WO2024074613A1 - Verfahren und vorrichtung zum bereitstellen und/oder speichern von wasserstoffgas - Google Patents
Verfahren und vorrichtung zum bereitstellen und/oder speichern von wasserstoffgas Download PDFInfo
- Publication number
- WO2024074613A1 WO2024074613A1 PCT/EP2023/077569 EP2023077569W WO2024074613A1 WO 2024074613 A1 WO2024074613 A1 WO 2024074613A1 EP 2023077569 W EP2023077569 W EP 2023077569W WO 2024074613 A1 WO2024074613 A1 WO 2024074613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lohc
- reforming
- carrier medium
- reactor
- hydrogen
- Prior art date
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 183
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000002407 reforming Methods 0.000 claims abstract description 154
- 239000001257 hydrogen Substances 0.000 claims abstract description 111
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 111
- 239000003054 catalyst Substances 0.000 claims abstract description 80
- 238000005984 hydrogenation reaction Methods 0.000 claims description 106
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 96
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 66
- 239000012530 fluid Substances 0.000 claims description 43
- 230000008569 process Effects 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- -1 aromatic keto compound Chemical class 0.000 claims description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 229910001882 dioxygen Inorganic materials 0.000 claims description 3
- 229930194542 Keto Natural products 0.000 claims 1
- 238000000926 separation method Methods 0.000 description 42
- 239000013529 heat transfer fluid Substances 0.000 description 32
- 239000007788 liquid Substances 0.000 description 32
- 238000006243 chemical reaction Methods 0.000 description 28
- 230000018044 dehydration Effects 0.000 description 28
- 238000006297 dehydration reaction Methods 0.000 description 28
- 238000006057 reforming reaction Methods 0.000 description 27
- 239000000463 material Substances 0.000 description 25
- 239000000203 mixture Substances 0.000 description 24
- 239000012876 carrier material Substances 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- 230000002457 bidirectional effect Effects 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 150000001491 aromatic compounds Chemical class 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- 229910052763 palladium Inorganic materials 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical compound C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000012074 organic phase Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000012465 retentate Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- NMTMUASYSMIDRL-UHFFFAOYSA-N 1-(cyclohexylmethyl)-2-methylbenzene Chemical compound CC1=CC=CC=C1CC1CCCCC1 NMTMUASYSMIDRL-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- HULHOBUIBFPLGZ-UHFFFAOYSA-N benzene-1,2,3-tricarbaldehyde Chemical compound O=CC1=CC=CC(C=O)=C1C=O HULHOBUIBFPLGZ-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0015—Organic compounds; Solutions thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/22—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/323—Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0266—Processes for making hydrogen or synthesis gas containing a decomposition step
- C01B2203/0277—Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/142—At least two reforming, decomposition or partial oxidation steps in series
Definitions
- the invention relates to a method and a device for providing and/or storing hydrogen gas.
- EP 1 475 349 A2 discloses liquid organic hydrogen carrier media, which are referred to as LOHC according to their English name “liquid organic hydrogen carriers”.
- LOHC can be reversibly catalytically hydrogenated and dehydrogenated in order to chemically bind hydrogen gas, i.e. to store it, and then release it again.
- the invention is based on the object of increasing the hydrogen yield, in particular the amount of hydrogen that can be released, using a hydrogen carrier medium, in particular LOHC.
- the core of the invention is that an at least partially or completely reaction of an at least partially discharged hydrogen carrier medium with water takes place.
- This reaction is referred to as at least partial reforming of the hydrogen carrier medium.
- the hydrogen carrier medium is oxidized using the oxygen in the water and the hydrogen atoms in the water are converted to hydrogen gas.
- reforming differs from oxidation in which the hydrogen carrier medium is reacted with oxygen and undesirable carbon dioxide is formed.
- Another difference in reforming is that the reaction is endothermic due to the heat-consuming hydrogen formation.
- the at least partially discharged hydrogen carrier medium is referred to as H0-LOHC.
- the reaction takes place on a reforming catalyst and using, in particular in the presence of, steam. It has been found that hydrogen gas is at least partially released from the water vapor during the reforming reaction.
- the invention it is therefore possible to release hydrogen gas in connection with handling of hydrogen carrier medium that was not previously bound to the hydrogen carrier medium.
- hydrogen gas can be released additionally and in particular in addition to the hydrogen previously bound to the hydrogen carrier medium.
- the hydrogen yield is increased overall.
- the proportion of the hydrogen carrier medium that is converted in the reforming reaction according to the invention is between 1% and 100%, preferably between 30% and 98%, most suitably between 60% and 95%.
- HO-LOHC has a degree of hydrogenation HG2 which is in particular not more than 60%, in particular not more than 50%, in particular not more than 40%, in particular not more than 30%, in particular not more than 20%, in particular not more than 10%, in particular not more than 5% and in particular not more than
- HO-LOHC is a liquid that is particularly low in hydrogen.
- HO-LOHC comprises at least predominantly aromatic compounds.
- the proportion of aromatic compounds in HO-LOHC is in particular at least 40%, in particular at least 50%, in particular at least 60%, in particular at least 70%, in particular at least 80%, in particular at least 90%, in particular at least
- the reforming reaction takes place in a reforming reactor.
- HO-LOHC is oxidized in the reforming reaction to the at least partially oxidized hydrogen carrier medium Oxo-LOHC.
- Oxo-LOHC comprises in particular one or more compounds, in particular oxidized and in particular oxidized aromatic compounds.
- HO-LOHC can be oxidized to oxo-LOHC in the presence of water vapor and that hydrogen gas can also be released.
- this reforming reaction releases one or two hydrogen molecules per oxidized compound of the oxo-LOHC.
- the reforming reaction takes place in particular at a first location where there is a need for energy and/or hydrogen.
- the first location is low in energy and/or hydrogen.
- hydrogen gas is provided for a hydrogen consumer, in particular a fuel cell and/or a hydrogen burner, and/or for delivery to hydrogen customers.
- the hydrogen provided can be used as a material in addition to or as an alternative to energy use, i.e. for generating electrical and/or thermal energy.
- the reforming catalyst comprises a carrier material to which a catalytically active material, also referred to as reforming catalyst material, is attached and held thereon.
- the mass fraction of the reforming catalyst material based on the carrier material is between 0.01% and 100%, in particular between 0.1% and 80% and in particular between 0.3% and 50%.
- the carrier material has pores and is in particular porous.
- the porous carrier material has an inner surface of at least 1 m 2 per gram of catalyst material, in particular where the reforming catalyst material is arranged.
- the average pore diameter is in particular more than
- Metal oxide supports such as aluminum oxide, titanium oxide, cerium oxide and/or silicon oxide are particularly used as porous carrier materials. Additionally or alternatively, carbon-containing carrier materials, in particular activated carbon, can also be used.
- the reforming catalyst may comprise one or more promoters, in particular alkali salts.
- the reforming catalyst material comprises in particular a metal component on which the reforming of HO-LOHC and the formation of hydrogen gas from water vapor takes place.
- the metal components used are in particular iron, antimony, molybdenum, vanadium, cesium, chromium, cerium, manganese, lanthanum, titanium, tungsten, cobalt, copper, platinum, palladium, gold, ruthenium, zinc, tin, germanium and/or nickel, with iron, nickel, cobalt, manganese, chromium, cerium, copper, gold, palladium, platinum, zinc and/or tin having proven to be particularly advantageous.
- the reforming catalyst is particularly advantageous if it has metal-oxygen bonds that release and reabsorb oxygen reversibly.
- the reforming The catalyst comprises in particular metal oxide compounds, mixtures of metal oxide compounds and/or mixed metal oxides.
- Mixed metal oxides are metal oxides that contain several metals, such as aluminum gallium oxide. In the lattice of the metal oxide, various places are then occupied by at least one other metal.
- the reforming catalyst can be present in both an oxidized and a reduced form.
- a transition from the oxidized form to the reduced form of the reforming catalyst takes place with the transfer of oxygen to the HO-LOHC.
- a transition from the reduced form of the reforming catalyst back to the oxidized form takes place using the oxygen atom in the water vapor and forming hydrogen gas. This means that the reforming catalyst is unchanged in the oxidized form after the reforming reaction, with the interim reduction in particular being the prerequisite for the absorption of oxygen from the water vapor and thus the release of hydrogen gas.
- the oxidation of the HO-LOHC by means of the oxygen groups on the catalyst and the regeneration of the catalyst by means of water vapor can take place simultaneously.
- the oxidation and regeneration can also take place in stages, i.e. at different times.
- the catalyst can be regenerated using steam in the absence of the hydrogen carrier medium.
- the reforming catalyst differs, in particular with regard to its material composition, from a known dehydrogenation catalyst which converts an at least partially loaded hydrogen carrier medium Hx-LOHC into the at least partially discharged hydrogen carrier medium HO-LOHC by releasing hydrogen gas.
- the reforming catalyst can be designed analogously to a dehydrogenation catalyst known per se and in particular comprise a metallic, catalytically active catalyst material which is attached to an oxidic carrier material.
- the reforming reactor is designed in particular as a flow-through tubular apparatus in which the reforming catalyst is arranged.
- the reforming reactor can also be designed as a classic fixed bed reactor or as a fluidized bed reactor.
- the reforming catalyst is in particular a solid.
- the reforming catalyst is in particular present in structured form, in particular in the form of a packed bed and/or in the form of catalytically coated reactor internals in the reforming reactor.
- the reforming catalyst In the reforming reactor, the reforming catalyst is brought into contact with HO-LOHC and water vapor simultaneously or alternately. This produces oxidized LOHC components and hydrogen gas. Gas-solid contact takes place.
- the reforming reaction is particularly endothermic and takes place under constant heat supply.
- the reforming reaction takes place in a temperature range between 100 °C and 800 °C, in particular between 170 °C and 650 °C and in particular between 240 °C and 350 °C.
- the total pressure in the reforming reactor is between 0.1 bar and 30 bar, in particular between 0.5 bar and 18 bar and in particular between 1 bar and 6 bar.
- the temperature of the steam entering the reforming reactor is between 110 °C and 1000 °C, in particular between 200 °C and 800 °C and in particular between 270 °C and 600 °C.
- the reforming reaction on HO-LOHC is carried out in such a way that less than 20% of the carbon skeleton of HO-LOHC is split, in particular less than 10% and in particular less than 3%.
- less than 5% of the carbon contained in the HO-LOHC is converted to carbon dioxide by the reforming reactions, in particular less than 3% and in particular less than
- the steam is fed to the reforming reactor in the form of superheated steam.
- the superheated steam contains no water droplets and behaves physically like a gas. It is advantageous if at least
- the superheated steam is generated in particular by using the hydrogen released in the process for energy and/or by using waste heat generated in the process.
- the hydrogen released can be generated by operating a gas turbine, an engine, a hydrogen burner, a hydrogen motor and/or a high-temperature fuel cell, in particular a solid oxide fuel cell.
- the mixture of substances leaving the reforming reactor is cooled and in particular cooled to such an extent that all organic compounds of the mixture of substances, in particular oxo-LOHC and water, condense.
- the components that are liquid after condensation can be separated easily and reliably, so that the hydrogen gas released is of high purity, which is in particular at least 80%, in particular at least 90%, in particular at least 95%, in particular at least 99% and in particular at least 99.9%.
- purification stages of the hydrogen gas released from dehydrogenation can be used to combine the water streams from dehydrogenation and reforming in one, in particular common and in particular final purification stage, i.e. as the last stage in a process chain.
- a gas scrubber and/or an adsorption unit are particularly possible for purifying the hydrogen gas.
- the adsorption unit used is in particular an adsorbent bed or a pressure and/or temperature swing adsorption unit.
- a liquid two-phase mixture is present, with an aqueous phase and an organic phase.
- the organic phase comprises oxo-LOHC, which can be advantageously separated from the aqueous phase.
- LOHC material systems that can be dehydrogenated from Hx-LOHC to HO-LOHC and reformed in the reforming reaction from HO-LOHC to Oxo-LOHC with the help of steam are summarized below in Table 1, indicating the hydrogen storage capacities. Mixtures of the material systems listed in the table are also possible, and in particular isomers of the LOHC material systems and mixtures of isomers.
- a theoretical hydrogen storage capacity d m in mass% and a usable volumetric hydrogen storage capacity dv in Wh/1 as a unit for the energy storage density as well as a calculated increase in the hydrogen capacity Ad are given.
- the increased hydrogen storage capacity means that with the same amount of Hx-LOHC, a hydrogen consumer can be supplied with hydrogen gas for a longer period of time and/or a hydrogen-consuming vehicle with the same amount of Hx-LOHC has a longer range.
- the increased hydrogen storage capacity increases the technical benefit of the LOHC system.
- a method according to claim 2 enables an advantageous reforming reaction and in particular an improved additional release of hydrogen gas from the water vapor. It has proven to be advantageous if Hx-LOHC has at least one cyclohexyl unit and at least one methylene group (-CEE-) or one methyl group (-CEE). Such compounds can be converted by dehydrogenation into corresponding aromatic compounds, which are converted into aromatic oxo compounds, in particular aromatic keto compounds, aromatic aldehyde compounds and/or aromatic keto-aldehyde compounds as oxo-LOHC upon addition of water vapor and further release of hydrogen gas.
- a method according to claim 3 enables the additional release of hydrogen gas.
- a heat source required for the dehydrogenation reaction and in particular already provided can also be used for the reforming reaction.
- the heat utilization of this heat source to operate the reforming and dehydrogenation would thus be solved more efficiently and in particular more efficiently than the provision of several separate heat sources for the dehydrogenation and the reforming.
- the overall efficiency of the method is thereby improved.
- a method according to claim 4 enables the reforming reaction to be carried out in an uncomplicated manner.
- the starting materials required for the reforming reaction can be fed to the reforming reactor essentially continuously and in particular without time control. It is particularly advantageous if HO-LOHC and the steam are fed to the reforming reactor at the same time, i.e. simultaneously and in particular together, in particular via a common feed opening.
- the reforming of the hydrogen carrier medium on the reforming catalyst takes place in the presence of the steam.
- the at least partially oxidized hydrogen carrier medium is oxidized directly by using the oxygen from the steam and forming hydrogen gas.
- HO-LOHC and steam can be fed to the reforming reactor in a temporally decoupled manner and, in particular, at different times.
- reforming in the reforming reactor takes place in two reaction cycles.
- a first reaction cycle predominantly and, in particular, exclusively, HO-LOHC is fed in and brought into contact with the reforming catalyst.
- the oxygen bound in the catalyst reacts with HO-LOHC to form oxo-LOHC.
- the oxidation of the HO-LOHC takes place, particularly in the absence of water vapor.
- the reforming catalyst is converted from the oxidized to the reduced form.
- a subsequent second reaction cycle mainly and in particular exclusively hot steam is fed to the reforming reactor and brought into contact with the reforming catalyst.
- the reforming catalyst is converted from the reduced to the oxidized form, i.e. oxidized, with the formation of hydrogen.
- the regeneration of the reforming catalyst during the second reaction cycle takes place in the presence of steam.
- HO-LOHC is not added in the second reaction cycle.
- the hydrogen carrier medium is reformed using steam, namely to regenerate the reforming catalyst.
- the oxygen bound in the catalyst is used to oxidize the hydrogen carrier medium.
- a further, intermediate reaction cycle which serves to flush the reforming reactor, in particular exclusively to flush the reforming reactor, so that mixing of the hydrogen carrier medium with the water within the reactor due to remaining residues is minimized and in particular excluded.
- Nitrogen or air in particular serves as the flushing gas.
- the process conditions of the individual process stages, in particular temperature and/or pressure, can differ from one another.
- the water vapor content in the reforming reactor in the first reaction cycle is less than 30% by volume, in particular less than
- the content of HO-LOHC in the reforming reactor in the second reaction cycle is below 30% by volume, in particular below
- reaction conditions for the first and second reaction cycles can be different.
- the temperature in the second reaction cycle can be chosen to be higher than in the first in order to further increase the yield of hydrogen gas formed.
- reaction cycles are carried out alternately and in particular at regular intervals.
- a cycle change takes place in particular at time intervals between 2 s and 5 h, in particular between 10 s and 1 h and in particular between 1 min and 30 min.
- the reaction cycles can cover the same or different time periods.
- a method according to claim 5 enables an advantageous reforming reaction. At least a stoichiometric amount of water vapor based on HO-LOHC ensures an advantageous hydrogen gas release.
- the molar ratio of the water vapor to the at least partially discharged hydrogen carrier medium HO-LOHC is between 1 and 500, in particular between 1.1 and 100 and in particular between 0.2 and 10.
- a method according to claim 6 enables a targeted reforming reaction. Because the reforming reaction takes place in the absence of molecular oxygen, i.e. the reforming reactor has a molecular oxygen content of less than 10 vol. %, the proportion of hydrogen gas released is additionally increased because water vapor and HO-LOHC are converted into hydrogen gas and oxo-LOHC in the reforming reactor.
- a process according to claim 7 enables an additionally increased hydrogen yield.
- the HO-LOHC produced by dehydrogenation can then be converted in the reforming reactor.
- the dehydrogenation takes place in particular as a process step preceding the reforming reaction.
- the dehydrogenation reaction takes place in a dehydrogenation reactor in the presence of a dehydrogenation catalyst.
- the dehydrogenation reaction is endothermic, i.e. it takes place with the addition of heat.
- the dehydrogenation reactor is in particular a tubular reaction apparatus in which the dehydrogenation catalyst is present in particular as a structured catalyst.
- the dehydrogenation catalyst is arranged in the form of a packed bed and/or in the form of catalytically active reactor internals.
- At least partially loaded hydrogen carrier medium is fed to the dehydrogenation reactor.
- the at least partially loaded hydrogen carrier medium is referred to as Hx-LOHC.
- Hx-LOHC is rich in hydrogen and has a degree of hydrogenation HGi of at least 50%, in particular at least 60%, in particular at least 70%, in particular at least 80%, in particular at least 90%, in particular at least 95% and in particular at least 99%. In particular: HGi > HG2.
- Hx-LOHC is in particular an alicyclic compound and in particular a liquid.
- Hx-LOHC is converted into the at least partially discharged hydrogen carrier medium HO-LOHC.
- Dehydration and reforming can take place simultaneously or sequentially, in particular by temporarily storing Hx-LOHC and/or HO-LOHC in designated storage containers.
- the dehydrogenation catalyst is in particular a solid and comprises a catalytically active material, which is referred to as dehydrogenation catalyst material, which is attached to a carrier material.
- the mass fraction of the dehydrogenation catalyst material based on the carrier material is between 0.01% and 50%, in particular from 0.1% to 10% and in particular from 0.3% to 5%.
- the carrier material has pores and is in particular porous.
- the carrier material used is in particular a porous metal oxide carrier, in particular aluminum oxide, titanium oxide, cerium oxide and/or silicon oxide. Additionally or alternatively, silicon carbide and/or a carbon-containing carrier material, in particular activated carbon, can also serve as the carrier material.
- the porous catalyst has an internal surface area of at least 5 m 2 per gram of catalyst where the dehydrogenation catalyst material is arranged.
- the average pore diameter is in particular more than 0.5 nm.
- the dehydrogenation catalyst material comprises in particular a metal component on which the dehydrogenation reaction takes place.
- the metal component is in particular platinum and can additionally contain nickel, manganese, cobalt, copper, tin, iron, gallium, palladium, rhodium, rhenium, ruthenium and/or iridium.
- nickel, cobalt, copper, iron, gallium, palladium, rhodium, ruthenium and/or iridium can be used as the metal component.
- the contact of the dehydrogenation catalyst with Hx-LOHC takes place in gas-liquid-solid contact or in gas-solid contact, in which the solid dehydrogenation catalyst is contacted with Hx-LOHC in vaporized form and/or as a liquid.
- the catalytic dehydrogenation reaction in the dehydrogenation reactor is endothermic and takes place in particular under constant supply of heat, in particular in a temperature range between 100 °C and 400 °C, in particular between 170 °C and 380 °C and in particular between 240 °C and 350 °C.
