WO2024075567A1 - Diagnostic system, information processing device, diagnostic method, and program - Google Patents
Diagnostic system, information processing device, diagnostic method, and program Download PDFInfo
- Publication number
- WO2024075567A1 WO2024075567A1 PCT/JP2023/034701 JP2023034701W WO2024075567A1 WO 2024075567 A1 WO2024075567 A1 WO 2024075567A1 JP 2023034701 W JP2023034701 W JP 2023034701W WO 2024075567 A1 WO2024075567 A1 WO 2024075567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- unit
- section
- processing equipment
- calculation target
- Prior art date
Links
- 238000002405 diagnostic procedure Methods 0.000 title claims description 11
- 230000010365 information processing Effects 0.000 title claims description 7
- 238000004364 calculation method Methods 0.000 claims abstract description 89
- 238000003754 machining Methods 0.000 claims abstract description 82
- 238000000605 extraction Methods 0.000 claims abstract description 47
- 230000002159 abnormal effect Effects 0.000 claims abstract description 32
- 239000000284 extract Substances 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims description 232
- 230000005856 abnormality Effects 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 33
- 238000003745 diagnosis Methods 0.000 claims description 26
- 238000010801 machine learning Methods 0.000 claims description 10
- 238000003860 storage Methods 0.000 description 22
- 238000005520 cutting process Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 11
- 238000005070 sampling Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
Definitions
- This disclosure relates to a diagnostic system, an information processing device, a diagnostic method, and a program.
- Patent Document 1 discloses a numerical control device that determines whether or not an abnormality has occurred in machining equipment based on data on the current flowing through a motor that drives a tool.
- This numerical control device determines whether an abnormality has occurred by using data from all sections in which the motor rotates at a constant speed. However, if the abnormality occurs for a short period of time, the relatively long period of normal data and the relatively short period of abnormal data are averaged together, and there is a possibility that the abnormality will not be detected. For this reason, there is room for improvement in terms of accurately determining whether an abnormality has occurred in the processing equipment.
- This disclosure has been made in consideration of the above-mentioned circumstances, and aims to provide a diagnostic system, information processing device, diagnostic method, and program capable of accurately diagnosing the condition of processing equipment.
- the diagnostic system disclosed herein includes an operating state information acquisition unit that acquires operating state information indicating the operating state of the processing equipment to be diagnosed, an extraction unit that extracts, from the operating state information acquired by the operating state information acquisition unit, operating state information of a calculation target section that indicates a time domain determined by a preset rule within a stable processing section in which the motor rotates stably, a feature amount calculation unit that calculates a feature amount from the operating state information of the calculation target section extracted by the extraction unit, and a diagnosis unit that determines whether the processing equipment is normal or abnormal based on the feature amount calculated by the feature amount calculation unit.
- the processing equipment it is possible to determine whether the processing equipment is normal or abnormal based on the operating status information of the calculation target section determined by preset rules within the stable processing section in which the motor of the processing equipment to be diagnosed rotates stably. This makes it possible to diagnose the condition of the processing equipment with high accuracy.
- FIG. 1 is a block diagram showing a functional configuration of a diagnostic system according to a first embodiment.
- FIG. 2 is a diagram showing an example of the rotation speed of a spindle motor, an example of a cutting feed signal, and an example of a current value flowing through a spindle motor, which are acquired by the machining data acquisition device shown in FIG.
- FIG. 2 is a diagram showing an example of a correspondence table stored in the signal processing device shown in FIG. 1 .
- FIG. 2 is a block diagram showing an example of a physical configuration of the processed data acquisition device, the signal processing device, the diagnostic device, the learning model generation device, and the control device shown in FIG. 1 .
- 1 is a flowchart showing a learning model generation process performed by a diagnostic system according to an embodiment.
- FIG. 2 is a diagram showing an example of learning data generated by the signal processing device shown in FIG. 1 .
- 1 is a flowchart showing a diagnostic process performed by a diagnostic system according to an embodiment.
- the diagnostic system collects time-series status data from the processing equipment that indicates the operating status during processing. From the collected status data, the diagnostic system extracts status data for time domains in which abnormalities in the processing equipment are likely to occur according to preset rules, and calculates feature values from the extracted status data. The diagnostic system applies the calculated feature values to a machine learning model to determine whether or not there is an abnormality in the processing equipment.
- the diagnostic system 1 includes a processing data acquisition device 3 that acquires processing data including status data from the processing equipment 2 to be diagnosed, a signal processing device 4 that processes the status data and generates input data to be input to a learning model, a storage device 5 that stores various data generated by the signal processing device 4, a diagnostic device 6 that determines whether or not there is an abnormality in the processing equipment 2 based on the input data generated by the signal processing device 4, a learning model generation device 7 that generates a learning model used by the diagnostic device 6, a status indicator 8 that displays the diagnosis result by the diagnostic device 6, and a control device 9 that controls the equipment based on the determination result by the diagnostic device 6.
- the processing equipment 2 is a machine for performing processes such as cutting, cutting, and polishing on workpieces, and is, for example, a machining center, lathe, drill press, milling machine, polishing machine, turning center, electric discharge machine, laser processing machine, ultrasonic processing machine, etc.
- the processing equipment 2 is equipped with sensors such as a current sensor, vibration sensor, microphone, AE (Acoustic Emission) meter, acceleration sensor, torque sensor, rotation sensor, and temperature sensor.
- the sensors detect physical quantities such as the current value flowing through motors that drive tools such as drills, end mills, face mills, long drills, bit tips, and grinding wheels, the motor rotation speed, rotation torque, and the magnitude of vibration, and output information on the detected physical quantities.
- the processing data acquisition device 3 acquires processing data including time-series status data indicating the operating status during processing from the processing equipment 2, temporarily stores it, and provides a certain amount of processing data as a bundle to the signal processing device 4.
- the processing data acquired by the processing data acquisition device 3 includes status data indicating the operating status of the processing equipment 2, such as information on physical quantities detected by sensors and instruction signals output from the control device 9 that controls the operation of the processing equipment 2, and processing-related information, which is information for identifying the processing process, such as the processing program number, tool number, power consumption, coordinate information of the processing axis, hydraulic and pneumatic pressure, battery voltage, and number of days the equipment has been in use.
- the processing data acquisition device 3 is an example of an operating status information acquisition unit and a processing identification information acquisition unit, the status data is an example of operating status information, and the processing-related information is an example of processing identification information.
- the signal processing device 4 processes the time-series status data indicating the operating status of the processing equipment 2 transmitted from the processing data acquisition device 3, and generates input data to be input to the learning model. Specifically, the signal processing device 4 performs signal processing such as amplifying the analog signal acquired from the sensor by the processing data acquisition device 3, filtering using a high-pass filter or a low-pass filter, and A/D (Analog to Digital) conversion based on a sampling frequency and resolution preset by the user. The signal processing device 4 also performs cleansing processing such as removing noise and abnormal values and filling in missing values.
- the signal processing device 4 extracts data of the calculation target section, which is the section used to calculate the feature amount, from the state data after processing. Specifically, as illustrated in FIG. 3, the signal processing device 4 stores a correspondence table, which is information for identifying which extraction rule is applied from the extraction rules defined by the user in each machining process. The signal processing device 4 refers to this correspondence table, identifies an extraction rule from the machining program number and tool number included in the machining data, and executes the identified extraction rule to extract state data of the calculation target section. As shown in FIG. 3, the correspondence table includes items for the machining program number that identifies the machining program, the tool number that identifies the tool, and the extraction rule ID that identifies the extraction rule. In the illustrated example, it is shown that the extraction rule ID "r1" is applied to the machining process executed by the machining program number "N001" and the tool number "D01".
- FIG. 2 shows the transition of the status data when cutting processing is started, a temporary dimensional defect occurs when the workpiece and the tool come into contact with each other after the actual processing starts, and then normal operation is restored.
- the status data includes the rotation speed of the spindle motor equipped in the processing equipment 2 shown in FIG. 2, the cutting feed signal output from the control device 9, and the current value flowing through the spindle motor.
- the processing equipment 2 rotates the spindle motor and accelerates it to a rotation speed according to the rotation speed command by the processing program.
- this motor acceleration section an acceleration torque is generated, and the current flowing through the spindle motor temporarily increases, and when the rotation of the motor reaches a steady state, the current decreases.
- the actual processing starts by the cutting feed signal.
- a load is applied to the spindle motor, so the current flowing through the spindle motor increases again.
- the current flowing through the spindle motor temporarily increases in the abnormality occurrence section where the dimensional defect occurs. After that, the operation returns to normal, so the current value settles to a steady level. After that, when the actual machining is completed, the machining equipment 2 performs an operation to decelerate the spindle motor.
- a calculation target section which is a time region in which an abnormality is likely to occur, i.e., the probability or frequency of occurrence is high, is specified in advance, and a rule is defined for extracting state data from the calculation target section for each machining process.
- the rules are arbitrary, but may include, for example, an event that acts as a trigger to identify the interval to be calculated, and information including the time from the trigger to the start and end of the interval to be calculated. If the example in Figure 2 occurs frequently, the trigger that defines the interval to be calculated may be, for example, the cutting feed signal changing from low to high, the start of the interval to be calculated being synchronized with the trigger, and the end being set to the timing when the time t has elapsed from the trigger.
- the user specifies the type of machining equipment and tools, the machining content, etc., and specifies the time region in each machining process where abnormalities are likely to occur, and sets the extraction rules.
- the user may determine the calculation target section by capturing the machining phenomenon with a high-speed camera to specify the timing of abnormality occurrence, observing the behavior of the status data to specify the timing of abnormality occurrence, or setting multiple candidate sections for the calculation target section and selecting the one with the best accuracy of the diagnosis results obtained by applying each section data to the learning model as the calculation target section.
- an extraction rule is defined to extract status data for 5 seconds from the time the tool and workpiece come into contact, and in the case of machining where abnormalities are likely to occur at the end of actual machining, an extraction rule is defined to extract status data for 5 seconds before and after the tool and workpiece separate. Note that two or more calculation target sections may be set for one process.
- a combination of a machining program number and a tool number is used as information for identifying each machining process, but any information that can identify the machining process can be used.
- the signal processing device 4 calculates the feature amount from the extracted state data of the calculation target section.
- the feature amount is, for example, the maximum value, minimum value, average value, standard deviation, variance, kurtosis, skewness, etc. of the current value.
- the feature amount may be calculated from the frequency, magnitude, temperature, etc. of vibration, sound, or AE.
- frequency analysis may be performed to calculate the feature amount from the magnitude of a specific frequency.
- the signal processing device 4 calculates the feature amount for each cycle, which is the period from the start to the end of processing of one workpiece.
- the signal processing device 4 generates input data by associating a combination of the calculated multiple feature amounts with the cycle number indicating which cycle it is.
- the signal processing device 4 associates the generated input data with processing-related information including the processing program number, tool number, etc. output from the processing data acquisition device 3 and stores them in the storage device 5. In addition, when multiple processing steps are performed in one cycle, the feature amount may be calculated for each processing step, and input data may be generated for each processing step.
- the signal processing device 4 is an example of an extraction unit and a feature calculation unit.
- the storage device 5 stores input data including the feature values and cycle counts sent from the signal processing device 4 in association with machining-related information including the machining program number, tool number, etc.
- the diagnostic device 6 diagnoses the processing equipment 2 using the input data generated by the signal processing device 4 and stored in the storage device 5 and the learning model generated by the learning model generation device 7. Specifically, the diagnostic device 6 applies the input data generated based on the status data acquired sequentially during processing of the processing equipment 2 to the learning model, and outputs a diagnostic result that determines whether the processing equipment 2 is normal or not. The diagnostic device 6 transmits the diagnostic result to the status display 8 and the control device 9.
- the diagnostic device 6 may be an edge computer installed at the production site, or may be a computer connected via the Internet from an office away from the production site.
- the diagnostic device 6 is an example of a diagnostic unit.
- the learning model generating device 7 generates a learning model for determining whether or not there is an abnormality in the processing equipment 2. Specifically, the learning model generating device 7 generates a learning model by machine learning by providing the learning model with learning data including input data generated by the signal processing device 4 and label information indicating whether each input data is normal data or abnormal data. The user determines whether the processing process of each cycle performed by actual processing or simulation is normal or not, and creates learning data by assigning label information indicating normal or abnormal to the feature amount corresponding to each cycle.
- the learning model is a model according to a machine learning algorithm such as a decision tree, k-nearest neighbor method, or support vector machine, and outputs judgment result information that judges whether the processing equipment 2 to be inspected is normal or abnormal using the feature amount calculated from the status data as input.
- the input data included in the learning data does not have to be status data acquired from the processing equipment 2, and for example, simulated data generated by a computer may be used depending on the type of processing equipment 2 and the processing content.
- the label information included in the learning data is not limited to two patterns, normal and abnormal, and three or more patterns of labels may be assigned by further subdividing the abnormal label into dimensional abnormality, poor surface quality, etc.
- the learning model generation device 7 is an example of a learning model generation unit.
- the status display 8 displays the diagnosis results from the diagnostic device 6.
- the status display 8 is, for example, an operation panel installed on the processing equipment 2.
- the status display 8 notifies the user of the occurrence of an abnormality by displaying information indicating that an abnormality has been diagnosed on a screen.
- the status display 8 may also include a lamp, a speaker, etc., and may light up a lamp and emit an alarm from the speaker when an abnormality is diagnosed.
- the status display 8 may have a function of automatically sending an email indicating that an abnormality has been diagnosed to a pre-set email address.
- the control device 9 controls the operation of the processing equipment 2.
- the control device 9 is, for example, a numerical control device that controls the processing equipment 2 by commands based on an NC (Numerical Control) program.
- NC Genetic Control
- the control device 9 receives diagnosis result information from the diagnosis device 6 indicating that an abnormality has occurred in the processing equipment 2, the control device 9 stops the processing equipment 2.
- the control device 9 may not completely stop the processing equipment 2, but may limit some of the functions of the processing equipment 2 depending on the degree of the abnormality occurring in the processing equipment 2.
- the control device 9 is an example of a control unit.
- the processed data acquisition device 3, the signal processing device 4, the diagnostic device 6, the learning model generation device 7, and the control device 9 physically comprise, as shown in FIG. 4, a CPU (Central Processing Unit) 11 that executes processing according to a program, a RAM (Random Access Memory) 12 which is a volatile memory, a ROM (Read Only Memory) 13 which is a non-volatile memory, a storage unit 14 that stores data, an input unit 15 that accepts input of information, and a communication unit 16 that transmits and receives information, which are connected via an internal bus 99.
- a CPU Central Processing Unit
- RAM Random Access Memory
- ROM Read Only Memory
- the CPU 11 executes various processes by reading out the programs stored in the storage unit 14 into the RAM 12 and executing them.
- the main functions provided by the programs are: processing the status data sent from the processing data acquisition device 3 by the signal processing device 4 to extract data for the calculation target section and calculate feature quantities from the extracted data; diagnosis processing by the diagnosis device 6 to determine whether the processing equipment 2 is normal; and generation of a learning model by the learning model generation device 7.
- RAM 12 is used as a work area for CPU 11.
- ROM 13 stores the control program executed by CPU 11, BIOS (Basic Input Output System), etc.
- the storage unit 14 includes a hard disk drive, stores the programs executed by the CPU 11, and stores various data used when executing the programs.
- the storage unit 14 stores the processing data acquired from the processing equipment 2 by the processing data acquisition device 3, the input data generated by the signal processing device 4, the learning model generated by the learning model generation device 7, and the learning data used to learn the learning model.
- the input unit 15 is a user interface equipped with a keyboard, mouse, communication device, etc.
- the communication unit 16 is a network termination device or a wireless communication device that connects to the network, and a serial interface or a LAN (Local Area Network) interface that connects to them.
- the processing equipment 2 to be diagnosed by the diagnostic system 1 is a cutting machine, and an example will be described in which the presence or absence of an abnormality in the processing equipment 2 is determined based on feature values calculated from the current flowing through a spindle motor with a drill attached at the tip.
- the diagnostic system 1 calculates the feature quantity from the current data in the stable machining section using the current data of the calculation target section, which is a time region previously specified by the user.
