[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024071409A1 - Nucleic acid complex composition, lipid particles for transfection, and transfection method using same - Google Patents

Nucleic acid complex composition, lipid particles for transfection, and transfection method using same Download PDF

Info

Publication number
WO2024071409A1
WO2024071409A1 PCT/JP2023/035730 JP2023035730W WO2024071409A1 WO 2024071409 A1 WO2024071409 A1 WO 2024071409A1 JP 2023035730 W JP2023035730 W JP 2023035730W WO 2024071409 A1 WO2024071409 A1 WO 2024071409A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
lipid
complex composition
polycation
acid complex
Prior art date
Application number
PCT/JP2023/035730
Other languages
French (fr)
Japanese (ja)
Inventor
正寿 真栄城
学 渡慶次
秀哉 宇野
秀吉 原島
悠介 佐藤
康宏 香月
匡太郎 山崎
Original Assignee
国立大学法人北海道大学
国立大学法人鳥取大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 国立大学法人鳥取大学 filed Critical 国立大学法人北海道大学
Publication of WO2024071409A1 publication Critical patent/WO2024071409A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle

Definitions

  • the present invention relates to a nucleic acid complex composition used for gene transfer into cells, a gene-transfer lipid particle, and a gene transfer method using the same.
  • nucleic acid molecules into cells for example introduction of DNA molecules into cells, is used as a method to modify the genes of cells and express a desired protein, etc.
  • Methods for introducing nucleic acid molecules such as DNA and RNA molecules into cells include complexing these nucleic acid molecules with other molecules to facilitate transport into the cells.
  • lipid nanoparticles LNPs
  • LNPs lipid nanoparticles
  • lipid nanoparticles containing pH-sensitive cationic lipids as constituent lipids have been reported as lipid nanoparticles that serve as carriers for efficiently delivering nucleic acids such as siRNA into target cells (Patent Document 1).
  • Lipid nanoparticles such as those described in Patent Document 1 can transport RNA or DNA with a relatively small molecular weight and deliver it to target cells.
  • nucleic acids with a large molecular weight such as long-chain DNA of 1 kbp or more
  • the gene transfer efficiency transfection efficiency when the target cell is an animal cell
  • the reason for this is expected to be that long-chain DNA molecules are not transported as effectively as nucleic acids with a small molecular weight due to their size and charge, but no clear reason or countermeasure has been found so far.
  • the introduction of short-chain nucleic acids with small molecular weights there is a strong demand for methods of highly efficient gene introduction due to the demand for the introduction of siRNA and the like.
  • the present invention has been made in consideration of the above circumstances, and its purpose is to provide a nucleic acid complex composition, lipid particles for gene transfer, and a gene transfer method using the same, which are capable of efficiently transferring nucleic acid molecules into cells and diffusing into cells, and have high gene transfer efficiency.
  • a nucleic acid molecule a polycation having a structure formed by polymerizing cationic molecules each having a molecular chain containing a carbon atom and a nitrogen atom;
  • a nucleic acid complex composition comprising:
  • nucleic acid complex composition according to [1] or [2], wherein the polycation comprises a compound represented by the following formula (9): (wherein R are the same or different organic substituents)
  • nucleic acid complex composition according to [3], wherein the polycation comprises a compound represented by the following formula (10) or (11):
  • nucleic acid complex composition according to any one of [1] to [4], wherein the nucleic acid molecule is a long-chain nucleic acid of 1 kbp or more.
  • nucleic acid complex composition according to any one of [1] to [4], wherein the nucleic acid molecule is a short-chain nucleic acid of less than 1 kbp.
  • nucleic acid complex composition according to any one of [1] to [4], wherein the nucleic acid molecule is siRNA.
  • nucleic acid complex composition according to any one of [1] to [8], wherein the complex between the nucleic acid molecule and the polycation has a positive charge.
  • a polycation comprising a compound represented by the following formula (9): (wherein R are the same or different organic substituents)
  • a lipid particle for gene transfer comprising:
  • a method for gene transfer of a nucleic acid molecule into a cell comprising the steps of: A gene transfer method, comprising introducing the lipid particle for gene transfer according to any one of [12] to [14] into a cell.
  • a kit for producing the nucleic acid complex composition according to any one of [1] to [9], A kit for producing a nucleic acid complex composition comprising a nucleic acid molecule and a polycation.
  • a kit for producing a lipid particle for gene introduction comprising: A kit for producing lipid particles for gene transfer, comprising a nucleic acid molecule, a polycation and a lipid membrane particle.
  • a nucleic acid complex composition comprising a long-chain nucleic acid of 1 kbp or more and a polycation having a structure formed by polymerization of cationic molecules composed of molecular chains containing carbon atoms and nitrogen atoms.
  • [2A] The nucleic acid complex composition described in [1], wherein the polycation is polyethyleneimine.
  • [4A] The nucleic acid complex composition according to any one of [1A] to [3A], in which the complex of the long-chain nucleic acid and the polycation has a positive charge.
  • a lipid particle for gene introduction comprising a nucleic acid complex composition according to any one of [1A] to [4A] and a lipid membrane particle.
  • [6A] The lipid particle for gene transfer described in [5A], wherein the lipid membrane particle contains a cationic lipid.
  • [7A] A lipid particle for gene transfer described in any one of [5A] to [6A], in which the efficiency of gene transfer into cells of the lipid membrane particle exceeds 30%.
  • [8A] A method for introducing a long-chain nucleic acid into a cell, comprising introducing a lipid particle for gene introduction described in any one of [5A] to [7A] into the cell.
  • the present invention provides a nucleic acid complex composition that allows for high efficiency in introducing nucleic acid molecules into cells and diffusing into cells, and has high gene transfer efficiency, lipid particles for gene transfer, and a gene transfer method using the same.
  • FIG. 1 is a graph comparing the transfection efficiency of lipid particles for gene introduction using each polycation in this example.
  • FIG. 2 is a graph showing the size distribution of each particle in this embodiment.
  • FIG. 2 is a graph showing a comparison of the average particle sizes in the present embodiment.
  • FIG. 4 is a graph showing the charge of each particle in this embodiment.
  • FIG. 1 is a graph comparing the Z potentials of DNA and various complexes for C15 in this embodiment.
  • FIG. 2 is a photograph of B15 and C15 in this example observed with a transmission electron microscope (TEM).
  • FIG. 1 is a diagram showing the results of evaluation of B15 and C15 in this example by small angle X-ray scattering (SAXS).
  • SAXS small angle X-ray scattering
  • FIG. 2 is a schematic diagram showing the flow of operations performed in this embodiment.
  • FIG. 2 is a graph showing the transfection efficiency in this example.
  • FIG. 2 is a graph showing cell viability in the transfection test in this example.
  • FIG. 13 is a graph showing another transfection efficiency in this example.
  • FIG. 13 is a graph showing cell viability in another transfection study in this example.
  • FIG. 1 is a photograph showing the uptake of lipid nanoparticles at each mixing ratio in this example into cells, observed with a confocal laser microscope.
  • FIG. 1 is a graph showing the localized sites of lipid nanoparticles at each mixing ratio in this example evaluated using a flow cytometer.
  • FIG. 2 is a graph showing the size distribution of lipid nanoparticles using each lipid in this example.
  • FIG. 1 is a photograph showing the uptake of lipid nanoparticles at each mixing ratio in this example into cells, observed with a confocal laser microscope.
  • FIG. 1 is a graph showing the localized sites of lipid nanoparticles at each mixing ratio in this example evaluated
  • FIG. 1 is a graph showing the Z charge for each lipid nanoparticle using each lipid in this example.
  • FIG. 1 is a graph showing the transfection efficiency for each lipid nanoparticle using each lipid in this example.
  • FIG. 2 is a graph showing the transfection efficiency for pDNA of each DNA length in this example.
  • FIG. 1 is a graph showing the relationship between the size and quantity of complexes depending on the content ratio of each lipid.
  • FIG. 1 is a graph showing the zeta potential of complexes depending on the content ratio of each lipid.
  • FIG. 1 is a graph showing the introduction efficiency and survival rate of the complex depending on the content ratio of each lipid.
  • FIG. 1 is a graph showing cellular uptake of the complex depending on the content ratio of each lipid.
  • FIG. 1 is a graph showing the transfection performance of the complex depending on the content ratio of each lipid.
  • FIG. 1 is a graph showing the expression rate and survival rate of a nucleic acid complex composition using siRNA.
  • FIG. 1 is a graph showing the expression rate and survival rate for each PEI molecular weight of a nucleic acid complex composition using siRNA.
  • FIG. 1 is a graph showing the expression rate and survival rate when only a complex of siRNA and PEI is introduced into cells.
  • FIG. 1 is a graph showing the expression rate and survival rate of a nucleic acid complex composition using siRNA and a polycationic compound of formula (11).
  • FIG. 1 is a graph showing the results of measuring the particle size of each BAC-LNP.
  • FIG. 1 is a graph showing the results of measuring transfection efficiency using each BAC-LNP.
  • nucleic acid complex composition lipid particles for gene transfer, and gene transfer method using the same according to the present invention, with reference to the following embodiments.
  • present invention is not limited to the following embodiments.
  • the nucleic acid complex composition of the present embodiment contains a nucleic acid molecule and a polycation having a structure formed by polymerization of cationic molecules composed of molecular chains containing carbon atoms and nitrogen atoms.
  • a nucleic acid complex composition is a molecular composition in which nucleic acid molecules are complexed with molecules other than nucleic acid molecules, and the complex is formed mainly through intermolecular forces and electrical bonds.
  • the nucleic acid molecules are long-chain nucleic acids, and the molecules other than nucleic acids are polycations.
  • the nucleic acid constituting the nucleic acid molecule may be DNA or RNA.
  • the nucleic acid molecule that can be used in this embodiment may include short-chain or long-chain nucleic acids.
  • a long-chain nucleic acid is a nucleic acid with a base pair of 1 kbp or more. In this embodiment, it is preferably 10 kbp or more, more preferably 12 kbp or more, and even more preferably 15 kbp or more. As a guideline, nucleic acids of 1 to 20 kbp may be used.
  • the long-chain nucleic acid may be a DNA of 20 kb or more, or 50 kb or more.
  • a pDNA of 200 kbp or more such as an artificial chromosome may be used.
  • a bacterial artificial chromosome may be used as the artificial chromosome.
  • long-chain DNA which is DNA of 1 kbp or more.
  • pDNA i.e., plasmid DNA
  • pDNA is preferably used for introduction into cells and transformation.
  • the pDNA as a long-chain DNA is preferably a plasmid vector, which is a gene expression vector.
  • the plasmid vector may remain circular or may be cut into a linear form in advance.
  • the gene expression vector can be designed in a standard manner using commonly used molecular biology tools based on the base sequence information of the gene to be expressed, and can be produced by various known methods.
  • a short-chain nucleic acid is a nucleic acid with a base pair of less than 1 kbp. Any short-chain nucleic acid can be selected as long as it is less than 1 kbp.
  • siRNA is a double-stranded RNA consisting of 30 base pairs or less, particularly 21 to 25 base pairs.
  • siRNA induces the degradation of mRNA by RNA interference (RNAi) and suppresses the expression of a specific gene of the mRNA.
  • RNAi RNA interference
  • siRNA corresponding to a specific sequence is widely used for inhibition such as gene knockout.
  • Polycations are mainly formed by polymerizing cationic molecules (molecules with a positive charge) which are polymerization units.
  • Polycations include structures formed by polymerizing one or more types of cationic molecules, which will be described later. They may also have structural units other than cationic molecules, i.e. uncharged atoms, molecules, or negatively charged ions and molecules. Polycations have a positive charge overall.
  • the cationic molecule is composed of a molecular chain containing carbon atoms and nitrogen atoms. Specifically, it has a molecular chain composed of various carbon chains and amines, and this molecular chain is linear or branched.
  • the carbon chain containing carbon atoms is a so-called aliphatic spacer, and has a structure such as -CH 2 -, -CHR 1 -, -CHR 1 R 2 -, and the molecular chain may also be branched via R 1 and R 2.
  • the amine containing a nitrogen atom has a structure such as -NH-, -NHR 1 -, -NR 1 R 2 -, and the molecular chain may also be branched via R 1 and R 2 .
  • An example of a cationic molecule having such a structure is a -CH 2 -CH 2 -NH- structure.
  • the polycation is preferably polyethyleneimine. That is, it has a structure in which --CH 2 --CH 2 --NH-- structures are polymerized.
  • polyethyleneimine is represented by the structure (1) as linear polyethyleneimine in which the amine structure is a secondary amine. -[CH 2 -CH 2 -NH] n - ... (1)
  • polyethyleneimine may have a linear, branched, or dendrimer-type structure, and any of these may be used in this embodiment.
  • linear polyethyleneimine is mostly composed of secondary amines and contains primary amines at its ends.
  • Branched polyethyleneimine contains a moderate amount of primary, secondary, and tertiary amines, is partially branched via tertiary amines, and has a structure with multiple primary amine ends.
  • Dendrimer-type polyethyleneimine is mostly branched via tertiary amines and has a structure with primary amine ends, and is branched almost throughout. In this embodiment, it is preferable to use a branched polyethyleneimine.
  • the polycation structure the following structures and polymers thereof may also be used.
  • the polycation may be selected from the various polycations described below.
  • the polycation of this embodiment includes a compound represented by the following formula (9). These polycations can be particularly preferably used as polycations for use in nucleic acid complex compositions.
  • R is an organic substituent that may be the same or different. Examples of R may be, for example, a straight or branched chain having 20 or less carbon atoms.
  • polycation of this embodiment may be a compound of the following formula (10), formula (11), or formula (12).
  • the above synthesis method makes it possible to synthesize polycations efficiently in one pod, quickly and easily, with few side reactions.
  • by selecting the type of amine it is possible to easily change the structure and screen for suitable polycations.
  • the size (molecular weight, amount of polymerization) of the polycation can be selected from a variety of sizes, because when a complex is formed with a long-chain nucleic acid, as described below, the size and amount can be appropriately adjusted depending on the charge.
  • polyethyleneimine when polyethyleneimine is used as the polycation, it is preferable to use one having a molecular weight of 2000 or more, and more preferably one having a molecular weight of 5000 or more. Also, one having a molecular weight of 10000 or more may be used.
  • the amount of polycation can be adjusted so that the mass ratio of nucleic acid molecule:polycation is between 1:0.10 and 1:5.
  • M c /M D may be greater than 0.25 and less than 5, more preferably 0.5 to 2.0, and most preferably approximately 1.0.
  • the complex of a nucleic acid molecule and a polycation is considered to be greatly affected by the molecular structure, charge ratio, etc. of each molecule, which greatly affects the structure, charge, etc. of the complex, and is greatly involved in the introduction into cells and the behavior within the cells. Therefore, although it is not possible to make a general definition due to the various polycation structures, the above mass ratio can be mentioned as an effective guideline.
  • the inventors have discovered that, based on the molecular structures of a nucleic acid molecule and a polycation containing a molecular chain of carbon and nitrogen atoms, a high gene transfer efficiency can be achieved when the mass ratio is within the above range.
  • the complex of the nucleic acid molecule and the polycation preferably has a positive charge.
  • DNA has a negative charge, and as described above, the polycation has a positive charge.
  • the complex of the nucleic acid molecule and the polycation preferably has a positive charge overall.
  • the lipid particle for gene introduction of this embodiment includes the nucleic acid complex composition and a lipid membrane particle.
  • the lipid particle for gene introduction is a particle used for gene introduction into cells (transformation, or transfection in the case of animal cells).
  • Lipid particles for gene introduction generally have a structure in which a nucleic acid complex composition is covered with a lipid membrane particle; in other words, a core particle (in this embodiment, the nucleic acid complex composition) is incorporated into the spherical particle made of lipid membrane.
  • lipids generally used in forming liposomes can be used. Examples of such lipids include phospholipids, sterols, and saturated or unsaturated fatty acids. These can be used alone or in combination of two or more.
  • As the configuration of the lipid membrane particles those described in Patent Document 1, JP-A No. 2022-111798, etc. can generally be used.
  • the lipid particles for gene transfer are nano-sized when the lipid membrane particles and the nucleic acid complex composition are combined, they are sometimes called lipid nanoparticles (LNPs).
  • the complex between the nucleic acid complex composition and the lipid membrane particle may have a positive charge.
  • the lipid membrane particle and the lipid particle for nucleic acid may be configured so that the total charge of the lipid membrane particle and the lipid particle for nucleic acid with the complex composition is positive.
  • the range of positive charge can be selected from a zeta potential of +0 to +50 mV.
  • the nucleic acid complex composition (core particle) has a positive charge (cationic core particle)
  • the charge of the lipid membrane particle can be appropriately selected so that the sum of the charges with the nucleic acid complex composition is positive.
  • the lipid membrane particle has a positive charge as a whole.
  • the lipids constituting the lipid membrane particle may contain a cationic lipid.
  • the cationic lipid may be any lipid that has been used in lipid-mediated transfection (lipofection).
  • the reagent for lipofection may be a monocationic or polycationic lipid.
  • the lipid membrane particle may be modified to have a positive charge.
  • the outside of the particle membrane of the lipid membrane particle may be modified with a component having a positive charge.
  • the zeta potential can be selected from +0 to +50 mV.
  • the lipid membrane particles may contain anionic lipids so long as the lipid membrane particles have the above-mentioned charge.
  • the lipids constituting the lipid membrane particles may be CL15F6 represented by the following formula (1), MC3 represented by the following formula (2), DOTMA represented by the following formula (3), DOTAP represented by the following formula (4), DODMA represented by the following formula (5), DODAP represented by the following formula (6), or mixtures of these.
  • DOTMA and DOTAP are cationic lipids having a positive charge, and can increase transfection efficiency, and therefore can be preferably used.
  • other lipids such as CL15F6, MC3, DODMA, and DODAP may have a positive charge depending on pH.
  • CL15F6 can increase transfection efficiency and can be preferably used as a lipid constituting lipid membrane particles.
  • MC3, DODMA, DODAP, etc. can also increase transfection efficiency by modifying the surface of lipid membrane particles or by combining with other lipids, and can be preferably used.
  • the lipid membrane particles may be subjected to appropriate surface modification other than those described above as necessary.
  • the lipid on the surface of the lipid membrane particles may be modified with a hydrophilic polymer or the like to enhance the blood retention of the lipid membrane particles.
  • the surface modification may be performed by using lipids modified with these modifying groups as the constituent lipids of the lipid nanoparticles.
  • the lipid nanoparticles may be surface-modified with an oligosaccharide compound having three or more sugars.
  • the method for surface-modifying the lipid nanoparticles with an oligosaccharide compound is not particularly limited, but the surface-modifying method described in, for example, liposomes in which the surface of lipid nanoparticles is modified with monosaccharides such as galactose or mannose (WO 2007/102481) may be employed.
  • the lipid membrane particles can be endowed with one or more functions, such as temperature change sensitivity, membrane permeability, gene expression, and pH sensitivity.
  • the lipid membrane particles may contain a substance that imparts a positive or negative charge.
  • the charged substance that imparts a positive charge include saturated or unsaturated aliphatic amines such as stearylamine and oleylamine, and examples of the charged substance that imparts a negative charge include dicetyl phosphate, cholesteryl hemisuccinate, phosphatidylserine (PS, DOPS), phosphatidylinositol, and phosphatidic acid.
  • the lipid membrane particles may also contain an antioxidant, such as tocopherol, propyl gallate, ascorbyl palmitate, or butylated hydroxytoluene.