- the hydrogen partial pressure in the dehydrogenation reactor is in particular between 0.1 bar and 12 bar, in particular between 0.5 bar and 9 bar and in particular between 1 bar and 6 bar.
- the mixture of substances leaving the dehydrogenation reactor i.e. a mixture of released hydrogen gas, HO-LOHC and small amounts of Hx-LOHC
- the mixture of substances is cooled to such an extent that all organic compounds, in particular HO-LOHC and Hx-LOHC, condense.
- the hydrogen formed can be separated easily and reliably with high purity from the components that are liquid after condensation.
- the condensed liquid components form in particular HO-LOHC.
- Separation of the substance mixture by means of a membrane has proven to be particularly advantageous, in particular a Pd-Ag membrane, in order to separate the substance mixture in the gaseous state.
- a separation apparatus in which condensation takes place is then unnecessary.
- the HO-LOHC and Hx-LOHC separated in this way can be removed from the retentate into a storage container provided for this purpose and/or into the Reforming reactor.
- Other separation processes and/or separation units are also conceivable, in particular gas scrubbers and/or adsorption units.
- a method according to claim 7 comprises dehydrogenating an at least partially loaded hydrogen carrier medium Hx-LOHC, which is carried out in particular before reforming.
- the HO-LOHC formed by dehydrogenation is then reformed with steam.
- the combination of dehydrogenation and reforming results in an overall increased hydrogen release rate.
- the theoretical hydrogen release is 10 mol EE per mole benzyltoluene, compared to 6 mol EE with pure dehydrogenation of benzyltoluene.
- a hydrogenation process according to claim 8 enables an advantageous conversion of oxo-LOHC into Hx-LOHC.
- the hydrogenation reaction is in particular exothermic and takes place in particular with the release of heat and at increased pressure.
- the hydrogenation process creates the prerequisites for a material cycle, in particular a closed cycle for the hydrogen carrier medium.
- the hydrogenation takes place at different times and in particular at a second location, which is in particular spatially distant from the first location.
- the second location is in particular energy-rich. This means that at the second location, electrical power is available in abundance and/or under economically favorable conditions.
- advantageous conditions for the use of renewable energy sources can also prevail, for example for the use of wind power and/or solar power and/or hydropower.
- the oxo-LOHC hydrogenated in the hydrogenation reactor has been formed according to the invention from HO-LOHC by a reforming reaction.
- the hydrogenation reaction takes place on a hydrogenation catalyst with hydrogen gas.
- the hydrogenation catalyst comprises a carrier material to which a catalytically active material, referred to as hydrogenation catalyst material, is attached and held thereon.
- the carrier material has pores and is in particular porous.
- the carrier material has an inner surface of at least 5 m 2 per gram of carrier material where the hydrogenation catalyst material is arranged.
- An average pore diameter is in particular more than 0.5 nm.
- the carrier material used is in particular a porous metal oxide carrier, in particular titanium oxide, cerium oxide, aluminum oxide and/or silicon oxide. Additionally or alternatively, carbon-containing carrier materials are also possible, in particular activated carbon.
- the mass fraction of the hydrogenation catalyst material based on the support material is between 0.01% and 5%, in particular between
- the hydrogenation catalyst material comprises in particular a metal component on which the hydrogenation reaction and the formation of water take place.
- Suitable metal components are in particular platinum, palladium, nickel, manganese, cobalt, copper, iron, rhodium, ruthenium and/or iridium, with hydrogenation catalyst materials containing platinum and/or palladium having proven to be particularly suitable.
- the hydrogenation catalyst differs from the reforming catalyst.
- the hydrogenation catalyst can be the same or different from the dehydrogenation catalyst in terms of its material composition.
- the hydrogenation reactor is designed in particular as a tubular reaction apparatus.
- the hydrogenation catalyst is present in particular in structured form, in particular in the form of a packed bed and/or in the form of catalytically active reactor internals.
- the hydrogenation catalyst in the hydrogenation reactor is contacted in gas-liquid-solid contact or in gas-solid contact with the gaseous hydrogen and the reaction mixture, in particular with oxo-LOHC in gaseous or liquid form.
- the hydrogenation takes place in particular in a temperature range between 50 °C and 400 °C, in particular between 100 °C and 370 °C and in particular between 150 °C and 340 °C.
- the hydrogen partial pressure in the hydrogenation reactor is between 5 bar and 300 bar, in particular between 7 bar and 180 bar and in particular between 10 bar and 60 bar.
- the substances discharged from the hydrogenation reactor form in particular a liquid mixture of substances.
- the mixture of substances is cooled and in particular cooled to such an extent that all organic compounds, in particular Hx-LOHC, and the water formed condense and the hydrogen, in particular physically dissolved hydrogen, largely outgasses.
- a liquid two-phase mixture which comprises an aqueous phase and an organic phase.
- the organic phase comprises in particular Hx-LOHC, which can be advantageously and easily separated from the aqueous phase by phase separation.
- a recycling process according to claim 9 enables an advantageous closed material cycle.
- a circulation process according to claims 10 or 11 ensures the reliable and uncomplicated implementation of the respective process steps, in particular at different times and at different, in particular spatially separated locations.
- Transport vehicles in particular transport trucks, transport trains and/or transport ships, can be used to transport the hydrogen carrier medium in the various states, i.e. Hx-LOHC, HO-LOHC and/or Oxo-LOHC.
- the transport can take place via lines provided for this purpose, so-called pipelines, which can be arranged above ground and/or underground.
- an existing pipeline network can be used for this purpose.
- the hydrogen carrier medium can be fed into or taken from the pipeline network at feed-in stations and removal stations.
- a device according to claim 12 essentially has the advantages of the method according to the invention, to which reference is hereby made.
- a heat unit is provided with which heat can be supplied to the reforming reactor and/or the dehydrogenation reactor. This simplifies the implementation of the endothermic reactions. It is also possible to use separate heat units for the dehydrogenation. Hydrogenation and/or reforming should be provided, which can be operated independently of each other. This makes it possible to supply heat to the respective reactor in a targeted manner and independently of time.
- a device according to claim 13 ensures the uncomplicated provision of H0-LOHC for subsequent reforming.
- a device according to claim 14 enables a subsequent
- the hydrogenation reactor in particular has a supply line for supplying hydrogen gas and/or a discharge line for discharging water and/or LOHC.
- a device according to claim 15 enables an advantageous and in particular fluidically closed circuit arrangement.
- Fig. 1 is a highly schematic representation of a device with hydrogenation reactor, dehydrogenation reactor and reforming reactor in a closed circuit arrangement
- Fig. 2 is a schematic enlarged view of the dehydrogenation reactor according to Fig. 1 with peripherals,
- Fig. 3 is a representation of the reforming reactor according to Fig. 1 with peripherals, corresponding to Fig. 2,
- Fig. 4 is a representation corresponding to Fig. 2 of the hydrogenation reactor according to Fig. 1 with peripherals.
- a device 1 shown in highly schematic form in Fig. 1 serves to provide and store hydrogen gas by means of a hydrogen carrier medium LOHC, which is used in various states, in particular at least partially loaded with hydrogen as Hx-LOHC, at least partially discharged as HO-LOHC and/or at least partially oxidized as Oxo-LOHC.
- the device 1 comprises a dehydrogenation reactor 2, a reforming reactor 3 fluidically connected thereto and a hydrogenation reactor 4 fluidically connected thereto.
- the hydrogenation reactor 4 is in turn fluidically connected to the dehydrogenation reactor 2.
- the reactors 2, 3, 4 form a fluidically closed circuit arrangement 5.
- the device 1 is operated by feeding Hx-LOHC, according to the embodiment shown in the form of perhydrobenzyltoluene, to the dehydrogenation reactor 2.
- a dehydrogenation catalyst is arranged in the dehydrogenation reactor 2, in the presence of which Hx-LOHC is dehydrogenated to HO-LOHC with the release of hydrogen gas H2.
- HO-LOHC is formed by benzyltoluene. Accordingly, 6 mol of hydrogen gas are released per 1 mol of benzyltoluene.
- the dehydrogenation reaction in the dehydrogenation reactor 2 is endothermic.
- a heat flow Q is fed to the dehydrogenation reactor 2.
- HO-LOHC is fed to the reforming reactor 3 and brought into contact with a reforming catalyst arranged therein.
- water vapor in particular at least 2 mol of water vapor per 1 mol of HO-LOHC, and heat Q are also fed to the reforming reactor 3.
- HO-LOHC is converted with water vapor to form oxo-LOHC.
- hydrogen gas is released from the supplied water vapor, in particular 2 mol of hydrogen gas per mol of converted water vapor.
- Oxo-LOHC is fed to the hydrogenation reactor 4, where it is brought into contact with a hydrogenation catalyst and hydrogenated to Hx-LOHC in the presence of hydrogen gas H2.
- the hydrogenation reaction in the hydrogenation reactor 4 is exothermic. Heat is removed from the hydrogenation reactor 4 as a heat flow Q.
- water is produced during the hydrogenation reaction, which is isolated by phase separation in the cooled state and removed separately.
- the device 1 is described in more detail below with reference to Fig. 2 to 4.
- Fig. 2 shows a first partial device, designated as a whole by 6, which comprises the dehydrogenation reactor 2.
- the first partial device 6 serves to dehydrogenate Hx-LOHC.
- the first sub-device 6 comprises a first storage container 7 in which Hx-LOHC is stored.
- Hx-LOHC comprises the at least partially loaded hydrogen carrier medium, wherein at least partially and/or completely discharged forms of the hydrogen carrier medium LOHC can also be stored in the first storage container 7. These other components form impurities of the Hx-LOHC.
- the first storage tank 7 is connected to a heat exchanger 10 via a first fluid line 8 and a controllable first conveying unit 9, in particular a liquid pump. Purely for illustration purposes, only one heat exchanger 10 is shown in Fig. 2.
- the first sub-device 6 can also comprise several heat exchangers 10. In particular, the first storage tank 7 is connected to at least one and in particular several heat exchangers.
- the first conveying unit 9 is in a signal connection, in particular a bidirectional one, with a central control unit 11.
- the signal connection can be wired or wireless, in particular by radio connection.
- the signal connection is shown purely symbolically in Fig. 2 by a dashed line 12.
- the first fluid line 8 connects the first heat exchanger 10 to the dehydrogenation reactor 2.
- a first heating source 13 is arranged along the fluid flow direction between the first heat exchanger 10 and the dehydrogenation reactor 2.
- the first heating source 13 is in particular designed to be controllable and is in a signal connection, in particular a bidirectional one, with the control unit 11.
- the first heating source 13 is in particular an electric heater and in particular connected to a power supply not shown in detail.
- the first heating source 13 is optional.
- the dehydrogenation reactor 2 has a dehydrogenation vessel 14 in which at least one dehydrogenation chamber 15 and in particular several dehydrogenation chambers 15 are arranged.
- the dehydrogenation catalyst is arranged in each dehydrogenation chamber 15.
- the dehydration container 14 has a longitudinal axis 16 which is oriented vertically according to the embodiment shown.
- the longitudinal axis 16 can be inclined relative to the vertical and in particular can be arranged horizontally.
- the dehydration container 14 has a cross-sectional area oriented perpendicular to the longitudinal axis 16, which is essentially unchangeable and in particular constant along the longitudinal axis 16.
- the dehydration chambers 15 are in particular tubular and in particular separated from one another.
- the dehydration chambers 15 are designed separately and arranged at a distance from one another.
- the dehydration chambers 15 are arranged at a distance from one another in a plane perpendicular to the longitudinal axis 16.
- the dehydration chambers 15 are in particular oriented parallel to the longitudinal axis 16.
- the dehydration chambers 15 are arranged in particular regularly and in particular in a regular grid relative to one another.
- the dehydration chambers 15 are each formed by a tube.
- the dehydration chambers 15 are in particular identical and in particular have an outer contour in a plane oriented perpendicular to the longitudinal axis 16, which is in particular regular.
- the contour is in particular circular or polygonal, in particular quadrangular, in particular rectangular or square or hexagonal.
- the dehydration tank 14 has a first end wall 17 shown at the bottom in Fig. 2 and a second end wall 18 arranged opposite, which is shown at the top in Fig. 2.
- the end walls 17, 18 define a length L oriented along the longitudinal axis 16.
- the dehydration spaces 15 extend along the longitudinal axis 16 over at least 50% of the length L, in particular over at least 80% of the length L and in particular over at least 95% of the length L.
- the first fluid line 8 is connected to the dehydration tank 14 in a lower region of the dehydration tank 14, in particular adjacent to the first end wall 17.
- the first fluid line 8 is connected to a first distributor element 19, which is arranged in the dehydration tank 14.
- the first distributor element 19 is fluidically connected to each dehydration chamber 15.
- a connecting piece (not shown in detail) is used for this purpose.
- the first distributor element 19 enables the uniform distribution of Hx-LOHC into the dehydration chambers 15.
- the first distributor element 19 is particularly advantageous when the dehydrogenation reactor 2 is arranged with its longitudinal axis 16 transversely to the vertical and in particular horizontally.
- the first distributor element 19 is also advantageous when the dehydrogenation reactor 2 is aligned vertically and the supply of Hx-LOHC, unlike shown in Fig. 2, takes place from above into the dehydrogenation chambers 15. In the embodiment shown in Fig. 2, the first distributor element 19 can also be omitted.
- Dehydration spaces 20 are formed between the dehydration spaces 15.
- the dehydration spaces 20 are delimited by the inner surface of the dehydration container 14 and by the outer surfaces of the dehydration spaces 15 in the radial direction with respect to the longitudinal axis 16, and by the end walls 17, 18 in the axial direction with respect to the longitudinal axis 16.
- a heat transfer fluid supply line 21 and a heat transfer fluid discharge line 22 are connected to the dehydrogenation spaces 20.
- the heat transfer fluid supply line 21 opens into the dehydrogenation spaces 20 via a jacket surface of the dehydrogenation tank 14.
- the heat transfer fluid supply line 21 is arranged in an upper region of the dehydrogenation tank 14, in particular adjacent to the second end wall 18.
- the heat transfer fluid discharge line 22 is correspondingly arranged in a lower region of the dehydrogenation tank 14 and in particular adjacent to the first end wall 17 in a jacket region of the dehydrogenation tank 14.
- the flow direction of a heat transfer fluid i.e. from the heat transfer fluid supply line 21 to the heat transfer fluid discharge line 22, is essentially opposite to the flow direction of the Hx-LOHC. The heat transfer takes place in a countercurrent process.
- the dehydration spaces 20 are part of a heat unit, in particular a dehydration heat unit.
- the heat transfer fluid discharge line 22 is connected to an external heat source 23 in which the cooled heat transfer fluid, in particular heat transfer oil, can be reheated.
- the heat transfer fluid is in particular a hot liquid heat transfer oil and can additionally or alternatively comprise condensing vapors and/or hot vapors, in particular gas mixtures containing water vapor.
- the reheated Heat transfer fluid can then be fed back to the dehydration space 20 from the external heat source 23 via the heat transfer fluid feed line 21.
- a closed heat transfer fluid circuit is formed.
- the heat transfer fluid feed line 21 is connected to the external heat source 23.
- the external heat source 23 is part of the heat unit, in particular the dehydration heat unit. Heat transfer using the cocurrent method is also possible by reversing the flow direction of the heat transfer oil.
- dehydration spaces 20 and/or the outer wall of the dehydration container 14 separately and in particular electrically, in particular by means of a resistance heater, as a heating unit.
- the dehydrogenation chambers 15 open into a first collecting element 24, which is arranged on an upper side of the dehydrogenation container 14.
- a second fluid line 25 is connected to the first collecting element 24, which connects the dehydrogenation reactor 2 to a first separation apparatus 26.
- the first heat exchanger 10 is arranged along the second fluid line 25.
- the first separation apparatus 26 is a gas-liquid separator.
- the first separation apparatus 26 can have a pressure control valve (not shown in detail) with which a pressure, in particular a reaction pressure, can be set and in particular regulated in the dehydrogenation reactor 2 and/or in the first heat exchanger 10.
- the reaction pressure in the dehydrogenation reactor 2 is formed in particular by hydrogen gas and/or by the aromatic compounds present in vapor form and formed in the dehydrogenation reactor 2.
- the pressure control valve is in a signal connection, in particular bidirectional, with the control unit 11.
- the first separation apparatus 26 comprises a first separation chamber 27 and a second separation chamber 29 connected thereto by means of a connecting line 28.
- the first separation apparatus 26 can be designed with only a single separation chamber.
- the two separation chambers 27, 29 are directly connected to each other, particularly in an upper area, via a gas line 30.
- the gas line 30 enables pressure equalization between the two separation chambers 27, 29.
- In the two separation chambers 27, 29 always ensures the same, in particular an identical, fill level with fluid, in particular with HO-LOHC.
- the fill level can be measured by means of a level sensor 31.
- the level sensor 31 is in particular in bidirectional signal connection with the control unit 11. According to the embodiment shown, the level sensor 31 is arranged on the second separation chamber 29.
- the level sensor 31 can alternatively or additionally also be arranged on the first separation chamber 27.
- the two chambers 27, 29 are linked together in the sense of communicating tubes. This means that the liquid phase and the gas phase of the chambers 27, 29 are in contact with each other via the connecting line 28 and the gas line 30, i.e. they communicate. This results in the same pressure and the same fill level being established in both chambers 27, 29, in particular regardless of the respective design of the separation chambers 27, 29.
- a hydrogen gas discharge line 32 is connected to the first separation chamber 27, along which a cleaning unit, in particular in the form of a filter element 33, in particular an activated carbon filter, is arranged.
- the cleaning unit can have an adsorption unit, in particular for pressure swing adsorption.
- purified hydrogen gas H2 can be made available in particular for a utilization unit 34, in particular a fuel cell, via the hydrogen gas discharge line 32.
- a third fluid line 35 is connected to the second separation chamber 29, along which a controllable second conveying unit 36, in particular a liquid pump, is connected.
- the second conveying unit 36 is in a signal connection, in particular bidirectional, with the control unit 11.
- the dehydrogenation reactor 2 is fluidically connected to the reforming reactor 3 via the third fluid line 35.
- the reforming reactor 3 is shown very schematically in Fig. 2.
- the reforming reactor 3 is explained in more detail below with reference to Fig. 3.
- Fig. 3 shows a partial device designated as a whole by 37.
- the second partial device 37 serves for reforming HO-LOHC in the reforming reactor 3.
- the second partial device 37 serves in particular for the further, in particular additional, provision of hydrogen gas, in particular from water vapor, as part of the reforming reaction in the reforming reactor 3.
- the dehydrogenation reactor 2 is shown purely schematically in Fig. 3 as a source for HO-LOHC.
- a second storage container 38 can be arranged between the dehydrogenation reactor 2 and the reforming reactor 3, in particular along the third fluid line 35 and in particular adjacent to the reforming reactor 3, i.e. in particular as a component of the second sub-device 37.
- the third fluid line 35 is connected to the reforming reactor 3 via the second heat exchanger 39 and the second heat source 40.
- the fluid is conveyed along the third fluid line 35 in particular by the controllable second conveying unit 36.
- the second conveying unit 36 can also be arranged in the second partial device 37 in addition to or as an alternative to the first partial device 6.
- the second heat source 40 is in particular identical to the first heat source 13.
- HO-LOHC is in particular preheated in the second heat exchanger 39 and/or at least partially and in particular completely evaporated in the second heat source 40.
- the second heat source 40 is optional. This means that the preheating of the HO-LOHC can also take place without the second heat source 40.
- the third fluid line 35 opens into a reforming tank 41 of the reforming reactor 3. At least one reforming chamber 42 and in particular several reforming chambers 42 are arranged in the reforming tank 41. A reforming catalyst is arranged in each of the reforming chambers 42.
- the reforming tank 41 has a longitudinal axis 43 which is oriented vertically according to the embodiment shown. The longitudinal axis 43 can also be inclined relative to the vertical and in particular arranged horizontally.
- the reforming tank 41 has a cross-sectional area oriented perpendicular to the longitudinal axis 43, which is essentially unchangeable along the longitudinal axis 43. In particular, the cross-sectional area of the reforming tank 41 is constant along the longitudinal axis 43.