- the process of specifying the calculation target section will be described.
- the user observes the tendency of abnormality occurrence in the machining equipment 2 by, for example, using a video taken by a high-speed camera, and specifies the time region where abnormality is likely to occur. For example, the user specifies that abnormality is likely to occur in 5 seconds from the time when the tool and the workpiece come into contact.
- the user sets an extraction rule for extracting current data in the specified time region in the signal processing device 4.
- the user sets an extraction rule for extracting current data for 5 seconds from the time when the cutting signal is output in the signal processing device 4.
- the user specifies the calculation target section, which is a time region where abnormality is likely to occur, for each machining process according to the type of machining equipment and tool owned and the machining content, and sets an extraction rule for extracting current data in the specified calculation target section.
- the user creates a correspondence table, which is information for identifying which extraction rule is applied in each machining process, and stores it in the signal processing device 4.
- the signal processing device 4 refers to this correspondence table, identifies an extraction rule from the machining program number and tool number included in the machining data, and executes the identified extraction rule to extract current data in the calculation target section.
- the correspondence table includes items of a machining program number that identifies a machining program, a tool number that identifies a tool, and an extraction rule ID that identifies an extraction rule.
- the machining program number "N001” is information that identifies the machining program as a cutting machining program
- the tool number "D01” is information that identifies the tool as a drill.
- the extraction rule ID “r1” is applied to the machining process executed by the machining program number "N001” and the tool number "D01", and indicates that the current data in the calculation target section is extracted.
- the extraction rule of the extraction rule ID "r1” is, for example, a rule that extracts state data for 5 seconds from the time when the cutting feed signal is transmitted as the calculation target section.
- (Learning model generation process) Next, a learning model generation process in which the diagnostic system 1 generates a learning model for determining whether or not there is an abnormality in the machining equipment 2 will be described with reference to Fig. 5.
- the learning model generation process is executed before the first diagnostic process is performed, when it becomes necessary to update the learning model due to replacement of the machining equipment 2 or a tool, when it is desired to improve the accuracy of the determination by using more data, etc.
- one cycle is defined as the period from the start to the end of machining of one workpiece, and a learning model is generated based on a feature amount calculated from current data for each cycle.
- the user presets in the signal processing device 4 the sampling frequency and resolution for A/D conversion of the analog signal output from the current sensor that measures the current flowing through the spindle motor.
- the higher the sampling frequency the more accurately the analog signal can be traced, and the digital signal closer to the true signal can be input to the computer for use in learning.
- the frequency range F_range of the FFT performed after A/D conversion is determined by the following formula 1, it is better to increase the sampling frequency when a wide frequency range is desired.
- F_range fs/2.56 (fs: sampling frequency) Equation 1
- the sampling frequency it is considered advisable to set the sampling frequency to about 10 times the frequency of the analog signal in order to suppress the occurrence of aliasing, but in order to obtain a more accurate learning model, it is preferable to set it to 1,000 times or more the frequency of the analog signal.
- the learning model generation device 7 starts the process.
- the machining data acquisition device 3 acquires machining data including status data indicating the current value flowing through the spindle motor, the motor rotation speed, and the cutting feed signal, as well as machining-related information such as the machining program number and tool number (step S11). For each cycle, which is the period from the start to the end of machining of one workpiece, the machining data acquisition device 3 lumps together the status data and outputs it to the signal processing device 4 together with the machining-related information.
- the signal processing device 4 performs signal processing on the received state data, and extracts state data of the calculation target section from the processed state data (step S12). Specifically, the signal processing device 4 converts the analog signal included in the state data transmitted from the machining data acquisition device 3 into a digital signal at a preset sampling frequency. Note that the analog signal before being converted into a digital signal may be subjected to signal amplification processing, high-pass filtering, and low-pass filtering. Next, the signal processing device 4 acquires the machining program number and tool number included in the machining data output from the machining data acquisition device 3 in step S11, and identifies the extraction rule by referring to the correspondence table.
- the signal processing device 4 acquires information on the program number "N001" and the tool number "D01", it identifies the extraction rule ID "r1" as the extraction rule by referring to the correspondence table shown in FIG. 3.
- the signal processing device 4 acquires the rotation speed of the spindle motor included in the state data after signal processing, and identifies the stable machining section in which the rotation speed is a constant speed section.
- the signal processing device 4 reads out the extraction rule with the specified extraction rule ID "r1" and executes the extraction rule to extract status data for 5 seconds from the time the cutting feed signal is sent as the calculation target section, and extracts the current data for the calculation target section from the current data for the stable machining section.
- the signal processing device 4 then performs a cleansing process on the current data in the extracted calculation target section (step S13). Specifically, the signal processing device 4 removes noise and abnormal values from the current data and performs a process to complement missing values.
- the signal processing device 4 calculates feature quantities from the processing data cleansed in step S13 (step S14). Specifically, the signal processing device 4 calculates feature quantities by determining the average, maximum, minimum, standard deviation, variance, kurtosis, skewness, etc. of the current values in the cleansed calculation target section. The signal processing device 4 calculates feature quantities for each cycle from the start to the end of cutting processing of one workpiece. The signal processing device 4 sequentially accumulates the calculated feature quantities and the current data used to calculate the feature quantities in the storage device 5, together with the number of cycles indicating which processing has been performed.
- the learning model generation device 7 generates learning data (step S15). Specifically, based on the input from the user, the learning model generation device 7 generates learning data by assigning labels to the feature amounts for each cycle stored in the storage device 5 in step S14, indicating whether the data is data when the processing equipment 2 is operating normally or data when an abnormality is present. As illustrated in FIG. 6, the learning data includes a "cycle count” indicating the number of times the workpiece has been processed, "feature amount A", “feature amount B", ... indicating a data set of multiple feature amounts for each cycle calculated by the signal processing device 4 in step S14, and a "state label” indicating the label assigned to the feature amount for each cycle. The learning model generation device 7 stores the generated learning data in the storage device 5.
- the learning model generation device 7 generates a learning model (step S16).
- the learning model is a model according to a machine learning algorithm such as a decision tree, k-nearest neighbor method, or support vector machine, and outputs judgment result information that judges whether the processing equipment 2 to be inspected is normal or abnormal using the feature amount for each cycle calculated from the current data as input.
- the learning model generation device 7 generates a learning model by performing machine learning using learning data including the feature amount for each cycle contained in the learning data generated in step S15 and label information indicating normality or abnormality assigned to the feature amount for each cycle.
- the learning model generation device 7 stores the generated learning model in the storage device 5.
- the learning model generated by the above-mentioned learning model generation process is stored in the storage device 5, and the learning model stored in the storage device 5 is pre-installed in the diagnostic device 6 by the user.
- Steps S21 to S24 of the diagnostic process are similar to steps S11 to S14 of the learning model generation process shown in FIG. 5, and sequentially acquire machining data and calculate feature values for each cycle of the cutting process from the current data included in the machining data.
- the diagnostic device 6 judges whether the target processing equipment 2 is normal or abnormal (step S25). Specifically, the diagnostic device 6 inputs the feature amount calculated in step S24 into a learning model, and obtains judgment result information indicating whether the processing equipment 2 is normal or abnormal.
- step S26 If the judgment result information indicates that the processing equipment 2 is normal (step S26; Yes), the diagnostic device 6 determines whether the processing process has ended, and if it determines that it has ended (step S27; Yes), it ends the diagnostic process. If the diagnostic device 6 determines that the processing process has not ended (step S27; No), it returns to step S21 and obtains the processing data for the next cycle (step S21).
- step S26 if the judgment result information indicates that the processing equipment 2 is abnormal (step S26; No), the diagnostic device 6 notifies the status display 8 and the control device 9 that it has determined that the processing equipment 2 is abnormal (step S28), and ends the process. Thereafter, the status display 8 notifies the user of the occurrence of an abnormality by displaying on the screen information indicating that the processing equipment 2 has been diagnosed as abnormal. The control device 9 stops the processing equipment 2.
- the diagnostic system 1 extracts status data for the calculation target section, which is a time region in which abnormalities are likely to occur, from the status data for the section from the start to the end of machining of one workpiece, and calculates the feature values.
- the diagnostic system 1 determines whether or not there is an abnormality in the machining equipment 2 based on the calculated feature values.
- the feature values calculated from the status data for the calculation target section have a larger difference between normal and abnormal values than feature values calculated from all data within the machining section, making it possible to accurately determine whether or not there is an abnormality.
- the diagnostic system 1 determines the presence or absence of an abnormality using less data, there is no need to store and process a large amount of data. This improves the processing speed of the diagnostic process and makes it possible to save on storage capacity.
- the functions of the diagnostic system 1 have been described as being executed by individual devices, namely the processed data acquisition device 3, the signal processing device 4, the storage device 5, the diagnostic device 6, the learning model generation device 7, the status display device 8, and the control device 9, but this is not limited thereto, and the functions of each device may be executed by an information processing device that is a single computer. Also, each process of the diagnostic system 1 may be executed by multiple computers that execute the functions of several devices, such as executing the functions of the processed data acquisition device 3 and the signal processing device 4 by a single computer, and executing the functions of the diagnostic device 6 and the learning model generation device 7 by a single computer.
- the diagnostic system 1 is provided with a learning model generating device 7, but the diagnostic system 1 does not need to be provided with a learning model generating device 7.
- the teacher data may be supplied to a machine learning device prepared on another computer to generate a learning model, which may then be set in the diagnostic device 6.
- the diagnostic device 6 uses a learning model to determine whether or not there is an abnormality in the processing equipment 2, but this is not limited to the above.
- the presence or absence of an abnormality in the processing equipment 2 may be determined by a diagnostic rule in which a threshold is set for a feature amount calculated from the state data, and it is determined that an abnormality has occurred in the processing equipment 2 if the feature amount is equal to or greater than the threshold.
- the user determines the threshold value for the feature amount using the state data in which the abnormality has occurred, and sets the diagnostic rule in the diagnostic device 6.
- the diagnostic device 6 reads out the set diagnostic rule and determines whether or not there is an abnormality by comparing the feature amount with the threshold.
- the status display 8 may not only display the diagnosis results, but also the processed data stored in the storage device 5. Furthermore, since the feature values calculated from the status data are stored sequentially in the storage device 5 during the diagnosis process, the feature values may be displayed in real time using trend graphs, scatter diagrams, etc.
- the diagnostic device 6 may not only determine whether an abnormality is currently occurring in the processing equipment 2, but may also predict when an abnormality will occur. Specifically, the diagnostic device 6 creates a trend graph of the feature quantities, performs linear regression analysis or nonlinear regression analysis, and fits an approximation curve to predict future feature quantity values and calculate the time until an abnormality occurs. When the time lag becomes short and exceeds a preset threshold, the status display 8 may notify the operator of an alarm or display a message urging maintenance. The status display 8 may also display the threshold along with the trend graph.
- the information stored in the storage device 5 may be managed collectively by a cloud server on the network, and the signal processing device 4, diagnostic device 6, and learning model generation device 7 may access the cloud server as necessary to read and write information.
- the diagnostic system 1 may not need to include a storage device 5.
- the signal processing of data by the signal processing device 4 and the learning model generation processing by the learning model generation device 7 may be performed on the cloud using information stored in the cloud server.
- the signal processing device 4 sets one or more calculation intervals for each period from the start to the end of machining of one workpiece, but if one cycle includes multiple machining processes, a calculation interval may be set for each machining process, and the quality of the machining may be determined for each machining process.
- the signal processing device 4 has been described with a focus on an example in which the state data of the calculation target section is extracted based on a preset extraction rule, but a section in which the difference between normal processing and abnormality occurrence is likely to appear may be specified as the calculation target section based on the output value from the sensor installed in the processing equipment 2.
- the signal processing device 4 obtains the difference in the sensor output value between the normal processing section and the abnormality occurrence section from multiple time-series state data including the sensor output value when the abnormality occurs.
- the difference in the sensor output value is obtained, for example, from the difference between the average value, maximum value, minimum value, etc. of the current value of the normal processing section and the abnormality occurrence section.
- the signal processing device 4 specifies the calculation target section based on the abnormality occurrence section of the state data in which the obtained difference is large.
- the abnormality occurrence section of the state data in which the difference is the largest may be specified as the calculation target section from multiple state data, or a section such as 3 seconds before and after or 5 seconds before and after the abnormality occurrence section may be specified as the calculation target section, or a time region including each abnormality occurrence section of multiple state data in which the difference is large, or a time region overlapping each abnormality occurrence section may be specified as the calculation target section.
- the calculation target interval may be specified as the time region that includes each of the abnormality occurrence intervals, between 8 seconds and 20 seconds after the start of actual machining, or the calculation target interval may be specified as the time region that overlaps each of the abnormality occurrence intervals, between 12 seconds and 15 seconds after the start of actual machining.
- the signal processing device 4 may then specify the calculation target interval for each machining process and set an extraction rule for extracting the status data of the specified calculation target interval. In the process of step S12 or step S22, the signal processing device 4 may extract the status data of the calculation processing interval specified for each machining process from the status data acquired by the machining data acquisition device 3.
- the signal processing device 4 may also divide the stable processing section shown in FIG. 2 into a plurality of sections, calculate the feature value for each of the divided sections, and identify the calculation target section according to the calculated feature value for each section. For example, the signal processing device 4 divides the plurality of state data acquired by the processing data acquisition device 3 into a first section, a second section, a third section, ... by a set number such as 5 or 10. Next, the signal processing device 4 calculates the feature value for each divided section for each state data.
- the signal processing device 4 may determine the variation in the feature value for each section of the plurality of state data, the first section, the second section, the third section, ..., and compare the respective variations to identify the section with the largest variation as the calculation target section, or determine the average value of the feature value for each section and identify the section with the largest difference in the average value with other sections as the calculation target section.
- the processed data acquisition device 3, the signal processing device 4, the storage device 5, the diagnostic device 6, and the learning model generation device 7 can be realized using a normal computer system, rather than using dedicated devices.
- a program for realizing each function can be stored and distributed on a computer-readable recording medium such as a CD-ROM (Compact Disc Read Only Memory) or a DVD-ROM (Digital Versatile Disc Read Only Memory), and a computer that can realize each of the above-mentioned functions can be configured by installing this program on a computer.
- an operation status information acquisition unit that acquires operation status information indicating an operation status of the processing equipment to be diagnosed
- an extracting unit that extracts, from the operation state information acquired by the operation state information acquiring unit, operation state information of a calculation target section that indicates a time region determined by a preset rule within a stable processing section in which the motor rotates stably
- a feature amount calculation unit that calculates a feature amount from the motion state information of the calculation target section extracted by the extraction unit
- a diagnosis unit that determines whether the processing equipment is normal or abnormal based on the feature amount calculated by the feature amount calculation unit
- a diagnostic system comprising:
- the diagnosis unit inputs the feature amount calculated by the feature amount calculation unit into a preset machine learning model, and based on the output obtained, determines whether the processing equipment to be diagnosed is normal or abnormal. 2.
- the diagnostic device further includes a processing identification information acquisition unit that acquires processing identification information that identifies processing content performed by the diagnostic target processing equipment, the extraction unit specifies a rule for extracting the operation state information of the calculation target section from the operation state information of the processing equipment to be diagnosed based on correspondence information that associates the processing content with a rule for extracting the operation state information of the calculation target section, and executes the specified rule to extract the operation state information to be used in calculating the feature amount. 4.
- a control unit that controls an operation of the processing equipment to be diagnosed When the diagnosis unit determines that the processing equipment to be diagnosed is abnormal, the diagnosis unit notifies the control unit of a determination result indicating that the processing equipment is abnormal; When the control unit receives the determination result from the diagnosis unit, the control unit stops operation of a part or all of the processing equipment to be diagnosed. 5.
- the operational status information includes a sensor output indicating a physical quantity detected by a sensor installed in the processing equipment, the extraction unit obtains a difference between the sensor output in a normal processing section and the sensor output in the abnormality occurrence section from a plurality of pieces of operation status information including operation states of the abnormality occurrence section of the processing equipment, identifies the calculation target section based on the abnormality occurrence section of the operation status information including a sensor output in which the obtained difference is large, and extracts operation status information of the identified calculation target section from the operation status information acquired by the operation status information acquisition unit. 6.