  • the lipid membrane particle may also contain a membrane polypeptide. Examples of the membrane polypeptide include a membrane surface polypeptide and an integral membrane polypeptide. The amount of these substances to be added is not particularly limited and can be appropriately selected depending on the purpose.
  • lipid membrane particles As a method for producing lipid membrane particles and a method for producing a structure in which a core particle is incorporated into a lipid membrane particle, those described in Patent Document 1, JP-A No. 2022-111798, etc. can generally be used.
  • a method for producing lipid membrane particles all lipid components are dissolved in an organic solvent such as chloroform, and then a lipid membrane is formed by drying under reduced pressure using an evaporator or spray drying using a spray dryer.
  • an aqueous solvent containing a component to be encapsulated in the lipid nanoparticles, such as nucleic acid is added to the above dried mixture, and further emulsified using an emulsifier such as a homogenizer, an ultrasonic emulsifier, or a high-pressure jet emulsifier.
  • an emulsifier such as a homogenizer, an ultrasonic emulsifier, or a high-pressure jet emulsifier.
  • Liposomes can also be produced by a method well known for producing liposomes, such as reverse phase evaporation. If it is desired to control the size of lipid nanoparticles, extrusion (extrusion filtration) can be performed under high pressure using a membrane filter with a uniform pore size.
  • the composition of the aqueous solvent is not particularly limited, but examples include buffer solutions such as phosphate buffer, citrate buffer, and phosphate buffered saline, physiological saline, and cell culture media.
  • aqueous solvents can stably disperse lipid nanoparticles, but they may also contain sugars (aqueous solutions) such as monosaccharides such as glucose, galactose, mannose, fructose, inositol, ribose, and xylose sugars, disaccharides such as lactose, sucrose, cellobiose, trehalose, and maltose, trisaccharides such as raffinose and melezinose, polysaccharides such as cyclodextrin, sugar alcohols such as erythritol, xylitol, sorbitol, mannitol, and maltitol, and polyhydric alcohols (
  • lipid nanoparticles dispersed in this aqueous solvent it is desirable to eliminate electrolytes in the aqueous solvent as much as possible from the viewpoint of physical stability such as suppressing aggregation. Also, from the viewpoint of chemical stability of lipids, it is desirable to set the pH of the aqueous solvent to a weak acidic to neutral range (pH 3.0 to 8.0) and/or remove dissolved oxygen by nitrogen bubbling or the like.
  • the stability may be improved by using sugars (aqueous solutions) such as monosaccharides such as glucose, galactose, mannose, fructose, inositol, ribose, and xylose; disaccharides such as lactose, sucrose, cellobiose, trehalose, and maltose; trisaccharides such as raffinose and melezinose; polysaccharides such as cyclodextrin; and sugar alcohols such as erythritol, xylitol, sorbitol, mannitol, and maltitol.
  • sugars aqueous solutions
  • sugars aqueous solutions
  • monosaccharides such as glucose, galactose, mannose, fructose, inositol, ribose, and xylose
  • disaccharides such as lactose, sucrose, cellobiose, trehalose, and malto
  • the stability may be improved by using the above-mentioned sugars or polyhydric alcohols (aqueous solutions) such as glycerin, diglycerin, polyglycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol monoalkyl ether, and 1,3-butylene glycol.
  • sugars or polyhydric alcohols aqueous solutions
  • aqueous solutions such as glycerin, diglycerin, polyglycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol monoalkyl ether, and 1,3-butylene glycol.
  • the size of the lipid particles for gene introduction is such that transport efficiency is easily achieved, and therefore the average particle diameter is preferably 500 nm or less, more preferably 20 to 400 nm, even more preferably 20 to 350 nm, and even more preferably 20 to 200 nm.
  • the average particle diameter of the lipid membrane particles and lipid particles for gene introduction refers to the number-average particle diameter measured by dynamic light scattering (DLS). Measurement by dynamic light scattering can be performed by standard methods using a commercially available DLS device, etc.
  • lipid particles for gene introduction is not particularly limited, but it is preferable that they are dispersed in an aqueous solvent.
  • lipids having a hydrophilic structure that are ionic or ionized under pH conditions are used, but hydrophobic compounds may be combined depending on the purpose.
  • nanoparticles in which a molecular layer made of a hydrophilic substance is formed on the outer surface (the side in contact with the aqueous solvent) of a layer containing hydrophobic lipids may be used.
  • the lipid particles for gene transfer have a gene transfer efficiency into cells of more than 30%.
  • the gene transfer efficiency is the transfection efficiency in the case of animal cells.
  • the transfection efficiency can be measured by measuring the expression level of transfected cells when the introduced DNA expresses luciferase, GFP, EGFP, etc. Specifically, when GFP or EGFP is expressed, the positive cells are counted with a flow cytometer for the fluorescence of GFP or EGFP, and the percentage of positive cells is determined relative to a certain threshold value. Therefore, in the GFP or EGFP system, the fluorescence level of GFP or EGFP can be substantially evaluated as the expression level. When luciferase (Luc) is expressed, the luminescence intensity is measured using a cell lysate. In this case, the evaluation is performed using the relative luminescence intensity normalized by the amount of protein.
  • a gene transfer efficiency of more than 30% means that, for example, in transfection using a Lipofectamine reagent, a transfection efficiency of 10% is obtained with the control reagent, but the lipid particles for gene transfer of this embodiment, due to the above-mentioned configuration, can achieve a transfection efficiency of 30% or more, preferably 40% or more.
  • the gene transfer method of the present embodiment is a method for transferring a nucleic acid molecule into a cell, in which the above-mentioned lipid particles for gene transfer are transferred into the cell.
  • lipid particles for gene transfer As a method for gene transfer when introducing lipid particles for gene transfer into cells, a conventionally known method for gene transfer can be used.
  • a conventionally known method for gene transfer can be used.
  • a conventionally known method of transfection using lipids lipofection
  • a reagent containing the above-mentioned lipid particles for gene transfer is administered (dosed) to a cell culture solution and cultured for 24 hours or more to transfer the gene.
  • the route of administration is not particularly limited, but can be parenteral administration such as intravenous administration, enteral administration, intramuscular administration, subcutaneous administration, transdermal administration, nasal administration, or pulmonary administration.
  • the kit for producing a nucleic acid complex composition of the present embodiment is a kit for producing the aforementioned nucleic acid complex composition, and contains a nucleic acid molecule and a polycation.
  • the kit for producing the nucleic acid complex composition of this embodiment may contain, in addition to the above-mentioned nucleic acid molecule and polycation, other components used in the production.
  • it may contain a pH adjuster, a buffer (such as a salt), a stabilizer, a calibration reagent or component, etc. that are useful for producing a complex of a nucleic acid molecule and a polycation.
  • the kit for producing the nucleic acid complex composition of this embodiment may include a flow path structure.
  • the flow path structure is a member used in producing a complex between molecules, and has a structure for circulating and, for example, mixing fluids.
  • As the flow path structure for example, those described in International Publication WO2018/190423 can be used, but are not limited thereto.
  • a specific example of the structure of the flow path structure is a flow path structure having a base and a flow path structure provided therein, the flow path structure having at least two inlet paths, which are independent of each other on the upstream side of the base, a first inlet path for introducing a first fluid and a second inlet path for introducing a second fluid, the inlet paths joining at a joining portion, and a flow path structure having a dilution flow path toward the downstream side of the joining portion.
  • an aqueous solution containing nucleic acid can be supplied as a first fluid to the first inlet path, and a solution containing polycations can be supplied as a second fluid to the second inlet path, and a nucleic acid complex composition can be obtained in the dilution flow path.
  • a flow channel structure having such a structure is a commercially available microfluidic device (iLiNP).
  • the kit for producing lipid particles for gene introduction of the present embodiment is a kit for producing the above-mentioned lipid particles for gene introduction, and includes a nucleic acid molecule, a polycation, and a lipid membrane particle.
  • the kit for producing lipid particles for gene introduction may contain, in addition to the above-mentioned nucleic acid molecule, polycation, and lipid particle, other components used in the production.
  • it may include a configuration that can be included in a kit for producing the above-mentioned nucleic acid complex composition.
  • it may contain components, parts, etc. used for producing the lipid solution.
  • it may contain a solvent for adjusting the aqueous or organic solution used in producing the lipid solution, other lipids, a pH adjuster, a buffer (such as a salt), a stabilizer, a calibration reagent or parts, etc.
  • the kit for producing lipid particles for gene introduction may include a flow channel structure.
  • the flow channel structure may be any of those described above.
  • an aqueous solution containing a nucleic acid complex composition may be supplied as a first fluid to the first inlet path, and a solution of a compatible organic solvent containing lipids may be supplied as a second fluid to the second inlet path, and a solution containing lipid particles for gene introduction may be obtained in the dilution flow path.
  • the flow path structure may have three or more introduction paths.
  • a solution containing nucleic acid may be introduced into the first introduction path
  • a solution containing polycation may be introduced into the second introduction path
  • a solution containing lipid may be introduced into the third introduction path.
  • the solutions supplied to each introduction path are not particularly limited.
  • Yet another aspect of this embodiment is the nucleic acid complex composition as described above for use in the gene transfer of a nucleic acid molecule into a cell. Yet another aspect of this embodiment is the use of the nucleic acid complex composition for producing lipid particles for gene transfer. Yet another aspect of this embodiment is a method for producing the lipid particles for gene introduction using the nucleic acid complex composition. Yet another aspect of this embodiment is the lipid particle for gene transfer, for use in gene transfer of a nucleic acid molecule into a cell.
  • the nucleic acid complex composition and lipid particles for gene transfer of the present embodiment and the gene transfer method using the same have high efficiency of introducing nucleic acid molecules into cells, diffusing into cells, and transferring them to the nucleus, and can achieve high gene transfer efficiency.
  • nucleic acid molecule encapsulated in a lipid nanoparticle and transported can be used for transformation, it is believed that the following steps are required: (1) the lipid nanoparticle fuses with an endosome, is taken up into the cytoplasm, and then escapes the endosome; and (2) the nucleic acid molecule that escapes the endosome diffuses into the cytoplasm. If the nucleic acid molecule is DNA (such as pDNA or BAC (bacterial artificial chromosome)), a further step (3) of the nucleic acid molecule transferring to the cell nucleus is required.
  • DNA such as pDNA or BAC (bacterial artificial chromosome)
  • step (1) in order to increase the efficiency of gene transfer, in step (1), in order to improve the efficiency of gene transfer of long-chain pDNA into cells, the lipid membrane of the nanoparticle needs to fuse with the endosomal membrane more dynamically than in the case of siRNA, mRNA, and short-chain pDNA.
  • step (2) it was thought that the long DNA released into the cytoplasm in step (2) had a slower diffusion rate than short DNA.
  • step (3) it was thought that the transfer of long-chain DNA with a large molecular weight to the cell nucleus was slow and unlikely to occur.
  • DNA-nanolipid particles negatively charged DNA is encapsulated in a cationic lipid system, or DNA-polycation core particles prepared to be negatively charged are encapsulated in a cationic lipid system.
  • This allows efficient DNA loading, but the inside of the particle often forms a lipid multilayer lamellar structure.
  • the gene transfer of long-chain DNA it is necessary to release large-sized DNA from the lipid multilayer that forms a lamellar structure.
  • encapsulating cationic core particles in a cationic lipid system would avoid the formation of a lamellar structure due to electrostatic interactions, and enable more dynamic fusion with the endosomal membrane and release of pDNA into the cytoplasm. Furthermore, compacting long-chain pDNA with polycations would reduce the apparent molecular size, which is expected to improve the diffusion rate after escape from the endosome and the efficiency of nuclear transfer.
  • siRNA even when a short-chain nucleic acid, siRNA, is used as the nucleic acid molecule, high efficiency is exhibited, and knockdown by siRNA can be suitably performed. This is expected to improve the efficiency of siRNA knockdown. Furthermore, high transfection efficiency is also observed when a longer nucleic acid of 200 kbp or more is used as the nucleic acid molecule. For example, high efficiency is also observed when an artificial chromosome or BAC of 200 kbp or more is used as the long-chain nucleic acid.
  • Nano-sized lipid particles (lipid nanoparticles, LNP) were prepared by the ethanol dilution method using a microfluidic device (iLiNP). The following solutions were delivered to the microfluidic device at a total flow rate of 500 ⁇ L/min and a flow rate ratio of 6.
  • Aqueous solution A polycation solution using 1 mg/mL polycation and 1 mg/mL pDNA as long-chain DNA, which will be described later, were dissolved in 25 mM acetate buffer (pH 4.0) in order to make the pDNA concentration 22 ⁇ g/mL.
  • PEI polyethyleneimine
  • protamine sulfate protamine sulfate
  • R8 STR-R8, 8-polymerized arginine
  • Lipid solution A lipid mixture was dissolved in ethanol to prepare a final lipid concentration of 4 mM.
  • the lipid composition was CL15F6/DSPC/cholesterol/DMG-PEG2K (60/10/30/1 mol%).
  • the LNP suspension was dialyzed against 20 mM MES buffer (pH 6.0) using a dialysis membrane tube (12-14 kDa MW cutoffs, Repligen Corporation, Waltham, MA) for more than 2 hours, and then dialyzed overnight against PBS (pH 7.4) to remove residual ethanol.
  • control sample empty LNP (lipid particles only), was prepared under the same conditions as above, except that 25 mM acetate buffer was used as the aqueous solution.
  • the polyplex of the control sample was prepared by dissolving 1 mg/mL PEI solution and 1 mg/mL pDNA in PBS to give a pDNA concentration of 22 ⁇ g/mL.
  • the weight ratio of pDNA/PEI was 1/1.
  • the physical properties of the obtained LNPs were evaluated by measuring the particle size and zeta charge (zeta potential) using a Zeta-sizer Nano ZS ZEN3600 instrument (Malvern, UK).
  • the pDNA used as the long-chain DNA is as follows: pNL3.1[Nluc/minP] (3151 kbp) (Promega) pEF1a-2xSV40_NLS-Nluc (6022 kbp) (Plasmid No. 135953, Addgene) HES7-NLuc-2A-tdTomato (10433 kbp) (Plasmid No. 130932, Addgene) pSLIK TT 3xFLAG Luciferase neo (13848 kbp) (Plasmid No.
  • DMEM Cell Culture
  • the frozen cell stock was added to 4 mL of DMEM (Sigma) (containing inactivated 10% FBS, 100 U/mL penicillin, and 100 ⁇ g/mL streptomycin) (hereinafter referred to as DMEM(+)) in a 15 mL centrifuge tube. After centrifugation (1000 rpm, 5 min), the supernatant was removed and the precipitated cells were suspended in 1 mL of medium and seeded in a 10 cm dish containing 9 mL of medium. When the cells reached 80-90% confluence, they were washed with 5 mL of sterile PBS, detached with 2 mL of 0.0625% trypsin, and added to 8 mL of medium.
  • Cell viability measurement Twenty-four hours before the start of dosing, HeLa cells were cultured in a 96-well plate (4,000 cells/well). The culture medium was replaced with 100 ⁇ L DMEM(+) containing nanoparticles containing 0.05 ⁇ g of pDNA, and the cells were incubated at 37° C. for 24 hours. 24 hours after the start of dosing, the medium was replaced with fresh 100 ⁇ L DMEM(+), and cell viability was measured using a CellTiter-blue cell viability measurement kit (Promega).
  • Firefly luciferase activity in the cell lysate was measured using the ONE-Glo Luciferase Assay System (Promega), NanoLuc activity was measured using the Nano-Glo® Luciferase Assay System (Promega), and the total protein amount in the cell lysate was measured using a BCA protein assay kit.
  • EGFP expression of EGFP was evaluated by flow cytometry (Cyto FLEX, Beckman Coulter). After the culture was completed, the medium was removed, and the cells were washed twice with PBS and then treated with trypsin. The cell suspension was centrifuged (400 g, 4° C., 5 min), and the precipitated cells were suspended in 500 ⁇ L FACS buffer (0.5% BSA, 0.1% NaN 3 in PBS), and then passed through a nylon mesh to remove cell aggregates, followed by measurement. Lipofectamine 3000 (Thermo Fisher Scientific) was used as a positive control, and transfection was performed according to the manufacturer's protocol.
  • a core particle and pDNA encoding 15 kbp GFP were prepared using protamine sulfate, R8 (STR-R8, arginine 8 polymer), and polyethyleneimine (PEI) as polycations.
  • the prepared core particle was loaded onto lipid nanoparticles consisting of CL15F6, an ionized lipid, DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), cholesterol (Chol), and PEG-DMG 2k as other lipids, and the transfection efficiency into HeLa cells was evaluated.
  • Lipofectamine 3000 the most highly efficient commercially available transfection reagent, was used.
  • the molar ratio of CL15F6/DSPC/Chol/PEG was 60/10/30/1. The same applies to the following test examples unless otherwise specified.
  • FIG. 1 is a graph comparing the transfection efficiency of lipid particles for gene transfer using each polycation.
  • the transfection efficiency of the control Lipofectamine 3000 is 10%.
  • the transfection efficiency was less than half that of the control, and high efficiency was not obtained.
  • PEI was used as the polycation
  • a transfection efficiency of 37% which is 3.7 times that of the control, was obtained.
  • Figure 2 is a graph showing the size distribution of each particle. As shown in the figure, the particle size peaks at 75 nm for A15 and B15, and 35 nm for C15 and D15. This indicates that the particle size becomes smaller when the PEI content ratio is larger than a certain level. In addition to the size of the molecule, it is thought that this is related to the charge of the entire particle due to the positive charge of PEI and the negative charge of DNA.
  • FIG. 3 is a graph showing a comparison of the average particle sizes.
  • the white (hollow) dots represent core particles (long-chain nucleic acid complexes) in which polycations and long-chain DNA are complexed, and the shaded dots represent lipid nanoparticles (lipid particles for gene introduction) in which core particles and lipid membrane particles are complexed.
  • the particle size of the lipid nanoparticles A15 and B15 was approximately 80 nm, and the particle size of the lipid nanoparticles C15 and D15 was approximately 40 nm.
  • the Z potential of the core particles alone for A15 and B15 is negative (around -50 to -25 mV), but the lipid nanoparticles are approximately 0 mV.
  • the Z potential of both the core particles and lipid nanoparticles for C15 and D15 is slightly positive (around +5 to +10 mV).
  • Figure 5 is a graph comparing the Z potential of DNA and various complexes for C15.
  • the Z potential for C15 indicates pDNA only, PPs (complex of pDNA and PEI), empty NPs (lipid membrane particles only), and PPs + empty LNPs (lipid nanoparticles).
  • the Z potential for C15 DNA only, PPs, and lipid nanoparticles is around 10.
  • FIG. 6 shows the results of observation of B15 and C15 by a transmission electron microscope (TEM). As shown in the figure above, the diameter of B15 is large, while that of C15 is smaller. In this observation, it is expected that the internal structure of B15 forms multiple lamellae, whereas that of C15 is similar to that of liposomes.
  • Fig. 7 shows the results of evaluation of B15 and C15 by small angle X-ray scattering (SAXS).
  • B15 a peak was observed at 6.3 nm, and this interplanar spacing is considered to indicate the presence of multiple lamellar structures.
  • C15 there was no peak, and no specific periodic structure was observed. From these results, it was confirmed that B15 formed a lipid multilayer and had a periodic lamellar structure with a lattice spacing of 6.3 nm, whereas C15 was found to be a hollow liposome without a layered structure.
  • the transfection efficiency of 15 kbp pDNA was compared using particles A15 to D15 and a commercially available transfection reagent, Lipofectamine 3000. 8 is a schematic diagram showing the flow of the procedure carried out. As shown in the figure, HeLa cells cultured for 24 hours before transfection were used as the cells to be transfected, and 0.5 ⁇ g/mL of 15 kbp pDNA was transfected.