- the reforming chambers 42 are in particular tubular and have a regular contour in a plane perpendicular to the longitudinal axis 43. The contour is in particular circular or polygonal, in particular quadrangular, in particular rectangular or square, or hexagonal.
- the reforming chambers 42 are arranged at a distance from one another, in particular in a plane perpendicular to the longitudinal axis 43.
- the reforming chambers 42 are oriented in particular parallel to the longitudinal axis 43.
- the reforming chambers 42 are arranged at a distance from one another in the plane perpendicular to the longitudinal axis 43 and in particular in a regular grid.
- the reforming tank 41 has a first end wall 44, which is arranged at the bottom in Fig. 3, and a second end wall 45, which is arranged opposite the first end wall 44 and is shown at the top in Fig. 3.
- the reforming chambers 42 have a length L oriented along the longitudinal axis 43, which is delimited by the two end walls 44, 45.
- the reforming chambers 42 extend along the longitudinal axis 43 over a large part of the length L of the reforming container 41, in particular over at least 50%, in particular over at least 80% and in particular over at least 95% of the length L.
- the third fluid line 35 is connected to the reforming vessel 41 in a lower region of the latter.
- the third fluid line 35 is connected to a second distributor element 46 arranged in the reforming vessel 41.
- the second distributor element 46 is connected to each reforming chamber 42 via a connecting piece (not shown in detail).
- the use of the second distributor element is particularly advantageous when the reforming reactor 3 is arranged with its longitudinal axis 43 transverse to the vertical and in particular horizontally.
- the second distributor element 46 is also advantageous when the reforming reactor 3 is aligned vertically and the supply of HO-LOHC takes place from above into the reforming chambers 42. Water is supplied to the reforming reactor 3 and in particular to the reforming chambers 42 via the second distributor element 46, in particular in the form of steam.
- the water is supplied to the reforming reactor 3 via the water supply line 47, which in particular leads into the second distributor element 46.
- the volume flow of the water supplied via the water supply line 44 is controlled via a third conveyor unit 48 or via a valve, in particular by means of the control unit 11, which is in a bidirectional signal connection with the third conveyor unit 48.
- the water supply line 47 is connected to a water vapor generator 49, which generates water vapor, in particular in superheated form and in particular at temperatures above 110 °C.
- the water vapor generator is, for example, a hydrogen-powered gas turbine, a hydrogen-powered engine, a hydrogen-powered burner, a hydrogen-powered motor and/or a hydrogen-powered solid oxide fuel cell.
- Reforming spaces 50 are formed between the reforming spaces 42.
- the contour of the reforming spaces 50 results from the respective outer contour of the reforming spaces 42 and the inner contour of the reforming container 41.
- the reforming spaces 50 form a heat exchanger and are in particular part of a heat unit for supplying heat to the reforming reactor 3, in particular to the reforming spaces 42.
- the heat transfer takes place in particular by means of a heat transfer fluid flowing through the reforming spaces 50, which can be supplied to the reforming space 50 via a heat transfer fluid supply line 51 and discharged via a corresponding heat transfer fluid discharge line 52.
- a hot material flow in particular a heat-carrying liquid, in particular heat transfer oil, and/or a heat-carrying gas, serves as the heat transfer fluid.
- a second external heat source 53 can be connected to the heat transfer fluid discharge line 52 in order to reheat the heat transfer fluid.
- the second external heat source 53 is accordingly connected to the heat transfer fluid supply line 51.
- the reforming spaces 50 and/or the outer wall of the reforming vessel 41 can also be heated electrically, in particular via a resistance heater.
- a second collecting element 54 is arranged opposite the second distributor element 46, into which all reforming chambers 42 open.
- a fourth fluid line 55 is connected to the second collecting element 54, which opens into a second separating apparatus 56.
- the second heat exchanger 39 is arranged along the fourth fluid line 55.
- the oxo-LOHC discharged from the reforming reactor 3 is cooled and condensed.
- the fluid stream thus generated is fed to the second separation apparatus 56, which is designed as a gas-liquid separator.
- the second separating apparatus 56 is identical to the first
- Separation apparatus 26 is designed according to Fig. 2. In order to avoid repetition, reference is made to this with regard to the structure and function.
- the second separation apparatus comprises two separation chambers 57, 58, which are each directly connected to one another by means of a connecting line 59 and a gas line 60.
- the second separation apparatus 56 has at least one level sensor 61.
- a hydrogen gas discharge line 62 and a filter element 63 are connected to the first separation chamber 57.
- a utilization unit 64 is connected to the hydrogen gas discharge line 62. It is conceivable that the hydrogen gas discharge line 62 leads to the utilization unit 34 according to Fig. 2.
- the second separation chamber 58 is connected to a liquid-liquid separator 66 by means of a further fluid line 65.
- a liquid two-phase mixture is separated, in particular by gravity, into a water phase and an organic phase.
- the separated phases can be removed separately from the liquid-liquid separator 66.
- the liquid-liquid separator 66 has a lower drain in order to remove the denser, aqueous liquid phase via a water discharge line 67 and to feed it to a water purification unit 68.
- the water purification unit 68 serves to purify the water for subsequent disposal and/or reuse in the process, in particular by returning it to the water vapor circuit 49.
- the liquid-liquid separator 66 has an upper outflow in order to remove the less dense, organic liquid phase via a fluid line 69 and to convey it into a third storage tank 71 by means of a controllable fourth conveying unit 70.
- Oxo-LOHC in particular is stored in the third storage tank 71.
- the fourth conveyor unit 70 is in, in particular bidirectional, signal connection with the control unit 11. It is conceivable that the second sub-device 37 has a separate control unit, which in turn can then be in, in particular bidirectional, signal connection with the control unit 11 of the first sub-device 6.
- Separate control units are particularly advantageous when the first sub-device 6 and the second sub-device 37 are designed separately from one another and in particular spatially separated from one another.
- the third storage container 71 is particularly suitable as a transport container.
- the third storage container 71 can be transported, for example, by means of a transport vehicle, in particular a transport truck, a transport train or a transport ship.
- the third storage container 71 also serves as a terminal for feeding the liquid arranged therein into a delivery line, in particular into a pipeline network.
- the first sub-device 6 and/or the second sub-device 37 are arranged in particular at a first, low-energy location. Energy is required at the first location. The energy is provided by released hydrogen gas, in particular in the utilization units 34 and/or 64.
- the hydrogen carrier medium can be recharged with hydrogen.
- the transport is symbolized in Fig. 3 by a dashed line 72.
- Fig. 4 shows a third sub-device 73 in which Oxo-LOHC is hydrogenated to Hx-LOHC by adding hydrogen gas and releasing water.
- Oxo-LOHC is stored in a third storage container 71 in the third sub-device 73.
- the third storage container 71 may contain other components, in particular non-oxidized aromatic compounds, which represent impurities with respect to oxo-LOHC.
- the third storage container 71 of the third sub-device 73 may be designed to be identical to the third storage container 71 of the second sub-device 37.
- the two third storage containers 71 may be in a transport connection 72 with one another.
- the third storage tank 71 is connected to the hydrogenation reactor 4 by means of a further fluid line 74.
- a third heat exchanger 75 and a third heating source 76 are arranged along the fluid line 74, which serves to preheat oxo-LOHC.
- a fifth conveying unit 77 is arranged on the fluid line 74, which is in a signal connection, in particular a bidirectional one, with a hydrogenation control unit 78.
- the signal connection can be wired or wireless, in particular by means of a radio connection.
- the signal connection 79 is shown in Fig.
- the hydrogenation control unit 78 can in particular be in signal connection with the control unit 11 of the first sub-device 6.
- the hydrogenation reactor 4 has a hydrogenation tank 80 in which at least one hydrogenation chamber 81 and in particular a plurality of hydrogenation chambers 81 are arranged.
- the hydrogenation tank 80 has a longitudinal axis 82 which is oriented vertically according to the embodiment shown.
- the longitudinal axis 82 can be arranged inclined relative to the vertical.
- the hydrogenation tank 80 has a cross-sectional area oriented perpendicular to the longitudinal axis 82, which is essentially unchangeable and in particular constant along the longitudinal axis 82.
- the hydrogenation chambers 81 are in particular tubular.
- the hydrogenation chambers 81 have a regular contour in a plane perpendicular to the longitudinal axis 82, which is in particular circular or polygonal, in particular quadrangular, in particular rectangular or square, or hexagonal.
- the hydrogenation chambers 81 are in particular oriented parallel to the longitudinal axis 82.
- a hydrogenation catalyst is arranged in each hydrogenation chamber 81.
- the hydrogenation tank 80 has a first, upper end wall 83 and a second end wall 84 arranged opposite it at the bottom.
- the hydrogenation tank 80 has a length L oriented along the longitudinal axis 82, which is delimited by the end walls 83, 84.
- the hydrogenation spaces 81 extend over a large part of the length L of the hydrogenation tank 80, in particular over at least 50%, in particular over at least 80%, in particular over at least 95% of the length L.
- the fluid line 74 is connected to the hydrogenation vessel 80 in an upper region.
- the fluid line 74 is connected to a third distributor element 85 arranged in the hydrogenation vessel 80.
- the third distributor element 85 is connected to each hydrogenation chamber 81 via a connecting piece (not shown).
- the use of the third distributor element 85 is advantageous when the hydrogenation reactor 4 is aligned vertically with its longitudinal axis 82 and the supply of oxo-LOHC into the dehydrogenation chambers 81 takes place from above.
- a hydrogen gas supply line 86 is also connected to the third distributor element 85.
- the hydrogen gas supply line 86 is a fluid line for supplying pressurized hydrogen at a pressure of
- the volume flow of the hydrogen into the third distributor element 85 is regulated via a valve (not shown in detail) which is in particular in a bidirectional signal connection with the hydrogenation control unit 87.
- Hydrogenation spaces 87 are formed between the hydrogenation spaces 81 and are arranged at a distance from one another in a plane perpendicular to the longitudinal axis 82.
- the hydrogenation spaces 87 are arranged in a regular grid in the plane perpendicular to the longitudinal axis 82.
- the contour of the hydrogenation spaces 87 results from the inner contour of the hydrogenation vessel 80 and the respective outer contour of the hydrogenation spaces 81.
- the hydrogenation spaces 87 are delimited by the two end walls 83, 84.
- the hydrogenation spaces 87 serve as heat exchangers in that a heat transfer fluid flows through the hydrogenation spaces 87.
- a heat transfer fluid supply line 88 and a heat transfer fluid discharge line 89 are connected to the hydrogenation spaces 87.
- a heat sink 90 is connected to the heat transfer fluid discharge line 89, to which the heated heat transfer fluid can release heat and then be fed back to the hydrogenation spaces 87 via the heat transfer fluid supply line 88.
- a liquid heat transfer oil is used as the heat transfer fluid in particular.
- a third collecting element 91 is arranged, into which the hydrogenation chambers 81 open.
- a further fluid line 92 is connected to the third collecting element 91, which leads to a third separating apparatus 93.
- the third heat exchanger 75 is arranged along the fluid line 92 between the hydrogenation reactor 4 and the third separating apparatus 93.
- the third separation apparatus 93 is a gas-liquid separator for separating Hx-LOHC and water from hydrogen gas which is emitted during cooling.
- the third separation apparatus 93 can have a pressure control valve (not shown in detail) by means of which a pressure, in particular a reaction pressure in the hydrogenation reactor 4 and/or in the third heat exchanger 75 can be set and in particular regulated, in particular by means of the hydrogenation control unit 78.
- the reaction pressure in the hydrogenation reactor 4 is formed in particular by hydrogen gas and/or by the aromatic and oxidized aromatic compounds present in vapor form in the hydrogenation reactor 4.
- the third separating device 93 is similar in its structure and function to the separating devices 26 and 56 already described. The following description is therefore presented in abbreviated form.
- the third separation apparatus has a first separation chamber 94 and a second separation chamber 95, which are connected to one another by means of a connecting line 96 and a gas line 97.
- a level sensor 98 is arranged on the second separation chamber 95.
- the level sensor has a bidirectional signal connection with the hydrogenation control unit 78.
- a hydrogen gas discharge line 99 is connected to the first separation chamber 94, via which the hydrogen which is emitted can be discharged.
- the hydrogen gas discharge line is connected to a utilization unit 100, which is designed in particular separately from the hydrogen utilization units 34, 64.
- the utilization unit 100 recompresses the outgassed hydrogen, for example, in order to feed it back to the hydrogenation reactor 4 via the hydrogen gas supply line 86.
- the hydrogen gas discharge line 99 is connected to a cleaning unit (not shown), in particular to an activated carbon filter, in order to clean organic components out of the hydrogen gas.
- a hydrogenation cartridge can be arranged for the utilization and/or removal of physical hydrogen gas in the fluid flow from the reactor.
- a hydrogenation cartridge is known from DE 10 2020 215 444 Al, to which explicit reference is made with regard to the structure and function of the hydrogenation cartridge and in particular its arrangement in the system.
- the second separation chamber 95 is connected via a further fluid line 101 to a liquid-liquid separator 102 in which a liquid two-phase mixture is separated, in particular by gravity.
- the denser, aqueous liquid phase can be removed from the separator 102 in a lower area and fed to a cleaning unit 104 via the water discharge line 103.
- the water can be disposed of or reused, for example as an input stream of a spatially adjacent electrolyzer.
- the separator 102 has an upper outlet in order to convey the less dense, organic liquid phase, in particular Hx-LOHC, via a further fluid line 105, along which a fifth controllable conveying unit 106 is arranged.
- Hx-LOHC is conveyed in particular into a storage/transport container 107, which is connected to the fluid line 105.
- the fifth conveying unit 106 is designed in particular as a liquid pump.
- the fifth conveying unit 106 is in particular in a bidirectional signal connection with the hydrogenation control unit 78.
- the storage/transport container 107 can be transported from the second location, where the third sub-device 73 is arranged, to the first location, where the first sub-device 6 and/or the second sub-device 37 are arranged.
- the storage/transport container 107 can replace and/or supplement the first storage container 7 in Fig. 2.
- Hx-LOHC can be transported from the storage/transport container 107 to the first storage container 7 by means of a transport line (not shown), in particular a line network.
- the dehydrogenation reactor 2 the reforming reactor 3 and the hydrogenation reactor 4 are each connected to one another by fluid technology, a circuit arrangement is formed which is in particular self-contained. This enables an advantageous, in particular reversible, use of the hydrogen carrier medium to store and release energy by chemically binding hydrogen.
- Hx-LOHC is preheated from the first storage tank 7 by means of the first heat exchanger 10 and the first heat source 13 and fed to the dehydrogenation reactor 2.
- Hx-LOHC is fed from the first distribution element 19 to the dehydrogenation chambers 15 and there comes into contact with the dehydrogenation catalyst. Due to the heat supply to the dehydrogenation chambers 15 from the dehydrogenation spaces 20, the dehydrogenation reaction can take place.
- Hx-LOHC is converted into H0-LOHC and hydrogen gas is released. This fluid mixture is conveyed from the dehydrogenation chambers 15 into the first collection element 24, conveyed via the second fluid line 25 through the first heat exchanger 10 and to the first separation apparatus 26. In the first heat exchanger 10, heat is transferred to the fresh Hx-LOHC to be preheated.
- the released hydrogen gas is separated from the HO-LOHC and can be used in the utilization unit 34.
- HO-LOHC is conveyed from the first sub-device 6 to the second sub-device 37, optionally temporarily stored in a second storage container 38.
- HO-LOHC is heated in the second heat exchanger 39 and, in particular, at least partially and in particular completely evaporated by means of the second heat source 40 and fed to the second distributor element 46 of the reforming reactor 3.
- water, in particular in the form of steam is fed to the second distributor element 46.
- the fluid mixture of at least partially evaporated HO-LOHC and steam is conveyed from the second distributor element 46 into the reforming chambers 42 and there comes into contact with the reforming catalyst.
- the supply of HO-LOHC and steam can take place simultaneously or at different times. It is important that the oxygen of the reforming catalyst is used to reform HO-LOHC and the oxygen of the steam is used to reform the reforming catalyst, in particular subsequently, with the release of hydrogen gas.
- the heat transfer fluid flowing through the reforming spaces 50 serves to supply the heat required for this.
- the fluid mixture from the reforming spaces 42, in particular hydrogen gas and oxo-LOHC, is fed from the reforming spaces 42 to the second collecting space 54 and from there to the second separation apparatus 56 by means of the fourth fluid line 55 via the second heat exchanger 39, in which HO-LOHC is preheated.
- the hydrogen gas additionally released from the water vapor in the reforming reactor 3 is separated and fed to the utilization unit 64.
- the liquid-liquid mixture of oxo-LOHC and water is separated in the separator 66, with oxo-LOHC being stored in the third storage container 71 and transported from the first location of the second sub-device 37 to the second location of the third sub-device 73, i.e. to the hydrogenation reactor 4.
- oxo-LOHC from the third storage container 71 is preheated in the third heat exchanger 75 and by means of the third heating source 76 and fed via the fluid line 74 to the third distributor element 85 of the hydrogenation reactor 4.
- the third heating source 76 is optional. This means that the preheating of the oxo-LOHC can also take place without the third heating source 76.
- Pressurized hydrogen is also supplied to the third distributor element 85 and is fed together with Oxo-LOHC to the hydrogenation chambers 81 where it comes into contact with the hydrogenation catalyst.
- the exothermic hydrogenation reaction takes place in the hydrogenation chambers 81 with the formation of water.
- the heat released is absorbed by the heat transfer fluid flowing through the hydrogenation spaces 87 and reliably removed from the hydrogenation reactor 4.
- the heat sink 90 connected to the heat transfer fluid discharge line 89 is used for this purpose in particular.
- any physically stored hydrogen gas and Hx-LOHC are collected from the hydrogenation chambers 81 in the third collection chamber 91 and discharged from the hydrogenation reactor 4 via the eighth fluid line 92. Heat is released in the third heat exchanger 75.
- the outgassed hydrogen can be separated in the third separation apparatus 93 and fed to the utilization unit 100.
- the liquid-liquid mixture of water and Hx-LOHC is separated in the separator 66.
- the water recovered in this way can be cleaned in the cleaning unit 104.
- Hx-LOHC can be temporarily stored in the storage/transport container 107 and conveyed to the first sub-device 6, in particular to the dehydrogenation reactor 2, for further use.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Ein Verfahren zum Bereitstellen von Wasserstoffgas umfasst das Reformieren eines zumindest teilweise entladenen Wasserstoffträgermediums (H0-LOHC) an einem Reformierkatalysator unter Verwendung von Wasserdampf in einem Reformierreaktor (3) zu einem zumindest teilweise oxidierten Wasserstoffträgermedium (Oxo-LOHC) unter Bildung von Wasserstoffgas (H2) aus dem Wasserdampf.
Description
Verfahren und Vorrichtung zum Bereitstellen und/oder Speichern von Wasserstoffgas
Die vorliegende Patentanmeldung nimmt die Priorität der deutschen Patentanmeldung DE 10 2022 210 591.5 in Anspruch, deren Inhalt durch Bezugnahme hierin aufgenommen wird.
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Bereitstellen und/oder Speichern von Wasserstoffgas.
EP 1 475 349 A2 offenbart flüssige organische Wasserstoffträgermedien, die gemäß ihrer englischen Bezeichnung „liquid organic hydrogen carriers“ als LOHC bezeichnet werden. LOHC kann reversibel katalytisch hydriert und dehydriert werden, um Wasser stoffgas chemisch zu binden, also zu speichern, und wieder freizusetzen.
Der Erfindung liegt die Aufgabe zugrunde, die Wasserstoffausbeute, insbesondere die freisetzbare Wasserstoffmenge, unter Verwendung eines Wasserstoffträgermediums, insbesondere LOHC, zu erhöhen.
Diese Aufgabe ist erfindungsgemäß gelöst durch Verfahren mit den Merkmalen der Ansprüche 1 und 8 sowie durch eine Vorrichtung mit den Merkmalen des Anspruchs 12.
