à 7, dans lequel l’au moins un interne (11) est de forme annulaire, et est positionné de façon continue sur et autour de la pièce d'encombrement centrale (12). Dispositif selon la revendication 13, comprenant entre 1 et 6 rangées d’internes (11) et/ou entre 1 et 12 internes (11) de forme annulaire disposés à une hauteur prédéterminée sur la pièce d'encombrement centrale (12). Procédé pour le craquage catalytique en lit fluidisé à co-courant gaz-solide descendant comprenant les étapes suivantes : 7. Device according to any one of the preceding claims, in which the at least one internal (11) is arranged on the central bulk part (12) at an axial distance (L) of the first injectors (5) of hydrocarbon charge (6) between 0*H3 and 1*H3, H3 being the height of the at least one internal (11). Device according to any one of the preceding claims, in which the at least one internal (11) is a plurality of internals (11) positioned discontinuously on the central bulk part (12). Device according to claim 8, in which the internals (11) are in the shape of a prism, cylinder, pyramid, cone, and/or truncated cone. Device according to claim 8 or claim 9, comprising at least one row of internals (11) arranged at a predetermined height on the central bulk piece (12). Device according to claim 10, in which the perimeter of the central bulk room wall (12) occupied by the row of internals (11) is between 10% and 100%. Device according to claim 10 or claim 11, in which the row of internals (11) comprises between 1 and 16 internals (11). Device according to any one of claims 1 to 7, in which the at least one internal (11) is of annular shape, and is positioned continuously on and around the central bulky part (12). Device according to claim 13, comprising between 1 and 6 rows of internals (11) and/or between 1 and 12 internals (11) of annular shape arranged at a predetermined height on the central bulk piece (12). Process for catalytic cracking in a fluidized bed with descending gas-solid co-current comprising the following steps:
- transporter un flux descendant (4) de particules de catalyseur dans une conduite (1) ;- transport a downward flow (4) of catalyst particles in a pipe (1);
- alimenter une chambre de mélange (2) par la conduite (1) avec le flux descendant (4), la chambre de mélange (2) comprenant une paroi interne, au moins un premier injecteur (5) de charge hydrocarbonée (6) et une pièce d’encombrement centrale (12) définissant une zone annulaire (13) par laquelle les particules de catalyseur traversent la chambre de mélange (2) ;
- alimenter un réacteur à lit fluidisé à co-courant gaz-solide descendant (3) par la chambre de mélange (2) en un mélange comprenant des particules de catalyseur et de la charge hydrocarbonée (6) ; et - supply a mixing chamber (2) via pipe (1) with the downward flow (4), the mixing chamber (2) comprising an internal wall, at least one first injector (5) of hydrocarbon feed (6) and a central bulk part (12) defining an annular zone (13) through which the catalyst particles pass through the mixing chamber (2); - supply a fluidized bed reactor with a descending gas-solid co-current (3) through the mixing chamber (2) with a mixture comprising catalyst particles and hydrocarbon feed (6); And
- craquer au moins partiellement la charge hydrocarbonée (6) en présence des particules de catalyseur dans le réacteur à lit fluidisé à co-courant gaz-solide descendant (3), pour produire un effluent (10) comprenant du catalyseur au moins partiellement coké et des produits gazeux de craquage ; - at least partially crack the hydrocarbon feed (6) in the presence of the catalyst particles in the downward gas-solid co-current fluidized bed reactor (3), to produce an effluent (10) comprising at least partially coked catalyst and gaseous cracked products;
- dans lequel la chambre de mélange comprend au moins un interne (11) disposé sous l’au moins un premier injecteur (5) et étant adapté pour distribuer le mélange vers la paroi de chambre de mélange (2).