  • FIG. 9 is a graph showing the transfection efficiency.
  • the transfection efficiency of particle A15 which is a normal lipid nanoparticle in which only DNA is introduced into a lipid membrane particle without containing PEI, is about several percent, and B15 and D15 also have almost the same performance.
  • Lipofectamine 3000 which is the most highly efficient commercially available transfection reagent, had a transfection efficiency of about 10%.
  • the transfection efficiency of particles C15 was about 40%, which was about 10 times that of particles A and about 4 times that of Lipofectamine 3000.
  • Figure 10 is a graph showing the cell viability in this transfection test. No significant difference in cell viability was observed for particles A15-D15 and the control Lipofectamine. In other words, it was found that there was no difference in cytotoxicity between the samples.
  • Test Example 4 Transfection efficiency 2 for each mixture ratio of DNA and polycation Since a particularly high transfection efficiency was observed with particle C (C15) with a DNA:PEI ratio (weight ratio) of 1:1, the transfection efficiency was further compared at various ratios. Samples with various ratios from 1:0 to 1:10 were used, and the same procedure as in Test Example 3 was performed for the rest.
  • Figure 11 is a graph showing the transfection efficiency.
  • the transfection efficiency was very high in the case of a sample with a DNA:PEI ratio (weight ratio) of 1:1, which corresponds to particle C (C15) above.
  • the 1:2 sample also showed an efficiency of around 12%, exceeding that of the control Lipofectamine.
  • a relatively high efficiency was obtained with a PEI ratio of more than 1:0.5 and less than 1:5.
  • Figure 12 is a graph showing the cell viability in this transfection test. No significant difference was observed in cell viability for any of the samples. In other words, it was found that there was no difference in cytotoxicity between the samples.
  • Figure 14 is a graph showing the localization of lipid nanoparticles at each mixing ratio evaluated using a flow cytometer. Particle C15 was shown to have significantly higher cellular uptake efficiency than B15 and A15.
  • FIG. 15 is a graph showing the size distribution of lipid nanoparticles using each lipid.
  • 16 is a graph showing the Z charge of each lipid nanoparticle using each lipid.
  • the lipid nanoparticles using DOTAP and DOTMA have a charge of +21 to +23 mV.
  • Figure 17 is a graph showing the transfection efficiency of lipid nanoparticles using each lipid.
  • CL15F6 showed a transfection efficiency of approximately 40%.
  • particles using commercially available cationic lipids DOTAP and DOTMA showed transfection efficiency almost the same as particles made using CL15F6.
  • the A+ and C+ numbers in the figure indicate A and C particles using DNA with the length indicated by the numbers, respectively.
  • Transfection efficiency was examined by expression of Nanoluciferase for pNL3.1[Nluc/minP] and HES7-NLuc-2A-tdTomato, Luciferase for 3xFLAG Luciferase neo, and EGFP for pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP.
  • FIG. 18 is a graph showing the transfection efficiency for pDNA of each DNA length.
  • Figure 18(a) shows pNL3.1[Nluc/minP] (3151 bp)
  • Figure 18(b) shows HES7-NLuc-2A-tdTomato (10433 bp)
  • Figure 18(c) shows pSLIK TT 3xFLAG Luciferase neo (13848 bp)
  • Figure 18(d) shows pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP (15000 bp). Note that the ratio of graph length to the control does not match for each of the results because the efficiency was examined using different plasmids and expression.
  • lipid nanoparticles containing ionized or cationic lipids and carrying cationic core particles of pDNA/PEI have smaller particle sizes and do not have a periodic internal structure compared to lipid nanoparticles carrying general anionic core particles. This improves the efficiency of uptake into cells, and since they do not have a periodic structure, long-chain pDNA is easily released into the cytoplasm, and the compaction effect of pDNA is thought to improve the diffusion rate and nuclear transport efficiency. On the other hand, if the PEI ratio is too high, it becomes difficult for pDNA to separate from PEI in the cytoplasm or nucleus, which is thought to reduce the transfection efficiency.
  • Figure 19 shows a graph of the relationship between the size and quantity of the complex depending on the content ratio of each lipid.
  • the vertical axis shows the normalized quantity, and the horizontal axis shows the size.
  • PS0 corresponds to sample No. 0 with 0% DOPS
  • PS7 corresponds to sample No. 1 with 7% DOPS
  • PS28 corresponds to sample No. 4 with 28% DOPS.
  • Figure 20 shows a graph of the zeta potential of the complex depending on the content ratio of each lipid.
  • the vertical axis shows the zeta potential
  • the horizontal axis shows the sample number in Table 1.
  • Sample No. 2 has a zeta potential close to 0, and as the DOPS content decreases, the zeta potential becomes positive, and as the DOPS content increases, the zeta potential becomes negative, with sample No. 4, which contains 28% PS, being approximately -4 mV.
  • FIG. 21 A graph of the introduction efficiency and survival rate of the complex depending on the content ratio of each lipid is shown in Figure 21. 15 kbp pDNA was introduced into each complex, and the introduction efficiency is shown as the GFP expression rate % by a circle mark in the figure, and the cell survival rate % by a square mark in the figure. The results showed that the content of anionic lipid (charge of the complex) did not decrease the transfection efficiency depending on the content.
  • FIG. 22 shows a graph of the cellular uptake of the complex depending on the content ratio of each lipid.
  • FIG. 23 shows the transfection performance of the complex depending on the content ratio of each lipid.
  • PS0%, PS7%, and PS28% and the sample numbers is the same as PS0, PS7, and PS28 in FIG. The results showed that the cellular uptake decreased depending on the content ratio of anionic lipid.
  • siRNA was used as the nucleic acid
  • KD activity was confirmed using siRNA-polycation complexes, and a higher effect was obtained compared to when PEI or DOTAP was used. It is expected that these polycations will be used to verify gene transfer efficiency when combined with lipid nanoparticles, and for highly efficient gene transfer of various other nucleic acids and various cells. It is also expected that knowledge of these structures can be utilized to synthesize and use polycations of still other structures.
  • R may be an appropriate organic substituent, and each R in the formula may be the same or different. For example, it may be a straight or branched chain having 20 or less carbon atoms.
  • a nucleic acid complex composition and lipid particles for gene transfer were prepared using siRNA as the short nucleic acid, and the effect of transferring siRNA into cells, that is, the knockdown activity by siRNA, was examined.
  • the conditions for preparing the nucleic acid complex composition are as follows.
  • PEI polyethyleneimine
  • Aqueous phase 70 ⁇ g/mL siRNA + PEI in 25 mM acetate buffer (pH 4.0)
  • Lipid solution 8 mM DOTAP/DSPC/Cholesterol/DMG-PEG2k (
  • Figure 24 is a graph showing the expression rate and survival rate of a nucleic acid complex composition using siRNA. Lipid particles for gene transfer containing 30 nM, 60 nM, and 120 nM of the nucleic acid complex composition were used.
  • the vertical axis shows the Luc expression rate (%)
  • the horizontal axis shows the ratio of siRNA (siGL4):PEI used when preparing the nucleic acid complex composition.
  • the vertical axis shows the cell survival rate (%)
  • the horizontal axis shows the ratio of siRNA (siGL4):PEI used when preparing the nucleic acid complex composition.
  • Figure 25 is a graph showing the expression rate and survival rate for each PEI molecular weight of the nucleic acid complex composition using siRNA.
  • Lipid particles for gene transfer containing nucleic acid complex compositions using W/O PEI and PEI with molecular weights of 600, 1200, 2000, and 10000 were used. Of these, the one with a molecular weight of 10000 is the same as that used in other test examples.
  • the vertical axis shows the Luc expression rate (%)
  • the horizontal axis shows the ratio of siRNA (siGL4):PEI used when preparing the nucleic acid complex composition.
  • the vertical axis shows the cell survival rate (%)
  • the horizontal axis shows the ratio of siRNA (siGL4):PEI used when preparing the nucleic acid complex composition.
  • 26 is a graph showing the expression rate and survival rate when only the siRNA-PEI complex was introduced into cells, that is, only the nucleic acid complex composition was introduced instead of the above-mentioned lipid particles for gene transfer.
  • the vertical axis indicates the Luc expression rate (%), and the horizontal axis indicates the ratio of siRNA (siGL4):PEI used in preparing the nucleic acid complex composition.
  • the vertical axis indicates the cell viability (%), and the horizontal axis indicates the ratio of siRNA (siGL4):PEI used in preparing the nucleic acid complex composition.
  • the knockdown activity of Luc expression was observed when siRNA:PEI was 1:1, but the knockdown activity was lower than that when lipid particles for gene introduction were used.
  • a high knockdown activity was observed when siRNA:PEI was 1:5.
  • the cell viability was high when siRNA:PEI was 1:1, but slightly decreased when siRNA:PEI was 1:5.
  • FIG. 27 is a graph showing the expression rate and survival rate for a nucleic acid complex composition using siRNA and a polycationic compound of formula (11).
  • the vertical axis indicates the expression rate (%) of Luc
  • the horizontal axis indicates the ratio of siRNA (siGL4) to polycationic compound used in preparing the nucleic acid complex composition.
  • the vertical axis indicates the cell viability (%)
  • the horizontal axis indicates the ratio of siRNA (siGL4) to polycationic compound used in preparing the nucleic acid complex composition.
  • BAC a 231 kbp long pDNA encoding EGFP was used.
  • BAC:PEI was 1:0
  • SM102 was used as the lipid at 1:0 (SM102-1:0-LNP) were also prepared.
  • Other conditions than those mentioned above were prepared in the same manner as in the process shown in (Preparation of lipid particles for gene transfer) above.
  • the particle size and zeta charge (zeta potential) of the produced BAC-LNP were also measured in the same manner as in the process described above.
  • Figure 28 shows the results of measuring the particle size of each of the BAC-LNPs mentioned above.
  • (a) shows the particle size distribution of CL15F6-1:1-LNP, CL15F6-1:0-LNP, and SM102-1:0-LNP.
  • (b) shows the average particle size.
  • the transfection efficiency was measured using each BAC-LNP. HeLa cells were used, and the assay conditions were changed to a dose of 1.0 ⁇ g/mL, but the same procedures were carried out as in the case of using 15 kbp DNA in Test Example 3. The other steps were similar to those described above in (Transfection Efficiency Measurement).
  • the results of transfection using each of the BAC-LNPs described above are shown in Figure 28.
  • (a) shows the transfection efficiency of the prepared particles.
  • CL15F6-1:1-complex not using LNP and Lf3k from the transfection kit are shown.
  • (b) shows the respective cell viability rates at the time of transfection.
  • nucleic acid complex composition lipid particles for gene transfer, and gene transfer method using the same of the present invention, the efficiency of transfer and diffusion of nucleic acid molecules into cells is high, resulting in high gene transfer efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided are: a nucleic acid complex composition that has high efficiency for introducing nucleic acid molecules into cells and for diffusing the same within the cells and that can have high transfection efficiency; lipid particles for transfection; and a transfection method using the same. The present invention pertains to a nucleic acid complex composition, lipid particles for transfection, and a transfection method using the same. The nucleic acid complex composition contains nucleic acid molecules and a polycation having a structure formed through polymerization of cation molecules comprising a molecule chain including carbon atoms and nitrogen atoms.

Description

核酸複合体組成物、遺伝子導入用脂質粒子及びそれを用いた遺伝子導入方法Nucleic acid complex composition, lipid particles for gene transfer, and gene transfer method using the same
 本発明は、遺伝子の細胞導入に用いる核酸複合体組成物、遺伝子導入脂質粒子及びそれを用いた遺伝子導入方法に関する。
 本願は、2022年9月30日に出願された特願2022-158025号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a nucleic acid complex composition used for gene transfer into cells, a gene-transfer lipid particle, and a gene transfer method using the same.
This application claims priority based on Japanese Patent Application No. 2022-158025, filed on September 30, 2022, the contents of which are incorporated herein by reference.
 核酸分子の細胞導入、例えばDNA分子の細胞への遺伝子導入は、細胞の遺伝子を組み換え、目的とする蛋白質発現等を行う手法として用いられている。 Introduction of nucleic acid molecules into cells, for example introduction of DNA molecules into cells, is used as a method to modify the genes of cells and express a desired protein, etc.
 細胞にDNA、RNA分子等の核酸分子を導入する方法としては、これらの核酸分子を他の分子と複合させ、細胞内へと輸送させやすくする手段が考えられている。
 例えば、脂溶性薬物や、siRNA(short interfering RNA)又はmRNA等の核酸を封入し、標的細胞へ送達するためのキャリアとして、脂質ナノ粒子(LNP)が利用されている。例えば、siRNAなどの核酸を効率的に標的細胞内へ送達するためのキャリアとなる脂質ナノ粒子として、pH感受性カチオン性脂質を構成脂質として含む脂質ナノ粒子が報告されている(特許文献1)。
Methods for introducing nucleic acid molecules such as DNA and RNA molecules into cells include complexing these nucleic acid molecules with other molecules to facilitate transport into the cells.
For example, lipid nanoparticles (LNPs) are used as carriers for encapsulating fat-soluble drugs and nucleic acids such as siRNA (short interfering RNA) or mRNA and delivering them to target cells. For example, lipid nanoparticles containing pH-sensitive cationic lipids as constituent lipids have been reported as lipid nanoparticles that serve as carriers for efficiently delivering nucleic acids such as siRNA into target cells (Patent Document 1).
国際公開第2018/230710号International Publication No. 2018/230710
 特許文献1などの脂質ナノ粒子は、比較的分子量の小さいRNAやDNAを輸送し標的細胞へ送達することができる。しかしながら、分子量の大きい核酸、例えば1kbp以上の長鎖DNAを用いた場合、長鎖DNAを細胞内に導入し然る後に細胞核内に移行させる遺伝子導入効率(標的細胞が動物細胞の場合はトランスフェクション効率)が向上しないという問題があった。その理由としては、長鎖DNA分子の大きさおよび電荷のため、分子量の小さい核酸に比べて好適に輸送されないこと等が予想されたが、その明らかな理由及び対策はこれまで見出されていなかった。
 また、分子量の小さい短鎖核酸の導入に関しても、siRNAなどの導入の需要から、遺伝子導入効率の高い手法が強く望まれている。
Lipid nanoparticles such as those described in Patent Document 1 can transport RNA or DNA with a relatively small molecular weight and deliver it to target cells. However, when using nucleic acids with a large molecular weight, such as long-chain DNA of 1 kbp or more, there is a problem that the gene transfer efficiency (transfection efficiency when the target cell is an animal cell) of introducing long-chain DNA into a cell and then transferring it into the cell nucleus is not improved. The reason for this is expected to be that long-chain DNA molecules are not transported as effectively as nucleic acids with a small molecular weight due to their size and charge, but no clear reason or countermeasure has been found so far.
Furthermore, with regard to the introduction of short-chain nucleic acids with small molecular weights, there is a strong demand for methods of highly efficient gene introduction due to the demand for the introduction of siRNA and the like.
 本発明は上記のような事情を鑑みてなされたものであり、その目的は、核酸分子の細胞内への導入、細胞への拡散の効率が高く、高い遺伝子導入効率を持つことのできる核酸複合体組成物、遺伝子導入用脂質粒子およびそれを用いた遺伝子導入方法を提供することにある。 The present invention has been made in consideration of the above circumstances, and its purpose is to provide a nucleic acid complex composition, lipid particles for gene transfer, and a gene transfer method using the same, which are capable of efficiently transferring nucleic acid molecules into cells and diffusing into cells, and have high gene transfer efficiency.
 上記課題を解決するため、本発明は以下の態様を有する。
[1] 核酸分子と、
 炭素原子および窒素原子を含有する分子鎖からなるカチオン分子が重合してなる構造を含むポリカチオンと、
 を含む、核酸複合体組成物。
In order to solve the above problems, the present invention has the following aspects.
[1] A nucleic acid molecule,
a polycation having a structure formed by polymerizing cationic molecules each having a molecular chain containing a carbon atom and a nitrogen atom;
A nucleic acid complex composition comprising:
[2] 前記ポリカチオンが、ポリエチレンイミンを含む、[1]に記載の核酸複合体組成物。 [2] The nucleic acid complex composition described in [1], wherein the polycation contains polyethyleneimine.
[3] 前記ポリカチオンが、下記式(9)の化合物を含む、[1]または[2]に記載の核酸複合体組成物。
Figure JPOXMLDOC01-appb-C000007
 (式中、Rは互いに同一又は異なる有機置換基である)
[3] The nucleic acid complex composition according to [1] or [2], wherein the polycation comprises a compound represented by the following formula (9):
Figure JPOXMLDOC01-appb-C000007
(wherein R are the same or different organic substituents)
[4] 前記ポリカチオンが、下記式(10)または下記式(11)の化合物を含む、[3]に記載の核酸複合体組成物。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
[4] The nucleic acid complex composition according to [3], wherein the polycation comprises a compound represented by the following formula (10) or (11):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
[5] 前記核酸分子が、1kbp以上の長鎖核酸である、[1]から[4]のいずれか1に記載の核酸複合体組成物。 [5] The nucleic acid complex composition according to any one of [1] to [4], wherein the nucleic acid molecule is a long-chain nucleic acid of 1 kbp or more.
[6] 前記核酸分子が、1kbp未満の短鎖核酸である、[1]から[4]のいずれか1に記載の核酸複合体組成物。 [6] The nucleic acid complex composition according to any one of [1] to [4], wherein the nucleic acid molecule is a short-chain nucleic acid of less than 1 kbp.
[7] 前記核酸分子が、siRNAである、[1]から[4]のいずれか1に記載の核酸複合体組成物。 [7] The nucleic acid complex composition according to any one of [1] to [4], wherein the nucleic acid molecule is siRNA.
[8] 前記核酸分子の含有量Mに対する前記ポリカチオンの含有量Mの質量比が、M/M=0.10を超え、M/M=5未満である、[1]から[7]のいずれか1に記載の核酸複合体組成物。 [8] The nucleic acid complex composition according to any one of [1] to [7], wherein the mass ratio of the polycation content M C to the nucleic acid molecule content M D is greater than M C /M D =0.10 and less than M C /M D =5.
[9] 前記核酸分子と前記ポリカチオンとの複合体が正電荷を有する、[1]から[8]のいずれか1に記載の核酸複合体組成物。 [9] The nucleic acid complex composition according to any one of [1] to [8], wherein the complex between the nucleic acid molecule and the polycation has a positive charge.
[10] 下記式(9)の化合物を含むポリカチオン。
Figure JPOXMLDOC01-appb-C000010
 (式中、Rは互いに同一又は異なる有機置換基である)
[10] A polycation comprising a compound represented by the following formula (9):
Figure JPOXMLDOC01-appb-C000010
(wherein R are the same or different organic substituents)
[11] 下記式(10)または下記式(11)の化合物を含む、[10]に記載のポリカチオン。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
[11] The polycation according to [10], comprising a compound represented by the following formula (10) or the following formula (11):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
[12] [1]から[9]のいずれか1に記載の核酸複合体組成物と、
 脂質膜粒子と、を含む、遺伝子導入用脂質粒子。
[12] The nucleic acid complex composition according to any one of [1] to [9],
A lipid particle for gene transfer comprising:
[13] 前記脂質膜粒子がカチオン性脂質を含む、[12]に記載の遺伝子導入用脂質粒子。 [13] The lipid particle for gene transfer described in [12], wherein the lipid membrane particle contains a cationic lipid.