Der Kem der Erfindung besteht darin, dass eine zumindest teilweise oder vollständige Umsetzung eines zumindest teilweise entladenen Wasserstoffträgermediums mit Wasser erfolgt. Diese Umsetzung wird als zumindest partielle Reformierung des Wasserstoffträgermediums bezeichnet. Dabei werden das Wasserstoffträgermedium unter Nutzung des Sauerstoffs des Wassers oxidiert und die Wasserstoff atome des Wassers zu Wasserstoffgas gewandelt. Insbesondere unterscheidet sich die Reformierung von einer Oxidation, bei der das Wasserstoffträgermedium mit Sauerstoff umgesetzt und unerwünschtes Kohlenstoffdioxid gebildet wird. Ein weiterer Unterschied der Reformierung ist, dass die Reaktion wegen der wärmeverbrauchenden Wasserstoffbildung endotherm ist. Das zumindest teilweise entladene Wasserstoffträgermedium wird als H0- LOHC bezeichnet. Die Umsetzung erfolgt an einem Reformier-Katalysator und unter Verwendung, insbesondere in Gegenwart, von Wasserdampf.
Es wurde gefunden, dass Wasserstoffgas zumindest anteilig aus dem Wasserdampf bei der Reformierreaktion freigesetzt wird. Erfindungsgemäß ist es also möglich, Wasserstoffgas im Zusammenhang mit einer Handhabung von Wasserstoffträgermedium freizusetzen, das zuvor nicht an dem Wasserstoffträgermedium gebunden war. Dadurch kann Wasserstoffgas zusätzlich und insbesondere zusätzlich zu dem zuvor am Wasserstoffträgermedium gebundenen Wasserstoff freigesetzt werden. Die Wasserstoffausbeute ist insgesamt erhöht. Der Anteil des Wasserstoffträgermediums, das in der erfindungsgemäßen Reformierreaktion umgesetzt wird, beträgt zwischen 1 % und 100 %, bevorzugt zwischen 30 % und 98 %, am geeignetsten zwischen 60 % und 95 %.
HO-LOHC weist einen Hydriergrad HG2 auf, der insbesondere höchstens 60 %, insbesondere höchstens 50 %, insbesondere höchstens 40 %, insbesondere höchstens 30 %, insbesondere höchstens 20 %, insbesondere höchstens 10 %, insbesondere höchstens 5 % und insbesondere höchstens
1 % beträgt. HO-LOHC ist eine Flüssigkeit, die insbesondere wasserstoffarm ist. HO-LOHC umfasst zumindest überwiegend aromatische Verbindungen. Der Anteil an aromatischen Verbindungen in HO-LOHC beträgt insbesondere mindestens 40 %, insbesondere mindestens 50 %, insbesondere mindestens 60 %, insbesondere mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, insbesondere mindestens
95 % und insbesondere mindestens 99 %.
Die Reformierreaktion findet in einem Reformierreaktor statt. HO-LOHC wird in der Reformierreaktion zu dem zumindest teilweise oxidierten Wasserstoffträgermedium Oxo-LOHC oxidiert. Oxo-LOHC umfasst insbesondere eine oder mehrere Verbindungen, insbesondere oxidierte und insbesondere oxidierte aromatische Verbindungen.
Es ist eine Erkenntnis der Erfindung, dass HO-LOHC in Gegenwart von Wasserdampf zu Oxo- LOHC oxidiert werden kann und zusätzlich Wasserstoffgas freigesetzt werden kann. Insbesondere werden durch diese Reformierreaktion pro oxidierter Verbindung des Oxo-LOHC ein oder zwei Wasserstoffmoleküle freigesetzt.
Die Reformierreaktion findet insbesondere an einem ersten Ort statt, an dem ein Bedarf an Energie und/oder an Wasserstoff besteht. Der erste Ort ist energiearm und/oder wasserstoffarm. An
dem ersten Ort wird Wasserstoffgas für einen Wasserstoffverbraucher, insbesondere eine Brennstoffzelle und/oder einen Wasserstoffbrenner, und/oder zur Abgabe an Wasserstoffkunden bereitgestellt. Der bereitgestellte Wasserstoff kann zusätzlich oder alternativ zu der energetischen Nutzung, also zur Erzeugung elektrischer und/oder thermischer Energie, stofflich genutzt werden.
Der Reformierkatalysator umfasst ein Trägermaterial, an dem ein katalytisch aktives Material, das auch als Reformier-Katalysatormaterial bezeichnet wird, angebracht und daran gehalten ist. Der Massenanteil des Reformier-Katalysatormaterials bezogen auf das Trägermaterial beträgt zwischen 0,01 % bis 100 %, insbesondere zwischen 0,1 % und 80 % und insbesondere zwischen 0,3 % und 50 %. Das Trägermaterial weist Poren auf und ist insbesondere porös ausgeführt. Das poröse Trägermaterial weist insbesondere dort, wo das Reformier-Katalysatormaterial angeordnet ist, eine innere Oberfläche von mindestens 1 m2 pro Gramm Katalysatormaterial auf. Der mittlere Porendurchmesser beträgt insbesondere mehr als
0,5 nm. Als poröse Trägermaterialien dienen insbesondere Metalloxid-Träger wie beispielsweise Aluminiumoxid, Titanoxid, Ceroxid und/oder Siliziumoxid. Zusätzlich oder alternativ können auch kohlenstoffhaltige Trägermaterialien, insbesondere Aktivkohle, verwendet werden.
Der Reformierkatalysator kann einen Promotor oder mehrere Promotoren aufweisen, insbesondere Alkalisalze.
Das Reformier-Katalysatormaterial umfasst insbesondere eine Metallkomponente, an der die Reformierung von HO-LOHC und die Bildung von Wasserstoffgas aus Wasserdampf erfolgt. Als Metallkomponente dienen insbesondere Eisen, Antimon, Molybdän, Vanadium, Caesium, Chrom, Cer, Mangan, Lanthan, Titan, Wolfram, Kobalt, Kupfer, Platin, Palladium, Gold, Ruthenium, Zink, Zinn, Germanium und/oder Nickel, wobei Eisen, Nickel, Kobalt, Mangan, Chrom, Cer, Kupfer, Gold, Palladium, Platin, Zink und/oder Zinn sich als besonders vorteilhaft erwiesen haben.
Es wurde erkannt, dass der Reformierkatalysator besonders vorteilhaft ist, wenn er Metall-Sauerstoff-Bindungen aufweist, die Sauerstoff reversibel abgeben und wieder aufnehmen. Der Refor-
mierkatalysator weist insbesondere Metalloxid-Verbindungen, Gemische von Metalloxid-Ver- bindungen und/oder Metallmischoxide auf. Metallmischoxide sind Metalloxide, die mehrere Metalle enthalten, etwa ein Aluminium-Galliumoxid. Im Gitter des Metalloxids sind dann verschiedene Plätze durch mindestens ein weiteres Metall besetzt.
Es wurde erkannt, dass der Reformierkatalysator sowohl in einer oxidierten und in einer reduzierten Form vorliegen kann. Bei der Reformierung des HO-LOHC findet entsprechend ein Übergang von der oxidierten Form zu der reduzierten Form des Reformierkatalysators unter der Übertragung von Sauerstoff auf HO-LOHC statt. Zusätzlich findet ein Übergang von der reduzierten Form des Reformierkatalysators zurück in die oxidierte Form unter Nutzung des Sauerstoffatoms im Wasserdampf und unter Bildung von Wasserstoffgas statt. Das bedeutet, dass der Reformierkatalysator nach der Reformierreaktion unverändert in der oxidierten Form vorliegt, wobei insbesondere die zwischenzeitliche Reduktion die Voraussetzung für die Sauer Stoffaufnahme aus dem Wasserdampf und damit die Freisetzung von Wasserstoffgas ist.
Gemäß einer ersten Ausführungsform kann die Oxidation des HO-LOHC mittels der Sauerstoffgruppen am Katalysator und die Regeneration des Katalysators mittels Wasserdampf gleichzeitig erfolgen.
Gemäß einer weiteren Ausführungsform können die Oxidation und die Regeneration auch stufenweise, also zeitlich zueinander versetzt erfolgen. Insbesondere kann die Regeneration des Katalysators mittels Wasserdampf in Abwesenheit des Wasserstoffträgermediums erfolgen. Bei dieser Ausführung besteht ein Vorteil in der vereinfachten und insbesondere nicht erforderlichen Trennung von Oxo-LOHC und nicht umgesetztem Wasser stromabwärts des Reformierreaktors. Der Konditionierungsaufwand ist reduziert.
Der Reformierkatalysator unterscheidet sich, insbesondere hinsichtlich seiner stofflichen Zusammensetzung, von einem bekannten Dehydrierkatalysator, der ein zumindest teilweise beladenes Wasserstoffträgermedium Hx-LOHC durch Freisetzung von Wasserstoffgas in das zumindest teilweise entladene Wasserstoffträgermedium HO-LOHC überführt.
Alternativ kann der Reformierkatalysator analog zu einem an sich bekannten Dehydrierkatalysator ausgeführt sein und insbesondere ein metallisches, katalytisch aktives Katalysatormaterial umfassen, das auf einem oxidischen Trägermaterial angebracht ist.
Es ist auch denkbar, verschiedene Katalysatortypen miteinander zu kombinieren.
Der Reformierreaktor ist insbesondere als durchströmter rohrförmiger Apparat ausgeführt, in dem der Reformierkatalysator angeordnet ist.
Alternativ kann der Reformierreaktor auch als klassischer Festbettreaktor oder als Wirbelschichtreaktor ausgeführt sein.
Der Reformierkatalysator ist insbesondere ein Feststoff. Der Reformierkatalysator liegt insbesondere in strukturierter Form vor, insbesondere in Form eines gepackten Betts und/oder in Form katalytisch beschichteter Reaktoreinbauten im Reformierreaktor.
Der Reformierkatalysator wird in dem Reformierreaktor insbesondere mit HO-LOHC und Wasserdampf gleichzeitig oder abwechselnd kontaktiert. Dabei bilden sich oxidierte LOHC- Komponenten und Wasserstoffgas. Es findet ein Gas-Feststoff-Kontakt statt.
Die Reformierreaktion ist insbesondere endotherm und erfolgt unter steter Wärmezufuhr. Die Reformierreaktion findet in einem Temperaturbereich zwischen 100 °C und 800 °C, insbesondere zwischen 170 °C und 650 °C und insbesondere zwischen 240 °C und 350 °C statt. Der Gesamtdruck im Reformierreaktor beträgt zwischen 0,1 bar und 30 bar, insbesondere zwischen 0,5 bar und 18 bar und insbesondere zwischen 1 bar und 6 bar.
Die Temperatur des in den Reformierreaktor eintretenden Wasserdampfes beträgt zwischen 110 °C und 1000 °C, insbesondere zwischen 200 °C und 800 °C und insbesondere zwischen 270 °C und 600 °C.
Vorteilhaft ist es, wenn die Reformierreaktion an HO-LOHC derart ausgeführt wird, dass weniger als 20 % des Kohlenstoffgerüsts von HO-LOHC gespaltet werden, insbesondere weniger als
10 % und insbesondere weniger als 3 %. Insbesondere werden durch die Reformierreaktionen weniger als 5 % des im HO-LOHC enthaltenen Kohlenstoffs zu Kohlenstoffdioxid umgesetzt, insbesondere weniger als 3 % und insbesondere weniger als
1 %.
Für die Reformierreaktion wird der Wasserdampf insbesondere als überhitzter Dampf dem Reformierreaktor zugeführt. Der überhitzte Dampf enthält insbesondere keine Wassertröpfchen und verhält sich physikalisch wie ein Gas. Vorteilhaft ist es, wenn mit dem überhitzten Dampf mindestens
10 % und insbesondere mindestens 20 % der für die Reformierreaktion benötigten Wärme mit dem überhitzten Dampf selbst zugeführt werden. Der überhitzte Dampf ist insbesondere unter der energetischen Nutzung des in dem Verfahren freigesetzten Wasserstoffs und/oder unter Nutzung von im Prozess anfallender Prozessabwärme erzeugt worden. Insbesondere kann der freigesetzte Wasserstoff durch Betreiben einer Gasturbine, eines Triebwerks, eines Wasserstoffbrenners, eines Wasserstoffmotors und/oder einer Hochtemperaturbrennstoffzelle, insbesondere einer Festoxidbrennstoffzelle, erzeugt werden.
Insbesondere wird das den Reformierreaktor verlassende Stoffgemisch abgekühlt und insbesondere so weit abgekühlt, dass alle organischen Verbindungen des Stoffgemischs, insbesondere Oxo-LOHC und Wasser kondensieren. Die nach der Kondensation flüssigen Komponenten können unkompliziert und zuverlässig abgetrennt werden, sodass das freigesetzte Wasserstoffgas in hoher Reinheit vorliegt, die insbesondere mindestens 80 %, insbesondere mindestens 90 %, insbesondere mindestens 95 %, insbesondere mindestens 99 % und insbesondere mindestens 99,9 % beträgt.
Es ist denkbar, die Reinheit des freigesetzten Wasserstoffgases zusätzlich in einer Aufreinigungseinheit weiter zu erhöhen. Insbesondere können Aufreinigungsstufen des aus der Dehydrierung freigesetzten Wasserstoffgases genutzt werden, um die Wasser Stoff ströme aus der Dehydrierung und der Reformierung in einer, insbesondere gemeinsamen und insbesondere finalen Aufreinigungsstufe, also als letzte Stufe in einer Prozesskette, zu vereinen. Zur Aufreinigung des Wasserstoffgases ist insbesondere ein Gaswäscher und/oder eine Adsorptionseinheit möglich.
Als Adsorptionseinheit dient insbesondere eine Adsorberschüttung oder eine Druck- und/oder Temperaturwechseladsorptionseinheit.
Nach der Kondensation liegt insbesondere ein flüssiges Zweiphasengemisch vor, mit einer wässrigen Phase und einer organischen Phase. Die organische Phase umfasst Oxo-LOHC, das von der wässrigen Phase vorteilhaft abgetrennt werden kann.
Besonders vorteilhafte LOHC-Stoffsysteme, die von Hx-LOHC zu HO-LOHC dehydriert und in der Reformierreaktion von HO-LOHC zu Oxo-LOHC mit Hilfe von Wasserdampf reformiert werden können, sind nachfolgend in Tabelle 1 unter Angabe der Wasserstoffspeicherkapazitäten zusammengefasst. Es sind auch Mischungen der in der Tabelle genannten Stoffsysteme möglich und insbesondere Isomere der LOHC-Stoffsysteme und Mischungen von Isomeren. Dabei ist eine theoretische Wasserstoff-speicherkapazität dm in Massen-% sowie eine nutzbare volumetrische Wasserstoffspeicherkapazität dv in Wh/1 als Einheit für die Energiespeicherdichte sowie eine rechnerische Steigerung der Wasserstoffkapazität Ad angegeben.
Konkret bedeutet die erhöhte Wasserstoffspeicherkapazität, dass mit der gleichen Menge an Hx- LOHC ein Wasserstoffverbraucher über längere Zeit mit Wasserstoffgas versorgt werden kann und/oder ein Wasserstoff-verbrauchendes Fahrzeug mit der gleichen Menge an Hx-LOHC eine größere Reichweite aufweist. Mit der erhöhten Wasserstoffspeicherkapazität wird der technische Nutzen des LOHC-Systems erhöht.
Es wurde insbesondere gefunden, dass allein durch das Reformieren von HO-LOHC mit Wasserdampf vergleichsweise mehr Wasser stoffgas freigesetzt werden kann als durch das Dehydrieren einer vergleichbaren Hx-LOHC -Komponente zu HO-LOHC. Insbesondere wird bei der Umsetzung von einem Mol Trimethylbenzol mit Wasserdampf bei der Reformierung unter Bildung von Triformylbenzol bis zu 6 mol Wasserstoff gebildet.
Ein Verfahren gemäß Anspruch 2 ermöglicht eine vorteilhafte Reformierreaktion und insbesondere eine verbesserte zusätzliche Freisetzung von Wasserstoffgas aus dem Wasserdampf. Als vorteilhaft hat es sich erwiesen, wenn Hx-LOHC mindestens eine Cyclohexyleinheit und mindestens eine Methylen-Gruppe (-CEE-) oder eine Methylgruppe (-CEE) aufweist. Derartige Verbindungen können durch Dehydrieren in entsprechende aromatische Verbindungen überführt werden, die bei Zugabe von Wasserdampf und der weiteren Wasserstoffgasfreisetzung in aromatische Oxo- Verbindungen, insbesondere aromatische Ketoverbindungen, aromatische Aldehydverbindungen und/oder aromatische Keto- Aldehydverbindungen als Oxo-LOHC überführt werden.
Ein Verfahren gemäß Anspruch 3 ermöglicht die zusätzliche Freisetzung von Wasserstoffgas. Insbesondere wurde erkannt, dass eine für die Dehydrierreaktion erforderliche und insbesondere ohnehin bereitgestellte Wärmequelle auch für die Refomierreaktion genutzt werden kann. Die Wärmeausnutzung dieser Wärmequelle zum Betreiben der Reformierung und der Dehydrierung wäre dadurch effizienter gelöst und insbesondere effizienter als die Bereitstellung mehrerer, separater Wärmequellen jeweils für die Dehydrierung und für die Reformierung. Die Gesamteffizi- enz des Verfahrens ist dadurch verbessert.
Ein Verfahren gemäß Anspruch 4 ermöglicht eine unkomplizierte Durchführung der Reformierreaktion. Die für die Reformierreaktion erforderlichen Ausgangsstoffe können im Wesentlichen kontinuierlich und insbesondere zeitlich ungeregelt, dem Reformierreaktor zugeführt werden. Besonders vorteilhaft ist es, wenn HO-LOHC und der Wasserdampf zeitgleich, also gleichzeitig und insbesondere gemeinsam, insbesondere über eine gemeinsame Zuführöffnung, dem Reformierreaktor zugeführt werden. Das Reformieren des Wasserstoffträgermediums an dem Reformierkatalysator erfolgt in Gegenwart des Wasserdampfes. Das zumindest teilweise oxidierte Wasserstoffträgermedium wird unmittelbar durch Nutzung des Sauerstoffs aus dem Wasserdampf und unter Bildung von Wasserstoffgas oxidiert.
Alternativ können HO-LOHC und Wasserdampf zeitlich entkoppelt und insbesondere zeitlich versetzt, dem Reformierreaktor zugeführt werden. Insbesondere erfolgt das Reformieren in dem Reformierreaktor in zwei Reaktionstakten. In einem ersten Reaktionstakt wird überwiegend und insbesondere ausschließlich, HO-LOHC zugeführt und mit dem Reformierkatalysator kontaktiert.
Der im Katalysator gebundene Sauerstoff reagiert mit HO-LOHC zu Oxo-LOHC. Während des ersten Reaktionstaktes erfolgt die Oxidierung des HO-LOHC insbesondere in Abwesenheit von Wasserdampf. In diesem ersten Reaktionstakt wird der Reformierkatalysator von der oxidierten in die reduzierte Form überführt.
In einem anschließenden zweiten Reaktionstakt wird vorwiegend und insbesondere ausschließlich heißer Wasserdampf dem Reformierreaktor zugeführt und mit dem Reformierkatalysator kontaktiert. Der Reformierkatalysator wird unter Wasserstoffbildung von der reduzierten in die oxidierte Form überführt, also oxidiert. Die Regeneration des Reformierkatalysators während des zweiten Reaktionstaktes erfolgt in Gegenwart von Wasserdampf. Eine Zugabe von HO-LOHC erfolgt in dem zweiten Reaktionstakt nicht. Bei der getakteten Verfahrensweise erfolgt das Reformieren des Wasserstoffträgermediums unter Verwendung von Wasserdampf, nämlich zum Regenerieren des Reformierkatalysators. Für das Oxidieren des Wasserstoffträgermediums wird der im Katalysator gebundene Sauerstoff genutzt.