- in which the mixing chamber comprises at least one internal (11) disposed under the at least one first injector (5) and being adapted to distribute the mixture towards the mixing chamber wall (2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2210520A FR3140777A1 (en) | 2022-10-13 | 2022-10-13 | Mixing chamber for fluidized bed reactor with downward gas-solid co-current. |
FRFR2210520 | 2022-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024078942A1 true WO2024078942A1 (en) | 2024-04-18 |
Family
ID=84362258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/077468 WO2024078942A1 (en) | 2022-10-13 | 2023-10-04 | Mixing chamber for a gas-solid co-current downflow fluidised-bed reactor |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3140777A1 (en) |
WO (1) | WO2024078942A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139748A (en) * | 1990-11-30 | 1992-08-18 | Uop | FCC riser with transverse feed injection |
US5393414A (en) * | 1991-12-06 | 1995-02-28 | Uop | FCC process with enclosed vented riser |
FR2753453B1 (en) | 1996-09-18 | 1998-12-04 | Total Raffinage Distribution | PROCESS AND DEVICE FOR CATALYTIC CRACKING IN A FLUIDIZED BED OF A HYDROCARBON CHARGE, IMPLEMENTING AN IMPROVED CONTACT ZONE |
US10767117B2 (en) | 2017-04-25 | 2020-09-08 | Saudi Arabian Oil Company | Enhanced light olefin yield via steam catalytic downer pyrolysis of hydrocarbon feedstock |
US10889768B2 (en) | 2018-01-25 | 2021-01-12 | Saudi Arabian Oil Company | High severity fluidized catalytic cracking systems and processes for producing olefins from petroleum feeds |
US20220016589A1 (en) | 2020-07-16 | 2022-01-20 | Technip Process Technology, Inc. | Systems and methods for improving feed catalyst contacting in downflow reactors |
-
2022
- 2022-10-13 FR FR2210520A patent/FR3140777A1/en active Pending
-
2023
- 2023-10-04 WO PCT/EP2023/077468 patent/WO2024078942A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139748A (en) * | 1990-11-30 | 1992-08-18 | Uop | FCC riser with transverse feed injection |
US5393414A (en) * | 1991-12-06 | 1995-02-28 | Uop | FCC process with enclosed vented riser |
FR2753453B1 (en) | 1996-09-18 | 1998-12-04 | Total Raffinage Distribution | PROCESS AND DEVICE FOR CATALYTIC CRACKING IN A FLUIDIZED BED OF A HYDROCARBON CHARGE, IMPLEMENTING AN IMPROVED CONTACT ZONE |
US10767117B2 (en) | 2017-04-25 | 2020-09-08 | Saudi Arabian Oil Company | Enhanced light olefin yield via steam catalytic downer pyrolysis of hydrocarbon feedstock |
US10889768B2 (en) | 2018-01-25 | 2021-01-12 | Saudi Arabian Oil Company | High severity fluidized catalytic cracking systems and processes for producing olefins from petroleum feeds |
US20220016589A1 (en) | 2020-07-16 | 2022-01-20 | Technip Process Technology, Inc. | Systems and methods for improving feed catalyst contacting in downflow reactors |
Also Published As
Publication number | Publication date |
---|---|
FR3140777A1 (en) | 2024-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1800742B1 (en) | Reactor comprising two fluidised reaction zones and an integrated gas/solid separation system | |
AU2005322126A1 (en) | Processing of different feeds in a fluid catalytis cracking unit | |
EP0960929B1 (en) | Process and apparatus for the introduction of catalyst particles in a fluidised catalytic cracking reactor | |
EP0191695B1 (en) | Process and apparatus for the injection of a catalyst into a fluid catalytic cracking process, especially of heavy feeds | |
EP2658950B1 (en) | Catalytic cracking method for treating a fraction having a low amount of conradson carbon | |
EP1170355B1 (en) | Process and apparatus for hydrocarbon cracking with two successive reaction zones | |
EP0874880B1 (en) | Method and device for fluid catalytic cracking of hydrocarbon feedstock | |
WO2024078942A1 (en) | Mixing chamber for a gas-solid co-current downflow fluidised-bed reactor | |
US20110058989A1 (en) | Apparatus for contacting hydrocarbon feed and catalyst | |
EP0291408B1 (en) | Steam cracking process in a fluidised-bed reaction zone | |
WO2024078905A1 (en) | Gas-solid co-current downflow fluidised bed reactor with homogeneous flow | |
WO2018108751A1 (en) | Naphtha catalytic cracking method with compartments in the turbulent fluidised bed reactor | |
WO2024078904A1 (en) | Gas-solid co-current downflow fluidised bed catalytic cracking process with oriented feed injector | |
EP3897953A1 (en) | Conversion of a crude oil in a fluidised bed comprising zones with different contact times | |
EP3959006B1 (en) | Fluid distribution devices | |
AU4226293A (en) | Catalytic cracking process | |
US20110056871A1 (en) | Process for contacting hydrocarbon feed and catalyst | |
EP0911379A1 (en) | Process and apparatus for the selective vaporisation of hydrocarbon feeds in catalytic cracking | |
EP3721962A1 (en) | Three-phase reactor with recycling cup having a tapering cross section with variable-tilt angle | |
WO2020207821A1 (en) | Three-phase reactor with frustoconical recycle cup having a high angle of inclination | |
RU2818218C2 (en) | Riser system | |
WO2021115894A1 (en) | Device and method for gas-solid separation using catalytic cracking in a fluidized bed with charge loss internals | |
JP2022542603A (en) | riser reactor system | |
CA2368788A1 (en) | Hydrocracking of heavy hydrocarbon oils with improved gas and liquid distribution | |
CN1393508A (en) | Catalytic conversion process for increasing output of diesel oil and low-carbon olefin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23783432 Country of ref document: EP Kind code of ref document: A1 |