[14] 前記脂質膜粒子の細胞への遺伝子導入効率が30%を超える、[12]または[13]に記載の遺伝子導入用脂質粒子。 [14] A lipid particle for gene transfer according to [12] or [13], in which the efficiency of gene transfer into cells of the lipid membrane particle exceeds 30%.
[15] 核酸分子の細胞への遺伝子導入方法であって、
 [12]から[14]のいずれか1に記載の遺伝子導入用脂質粒子を細胞に導入する、遺伝子導入方法。
[15] A method for gene transfer of a nucleic acid molecule into a cell, comprising the steps of:
A gene transfer method, comprising introducing the lipid particle for gene transfer according to any one of [12] to [14] into a cell.
[16] [1]から[9]のいずれか1に記載の核酸複合体組成物の製造用キットであって、
 核酸分子およびポリカチオンを含む、核酸複合体組成物の製造用キット。
[16] A kit for producing the nucleic acid complex composition according to any one of [1] to [9],
A kit for producing a nucleic acid complex composition comprising a nucleic acid molecule and a polycation.
[17] 流路構造体をさらに含む、[16]に記載の核酸複合体組成物の製造キット。 [17] A kit for producing the nucleic acid complex composition described in [16], further comprising a flow path structure.
[18] [12]から[14]のいずれか1に記載の遺伝子導入用脂質粒子の製造用キットであって、
 核酸分子、ポリカチオンおよび脂質膜粒子を含む、遺伝子導入用脂質粒子の製造用キット。
[18] A kit for producing a lipid particle for gene introduction according to any one of [12] to [14], comprising:
A kit for producing lipid particles for gene transfer, comprising a nucleic acid molecule, a polycation and a lipid membrane particle.
[19] 流路構造体をさらに含む、[18]に記載の遺伝子導入用脂質粒子の製造キット。 [19] A kit for producing lipid particles for gene introduction described in [18], further comprising a flow path structure.
 また、本発明の実施態様は以下の側面も有する。
[1A] 1kbp以上の長鎖核酸と、炭素原子および窒素原子を含有する分子鎖からなるカチオン分子が重合してなる構造を含むポリカチオンと、を含む、核酸複合体組成物。
The embodiment of the present invention also has the following aspects.
[1A] A nucleic acid complex composition comprising a long-chain nucleic acid of 1 kbp or more and a polycation having a structure formed by polymerization of cationic molecules composed of molecular chains containing carbon atoms and nitrogen atoms.
[2A] 前記ポリカチオンが、ポリエチレンイミンである、[1]に記載の核酸複合体組成物。 [2A] The nucleic acid complex composition described in [1], wherein the polycation is polyethyleneimine.
[3A] 前記長鎖核酸の含有量Mに対する前記ポリカチオンの含有量Mの質量比が、M/M=0.10を超え、M/M=5未満である、[1A]または[2A]に記載の核酸複合体組成物。 [3A] The nucleic acid complex composition according to [1A] or [2A], wherein the mass ratio of the polycation content M C to the long-chain nucleic acid content M D is greater than M C /M D =0.10 and less than M C /M D =5.
[4A] 前記長鎖核酸と前記ポリカチオンとの複合体が正電荷を有する、[1A]から[3A]のいずれか1に記載の核酸複合体組成物。 [4A] The nucleic acid complex composition according to any one of [1A] to [3A], in which the complex of the long-chain nucleic acid and the polycation has a positive charge.
[5A] [1A]から[4A]のいずれか1に記載の核酸複合体組成物と、脂質膜粒子と、を含む、遺伝子導入用脂質粒子。 [5A] A lipid particle for gene introduction, comprising a nucleic acid complex composition according to any one of [1A] to [4A] and a lipid membrane particle.
[6A] 前記脂質膜粒子がカチオン性脂質を含む、[5A]に記載の遺伝子導入用脂質粒子。 [6A] The lipid particle for gene transfer described in [5A], wherein the lipid membrane particle contains a cationic lipid.
[7A] 前記脂質膜粒子の細胞への遺伝子導入効率が30%を超える、[5A]から[6A]のいずれか1に記載の遺伝子導入用脂質粒子。 [7A] A lipid particle for gene transfer described in any one of [5A] to [6A], in which the efficiency of gene transfer into cells of the lipid membrane particle exceeds 30%.
[8A] 長鎖核酸の細胞への遺伝子導入方法であって、[5A]から[7A]のいずれか1に記載の遺伝子導入用脂質粒子を細胞に導入する、遺伝子導入方法。 [8A] A method for introducing a long-chain nucleic acid into a cell, comprising introducing a lipid particle for gene introduction described in any one of [5A] to [7A] into the cell.
 本発明によれば、核酸分子の細胞内への導入、細胞への拡散の効率が高く、高い遺伝子導入効率を持つことのできる核酸複合体組成物、遺伝子導入用脂質粒子およびそれを用いた遺伝子導入方法を提供することができる。 The present invention provides a nucleic acid complex composition that allows for high efficiency in introducing nucleic acid molecules into cells and diffusing into cells, and has high gene transfer efficiency, lipid particles for gene transfer, and a gene transfer method using the same.
本実施例における各ポリカチオンを用いた遺伝子導入用脂質粒子によるトランスフェクション効率を比較したグラフ図である。FIG. 1 is a graph comparing the transfection efficiency of lipid particles for gene introduction using each polycation in this example. 本実施例における各粒子のサイズの分布を示すグラフ図である。FIG. 2 is a graph showing the size distribution of each particle in this embodiment. 本実施例における各粒子のサイズ平均を比較して示すグラフ図である。FIG. 2 is a graph showing a comparison of the average particle sizes in the present embodiment. 本実施例における各粒子の電荷を示すグラフ図である。FIG. 4 is a graph showing the charge of each particle in this embodiment. 本実施例におけるC15についてDNAと各種複合体それぞれのZ電位を比較するグラフ図である。FIG. 1 is a graph comparing the Z potentials of DNA and various complexes for C15 in this embodiment. 本実施例におけるB15及びC15について透過型電子顕微鏡(TEM)で観察した写真図である。FIG. 2 is a photograph of B15 and C15 in this example observed with a transmission electron microscope (TEM). 本実施例におけるB15及びC15について小角X線散乱(SAXS)によって評価した図である。FIG. 1 is a diagram showing the results of evaluation of B15 and C15 in this example by small angle X-ray scattering (SAXS). 本実施例における行った操作のフローを示す模式図である。FIG. 2 is a schematic diagram showing the flow of operations performed in this embodiment. 本実施例におけるトランスフェクション効率を示すグラフ図である。FIG. 2 is a graph showing the transfection efficiency in this example. 本実施例におけるトランスフェクション試験における細胞生存率を示すグラフ図である。FIG. 2 is a graph showing cell viability in the transfection test in this example. 本実施例における別のトランスフェクション効率を示すグラフ図である。FIG. 13 is a graph showing another transfection efficiency in this example. 本実施例における別のこのトランスフェクション試験における細胞生存率を示すグラフ図である。FIG. 13 is a graph showing cell viability in another transfection study in this example. 本実施例における各混合比率の脂質ナノ粒子の細胞への取り込みについて共焦点レーザー顕微鏡で観察した写真図である。FIG. 1 is a photograph showing the uptake of lipid nanoparticles at each mixing ratio in this example into cells, observed with a confocal laser microscope. 本実施例における各混合比率の脂質ナノ粒子の局在部位をフローサイトメーターで評価したグラフ図である。FIG. 1 is a graph showing the localized sites of lipid nanoparticles at each mixing ratio in this example evaluated using a flow cytometer. 本実施例におけるそれぞれの脂質を用いた脂質ナノ粒子ごとのサイズの分布を示すグラフ図である。FIG. 2 is a graph showing the size distribution of lipid nanoparticles using each lipid in this example. 本実施例におけるそれぞれの脂質を用いた脂質ナノ粒子ごとのZ電荷を示すグラフ図である。FIG. 1 is a graph showing the Z charge for each lipid nanoparticle using each lipid in this example. 本実施例におけるそれぞれの脂質を用いた脂質ナノ粒子ごとのトランスフェクション効率を示すグラフ図である。FIG. 1 is a graph showing the transfection efficiency for each lipid nanoparticle using each lipid in this example. 本実施例における各DNA長のpDNAについてのトランスフェクション効率を示すグラフ図である。FIG. 2 is a graph showing the transfection efficiency for pDNA of each DNA length in this example. 各脂質の含有比による複合体のサイズと数量の関係を示すグラフ図である。FIG. 1 is a graph showing the relationship between the size and quantity of complexes depending on the content ratio of each lipid. 各脂質の含有比による複合体のゼータ電位を示すグラフ図である。FIG. 1 is a graph showing the zeta potential of complexes depending on the content ratio of each lipid. 各脂質の含有比による複合体の導入効率、生存率を示すグラフ図である。FIG. 1 is a graph showing the introduction efficiency and survival rate of the complex depending on the content ratio of each lipid. 各脂質の含有比による複合体の細胞取り込みを示すグラフ図である。FIG. 1 is a graph showing cellular uptake of the complex depending on the content ratio of each lipid. 各脂質の含有比による複合体のトランスフェクションの性能を示すグラフ図である。FIG. 1 is a graph showing the transfection performance of the complex depending on the content ratio of each lipid. siRNAを用いた核酸複合体組成物による発現率と生存率を示すグラフ図である。FIG. 1 is a graph showing the expression rate and survival rate of a nucleic acid complex composition using siRNA. siRNAを用いた核酸複合体組成物のPEI分子量ごとの発現率と生存率を示すグラフ図である。FIG. 1 is a graph showing the expression rate and survival rate for each PEI molecular weight of a nucleic acid complex composition using siRNA. siRNAとPEIの複合体のみを細胞に導入した発現率と生存率を示すグラフ図である。FIG. 1 is a graph showing the expression rate and survival rate when only a complex of siRNA and PEI is introduced into cells. siRNAと式(11)のポリカチオン化合物を用いた核酸複合体組成物による発現率と生存率を示すグラフ図である。FIG. 1 is a graph showing the expression rate and survival rate of a nucleic acid complex composition using siRNA and a polycationic compound of formula (11). 各BAC-LNPの粒子径の測定結果を示すグラフ図である。FIG. 1 is a graph showing the results of measuring the particle size of each BAC-LNP. 各BAC-LNPを用いたトランスフェクション効率の測定結果を示すグラフ図である。FIG. 1 is a graph showing the results of measuring transfection efficiency using each BAC-LNP.
 以下、本発明に係る核酸複合体組成物、遺伝子導入用脂質粒子、及びそれを用いた遺伝子導入方法について、実施形態を示して説明する。ただし、本発明は以下の実施形態に限定されるものではない。 The following describes the nucleic acid complex composition, lipid particles for gene transfer, and gene transfer method using the same according to the present invention, with reference to the following embodiments. However, the present invention is not limited to the following embodiments.
 (核酸複合体組成物)
 本実施形態の核酸複合体組成物は、核酸分子と、炭素原子および窒素原子を含有する分子鎖からなるカチオン分子が重合してなる構造を含むポリカチオンと、を含む。
(Nucleic Acid Complex Composition)
The nucleic acid complex composition of the present embodiment contains a nucleic acid molecule and a polycation having a structure formed by polymerization of cationic molecules composed of molecular chains containing carbon atoms and nitrogen atoms.
 核酸複合体組成物は、核酸分子と、核酸分子以外の分子が複合している分子組成物であり、その複合は主に分子間力や電気的結合によるものである。具体的には、後述するように核酸分子は長鎖核酸、核酸以外の分子はポリカチオンである。 A nucleic acid complex composition is a molecular composition in which nucleic acid molecules are complexed with molecules other than nucleic acid molecules, and the complex is formed mainly through intermolecular forces and electrical bonds. Specifically, as described below, the nucleic acid molecules are long-chain nucleic acids, and the molecules other than nucleic acids are polycations.
 核酸分子を構成する核酸は、DNAおよびRNAであってもよい。本実施形態で用いることのできる核酸分子としては、短鎖核酸または長鎖核酸を含むものであってもよい。 The nucleic acid constituting the nucleic acid molecule may be DNA or RNA. The nucleic acid molecule that can be used in this embodiment may include short-chain or long-chain nucleic acids.
 長鎖核酸とは、塩基対が1kbp以上の核酸である。本実施形態においては、10kbp以上であることが好ましく、12kbp以上であることがより好ましく、15kbp以上であることがさらに好ましい。目安としては1~20kbpの核酸を用いてもよい。 A long-chain nucleic acid is a nucleic acid with a base pair of 1 kbp or more. In this embodiment, it is preferably 10 kbp or more, more preferably 12 kbp or more, and even more preferably 15 kbp or more. As a guideline, nucleic acids of 1 to 20 kbp may be used.
 また、本実施形態では、長鎖核酸として、20kb以上、または50kb以上のDNAを用いることができる。例えば、人工染色体のような200kbp以上のpDNAを使用することもできる。人工染色体としては、例えばバクテリア人工染色体などを用いることができる。
 これらの、従来技術の方法では、導入効率が極めて低かった長鎖核酸も、本実施形態では高い導入効率で導入することができる。
 長鎖核酸としてDNA(pDNA、人工染色体)を用いた場合に、高い核移行効率も得られる。
In this embodiment, the long-chain nucleic acid may be a DNA of 20 kb or more, or 50 kb or more. For example, a pDNA of 200 kbp or more such as an artificial chromosome may be used. For example, a bacterial artificial chromosome may be used as the artificial chromosome.
In these conventional techniques, the efficiency of introduction of long-chain nucleic acids was extremely low, but in this embodiment, the efficiency of introduction of such nucleic acids can be high.
When DNA (pDNA, artificial chromosomes) is used as the long-chain nucleic acid, high nuclear transfer efficiency can be obtained.
 長鎖核酸としては、1kbp以上のDNAである長鎖DNAを用いるのが好ましい。長鎖DNAとしては、pDNA、すなわちプラスミドDNAなどを用いることができる。pDNAは細胞への導入、形質転換に好適に用いられる。 As the long-chain nucleic acid, it is preferable to use long-chain DNA, which is DNA of 1 kbp or more. As the long-chain DNA, pDNA, i.e., plasmid DNA, can be used. pDNA is preferably used for introduction into cells and transformation.
 長鎖DNAとしてのpDNAは、遺伝子発現ベクターであるプラスミドベクターであることも好ましい。プラスミドベクターは、環状のままであってもよく、予め線状に切断した状態であってもよい。遺伝子発現ベクターは、発現させる対象の遺伝子の塩基配列情報に基づいて、一般的に使用される分子生物学的ツールを利用して常法により設計でき、公知の各種の方法で製造することができる。 The pDNA as a long-chain DNA is preferably a plasmid vector, which is a gene expression vector. The plasmid vector may remain circular or may be cut into a linear form in advance. The gene expression vector can be designed in a standard manner using commonly used molecular biology tools based on the base sequence information of the gene to be expressed, and can be produced by various known methods.
 短鎖核酸とは、塩基対が1kbp未満の核酸である。短鎖核酸としては、1kbp未満の核酸であれば適宜選択できる。 A short-chain nucleic acid is a nucleic acid with a base pair of less than 1 kbp. Any short-chain nucleic acid can be selected as long as it is less than 1 kbp.
 短鎖核酸としては、siRNAを用いることがより好ましい。siRNAとは、30塩基対以下、特に21~25塩基対からなる二本鎖RNAである。siRNAは、RNA干渉(RNAi)により、mRNAの分解を誘導し該mRNAの特異的な遺伝子の発現を抑制する。特定の配列に対応するsiRNAは、遺伝子のノックアウトなどの阻害に広く用いられている。siRNAは、これらの従来用いられているものを本実施形態でも適宜用いることができる。 As the short-stranded nucleic acid, it is more preferable to use siRNA. siRNA is a double-stranded RNA consisting of 30 base pairs or less, particularly 21 to 25 base pairs. siRNA induces the degradation of mRNA by RNA interference (RNAi) and suppresses the expression of a specific gene of the mRNA. siRNA corresponding to a specific sequence is widely used for inhibition such as gene knockout. These conventionally used siRNAs can be used appropriately in this embodiment.
 ポリカチオンは、重合単位であるカチオン分子(正電荷を有する分子)が主に重合してなる。ポリカチオンは、後述する1または複数種類のカチオン分子が重合してなる構造を含む。また、カチオン分子以外の構造単位、すなわち電荷がない原子、分子や負電荷のイオン、分子を備えていてもよい。ポリカチオンは、全体として正電荷を有している。 Polycations are mainly formed by polymerizing cationic molecules (molecules with a positive charge) which are polymerization units. Polycations include structures formed by polymerizing one or more types of cationic molecules, which will be described later. They may also have structural units other than cationic molecules, i.e. uncharged atoms, molecules, or negatively charged ions and molecules. Polycations have a positive charge overall.
 カチオン分子は、炭素原子および窒素原子を含有する分子鎖からなる。具体的には、各種の炭素鎖およびアミンからなる分子鎖を有し、この分子鎖が直鎖または分岐してなる。炭素原子を含む炭素鎖は、いわゆる脂肪族スペーサーであり、-CH-、-CHR-、-CHR-などの構造を有し、R、Rを介して分子鎖も分岐している場合がある。窒素原子を含むアミンは、-NH-、-NHR-、-NR-などの構造を有し、R、Rを介して分子鎖も分岐している場合がある。
 このような構造のカチオン分子としては、-CH-CH-NH-構造などがある。
The cationic molecule is composed of a molecular chain containing carbon atoms and nitrogen atoms. Specifically, it has a molecular chain composed of various carbon chains and amines, and this molecular chain is linear or branched. The carbon chain containing carbon atoms is a so-called aliphatic spacer, and has a structure such as -CH 2 -, -CHR 1 -, -CHR 1 R 2 -, and the molecular chain may also be branched via R 1 and R 2. The amine containing a nitrogen atom has a structure such as -NH-, -NHR 1 -, -NR 1 R 2 -, and the molecular chain may also be branched via R 1 and R 2 .
An example of a cationic molecule having such a structure is a -CH 2 -CH 2 -NH- structure.
 ポリカチオンは、ポリエチレンイミンであることが好ましい。すなわち、-CH-CH-NH-構造が重合した構造である。例えば、ポリエチレンイミンとしては、アミンの構造が第二級アミンである直鎖状ポリエチレンイミンとして(1)の構造で表される。
 -[CH-CH-NH]- ・・・(1)
The polycation is preferably polyethyleneimine. That is, it has a structure in which --CH 2 --CH 2 --NH-- structures are polymerized. For example, polyethyleneimine is represented by the structure (1) as linear polyethyleneimine in which the amine structure is a secondary amine.
-[CH 2 -CH 2 -NH] n - ... (1)
 また、ポリエチレンイミンは直鎖状、分岐状、又はデンドリマー形などの構造をとり得るが、本実施形態ではいずれを用いることもできる。ここで、直鎖状のポリエチレンイミンは多くが第二級アミンからなり、端部に第一級アミンを含んでいる。分岐状ポリエチレンイミンは第一級、第二級、第三級アミンを適度に含み、第三級アミンを介して一部が分岐し、複数の第一級アミンの端部を備えた構造を有する。デンドリマー形ポリエチレンイミンは多くが第三級アミンを介して分岐した構造と第一級アミンの端部を有し、ほぼ全体にわたって分岐した構造を有する。
 本実施形態では、分岐状ポリエチレンイミンを用いることが好ましい。
In addition, polyethyleneimine may have a linear, branched, or dendrimer-type structure, and any of these may be used in this embodiment. Here, linear polyethyleneimine is mostly composed of secondary amines and contains primary amines at its ends. Branched polyethyleneimine contains a moderate amount of primary, secondary, and tertiary amines, is partially branched via tertiary amines, and has a structure with multiple primary amine ends. Dendrimer-type polyethyleneimine is mostly branched via tertiary amines and has a structure with primary amine ends, and is branched almost throughout.