Zusätzlich ist ein weiterer, zwischengeschalteter Reaktionstakt möglich, der zum Spülen des Reformierreaktors dient, insbesondere ausschließlich zum Spülen des Reformierreaktors, sodass eine Vermischung des Wasserstoffträgermediums mit dem Wasser innerhalb des Reaktors aufgrund verbliebener Rückstände minimiert und insbesondere ausgeschlossen wird. Daraus ergibt sich ein Vorteil in der verbesserten Reinheit der jeweiligen Produkte der einzelnen Reaktionstakte. Als Spülgas dient insbesondere Stickstoff oder Luft. Die Prozessbedingungen der einzelnen Prozessstufen, insbesondere Temperatur und/oder Druck, können sich voneinander unterscheiden.
Bevorzugt liegt der Gehalt an Wasserdampf im Reformierreaktor im ersten Reaktionstakt bei unter 30 Volumen-%, insbesondere unter
15 Volumen-%, insbesondere unter 5 Volumen-%.
Bevorzugt liegt der Gehalt an HO-LOHC im Reformierreaktor im zweiten Reaktionstakt bei unter 30 Volumen-%, insbesondere unter
15 Volumen-%, insbesondere unter 5 Volumen-%.
Insbesondere können die Reaktionsbedingungen für den ersten und den zweiten Reaktionstakt unterschiedlich sein. Beispielsweise kann die Temperatur im zweiten Reaktionstakt höher gewählt werden als im ersten, um die Ausbeute an gebildeten Wasserstoffgas weiter zu erhöhen.
Besonders vorteilhaft ist es, wenn die Reaktionstakte abwechselnd und insbesondere in regelmäßigen Abständen durchgeführt werden. Ein Taktwechsel erfolgt insbesondere in Zeitintervallen zwischen 2 s und 5 h, insbesondere zwischen 10 s und 1 h und insbesondere zwischen 1 min und 30 min. Die Reaktionstakte können gleiche oder unterschiedliche Zeitspannen umfassen.
Ein Verfahren gemäß Anspruch 5 ermöglicht eine vorteilhafte Reformierreaktion. Mindestens eine stöchiometrische Menge an Wasserdampf bezogen auf HO-LOHC gewährleistet eine vorteilhafte Wasserstoffgasfreisetzung. Insbesondere beträgt das molare Verhältnis des Wasserdampfes zu dem zumindest teilweise entladenen Wasserstoffträgermedium HO-LOHC zwischen 1 und 500, insbesondere zwischen 1,1 und 100 und insbesondere zwischen 0,2 und 10.
Ein Verfahren gemäß Anspruch 6 ermöglicht eine zielgerichtete Reformierreaktion. Dadurch, dass die Reformierreaktion in Abwesenheit von molekularem Sauerstoff erfolgt, also der Reformierreaktor einen Gehalt an molekularem Sauerstoff von weniger als 10 Vol.-% aufweist, ist der Anteil des freigesetzten Wasserstoffgases zusätzlich erhöht, weil im Reformierreaktor Wasserdampf und HO-LOHC zu Wasser stoffgas und Oxo-LOHC umgesetzt wird.
Ein Verfahren gemäß Anspruch 7 ermöglicht eine zusätzlich erhöhte Wasserstoffausbeute. Insbesondere kann das durch Dehydrieren erzeugte HO-LOHC anschließend in der Reformierreaktor umgesetzt werden. Das Dehydrieren erfolgt insbesondere als ein der Reformierreaktion vorgelagerter Verfahrensschritt.
Die Dehydrierreaktion erfolgt in einem Dehydrierreaktor in Anwesenheit eines Dehydrierkatalysators. Die Dehydrierreaktion ist endotherm, erfolgt also unter Wärmezufuhr. Der Dehydrierreaktor ist insbesondere ein rohrförmiger Reaktionsapparat, in dem der Dehydrierkatalysator insbesondere als strukturierter Katalysator vorliegt. Insbesondere ist der Dehydrierkatalysator in Form eines gepackten Betts und/oder in Form von katalytisch aktiven Reaktoreinbauten angeordnet. Dem Dehydrierreaktor wird zumindest teilweise beladenes Wasserstoffträgermedium zugeführt.
Das zumindest teilweise beladene Wasserstoffträgermedium wird als Hx-LOHC bezeichnet. Hx- LOHC ist wasserstoffreich und weist einen Hydriergrad HGi von mindestens 50 %, insbesondere mindestens 60 %, insbesondere mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, insbesondere mindestens 95 % und insbesondere mindestens 99 % auf. Insbesondere gilt: HGi > HG2. Hx-LOHC ist insbesondere eine alizyklische Verbindung und insbesondere eine Flüssigkeit.
Durch das Dehydrieren wird Hx-LOHC in das zumindest teilweise entladene Wasserstoffträgermedium HO-LOHC überführt.
Bei dem Verfahren findet also insbesondere ein mehrstufiges, insbesondere ein zweistufiges, Freisetzen von Wasserstoffgas statt, nämlich aus Hx-LOHC durch Dehydrieren zu HO-LOHC und durch die Reformierreaktion aus Wasserdampf unter Reformierung von HO-LOHC zu Oxo- LOHC.
Das Dehydrieren und Reformieren können gleichzeitig oder zeitlich nacheinander stattfinden, insbesondere indem Hx-LOHC und/oder HO-LOHC in dafür vorgesehenen Speicherbehältem zwischengespeichert werden.
Der Dehydrierkatalysator ist insbesondere ein Feststoff und umfasst ein katalytisch aktives Material, das als Dehydrier-Katalysatormaterial bezeichnet wird, das an einem Trägermaterial angebracht ist. Der Massenanteil des Dehydrier-Katalysatormaterials bezogen auf das Trägermaterial beträgt zwischen 0,01 % und 50 %, insbesondere von 0,1 % bis 10 % und insbesondere von 0,3 % bis 5 %. Das Trägermaterial weist Poren auf und ist insbesondere porös ausgeführt. Als Trägermaterial dient insbesondere ein poröser Metalloxid-Träger, insbesondere Aluminiumoxid, Titanoxid, Ceroxid und/oder Siliziumoxid. Zusätzlich oder alternativ kann als Trägermaterial auch Siliziumkarbid und/oder ein kohlenstoffhaltiges Trägermaterial, insbesondere Aktivkohle dienen.
Der poröse Katalysator weist dort, wo das Dehydrier-Katalysatormaterial angeordnet ist, eine innere Oberfläche von mindestens 5 m2 pro Gramm Katalysator auf. Der mittlere Porendurchmesser beträgt insbesondere mehr als 0,5 nm.
Das Dehydrier-Katalysatormaterial umfasst insbesondere eine Metallkomponente, an der die Dehydrierreaktion abläuft. Die Metallkomponente ist insbesondere Platin und kann zusätzlich Nickel, Mangan, Kobalt, Kupfer, Zinn, Eisen, Gallium, Palladium, Rhodium, Rhenium, Ruthenium und/oder Iridium enthalten. Alternativ dient als Metallkomponente Nickel, Kobalt, Kupfer, Eisen, Gallium, Palladium, Rhodium, Ruthenium und/oder Iridium.
Die Kontaktierung des Dehydrierkatalysators mit Hx-LOHC erfolgt im Gas-flüssig-fest-Kontakt oder im Gas-fest-Kontakt, bei dem der feste Dehydrierkatalysator mit Hx-LOHC in verdampfter Form und/oder als Flüssigkeit kontaktiert wird.
Die katalytische Dehydrierreaktion im Dehydrierreaktor ist endotherm und erfolgt insbesondere unter steter Wärmezufuhr, insbesondere in einem Temperaturbereich zwischen 100 °C und 400 °C, insbesondere zwischen 170 °C und 380 °C und insbesondere zwischen 240 °C und 350 °C. Der Wasserstoffpartialdruck in dem Dehydrierreaktor liegt insbesondere zwischen 0,1 bar und 12 bar, insbesondere zwischen 0,5 bar und 9 bar und insbesondere zwischen 1 bar und 6 bar.
Vorteilhaft ist es, wenn das den Dehydrierreaktor verlassende Stoffgemisch, also eine Mischung aus freigesetztem Wasserstoffgas, HO-LOHC und geringen Mengen an Hx-LOHC gekühlt wird. Insbesondere wird das Stoffgemisch so weit abgekühlt, dass alle organischen Verbindungen, insbesondere HO-LOHC und Hx-LOHC kondensieren. Der gebildete Wasserstoff kann mit hoher Reinheit von den nach der Kondensation flüssigen Komponenten unaufwändig und zuverlässig abgetrennt werden. Die kondensierten flüssigen Komponenten bilden insbesondere HO-LOHC.
Als besonders vorteilhaft hat sich die Trennung des Stoffgemischs mittels einer Membran erwiesen, insbesondere eine Pd-Ag-Membran, um das Stoffgemisch im gasförmigen Zustand zu trennen. Ein Trennapparat, in dem eine Kondensation stattfindet ist dann entbehrlich. Es ist auch denkbar, einen Trennapparat mit einer Membran zu kombinieren, insbesondere hintereinander anzuordnen. Bei der Wasserstoff abtrennung mittels der Membran wurde gefunden, dass das Wasser stoffgas sehr selektiv durch die Membran durchtritt, sodass das Wasserstoffgas mit sehr hoher Reinheit gewonnen werden kann. Dagegen kann HO-LOHC und Hx-LOHC die Membran nicht durchtreten und verbleibt im Retentat der Membran. Das so abgeschiedene HO-LOHC und Hx-LOHC kann aus dem Retentat in einen dafür vorgesehenen Speicherbehälter und/oder in den
Reformierreaktor abgeführt werden. Es sind auch andere Abtrennverfahren und/oder Abtrenneinheiten denkbar, insbesondere Gaswäscher und/oder Adsorptionseinheiten.
Ein Verfahren gemäß Anspruch 7 weist ein Dehydrieren eines zumindest teilweise beladenen Wasserstoffträgermediums Hx-LOHC auf, das insbesondere vor dem Reformieren durchgeführt wird. Insbesondere wird das durch das Dehydrieren gebildete HO-LOHC anschließend mit Wasserdampf reformiert. Durch die Kombination von Dehydrierung und Reformierung ergibt sich eine insgesamt erhöhte Wasserstofffreisetzungsrate. Bei der Verwendung von Benzyltoluol als Wasserstoffträgermedium ergibt sich theoretisch eine Wasserstofffreisetzung von 10 mol EE pro Mol Benzyltoluol im Vergleich zu 6 mol EE bei einer reinen Dehydrierung von Benzyltoluol.
Ein Hydrierverfahren gemäß Anspruch 8 ermöglicht eine vorteilhafte Überführung von Oxo- LOHC in Hx-LOHC. Die Hydrierreaktion ist insbesondere exotherm und erfolgt insbesondere unter Wärmeabgabe und bei erhöhtem Druck. Mit dem Hydrierverfahren wird die Voraussetzung für einen stofflichen Kreislauf, insbesondere einen geschlossenen Kreislauf für das Wasserstoffträgermedium geschaffen. Das Hydrieren erfolgt zeitlich versetzt und insbesondere an einem zweiten Ort, der insbesondere räumlich entfernt von dem ersten Ort angeordnet ist. Der zweite Ort ist insbesondere energiereich. Das bedeutet, dass an dem zweiten Ort elektrischer Strom im Überfluss und/oder zu ökonomisch günstigen Bedingungen bereitsteht. An dem zweiten Ort können auch vorteilhafte Voraussetzungen für die Nutzung regenerativer Energiequellen herrschen, also beispielsweise für die Nutzung von Windkraft und/oder Solarkraft und/oder Wasserkraft. Insbesondere ist das in dem Hydrierreaktor hydrierte Oxo-LOHC erfindungsgemäß aus HO- LOHC durch Reformierreaktion gebildet worden. Die Hydrierreaktion erfolgt an einem Hydrierkatalysator mit Wasserstoffgas.
Der Hydrierkatalysator umfasst ein Trägermaterial, an dem ein katalytisch aktives Material, das als Hydrier-Katalysatormaterial bezeichnet wird, angebracht und daran gehalten ist. Das Trägermaterial weist Poren auf und ist insbesondere porös ausgebildet. Das Trägermaterial weist dort, wo das Hydrier-Katalysatormaterial angeordnet ist, eine innere Oberfläche von mindestens 5 m2 pro Gramm Trägermaterial auf. Ein mittlerer Porendurchmesser beträgt insbesondere mehr als
0,5 nm. Als Trägermaterial dient insbesondere ein poröser Metalloxid-Träger, insbesondere Titanoxid, Ceroxid, Aluminiumoxid und/oder Siliziumoxid. Zusätzlich oder alternativ sind auch kohlenstoffhaltige Trägermaterialien möglich, insbesondere Aktivkohle.
Der Massenanteil des Hydrier-Katalysatormaterials bezogen auf das Trägermaterial beträgt zwischen 0,01 % und 5 %, insbesondere zwischen
0,1 % und 10 % und insbesondere zwischen 0,3 % und 5 %.
Das Hydrier-Katalysatormaterial umfasst insbesondere eine Metallkomponente, an der die Hydrierreaktion und die Wasserbildung ablaufen. Geeignete Metallkomponenten sind insbesondere Platin, Palladium, Nickel, Mangan, Kobalt, Kupfer, Eisen, Rhodium, Ruthenium und/oder Iridium, wobei sich als besonders geeignet platinhaltige und/oder palladiumhaltige Hydrier-Katalysatormaterialien erwiesen haben.
Insbesondere unterscheidet sich der Hydrierkatalysator von dem Reformierkatalysator. Der Hydrierkatalysator kann bezüglich seiner stofflichen Zusammensetzung gleich oder unterschiedlich zu dem Dehydrierkatalysator ausgeführt sein.
Der Hydrierreaktor ist insbesondere als rohrförmiger Reaktionsapparat ausgeführt. In dem Hydrierreaktor liegt der Hydrierkatalysator insbesondere in strukturierter Form vor, insbesondere in Form eines gepackten Betts und/oder in Form von katalytisch aktiven Reaktoreinbauten.
Die Kontaktierung des Hydrierkatalysators in dem Hydrierreaktor erfolgt im Gas-flüssig-fest- Kontakt oder im Gas-fest-Kontakt mit dem gasförmigen Wasserstoff und dem Reaktionsgemisch, insbesondere mit Oxo-LOHC in gasförmiger oder flüssiger Form.
Das Hydrieren erfolgt insbesondere in einem Temperaturbereich zwischen 50 °C und 400 °C, insbesondere zwischen 100 °C und 370 °C und insbesondere zwischen 150 °C und 340 °C. Der Wasserstoffpartialdruck in dem Hydrierreaktor beträgt zwischen 5 bar und 300 bar, insbesondere zwischen 7 bar und 180 bar und insbesondere zwischen 10 bar und 60 bar.
Die aus dem Hydrierreaktor abgeführten Stoffe bilden insbesondere ein flüssiges Stoffgemisch. Das Stoffgemisch wird abgekühlt und insbesondere so weit abgekühlt, dass alle organischen Verbindungen, insbesondere Hx-LOHC, und das gebildete Wasser kondensieren und der insbesondere physikalisch gelöste Wasserstoff weitgehend ausgast.
Nach der Kondensation liegt insbesondere ein flüssiges Zweiphasengemisch vor, das eine wässrige Phase und eine organische Phase umfasst. Die organische Phase umfasst insbesondere Hx- LOHC, das durch Phasentrennung vorteilhaft und unkompliziert von der Wasserphase abgetrennt werden kann.
Ein Kreislaufverfahren gemäß Anspruch 9 ermöglicht einen vorteilhaften geschlossenen Stoffkreislauf.
Ein Kreislaufverfahren gemäß den Ansprüchen 10 oder 11 gewährleistet die zuverlässige und unkomplizierte Durchführung der jeweiligen Verfahrensschritte, insbesondere zeitlich versetzt und an unterschiedlichen, insbesondere räumlich voneinander getrennten Orten. Für den Transport des Wasserstoffträgermediums in den verschiedenen Zuständen, also Hx-LOHC, HO-LOHC und/oder Oxo-LOHC, können Transportfahrzeuge, insbesondere Transport-LKWs, Transport- Züge und/oder Transport-Schiffe, dienen. Zusätzlich oder alternativ kann der Transport durch dafür vorgesehene Leitungen, sogenannte Pipelines, erfolgen, die oberirdisch und/oder unterirdisch angeordnet sein können. Insbesondere kann dafür ein bereits existierendes Leitungsnetz genutzt werden. An Einspeisestationen und Entnahme Stationen kann das Wasserstoffträgermedium in das Leitungsnetz eingespeist oder daraus entnommen werden.
Eine Vorrichtung gemäß Anspruch 12 weist im Wesentlichen die Vorteile des erfmdungsgemä- ßen Verfahrens auf, worauf hiermit verwiesen wird.
Vorteilhaft ist es, wenn eine Wärmeeinheit vorgesehen ist, mit der dem Reformierreaktor und/oder dem Dehydrierreaktor Wärme zugeführt werden kann. Die Durchführung der endothermen Reaktionen ist dadurch vereinfacht. Es ist auch möglich, separate Wärmeeinheiten für die De-
Hydrierung und/oder die Reformierung vorzusehen, die unabhängig voneinander betrieben werden können. Es ist dadurch möglich, die Wärme dem jeweiligen Reaktor zielgerichtet und zeitlich unabhängig zuzuführen.
Eine Vorrichtung gemäß Anspruch 13 gewährleistet die unkomplizierte Bereitstellung von H0- LOHC für die anschließende Reformierung.
Eine Vorrichtung gemäß Anspruch 14 ermöglicht eine nachfolgende
Hydrierung, wobei der Hydrierreaktor insbesondere eine Zuführleitung zum Zuführen von Wasserstoffgas und/oder eine Abführleitung zum Abführen von Wasser und/oder LOHC aufweist.
Eine Vorrichtung gemäß Anspruch 15 ermöglicht eine vorteilhafte und insbesondere fluidtechnisch geschlossene Kreislaufanordnung.
Sowohl die in den Patentansprüchen angegebenen Merkmale als auch die in den Ausführungsbeispielen einer erfindungsgemäßen Vorrichtung angegebenen Merkmale sind jeweils für sich alleine oder in Kombination miteinander geeignet, den erfindungsgemäßen Gegenstand weiterzubilden. Die jeweiligen Merkmalskombinationen stellen hinsichtlich der Weiterbildungen des Erfindungsgegenstands keine Einschränkung dar, sondern weisen im Wesentlichen lediglich beispielhaft den Charakter auf.
Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnung. Es zeigen:
Fig. 1 eine stark schematisierte Darstellung einer Vorrichtung mit Hydrierreaktor, Dehydrierreaktor und Reformierreaktor in einer geschlossenen Kreislaufanordnung,
Fig. 2 eine schematisierte vergrößerte Darstellung des Dehydrierreaktors gemäß Fig. 1 mit Peripherie,
Fig. 3 eine Fig. 2 entsprechende Darstellung des Reformierreaktors gemäß Fig. 1 mit Peripherie,
Fig. 4 eine Fig. 2 entsprechende Darstellung des Hydrierreaktors gemäß Fig. 1 mit Peripherie.
Eine in Fig. 1 stark schematisiert dargestellte Vorrichtung 1 dient zum Bereitstellen und Speichern von Wasserstoffgas mittels eines Wasserstoffträgermediums LOHC, das in verschiedenen Zuständen verwendet wird, insbesondere zumindest teilweise mit Wasserstoff beladen als Hx- LOHC, zumindest teilweise entladen als HO-LOHC und/oder zumindest teilweise oxidiert als Oxo-LOHC. Die Vorrichtung 1 umfasst einen Dehydrierreaktor 2, einen fluidtechnisch damit verbundenen Reformierreaktor 3 und einen damit fluidtechnisch verbundenen Hydrierreaktor 4. Der Hydrierreaktor 4 ist wiederum fluidtechnisch mit dem Dehydrierreaktor 2 verbunden. Die Reaktoren 2, 3, 4 bilden eine fluidtechnisch geschlossene Kreislaufanordnung 5.