- the extraction unit divides the stable processing section of the operation status information acquired by the operation status information acquisition unit into a plurality of sections, calculates a feature amount for each of the divided sections, compares the calculated feature amounts for each of the sections, and based on a comparison result, identifies the calculation target section, and extracts operation status information of the identified calculation target section. 7.
- An information processing device comprising:
- Appendix 9 A step of extracting operation status information of a calculation target section, which indicates a time region determined by a preset rule within a stable machining section in which a motor rotates stably, from operation status information indicating an operation status of the machining equipment to be diagnosed; and determining whether the processing equipment to be diagnosed is normal or abnormal based on the extracted operating state information of the calculation target section.
- 1 Diagnostic system 1 Diagnostic system, 2 Machining equipment, 3 Machining data acquisition device, 4 Signal processing device, 5 Storage device, 6 Diagnostic device, 7 Learning model generation device, 8 Status display device, 9 Control device, 99 Internal bus, 11 CPU, 12 RAM, 13 ROM, 14 Memory unit, 15 Input unit, 16 Communication unit.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
This diagnostic system (1) comprises: an operation state information acquisition unit that acquires operation state information that indicates an operation state of a machining facility (2) to be diagnosed; an extraction unit that extracts, from the operation state information that has been acquired by the operation state information acquisition unit, operation state information of a calculation target interval that indicates a time region that is determined according to a preset rule, in a stable machining interval in which a motor rotates in a stable manner; a feature amount calculation unit that calculates a feature amount from the operation state information of the calculation target interval that has been extracted by the extraction unit; and a diagnostic unit that determines, on the basis of the feature amount that has been calculated by the feature amount calculation unit, whether the machining facility 2 is normal or abnormal.
Description
本開示は、診断システム、情報処理装置、診断方法、及びプログラムに関する。
This disclosure relates to a diagnostic system, an information processing device, a diagnostic method, and a program.
製造現場の加工設備からデータを収集し、収集したデータを用いて加工設備の状態を診断する技術が知られている。例えば、特許文献1は、工具を駆動するモータに流れる電流データに基づいて加工設備の異常発生の有無を判定する数値制御装置を開示する。
Technology is known that collects data from machining equipment at manufacturing sites and uses the collected data to diagnose the condition of the machining equipment. For example, Patent Document 1 discloses a numerical control device that determines whether or not an abnormality has occurred in machining equipment based on data on the current flowing through a motor that drives a tool.
この数値制御装置は、モータが一定速度で回転している全ての区間のデータを用いて異常発生の判定を行っている。しかしながら、異常が発生する時間が短い場合、相対的に長時間の正常時のデータと相対的に短時間の異常を含むデータとが平均化され、異常を検知できない可能性がある。このため、加工設備の異常発生の有無を精度高く判定するという観点からは改善の余地があった。
This numerical control device determines whether an abnormality has occurred by using data from all sections in which the motor rotates at a constant speed. However, if the abnormality occurs for a short period of time, the relatively long period of normal data and the relatively short period of abnormal data are averaged together, and there is a possibility that the abnormality will not be detected. For this reason, there is room for improvement in terms of accurately determining whether an abnormality has occurred in the processing equipment.
本開示は、上記実情に鑑みてなされたものであり、精度良く加工設備の状態を診断することが可能な診断システム、情報処理装置、診断方法、及びプログラムを提供することを目的とする。
This disclosure has been made in consideration of the above-mentioned circumstances, and aims to provide a diagnostic system, information processing device, diagnostic method, and program capable of accurately diagnosing the condition of processing equipment.
上記目的を達成するために、本開示にかかる診断システムは、診断対象の加工設備の動作状態を示す動作状態情報を取得する動作状態情報取得部と、動作状態情報取得部により取得された動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する抽出部と、抽出部により抽出された計算対象区間の動作状態情報から、特徴量を算出する特徴量算出部と、特徴量算出部により算出された特徴量に基づいて、加工設備が正常か異常かを判定する診断部と、を備える。
In order to achieve the above object, the diagnostic system disclosed herein includes an operating state information acquisition unit that acquires operating state information indicating the operating state of the processing equipment to be diagnosed, an extraction unit that extracts, from the operating state information acquired by the operating state information acquisition unit, operating state information of a calculation target section that indicates a time domain determined by a preset rule within a stable processing section in which the motor rotates stably, a feature amount calculation unit that calculates a feature amount from the operating state information of the calculation target section extracted by the extraction unit, and a diagnosis unit that determines whether the processing equipment is normal or abnormal based on the feature amount calculated by the feature amount calculation unit.
本開示によれば、診断対象の加工設備が備えるモータが安定して回転する安定加工区間内における、予め設定された規則により定められた計算対象区間の動作状態情報に基づいて、加工設備が正常か異常かを判定する。そのため、精度良く加工設備の状態を診断することができる。
According to the present disclosure, it is possible to determine whether the processing equipment is normal or abnormal based on the operating status information of the calculation target section determined by preset rules within the stable processing section in which the motor of the processing equipment to be diagnosed rotates stably. This makes it possible to diagnose the condition of the processing equipment with high accuracy.
以下、本開示の実施の形態に係る診断システム、情報処理装置、診断方法、及びプログラムについて、図面を参照して説明する。なお、図中同一または相当する部分には同じ符号を付す。
Below, the diagnostic system, information processing device, diagnostic method, and program according to the embodiments of the present disclosure will be described with reference to the drawings. Note that the same reference numerals are used to denote the same or corresponding parts in the drawings.
本実施の形態に係る診断システムは、加工設備から加工中の動作状態を示す時系列の状態データを収集する。診断システムは、収集した状態データの中から、予め設定されたルールに従い、加工設備の異常が起きやすい時間領域の状態データを抽出し、抽出した状態データから特徴量を算出する。診断システムは、算出した特徴量を機械学習モデルに適用して、加工設備の異常の有無を判定する。
The diagnostic system according to this embodiment collects time-series status data from the processing equipment that indicates the operating status during processing. From the collected status data, the diagnostic system extracts status data for time domains in which abnormalities in the processing equipment are likely to occur according to preset rules, and calculates feature values from the extracted status data. The diagnostic system applies the calculated feature values to a machine learning model to determine whether or not there is an abnormality in the processing equipment.
本実施の形態に係る診断システム1は、図1に示す通り、診断対象の加工設備2から状態データを含む加工データを取得する加工データ取得装置3と、状態データを処理して、学習モデルに入力する入力データを生成する信号処理装置4と、信号処理装置4により生成された各種データを記憶する記憶装置5と、信号処理装置4により生成された入力データを基に、加工設備2の異常の有無を判定する診断装置6と、診断装置6で利用される学習モデルを生成する学習モデル生成装置7と、診断装置6による診断結果を表示する状態表示器8と、診断装置6による判定結果に基づいて設備を制御する制御装置9と、を備える。
As shown in FIG. 1, the diagnostic system 1 according to this embodiment includes a processing data acquisition device 3 that acquires processing data including status data from the processing equipment 2 to be diagnosed, a signal processing device 4 that processes the status data and generates input data to be input to a learning model, a storage device 5 that stores various data generated by the signal processing device 4, a diagnostic device 6 that determines whether or not there is an abnormality in the processing equipment 2 based on the input data generated by the signal processing device 4, a learning model generation device 7 that generates a learning model used by the diagnostic device 6, a status indicator 8 that displays the diagnosis result by the diagnostic device 6, and a control device 9 that controls the equipment based on the determination result by the diagnostic device 6.
加工設備2は、被加工物に対して、切削、切断、研磨等の加工を施すための機械であり、例えば、マシニングセンタ、旋盤、ボール盤、フライス盤、研磨盤、ターニングセンタ、放電加工機、レーザ加工機、超音波加工機等である。加工設備2には、電流センサ、振動センサ、マイクロフォン、AE(Acoustic Emission)計、加速度センサ、トルクセンサ、回転センサ、温度センサ等のセンサが設置されている。センサは、ドリル、エンドミル、フェイスミル、ロングドリル、バイトチップ、砥石等の工具を駆動するモータに流れる電流値、モータ回転数、回転トルク、振動の大きさ等の物理量を検知し、検知した物理量の情報を出力する。
The processing equipment 2 is a machine for performing processes such as cutting, cutting, and polishing on workpieces, and is, for example, a machining center, lathe, drill press, milling machine, polishing machine, turning center, electric discharge machine, laser processing machine, ultrasonic processing machine, etc. The processing equipment 2 is equipped with sensors such as a current sensor, vibration sensor, microphone, AE (Acoustic Emission) meter, acceleration sensor, torque sensor, rotation sensor, and temperature sensor. The sensors detect physical quantities such as the current value flowing through motors that drive tools such as drills, end mills, face mills, long drills, bit tips, and grinding wheels, the motor rotation speed, rotation torque, and the magnitude of vibration, and output information on the detected physical quantities.
加工データ取得装置3は、加工設備2から、加工中の動作状態を示す時系列の状態データを含む加工データを取得して一時的に記憶し、一定量の加工データをひとまとまりにして、信号処理装置4に提供する。加工データ取得装置3が取得する加工データは、センサが検知した物理量の情報、加工設備2の動作を制御する制御装置9から出力される指示信号等の加工設備2の動作状態を示す状態データと、加工プログラム番号、工具番号、消費電力、加工軸の座標情報、油圧空圧、バッテリ電圧、設備使用日数等の加工工程を特定するための情報である加工関係情報と、を含む。なお、加工データ取得装置3は、動作状態情報取得部、および、加工識別情報取得部の一例であり、状態データは、動作状態情報の一例であり、加工関係情報は、加工識別情報の一例である。
The processing data acquisition device 3 acquires processing data including time-series status data indicating the operating status during processing from the processing equipment 2, temporarily stores it, and provides a certain amount of processing data as a bundle to the signal processing device 4. The processing data acquired by the processing data acquisition device 3 includes status data indicating the operating status of the processing equipment 2, such as information on physical quantities detected by sensors and instruction signals output from the control device 9 that controls the operation of the processing equipment 2, and processing-related information, which is information for identifying the processing process, such as the processing program number, tool number, power consumption, coordinate information of the processing axis, hydraulic and pneumatic pressure, battery voltage, and number of days the equipment has been in use. The processing data acquisition device 3 is an example of an operating status information acquisition unit and a processing identification information acquisition unit, the status data is an example of operating status information, and the processing-related information is an example of processing identification information.
信号処理装置4は、加工データ取得装置3から送信された加工設備2の動作状態を示す時系列の状態データを処理して、学習モデルに入力する入力データを生成する。具体的に、信号処理装置4は、加工データ取得装置3がセンサから取得したアナログ信号の増幅、ハイパスフィルタまたはローパスフィルタによるフィルタ処理、ユーザにより予め設定されたサンプリング周波数および分解能に基づくA/D(Analog to Digital)変換等の信号処理を行う。また、信号処理装置4は、ノイズおよび異常値の除去、欠損値の補完等のクレンジング処理を実行する。
The signal processing device 4 processes the time-series status data indicating the operating status of the processing equipment 2 transmitted from the processing data acquisition device 3, and generates input data to be input to the learning model. Specifically, the signal processing device 4 performs signal processing such as amplifying the analog signal acquired from the sensor by the processing data acquisition device 3, filtering using a high-pass filter or a low-pass filter, and A/D (Analog to Digital) conversion based on a sampling frequency and resolution preset by the user. The signal processing device 4 also performs cleansing processing such as removing noise and abnormal values and filling in missing values.
信号処理装置4は、信号処理を実施した後、処理後の状態データから特徴量の計算に使用する区間である計算対象区間のデータを抽出する。具体的に、信号処理装置4は、図3に例示するように、各加工工程において、ユーザにより定義された抽出ルールの中からいずれの抽出ルールが適用されるかを特定するための情報である対応テーブルを記憶する。信号処理装置4は、この対応テーブルを参照して、加工データに含まれる加工プログラム番号と工具番号とから、抽出ルールを特定し、特定した抽出ルールを実行することにより、計算対象区間の状態データを抽出する。図3に示す通り、対応テーブルは、加工プログラムを識別する加工プログラム番号と、工具を識別する工具番号と、抽出ルールを識別する抽出ルールIDとの項目を含む。図示する例において、加工プログラム番号「N001」と、工具番号「D01」とにより実行される加工工程に対して、抽出ルールID「r1」が適用されることを示す。
After performing signal processing, the signal processing device 4 extracts data of the calculation target section, which is the section used to calculate the feature amount, from the state data after processing. Specifically, as illustrated in FIG. 3, the signal processing device 4 stores a correspondence table, which is information for identifying which extraction rule is applied from the extraction rules defined by the user in each machining process. The signal processing device 4 refers to this correspondence table, identifies an extraction rule from the machining program number and tool number included in the machining data, and executes the identified extraction rule to extract state data of the calculation target section. As shown in FIG. 3, the correspondence table includes items for the machining program number that identifies the machining program, the tool number that identifies the tool, and the extraction rule ID that identifies the extraction rule. In the illustrated example, it is shown that the extraction rule ID "r1" is applied to the machining process executed by the machining program number "N001" and the tool number "D01".
限定されるものではないが、具体例で説明すると、図2は、切削加工を開始し、実加工が始まってワークと工具とが接触した時に一時的に寸法不良が起き、その後正常な動作に戻った場合の状態データの推移を示す。状態データは、図2に示す、加工設備2が備えるスピンドルモータの回転数と、制御装置9から出力された切削送り信号と、スピンドルモータに流れる電流値とを含む。切削加工が開始すると、加工設備2は、スピンドルモータを回転させて、加工プログラムによる回転数指令に応じた回転数まで加速する動作を行う。このモータ加速区間において、加速トルクが発生して、スピンドルモータに流れる電流が一時的に大きくなり、モータの回転が定常状態になると電流が小さくなる。スピンドルモータの回転数が目標回転数に達し、回転が安定した後、切削送り信号によって実加工が始まる。実加工を開始して、ワークと工具が接触するとスピンドルモータに負荷がかかることから、スピンドルモータに流れる電流は、再び大きくなる。そして、この例においては、寸法不良が起きた異常発生区間において、一時的にスピンドルモータに流れる電流が大きくなったことを示す。その後、正常の動作に戻るため、電流値が定常レベルに落ち着く挙動になっている。その後、実加工が終了すると、加工設備2は、スピンドルモータを減速する動作を行う。このモータ減速区間において、減速トルクが発生して、加速区間と同様にスピンドルモータに流れる電流が一時的に大きくなり、モータの回転が止まると電流が小さくなる。このように、スピンドルモータの加速区間・減速区間において、加工現象に関係なく、スピンドルモータに流れる電流値は変化するため、これらの区間のデータを診断に用いると誤判定を及ぼす可能性がある。したがって、スピンドルモータの加速区間・減速区間を除外した、モータが定速で回転する区間である安定加工区間のデータを診断に用いる。また、図示する例の通り、異常が一時的に発生する場合、安定加工区間の全電流データを用いて特徴量を計算すると、正常時のデータから算出した特徴量と異常を含むデータから算出した特徴量の差が小さくなり、異常を正しく検知できない可能性がある。そこで、各加工工程において、異常が発生しやすい、即ち、発生する確率または頻度の高い時間領域である計算対象区間を予め特定しておき、加工工程毎に計算対象区間の状態データを抽出するルールを定義する。ルールは任意であるが、例えば、計算対象区間を特定するトリガとなる事象と、トリガから計算対象区間の始点と終点までの時間等を含む情報等がある。図2の例が頻発する場合には、計算対象区間を規定するトリガは、例えば、切削送り信号がローレベルからハイレベルに変化することであり、計算対象区間の始点はトリガと同期であり、終端は、トリガから時間t経過したタイミングと設定される。
To explain a specific example, without being limited thereto, FIG. 2 shows the transition of the status data when cutting processing is started, a temporary dimensional defect occurs when the workpiece and the tool come into contact with each other after the actual processing starts, and then normal operation is restored. The status data includes the rotation speed of the spindle motor equipped in the processing equipment 2 shown in FIG. 2, the cutting feed signal output from the control device 9, and the current value flowing through the spindle motor. When cutting processing starts, the processing equipment 2 rotates the spindle motor and accelerates it to a rotation speed according to the rotation speed command by the processing program. In this motor acceleration section, an acceleration torque is generated, and the current flowing through the spindle motor temporarily increases, and when the rotation of the motor reaches a steady state, the current decreases. After the rotation speed of the spindle motor reaches the target rotation speed and the rotation stabilizes, the actual processing starts by the cutting feed signal. When the actual processing starts and the workpiece and the tool come into contact with each other, a load is applied to the spindle motor, so the current flowing through the spindle motor increases again. In this example, it is shown that the current flowing through the spindle motor temporarily increases in the abnormality occurrence section where the dimensional defect occurs. After that, the operation returns to normal, so the current value settles to a steady level. After that, when the actual machining is completed, the machining equipment 2 performs an operation to decelerate the spindle motor. In this motor deceleration section, a deceleration torque is generated, and the current flowing through the spindle motor temporarily increases as in the acceleration section, and the current decreases when the rotation of the motor stops. In this way, the current value flowing through the spindle motor changes in the acceleration section and deceleration section of the spindle motor regardless of the machining phenomenon, so using data from these sections for diagnosis may result in erroneous judgment. Therefore, data from the stable machining section, which is a section in which the motor rotates at a constant speed, excluding the acceleration section and deceleration section of the spindle motor, is used for diagnosis. Also, as in the example shown in the figure, if the feature amount is calculated using all the current data in the stable machining section, when an abnormality occurs temporarily, the difference between the feature amount calculated from the normal data and the feature amount calculated from the data including the abnormality becomes small, and the abnormality may not be detected correctly. Therefore, in each machining process, a calculation target section, which is a time region in which an abnormality is likely to occur, i.e., the probability or frequency of occurrence is high, is specified in advance, and a rule is defined for extracting state data from the calculation target section for each machining process. The rules are arbitrary, but may include, for example, an event that acts as a trigger to identify the interval to be calculated, and information including the time from the trigger to the start and end of the interval to be calculated. If the example in Figure 2 occurs frequently, the trigger that defines the interval to be calculated may be, for example, the cutting feed signal changing from low to high, the start of the interval to be calculated being synchronized with the trigger, and the end being set to the timing when the time t has elapsed from the trigger.