In this embodiment, it is preferable to use a branched polyethyleneimine.
 ポリカチオンの構造としては、他に以下のようなものや、その重合体などを用いてもよい。
 HN-CH-CH-NH-CH-CH-NH3 ・・・(2)
 -[NH-CH-CH-[NH-CH-CH-NH-CH-CH ・・・(3)
 また、後述する各種のポリカチオンから選択することもできる。
As the polycation structure, the following structures and polymers thereof may also be used.
H 2 N—CH 2 —CH 2 —NH—CH 2 —CH 2 —NH 3 ... (2)
-[NH-CH 2 -CH 2 ] x -[NH-CH 2 -CH 2 -NH-CH 2 -CH 2 ] y ... (3)
Alternatively, the polycation may be selected from the various polycations described below.
 (ポリカチオン)
 本実施形態のポリカチオンは、下記式(9)の化合物を含む。
 これらのポリカチオンは、核酸複合体組成物に用いるためのポリカチオンとして特に好適に使用することができる。
Figure JPOXMLDOC01-appb-C000013
 (ここで、式中、Rは互いに同一又は異なる有機置換基である。Rの例としては、例えば、炭素数20以下の直鎖または分岐鎖であってもよい。)
(Polycations)
The polycation of this embodiment includes a compound represented by the following formula (9).
These polycations can be particularly preferably used as polycations for use in nucleic acid complex compositions.
Figure JPOXMLDOC01-appb-C000013
(In the formula, R is an organic substituent that may be the same or different. Examples of R may be, for example, a straight or branched chain having 20 or less carbon atoms.)
 具体的には、上記式(9)のポリカチオンの構造および合成の具体例は、以下の式(S1)に示すように行う。
 式(S1)中の化合物(S1-1):N-(allyloxy)carbonylhomocysteine thiolactoneを、化合物(S1-2)で示す後述する各種のアミン化合物と共にUV照射し合成、重合させて、化合物(S1-3)で示すポリカチオンを得る。
Specifically, the structure and synthesis of the polycation of the above formula (9) are specifically shown in the following formula (S1).
The compound (S1-1) in formula (S1): N-(allyloxy)carbonylhomocysteine thiolactone is irradiated with UV light together with various amine compounds (S1-2) described below, to synthesize and polymerize them, thereby obtaining a polycation represented by the compound (S1-3).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 化合物(S1-2)で示すアミン化合物としては、以下のGroupA1~A5に示すものなどが選択できる。 As the amine compound represented by compound (S1-2), those shown in Groups A1 to A5 below can be selected.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 本実施形態のポリカチオンとしては、さらに具体的には、下記式(10)、式(11)または式(12)の化合物などを用いることができる。 More specifically, the polycation of this embodiment may be a compound of the following formula (10), formula (11), or formula (12).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 また、ポリカチオンとしては、この他に実施例において後述する式(7)、式(8)で表される化合物を用いてもよい。 In addition, compounds represented by formula (7) and formula (8) described later in the examples may also be used as polycations.
 上記した合成方法によれば、ワンポッドで迅速かつ簡便、副反応が起こりにくく効率的にポリカチオンを合成することが可能である。また、上記アミンの種類を選択することによって容易に構造を変化、適切なポリカチオンのスクリーニングが可能である。 The above synthesis method makes it possible to synthesize polycations efficiently in one pod, quickly and easily, with few side reactions. In addition, by selecting the type of amine, it is possible to easily change the structure and screen for suitable polycations.
 ポリカチオンの大きさ(分子量、重合量)としては、様々なものを選択することができる。これは、後述する長鎖核酸との複合体を形成したとき、その電荷に応じて、適宜大きさと量を調整することができるためである。
 例えば、ポリカチオンとしてポリエチレンイミンを用いるときは、分子量2000以上のものを用いることが好ましく、分子量5000以上のものを用いることがより好ましい。また、分子量10000以上のものを用いてもよい。
The size (molecular weight, amount of polymerization) of the polycation can be selected from a variety of sizes, because when a complex is formed with a long-chain nucleic acid, as described below, the size and amount can be appropriately adjusted depending on the charge.
For example, when polyethyleneimine is used as the polycation, it is preferable to use one having a molecular weight of 2000 or more, and more preferably one having a molecular weight of 5000 or more. Also, one having a molecular weight of 10000 or more may be used.
 前記核酸分子の含有量Mに対する前記ポリカチオンの含有量Mの質量比は、M/M=0.10を超え、M/M=5未満であることが好ましい。
 換言すれば、核酸分子:ポリカチオンの質量比の割合が、1:0.10から1:5までの間で、ポリカチオンの量を調整することができる。
 また、M/Mは0.25を超え5未満であってもよく、0.5~2.0であることがより好ましく、およそ1.0であることが特に好ましい。
The mass ratio of the polycation content M C to the nucleic acid molecule content M D is preferably M c /M D =0.10 or more and M c /M D =0.5 or less.
In other words, the amount of polycation can be adjusted so that the mass ratio of nucleic acid molecule:polycation is between 1:0.10 and 1:5.
Alternatively, M c /M D may be greater than 0.25 and less than 5, more preferably 0.5 to 2.0, and most preferably approximately 1.0.
 核酸分子とポリカチオンの複合体は、それぞれの分子構造、電荷の比などによって構造、複合体の電荷などに大きく影響し、細胞への導入や細胞内での挙動に大きくかかわってくると考えられる。そのため、様々なポリカチオンの構造により、一概に規定することはできないが、目安として、上記の質量の比が有効な点は挙げることができる。
 本発明者らは、核酸分子と炭素原子、窒素原子による分子鎖を含有するポリカチオンのそれぞれの分子構造から、質量の比が前記値の場合に高い遺伝子導入効率を奏することができる点を見出したものである。
The complex of a nucleic acid molecule and a polycation is considered to be greatly affected by the molecular structure, charge ratio, etc. of each molecule, which greatly affects the structure, charge, etc. of the complex, and is greatly involved in the introduction into cells and the behavior within the cells. Therefore, although it is not possible to make a general definition due to the various polycation structures, the above mass ratio can be mentioned as an effective guideline.
The inventors have discovered that, based on the molecular structures of a nucleic acid molecule and a polycation containing a molecular chain of carbon and nitrogen atoms, a high gene transfer efficiency can be achieved when the mass ratio is within the above range.
 核酸分子とポリカチオンとの複合体は、正電荷を有することが好ましい。DNAは負電荷を有し、前述のようにポリカチオンは正電荷を有する。本実施形態の核酸分子とポリカチオンとの複合体は、全体として正電荷を有することが好ましい。 The complex of the nucleic acid molecule and the polycation preferably has a positive charge. DNA has a negative charge, and as described above, the polycation has a positive charge. In this embodiment, the complex of the nucleic acid molecule and the polycation preferably has a positive charge overall.
 (遺伝子導入用脂質粒子)
 本実施形態の遺伝子導入用脂質粒子は、前記核酸複合体組成物と、脂質膜粒子とを含む。遺伝子導入用脂質粒子は、細胞への遺伝子導入(トランスフォーメーション、動物細胞の場合はトランスフェクション)に用いる粒子である。
(Lipid particles for gene transfer)
The lipid particle for gene introduction of this embodiment includes the nucleic acid complex composition and a lipid membrane particle. The lipid particle for gene introduction is a particle used for gene introduction into cells (transformation, or transfection in the case of animal cells).
 遺伝子導入用脂質粒子は、概して核酸複合体組成物が脂質膜粒子に覆われた構造を有し、換言すれば脂質膜による該球体の粒子にコア粒子(本実施形態では、核酸複合体組成物)が取り込まれた状態をなしている。
 脂質膜粒子を構成する脂質としては、一般的にリポソームを形成する際に使用される脂質を用いることができる。このような脂質としては、例えば、リン脂質、ステロール、又は飽和若しくは不飽和の脂肪酸等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。
 脂質膜粒子の構成としては、一般的には特許文献1や、特開2022-111798などに記載されるものなどを使用できる。
 なお、遺伝子導入用脂質粒子は、脂質膜粒子と核酸複合体組成物とが複合した状態でナノサイズであるため、脂質ナノ粒子、LNPと呼称することもある。
Lipid particles for gene introduction generally have a structure in which a nucleic acid complex composition is covered with a lipid membrane particle; in other words, a core particle (in this embodiment, the nucleic acid complex composition) is incorporated into the spherical particle made of lipid membrane.
As the lipid constituting the lipid membrane particle, lipids generally used in forming liposomes can be used. Examples of such lipids include phospholipids, sterols, and saturated or unsaturated fatty acids. These can be used alone or in combination of two or more.
As the configuration of the lipid membrane particles, those described in Patent Document 1, JP-A No. 2022-111798, etc. can generally be used.
In addition, since the lipid particles for gene transfer are nano-sized when the lipid membrane particles and the nucleic acid complex composition are combined, they are sometimes called lipid nanoparticles (LNPs).
 遺伝子導入用脂質粒子は、核酸複合体組成物と脂質膜粒子との複合体が正電荷を有していてもよい。
 具体的には、脂質膜粒子と核酸用脂質粒子は、複合体組成物との電荷の合計が正電荷となるよう構成されていてもよい。正電荷を有する範囲として、目安としてはゼータ電位が+0~50mVから選ぶことができる。
 前述したように、核酸複合体組成物(コア粒子)が正電荷を有する場合(カチオン性コア粒子)場合、脂質膜粒子の電荷は、核酸複合体組成物との電荷の合計が正電荷となるよう適宜選択できる。
In the lipid particle for gene introduction, the complex between the nucleic acid complex composition and the lipid membrane particle may have a positive charge.
Specifically, the lipid membrane particle and the lipid particle for nucleic acid may be configured so that the total charge of the lipid membrane particle and the lipid particle for nucleic acid with the complex composition is positive. As a guideline, the range of positive charge can be selected from a zeta potential of +0 to +50 mV.
As described above, when the nucleic acid complex composition (core particle) has a positive charge (cationic core particle), the charge of the lipid membrane particle can be appropriately selected so that the sum of the charges with the nucleic acid complex composition is positive.
 また、脂質膜粒子が全体として正電荷を有してなることも好ましい。脂質膜粒子が正電荷を有してなるには、例えば、脂質膜粒子を構成する脂質が、カチオン性脂質を含んでいてもよい。
 カチオン性脂質としては、従来脂質を介したトランスフェクション(リポフェクション)に用いられる脂質を用いてもよい。リポフェクション用の試薬には、モノカチオニック、又はポリカチオニックな脂質を用いても良い。
 また、脂質膜粒子が修飾により正電荷を有していてもよい。例えば、脂質膜粒子の粒子膜の外側が、正電荷を有する成分で修飾されていてもよい。
 正電荷を有する範囲として、目安としてはゼータ電位が+0~50mVから選ぶことができる。
 脂質膜粒子が前記電荷となる範囲で、脂質膜粒子はアニオン性脂質を含んでいてもよい。
It is also preferable that the lipid membrane particle has a positive charge as a whole. For the lipid membrane particle to have a positive charge, for example, the lipids constituting the lipid membrane particle may contain a cationic lipid.
The cationic lipid may be any lipid that has been used in lipid-mediated transfection (lipofection). The reagent for lipofection may be a monocationic or polycationic lipid.
Furthermore, the lipid membrane particle may be modified to have a positive charge. For example, the outside of the particle membrane of the lipid membrane particle may be modified with a component having a positive charge.
As a guideline for the range of positive charges, the zeta potential can be selected from +0 to +50 mV.
The lipid membrane particles may contain anionic lipids so long as the lipid membrane particles have the above-mentioned charge.
 脂質膜粒子を構成する脂質としては、さらに具体的には、下記式(1)で表されるCL15F6、下記式(2)で表されるMC3、下記式(3)で表されるDOTMA、下記式(4)で表されるDOTAP、下記式(5)で表されるDODMA、下記式(6)で表されるDODAP等又はこれらの混合などを用いることができる。
 このうち、DOTMA及びDOTAPは正電荷を有するカチオン性脂質であり、トランスフェクション効率を高くすることができ、好適に使用することができる。
 また、その他のCL15F6、MC3、DODMA、DODAPはpHに依存して正電荷を有することもある脂質である。CL15F6は、トランスフェクション効率を高くすることができ、脂質膜粒子を構成する脂質として好適に使用できる。また、MC3、DODMA、DODAP等も脂質膜粒子の表面を修飾する、他の脂質と組み合わせる等によりトランスフェクション効率を高くすることができ、好適に使用することができる。
More specifically, the lipids constituting the lipid membrane particles may be CL15F6 represented by the following formula (1), MC3 represented by the following formula (2), DOTMA represented by the following formula (3), DOTAP represented by the following formula (4), DODMA represented by the following formula (5), DODAP represented by the following formula (6), or mixtures of these.
Of these, DOTMA and DOTAP are cationic lipids having a positive charge, and can increase transfection efficiency, and therefore can be preferably used.
In addition, other lipids such as CL15F6, MC3, DODMA, and DODAP may have a positive charge depending on pH. CL15F6 can increase transfection efficiency and can be preferably used as a lipid constituting lipid membrane particles. In addition, MC3, DODMA, DODAP, etc. can also increase transfection efficiency by modifying the surface of lipid membrane particles or by combining with other lipids, and can be preferably used.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 脂質膜粒子は、必要に応じて上述以外の適宜の表面修飾などを行うことができる。例えば、脂質膜粒子の表面にあたる脂質を親水性ポリマー等で修飾することにより、脂質膜粒子の血中滞留性を高めることができる。これらの修飾基で修飾された脂質を脂質ナノ粒子の構成脂質として使用することにより、表面修飾を行うことができる場合もある。
 また、本発明に係る脂質ナノ粒子の核内移行を促進するために、例えば、脂質ナノ粒子を3糖以上のオリゴ糖化合物で表面修飾することもできる。オリゴ糖化合物で脂質ナノ粒子を表面修飾する方法は特に限定されないが、例えば、脂質ナノ粒子をガラクトースやマンノースなどの単糖で表面を修飾したリポソーム(国際公開第2007/102481号)などに記載された表面修飾方法を採用することができる。
The lipid membrane particles may be subjected to appropriate surface modification other than those described above as necessary. For example, the lipid on the surface of the lipid membrane particles may be modified with a hydrophilic polymer or the like to enhance the blood retention of the lipid membrane particles. In some cases, the surface modification may be performed by using lipids modified with these modifying groups as the constituent lipids of the lipid nanoparticles.
In order to promote nuclear translocation of the lipid nanoparticles according to the present invention, the lipid nanoparticles may be surface-modified with an oligosaccharide compound having three or more sugars. The method for surface-modifying the lipid nanoparticles with an oligosaccharide compound is not particularly limited, but the surface-modifying method described in, for example, liposomes in which the surface of lipid nanoparticles is modified with monosaccharides such as galactose or mannose (WO 2007/102481) may be employed.
 脂質膜粒子は、例えば、温度変化感受性機能、膜透過機能、遺伝子発現機能、及びpH感受性機能などのいずれか1つ又は2つ以上の機能を付与することができる。 The lipid membrane particles can be endowed with one or more functions, such as temperature change sensitivity, membrane permeability, gene expression, and pH sensitivity.
 脂質膜粒子は、正負の電荷を付与する物質を含んでいてもよい。正電荷を付与する荷電物質としては、例えば、ステアリルアミン、オレイルアミンなどの飽和若しくは不飽和脂肪族アミンなどを挙げることができ、負電荷を付与する荷電物質としては、例えば、ジセチルホスフェート、コレステリルヘミスクシネート、ホスファチジルセリン(PS、DOPS)、ホスファチジルイノシトール、ホスファチジン酸などを挙げることができる。
 また、脂質膜粒子は、抗酸化剤を含んでいてもよい。抗酸化剤としては、トコフェロール、没食子酸プロピル、パルミチン酸アスコルビル、又はブチル化ヒドロキシトルエンなどが挙げられる。
 また、脂質膜粒子は、膜ポリペプチドを含んでいてもよい。膜ポリペプチドとしては、例えば、膜表在性ポリペプチド、又は膜内在性ポリペプチドなどが挙げられる。これらの物質の配合量は特に限定されず、目的に応じて適宜選択することができる。
The lipid membrane particles may contain a substance that imparts a positive or negative charge. Examples of the charged substance that imparts a positive charge include saturated or unsaturated aliphatic amines such as stearylamine and oleylamine, and examples of the charged substance that imparts a negative charge include dicetyl phosphate, cholesteryl hemisuccinate, phosphatidylserine (PS, DOPS), phosphatidylinositol, and phosphatidic acid.
The lipid membrane particles may also contain an antioxidant, such as tocopherol, propyl gallate, ascorbyl palmitate, or butylated hydroxytoluene.
The lipid membrane particle may also contain a membrane polypeptide. Examples of the membrane polypeptide include a membrane surface polypeptide and an integral membrane polypeptide. The amount of these substances to be added is not particularly limited and can be appropriately selected depending on the purpose.
 脂質膜粒子を製造する方法、および脂質膜粒子にコア粒子が取り込まれた構造の製造方法としては、一般的には特許文献1や、特開2022-111798などに記載されるものなどを使用できる。
 脂質膜粒子の製造方法として一例を挙げれば、全ての脂質成分をクロロホルムなどの有機溶媒に溶解し、エバポレータによる減圧乾固や噴霧乾燥機による噴霧乾燥を行うことによって脂質膜を形成した後、当該脂質ナノ粒子に封入させる成分、例えば核酸等を含む水系溶媒を乾燥した上記の混合物に添加し、さらにホモジナイザーなどの乳化機、超音波乳化機、又は高圧噴射乳化機などにより乳化することで製造することができる。また、リポソームを製造する方法としてよく知られている方法、例えば逆相蒸発法などによっても製造することができる。脂質ナノ粒子の大きさを制御したい場合には、孔径のそろったメンブランフィルターなどを用いて、高圧下でイクストルージョン(押し出し濾過)を行えばよい。
As a method for producing lipid membrane particles and a method for producing a structure in which a core particle is incorporated into a lipid membrane particle, those described in Patent Document 1, JP-A No. 2022-111798, etc. can generally be used.
As an example of a method for producing lipid membrane particles, all lipid components are dissolved in an organic solvent such as chloroform, and then a lipid membrane is formed by drying under reduced pressure using an evaporator or spray drying using a spray dryer. Then, an aqueous solvent containing a component to be encapsulated in the lipid nanoparticles, such as nucleic acid, is added to the above dried mixture, and further emulsified using an emulsifier such as a homogenizer, an ultrasonic emulsifier, or a high-pressure jet emulsifier. Liposomes can also be produced by a method well known for producing liposomes, such as reverse phase evaporation. If it is desired to control the size of lipid nanoparticles, extrusion (extrusion filtration) can be performed under high pressure using a membrane filter with a uniform pore size.