Sehr vereinfacht wird die Vorrichtung 1 dadurch betrieben, dass Hx-LOHC, gemäß dem gezeigten Ausführungsbeispiel in der Form von Perhydro-Benzyltoluol, dem Dehydrierreaktor 2 zugeführt wird. In dem Dehydrierreaktor 2 ist ein Dehydrierkatalysator angeordnet, in dessen Gegenwart Hx-LOHC zu HO-LOHC unter Freisetzung von Wasserstoffgas H2 dehydriert wird. Gemäß dem gezeigten Ausführungsbeispiel ist HO-LOHC durch Benzyltoluol gebildet. Entsprechend werden 6 mol Wasser stoffgas pro 1 mol Benzyltoluol freigesetzt. Die Dehydrierreaktion in dem Dehydrierreaktor 2 ist endotherm. Dem Dehydrierreaktor 2 wird ein Wärmestrom Q zugeführt.
HO-LOHC wird dem Reformierreaktor 3 zugeführt und mit einem darin angeordneten Reformierkatalysator kontaktiert. Für die Reformierreaktion wird dem Reformierreaktor 3 auch Wasserdampf, insbesondere mindestens 2 mol Wasserdampf je 1 mol HO-LOHC sowie Wärme Q zugeführt. In Folge der Reformierreaktion wird HO-LOHC mit Wasserdampf zu Oxo-LOHC umgesetzt. Zudem wird Wasserstoffgas aus dem zugeführten Wasserdampf freigesetzt, insbesondere 2 mol Wasser stoffgas je einem Mol umgesetzten Wasserdampf.
Oxo-LOHC wird dem Hydrierreaktor 4 zugeführt und dort mit einem Hydrierkatalysator kontaktiert und in Gegenwart von Wasser stoffgas H2 zu Hx-LOHC hydriert. Die Hydrierreaktion in dem Hydrierreaktor 4 ist exotherm. Aus dem Hydrierreaktor 4 wird Wärme als Wärmestrom Q abgeführt. In dem Hydrierreaktor 4 fällt bei der Hydrierreaktion Wasser an, das durch Phasentrennung im abgekühlten Zustand isoliert und getrennt abgeführt wird.
Nachfolgend wird anhand von Fig. 2 bis 4 die Vorrichtung 1 näher beschrieben.
Fig. 2 zeigt eine als Ganzes mit 6 gekennzeichnete erste Teil- Vorrichtung, die den Dehydrierreaktor 2 umfasst. Die erste Teil- Vorrichtung 6 dient zum Dehydrieren von Hx-LOHC.
Die erste Teilvorrichtung 6 umfasst einen ersten Speicherbehälter 7, in dem Hx-LOHC bevorratet ist. Hx-LOHC umfasst in diesem Zusammenhang das zumindest teilweise beladene Wasserstoffträgermedium, wobei in dem ersten Speicherbehälter 7 auch zumindest teilweise und/oder vollständig entladene Formen des Wasserstoffträgermediums LOHC bevorratet sein können. Diese anderen Komponenten bilden Verunreinigungen des Hx-LOHC.
Der erste Speicherbehälter 7 ist über eine erste Fluidleitung 8 und eine regelbare erste Fördereinheit 9, insbesondere eine Flüssigkeitspumpe, an einen Wärmeübertrager 10 angeschlossen. Rein aus Darstellungsgründen ist in Fig. 2 nur ein Wärmeübertrager 10 dargestellt. Die erste Teilvorrichtung 6 kann auch mehrere Wärmeübertrager 10 umfassen. Insbesondere ist der erste Speicherbehälter 7 an mindestens einen und insbesondere mehrere Wärmeübertrager angeschlossen.
Die erste Fördereinheit 9 steht mit einer zentralen Regelungseinheit 11 in, insbesondere bidirektionaler, Signalverbindung. Die Signalverbindung kann kabelgebunden oder kabellos, insbesondere durch Funkverbindung, erfolgen. Die Signalverbindung ist in Fig. 2 rein symbolisch durch eine gestrichelte Linie 12 dargestellt. Die erste Fluidleitung 8 verbindet den ersten Wärmeübertrager 10 mit dem Dehydrierreaktor 2. Entlang der Fluidströmungsrichtung ist zwischen dem ersten Wärmeübertrager 10 und dem Dehydrierreaktor 2 eine erste Heizquelle 13 angeordnet. Die erste Heizquelle 13 ist insbesondere regelbar ausgeführt und steht mit der Regelungseinheit 11 in, insbesondere bidirektionaler, Signalverbindung. Die erste Heizquelle 13 ist insbesondere eine Elektroheizung und insbesondere an eine nicht näher dargestellte Stromversorgung angeschlossen. Die erste Heizquelle 13 ist optional.
Der Dehydrierreaktor 2 weist einen Dehydrierbehälter 14 auf, in dem mindestens ein Dehydrierraum 15 und insbesondere mehrere Dehydrierräume 15 angeordnet sind. In jedem Dehydrierraum 15 ist der Deyhdrierkatalysator angeordnet.
Der Dehydrierbehälter 14 weist eine Längsachse 16 auf, die gemäß dem gezeigten Ausführungsbeispiel vertikal orientiert ist. Die Längsachse 16 kann gegenüber der Vertikalen geneigt und insbesondere horizontal angeordnet sein. Der Dehydrierbehälter 14 weist eine senkrecht zur Längsachse 16 orientierte Querschnittsfläche auf, die entlang der Längsachse 16 im Wesentlichen unveränderlich und insbesondere konstant ausgeführt ist.
Die Dehydrierräume 15 sind insbesondere rohrförmig ausgeführt und insbesondere voneinander abgetrennt. Die Dehydrierräume 15 sind separat ausgeführt und beabstandet zueinander angeordnet. Insbesondere sind die Dehydrierräume 15 in einer Ebene senkrecht zur Längsachse 16 beabstandet zueinander angeordnet. Die Dehydrierräume 15 sind insbesondere parallel zur Längsachse 16 orientiert.
Die Dehydrierräume 15 sind insbesondere regelmäßig und insbesondere in einem regelmäßigen Raster zueinander angeordnet. Die Dehydrierräume 15 sind jeweils durch ein Rohr gebildet. Die Dehydrierräume 15 sind insbesondere identisch ausgeführt und weisen insbesondere eine in einer senkrecht zur Längsachse 16 orientierten Ebene eine Außenkontur auf, die insbesondere regelmäßig ist. Die Kontur ist insbesondere kreisförmig oder polygonal, insbesondere viereckig, insbesondere rechteckig oder quadratisch oder sechseckig.
Der Dehydrierbehälter 14 weist eine erste, in Fig. 2 unten dargestellte Stirnwand 17 und eine gegenüberliegend angeordnete, zweite Stirnwand 18 auf, die in Fig. 2 oben dargestellt ist. Die Stirnwände 17, 18 definieren eine entlang der Längsachse 16 orientierte Länge L. Die Dehydrierräume 15 erstrecken sich entlang der Längsachse 16 über mindestens 50 % der Länge L, insbesondere über mindestens 80 % der Länge L und insbesondere über mindestens 95 % der Länge L.
Die erste Fluidleitung 8 ist in einem unteren Bereich des Dehydrierbehälters 14, insbesondere benachbart zu der ersten Stirnwand 17 an den Dehydrierbehälter 14 angeschlossen. Die erste Fluidleitung 8 ist mit einem ersten Verteilerelement 19 verbunden, das in dem Dehydrierbehälter 14 angeordnet ist. Das erste Verteilerelement 19 ist mit jedem Dehydrierraum 15 fluidtechnisch verbunden. Dazu dient jeweils ein nicht näher dargestelltes Verbindungsstück. Das erste Verteilerelement 19 ermöglicht die gleichmäßige Verteilung von Hx-LOHC in die Dehydrierräume 15.
Das erste Verteilerelement 19 ist insbesondere vorteilhaft, wenn der Dehydrierreaktor 2 mit seiner Längsachse 16 gegenüber der Vertikalen quer und insbesondere horizontal angeordnet ist. Das erste Verteilerelement 19 ist auch dann vorteilhaft, wenn der Dehydrierreaktor 2 vertikal ausgerichtet ist und die Zuführung von Hx-LOHC, anders als in Fig. 2 dargestellt, von oben in die Dehydrierräume 15 erfolgt. Bei der in Fig. 2 gezeigten Ausführung kann das erste Verteilerelement 19 auch entfallen.
Zwischen den Dehydrierräumen 15 werden Dehydrier-Zwischenräume 20 gebildet. Die Dehydrier-Zwischenräume 20 sind durch die Innenfläche des Dehydrierbehälters 14 und durch die Außenflächen der Dehydrierräume 15 in radialer Richtung bezüglich der Längsachse 16, sowie durch die Stirnwände 17, 18 in axialer Richtung bezüglich der Längsachse 16 begrenzt.
An die Dehydrier-Zwischenräume 20 ist eine Wärmeträgerfluid-Zuführleitung 21 und eine Wär- meträgerfluid- Abführleitung 22 angeschlossen. Die Wärmeträgerfluid-Zuführleitung 21 mündet über eine Mantelfläche des Dehydrierbehälters 14 in die Dehydrier-Zwischenräume 20. Die Wärmeträgerfluid-Zuführleitung 21 ist in einem oberen Bereich des Dehydrier-Behälters 14, insbesondere benachbart zu der zweiten Stirnwand 18, angeordnet. Die Wärmeträgerfluid- Abführleitung 22 ist entsprechend in einem unteren Bereich des Dehydrierbehälters 14 und insbesondere benachbart zu der ersten Stirnwand 17 in einem Mantelbereich des Dehydrierbehälters 14 angeordnet. Die Strömungsrichtung eines Wärmeträgerfluids, also von der Wärmeträgerfluid- Zuführleitung 21 zu der Wärmeträgerfluid- Abführleitung 22 ist im Wesentlichen der Strömungsrichtung des Hx-LOHC entgegengerichtet. Die Wärmeübertragung erfolgt im Gegenstromverfahren.
Die Dehydrier-Zwischenräume 20 sind Teil einer Wärmeeinheit, insbesondere einer Dehydrier- Wärmeeinheit. Insbesondere ist die Wärmeträgerfluid- Abführleitung 22 an eine externe Wärmequelle 23 angeschlossen, in der das abgekühlte Wärmeträgerfluid, insbesondere Wärmeträgeröl, wieder aufgeheizt werden kann. Das Wärmeträgerfluid ist insbesondere ein heißes flüssiges Wärmeträgeröl und kann zusätzlich oder alternativ kondensierende Dämpfe und/oder heiße Dämpfe, insbesondere wasserdampfhaltige Gasgemische umfassen. Das wieder aufgeheizte
Wärmeträgerfluid kann dann von der externen Wärmequelle 23 über die Wärmeträgerfluid-Zuführleitung 21 wieder dem Dehydrier-Zwischenraum 20 zugeführt werden. Insbesondere ist ein geschlossener Wärmeträgerfluid-Kreislauf gebildet. Die Wärmeträgerfluid-Zuführleitung 21 ist an die externe Wärmequelle 23 angeschlossen. Die externe Wärmequelle 23 ist Teil der Wärmeeinheit, insbesondere der Dehydrier-Wärmeeinheit. Auch eine Wärmeübertragung im Gleichstromverfahren ist durch Umkehrung der Strömungsrichtung des Wärmeträgeröls möglich.
Zusätzlich oder alternativ ist es auch möglich, als Wärmeeinheit die Dehydrier-Zwischenräume 20 und/oder die Außenwand des Dehydrierbehälters 14 separat und insbesondere elektrisch zu beheizen, insbesondere mittels einer Widerstandsheizung.
Gegenüberliegend des ersten Verteilerelements 19 münden die Dehydrierräume 15 in ein erstes Sammelelement 24, das an einer Oberseite des Dehydrierbehälters 14 angeordnet ist. An das erste Sammelelement 24 ist eine zweite Fluidleitung 25 angeschlossen, die den Dehydrierreaktor 2 mit einem ersten Trennapparat 26 verbindet. Entlang der zweiten Fluidleitung 25 ist der erste Wärmeübertrager 10 angeordnet.
Der erste Trennapparat 26 ist ein Gas-Flüssigkeits-Trenner. Der erste Trennapparat 26 kann ein nicht näher dargestelltes Druckregelventil aufweisen, mit dem ein Druck, insbesondere ein Reaktionsdruck, in dem Dehydrierreaktor 2 und/oder in dem ersten Wärmeübertrager 10 eingestellt und insbesondere geregelt werden kann. Der Reaktionsdruck im Dehydrierreaktor 2 wird insbesondere durch Wasserstoffgas und/oder durch die dampfförmig vorliegenden, im Dehydrierreaktor 2 gebildeten aromatischen Verbindungen gebildet. Das Druckregelventil steht in, insbesondere bidirektionaler, Signalverbindung mit der Regelungseinheit 11.
Der erste Trennapparat 26 umfasst eine erste Trennkammer 27 und eine mittels einer Verbindungsleitung 28 damit verbundene zweite Trennkammer 29. Alternativ kann der erste Trennapparat 26 mit nur einer einzigen Trennkammer ausgeführt sein.
Die beiden Trennkammern 27, 29 sind, insbesondere in einem jeweils oberen Bereich, über eine Gasleitung 30 unmittelbar miteinander verbunden. Die Gasleitung 30 ermöglicht einen Druckausgleich zwischen den beiden Trennkammern 27, 29. In den beiden Trennkammern 27, 29 ist
stets ein gleicher, insbesondere ein identischer, Füllstand mit Fluid, insbesondere mit HO-LOHC, gewährleistet. Der Füllstand kann mittels eines Pegelsen-sors 31 gemessen werden. Der Pegelsensor 31 steht insbesondere mit der Regelungseinheit 11 in bidirektionaler Signalverbindung. Gemäß dem gezeigten Ausführungsbeispiel ist der Pegelsensor 31 an der zweiten Trennkammer 29 angeordnet. Der Pegelsensor 31 kann alternativ oder zusätzlich auch an der ersten Trennkammer 27 angeordnet sein.
Die beiden Kammern 27, 29 sind im Sinne kommunizierender Röhren miteinander verknüpft. Darunter ist zu verstehen, dass die Flüssigphase und die Gasphase der Kammern 27, 29 mittels der Verbindungsleitung 28 und der Gasleitung 30 jeweils zueinander im Kontakt stehen, also kommunizieren. Daraus resultiert, dass sich in beiden Kammern 27, 29 der gleiche Druck und der gleiche Füllstand einstellt, insbesondere unabhängig von der jeweiligen Ausführung der Trennkammern 27, 29.
An die erste Trennkammer 27 ist eine Wasserstoffgas- Abführleitung 32 angeschlossen, entlang der eine Reinigungseinheit, insbesondere in Form eines Filterelements 33, insbesondere ein Aktivkohlefilter, angeordnet ist. Zusätzlich oder alternativ zu dem Filterelement 33 kann die Reinigungseinheit eine Adsorptionseinheit, insbesondere zur Druckwechseladsorption aufweisen.
Über die Wasserstoffgas- Abführleitung 32 kann freigesetztes, gereinigtes Wasserstoffgas H2 insbesondere für eine Verwertungseinheit 34, insbesondere eine Brennstoffzelle, bereitgestellt werden. An die zweite Trennkammer 29 ist eine dritte Fluidleitung 35 angeschlossen, entlang der eine regelbare zweite Fördereinheit 36, insbesondere eine Flüssigkeitspumpe, angeschlossen ist. Die zweite Fördereinheit 36 steht mit der Regelungseinheit 11 in, insbesondere bidirektionaler, Signalverbindung. Über die dritte Fluidleitung 35 ist der Dehydrierreaktor 2 mit dem Reformierreaktor 3 fluidtechnisch verbunden. Allein aus Darstellungsgründen ist in Fig. 2 der Reformierreaktor 3 sehr schematisch dargestellt.
Der Reformierreaktor 3 wird nachfolgend anhand von Fig. 3 näher erläutert.
Fig. 3 zeigt eine insgesamt mit 37 bezeichnete Teil-Vorrichtung. Die zweite Teil- Vorrichtung 37 dient zum Reformieren von HO-LOHC in dem Reformierreaktor 3. Die zweite Teil-Vorrichtung
37 dient insbesondere zur weiteren, insbesondere zusätzlichen, Bereitstellung von Wasserstoffgas, insbesondere aus Wasserdampf im Rahmen der Reformierreaktion im Reformierreaktor 3.
Rein schematisch ist dazu in Fig. 3 der Dehydrierreaktor 2 als Quelle für HO-LOHC dargestellt. Zwischen dem Dehydrierreaktor 2 und dem Reformierreaktor 3 kann, insbesondere entlang der dritten Fluidleitung 35 und insbesondere benachbart zu dem Reformierreaktor 3, also insbesondere als Bestandteil der zweiten Teil- Vorrichtung 37, ein zweiter Speicherbehälter 38 angeordnet sein.
Die dritte Fluidleitung 35 ist über den zweiten Wärmeübertrager 39 und die zweite Heizquelle 40 an den Reformierreaktor 3 angeschlossen. Die Fluidförderung entlang der dritten Fluidleitung 35 erfolgt insbesondere veranlasst durch die regelbare zweite Fördereinheit 36. Die zweite Fördereinheit 36 kann zusätzlich oder alternativ zu der ersten Teil- Vorrichtung 6 auch in der zweiten Teil- Vorrichtung 37 angeordnet sein.
Die zweite Heizquelle 40 ist insbesondere identisch zu der ersten Heizquelle 13 ausgeführt. HO- LOHC wird insbesondere in dem zweiten Wärmeübertrager 39 vorgewärmt und/oder in der zweiten Heizquelle 40 zumindest anteilig und insbesondere vollständig verdampft. Die zweite Heizquelle 40 ist optional. Das bedeutet, dass die Vorwärmung des HO-LOHC auch ohne die zweite Heizquelle 40 erfolgen kann.
Die dritte Fluidleitung 35 mündet in einen Reformierbehälter 41 des Reformierreaktors 3. In dem Reformierbehälter 41 ist mindestens ein Reformierraum 42 und insbesondere mehrere Reformierräume 42 angeordnet. In jedem der Reformierräume 42 ist ein Reformierkatalysator angeordnet. Der Reformierbehälter 41 weist eine Längsachse 43 auf, die gemäß dem gezeigten Ausführungsbeispiel vertikal orientiert ist. Die Längsachse 43 kann gegenüber der Vertikalen auch geneigt und insbesondere horizontal angeordnet sein. Der Reformierbehälter 41 weist eine senkrecht zur Längsachse 43 orientierte Querschnittsfläche auf, die entlang der Längsachse 43 im Wesentlichen unveränderlich ist. Insbesondere ist die Querschnittsfläche des Reformierbehälters 41 entlang der Längsachse 43 konstant.
Die Reformierräume 42 sind insbesondere rohrförmig ausgeführt und weisen in einer Ebene senkrecht zur Längsachse 43 eine regelmäßige Kontur auf. Die Kontur ist insbesondere kreisförmig oder polygonal, insbesondere viereckig, insbesondere rechteckig oder quadratisch, oder sechseckig.
Die Reformierräume 42 sind beabstandet zueinander angeordnet, insbesondere in einer Ebene senkrecht zur Längsachse 43. Die Reformierräume 42 sind insbesondere parallel zur Längsachse 43 orientiert. Die Reformierräume 42 sind in der Ebene senkrecht zur Längsachse 43 beabstandet zueinander und insbesondere in einem regelmäßigen Raster angeordnet.
Der Reformierbehälter 41 weist eine erste Stirnwand 44 auf, die in Fig. 3 unten angeordnet ist, sowie eine zweite Stirnwand 45, die der ersten Stirnwand 44 gegenüberliegend angeordnet ist und in Fig. 3 oben dargestellt ist.
Die Reformierräume 42 weisen eine entlang der Längsachse 43 orientierte Länge L auf, die durch die beiden Stirnwände 44, 45 begrenzt ist. Die Reformierräume 42 erstrecken sich entlang der Längsachse 43 über einen Großteil der Länge L des Reformierbehälters 41, insbesondere über mindestens 50 %, insbesondere über mindestens 80 % und insbesondere über mindestens 95 % der Länge L.