このようなルールを設計するため、ユーザは、加工設備および工具の種類、加工内容等を特定して、各加工工程において、異常が発生しやすい時間領域を特定して、抽出ルールを設定する。ユーザは、例えば、加工現象をハイスピードカメラで撮影して異常発生のタイミングを特定したり、状態データの挙動を観察して異常発生のタイミングを特定したり、計算対象区間の候補となる区間を複数設定し、それぞれの区間データを学習モデルに適用した診断結果の精度がもっともよいものを計算対象区間とする等の方法により計算対象区間を決定する。そして、例えば、実加工開始直後に異常が発生しやすいと特定した場合、工具とワークが接触した時から5秒間の状態データを抽出するといった抽出ルールが定義され、実加工終わりに異常が起きやすい加工の場合、工具とワークが離れる前後5秒間の状態データを抽出するといった抽出ルールが定義される。なお、1つの工程に2つ以上の計算対象区間を設定してもよい。
To design such rules, the user specifies the type of machining equipment and tools, the machining content, etc., and specifies the time region in each machining process where abnormalities are likely to occur, and sets the extraction rules. For example, the user may determine the calculation target section by capturing the machining phenomenon with a high-speed camera to specify the timing of abnormality occurrence, observing the behavior of the status data to specify the timing of abnormality occurrence, or setting multiple candidate sections for the calculation target section and selecting the one with the best accuracy of the diagnosis results obtained by applying each section data to the learning model as the calculation target section. Then, for example, if it is specified that abnormalities are likely to occur immediately after the start of actual machining, an extraction rule is defined to extract status data for 5 seconds from the time the tool and workpiece come into contact, and in the case of machining where abnormalities are likely to occur at the end of actual machining, an extraction rule is defined to extract status data for 5 seconds before and after the tool and workpiece separate. Note that two or more calculation target sections may be set for one process.
なお、図3の例では、各加工工程を特定する情報として、加工プログラム番号と工具番号との組みを使用しているが、加工工程を特定できるならば、どのような情報でもよい。
In the example of Figure 3, a combination of a machining program number and a tool number is used as information for identifying each machining process, but any information that can identify the machining process can be used.
信号処理装置4は、抽出した計算対象区間の状態データから特徴量を算出する。特徴量は、例えば、電流値の、最大値、最小値、平均値、標準偏差、分散、尖度、歪度等である。なお、電流値の他に、振動、音、あるいは、AEの周波数、大きさ、温度等から特徴量を算出してもよい。振動、音、AEから特徴量を求める場合、周波数解析をして、特定の周波数の大きさから特徴量を計算してもよい。信号処理装置4は、1つのワークの加工を開始してから終了するまでの期間であるサイクル毎に特徴量を算出する。信号処理装置4は、算出した複数の特徴量の組みあわせと何番目のサイクルかを示すサイクル数とを対応付けて、入力データを生成する。信号処理装置4は、生成した入力データと、加工データ取得装置3から出力された加工プログラム番号、工具番号等を含む加工関連情報と、を対応付けて記憶装置5に記憶させる。なお、1つのサイクルで、複数の加工工程が実施される場合は、加工工程毎に特徴量をそれぞれ算出して、加工工程毎に入力データを生成してもよい。なお、信号処理装置4は、抽出部、および、特徴量算出部の一例である。
The signal processing device 4 calculates the feature amount from the extracted state data of the calculation target section. The feature amount is, for example, the maximum value, minimum value, average value, standard deviation, variance, kurtosis, skewness, etc. of the current value. In addition to the current value, the feature amount may be calculated from the frequency, magnitude, temperature, etc. of vibration, sound, or AE. When obtaining the feature amount from vibration, sound, or AE, frequency analysis may be performed to calculate the feature amount from the magnitude of a specific frequency. The signal processing device 4 calculates the feature amount for each cycle, which is the period from the start to the end of processing of one workpiece. The signal processing device 4 generates input data by associating a combination of the calculated multiple feature amounts with the cycle number indicating which cycle it is. The signal processing device 4 associates the generated input data with processing-related information including the processing program number, tool number, etc. output from the processing data acquisition device 3 and stores them in the storage device 5. In addition, when multiple processing steps are performed in one cycle, the feature amount may be calculated for each processing step, and input data may be generated for each processing step. The signal processing device 4 is an example of an extraction unit and a feature calculation unit.
図1に戻り、記憶装置5は、信号処理装置4から送信された特徴量とサイクル数とを含む入力データと、加工プログラム番号、工具番号等を含む加工関連情報と、を対応付けて記憶する。
Returning to FIG. 1, the storage device 5 stores input data including the feature values and cycle counts sent from the signal processing device 4 in association with machining-related information including the machining program number, tool number, etc.
診断装置6は、信号処理装置4により生成され、記憶装置5に記憶された入力データと学習モデル生成装置7により生成された学習モデルを用いて加工設備2の診断を行う。具体的に、診断装置6は、加工設備2の加工中に逐次取得される状態データに基づいて生成された入力データを学習モデルに適用して、加工設備2が正常か否かを判定した診断結果を出力する。診断装置6は、診断結果を状態表示器8および制御装置9に送信する。診断装置6は、生産現場に設置されたエッジコンピュータでもよいし、生産現場から離れたオフィスからインターネットを介して接続されているコンピュータでもよい。なお、診断装置6は、診断部の一例である。
The diagnostic device 6 diagnoses the processing equipment 2 using the input data generated by the signal processing device 4 and stored in the storage device 5 and the learning model generated by the learning model generation device 7. Specifically, the diagnostic device 6 applies the input data generated based on the status data acquired sequentially during processing of the processing equipment 2 to the learning model, and outputs a diagnostic result that determines whether the processing equipment 2 is normal or not. The diagnostic device 6 transmits the diagnostic result to the status display 8 and the control device 9. The diagnostic device 6 may be an edge computer installed at the production site, or may be a computer connected via the Internet from an office away from the production site. The diagnostic device 6 is an example of a diagnostic unit.
学習モデル生成装置7は、加工設備2の異常の有無を判定するための学習モデルを生成する。具体的に、学習モデル生成装置7は、信号処理装置4により生成された入力データと各入力データが正常時のデータか異常時のデータかを示すラベル情報とを含む学習用データを学習モデルに与えて、機械学習することにより学習モデルを生成する。ユーザは、実加工或いはシミュレーションにより実行された各サイクルの加工工程が正常か否かを判断し、各サイクルに対応付けられた特徴量に対して、正常または異常を示すラベル情報を付与することにより、学習用データを作成する。学習モデルは、決定木、k近傍法、サポートベクターマシン等の機械学習アルゴリズムに従ったモデルであり、状態データから算出された特徴量を入力として、診察対象の加工設備2が正常か異常かを判定した判定結果情報を出力する。なお、学習用データに含まれる入力データは、加工設備2から取得された状態データでなくてもよく、例えば、加工設備2の種類、加工内容に応じて、コンピュータで生成した模擬データを使用してもよい。また、学習用データに含まれるラベル情報は、正常および異常の2パターンに限られず、異常ラベルをさらに寸法異常、表面性状不良等に細分化してラベリングすることにより、3パターン以上のラベルが付与されてもよい。なお、学習モデル生成装置7は、学習モデル生成部の一例である。
The learning model generating device 7 generates a learning model for determining whether or not there is an abnormality in the processing equipment 2. Specifically, the learning model generating device 7 generates a learning model by machine learning by providing the learning model with learning data including input data generated by the signal processing device 4 and label information indicating whether each input data is normal data or abnormal data. The user determines whether the processing process of each cycle performed by actual processing or simulation is normal or not, and creates learning data by assigning label information indicating normal or abnormal to the feature amount corresponding to each cycle. The learning model is a model according to a machine learning algorithm such as a decision tree, k-nearest neighbor method, or support vector machine, and outputs judgment result information that judges whether the processing equipment 2 to be inspected is normal or abnormal using the feature amount calculated from the status data as input. Note that the input data included in the learning data does not have to be status data acquired from the processing equipment 2, and for example, simulated data generated by a computer may be used depending on the type of processing equipment 2 and the processing content. Furthermore, the label information included in the learning data is not limited to two patterns, normal and abnormal, and three or more patterns of labels may be assigned by further subdividing the abnormal label into dimensional abnormality, poor surface quality, etc. The learning model generation device 7 is an example of a learning model generation unit.
状態表示器8は、診断装置6による診断結果を表示する。状態表示器8は、例えば、加工設備2に設置されている操作パネルである。状態表示器8は、異常と診断された旨を示す情報を画面上に表示することにより、ユーザに対して、異常の発生を報知する。また、状態表示器8は、ランプ、スピーカー等を含んでもよく、異常と診断された場合に、ランプを点灯させ、スピーカーから警告音を発生させてもよい。さらに、状態表示器8は、予め設定されたメールアドレスに対して、異常と診断された旨を示すメールを自動的に送信する機能を有してもよい。
The status display 8 displays the diagnosis results from the diagnostic device 6. The status display 8 is, for example, an operation panel installed on the processing equipment 2. The status display 8 notifies the user of the occurrence of an abnormality by displaying information indicating that an abnormality has been diagnosed on a screen. The status display 8 may also include a lamp, a speaker, etc., and may light up a lamp and emit an alarm from the speaker when an abnormality is diagnosed. Furthermore, the status display 8 may have a function of automatically sending an email indicating that an abnormality has been diagnosed to a pre-set email address.
制御装置9は、加工設備2の動作を制御する。制御装置9は、例えば、加工設備2をNC(Numerical Control)プログラムに基づく指令によって制御する数値制御装置である。制御装置9は、診断装置6から加工設備2に異常が発生していると判定したことを示す診断結果情報を受信した場合、加工設備2を停止させる。なお、制御装置9は、加工設備2を完全に停止させず、加工設備2に発生している異常の度合いに応じて、加工設備2が備える機能の一部を制限してもよい。なお、制御装置9は、制御部の一例である。
The control device 9 controls the operation of the processing equipment 2. The control device 9 is, for example, a numerical control device that controls the processing equipment 2 by commands based on an NC (Numerical Control) program. When the control device 9 receives diagnosis result information from the diagnosis device 6 indicating that an abnormality has occurred in the processing equipment 2, the control device 9 stops the processing equipment 2. Note that the control device 9 may not completely stop the processing equipment 2, but may limit some of the functions of the processing equipment 2 depending on the degree of the abnormality occurring in the processing equipment 2. Note that the control device 9 is an example of a control unit.
以上説明した機能的構成を有する診断システム1において、加工データ取得装置3、信号処理装置4、診断装置6、学習モデル生成装置7、および、制御装置9は、物理的に、図4に示すように、プログラムに従った処理を実行するCPU(Central Processing Unit)11と、揮発性メモリであるRAM(Random Access Memory)12と、不揮発性メモリであるROM(Read Only Memory)13と、データを記憶する記憶部14と、情報の入力を受け付ける入力部15と、情報の送受信を行う通信部16と、を備え、これらが内部バス99を介して接続されている。
In the diagnostic system 1 having the functional configuration described above, the processed data acquisition device 3, the signal processing device 4, the diagnostic device 6, the learning model generation device 7, and the control device 9 physically comprise, as shown in FIG. 4, a CPU (Central Processing Unit) 11 that executes processing according to a program, a RAM (Random Access Memory) 12 which is a volatile memory, a ROM (Read Only Memory) 13 which is a non-volatile memory, a storage unit 14 that stores data, an input unit 15 that accepts input of information, and a communication unit 16 that transmits and receives information, which are connected via an internal bus 99.
CPU11は、記憶部14に記憶されたプログラムをRAM12に読み出して実行することにより、各種処理を実行する。CPU11は、プログラムにより提供される主要な機能として、信号処理装置4による加工データ取得装置3から送信された状態データを処理して計算対象区間のデータを抽出し、抽出したデータから特徴量を算出する処理、診断装置6による加工設備2が正常か否かを判定する診断処理、学習モデル生成装置7による学習モデルを生成する処理等を実行する。
The CPU 11 executes various processes by reading out the programs stored in the storage unit 14 into the RAM 12 and executing them. The main functions provided by the programs are: processing the status data sent from the processing data acquisition device 3 by the signal processing device 4 to extract data for the calculation target section and calculate feature quantities from the extracted data; diagnosis processing by the diagnosis device 6 to determine whether the processing equipment 2 is normal; and generation of a learning model by the learning model generation device 7.
RAM12は、CPU11のワークエリアとして使用される。ROM13は、CPU11が実行する制御プログラム、BIOS(Basic Input Output System)等を記憶する。
RAM 12 is used as a work area for CPU 11. ROM 13 stores the control program executed by CPU 11, BIOS (Basic Input Output System), etc.
記憶部14は、ハードディスクドライブを備え、CPU11が実行するプログラムを記憶し、プログラム実行の際に使用される各種データを記憶する。記憶部14は、加工データ取得装置3により加工設備2から取得された加工データ、信号処理装置4により生成された入力データ、学習モデル生成装置7により生成された学習モデル、および、学習モデルの学習に用いられる学習用データ等を記憶する。
The storage unit 14 includes a hard disk drive, stores the programs executed by the CPU 11, and stores various data used when executing the programs. The storage unit 14 stores the processing data acquired from the processing equipment 2 by the processing data acquisition device 3, the input data generated by the signal processing device 4, the learning model generated by the learning model generation device 7, and the learning data used to learn the learning model.
入力部15は、キーボード、マウス、通信装置等を備えるユーザインタフェースである。通信部16は、ネットワークに接続する網終端装置または無線通信装置、およびそれらと接続するシリアルインタフェースまたはLAN(Local Area Network)インタフェースである。
The input unit 15 is a user interface equipped with a keyboard, mouse, communication device, etc. The communication unit 16 is a network termination device or a wireless communication device that connects to the network, and a serial interface or a LAN (Local Area Network) interface that connects to them.