 水系溶媒(分散媒)の組成は特に限定されないが、例えば、リン酸緩衝液、クエン酸緩衝液、リン酸緩衝生理食塩液などの緩衝液、生理食塩水、細胞培養用の培地などを挙げることができる。これら水系溶媒(分散媒)は脂質ナノ粒子を安定に分散させることができるが、さらに、グルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロース糖の単糖類、乳糖、ショ糖、セロビオース、トレハロース、マルトースなどの二糖類、ラフィノース、メレジノースなどの三糖類、シクロデキストリンなどの多糖類、エリスリトール、キシリトール、ソルビトール、マンニトール、マルチトールなどの糖アルコールなどの糖(水溶液)や、グリセリン、ジグリセリン、ポリグリセリン、プロピレングリコール、ポリプロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、エチレングリコールモノアルキルエーテル、ジエチレングリコールモノアルキルエーテル、1,3-ブチレングリコールなどの多価アルコール(水溶液)などを加えてもよい。この水系溶媒に分散した脂質ナノ粒子を安定に長期間保存するには、凝集抑制などの物理的安定性の面から水系溶媒中の電解質を極力排除することが望ましい。また、脂質の化学的安定性の面からは水系溶媒のpHを弱酸性から中性付近(pH3.0~8.0程度)に設定し、及び/又は窒素バブリングなどにより溶存酸素を除去することが望ましい。 The composition of the aqueous solvent (dispersion medium) is not particularly limited, but examples include buffer solutions such as phosphate buffer, citrate buffer, and phosphate buffered saline, physiological saline, and cell culture media. These aqueous solvents (dispersion media) can stably disperse lipid nanoparticles, but they may also contain sugars (aqueous solutions) such as monosaccharides such as glucose, galactose, mannose, fructose, inositol, ribose, and xylose sugars, disaccharides such as lactose, sucrose, cellobiose, trehalose, and maltose, trisaccharides such as raffinose and melezinose, polysaccharides such as cyclodextrin, sugar alcohols such as erythritol, xylitol, sorbitol, mannitol, and maltitol, and polyhydric alcohols (aqueous solutions) such as glycerin, diglycerin, polyglycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol monoalkyl ether, and 1,3-butylene glycol. To store lipid nanoparticles dispersed in this aqueous solvent stably for a long period of time, it is desirable to eliminate electrolytes in the aqueous solvent as much as possible from the viewpoint of physical stability such as suppressing aggregation. Also, from the viewpoint of chemical stability of lipids, it is desirable to set the pH of the aqueous solvent to a weak acidic to neutral range (pH 3.0 to 8.0) and/or remove dissolved oxygen by nitrogen bubbling or the like.
 得られた脂質膜粒子の水性分散物を凍結乾燥又は噴霧乾燥する場合には、例えば、グルコース、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロース糖の単糖類、乳糖、ショ糖、セロビオース、トレハロース、マルトースなどの二糖類、ラフィノース、メレジノースなどの三糖類、シクロデキストリンなどの多糖類、エリスリトール、キシリトール、ソルビトール、マンニトール、マルチトールなどの糖アルコールなどの糖(水溶液)を用いると安定性を改善できる場合がある。また、上記水性分散物を凍結する場合には、例えば、前記の糖類やグリセリン、ジグリセリン、ポリグリセリン、プロピレングリコール、ポリプロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、エチレングリコールモノアルキルエーテル、ジエチレングリコールモノアルキルエーテル、1,3-ブチレングリコールなどの多価アルコール(水溶液)を用いると安定性を改善できる場合がある。 When the aqueous dispersion of the obtained lipid membrane particles is freeze-dried or spray-dried, the stability may be improved by using sugars (aqueous solutions) such as monosaccharides such as glucose, galactose, mannose, fructose, inositol, ribose, and xylose; disaccharides such as lactose, sucrose, cellobiose, trehalose, and maltose; trisaccharides such as raffinose and melezinose; polysaccharides such as cyclodextrin; and sugar alcohols such as erythritol, xylitol, sorbitol, mannitol, and maltitol. When the aqueous dispersion is frozen, the stability may be improved by using the above-mentioned sugars or polyhydric alcohols (aqueous solutions) such as glycerin, diglycerin, polyglycerin, propylene glycol, polypropylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, ethylene glycol monoalkyl ether, diethylene glycol monoalkyl ether, and 1,3-butylene glycol.
 遺伝子導入用脂質粒子の大きさは、輸送効率が得られやすいことから、その平均粒子径が、500nm以下であることが好ましく、20~400nmであることがより好ましく、20~350nmであることがさらに好ましく、20~200nmであることがよりさらに好ましい。なお、脂質膜粒子及び遺伝子導入用脂質粒子の平均粒子径は、動的光散乱法(Dynamic light scattering:DLS)により測定された個数平均粒子径を意味する。動的光散乱法による測定は、市販のDLS装置等を用いて常法により行うことができる。 The size of the lipid particles for gene introduction is such that transport efficiency is easily achieved, and therefore the average particle diameter is preferably 500 nm or less, more preferably 20 to 400 nm, even more preferably 20 to 350 nm, and even more preferably 20 to 200 nm. The average particle diameter of the lipid membrane particles and lipid particles for gene introduction refers to the number-average particle diameter measured by dynamic light scattering (DLS). Measurement by dynamic light scattering can be performed by standard methods using a commercially available DLS device, etc.
 遺伝子導入用脂質粒子の形態は特に限定されないが、水系溶媒に分散した形態であることが好ましい。本実施形態では、イオン性、またはpH条件によりイオン化される、親水性の構造を有する脂質を用いているが、目的に応じて、疎水性の化合物を組み合わせてもよい。例えば、疎水性の脂質を含有する層の外側(水径溶媒に接する側)の表面に、親水性物質からなる分子層が形成されたナノ粒子などを用いても良い。 The form of lipid particles for gene introduction is not particularly limited, but it is preferable that they are dispersed in an aqueous solvent. In this embodiment, lipids having a hydrophilic structure that are ionic or ionized under pH conditions are used, but hydrophobic compounds may be combined depending on the purpose. For example, nanoparticles in which a molecular layer made of a hydrophilic substance is formed on the outer surface (the side in contact with the aqueous solvent) of a layer containing hydrophobic lipids may be used.
 遺伝子導入用脂質粒子は、脂質膜粒子の細胞への遺伝子導入効率が30%を超えることが好ましい。
 ここで遺伝子導入効率は、動物細胞の場合はトランスフェクション効率である。トランスフェクション効率は、目安として、トランスフェクションを行った細胞について、導入したDNAがルシフェラーゼ、GFP、EGFP等を発現する場合、その発現量を測定することで測定することができる。具体的に、GFP、EGFPを発現する場合、GFP、EGFPの蛍光についてフローサイトメーターで陽性細胞をカウントし、あるしきい値に対して何%の陽性細胞があるのかを判断する。このため、GFP、EGFPの系においては実質的にGFP、EGFPの蛍光量を発現量として評価することができる。ルシフェラーゼ(Luc)を発現する場合は、細胞のライセートを用いて発光強度を測定する。この場合、タンパク質量で規格化した相対発光強度での評価を行う。
It is preferable that the lipid particles for gene transfer have a gene transfer efficiency into cells of more than 30%.
Here, the gene transfer efficiency is the transfection efficiency in the case of animal cells. The transfection efficiency can be measured by measuring the expression level of transfected cells when the introduced DNA expresses luciferase, GFP, EGFP, etc. Specifically, when GFP or EGFP is expressed, the positive cells are counted with a flow cytometer for the fluorescence of GFP or EGFP, and the percentage of positive cells is determined relative to a certain threshold value. Therefore, in the GFP or EGFP system, the fluorescence level of GFP or EGFP can be substantially evaluated as the expression level. When luciferase (Luc) is expressed, the luminescence intensity is measured using a cell lysate. In this case, the evaluation is performed using the relative luminescence intensity normalized by the amount of protein.
 遺伝子導入効率が30%を超えるとは、例えば、リポフェクタミン試薬を用いたトランスフェクションでは、コントロールとなる試薬では10%の前記トランスフェクション効率が得られるが、本実施形態の遺伝子導入用脂質粒子は上記構成により30%以上のトランスフェクション効率、好ましくは40%以上のトランスフェクション効率が得られる。 A gene transfer efficiency of more than 30% means that, for example, in transfection using a Lipofectamine reagent, a transfection efficiency of 10% is obtained with the control reagent, but the lipid particles for gene transfer of this embodiment, due to the above-mentioned configuration, can achieve a transfection efficiency of 30% or more, preferably 40% or more.
 (遺伝子導入方法)
 本実施形態の遺伝子導入方法は、核酸分子の細胞への遺伝子導入方法であって、前記の遺伝子導入用脂質粒子を細胞に導入する。
(Gene introduction method)
The gene transfer method of the present embodiment is a method for transferring a nucleic acid molecule into a cell, in which the above-mentioned lipid particles for gene transfer are transferred into the cell.
 遺伝子導入用脂質粒子を細胞に導入する際の遺伝子導入方法としては、従来知られた遺伝子導入方法を使用することができる。
 特に、上述の脂質膜粒子を用いている場合、脂質を用いたトランスフェクション(リポフェクション)として従来知られた方法を用いることができる。通常、細胞に対して遺伝子導入を行う場合は、上述の遺伝子導入用脂質粒子を含む試薬を、細胞培養液に投与(ドーズ)して24時間以上培養することで導入が行われる。
As a method for gene transfer when introducing lipid particles for gene transfer into cells, a conventionally known method for gene transfer can be used.
In particular, when the above-mentioned lipid membrane particles are used, a conventionally known method of transfection using lipids (lipofection) can be used. Usually, when gene transfer is performed on cells, a reagent containing the above-mentioned lipid particles for gene transfer is administered (dosed) to a cell culture solution and cultured for 24 hours or more to transfer the gene.
 遺伝子導入用脂質粒子を、動物の組織内の細胞に投与する場合は、投与経路は、特に限定されるものではないが、例えば、経静脈投与、経腸投与、筋肉内投与、皮下投与、経皮投与、経鼻投与、または経肺投与等の非経口投与を用いることができる。 When lipid particles for gene transfer are administered to cells in animal tissue, the route of administration is not particularly limited, but can be parenteral administration such as intravenous administration, enteral administration, intramuscular administration, subcutaneous administration, transdermal administration, nasal administration, or pulmonary administration.
 (核酸複合体組成物の製造用キット)
 本実施形態の核酸複合体組成物の製造用キットは、前述の核酸複合体組成物を製造するためのキットであって、核酸分子およびポリカチオンを含む。
(Kit for producing nucleic acid complex composition)
The kit for producing a nucleic acid complex composition of the present embodiment is a kit for producing the aforementioned nucleic acid complex composition, and contains a nucleic acid molecule and a polycation.
 本実施形態の核酸複合体組成物の製造用キットは、前述の核酸分子およびポリカチオンの他、製造に用いる他の構成を含んでいてもよい。例えば、核酸分子およびポリカチオンの複合体の製造に有用なpH調整剤、緩衝剤(塩など)、安定剤、検量用の試薬や部材などを含んでいてもよい。 The kit for producing the nucleic acid complex composition of this embodiment may contain, in addition to the above-mentioned nucleic acid molecule and polycation, other components used in the production. For example, it may contain a pH adjuster, a buffer (such as a salt), a stabilizer, a calibration reagent or component, etc. that are useful for producing a complex of a nucleic acid molecule and a polycation.
 本実施形態の核酸複合体組成物の製造用キットは、流路構造体を含んでいてもよい。流路構造体は、分子同士の複合体の製造に用いる部材であり、流動体を流通させ、例えば混合させる構造を有する。流路構造体としては、例えば国際公報WO2018/190423に記載のもの等を使用できるが、これらに限るものではない。
 具体的な流路構造体の構造としては、基体及びその内部に設けた流路構造を有する流路構造体であって、前記流路構造は、その上流側において、互いに独立した、第1の流動体を導入する第1導入路と、第2の流動体を導入する第2導入路との少なくとも2つの導入路を有し、かつ前記導入路は合流部位において合流し、前記合流部位の下流側に向かって希釈流路を有する流路構造体などが挙げられる。
 例えば、上記流路構造体を用いて、第1導入路に第1の流動体として核酸を含有する水溶液を供給し、第2導入路に第2の流動体としてポリカチオンを含有する溶液を供給し、希釈流路において、核酸複合体組成物を得ることができる。
 こうした構造を有する流路構造体の例としては、市販のマイクロ流体デバイス(iLiNP)などが挙げられる。
The kit for producing the nucleic acid complex composition of this embodiment may include a flow path structure. The flow path structure is a member used in producing a complex between molecules, and has a structure for circulating and, for example, mixing fluids. As the flow path structure, for example, those described in International Publication WO2018/190423 can be used, but are not limited thereto.
A specific example of the structure of the flow path structure is a flow path structure having a base and a flow path structure provided therein, the flow path structure having at least two inlet paths, which are independent of each other on the upstream side of the base, a first inlet path for introducing a first fluid and a second inlet path for introducing a second fluid, the inlet paths joining at a joining portion, and a flow path structure having a dilution flow path toward the downstream side of the joining portion.
For example, using the above-mentioned flow path structure, an aqueous solution containing nucleic acid can be supplied as a first fluid to the first inlet path, and a solution containing polycations can be supplied as a second fluid to the second inlet path, and a nucleic acid complex composition can be obtained in the dilution flow path.
An example of a flow channel structure having such a structure is a commercially available microfluidic device (iLiNP).
 (遺伝子導入用脂質粒子の製造用キット)
 本実施形態の遺伝子導入用脂質粒子の製造用キットは、前述の遺伝子導入用脂質粒子を製造するためのキットであって、核酸分子、ポリカチオンおよび脂質膜粒子を含む。
(Kit for producing lipid particles for gene introduction)
The kit for producing lipid particles for gene introduction of the present embodiment is a kit for producing the above-mentioned lipid particles for gene introduction, and includes a nucleic acid molecule, a polycation, and a lipid membrane particle.
 遺伝子導入用脂質粒子の製造用キットは、前述の核酸分子、ポリカチオン、脂質粒子の他、製造に用いる他の構成を含んでいてもよい。
 例えば、前述の核酸複合体組成物の製造用キットに含まれ得る構成を含んでいてもよい。
 また、脂質溶液を製造するために用いる成分、部材等を含んでいてもよい。例えば、脂質溶液の製造に用いる水系又は有機系溶液を調整するための溶媒、他の脂質、pH調整剤、緩衝剤(塩など)、安定剤、検量用の試薬や部材などを含んでいてもよい。
The kit for producing lipid particles for gene introduction may contain, in addition to the above-mentioned nucleic acid molecule, polycation, and lipid particle, other components used in the production.
For example, it may include a configuration that can be included in a kit for producing the above-mentioned nucleic acid complex composition.
In addition, it may contain components, parts, etc. used for producing the lipid solution. For example, it may contain a solvent for adjusting the aqueous or organic solution used in producing the lipid solution, other lipids, a pH adjuster, a buffer (such as a salt), a stabilizer, a calibration reagent or parts, etc.
 本実施形態の遺伝子導入用脂質粒子の製造用キットは、流路構造体を含んでいてもよい。流路構造体は上述したものを用いることができる。
 上記流路構造体を用いて、例えば、第1導入路に第1の流動体として核酸複合体組成物を含有する水溶液を供給し、第2導入路に第2の流動体として脂質を含有する相溶性有機溶媒の溶液を供給し、希釈流路において、遺伝子導入用脂質粒子を含有する溶液を得てもよい。
 なお、上記流路構造体は、導入路を3つ以上有するものであってもよい。この場合、例えば、第1導入路に核酸を含有する液を、第2導入路にポリカチオンを含有する液を、第3導入路に脂質を含有する液を導入してもよい。なお、各導入路に供給される溶液は特に限定されるものではない。
The kit for producing lipid particles for gene introduction according to the present embodiment may include a flow channel structure. The flow channel structure may be any of those described above.
Using the above-mentioned flow path structure, for example, an aqueous solution containing a nucleic acid complex composition may be supplied as a first fluid to the first inlet path, and a solution of a compatible organic solvent containing lipids may be supplied as a second fluid to the second inlet path, and a solution containing lipid particles for gene introduction may be obtained in the dilution flow path.
The flow path structure may have three or more introduction paths. In this case, for example, a solution containing nucleic acid may be introduced into the first introduction path, a solution containing polycation may be introduced into the second introduction path, and a solution containing lipid may be introduced into the third introduction path. The solutions supplied to each introduction path are not particularly limited.
 (本実施形態のさらに他の側面)
 本実施形態のさらに他の側面は、核酸分子の細胞への遺伝子導入における使用のための、前記核酸複合体組成物である。
 本実施形態のさらに他の側面は、遺伝子導入用脂質粒子を製造するための、前記核酸複合体組成物の使用である。
 本実施形態のさらに他の側面は、前記核酸複合体組成物を用いた、前記遺伝子導入用脂質粒子の製造方法である。
 本実施形態のさらに他の側面は、核酸分子の細胞への遺伝子導入における使用のための、前記遺伝子導入用脂質粒子である。
(Still another aspect of this embodiment)
Yet another aspect of this embodiment is the nucleic acid complex composition as described above for use in the gene transfer of a nucleic acid molecule into a cell.
Yet another aspect of this embodiment is the use of the nucleic acid complex composition for producing lipid particles for gene transfer.
Yet another aspect of this embodiment is a method for producing the lipid particles for gene introduction using the nucleic acid complex composition.
Yet another aspect of this embodiment is the lipid particle for gene transfer, for use in gene transfer of a nucleic acid molecule into a cell.
 (本実施形態の効果)
 本実施形態の核酸複合体組成物、遺伝子導入用脂質粒子それを用いた遺伝子導入方法は、核酸分子の細胞内への導入、細胞への拡散、及び核移行効率が高く、高い遺伝子導入効率を実現することができる。
(Effects of this embodiment)
The nucleic acid complex composition and lipid particles for gene transfer of the present embodiment and the gene transfer method using the same have high efficiency of introducing nucleic acid molecules into cells, diffusing into cells, and transferring them to the nucleus, and can achieve high gene transfer efficiency.
 前述したように、特にサイズの大きい長鎖核酸、さらにはpDNAに用いられる10kbp以上のDNAを用い、従来の脂質ナノ粒子に封入した場合、高い遺伝子導入効率を得ることが難しかった。本発明者らは、その理由として以下のようなものがあると考察した。 As mentioned above, it was difficult to achieve high gene transfer efficiency when using long-chain nucleic acids, particularly those with a length of 10 kbp or more used in pDNA, and encapsulating them in conventional lipid nanoparticles. The inventors believe that the reasons for this are as follows:
 脂質ナノ粒子に封入されて輸送された核酸分子が形質転換に用いられるまでには、(1)脂質ナノ粒子がエンドソームと融合して細胞質内に取り込まれ、さらにエンドソームを脱出、(2)エンドソーム脱出した核酸分子の細胞質内への拡散の段階が必要と考えられる。核酸分子がDNA(pDNAやBAC(バクテリア人工染色体)など)の場合は、さらに(3)核酸分子の細胞核への移行の段階が必要となる。
 ここで、遺伝子導入効率を増大させるには、(1)の段階で、長鎖pDNAの細胞への遺伝子導入効率を向上させるためには、siRNAやmRNAおよび鎖長が短いpDNAよりもダイナミックにナノ粒子の脂質膜とエンドソーム膜とが融合する必要があると仮説を立てた。
 また、(2)の段階で、細胞質に放出された長鎖DNAは、鎖長が短いDNAと比較して拡散速度が遅いと考えられた。
 さらに、(3)の段階でも、分子量が大きい長鎖DNAは細胞核への移行は遅く、起こりにくいと考えられた。
Before a nucleic acid molecule encapsulated in a lipid nanoparticle and transported can be used for transformation, it is believed that the following steps are required: (1) the lipid nanoparticle fuses with an endosome, is taken up into the cytoplasm, and then escapes the endosome; and (2) the nucleic acid molecule that escapes the endosome diffuses into the cytoplasm. If the nucleic acid molecule is DNA (such as pDNA or BAC (bacterial artificial chromosome)), a further step (3) of the nucleic acid molecule transferring to the cell nucleus is required.