Die dritte Fluidleitung 35 ist in einem unteren Bereich des Reformierbehälters 41 an diesem angeschlossen. Die dritte Fluidleitung 35 ist mit einem im Reformierbehälter 41 angeordneten zweiten Verteilerelement 46 verbunden. Das zweite Verteilerelement 46 ist mit jedem Reformierraum 42 über ein nicht näher dargestelltes Verbindungsstück verbunden. Die Verwendung des zweiten Verteilerelements ist insbesondere vorteilhaft, wenn der Reformierreaktor 3 mit seiner Längsachse 43 quer zur Vertikalen und insbesondere horizontal angeordnet ist. Das zweite Verteilerelement 46 ist auch dann vorteilhaft, wenn der Reformierreaktor 3 vertikal ausgerichtet ist und die Zuführung von HO-LOHC von oben in die Reformierräume 42 erfolgt. Über das zweite Verteilerelement 46 wird dem Reformierreaktor 3 und insbesondere den Reformierräumen 42 Wasser zugeführt, insbesondere in Form von Wasserdampf. Die Zuführung des Wassers in den Reformierreaktor 3 erfolgt über die Wasserzuführleitung 47, die insbesondere in das
zweite Verteilerelement 46 mündet. Der Volumenstrom des zugeführten Wassers über die Wasserzuführleitung 44 wird über eine dritte Fördereinheit 48 oder über ein Ventil geregelt, insbesondere mittels der Regelungseinheit 11, die mit der dritten Fördereinheit 48, insbesondere in bidirektionaler Signalverbindung steht.
Die Wasserzuführleitung 47 ist an einen Wasserdampfgenerator 49 angeschlossen, der Wasserdampf, insbesondere in überhitzter Form und insbesondere bei Temperaturen über 110 °C erzeugt. Der Wasserdampfgenerator ist beispielsweise eine mit Wasserstoff betriebene Gasturbine, ein mit Wasserstoff betriebenes Triebwerk, ein mit Wasserstoff betriebener Brenner, ein mit Wasserstoff betriebener Motor und/oder eine mit Wasserstoff betriebene Festoxid-Brennstoff- zelle.
Zwischen den Reformierräumen 42 werden Reformier-Zwischenräume 50 gebildet. Die Kontur der Reformier-Zwischenräume 50 ergibt sich aus der jeweiligen Außenkontur der Reformierräume 42 und der Innenkontur des Reformierbehälters 41.
Die Reformier-Zwischenräume 50 bilden einen Wärmeübertrager und sind insbesondere Teil einer Wärmeeinheit zum Zuführen von Wärme in den Reformierreaktor 3, insbesondere in die Reformierräume 42. Die Wärmeübertragung erfolgt insbesondere mittels eines die Reformier-Zwischenräume 50 durchströmenden Wärmeträgerfluids, das über eine Wärmeträgerfluid-Zuführleitung 51 dem Reformier-Zwischenraum 50 zugeführt und über eine entsprechende Wärmeträgerfluid-Abführleitung 52 abgeführt werden kann. Als Wärmeträgerfluid dient insbesondere ein heißer Stoffstrom, insbesondere eine wärmetragende Flüssigkeit, insbesondere Wärmeträgeröl, und/oder ein wärmetragendes Gas. An die Wärmeträgerfluid- Abführleitung 52 kann eine zweite externe Wärmequelle 53 angeschlossen sein, um das Wärmeträgerfluid neu aufzuheizen. Entsprechend ist die zweite externe Wärmequelle 53 mit der Wärmeträgerfluid-Zuführleitung 51 verbunden. Bezüglich der Funktion wird auf den Wärmeübertrager in dem Dehydrierreaktor 2 gemäß Fig. 2 verwiesen, der entsprechend ausgeführt ist.
Bei dem Reformierreaktor 3 können die Reformier-Zwischenräume 50 und/oder die Außenwand des Reformierbehälters 41 auch elektrisch beheizt werden, insbesondere über eine Widerstandsheizung.
Dem zweiten Verteilerelement 46 gegenüberliegend ist ein zweites Sammelelement 54 angeordnet, in das sämtliche Reformierräume 42 münden. An das zweite Sammelelement 54 ist eine vierte Fluidleitung 55 angeschlossen, die in einen zweiten Trennapparat 56 mündet. Entlang der vierten Fluidleitung 55 ist der zweite Wärmeübertrager 39 angeordnet.
In dem zweiten Wärmeübertrager 39 wird das aus dem Reformierreaktor 3 abgeführte Oxo- LOHC gekühlt und kondensiert. Der so erzeugte Fluid-strom wird dem zweiten Trennapparat 56 zugeführt, der als Gas-Flüssigkeits-Trenner ausgeführt ist.
Insbesondere ist der zweite Trennapparat 56 identisch zu dem ersten
Trennapparat 26 gemäß Fig. 2 ausgeführt. Um Wiederholungen zu vermeiden, wird bezüglich des Aufbaus und der Funktion hierauf verwiesen. Der zweite Trennapparat umfasst zwei Trennkammern 57, 58, die jeweils mittels einer Verbindungsleitung 59 und einer Gasleitung 60 unmittelbar miteinander verbunden sind. Der zweite Trennapparat 56 weist mindestens einen Pegelsensor 61 auf.
An die erst Trennkammer 57 ist eine Wasserstoffgas- Abführleitung 62 und ein Filterelement 63 angeschlossen. An die Wasserstoffgas- Abführleitung 62 ist eine Verwertungseinheit 64 angeschlossen. Es ist denkbar, dass die Wasserstoffgas- Abführleitung 62 zu der Verwertungseinheit 34 gemäß Fig. 2 führt.
Die zweite Trennkammer 58 ist mittels einer weiteren Fluidleitung 65 mit einem Flüssig-Flüssig- Abscheider 66 verbunden. In dem Flüssig-Flüssig- Abscheider 66 wird ein flüssiges Zweiphasengemisch, insbesondere schwerkraftbedingt, getrennt in eine Wasserphase und eine organische Phase. Die getrennten Phasen können dem Flüssig-Flüssig- Abscheider 66 getrennt entnommen werden. Insbesondere weist der Flüssig-Flüssig- Abscheider 66 einen unteren Abfluss auf, um die dichtere, wässrige Flüssigphase über eine Wasserabführleitung 67 zu entnehmen und einer Wasser-Reinigungseinheit 68 zuzuführen. Die Wasser-Reinigungseinheit 68 dient zum Reinigen des Wassers für eine nachfolgende Entsorgung und/oder Wiederverwendung im Prozess, insbesondere durch Rückführung in den Wasserdampfkreislauf 49.
Der Flüssig-Flüssig- Abscheider 66 weist einen oberen Abfluss auf, um die weniger dichte, organische Flüssigphase über eine Fluidleitung 69 zu entnehmen und mittels einer regelbaren vierten Fördereinheit 70 in einen dritten Speicherbehälter 71 zu fördern. In dem dritten Speicherbehälter 71 ist insbesondere Oxo-LOHC bevorratet.
Die vierte Fördereinheit 70 steht in, insbesondere bidirektionaler, Signalverbindung mit der Regelungseinheit 11. Es ist denkbar, dass die zweite Teil-Vorrichtung 37 eine separate Regelungseinheit aufweist, die dann ihrerseits mit der Regelungseinheit 11 der ersten Teil- Vorrichtung 6 in, insbesondere bidirektionaler, Signalverbindung stehen kann.
Getrennte Regel einheiten sind insbesondere dann vorteilhaft, wenn die erste Teilvorrichtung 6 und die zweite Teilvorrichtung 37 separat voneinander und insbesondere räumlich getrennt voneinander ausgeführt sind.
Der dritte Speicherbehälter 71 ist insbesondere als Transportbehälter geeignet. Der dritte Speicherbehälter 71 kann beispielsweise mittels eines Transportfahrzeugs, insbesondere eines Trans- port-LKWs, eines Transport-Zugs oder eines Transport-Schiffs, transportiert werden. Der dritte Speicherbehälter 71 dient auch als Terminal zum Einspeisen der darin angeordneten Flüssigkeit in eine Förderleitung, insbesondere in ein Leitungsnetz.
Die erste Teil- Vorrichtung 6 und/oder die zweite Teil- Vorrichtung 37 sind insbesondere an einem ersten, energiearmen Ort angeordnet. An dem ersten Ort wird Energie benötigt. Die Energie wird durch freigesetztes Wasser stoffgas, insbesondere in den Verwertungseinheiten 34 und/oder 64 bereitgestellt.
Durch den Transport, insbesondere von Oxo-LOHC zu dem Hydrierreaktor 4 kann das Wasserstoffträgermedium wieder mit Wasserstoff beladen werden. Der Transport ist in Fig. 3 durch eine gestrichelte Linie 72 symbolisiert.
Nachfolgend wird anhand von Fig. 4 der Dehydrierreaktor 4 näher erläutert, der zum Hydrieren von Oxo-LOHC, insbesondere zu Hx-LOHC, dient.
Fig. 4 zeigt eine dritte Teil- Vorrichtung 73, bei der Oxo-LOHC unter Zugabe von Wasserstoffgas und Abgabe von Wasser zu Hx-LOHC hydriert wird.
Oxo-LOHC wird in einem dritten Speicherbehälter 71 in der dritten Teil- Vorrichtung 73 bevorratet. In dem dritten Speicherbehälter 71 können zusätzlich zu Oxo-LOHC weitere Komponenten, insbesondere nichtoxidierte aromatische Verbindungen, vorhanden sein, die Verunreinigungen bezüglich Oxo-LOHC darstellen. Der dritte Speicherbehälter 71 der dritten Teil- Vorrichtung 73 kann identisch zu dem dritten Speicherbehälter 71 der zweiten Teil- Vorrichtung 37 ausgeführt sein. Die beiden dritten Speicherbehälter 71 können miteinander in Transportverbindung 72 stehen.
Der dritte Speicherbehälter 71 ist mittels einer weiteren Fluidleitung 74 an den Hydrierreaktor 4 angeschlossen. Entlang der Fluidleitung 74 ist ein dritter Wärmeübertrager 75 und eine dritte Heizquelle 76 angeordnet, die zum Vorwärmen von Oxo-LOHC dient. An der Fluidleitung 74 ist eine fünfte Fördereinheit 77 angeordnet, die mit einer Hydrier-Regelungseinheit 78 in, insbesondere bidirektionaler, Signalverbindung steht. Die Signalverbindung kann kabelgebunden oder kabellos erfolgen, insbesondere mittels einer Funkverbindung. Die Signalverbindung 79 ist in Fig.
4 mittels einer gestrichelten Linie symbolisiert. Die Hydrier-Regelungseinheit 78 kann insbesondere mit der Regelungseinheit 11 der ersten Teil- Vorrichtung 6 in Signalverbindung stehen.
Der Hydrierreaktor 4 weist einen Hydrierbehälter 80 auf, in dem mindestens ein Hydrierraum 81 und insbesondere mehrere Hydrierräume 81 angeordnet sind. Der Hydrierbehälter 80 weist eine Längsachse 82 auf, die gemäß dem gezeigten Ausführungsbeispiel vertikal orientiert ist. Die Längsachse 82 kann gegenüber der Vertikalen geneigt angeordnet sein. Der Hydrierbehälter 80 weist eine senkrecht zur Längsachse 82 orientierte Querschnittsfläche auf, die entlang der Längsachse 82 im Wesentlichen unveränderlich und insbesondere konstant ausgeführt ist.
Die Hydrierräume 81 sind insbesondere rohrförmig ausgeführt. Die Hydrierräume 81 weisen in einer Ebene senkrecht zur Längsachse 82 eine regelmäßige Kontur auf, die insbesondere kreisförmig oder polygonal, insbesondere viereckig, insbesondere rechteckig oder quadratisch, oder sechseckig ausgeführt ist. Die Hydrierräume 81 sind insbesondere parallel zur Längsachse 82 orientiert. In jedem Hydrierraum 81 ist ein Hydrierkatalysator angeordnet.
Der Hydrierbehälter 80 weist eine erste, obere Stirnwand 83 und eine gegenüberliegend, unten angeordnete zweite Stirnwand 84 auf. Der Hydrierbehälter 80 weist eine entlang der Längsachse 82 orientierte Länge L auf, die durch die Stirnwände 83, 84 begrenzt ist. Die Hydrierräume 81 erstrecken sich über einen Großteil der Länge L des Hydrierbehälters 80, insbesondere über mindestens 50 %, insbesondere über mindestens 80 %, insbesondere über mindestens 95 % der Länge L.
Die Fluidleitung 74 ist in einem oberen Bereich des Hydrierbehälters 80 an diesen angeschlossen. Die Fluidleitung 74 ist mit einem in den Hydrierbehälter 80 angeordneten dritten Verteilerelement 85 verbunden. Das dritte Verteilerelement 85 ist mit jedem Hydrierraum 81 über ein nicht dargestelltes Verbindungsstück verbunden. Die Verwendung des dritten Verteilerelements 85 ist vorteilhaft, wenn der Hydrierreaktor 4 mit seiner Längsachse 82 vertikal ausgerichtet ist und die Zuführung von Oxo-LOHC von oben in die Dehydrierräume 81 erfolgt.
An das dritte Verteilerelement 85 ist außerdem eine Wasserstoffgas-Zuführleitung 86 angeschlossen. Die Wasser stoffgas-Zuführleitung 86 ist eine Fluidleitung zur Zuführung von Druckwasserstoff mit einem Druck von
5 bar und 300 bar, insbesondere zwischen 7 bar und 180 und insbesondere zwischen 10 bar und 60 bar. Der Volumenstrom des Wasserstoffs in das dritte Verteilerelement 85 wird über ein nicht näher dargestelltes Ventil geregelt, das insbesondere mit der Hydrier-Regelungseinheit 87 in, insbesondere bidirektionaler, Signalverbindung steht.
Zwischen den Hydrierräumen 81 werden Hydrier-Zwischenräume 87 gebildet, die in einer Ebene senkrecht zur Längsachse 82 beabstandet zueinander angeordnet sind. Insbesondere sind die Hydrier-Zwischenräume 87 in der Ebene senkrecht zur Längsachse 82 in einem regelmäßigen Raster zueinander angeordnet. Die Kontur der Hydrier-Zwischenräume 87 ergibt sich aus der Innenkontur des Hydrierbehälters 80 und der jeweiligen Außenkontur der Hydrierräume 81. In axialer Richtung sind die Hydrier-Zwischenräume 87 durch die beiden Stirnwände 83, 84 begrenzt.
Die Hydrier-Zwischenräume 87 dienen als Wärmeübertrager, indem die Hydrier-Zwischenräume 87 mit einem Wärmeträgerfluid durchströmt werden. Entsprechend sind an die Hydrier-Zwischenräume 87 eine Wärmeträgerfluid-Zuführleitung 88 und eine Wärmeträgerfluid- Abführleitung 89 angeschlossen. An die Wärmeträgerfluid- Abführleitung 89 ist eine Wärmesenke 90 angeschlossen, an die das erhitzte Wärmeträgerfluid Wärme abgeben und anschließend mittels der Wärmeträgerfluid-Zuführleitung 88 wieder den Hydrier-Zwischenräumen 87 zugeführt werden kann. Als Wärmeträgerfluid dient insbesondere ein flüssiges Wärmeträgeröl.
Dem dritten Verteilerelement 85 gegenüberliegend ist in einem unteren Bereich des Hydrierbehälters 80 ein drittes Sammel element 91 angeordnet, in das die Hydrierräume 81 münden. An das dritte Sammel element 91 ist eine weitereFluidleitung 92 angeschlossen, die zu einem dritten Trennapparat 93 führt. Entlang der Fluidleitung 92 ist zwischen dem Hydrierreaktor 4 und dem dritten Trennapparat 93 der dritte Wärmeübertrager 75 angeordnet.
Der dritte Trennapparat 93 ist ein Gas-Flüssigkeits-Trenner, um Hx-LOHC und Wasser von Wasser stoffgas abzutrennen, der beim Abkühlen ausgast. Der dritte Trennapparat 93 kann ein nicht näher dargestelltes Druckregelventil aufweisen, mittels dem ein Druck, insbesondere ein Reaktionsdruck in dem Hydrierreaktor 4 und/oder in dem dritten Wärmeübertrager 75 eingestellt und insbesondere geregelt werden kann, insbesondere mittels der Hydrier-Regelungseinheit 78. Der Reaktionsdruck im Hydrierreaktor 4 wird insbesondere durch Wasserstoffgas und/oder durch die dampfförmig im Hydrierreaktor 4 vorliegenden aromatischen und oxidierten aromatischen Verbindungen gebildet.
Der dritte Trennapparat 93 ist bezüglich seines Aufbaus und seiner Funktion ähnlich den bereits beschriebenen Trennapparaten 26 und 56. Die nachfolgende Beschreibung ist deshalb verkürzt dargestellt.
Der dritte Trennapparat weist eine erste Trennkammer 94 und eine zweite Trennkammer 95 auf, die mittels einer Verbindungsleitung 96 und einer Gasleitung 97 miteinander verbunden sind. An der zweiten Trennkammer 95 ist ein Pegelsensor 98 angeordnet. Der Pegelsensor steht mit der Hydrier-Regelungseinheit 78 in bidirektionaler Signalverbindung. An der ersten Trennkammer 94 ist eine Wasserstoffgas- Abführleitung 99 angeschlossen, über die ausgasender Wasserstoff
abgeführt werden kann. Die Wasserstoffgas- Abführleitung ist an eine Verwertungseinheit 100 angeschlossen, die insbesondere separat zu den Wasserstoff-Verwertungseinheiten 34, 64 ausgeführt ist. Die Verwertungseinheit 100 rekomprimiert den ausgegasten Wasserstoff beispielsweise, um ihn über die Wasser stoffgas-Zuführleitung 86 dem Hydrierreaktor 4 wieder zuzuführen.
Alternativ oder zusätzlich ist eine thermische Verwertung des ausgegasten Wasserstoffs, also eine Verbrennung des ausgegasten Wasserstoffs, oder ein Ausblasen in die Umgebung möglich. Bei letztgenannten Fällen ist die Wasserstoffgas- Abführleitung 99 mit einer nicht dargestellten Reinigungseinheit, insbesondere mit einem Aktivkohlefilter, verbunden, um organische Bestandteile aus dem Wasserstoffgas auszureinigen.
Zusätzlich oder alternativ kann zur Verwertung und/oder Entfernung von physikalischem Wasserstoffgas im Fluidstrom aus dem Reaktor eine Hydrierkartusche angeordnet sein. Eine derartige Hydrierkartusche ist bekannt aus DE 10 2020 215 444 Al, worauf mit Blick auf Aufbau und Funktion der Hydrierkartusche und insbesondere deren Anordnung in der Anlage explizit verwiesen wird.
Die zweite Trennkammer 95 ist über eine weitere Fluidleitung 101 mit einem Flüssig-Flüssig- Abscheider 102 verbunden, in dem ein flüssiges Zweiphasengemisch, insbesondere schwerkraftbedingt, getrennt wird. Die dichtere, wässrige Flüssigphase kann aus dem Abscheider 102 in einem unteren Bereich entnommen und über die Wasserabführleitung 103 einer Reinigungseinheit 104 zugeführt werden. Nach der Reinigungseinheit 104 kann das Wasser entsorgt oder wiederverwendet werden, beispielsweise als Eingangsstrom eines räumlich benachbarten Elektrolyseurs.
Der Abscheider 102 besitzt einen oberen Abfluss, um die weniger dichte, organische Flüssigphase, insbesondere Hx-LOHC, über eine weitere Fluidleitung 105, entlang der eine fünfte regelbare Fördereinheit 106 angeordnet ist, abzufördem. Hx-LOHC wird insbesondere in einen Spei- cher-/Transportbehälter 107 gefördert, der an die Fluidleitung 105 angeschlossen ist. Die fünfte Fördereinheit 106 ist insbesondere als Flüssigkeitspumpe ausgeführt. Die fünfte Fördereinheit
106 steht insbesondere mit der Hydrier-Regelungseinheit 78 in, insbesondere bidirektionaler, Signalverbindung.