次に、診断システム1の動作について説明する。以下では、診断システム1の診断対象の加工設備2は切削加工機であり、先端にドリルが設置されたスピンドルモータに流れる電流から算出した特徴量に基づいて、加工設備2の異常の有無を判定する場合を例に説明する。
Next, the operation of the diagnostic system 1 will be described. In the following, the processing equipment 2 to be diagnosed by the diagnostic system 1 is a cutting machine, and an example will be described in which the presence or absence of an abnormality in the processing equipment 2 is determined based on feature values calculated from the current flowing through a spindle motor with a drill attached at the tip.
(事前準備)
診断システム1は、安定加工区間内の電流データから、予めユーザにより特定された時間領域である計算対象区間の電流データを用いて特徴量を算出する。そこで、計算対象区間を特定する処理について説明する。ユーザは、実際の加工処理の場面で、例えば、ハイスピードカメラで撮影した映像によって、加工設備2の異常発生の傾向を観察し、発生しやすい時間領域を特定する。ユーザは、例えば、工具とワークが接触した時から5秒間に異常が発生しやすいと特定する。次に、ユーザは、特定した時間領域の電流データを抽出する抽出ルールを信号処理装置4に設定する。例えば、ユーザは、特定した時間領域の電流データを抽出するために、切削信号が出力された時から5秒間の電流データを抽出するといった抽出ルールを信号処理装置4に設定する。ユーザは、保有する加工設備および工具の種類、加工内容に応じて、それぞれの加工工程毎に、異常が発生しやすい時間領域である計算対象区間を特定し、特定した計算対象区間の電流データを抽出するための抽出ルールを設定する。 (Advance preparation)
The diagnostic system 1 calculates the feature quantity from the current data in the stable machining section using the current data of the calculation target section, which is a time region previously specified by the user. Here, the process of specifying the calculation target section will be described. In the actual machining process, the user observes the tendency of abnormality occurrence in the machining equipment 2 by, for example, using a video taken by a high-speed camera, and specifies the time region where abnormality is likely to occur. For example, the user specifies that abnormality is likely to occur in 5 seconds from the time when the tool and the workpiece come into contact. Next, the user sets an extraction rule for extracting current data in the specified time region in the signal processing device 4. For example, in order to extract current data in the specified time region, the user sets an extraction rule for extracting current data for 5 seconds from the time when the cutting signal is output in the signal processing device 4. The user specifies the calculation target section, which is a time region where abnormality is likely to occur, for each machining process according to the type of machining equipment and tool owned and the machining content, and sets an extraction rule for extracting current data in the specified calculation target section.
診断システム1は、安定加工区間内の電流データから、予めユーザにより特定された時間領域である計算対象区間の電流データを用いて特徴量を算出する。そこで、計算対象区間を特定する処理について説明する。ユーザは、実際の加工処理の場面で、例えば、ハイスピードカメラで撮影した映像によって、加工設備2の異常発生の傾向を観察し、発生しやすい時間領域を特定する。ユーザは、例えば、工具とワークが接触した時から5秒間に異常が発生しやすいと特定する。次に、ユーザは、特定した時間領域の電流データを抽出する抽出ルールを信号処理装置4に設定する。例えば、ユーザは、特定した時間領域の電流データを抽出するために、切削信号が出力された時から5秒間の電流データを抽出するといった抽出ルールを信号処理装置4に設定する。ユーザは、保有する加工設備および工具の種類、加工内容に応じて、それぞれの加工工程毎に、異常が発生しやすい時間領域である計算対象区間を特定し、特定した計算対象区間の電流データを抽出するための抽出ルールを設定する。 (Advance preparation)
The diagnostic system 1 calculates the feature quantity from the current data in the stable machining section using the current data of the calculation target section, which is a time region previously specified by the user. Here, the process of specifying the calculation target section will be described. In the actual machining process, the user observes the tendency of abnormality occurrence in the machining equipment 2 by, for example, using a video taken by a high-speed camera, and specifies the time region where abnormality is likely to occur. For example, the user specifies that abnormality is likely to occur in 5 seconds from the time when the tool and the workpiece come into contact. Next, the user sets an extraction rule for extracting current data in the specified time region in the signal processing device 4. For example, in order to extract current data in the specified time region, the user sets an extraction rule for extracting current data for 5 seconds from the time when the cutting signal is output in the signal processing device 4. The user specifies the calculation target section, which is a time region where abnormality is likely to occur, for each machining process according to the type of machining equipment and tool owned and the machining content, and sets an extraction rule for extracting current data in the specified calculation target section.
次に、ユーザは、各加工工程において、いずれの抽出ルールが適用されるかを特定するための情報である対応テーブルを作成して、信号処理装置4に記憶させる。信号処理装置4は、この対応テーブルを参照して、加工データに含まれる加工プログラム番号と工具番号とから、抽出ルールを特定し、特定した抽出ルールを実行することにより、計算対象区間の電流データを抽出する。図3に示す通り、対応テーブルは、加工プログラムを識別する加工プログラム番号と、工具を識別する工具番号と、抽出ルールを識別する抽出ルールIDとの項目を含む。図示する例において、加工プログラム番号「N001」は、切削加工の加工プログラムであることを識別する情報であり、工具番号「D01」は、工具がドリルであることを識別する情報である。そして、加工プログラム番号「N001」と工具番号「D01」とにより実行される加工工程には、抽出ルールID「r1」が適用されて、計算対象区間の電流データを抽出することを示す。抽出ルールID「r1」の抽出ルールは、例えば、切削送り信号が送信された時から5秒間の状態データを計算対象区間として抽出するというルールである。
Next, the user creates a correspondence table, which is information for identifying which extraction rule is applied in each machining process, and stores it in the signal processing device 4. The signal processing device 4 refers to this correspondence table, identifies an extraction rule from the machining program number and tool number included in the machining data, and executes the identified extraction rule to extract current data in the calculation target section. As shown in FIG. 3, the correspondence table includes items of a machining program number that identifies a machining program, a tool number that identifies a tool, and an extraction rule ID that identifies an extraction rule. In the illustrated example, the machining program number "N001" is information that identifies the machining program as a cutting machining program, and the tool number "D01" is information that identifies the tool as a drill. The extraction rule ID "r1" is applied to the machining process executed by the machining program number "N001" and the tool number "D01", and indicates that the current data in the calculation target section is extracted. The extraction rule of the extraction rule ID "r1" is, for example, a rule that extracts state data for 5 seconds from the time when the cutting feed signal is transmitted as the calculation target section.
(学習モデル生成処理)
次に、診断システム1が、加工設備2の異常の有無を判定するための学習モデルを生成する学習モデル生成処理について、図5を参照して説明する。学習モデル生成処理は、初めて診断処理を実施する前、加工設備2又は工具の入れ替えにより学習モデルの更新が必要となった場合、より多くのデータを用いて判定の精度を向上させたい場合等に実行される。以下では、切削加工のみを行う加工工程において、1つのワークの加工を開始してから終了するまでを1サイクルとし、サイクル毎の電流データにより算出された特徴量に基づいて学習モデルを生成する場合について説明する。 (Learning model generation process)
Next, a learning model generation process in which the diagnostic system 1 generates a learning model for determining whether or not there is an abnormality in the machining equipment 2 will be described with reference to Fig. 5. The learning model generation process is executed before the first diagnostic process is performed, when it becomes necessary to update the learning model due to replacement of the machining equipment 2 or a tool, when it is desired to improve the accuracy of the determination by using more data, etc. In the following, a case will be described in which, in a machining process in which only cutting is performed, one cycle is defined as the period from the start to the end of machining of one workpiece, and a learning model is generated based on a feature amount calculated from current data for each cycle.
次に、診断システム1が、加工設備2の異常の有無を判定するための学習モデルを生成する学習モデル生成処理について、図5を参照して説明する。学習モデル生成処理は、初めて診断処理を実施する前、加工設備2又は工具の入れ替えにより学習モデルの更新が必要となった場合、より多くのデータを用いて判定の精度を向上させたい場合等に実行される。以下では、切削加工のみを行う加工工程において、1つのワークの加工を開始してから終了するまでを1サイクルとし、サイクル毎の電流データにより算出された特徴量に基づいて学習モデルを生成する場合について説明する。 (Learning model generation process)
Next, a learning model generation process in which the diagnostic system 1 generates a learning model for determining whether or not there is an abnormality in the machining equipment 2 will be described with reference to Fig. 5. The learning model generation process is executed before the first diagnostic process is performed, when it becomes necessary to update the learning model due to replacement of the machining equipment 2 or a tool, when it is desired to improve the accuracy of the determination by using more data, etc. In the following, a case will be described in which, in a machining process in which only cutting is performed, one cycle is defined as the period from the start to the end of machining of one workpiece, and a learning model is generated based on a feature amount calculated from current data for each cycle.
学習モデル生成処理の実行に先立ち、信号処理装置4には、ユーザにより、スピンドルモータに流れる電流を測定する電流センサから出力されるアナログ信号をA/D変換する際のサンプリング周波数および分解能が予め設定されている。サンプリング周波数が大きいほど、アナログ信号を正確にトレースして真の信号に近いデジタル信号をコンピュータに取り込んで学習に利用できる。また、AD変換後に実施するFFTの周波数レンジF_rangeは、下記式1で決まるため、周波数レンジを広く取りたい場合もサンプリング周波数を大きくした方がよい。
F_range=fs/2.56 (fs:サンプリング周波数) 式1
一般的に、サンプリング周波数は、エイリアシングの発生を抑制するために、アナログ信号の周波数の10倍程度に設定するのがよいとされているが、より精度の高い学習モデルを得るために、アナログ信号の周波数の1000倍以上に設定することが好ましい。 Prior to the execution of the learning model generation process, the user presets in the signal processing device 4 the sampling frequency and resolution for A/D conversion of the analog signal output from the current sensor that measures the current flowing through the spindle motor. The higher the sampling frequency, the more accurately the analog signal can be traced, and the digital signal closer to the true signal can be input to the computer for use in learning. In addition, since the frequency range F_range of the FFT performed after A/D conversion is determined by the following formula 1, it is better to increase the sampling frequency when a wide frequency range is desired.
F_range=fs/2.56 (fs: sampling frequency) Equation 1
In general, it is considered advisable to set the sampling frequency to about 10 times the frequency of the analog signal in order to suppress the occurrence of aliasing, but in order to obtain a more accurate learning model, it is preferable to set it to 1,000 times or more the frequency of the analog signal.
F_range=fs/2.56 (fs:サンプリング周波数) 式1
一般的に、サンプリング周波数は、エイリアシングの発生を抑制するために、アナログ信号の周波数の10倍程度に設定するのがよいとされているが、より精度の高い学習モデルを得るために、アナログ信号の周波数の1000倍以上に設定することが好ましい。 Prior to the execution of the learning model generation process, the user presets in the signal processing device 4 the sampling frequency and resolution for A/D conversion of the analog signal output from the current sensor that measures the current flowing through the spindle motor. The higher the sampling frequency, the more accurately the analog signal can be traced, and the digital signal closer to the true signal can be input to the computer for use in learning. In addition, since the frequency range F_range of the FFT performed after A/D conversion is determined by the following formula 1, it is better to increase the sampling frequency when a wide frequency range is desired.
F_range=fs/2.56 (fs: sampling frequency) Equation 1
In general, it is considered advisable to set the sampling frequency to about 10 times the frequency of the analog signal in order to suppress the occurrence of aliasing, but in order to obtain a more accurate learning model, it is preferable to set it to 1,000 times or more the frequency of the analog signal.
ユーザが、学習モデル生成装置7の入力部15を操作して、学習モデル生成処理の開始を要求すると、学習モデル生成装置7は、処理を開始する。
When the user operates the input unit 15 of the learning model generation device 7 to request the start of the learning model generation process, the learning model generation device 7 starts the process.
加工データ取得装置3は、加工設備2によるワークの切削加工が開始されると、スピンドルモータに流れる電流値、モータ回転数、切削送り信号を示す状態データと、加工プログラム番号、工具番号等の加工関係情報を含む加工データを取得する(ステップS11)。加工データ取得装置3は、1つのワークの加工を開始してから終了するまでの期間であるサイクル毎に、状態データをひとまとまりにして、加工関係情報とともに、信号処理装置4に出力する。
When cutting of the workpiece by the machining equipment 2 is started, the machining data acquisition device 3 acquires machining data including status data indicating the current value flowing through the spindle motor, the motor rotation speed, and the cutting feed signal, as well as machining-related information such as the machining program number and tool number (step S11). For each cycle, which is the period from the start to the end of machining of one workpiece, the machining data acquisition device 3 lumps together the status data and outputs it to the signal processing device 4 together with the machining-related information.
次に、信号処理装置4は、受信した状態データに信号処理を施し、処理後の状態データから計算対象区間の状態データを抽出する(ステップS12)。具体的に、信号処理装置4は、加工データ取得装置3から送信された状態データに含まれるアナログ信号を、予め設定されたサンプリング周波数でデジタル信号に変換する。なお、デジタル信号に変換する前のアナログ信号に対して、信号の増幅処理、ハイパスフィルタ、ローパスフィルタによるフィルタ処理を実行してもよい。次に、信号処理装置4は、ステップS11で加工データ取得装置3から出力された加工データに含まれる加工プログラム番号と工具番号とを取得し、対応テーブルを参照して、抽出ルールを特定する。例えば、信号処理装置4がプログラム番号「N001」、工具番号「D01」の情報を取得した場合、図3に示す対応テーブルを参照して、抽出ルールID「r1」を抽出ルールであると特定する。次に、信号処理装置4は、信号処理後の状態データに含まれるスピンドルモータの回転数を取得し、回転数が定速の区間である安定加工区間を特定する。次に、信号処理装置4は、特定された抽出ルールID「r1」の抽出ルールを読み出し、切削送り信号が送信された時から5秒間の状態データを計算対象区間として抽出するという抽出ルールを実行して、安定加工区間の電流データの中から計算対象区間の電流データを抽出する。
Next, the signal processing device 4 performs signal processing on the received state data, and extracts state data of the calculation target section from the processed state data (step S12). Specifically, the signal processing device 4 converts the analog signal included in the state data transmitted from the machining data acquisition device 3 into a digital signal at a preset sampling frequency. Note that the analog signal before being converted into a digital signal may be subjected to signal amplification processing, high-pass filtering, and low-pass filtering. Next, the signal processing device 4 acquires the machining program number and tool number included in the machining data output from the machining data acquisition device 3 in step S11, and identifies the extraction rule by referring to the correspondence table. For example, when the signal processing device 4 acquires information on the program number "N001" and the tool number "D01", it identifies the extraction rule ID "r1" as the extraction rule by referring to the correspondence table shown in FIG. 3. Next, the signal processing device 4 acquires the rotation speed of the spindle motor included in the state data after signal processing, and identifies the stable machining section in which the rotation speed is a constant speed section. Next, the signal processing device 4 reads out the extraction rule with the specified extraction rule ID "r1" and executes the extraction rule to extract status data for 5 seconds from the time the cutting feed signal is sent as the calculation target section, and extracts the current data for the calculation target section from the current data for the stable machining section.
図5に戻り、次に、信号処理装置4は、抽出した計算対象区間の電流データに対し、クレンジング処理を実行する(ステップS13)。具体的に、信号処理装置4は、電流データからノイズおよび異常値を除去し、欠損値を補完する処理を行う。
Returning to FIG. 5, the signal processing device 4 then performs a cleansing process on the current data in the extracted calculation target section (step S13). Specifically, the signal processing device 4 removes noise and abnormal values from the current data and performs a process to complement missing values.
次に、信号処理装置4は、ステップS13でクレンジングされた加工データから特徴量を算出する(ステップS14)。具体的に、信号処理装置4は、クレンジングされた計算対象区間の電流値の平均値、最大値、最小値、標準偏差、分散、尖度、歪度等を求めることにより、特徴量を算出する。信号処理装置4は、1つのワークの切削加工を開始してから終了するまでのサイクル毎に、特徴量を算出する。信号処理装置4は、算出した特徴量と特徴量の算出に用いられた電流データが何回目の加工かを示すサイクル数とともに、順次、記憶装置5に蓄積する。
Then, the signal processing device 4 calculates feature quantities from the processing data cleansed in step S13 (step S14). Specifically, the signal processing device 4 calculates feature quantities by determining the average, maximum, minimum, standard deviation, variance, kurtosis, skewness, etc. of the current values in the cleansed calculation target section. The signal processing device 4 calculates feature quantities for each cycle from the start to the end of cutting processing of one workpiece. The signal processing device 4 sequentially accumulates the calculated feature quantities and the current data used to calculate the feature quantities in the storage device 5, together with the number of cycles indicating which processing has been performed.