Here, we hypothesized that in order to increase the efficiency of gene transfer, in step (1), in order to improve the efficiency of gene transfer of long-chain pDNA into cells, the lipid membrane of the nanoparticle needs to fuse with the endosomal membrane more dynamically than in the case of siRNA, mRNA, and short-chain pDNA.
In addition, it was thought that the long DNA released into the cytoplasm in step (2) had a slower diffusion rate than short DNA.
Furthermore, even at the stage (3), it was thought that the transfer of long-chain DNA with a large molecular weight to the cell nucleus was slow and unlikely to occur.
 そこで、本実施形態では、pDNAとポリカチオンの複合体を混合して調製したコア粒子を脂質ナノ粒子に搭載し、エンドソーム脱出効率の向上と複合体化によるコンパクション効果による長鎖pDNAの遺伝子導入効率の改善に取り組んだ。 In this embodiment, we therefore aimed to improve the efficiency of endosomal escape and the gene transfer efficiency of long-chain pDNA by using the compaction effect of complexation to load core particles prepared by mixing pDNA and polycation complexes onto lipid nanoparticles.
 本実施形態では、正電荷に調製したカチオン性コアをカチオン性脂質を主成分とする脂質系に搭載することを着想した。これによって、負電荷のpDNAの粒子への搭載にカチオン性脂質が消費されないため、より多くのカチオン性脂質が粒子表面に局在できると考えた。 In this embodiment, we came up with the idea of loading a cationic core prepared to have a positive charge onto a lipid system mainly composed of cationic lipids. This would allow more cationic lipids to be localized on the particle surface, since cationic lipids would not be consumed in loading negatively charged pDNA onto the particles.
 また、これまでのDNA-ナノ脂質粒子の作製法では、負電荷のDNAをカチオン性脂質系で封入あるいは負電荷に調製したDNA-ポリカチオンコア粒子をカチオン性脂質系に封入している。これによって、効率的なDNA搭載が可能ではあるが、粒子内部は脂質多重膜のラメラ構造を形成することが多い。一方で、長鎖DNAの遺伝子導入においては、ラメラ構造を形成している脂質多重膜から大きなサイズのDNAが放出される必要がある。そのため、カチオン性コア粒子をカチオン性脂質系に封入することで、静電相互作用によるラメラ構造の形成を回避し、よりダイナミックなエンドソーム膜との融合と細胞質へのpDNAの放出が可能になると着想した。さらに、長鎖pDNAをポリカチオンによってコンパクションすることで、見かけ上の分子サイズが小さくなり、エンドソーム脱出後の拡散速度の向上および核移行効率が改善することが期待される。 In addition, in the previous method of preparing DNA-nanolipid particles, negatively charged DNA is encapsulated in a cationic lipid system, or DNA-polycation core particles prepared to be negatively charged are encapsulated in a cationic lipid system. This allows efficient DNA loading, but the inside of the particle often forms a lipid multilayer lamellar structure. On the other hand, in the gene transfer of long-chain DNA, it is necessary to release large-sized DNA from the lipid multilayer that forms a lamellar structure. Therefore, it was conceived that encapsulating cationic core particles in a cationic lipid system would avoid the formation of a lamellar structure due to electrostatic interactions, and enable more dynamic fusion with the endosomal membrane and release of pDNA into the cytoplasm. Furthermore, compacting long-chain pDNA with polycations would reduce the apparent molecular size, which is expected to improve the diffusion rate after escape from the endosome and the efficiency of nuclear transfer.
 また、本実施形態では、核酸分子として短鎖核酸、siRNAを用いた場合も、高い効率を示し、siRNAによるノックダウンを好適に行うことができる。これにより、siRNAのノックダウンの効率を改善することが期待される。
 また、核酸分子として200kbp以上のさらなる長鎖核酸を用いた場合も高いトランスフェクション効率を示す。例えば、長鎖核酸として、200kbp以上の人工染色体、BACを用いても高い効率を示す。
Furthermore, in this embodiment, even when a short-chain nucleic acid, siRNA, is used as the nucleic acid molecule, high efficiency is exhibited, and knockdown by siRNA can be suitably performed. This is expected to improve the efficiency of siRNA knockdown.
Furthermore, high transfection efficiency is also observed when a longer nucleic acid of 200 kbp or more is used as the nucleic acid molecule. For example, high efficiency is also observed when an artificial chromosome or BAC of 200 kbp or more is used as the long-chain nucleic acid.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されず種々の変更を行うことができる。 The above describes an embodiment of the present invention, but the present invention is not limited to the above embodiment and various modifications can be made.
 以下、実施例および比較例により、本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例のみに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施できるものである。 The effects of the present invention will be made clearer by the following examples and comparative examples. Note that the present invention is not limited to the following examples, and can be modified as appropriate without departing from the gist of the present invention.
 (遺伝子導入用脂質粒子の作製)
 マイクロ流体デバイス(iLiNP)を用いたエタノール希釈法でナノサイズの脂質粒子(脂質ナノ粒子、LNP)を作製した。マイクロ流体デバイスには総流量500μL/min、流量比6で以下の溶液を送液した。
 水系溶液:1mg/mLのポリカチオンを用いたポリカチオン溶液と、長鎖DNAとして後述するそれぞれの1mg/mL pDNAを順に25mM酢酸バッファー(pH4.0)に溶解し、pDNA濃度が22μg/mLとなるようにした。ポリカチオンとしては、PEI(ポリエチレンイミン)、硫酸プロタミン、R8(STR-R8、8重合アルギニン)を用いた。ポリカチオンとしてPEIを用いた場合、pDNA/PEIの重量比は、1/x、(x=0、0.1、1、5)とした。
 脂質溶液:脂質混合物をエタノールに溶解し、最終脂質濃度が4mMになるように調製した。脂質組成はCL15F6/DSPC/cholesterol/DMG-PEG2K (60/10/30/1mol%)とした。
(Preparation of lipid particles for gene transfer)
Nano-sized lipid particles (lipid nanoparticles, LNP) were prepared by the ethanol dilution method using a microfluidic device (iLiNP). The following solutions were delivered to the microfluidic device at a total flow rate of 500 μL/min and a flow rate ratio of 6.
Aqueous solution: A polycation solution using 1 mg/mL polycation and 1 mg/mL pDNA as long-chain DNA, which will be described later, were dissolved in 25 mM acetate buffer (pH 4.0) in order to make the pDNA concentration 22 μg/mL. PEI (polyethyleneimine), protamine sulfate, and R8 (STR-R8, 8-polymerized arginine) were used as polycations. When PEI was used as polycation, the weight ratio of pDNA/PEI was 1/x (x=0, 0.1, 1, 5).
Lipid solution: A lipid mixture was dissolved in ethanol to prepare a final lipid concentration of 4 mM. The lipid composition was CL15F6/DSPC/cholesterol/DMG-PEG2K (60/10/30/1 mol%).
 LNP作製後、LNP懸濁液を透析膜チューブ(12-14kDa MW cutoffs、Repligen Corporation(Waltham,MA))を使用して、20mM MES緩衝液(pH6.0)で2時間以上透析し、さらにPBS(pH7.4)で一晩透析して残存エタノールを除去した。 After LNP preparation, the LNP suspension was dialyzed against 20 mM MES buffer (pH 6.0) using a dialysis membrane tube (12-14 kDa MW cutoffs, Repligen Corporation, Waltham, MA) for more than 2 hours, and then dialyzed overnight against PBS (pH 7.4) to remove residual ethanol.
 コントロールサンプルの空LNP(脂質粒子のみ)は水系溶液として25mM酢酸バッファーを用いたほかは、上記と同様の条件で作製した。
 コントロールサンプルのポリプレックスはPBSに1mg/mL PEI溶液と1mg/mL pDNAを溶解し、 pDNA濃度が22μg/mLとなるようにした。pDNA/PEIの重量比は、1/1とした。
The control sample, empty LNP (lipid particles only), was prepared under the same conditions as above, except that 25 mM acetate buffer was used as the aqueous solution.
The polyplex of the control sample was prepared by dissolving 1 mg/mL PEI solution and 1 mg/mL pDNA in PBS to give a pDNA concentration of 22 μg/mL. The weight ratio of pDNA/PEI was 1/1.
 得られた上記LNPの物性評価は、Zeta-sizer Nano ZS ZEN3600 instrument (Malvern,UK)を用いて粒径とゼータ電荷(ゼータ電位)を測定することにより行った。 The physical properties of the obtained LNPs were evaluated by measuring the particle size and zeta charge (zeta potential) using a Zeta-sizer Nano ZS ZEN3600 instrument (Malvern, UK).
 長鎖DNAとして使用したpDNAは以下の通りである。
 pNL3.1[Nluc/minP] (3151 kbp) (Promega)
 pEF1a-2xSV40_NLS-Nluc (6022 kbp) (Plasmid No. 135953, Addgene)
 HES7-NLuc-2A-tdTomato (10433 kbp) (Plasmid No. 130932, Addgene)
 pSLIK TT 3xFLAG Luciferase neo (13848 kbp) (Plasmid No. 98392), Addgene)
 pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP (15000 kbp) (Plasmid No. 71237, Addgene)
The pDNA used as the long-chain DNA is as follows:
pNL3.1[Nluc/minP] (3151 kbp) (Promega)
pEF1a-2xSV40_NLS-Nluc (6022 kbp) (Plasmid No. 135953, Addgene)
HES7-NLuc-2A-tdTomato (10433 kbp) (Plasmid No. 130932, Addgene)
pSLIK TT 3xFLAG Luciferase neo (13848 kbp) (Plasmid No. 98392), Addgene)
pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP (15000 kbp) (Plasmid No. 71237, Addgene)
 (細胞培養)
 凍結された細胞ストックを、15mL遠沈管に入ったDMEM(sigma)(非動化 10% FBS、100 U/mLペニシリン、100μg/mL ストレプトマイシンを含む)(以降DMEM(+)) 4mLに添加した。
 遠心操作(1000rpm、5min)を行ない、上清を除去後に沈殿した細胞を1mLの培地に懸濁し、9mLの培地を含む10cm dishに播種した。80~90%コンフルエントになった際に、滅菌PBS 5mLで洗浄し、0.0625%トリプシン2 mLで剥離させた細胞を8mLの培地に添加した、その後、遠心操作(1000rpm、5min)を行った。
 上清を除去後、沈殿した細胞を適当な量の培地(3~5mL)に再懸濁し、細胞を計数した。10cm dishに150000 cells/10mLとなるようにHeLa細胞を再播種した。
(Cell Culture)
The frozen cell stock was added to 4 mL of DMEM (Sigma) (containing inactivated 10% FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin) (hereinafter referred to as DMEM(+)) in a 15 mL centrifuge tube.
After centrifugation (1000 rpm, 5 min), the supernatant was removed and the precipitated cells were suspended in 1 mL of medium and seeded in a 10 cm dish containing 9 mL of medium. When the cells reached 80-90% confluence, they were washed with 5 mL of sterile PBS, detached with 2 mL of 0.0625% trypsin, and added to 8 mL of medium. Then, centrifugation (1000 rpm, 5 min) was performed.
After removing the supernatant, the precipitated cells were resuspended in an appropriate amount of medium (3 to 5 mL) and counted. HeLa cells were reseeded in a 10 cm dish at 150,000 cells/10 mL.
 (細胞生存率測定)
 ドーズ開始の24時間前に、HeLa細胞を96ウェルプレートで培養した(4000細胞/ウェル)。培養液を0.05μgのpDNAを含むナノ粒子を添加した100μL DMEM(+)に交換し、細胞を37℃で24時間インキュベートした。ドーズ開始から24時間後新しい100μL DMEM(+)に培地を交換し、CellTiter-blue 細胞生存率測定キット(Promega)を用いて、細胞生存率を測定した。
(Cell viability measurement)
Twenty-four hours before the start of dosing, HeLa cells were cultured in a 96-well plate (4,000 cells/well). The culture medium was replaced with 100 μL DMEM(+) containing nanoparticles containing 0.05 μg of pDNA, and the cells were incubated at 37° C. for 24 hours. 24 hours after the start of dosing, the medium was replaced with fresh 100 μL DMEM(+), and cell viability was measured using a CellTiter-blue cell viability measurement kit (Promega).
 (トランスフェクション効率測定)
 ドーズ開始の24時間前に、HeLa細胞を24ウェルプレートで培養した(40000細胞/ウェル)。培養液を0.5μgのpDNAを含むナノ粒子を添加した1mL DMEM(+)に交換し、細胞を37℃で24時間インキュベートした。
 ドーズ開始から24時間後、新しい500μL DMEM(+)に交換した。
 ドーズ開始から48時間後、細胞を滅菌PBS 500μlで2回洗浄し、100μlのGlo Lysis Buffer、1X (Promega)を加えて可溶化し、遠心分離(24660g、4℃、2分)した。
 細胞溶解液中のホタルルシフェラーゼ活性は、ONE-Glo Luciferase Assay System (Promega)で、NanoLuc活性はNano-Glo(R) Luciferase Assay System (Promega)で、細胞ライセート中の総タンパク質量は、BCA protein assay kit を用いてそれぞれ測定した。
(Transfection efficiency measurement)
24 hours before the start of dosing, HeLa cells were cultured in 24-well plates (40,000 cells/well). The culture medium was replaced with 1 mL DMEM(+) containing nanoparticles containing 0.5 μg of pDNA, and the cells were incubated at 37° C. for 24 hours.
24 hours after the start of dosing, the medium was replaced with 500 μL of fresh DMEM(+).
48 hours after the start of dosing, the cells were washed twice with 500 μl of sterile PBS, solubilized by adding 100 μl of Glo Lysis Buffer, 1× (Promega), and centrifuged (24660 g, 4° C., 2 min).
Firefly luciferase activity in the cell lysate was measured using the ONE-Glo Luciferase Assay System (Promega), NanoLuc activity was measured using the Nano-Glo® Luciferase Assay System (Promega), and the total protein amount in the cell lysate was measured using a BCA protein assay kit.
 EGFPの発現は、フローサイトメトリー(Cyto FLEX, Beckman Coulter)によって評価した。培養終了後、培地を除去し、細胞をPBSで2回洗浄した後、トリプシン処理した。細胞懸濁液を遠心分離し(400g、4℃、5分)、沈殿した細胞を500μL FACS buffer (0.5%BSA、0.1% NaN in PBS)に懸濁した後、ナイロンメッシュを通過させて細胞の凝集物を除去、測定を行った。
 ポジティブコントロールとしてLipofectamine 3000 (Thermo Fisher Scientific)を使用し、製造元のプロトコルに従ってトランスフェクションを行った。
Expression of EGFP was evaluated by flow cytometry (Cyto FLEX, Beckman Coulter). After the culture was completed, the medium was removed, and the cells were washed twice with PBS and then treated with trypsin. The cell suspension was centrifuged (400 g, 4° C., 5 min), and the precipitated cells were suspended in 500 μL FACS buffer (0.5% BSA, 0.1% NaN 3 in PBS), and then passed through a nylon mesh to remove cell aggregates, followed by measurement.
Lipofectamine 3000 (Thermo Fisher Scientific) was used as a positive control, and transfection was performed according to the manufacturer's protocol.
 (細胞取り込み評価)
 上記の粒子作製法をもとに、0.05mol% DiDを脂質/エタノール溶液に添加して粒子を作製した。上記の実験方法と同様に、細胞に作製したDiD標識粒子懸濁液を添加し、フローサイトメーターによって細胞への粒子取り込み量を評価した。
(Cellular uptake evaluation)
Based on the above particle preparation method, 0.05 mol% DiD was added to a lipid/ethanol solution to prepare particles. In the same manner as in the above experimental method, the prepared DiD-labeled particle suspension was added to cells, and the amount of particles taken up by the cells was evaluated using a flow cytometer.
 (試験例1:各種ポリカチオンによるトランスフェクション効率)
 上述したように、ポリカチオンと長鎖DNAを複合体とした正電荷を有するコア粒子と、脂質粒子を複合した脂質ナノ粒子とを複合した遺伝子導入用脂質粒子によりトランスフェクション効率を改善できることを予測した。そこで、複数種のポリカチオンを用いて前記遺伝子導入用脂質粒子を作製し、そのトランスフェクション効率を比較した。
(Test Example 1: Transfection efficiency by various polycations)
As described above, it was predicted that transfection efficiency could be improved by using lipid particles for gene introduction, which are composed of a positively charged core particle in which a polycation and a long-chain DNA are complexed, and a lipid nanoparticle in which a lipid particle is complexed. Therefore, the lipid particles for gene introduction were prepared using a plurality of types of polycations, and the transfection efficiencies thereof were compared.
 ポリカチオンとして硫酸プロタミン、R8(STR-R8、アルギニン8重合体)、および、ポリエチレンイミン(PEI)を用いて15 kbpのGFPをコードしたpDNAとコア粒子を作製した。作製したコア粒子をイオン化脂質であるCL15F6、他の脂質としてDSPC(1、2-ジステアロイル-sn-グリセロ-3-ホスホコリン)、コレステロール(Chol)、および、PEG-DMG 2kからなる脂質ナノ粒子に搭載し、HeLa細胞へのトランスフェクション効率を評価した。コントロールとして、市販のトランスフェクション試薬で最も高性能であるLipofectamine 3000を用いた。
 CL15F6/DSPC/Chol/PEGの比は、モル比で60/10/30/1であった。以下の試験例でも、特に追記していない場合は同様である。
A core particle and pDNA encoding 15 kbp GFP were prepared using protamine sulfate, R8 (STR-R8, arginine 8 polymer), and polyethyleneimine (PEI) as polycations. The prepared core particle was loaded onto lipid nanoparticles consisting of CL15F6, an ionized lipid, DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), cholesterol (Chol), and PEG-DMG 2k as other lipids, and the transfection efficiency into HeLa cells was evaluated. As a control, Lipofectamine 3000, the most highly efficient commercially available transfection reagent, was used.
The molar ratio of CL15F6/DSPC/Chol/PEG was 60/10/30/1. The same applies to the following test examples unless otherwise specified.
 図1は、各ポリカチオンを用いた遺伝子導入用脂質粒子によるトランスフェクション効率を比較したグラフ図である。
 ここで、コントロールであるLipofectamine 3000のトランスフェクション効率は10%である。図に示すように、DNAのみをコア粒子とした場合、硫酸プロタミンをポリカチオンに用いた場合及びR8を用いた場合は、トランスフェクション効率はコントロールの半分以下であり、高い効率は得られなかった。これに対して、ポリカチオンとしてPEIを用いた場合は、コントロールの3.7倍である37%のトランスフェクション効率が得られた。
 その結果、PEIをコア粒子のポリカチオンに用いた脂質ナノ粒子が最もトランスフェクション効率が高いことが分かった。
FIG. 1 is a graph comparing the transfection efficiency of lipid particles for gene transfer using each polycation.
Here, the transfection efficiency of the control Lipofectamine 3000 is 10%. As shown in the figure, when only DNA was used as the core particle, when protamine sulfate was used as the polycation, and when R8 was used, the transfection efficiency was less than half that of the control, and high efficiency was not obtained. In contrast, when PEI was used as the polycation, a transfection efficiency of 37%, which is 3.7 times that of the control, was obtained.
As a result, it was found that lipid nanoparticles using PEI as the polycation of the core particle had the highest transfection efficiency.