Der Speicher-/Transportbehälter 107 kann von dem zweiten Ort, an dem die dritte Teil-Vorrichtung 73 angeordnet ist, zu dem ersten Ort, an dem die erste Teil- Vorrichtung 6 und/oder die zweite Teil-Vorrichtung 37 angeordnet sind, transportiert werden. Insbesondere kann der Spei- cher-/Transportbehälter 107 den ersten Speicherbehälter 7 in Fig. 2 ersetzen und/oder ergänzen. Zusätzlich oder alternativ kann ein Transport von Hx-LOHC von dem Speicher-/Transportbehäl- ter 107 zu dem ersten Speicherbehälter 7 mittels einer nicht dargestellten Transportleitung, insbesondere einem Leitungsnetz, erfolgen.
Dadurch, dass der Dehydrierreaktor 2, der Reformierreaktor 3 und der Hydrierreaktor 4 jeweils fluidtechnisch miteinander verbunden sind, wird eine Kreislaufanordnung gebildet, die insbesondere in sich geschlossen ist. Dadurch ist ein vorteilhafter, insbesondere reversibel nutzbarer Gebrauch des Wasserstoffträgermediums möglich, um Energie durch chemisches Binden von Wasserstoff zu speichern und wieder freizusetzen.
Nachfolgend wird ein Verfahren zum Betrieb der Vorrichtung 1 anhand der Figuren näher erläutert.
Hx-LOHC wird aus dem ersten Speicherbehälter 7 mittels dem ersten Wärmeübertrager 10 und der ersten Heizquelle 13 vorgewärmt und dem Dehydrierreaktor 2 zugeführt. Von dem ersten Verteilelement 19 wird Hx-LOHC den Dehydrierräumen 15 zugeführt und dort mit dem Dehydrierkatalysator kontaktiert. Aufgrund der Wärmezufuhr in die Dehydrierräume 15 aus den Dehydrier-Zwischenräumen 20 kann die Dehydrierreaktion stattfinden. Hx-LOHC wird in H0- LOHC gewandelt und Wasser stoffgas freigesetzt. Dieses Fluidgemisch wird von den Dehydrierräumen 15 in das erste Sammelelement 24 gefördert, über die zweite Fluidleitung 25 durch den ersten Wärmeübertrager 10 und zu dem ersten Trennapparat 26 gefördert. In dem ersten Wärmeübertrager 10 findet ein Wärmeübertrag auf das frische, vorzuwärmende Hx-LOHC statt.
In dem ersten Trennapparat 26 wird das freigesetzte Wasserstoffgas von dem HO-LOHC abgetrennt und kann in der Verwertungseinheit 34 genutzt werden.
HO-LOHC wird von der ersten Teil- Vorrichtung 6 zu der zweiten Teil-Vorrichtung 37 gefördert, gegebenenfalls in einem zweiten Speicherbehälter 38 zwischengespeichert. HO-LOHC wird in dem zweiten Wärmeübertrager 39 erwärmt und mittels der zweiten Heizquelle 40 insbesondere zumindest teilweise und insbesondere vollständig verdampft und dem zweiten Verteilerelement 46 des Reformierreaktors 3 zugeführt. Zusätzlich wird dem zweiten Verteilerelement 46 Wasser, insbesondere in Form von Wasserdampf zugeführt. Das Fluidgemisch aus zumindest teilweise verdampften HO-LOHC und Wasserdampf wird aus dem zweiten Verteilerelement 46 in die Reformierräume 42 gefördert und dort mit dem Reformierkatalysator kontaktiert. Die Zufuhr von HO-LOHC und Wasserdampf kann gleichzeitig oder zeitlich separiert erfolgen. Wesentlich ist, dass der Sauerstoff des Reformierkatalysators zur Reformierung von HO-LOHC dient und der Sauerstoff des Wasserdampfes zur, insbesondere anschließenden, Reformierung des Reformierkatalysators unter Freisetzung von Wasserstoffgas dient. Für die hierfür erforderliche Wärmezufuhr dient das die Reformier-Zwischenräume 50 durchströmende Wärmeträgerfluid. Das Fluidgemisch aus den Reformierräumen 42, insbesondere Wasserstoffgas und Oxo-LOHC wird aus den Reformierräumen 42 dem zweiten Sammelraum 54 zugeführt und von dort mittels der vierten Fluidleitung 55 über den zweiten Wärmeübertrager 39, in dem HO-LOHC vorgewärmt wird, dem zweiten Trennapparat 56 zugeführt.
In dem zweiten Trennapparat 56 wird das in dem Reformierreaktor 3 aus dem Wasserdampf zusätzlich freigesetzte Wasserstoffgas abgetrennt und der Verwertungseinheit 64 zugeführt. Das Flüssig-Flüssig-Gemisch aus Oxo-LOHC und Wasser wird in dem Abscheider 66 getrennt, wobei Oxo-LOHC in dem dritten Speicherbehälter 71 gespeichert und von dem ersten Ort der zweiten Teil- Vorrichtung 37 zu dem zweiten Ort der dritten Teil- Vorrichtung 73, also zu dem Hydrierreaktor 4 transportiert wird.
In der dritten Teil- Vorrichtung 73 wird Oxo-LOHC aus dem dritten Speicherbehälter 71 in dem dritten Wärmeübertrager 75 und mittels der dritten Heizquelle 76 vorgewärmt und über die Fluidleitung 74 dem dritten Verteilerelement 85 des Hydrierreaktors 4 zugeführt. Die dritte Heizquelle 76 ist optional. Das bedeutet, dass die Vorwärmung des Oxo-LOHC auch ohne die dritte Heizquelle 76 erfolgen kann.
Dem dritten Verteilerelement 85 wird ebenfalls Druckwasserstoff zugeführt und zusammen mit Oxo-LOHC den Hydrierräumen 81 zugeführt und dort mit dem Hydrierkatalysator kontaktiert. In den Hydrierräumen 81 findet die exotherme Hydrierreaktion unter Bildung von Wasser statt. Die freiwerdende Wärme wird mittels des die Hydrier-Zwischenräume 87 durchströmenden Wärmeträgerfluids aufgenommen und zuverlässig aus dem Hydrierreaktor 4 abgeführt. Dazu dient insbesondere die an die Wärmeträgerfluid-Abführleitung 89 angeschlossene Wärmesenke 90.
Das bei der Hydrierreaktion freigesetzte Wasser, gegebenenfalls physikalisch gespeichertes Wasser stoffgas und Hx-LOHC werden aus den Hydrierräumen 81 in dem dritten Sammelraum 91 gesammelt und über die achte Fluidleitung 92 aus dem Hydrierreaktor 4 abgeführt. In dem dritten Wärmeübertrager 75 wird Wärme abgegeben. In dem dritten Trennapparat 93 kann der ausgegaste Wasserstoff abgetrennt und der Verwertungseinheit 100 zugeführt werden. Das Flüs- sig-Flüssig-Gemisch aus Wasser und Hx-LOHC wird in dem Abscheider 66 abgetrennt. Das so wiedergewonnene Wasser kann in der Reinigungseinheit 104 gereinigt werden. Hx-LOHC kann in dem Speicher-/Transportbehälter 107 zwischengespeichert und zur weiteren Verwendung zu der ersten Teil- Vorrichtung 6, insbesondere zu dem Dehydrierreaktor 2, gefördert werden.
Dadurch wird ein, insbesondere geschlossener, Kreislauf des Wasserstoffspeichermediums gebildet.
Claims
Patentansprüche
1. Verfahren zum Bereitstellen von Wasserstoffgas umfassend Reformieren eines zumindest teilweise entladenen Wasserstoffträgermediums (HO-LOHC) an einem Reformierkatalysator unter Verwendung von Wasserdampf in einem Reformierreaktor (3) zu einem zumindest teilweise oxidierten Wasserstoffträgermedium (Oxo-LOHC) unter Bildung von Wasserstoffgas (H2) aus dem Wasserdampf.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das bei der Reformierung gebildete, zumindest teilweise oxidierte Wasserstoffträgermedium (Oxo-LOHC) mindestens eine aromatische Ketoverbindung, mindestens eine aromatische Aldehydverbindung und/oder mindestens eine aromatische Keto- Aldehydverbindung aufweist.
3. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Reformierung unter Wärmezufuhr erfolgt.
4. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das zumindest teilweise entladene Wasserstoffträgermedium (HO-LOHC) und der Wasserdampf zeitgleich oder zeitversetzt dem Reformierreaktor (3) zugeführt werden.
5. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass für das Reformieren mindestens eine stöchiometrische Menge an Wasserdampf bezogen auf das zumindest teilweise entladene Wasserstoffträgermedium (HO-LOHC) vorhanden ist, insbesondere eine überstöchiometrische Menge an Wasserdampf, wobei insbesondere das molare Verhältnis des Wasserdampfes zu dem zumindest teilweise entladenen Wasserstoffträgermedium (HO-LOHC) zwischen 1 und 500, insbesondere zwischen 1,1 und 100 und insbesondere zwischen 1,2 und 10 liegt.
6. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Reformierreaktor (3) einen Gehalt an molekularem Sauerstoff von weniger als 10 Vol.-% aufweist.
Verfahren gemäß einem der vorstehenden Ansprüche, gekennzeichnet durch Dehydrieren eines zumindest teilweise beladenen Wasserstoffträgermediums (Hx-LOHC) an einem Dehydrierkatalysator zu einem zumindest teilweise entladenen Wasserstoffträgermedium (H0- LOHC) in einem Dehydrierreaktor (2) und dadurch Freisetzen von Wasser stoffgas (H2), wobei insbesondere das in dem Dehydrierreaktor (2) zumindest teilweise entladene Wasserstoffträgermedium (HO-LOHC) anschließend im Reformierreaktor (3) reformiert wird. Verfahren zum Speichern von Wasserstoffgas umfassend Hydrieren von zumindest teilweise oxidiertem Wasserstoffträgermedium (Oxo-LOHC), das insbesondere mit einem Verfahren gemäß einem der vorstehenden Ansprüche erzeugt worden ist, und/oder zumindest teilweise entladenem Wasserstoffträgermedium (HO-LOHC), das insbesondere mit einem Verfahren gemäß einem der vorstehenden Ansprüche erzeugt worden ist, mit Wasserstoffgas an einem Hydrierkatalysator zu einem zumindest teilweise beladenen Wasserstoffträgermedium (Hx-LOHC) in einem Hydrierreaktor (4) unter Bildung von Wasser. Kreislaufverfahren umfassend zumindest die Verfahrensschritte der Ansprüche 1 und 8. Kreislaufverfahren gemäß Anspruch 9, gekennzeichnet durch Transportieren des zumindest teilweise oxidierten Wasserstoffträgermediums (Oxo-LOHC) und/oder des zumindest teilweise entladenen Wasserstoffträgermediums (HO-LOHC) zu dem Hydrierreaktor (4). Kreislaufverfahren gemäß Anspruch 9 oder 10, gekennzeichnet durch Transportieren des zumindest teilweise beladenen Wasserstoffträgermediums (Hx-LOHC) zu dem Dehydrierreaktor (2) und/oder zu einer Kombination aus Dehydrierreaktor (2) und Reformierreaktor (3). Vorrichtung zum Bereitstellen von Wasserstoffgas umfassend einen Reformierreaktor (3) mit einem Reformierkatalysator zum Reformieren eines zumindest teilweise entladenen Wasserstoffträgermediums (HO-LOHC) mit Wasserdampf zu einem zumindest teilweise
oxidierten Wasserstoffträgermedium (Oxo-LOHC) und Wasser stoffgas, wobei an den Reformierreaktor (3) eine Wasserdampfzuführleitung (47) zum Zuführen von Wasserdampf angeschlossen ist.
13. Vorrichtung gemäß Anspruch 12, gekennzeichnet durch einen Dehydrierreaktor (2) mit einem Dehydrierkatalysator zum Dehydrieren eines zumindest teilweise beladenen Wasserstoffträgermediums (Hx-LOHC) zu einem zumindest teilweise entladenen Wasserstoffträgermedium (HO-LOHC) und dadurch Freisetzen von Wasserstoffgas (H2), wobei der Dehydrierreaktor (2) mit dem Reformierreaktor (3) zum Zuführen von zumindest teilweise entladenem Wasserstoffträgermedium (HO-LOHC) fluidtechnisch, insbesondere mittels einer Fluidleitung (25, 35) verbunden ist.
14. Vorrichtung gemäß Anspruch 12 oder 13, gekennzeichnet durch einen Hydrierreaktor (4) mit einem Hydrierkatalysator zum Hydrieren von zumindest teilweise oxidiertem Wasserstoffträgermedium (Oxo-LOHC) und/oder zumindest teilweise entladenem Wasserstoffträgermedium (HO-LOHC) zu einem zumindest teilweise beladenen Wasserstoffträgermedium (Hx-LOHC).
15. Vorrichtung gemäß Anspruch 14, dadurch gekennzeichnet, dass der Hydrierreaktor (4), der Dehydrierreaktor (2) und der Reformierreaktor (3) eine fluidtechnisch geschlossene Kreislaufanordnung (5) für das Wasserstoffträgermedium bilden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022210591.5 | 2022-10-06 | ||
DE102022210591.5A DE102022210591A1 (de) | 2022-10-06 | 2022-10-06 | Verfahren und Vorrichtung zum Bereitstellen und/oder Speichern von Wasserstoffgas |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024074613A1 true WO2024074613A1 (de) | 2024-04-11 |
Family
ID=88295968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/077569 WO2024074613A1 (de) | 2022-10-06 | 2023-10-05 | Verfahren und vorrichtung zum bereitstellen und/oder speichern von wasserstoffgas |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102022210591A1 (de) |
WO (1) | WO2024074613A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022210591A1 (de) | 2022-10-06 | 2024-04-11 | Forschungszentrum Jülich GmbH | Verfahren und Vorrichtung zum Bereitstellen und/oder Speichern von Wasserstoffgas |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020039965A1 (en) * | 2000-07-18 | 2002-04-04 | Konosuke Hagihara | Catalyst for steam reforming of methanol and method for producing hydrogen therewith |
US6605377B1 (en) * | 1999-08-30 | 2003-08-12 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Fuel cell cooling apparatus and fuel cell system |
EP1475349A2 (de) | 2003-05-06 | 2004-11-10 | Air Products And Chemicals, Inc. | Wasserstoffspeicherung mittels reversibler Hydrogenierung pi-konjugierter Substrate |
DE102016121688A1 (de) * | 2016-11-11 | 2018-05-17 | H2-Industries SE | Verfahren zum Dehydrieren eines mit Wasserstoff angereicherten flüssigen Wasserstoffträgers und Reaktor |
DE102020215444A1 (de) | 2020-12-07 | 2022-06-09 | Hydrogenious Lohc Technologies Gmbh | Verfahren und Anlage zur stofflichen Nutzung von Wasserstoff |
DE102022210591A1 (de) | 2022-10-06 | 2024-04-11 | Forschungszentrum Jülich GmbH | Verfahren und Vorrichtung zum Bereitstellen und/oder Speichern von Wasserstoffgas |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8003073B2 (en) | 2007-04-16 | 2011-08-23 | Air Products And Chemicals, Inc. | Autothermal hydrogen storage and delivery systems |
DE102021203884B4 (de) | 2021-04-19 | 2023-02-09 | Hydrogenious Lohc Technologies Gmbh | Verfahren und Anlage zum Bereitstellen von Wasserstoffgas |
-
2022
- 2022-10-06 DE DE102022210591.5A patent/DE102022210591A1/de active Pending
-
2023
- 2023-10-05 WO PCT/EP2023/077569 patent/WO2024074613A1/de unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6605377B1 (en) * | 1999-08-30 | 2003-08-12 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Fuel cell cooling apparatus and fuel cell system |
US20020039965A1 (en) * | 2000-07-18 | 2002-04-04 | Konosuke Hagihara | Catalyst for steam reforming of methanol and method for producing hydrogen therewith |
EP1475349A2 (de) | 2003-05-06 | 2004-11-10 | Air Products And Chemicals, Inc. | Wasserstoffspeicherung mittels reversibler Hydrogenierung pi-konjugierter Substrate |
DE102016121688A1 (de) * | 2016-11-11 | 2018-05-17 | H2-Industries SE | Verfahren zum Dehydrieren eines mit Wasserstoff angereicherten flüssigen Wasserstoffträgers und Reaktor |
DE102020215444A1 (de) | 2020-12-07 | 2022-06-09 | Hydrogenious Lohc Technologies Gmbh | Verfahren und Anlage zur stofflichen Nutzung von Wasserstoff |
DE102022210591A1 (de) | 2022-10-06 | 2024-04-11 | Forschungszentrum Jülich GmbH | Verfahren und Vorrichtung zum Bereitstellen und/oder Speichern von Wasserstoffgas |
Non-Patent Citations (1)
Title |
---|
PREUSTER PATRICK ET AL: "Solid oxide fuel cell operating on liquid organic hydrogen carrier-based hydrogen - making full use of heat integration potentials", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER, AMSTERDAM, NL, vol. 43, no. 3, 7 December 2017 (2017-12-07), pages 1758 - 1768, XP085331074, ISSN: 0360-3199, DOI: 10.1016/J.IJHYDENE.2017.11.054 * |
Also Published As
Publication number | Publication date |
---|---|
DE102022210591A1 (de) | 2024-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3541742B1 (de) | Verfahren zum speichern von wasserstoffgas, hydrier-reaktor und transport-container | |
WO2022223444A1 (de) | Verfahren und anlage zum bereitstellen von wasserstoffgas | |
DE3405217A1 (de) | Dampfreformierung von methanol | |
EP2417059A1 (de) | Verfahren zur umsetzung von erdgas zu aromaten mit elektrochemischer abtrennung von wasserstoff | |
WO2024074613A1 (de) | Verfahren und vorrichtung zum bereitstellen und/oder speichern von wasserstoffgas | |
EP4326667A1 (de) | Verfahren und anlage zum bereitstellen von wasserstoffgas | |
EP3894351A1 (de) | Verfahren und anlage zum freisetzen von gas aus einem flüssigen medium | |
WO2014106533A1 (de) | Beseitigung von ammoniak und niederen alkanen und/oder wasserstoff in abgasströmen in industrieanlagen | |
EP1306351B1 (de) | Verfahren zur Herstellung eines schwefelarmen Reformatgases zur Verwendung in einem Brennstoffzellensystem | |
DE102021203884B4 (de) | Verfahren und Anlage zum Bereitstellen von Wasserstoffgas | |
WO2022184803A1 (de) | Verfahren und anlage zum bereitstellen von gereinigtem wasserstoffgas | |
EP1444185A2 (de) | Verfahren zur katalytischen methanolherstellung sowie vorrichtung zur durchführung des verfahrens | |
WO2024078959A1 (de) | Verfahren und anlage zum freisetzen von wasserstoffgas von zumindest teilweise beladenem trägermaterial | |
DE19851109A1 (de) | Reaktor zur Durchführung katalytischer Reaktionen mit starker Wärmetönung | |
WO2013135664A1 (de) | Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxid-katalysatoren auf oxidischen mit aluminium, cer und/oder zirkonium dotierten trägern | |
WO2023052216A1 (de) | Verfahren und vorrichtung zum freisetzen von chemisch gebundenem wasserstoff aus einem trägermaterial | |
DE102011013271A1 (de) | Verfahren und Anlage zur Reduktion von Stickoxidemissionen bei der Dampfreformierung | |
DE102021201368A1 (de) | Verfahren und Anlage zum Bereitstellen von aus einem Trägermaterial freigesetztem, verdichtetem Wasserstoffgas | |
CN112812821A (zh) | 一种二段法采用贵金属催化剂加氢制备医用凡士林的工艺 | |
WO2013135662A1 (de) | Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxidkatalysatoren | |
DE102013110470A1 (de) | Verfahren zur Umwandlung von CO2 zu Kohlenwasserstoffen | |
US11512032B2 (en) | Method and device for the catalytic conversion of a substance mixture | |
DE102023207956A1 (de) | Verfahren zum Speichern und/oder Freigeben von Energie | |
WO2024078713A1 (de) | Herstellung von wasserstoff-kohlendioxid-gasmischungen | |
EA042896B1 (ru) | Способ каталитической конверсии глицерина в пропанол |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23786036 Country of ref document: EP Kind code of ref document: A1 |