次に、学習モデル生成装置7は、学習用データを生成する(ステップS15)。具体的に、学習モデル生成装置7は、ユーザからの入力に基づき、ステップS14で記憶装置5に蓄積されたサイクル毎の特徴量に対し、加工設備2が正常に動作したときのデータなのか、もしくは、異常がある場合のデータなのかを示すラベルを付与して、学習用データを生成する。図6に例示する通り、学習用データは、ワークを処理した回数を示す「サイクル数」と、ステップS14で信号処理装置4により算出されたサイクル毎の複数の特徴量のデータセットを示す「特徴量A」、「特徴量B」、...と、各サイクルの特徴量に対して付与されたラベルを示す「状態ラベル」と、を含む。学習モデル生成装置7は、生成した学習用データを記憶装置5に記憶させる。
Next, the learning model generation device 7 generates learning data (step S15). Specifically, based on the input from the user, the learning model generation device 7 generates learning data by assigning labels to the feature amounts for each cycle stored in the storage device 5 in step S14, indicating whether the data is data when the processing equipment 2 is operating normally or data when an abnormality is present. As illustrated in FIG. 6, the learning data includes a "cycle count" indicating the number of times the workpiece has been processed, "feature amount A", "feature amount B", ... indicating a data set of multiple feature amounts for each cycle calculated by the signal processing device 4 in step S14, and a "state label" indicating the label assigned to the feature amount for each cycle. The learning model generation device 7 stores the generated learning data in the storage device 5.
図5に戻り、次に、学習モデル生成装置7は、学習モデルを生成する(ステップS16)。具体的に、学習モデルは、決定木、k近傍法、サポートベクターマシン等の機械学習アルゴリズムに従ったモデルであり、電流データから算出されたサイクル毎の特徴量を入力として、診察対象の加工設備2が正常か異常かを判定した判定結果情報を出力する。学習モデル生成装置7は、ステップS15で生成された学習用データに含まれるサイクル毎の特徴量とサイクル毎の特徴量に付与された、正常か異常かを示すラベル情報と、を含む学習用データを用いて機械学習を行うことで学習モデルを生成する。学習モデル生成装置7は、生成した学習モデルを記憶装置5に記憶させる。
Returning to FIG. 5, next, the learning model generation device 7 generates a learning model (step S16). Specifically, the learning model is a model according to a machine learning algorithm such as a decision tree, k-nearest neighbor method, or support vector machine, and outputs judgment result information that judges whether the processing equipment 2 to be inspected is normal or abnormal using the feature amount for each cycle calculated from the current data as input. The learning model generation device 7 generates a learning model by performing machine learning using learning data including the feature amount for each cycle contained in the learning data generated in step S15 and label information indicating normality or abnormality assigned to the feature amount for each cycle. The learning model generation device 7 stores the generated learning model in the storage device 5.
このようにして、加工設備2が正常か否かを判定するための学習モデルが完成する。
In this way, a learning model for determining whether processing equipment 2 is normal or not is completed.
(診断処理)
次に、実際の加工処理の場面で、学習モデルを用いて加工設備2が正常か否かを判定する診断処理の動作について図7を参照して説明する。 (Diagnosis Processing)
Next, the operation of the diagnosis process for determining whether or not the processing equipment 2 is normal using the learning model in an actual processing situation will be described with reference to FIG.
次に、実際の加工処理の場面で、学習モデルを用いて加工設備2が正常か否かを判定する診断処理の動作について図7を参照して説明する。 (Diagnosis Processing)
Next, the operation of the diagnosis process for determining whether or not the processing equipment 2 is normal using the learning model in an actual processing situation will be described with reference to FIG.
記憶装置5には、上述した学習モデル生成処理により生成された学習モデルが記憶され、診断装置6には、ユーザにより、記憶装置5に記憶されている学習モデルが予めインストールされている。
The learning model generated by the above-mentioned learning model generation process is stored in the storage device 5, and the learning model stored in the storage device 5 is pre-installed in the diagnostic device 6 by the user.
学習モデル生成処理と同様に、診断システム1は、加工設備2によるワークの加工が開始されると、診断処理を開始する。診断処理のステップS21-ステップS24は、図5に示す学習モデル生成処理のステップS11-ステップS14と同様の処理であり、加工データを順次取得して、加工データに含まれる電流データから切削加工工程のサイクル毎に特徴量を算出する。
Similar to the learning model generation process, the diagnostic system 1 starts the diagnostic process when the machining equipment 2 starts machining the workpiece. Steps S21 to S24 of the diagnostic process are similar to steps S11 to S14 of the learning model generation process shown in FIG. 5, and sequentially acquire machining data and calculate feature values for each cycle of the cutting process from the current data included in the machining data.
図7に戻り、次に、診断装置6は、対象の加工設備2が正常か異常かを判定する(ステップS25)。具体的に、診断装置6は、ステップS24で算出された特徴量を学習モデルに入力し、加工設備2が正常か否かを示す判定結果情報を得る。
Returning to FIG. 7, next, the diagnostic device 6 judges whether the target processing equipment 2 is normal or abnormal (step S25). Specifically, the diagnostic device 6 inputs the feature amount calculated in step S24 into a learning model, and obtains judgment result information indicating whether the processing equipment 2 is normal or abnormal.
診断装置6は、判定結果情報が、加工設備2は正常であることを示す情報であった場合、(ステップS26;Yes)、加工プロセスが終了したか否かを判別し、終了したと判別した場合(ステップS27;Yes)、診断処理を終了する。診断装置6は、加工プロセスが終了していないと判別した場合(ステップS27;No)、ステップS21に戻り、次のサイクルの加工データを取得する(ステップS21)。
If the judgment result information indicates that the processing equipment 2 is normal (step S26; Yes), the diagnostic device 6 determines whether the processing process has ended, and if it determines that it has ended (step S27; Yes), it ends the diagnostic process. If the diagnostic device 6 determines that the processing process has not ended (step S27; No), it returns to step S21 and obtains the processing data for the next cycle (step S21).
ステップS26に戻り、診断装置6は、判定結果情報が、加工設備2は異常であることを示す情報であった場合(ステップS26;No)、加工設備2は異常であると判定した旨を状態表示器8および制御装置9に通知し(ステップS28)、処理を終了する。その後、状態表示器8は、異常と診断された旨を示す情報を画面上に表示することにより、ユーザに対して、異常の発生を報知する。制御装置9は、加工設備2を停止させる。
Returning to step S26, if the judgment result information indicates that the processing equipment 2 is abnormal (step S26; No), the diagnostic device 6 notifies the status display 8 and the control device 9 that it has determined that the processing equipment 2 is abnormal (step S28), and ends the process. Thereafter, the status display 8 notifies the user of the occurrence of an abnormality by displaying on the screen information indicating that the processing equipment 2 has been diagnosed as abnormal. The control device 9 stops the processing equipment 2.
以上のように、診断システム1は、1つのワークの加工を開始してから終了するまでの区間の状態データの中から、異常が発生しやすい時間領域である計算対象区間の状態データを抽出して特徴量を算出する。診断システム1は、算出した特徴量に基づいて、加工設備2の異常の有無を判定する。この計算対象区間の状態データにより求められた特徴量は、加工区間内の全データにより求められた特徴量に比べて、正常時と異常時の値の差が大きくなるため、精度良く異常の有無を判定することが可能となる。
As described above, the diagnostic system 1 extracts status data for the calculation target section, which is a time region in which abnormalities are likely to occur, from the status data for the section from the start to the end of machining of one workpiece, and calculates the feature values. The diagnostic system 1 determines whether or not there is an abnormality in the machining equipment 2 based on the calculated feature values. The feature values calculated from the status data for the calculation target section have a larger difference between normal and abnormal values than feature values calculated from all data within the machining section, making it possible to accurately determine whether or not there is an abnormality.
また、診断システム1は、より少ないデータで異常の有無を判定するため、多くのデータを記憶して、処理する必要がなくなる。そのため、診断処理の処理速度が向上し、記憶容量を節約することが可能となる。
In addition, because the diagnostic system 1 determines the presence or absence of an abnormality using less data, there is no need to store and process a large amount of data. This improves the processing speed of the diagnostic process and makes it possible to save on storage capacity.
本開示の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
As long as it does not deviate from the spirit of this disclosure, it is possible to select and discard the configurations described in the above embodiments, or to change them to other configurations as appropriate.
上記実施の形態において、診断システム1が備える機能は、加工データ取得装置3、信号処理装置4、記憶装置5、診断装置6、学習モデル生成装置7、状態表示器8、制御装置9のそれぞれ個別の装置により実行されるものとして説明したが、それに限られず、各装置の機能を1台のコンピュータである情報処理装置により実行してもよい。また、例えば、加工データ取得装置3および信号処理装置4の機能を1台のコンピュータにより実行し、診断装置6および学習モデル生成装置7の機能を1台のコンピュータにより実行する等、いくつかの装置の機能を実行する複数のコンピュータにより、診断システム1の各処理を実行してもよい。
In the above embodiment, the functions of the diagnostic system 1 have been described as being executed by individual devices, namely the processed data acquisition device 3, the signal processing device 4, the storage device 5, the diagnostic device 6, the learning model generation device 7, the status display device 8, and the control device 9, but this is not limited thereto, and the functions of each device may be executed by an information processing device that is a single computer. Also, each process of the diagnostic system 1 may be executed by multiple computers that execute the functions of several devices, such as executing the functions of the processed data acquisition device 3 and the signal processing device 4 by a single computer, and executing the functions of the diagnostic device 6 and the learning model generation device 7 by a single computer.
以上の説明では、診断システム1は、学習モデル生成装置7を備えていたが、診断システム1は、学習モデル生成装置7を備えなくもよい。例えば、教師データを他のコンピュータ上に用意した機械学習装置に供給して学習モデルを生成し、それを診断装置6にセットしてもよい。
In the above explanation, the diagnostic system 1 is provided with a learning model generating device 7, but the diagnostic system 1 does not need to be provided with a learning model generating device 7. For example, the teacher data may be supplied to a machine learning device prepared on another computer to generate a learning model, which may then be set in the diagnostic device 6.
また、上記実施の形態において、診断装置6は、学習モデルを用いて、加工設備2の異常の有無を判定することとしたがこれに限られない。例えば、状態データから算出された特徴量に対して閾値が設定され、特徴量が閾値以上の場合に加工設備2に異常が発生していると判定するといった診断ルールによって、加工設備2の異常の有無を判定してもよい。この場合、計算対象区間を設定する処理において、ユーザは、異常が発生している状態データを用いて特徴量の閾値を決定し、診断装置6に診断ルールを設定する。診断装置6は、ステップS25において、設定された診断ルールを読み出し、特徴量と閾値とを比較することにより異常の有無を判定する。
In the above embodiment, the diagnostic device 6 uses a learning model to determine whether or not there is an abnormality in the processing equipment 2, but this is not limited to the above. For example, the presence or absence of an abnormality in the processing equipment 2 may be determined by a diagnostic rule in which a threshold is set for a feature amount calculated from the state data, and it is determined that an abnormality has occurred in the processing equipment 2 if the feature amount is equal to or greater than the threshold. In this case, in the process of setting the calculation target section, the user determines the threshold value for the feature amount using the state data in which the abnormality has occurred, and sets the diagnostic rule in the diagnostic device 6. In step S25, the diagnostic device 6 reads out the set diagnostic rule and determines whether or not there is an abnormality by comparing the feature amount with the threshold.
状態表示器8は、診断結果を表示するだけでなく、記憶装置5に保存された加工データを表示してもよい。また、診断処理時に、記憶装置5には状態データから算出された特徴量が順次格納されているので、特徴量をトレンドグラフ、散布図等によりリアルタイムに表示してもよい。
The status display 8 may not only display the diagnosis results, but also the processed data stored in the storage device 5. Furthermore, since the feature values calculated from the status data are stored sequentially in the storage device 5 during the diagnosis process, the feature values may be displayed in real time using trend graphs, scatter diagrams, etc.
診断装置6は、加工設備2に現在異常が発生しているか否かを判定するだけでなく、異常が発生する時期を予測してもよい。具体的に、診断装置6は、特徴量のトレンドグラフを作成し、線形回帰分析、または、非線形回帰分析をして、近似曲線でフィッティングすることで、将来の特徴量の値を予測し、異常が発生するまでの余裕時間を算出する。状態表示器8は、余裕時間が短くなって、予め設定された閾値を超えた場合に、作業者へのアラームを通知したり、メンテナンスを促す表示をすればよい。また、状態表示器8は、トレンドグラフとともに、閾値を表示してもよい。
The diagnostic device 6 may not only determine whether an abnormality is currently occurring in the processing equipment 2, but may also predict when an abnormality will occur. Specifically, the diagnostic device 6 creates a trend graph of the feature quantities, performs linear regression analysis or nonlinear regression analysis, and fits an approximation curve to predict future feature quantity values and calculate the time until an abnormality occurs. When the time lag becomes short and exceeds a preset threshold, the status display 8 may notify the operator of an alarm or display a message urging maintenance. The status display 8 may also display the threshold along with the trend graph.
また、上記実施の形態では、1サイクルに1つの加工工程が実施される場合について説明したがそれに限られず、例えば1サイクルで切削、切断、研磨等複数の加工工程が実施されてもよい。その場合、加工工程毎に計算区間を抽出する抽出ルールが設定され、それぞれの計算区間の状態データにより特徴量を算出して、学習モデルを生成すればよい。そして、診断装置6は、各学習モデルにそれぞれの特徴量を入力して、加工設備2の異常の有無を判定すればよい。
In addition, in the above embodiment, a case has been described in which one processing step is performed in one cycle, but this is not limiting, and multiple processing steps such as cutting, cutting, and polishing may be performed in one cycle. In this case, an extraction rule for extracting a calculation section for each processing step is set, and a learning model is generated by calculating feature values from the state data of each calculation section. Then, the diagnostic device 6 inputs each feature value into each learning model and determines whether or not there is an abnormality in the processing equipment 2.
また、記憶装置5が記憶する情報は、ネットワーク上に存在するクラウドサーバで一括管理され、信号処理装置4、診断装置6、学習モデル生成装置7は、必要に応じて当該クラウドサーバにアクセスして情報の読み書きを行ってもよい。この場合、診断システム1は記憶装置5を備えなくてもよい。また、信号処理装置4によるデータの信号処理、学習モデル生成装置7による学習モデル生成処理は、クラウドサーバに記憶された情報によって、クラウド上で実行されてもよい。
In addition, the information stored in the storage device 5 may be managed collectively by a cloud server on the network, and the signal processing device 4, diagnostic device 6, and learning model generation device 7 may access the cloud server as necessary to read and write information. In this case, the diagnostic system 1 may not need to include a storage device 5. Furthermore, the signal processing of data by the signal processing device 4 and the learning model generation processing by the learning model generation device 7 may be performed on the cloud using information stored in the cloud server.
以上の説明では、信号処理装置4は、1つのワークの加工を開始してから終了するまでの期間毎に、1又は複数の計算対象区間を設定する例を中心に説明したが、1つのサイクルに複数の加工工程が含まれている場合は、加工工程毎に計算対象区間を設定し、加工工程毎に加工の良否を判断してもよい。
The above explanation has focused on an example in which the signal processing device 4 sets one or more calculation intervals for each period from the start to the end of machining of one workpiece, but if one cycle includes multiple machining processes, a calculation interval may be set for each machining process, and the quality of the machining may be determined for each machining process.
また、信号処理装置4は、予め設定された抽出ルールに基づいて、計算対象区間の状態データを抽出する例を中心に説明したが、加工設備2に設置されたセンサからの出力値に基づいて、正常加工時と異常発生時との違いが表れやすい区間を計算対象区間として特定してもよい。具体的に、信号処理装置4は、例えば、上述した事前準備段階において、異常発生時のセンサの出力値を含む複数の時系列の状態データから、正常加工区間、および、異常発生区間それぞれのセンサ出力値の差分を求める。センサ出力値の差分は、例えば、正常加工区間、および、異常発生区間それぞれの電流値の平均値、最大値、最小値等の差により求められる。次に、信号処理装置4は、求めた差分が大きい状態データの異常発生区間に基づいて、計算対象区間を特定する。例えば、複数の状態データの中から、差分がもっとも大きい状態データの異常発生区間を計算対象区間として特定してもよいし、異常発生区間から前後3秒、前後5秒などの区間を計算対象区間として特定してもよいし、差分が大きい複数の状態データそれぞれの異常発生区間を包含する時間領域、または、それぞれの異常発生区間と重複する時間領域を計算対象区間として特定してもよい。例えば、差分が大きい3つの状態データの異常発生区間が、実加工開始10秒後~15秒の間、実加工開始8秒後~18秒の間、実加工開始12秒後~20秒の間の場合、それぞれを包含する時間領域である実加工開始8秒後~20秒の間を計算対象区間に特定してもよいし、それぞれと重複する時間領域である実加工開始12秒後~15秒の間を計算対象区間に特定してもよい。そして、信号処理装置4は、それぞれの加工工程毎に、計算対象区間を特定し、特定した計算対象区間の状態データを抽出するための抽出ルールを設定すればよい。信号処理装置4は、ステップS12、または、ステップS22の処理において、加工データ取得装置3により取得された状態データから、加工工程毎に特定された計算加工区間の状態データを抽出すればよい。
In addition, the signal processing device 4 has been described with a focus on an example in which the state data of the calculation target section is extracted based on a preset extraction rule, but a section in which the difference between normal processing and abnormality occurrence is likely to appear may be specified as the calculation target section based on the output value from the sensor installed in the processing equipment 2. Specifically, for example, in the above-mentioned advance preparation stage, the signal processing device 4 obtains the difference in the sensor output value between the normal processing section and the abnormality occurrence section from multiple time-series state data including the sensor output value when the abnormality occurs. The difference in the sensor output value is obtained, for example, from the difference between the average value, maximum value, minimum value, etc. of the current value of the normal processing section and the abnormality occurrence section. Next, the signal processing device 4 specifies the calculation target section based on the abnormality occurrence section of the state data in which the obtained difference is large. For example, the abnormality occurrence section of the state data in which the difference is the largest may be specified as the calculation target section from multiple state data, or a section such as 3 seconds before and after or 5 seconds before and after the abnormality occurrence section may be specified as the calculation target section, or a time region including each abnormality occurrence section of multiple state data in which the difference is large, or a time region overlapping each abnormality occurrence section may be specified as the calculation target section. For example, if the abnormality occurrence intervals of the three status data with large differences are between 10 seconds and 15 seconds after the start of actual machining, between 8 seconds and 18 seconds after the start of actual machining, and between 12 seconds and 20 seconds after the start of actual machining, the calculation target interval may be specified as the time region that includes each of the abnormality occurrence intervals, between 8 seconds and 20 seconds after the start of actual machining, or the calculation target interval may be specified as the time region that overlaps each of the abnormality occurrence intervals, between 12 seconds and 15 seconds after the start of actual machining. The signal processing device 4 may then specify the calculation target interval for each machining process and set an extraction rule for extracting the status data of the specified calculation target interval. In the process of step S12 or step S22, the signal processing device 4 may extract the status data of the calculation processing interval specified for each machining process from the status data acquired by the machining data acquisition device 3.
また、信号処理装置4は、図2に例示する安定加工区間を複数の区間に分割して、分割した区間それぞれの特徴量を算出し、算出した区間毎の特徴量に応じて、計算対象区間を特定してもよい。例えば、信号処理装置4は、加工データ取得装置3により取得された複数の状態データを、5つ、10つなどの設定された個数によって、第1区間、第2区間、第3区間、・・・にそれぞれ分割する。次に、信号処理装置4は、分割された各区間の特徴量を状態データそれぞれに対して算出する。次に、信号処理装置4は、複数の状態データにおける第1区間、第2区間、第3区間、・・・それぞれの区間毎の特徴量のばらつきを求め、それぞれのばらつきを比較してばらつきが大きい区間を計算対象区間として特定する、あるいは、各区間の特徴量の平均値を求め、他の区間との平均値の差がもっとも大きい区間を計算対象区間として特定するなどの方法により、計算対象区間を特定すればよい。
The signal processing device 4 may also divide the stable processing section shown in FIG. 2 into a plurality of sections, calculate the feature value for each of the divided sections, and identify the calculation target section according to the calculated feature value for each section. For example, the signal processing device 4 divides the plurality of state data acquired by the processing data acquisition device 3 into a first section, a second section, a third section, ... by a set number such as 5 or 10. Next, the signal processing device 4 calculates the feature value for each divided section for each state data. Next, the signal processing device 4 may determine the variation in the feature value for each section of the plurality of state data, the first section, the second section, the third section, ..., and compare the respective variations to identify the section with the largest variation as the calculation target section, or determine the average value of the feature value for each section and identify the section with the largest difference in the average value with other sections as the calculation target section.
また、加工データ取得装置3、信号処理装置4、記憶装置5、診断装置6、および、学習モデル生成装置7、専用の装置によらず、通常のコンピュータシステムを用いて実現可能である。例えば、各機能を実現するためのプログラムを、コンピュータが読み取り可能なCD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体に格納して配布し、このプログラムをコンピュータにインストールすることにより、上述の各機能を実現することができるコンピュータを構成してもよい。
Furthermore, the processed data acquisition device 3, the signal processing device 4, the storage device 5, the diagnostic device 6, and the learning model generation device 7 can be realized using a normal computer system, rather than using dedicated devices. For example, a program for realizing each function can be stored and distributed on a computer-readable recording medium such as a CD-ROM (Compact Disc Read Only Memory) or a DVD-ROM (Digital Versatile Disc Read Only Memory), and a computer that can realize each of the above-mentioned functions can be configured by installing this program on a computer.
また、各機能をOS(Operating System)とアプリケーションとの分担、またはOSとアプリケーションとの協同により実現する場合には、アプリケーションのみを記録媒体に格納してもよい。
In addition, if each function is realized by sharing the responsibilities of an OS (Operating System) and an application, or by cooperation between an OS and an application, only the application may be stored on the recording medium.
本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。
This disclosure allows for various embodiments and modifications without departing from the broad spirit and scope of the disclosure. Furthermore, the above-described embodiments are intended to explain the disclosure and do not limit the scope of the disclosure. In other words, the scope of the disclosure is indicated by the claims, not the embodiments. Furthermore, various modifications made within the scope of the claims and within the scope of the disclosure equivalent thereto are considered to be within the scope of the disclosure.
本出願は、2022年10月3日に出願された日本国特許出願特願2022-159730号に基づく。本明細書中に日本国特許出願特願2022-159730号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
This application is based on Japanese Patent Application No. 2022-159730, filed on October 3, 2022. The entire specification, claims, and drawings of Japanese Patent Application No. 2022-159730 are incorporated herein by reference.
以下、本開示の諸態様を付記としてまとめて記載する。
The various aspects of this disclosure are summarized below as appendices.
(付記1)
診断対象の加工設備の動作状態を示す動作状態情報を取得する動作状態情報取得部と、
前記動作状態情報取得部により取得された動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する抽出部と、
前記抽出部により抽出された計算対象区間の動作状態情報から、特徴量を算出する特徴量算出部と、
前記特徴量算出部により算出された特徴量に基づいて、加工設備が正常か異常かを判定する診断部と、
を備える診断システム。 (Appendix 1)
an operation status information acquisition unit that acquires operation status information indicating an operation status of the processing equipment to be diagnosed;
an extracting unit that extracts, from the operation state information acquired by the operation state information acquiring unit, operation state information of a calculation target section that indicates a time region determined by a preset rule within a stable processing section in which the motor rotates stably;
a feature amount calculation unit that calculates a feature amount from the motion state information of the calculation target section extracted by the extraction unit;
a diagnosis unit that determines whether the processing equipment is normal or abnormal based on the feature amount calculated by the feature amount calculation unit;
A diagnostic system comprising:
診断対象の加工設備の動作状態を示す動作状態情報を取得する動作状態情報取得部と、
前記動作状態情報取得部により取得された動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する抽出部と、
前記抽出部により抽出された計算対象区間の動作状態情報から、特徴量を算出する特徴量算出部と、
前記特徴量算出部により算出された特徴量に基づいて、加工設備が正常か異常かを判定する診断部と、
を備える診断システム。 (Appendix 1)
an operation status information acquisition unit that acquires operation status information indicating an operation status of the processing equipment to be diagnosed;
an extracting unit that extracts, from the operation state information acquired by the operation state information acquiring unit, operation state information of a calculation target section that indicates a time region determined by a preset rule within a stable processing section in which the motor rotates stably;
a feature amount calculation unit that calculates a feature amount from the motion state information of the calculation target section extracted by the extraction unit;
a diagnosis unit that determines whether the processing equipment is normal or abnormal based on the feature amount calculated by the feature amount calculation unit;
A diagnostic system comprising:
(付記2)
前記診断部は、前記特徴量算出部により算出された特徴量を、予め設定された機械学習モデルに入力して得られる出力により、診断対象の加工設備が正常か異常かを判定する、
付記1に記載の診断システム。 (Appendix 2)
The diagnosis unit inputs the feature amount calculated by the feature amount calculation unit into a preset machine learning model, and based on the output obtained, determines whether the processing equipment to be diagnosed is normal or abnormal.
2. The diagnostic system of claim 1.
前記診断部は、前記特徴量算出部により算出された特徴量を、予め設定された機械学習モデルに入力して得られる出力により、診断対象の加工設備が正常か異常かを判定する、
付記1に記載の診断システム。 (Appendix 2)
The diagnosis unit inputs the feature amount calculated by the feature amount calculation unit into a preset machine learning model, and based on the output obtained, determines whether the processing equipment to be diagnosed is normal or abnormal.
2. The diagnostic system of claim 1.
(付記3)
前記特徴量算出部により算出された特徴量と各特徴量に付与されたラベル情報とを含む学習用データに基づいて、前記機械学習モデルを生成する学習モデル生成部、
をさらに備える、付記2に記載の診断システム。 (Appendix 3)
a learning model generation unit that generates the machine learning model based on learning data including the features calculated by the feature calculation unit and label information assigned to each feature;
3. The diagnostic system of claim 2, further comprising:
前記特徴量算出部により算出された特徴量と各特徴量に付与されたラベル情報とを含む学習用データに基づいて、前記機械学習モデルを生成する学習モデル生成部、
をさらに備える、付記2に記載の診断システム。 (Appendix 3)
a learning model generation unit that generates the machine learning model based on learning data including the features calculated by the feature calculation unit and label information assigned to each feature;
3. The diagnostic system of claim 2, further comprising:
(付記4)
診断対象の加工設備による加工内容を識別する加工識別情報を取得する加工識別情報取得部、をさらに備え、
前記抽出部は、前記加工内容と前記計算対象区間の動作状態情報を抽出する規則とを対応付ける対応情報に基づいて、診断対象の加工設備の動作状態情報から前記計算対象区間の動作状態情報を抽出する規則を特定し、特定した規則を実行することにより、前記特徴量の算出に用いる動作状態情報を抽出する、
付記1から3のいずれか1つに記載の診断システム。 (Appendix 4)
The diagnostic device further includes a processing identification information acquisition unit that acquires processing identification information that identifies processing content performed by the diagnostic target processing equipment,
the extraction unit specifies a rule for extracting the operation state information of the calculation target section from the operation state information of the processing equipment to be diagnosed based on correspondence information that associates the processing content with a rule for extracting the operation state information of the calculation target section, and executes the specified rule to extract the operation state information to be used in calculating the feature amount.
4. The diagnostic system of any one of claims 1 to 3.
診断対象の加工設備による加工内容を識別する加工識別情報を取得する加工識別情報取得部、をさらに備え、
前記抽出部は、前記加工内容と前記計算対象区間の動作状態情報を抽出する規則とを対応付ける対応情報に基づいて、診断対象の加工設備の動作状態情報から前記計算対象区間の動作状態情報を抽出する規則を特定し、特定した規則を実行することにより、前記特徴量の算出に用いる動作状態情報を抽出する、
付記1から3のいずれか1つに記載の診断システム。 (Appendix 4)
The diagnostic device further includes a processing identification information acquisition unit that acquires processing identification information that identifies processing content performed by the diagnostic target processing equipment,
the extraction unit specifies a rule for extracting the operation state information of the calculation target section from the operation state information of the processing equipment to be diagnosed based on correspondence information that associates the processing content with a rule for extracting the operation state information of the calculation target section, and executes the specified rule to extract the operation state information to be used in calculating the feature amount.
4. The diagnostic system of any one of claims 1 to 3.
(付記5)
診断対象の加工設備の動作を制御する制御部、をさらに備え、
前記診断部は、診断対象の加工設備が異常であると判定した場合、異常であることを示す判定結果を前記制御部に通知し、
前記制御部は、前記診断部からの前記判定結果を受信した場合、診断対象の加工設備の一部または全ての動作を停止させる、
付記1から4のいずれか1つに記載の診断システム。 (Appendix 5)
A control unit that controls an operation of the processing equipment to be diagnosed,
When the diagnosis unit determines that the processing equipment to be diagnosed is abnormal, the diagnosis unit notifies the control unit of a determination result indicating that the processing equipment is abnormal;
When the control unit receives the determination result from the diagnosis unit, the control unit stops operation of a part or all of the processing equipment to be diagnosed.
5. The diagnostic system of any one of claims 1 to 4.
診断対象の加工設備の動作を制御する制御部、をさらに備え、
前記診断部は、診断対象の加工設備が異常であると判定した場合、異常であることを示す判定結果を前記制御部に通知し、
前記制御部は、前記診断部からの前記判定結果を受信した場合、診断対象の加工設備の一部または全ての動作を停止させる、
付記1から4のいずれか1つに記載の診断システム。 (Appendix 5)
A control unit that controls an operation of the processing equipment to be diagnosed,
When the diagnosis unit determines that the processing equipment to be diagnosed is abnormal, the diagnosis unit notifies the control unit of a determination result indicating that the processing equipment is abnormal;
When the control unit receives the determination result from the diagnosis unit, the control unit stops operation of a part or all of the processing equipment to be diagnosed.
5. The diagnostic system of any one of claims 1 to 4.
(付記6)
前記動作状態情報は、前記加工設備に設置されたセンサにより検知された物理量を示すセンサ出力を含み、
前記抽出部は、前記加工設備の異常発生区間の動作状態を含む複数の前記動作状態情報から、正常加工区間の前記センサ出力と前記異常発生区間の前記センサ出力との差分をそれぞれ求め、求めた差分が大きいセンサ出力を含む前記動作状態情報の前記異常発生区間に基づいて、前記計算対象区間を特定し、前記動作状態情報取得部により取得された動作状態情報から、特定された前記計算対象区間の動作状態情報を抽出する、
付記1から5のいずれか1つに記載の診断システム。 (Appendix 6)
The operational status information includes a sensor output indicating a physical quantity detected by a sensor installed in the processing equipment,
the extraction unit obtains a difference between the sensor output in a normal processing section and the sensor output in the abnormality occurrence section from a plurality of pieces of operation status information including operation states of the abnormality occurrence section of the processing equipment, identifies the calculation target section based on the abnormality occurrence section of the operation status information including a sensor output in which the obtained difference is large, and extracts operation status information of the identified calculation target section from the operation status information acquired by the operation status information acquisition unit.
6. The diagnostic system of any one of claims 1 to 5.
前記動作状態情報は、前記加工設備に設置されたセンサにより検知された物理量を示すセンサ出力を含み、
前記抽出部は、前記加工設備の異常発生区間の動作状態を含む複数の前記動作状態情報から、正常加工区間の前記センサ出力と前記異常発生区間の前記センサ出力との差分をそれぞれ求め、求めた差分が大きいセンサ出力を含む前記動作状態情報の前記異常発生区間に基づいて、前記計算対象区間を特定し、前記動作状態情報取得部により取得された動作状態情報から、特定された前記計算対象区間の動作状態情報を抽出する、
付記1から5のいずれか1つに記載の診断システム。 (Appendix 6)
The operational status information includes a sensor output indicating a physical quantity detected by a sensor installed in the processing equipment,
the extraction unit obtains a difference between the sensor output in a normal processing section and the sensor output in the abnormality occurrence section from a plurality of pieces of operation status information including operation states of the abnormality occurrence section of the processing equipment, identifies the calculation target section based on the abnormality occurrence section of the operation status information including a sensor output in which the obtained difference is large, and extracts operation status information of the identified calculation target section from the operation status information acquired by the operation status information acquisition unit.
6. The diagnostic system of any one of claims 1 to 5.
(付記7)
前記抽出部は、前記動作状態情報取得部により取得された動作状態情報の前記安定加工区間を複数の区間に分割し、分割された前記区間毎の特徴量をそれぞれ算出し、算出された前記区間毎の特徴量をそれぞれ比較した比較結果に基づいて、前記計算対象区間を特定し、特定された前記計算対象区間の動作状態情報を抽出する、
付記1から6のいずれか1つに記載の診断システム。 (Appendix 7)
The extraction unit divides the stable processing section of the operation status information acquired by the operation status information acquisition unit into a plurality of sections, calculates a feature amount for each of the divided sections, compares the calculated feature amounts for each of the sections, and based on a comparison result, identifies the calculation target section, and extracts operation status information of the identified calculation target section.
7. The diagnostic system of any one of claims 1 to 6.
前記抽出部は、前記動作状態情報取得部により取得された動作状態情報の前記安定加工区間を複数の区間に分割し、分割された前記区間毎の特徴量をそれぞれ算出し、算出された前記区間毎の特徴量をそれぞれ比較した比較結果に基づいて、前記計算対象区間を特定し、特定された前記計算対象区間の動作状態情報を抽出する、
付記1から6のいずれか1つに記載の診断システム。 (Appendix 7)
The extraction unit divides the stable processing section of the operation status information acquired by the operation status information acquisition unit into a plurality of sections, calculates a feature amount for each of the divided sections, compares the calculated feature amounts for each of the sections, and based on a comparison result, identifies the calculation target section, and extracts operation status information of the identified calculation target section.
7. The diagnostic system of any one of claims 1 to 6.
(付記8)
診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する抽出部と、
前記抽出部により抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定する診断部と、
を備える情報処理装置。 (Appendix 8)
an extraction unit that extracts, from operation status information indicating the operation status of the processing equipment to be diagnosed, operation status information of a calculation target section that indicates a time region determined by a preset rule within a stable processing section in which a motor rotates stably;
a diagnosis unit that judges whether the processing equipment to be diagnosed is normal or abnormal based on the operation state information of the calculation target section extracted by the extraction unit;
An information processing device comprising:
診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する抽出部と、
前記抽出部により抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定する診断部と、
を備える情報処理装置。 (Appendix 8)
an extraction unit that extracts, from operation status information indicating the operation status of the processing equipment to be diagnosed, operation status information of a calculation target section that indicates a time region determined by a preset rule within a stable processing section in which a motor rotates stably;
a diagnosis unit that judges whether the processing equipment to be diagnosed is normal or abnormal based on the operation state information of the calculation target section extracted by the extraction unit;
An information processing device comprising:
(付記9)
診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出するステップと、
抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定するステップと
を含む診断方法。 (Appendix 9)
A step of extracting operation status information of a calculation target section, which indicates a time region determined by a preset rule within a stable machining section in which a motor rotates stably, from operation status information indicating an operation status of the machining equipment to be diagnosed;
and determining whether the processing equipment to be diagnosed is normal or abnormal based on the extracted operating state information of the calculation target section.
診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出するステップと、
抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定するステップと
を含む診断方法。 (Appendix 9)
A step of extracting operation status information of a calculation target section, which indicates a time region determined by a preset rule within a stable machining section in which a motor rotates stably, from operation status information indicating an operation status of the machining equipment to be diagnosed;
and determining whether the processing equipment to be diagnosed is normal or abnormal based on the extracted operating state information of the calculation target section.
(付記10)
コンピュータに、
診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する処理と、
抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定する処理と、
を実行させるプログラム。 (Appendix 10)
On the computer,
A process of extracting operation status information of a calculation target section, which indicates a time region determined by a preset rule within a stable machining section in which a motor rotates stably, from operation status information indicating an operation status of the machining equipment to be diagnosed;
A process of determining whether the processing equipment to be diagnosed is normal or abnormal based on the extracted operation state information of the calculation target section;
A program that executes the following.
コンピュータに、
診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する処理と、
抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定する処理と、
を実行させるプログラム。 (Appendix 10)
On the computer,
A process of extracting operation status information of a calculation target section, which indicates a time region determined by a preset rule within a stable machining section in which a motor rotates stably, from operation status information indicating an operation status of the machining equipment to be diagnosed;
A process of determining whether the processing equipment to be diagnosed is normal or abnormal based on the extracted operation state information of the calculation target section;
A program that executes the following.
1 診断システム、2 加工設備、3 加工データ取得装置、4 信号処理装置、5 記憶装置、6 診断装置、7 学習モデル生成装置、8 状態表示器、9 制御装置、99 内部バス、11 CPU、12 RAM、13 ROM、14 記憶部、15 入力部、16 通信部。
1 Diagnostic system, 2 Machining equipment, 3 Machining data acquisition device, 4 Signal processing device, 5 Storage device, 6 Diagnostic device, 7 Learning model generation device, 8 Status display device, 9 Control device, 99 Internal bus, 11 CPU, 12 RAM, 13 ROM, 14 Memory unit, 15 Input unit, 16 Communication unit.
Claims (10)
- 診断対象の加工設備の動作状態を示す動作状態情報を取得する動作状態情報取得部と、
前記動作状態情報取得部により取得された動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する抽出部と、
前記抽出部により抽出された計算対象区間の動作状態情報から、特徴量を算出する特徴量算出部と、
前記特徴量算出部により算出された特徴量に基づいて、加工設備が正常か異常かを判定する診断部と、
を備える診断システム。 an operation status information acquisition unit that acquires operation status information indicating an operation status of the processing equipment to be diagnosed;
an extracting unit that extracts, from the operation state information acquired by the operation state information acquiring unit, operation state information of a calculation target section that indicates a time region determined by a preset rule within a stable processing section in which the motor rotates stably;
a feature amount calculation unit that calculates a feature amount from the motion state information of the calculation target section extracted by the extraction unit;
a diagnosis unit that determines whether the processing equipment is normal or abnormal based on the feature amount calculated by the feature amount calculation unit;
A diagnostic system comprising: - 前記診断部は、前記特徴量算出部により算出された特徴量を、予め設定された機械学習モデルに入力して得られる出力により、診断対象の加工設備が正常か異常かを判定する、
請求項1に記載の診断システム。 The diagnosis unit inputs the feature amount calculated by the feature amount calculation unit into a preset machine learning model, and based on the output obtained, determines whether the processing equipment to be diagnosed is normal or abnormal.
The diagnostic system of claim 1 . - 前記特徴量算出部により算出された特徴量と各特徴量に付与されたラベル情報とを含む学習用データに基づいて、前記機械学習モデルを生成する学習モデル生成部、
をさらに備える、請求項2に記載の診断システム。 a learning model generation unit that generates the machine learning model based on learning data including the features calculated by the feature calculation unit and label information assigned to each feature;
The diagnostic system of claim 2 , further comprising: - 診断対象の加工設備による加工内容を識別する加工識別情報を取得する加工識別情報取得部、をさらに備え、
前記抽出部は、前記加工内容と前記計算対象区間の動作状態情報を抽出する規則とを対応付ける対応情報に基づいて、診断対象の加工設備の動作状態情報から前記計算対象区間の動作状態情報を抽出する規則を特定し、特定した規則を実行することにより、前記特徴量の算出に用いる動作状態情報を抽出する、
請求項1から3のいずれか1項に記載の診断システム。 The diagnostic device further includes a processing identification information acquisition unit that acquires processing identification information that identifies processing content performed by the diagnostic target processing equipment,
the extraction unit specifies a rule for extracting the operation state information of the calculation target section from the operation state information of the processing equipment to be diagnosed based on correspondence information that associates the processing content with a rule for extracting the operation state information of the calculation target section, and executes the specified rule to extract the operation state information to be used in calculating the feature amount.
A diagnostic system according to any one of claims 1 to 3. - 診断対象の加工設備の動作を制御する制御部、をさらに備え、
前記診断部は、診断対象の加工設備が異常であると判定した場合、異常であることを示す判定結果を前記制御部に通知し、
前記制御部は、前記診断部からの前記判定結果を受信した場合、診断対象の加工設備の一部または全ての動作を停止させる、
請求項1から4のいずれか1項に記載の診断システム。 A control unit that controls an operation of the processing equipment to be diagnosed,
When the diagnosis unit determines that the processing equipment to be diagnosed is abnormal, the diagnosis unit notifies the control unit of a determination result indicating that the processing equipment is abnormal;
When the control unit receives the determination result from the diagnosis unit, the control unit stops operation of a part or all of the processing equipment to be diagnosed.
A diagnostic system according to any one of claims 1 to 4. - 前記動作状態情報は、前記加工設備に設置されたセンサにより検知された物理量を示すセンサ出力を含み、
前記抽出部は、前記加工設備の異常発生区間の動作状態を含む複数の前記動作状態情報から、正常加工区間の前記センサ出力と前記異常発生区間の前記センサ出力との差分をそれぞれ求め、求めた差分が大きいセンサ出力を含む前記動作状態情報の前記異常発生区間に基づいて、前記計算対象区間を特定し、前記動作状態情報取得部により取得された動作状態情報から、特定された前記計算対象区間の動作状態情報を抽出する、
請求項1から5のいずれか1項に記載の診断システム。 The operational status information includes a sensor output indicating a physical quantity detected by a sensor installed in the processing equipment,
the extraction unit obtains a difference between the sensor output in a normal processing section and the sensor output in the abnormality occurrence section from a plurality of pieces of operation status information including operation states of the abnormality occurrence section of the processing equipment, identifies the calculation target section based on the abnormality occurrence section of the operation status information including a sensor output in which the obtained difference is large, and extracts operation status information of the identified calculation target section from the operation status information acquired by the operation status information acquisition unit.
A diagnostic system according to any one of claims 1 to 5. - 前記抽出部は、前記動作状態情報取得部により取得された動作状態情報の前記安定加工区間を複数の区間に分割し、分割された前記区間毎の特徴量をそれぞれ算出し、算出された前記区間毎の特徴量をそれぞれ比較した比較結果に基づいて、前記計算対象区間を特定し、特定された前記計算対象区間の動作状態情報を抽出する、
請求項1から6のいずれか1項に記載の診断システム。 The extraction unit divides the stable processing section of the operation status information acquired by the operation status information acquisition unit into a plurality of sections, calculates a feature amount for each of the divided sections, compares the calculated feature amounts for each of the sections, and based on a comparison result, identifies the calculation target section, and extracts operation status information of the identified calculation target section.
A diagnostic system according to any one of claims 1 to 6. - 診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する抽出部と、
前記抽出部により抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定する診断部と、
を備える情報処理装置。 an extraction unit that extracts, from operation status information indicating the operation status of the processing equipment to be diagnosed, operation status information of a calculation target section that indicates a time region determined by a preset rule within a stable processing section in which a motor rotates stably;
a diagnosis unit that judges whether the processing equipment to be diagnosed is normal or abnormal based on the operation state information of the calculation target section extracted by the extraction unit;
An information processing device comprising: - 診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出するステップと、
抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定するステップと、
を含む診断方法。 A step of extracting operation status information of a calculation target section, which indicates a time region determined by a preset rule within a stable machining section in which a motor rotates stably, from operation status information indicating an operation status of the machining equipment to be diagnosed;
A step of determining whether the processing equipment to be diagnosed is normal or abnormal based on the extracted operation state information of the calculation target section;
A diagnostic method comprising: - コンピュータに、
診断対象の加工設備の動作状態を示す動作状態情報から、モータが安定して回転する安定加工区間内において、予め設定された規則により定められた時間領域を示す計算対象区間の動作状態情報を抽出する処理と、
抽出された計算対象区間の動作状態情報に基づいて、診断対象の加工設備が正常か異常かを判定する処理と、
を実行させるプログラム。 On the computer,
A process of extracting operation status information of a calculation target section, which indicates a time region determined by a preset rule within a stable machining section in which a motor rotates stably, from operation status information indicating an operation status of the machining equipment to be diagnosed;
A process of determining whether the processing equipment to be diagnosed is normal or abnormal based on the extracted operation state information of the calculation target section;
A program that executes the following.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-159730 | 2022-10-03 | ||
JP2022159730 | 2022-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024075567A1 true WO2024075567A1 (en) | 2024-04-11 |
Family
ID=90608203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/034701 WO2024075567A1 (en) | 2022-10-03 | 2023-09-25 | Diagnostic system, information processing device, diagnostic method, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024075567A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017120622A (en) * | 2015-12-25 | 2017-07-06 | 株式会社リコー | Diagnostic device, diagnostic method, program and diagnostic system |
JP2020046211A (en) * | 2018-09-14 | 2020-03-26 | 株式会社椿本チエイン | Diagnostic device and method for diagnosis |
-
2023
- 2023-09-25 WO PCT/JP2023/034701 patent/WO2024075567A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017120622A (en) * | 2015-12-25 | 2017-07-06 | 株式会社リコー | Diagnostic device, diagnostic method, program and diagnostic system |
JP2020046211A (en) * | 2018-09-14 | 2020-03-26 | 株式会社椿本チエイン | Diagnostic device and method for diagnosis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7338743B2 (en) | Diagnostic device, diagnostic method, program and diagnostic system | |
JP6156566B2 (en) | Diagnostic device, diagnostic method, program, and diagnostic system | |
JP6450738B2 (en) | Machine learning device, CNC device, and machine learning method for detecting sign of occurrence of tool vibration in machine tool | |
TWI472402B (en) | Tool flutter monitoring method | |
JP2018156652A (en) | Diagnosis device, diagnosis system, diagnosis method and program | |
JP6752866B2 (en) | Cutting tool condition inspection system and method | |
JP7091743B2 (en) | Information processing equipment, information processing methods, programs, and mechanical equipment | |
JP6568167B2 (en) | Anomaly detection device and machine learning device | |
JP2019159728A (en) | Diagnostic device, diagnostic method and program | |
JP7131646B2 (en) | Information processing device, information processing method, information processing program, and information processing system | |
US7571022B2 (en) | System and method for monitoring machine health | |
JP7225984B2 (en) | System, Arithmetic Unit, and Program | |
JP2019160067A (en) | Information processing device, information processing method and program | |
JP2019159759A (en) | Processing section determination device, processing section determination method, program, and diagnostic device | |
JP7166839B2 (en) | Health monitoring system | |
JP3759881B2 (en) | Process diagnosis monitoring system | |
WO2024075567A1 (en) | Diagnostic system, information processing device, diagnostic method, and program | |
JP6822242B2 (en) | Diagnostic equipment, diagnostic systems, diagnostic methods and programs | |
KR102471830B1 (en) | Apparatus and method for simultaneous monitoring of bearing and tool condition | |
JP7368189B2 (en) | Analysis equipment | |
US20230314282A1 (en) | Apparatus and method for status diagnosis of machine tools | |
CN114862283B (en) | Quality inspection method and quality inspection device for machine tool machining | |
WO2019183777A1 (en) | Turning thread automatic diagnosing method and system, data processing system, and storage medium | |
TWM542534U (en) | Device applying rigidity prediction of tool to suppress the chatter of cutting | |
JP7310195B2 (en) | Diagnostic device, diagnostic system and diagnostic program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23874695 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024555728 Country of ref document: JP |