 (試験例2:DNAとポリカチオンの混合比率の検討)
 上述のようにPEIをポリカチオンに用いて長鎖DNA複合体を形成した脂質ナノ粒子が最もトランスフェクション効率が高いことが分かったため、DNAとPEIの混合比率を検討した。
 DNAとしては15kbpのpDNAを用い、ポリカチオンとしてPEIを用いて、pDNA:PEIの比率(重量比)が、1:0の粒子A(A15)、1:0.1の粒子B(B15)、1:1の粒子C(C15)、1:5の粒子D(D15)となるよう、長鎖DNA複合体を調整した。
(Test Example 2: Examination of the Mixing Ratio of DNA and Polycation)
As described above, it was found that lipid nanoparticles in which long-chain DNA complexes were formed using PEI as a polycation had the highest transfection efficiency, and therefore the mixing ratio of DNA and PEI was examined.
Long-chain DNA complexes were prepared using 15 kbp pDNA as the DNA and PEI as the polycation, with the pDNA:PEI ratio (weight ratio) being 1:0 for particle A (A15), 1:0.1 for particle B (B15), 1:1 for particle C (C15), and 1:5 for particle D (D15).
 図2は、各粒子のサイズの分布を示すグラフ図である。図に示すように、大きく分けてA15とB15は75nm、C15とD15は35nmに粒径のピークがある。これはPEIの含有比率がある程度以上大きいと粒径が小さくなることを示す。分子の大きさの他、正電荷のPEIと負電荷のDNAによる粒子全体の電荷に関係しているなどが予想される。
 図3は、各粒子のサイズ平均を比較して示すグラフ図である。
Figure 2 is a graph showing the size distribution of each particle. As shown in the figure, the particle size peaks at 75 nm for A15 and B15, and 35 nm for C15 and D15. This indicates that the particle size becomes smaller when the PEI content ratio is larger than a certain level. In addition to the size of the molecule, it is thought that this is related to the charge of the entire particle due to the positive charge of PEI and the negative charge of DNA.
FIG. 3 is a graph showing a comparison of the average particle sizes.
 図4は、各粒子の電荷を示すグラフ図である。白(中空)のドットはポリカチオンと長鎖DNAを複合したコア粒子(長鎖核酸複合体)、斜線入のドットはコア粒子と脂質膜粒子が複合した脂質ナノ粒子(遺伝子導入用脂質粒子)を示す。なお、図示していないが、A15及びB15の脂質ナノ粒子の粒径はおよそ80nm、C15及びD15の脂質ナノ粒子の粒径はおよそ40nmであった。
 図に示すように、A15及びB15はコア粒子のみではZ電位がマイナス(-50~-25mV前後)であるが、脂質ナノ粒子はおよそ0mV前後である。一方、C15及びD15はコア粒子、脂質ナノ粒子ともにZ電位がわずかにプラス(+5~+10mV前後)である。
4 is a graph showing the charge of each particle. The white (hollow) dots represent core particles (long-chain nucleic acid complexes) in which polycations and long-chain DNA are complexed, and the shaded dots represent lipid nanoparticles (lipid particles for gene introduction) in which core particles and lipid membrane particles are complexed. Although not shown, the particle size of the lipid nanoparticles A15 and B15 was approximately 80 nm, and the particle size of the lipid nanoparticles C15 and D15 was approximately 40 nm.
As shown in the figure, the Z potential of the core particles alone for A15 and B15 is negative (around -50 to -25 mV), but the lipid nanoparticles are approximately 0 mV. On the other hand, the Z potential of both the core particles and lipid nanoparticles for C15 and D15 is slightly positive (around +5 to +10 mV).
 図5は、C15についてDNAと各種複合体それぞれのZ電位を比較するグラフ図である。C15についてC15のpDNAのみ、PPs(pDNAとPEIの複合体)、empty NPs(脂質膜粒子のみ)、PPs+empty LNPs(脂質ナノ粒子)のZ電位を指す。C15のDNAのみ、PPs、脂質ナノ粒子ではZ電位は10前後となっている。 Figure 5 is a graph comparing the Z potential of DNA and various complexes for C15. The Z potential for C15 indicates pDNA only, PPs (complex of pDNA and PEI), empty NPs (lipid membrane particles only), and PPs + empty LNPs (lipid nanoparticles). The Z potential for C15 DNA only, PPs, and lipid nanoparticles is around 10.
 これらの結果より、DNA:PEIの比率(重量比)が、1:0.1のB15と、1:1のC15で大きく差が生じていることが分かった。そのため、B15とC15の構造についてさらに検討した。
 図6は、B15及びC15について透過型電子顕微鏡(TEM)で観察した図である。上述の図のように、B15では径が大きく、C15ではより径が小さくなっている。この観察図では、B15では内部構造が複数のラメラを形成しているのに対して、C15ではリポソームに似た構造となっていることが予想される。
 図7は、B15及びC15について小角X線散乱(SAXS)によって評価した図である。B15については、6.3nmの箇所にピークがみられ、この面間隔によって複数のラメラ構造を有することが考えられる。一方、C15についてはピークがなく、特定の周期構造が観測されなかった。
 これらの結果から、B15は脂質多重膜の形成が確認され、6.3 nmの面間隔の周期的なラメラ構造を有することが分かった。それに対して、C15は層構造などは有していない中空のリポソーム状であると分かった。
These results indicate that there is a large difference in the DNA:PEI ratio (weight ratio) between B15 at 1:0.1 and C15 at 1:1. Therefore, the structures of B15 and C15 were further examined.
Figure 6 shows the results of observation of B15 and C15 by a transmission electron microscope (TEM). As shown in the figure above, the diameter of B15 is large, while that of C15 is smaller. In this observation, it is expected that the internal structure of B15 forms multiple lamellae, whereas that of C15 is similar to that of liposomes.
Fig. 7 shows the results of evaluation of B15 and C15 by small angle X-ray scattering (SAXS). For B15, a peak was observed at 6.3 nm, and this interplanar spacing is considered to indicate the presence of multiple lamellar structures. On the other hand, for C15, there was no peak, and no specific periodic structure was observed.
From these results, it was confirmed that B15 formed a lipid multilayer and had a periodic lamellar structure with a lattice spacing of 6.3 nm, whereas C15 was found to be a hollow liposome without a layered structure.
 (試験例3:DNAとポリカチオンの混合比率ごとのトランスフェクション効率1)
 粒子A15~D15および市販のトランスフェクション試薬であるLipofectamine 3000を用いて、15kbpのpDNAのトランスフェクション効率を比較した。
 図8は、行った操作のフローを示す模式図である。図に示すように、導入する細胞は導入前に24時間培養したHeLa細胞を用い、0.5μg/mLの15kbp pDNAを導入した。
(Test Example 3: Transfection efficiency 1 for each mixture ratio of DNA and polycation)
The transfection efficiency of 15 kbp pDNA was compared using particles A15 to D15 and a commercially available transfection reagent, Lipofectamine 3000.
8 is a schematic diagram showing the flow of the procedure carried out. As shown in the figure, HeLa cells cultured for 24 hours before transfection were used as the cells to be transfected, and 0.5 μg/mL of 15 kbp pDNA was transfected.
 図9は、トランスフェクション効率を示すグラフ図である。図に示すように、PEIを含まずDNAのみを脂質膜粒子に導入した通常の脂質ナノ粒子である粒子A15のトランスフェクション効率は数%程度であり、B15およびD15もほぼ同等の性能であった。また、市販のトランスフェクション試薬で最も高性能であるLipofectamine 3000では、約10%のトランスフェクション効率であった。
 一方で、粒子C15のトランスフェクション効率は約40%であり、粒子Aの約10倍、Lipofectamine 3000の約4倍の性能を示した。
9 is a graph showing the transfection efficiency. As shown in the figure, the transfection efficiency of particle A15, which is a normal lipid nanoparticle in which only DNA is introduced into a lipid membrane particle without containing PEI, is about several percent, and B15 and D15 also have almost the same performance. In addition, Lipofectamine 3000, which is the most highly efficient commercially available transfection reagent, had a transfection efficiency of about 10%.
On the other hand, the transfection efficiency of particles C15 was about 40%, which was about 10 times that of particles A and about 4 times that of Lipofectamine 3000.
 図10は、このトランスフェクション試験における細胞生存率を示すグラフ図である。粒子A15~D15やコントロールのリポフェクタミンについては、細胞生存率に有意差が認められなかった。すなわち、細胞毒性はサンプル間で差がないことが分かった。 Figure 10 is a graph showing the cell viability in this transfection test. No significant difference in cell viability was observed for particles A15-D15 and the control Lipofectamine. In other words, it was found that there was no difference in cytotoxicity between the samples.
 (試験例4:DNAとポリカチオンの混合比率ごとのトランスフェクション効率2)
 DNA:PEIの比率(重量比)が1:1の粒子C(C15)で特に大きなトランスフェクション効率が認められたので、さらにさまざまな比率でトランスフェクション効率の比較を行った。1:0~1:10の割合で様々な比率のサンプルを用い、他は試験例3と同様の操作を行った。
(Test Example 4: Transfection efficiency 2 for each mixture ratio of DNA and polycation)
Since a particularly high transfection efficiency was observed with particle C (C15) with a DNA:PEI ratio (weight ratio) of 1:1, the transfection efficiency was further compared at various ratios. Samples with various ratios from 1:0 to 1:10 were used, and the same procedure as in Test Example 3 was performed for the rest.
 図11は、トランスフェクション効率を示すグラフ図である。DNA:PEIの比率(重量比)が1:1の、上記粒子C(C15)に相当するサンプルの場合に、トランスフェクション効率が非常に高かった。また、1:2のサンプルでもコントロールであるリポフェクタミンを上回る12%前後の効率を示した。概して、1:0.5をこえ、1:5以下のPEI比率では比較的高い効率が得られた。 Figure 11 is a graph showing the transfection efficiency. The transfection efficiency was very high in the case of a sample with a DNA:PEI ratio (weight ratio) of 1:1, which corresponds to particle C (C15) above. The 1:2 sample also showed an efficiency of around 12%, exceeding that of the control Lipofectamine. In general, a relatively high efficiency was obtained with a PEI ratio of more than 1:0.5 and less than 1:5.
 図12は、このトランスフェクション試験における細胞生存率を示すグラフ図である。いずれのサンプルでも、細胞生存率に有意差が認められなかった。すなわち、細胞毒性はサンプル間で差がないことが分かった。 Figure 12 is a graph showing the cell viability in this transfection test. No significant difference was observed in cell viability for any of the samples. In other words, it was found that there was no difference in cytotoxicity between the samples.
 (試験例5:DNAとポリカチオンの混合比率ごとのトランスフェクション効率3)
 脂質ナノ粒子の細胞への取り込み効率をフローサイトメーターおよび共焦点レーザー顕微鏡によって評価した。
 図13は、各混合比率の脂質ナノ粒子の細胞への取り込みについて共焦点レーザー顕微鏡で観察した写真図である。NPsはDID、エンドソームマーカーはEEA1-EGFP、核はHoechst33342で染色している。A15ではNPsがエンドソームと同じ位置に取り込まれている図はほとんど見られないが、B15では数か所に見られ、C15では近い位置に局在している箇所が多数みられる。
(Test Example 5: Transfection efficiency for each mixture ratio of DNA and polycation 3)
The cellular uptake efficiency of the lipid nanoparticles was evaluated by flow cytometry and confocal laser scanning microscopy.
Figure 13 shows photographs of the cellular uptake of lipid nanoparticles at various mixing ratios observed with a confocal laser microscope. NPs are stained with DID, the endosome marker with EEA1-EGFP, and the nuclei with Hoechst 33342. In A15, there are almost no images showing NPs being taken up in the same position as the endosome, but in B15, they are seen in several places, and in C15, many places where they are localized in a nearby position are seen.
 図14は、各混合比率の脂質ナノ粒子の局在部位をフローサイトメーターで評価したグラフ図である。粒子C15は、B15およびA15に比べて細胞への取り込み効率が優位に高いことが示された。 Figure 14 is a graph showing the localization of lipid nanoparticles at each mixing ratio evaluated using a flow cytometer. Particle C15 was shown to have significantly higher cellular uptake efficiency than B15 and A15.
 (試験例6:構成脂質の検討)
 前記脂質ナノ粒子について、イオン化脂質であるCL15F6をその他のカチオン性脂質(DOTAPおよびDOTMA)に置き換えた粒子を作製し(pDNA:PEI=1:1)、トランスフェクション効率を比較した。
 図15はそれぞれの脂質を用いた脂質ナノ粒子ごとのサイズの分布を示すグラフ図である。
 図16はそれぞれの脂質を用いた脂質ナノ粒子ごとのZ電荷を示すグラフ図である。DOTAP、DOTMAを用いた脂質ナノ粒子は+21~23mVの電荷となっている。
(Test Example 6: Examination of constituent lipids)
Regarding the lipid nanoparticles, particles were prepared in which the ionizable lipid CL15F6 was replaced with other cationic lipids (DOTAP and DOTMA) (pDNA:PEI=1:1), and the transfection efficiency was compared.
FIG. 15 is a graph showing the size distribution of lipid nanoparticles using each lipid.
16 is a graph showing the Z charge of each lipid nanoparticle using each lipid. The lipid nanoparticles using DOTAP and DOTMA have a charge of +21 to +23 mV.
 図17はそれぞれの脂質を用いた脂質ナノ粒子ごとのトランスフェクション効率を示すグラフ図である。イオン化脂質においては、CL15F6のみ約40%のトランスフェクション効率を示した。また、市販のカチオン性脂質であるDOTAPおよびDOTMAを用いた粒子は、CL15F6を用いて作製した粒子とほぼ同程度のトランスフェクション効率を示した。 Figure 17 is a graph showing the transfection efficiency of lipid nanoparticles using each lipid. Among ionized lipids, only CL15F6 showed a transfection efficiency of approximately 40%. Furthermore, particles using commercially available cationic lipids DOTAP and DOTMA showed transfection efficiency almost the same as particles made using CL15F6.
 これらの結果から、脂質膜粒子にカチオン性の脂質を用いることでトランスフェクション効率が高くなることが示された。
 カチオン性脂質以外のイオン化脂質、例えばpHに依存してカチオン性となる脂質(MC3、DODAP、DODMA)を用いた場合も、修飾などによってカチオン性を高めることで、高いトランスフェクション効率が得られると考えられる。
These results demonstrated that the use of cationic lipids in lipid membrane particles increases transfection efficiency.
Even when using ionized lipids other than cationic lipids, such as lipids that become cationic depending on the pH (MC3, DODAP, DODMA), it is believed that high transfection efficiency can be obtained by increasing the cationicity through modification or the like.
 (試験例7:DNA長鎖の検討)
 本実施形態の長鎖DNAとポリカチオンの複合体において、長鎖DNAの長さ(大きさ)がトランスフェクション効率に与える影響について評価した。
 pNL3.1[Nluc/minP] (3151 kbp)、HES7-NLuc-2A-tdTomato (10433 kbp)、pSLIK TT 3xFLAG Luciferase neo (13848 kbp)、及びpLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP (15000 kbp)について、それぞれPEIとの複合体(DNA:PEIの比率(重量比)が1:0のA粒子、1:1のC粒子)を作製した。図中のA+数値、C+数値はそれぞれ数値の長さのDNAを用いたA粒子、C粒子を示す。
 pNL3.1[Nluc/minP]、HES7-NLuc-2A-tdTomatoについてはNanoluciferase, 3xFLAG Luciferase neoについてはLuciferase, pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFPについてはEGFPの発現でトランスフェクション効率を調べた。
(Test Example 7: Study of long DNA chains)
In the complex of the long-chain DNA and polycation of this embodiment, the effect of the length (size) of the long-chain DNA on the transfection efficiency was evaluated.
Complexes with PEI (A particles with a DNA:PEI ratio (weight ratio) of 1:0, C particles with a DNA:PEI ratio of 1:1) were prepared for pNL3.1[Nluc/minP] (3151 kbp), HES7-NLuc-2A-tdTomato (10433 kbp), pSLIK TT 3xFLAG Luciferase neo (13848 kbp), and pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP (15000 kbp). The A+ and C+ numbers in the figure indicate A and C particles using DNA with the length indicated by the numbers, respectively.
Transfection efficiency was examined by expression of Nanoluciferase for pNL3.1[Nluc/minP] and HES7-NLuc-2A-tdTomato, Luciferase for 3xFLAG Luciferase neo, and EGFP for pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP.
 図18は、各DNA長のpDNAについてのトランスフェクション効率を示すグラフ図である。
 図18(a)にpNL3.1[Nluc/minP] (3151 bp)、図18(b)にHES7-NLuc-2A-tdTomato (10433 bp)、図18(c)にpSLIK TT 3xFLAG Luciferase neo (13848 bp)、図18(d)にpLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP (15000 bp)を示した。
 なお、異なるプラスミド及び発現で効率を調べている等の理由から、コントロールとのグラフ長さの比などはそれぞれについて一致しない。(a)~(c)ではルシフェラーゼ発現量またはNanoLuc発現量、(d)ではGFPの発現を蛍光で評価している。
 上記結果では、いずれの鎖長のDNAにおいても、A粒子よりもC粒子の方がトランスフェクション効率は向上している。すなわち、DNA:PEIの比率が1:1に近いほどトランスフェクション効率は高くなる。一方で、DNAの鎖長が長くなるほど、コントロールに対する効率の比較においては向上しているという傾向がみられる。
 結果、発現するタンパク質の種類が変わった場合でも、pDNA鎖長が長くなるほど、pDNA-PEI・カチオン性コア粒子をイオン化脂質を含むナノ粒子に搭載した方が、トランスフェクション効率が向上することを見出した。
FIG. 18 is a graph showing the transfection efficiency for pDNA of each DNA length.
Figure 18(a) shows pNL3.1[Nluc/minP] (3151 bp), Figure 18(b) shows HES7-NLuc-2A-tdTomato (10433 bp), Figure 18(c) shows pSLIK TT 3xFLAG Luciferase neo (13848 bp), and Figure 18(d) shows pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-GFP (15000 bp).
Note that the ratio of graph length to the control does not match for each of the results because the efficiency was examined using different plasmids and expression. (a) to (c) show the expression level of luciferase or NanoLuc, and (d) shows the expression of GFP, evaluated by fluorescence.
The above results show that for any DNA length, the transfection efficiency is higher for Particle C than for Particle A. That is, the closer the DNA:PEI ratio is to 1:1, the higher the transfection efficiency is. On the other hand, there is a tendency that the longer the DNA length is, the higher the efficiency is compared to the control.
As a result, we found that even when the type of protein being expressed changed, the transfection efficiency improved when the pDNA chain length was increased and pDNA-PEI cationic core particles were loaded onto nanoparticles containing ionized lipids.
 これらの結果から、pDNA・PEIのカチオン性コア粒子を搭載したイオン化あるいはカチオン性脂質を含む脂質ナノ粒子は、一般的なアニオン性コア粒子を搭載した脂質ナノ粒子と比較して、粒径が小さく、周期的な内部構造を有しないことが明らかとなった。これによって、細胞への取り込み効率が向上し、また、周期構造を有しないために長鎖pDNAが細胞質に放出されやすく、pDNAのコンパクション効果から拡散速度の改善および核移行効率が改善されたと考えられる。一方で、PEI比率が高くなりすぎると、細胞質あるいは核内でpDNAがPEIから乖離しづらくなり、トランスフェクション効率が低下したと考えられる。 These results reveal that lipid nanoparticles containing ionized or cationic lipids and carrying cationic core particles of pDNA/PEI have smaller particle sizes and do not have a periodic internal structure compared to lipid nanoparticles carrying general anionic core particles. This improves the efficiency of uptake into cells, and since they do not have a periodic structure, long-chain pDNA is easily released into the cytoplasm, and the compaction effect of pDNA is thought to improve the diffusion rate and nuclear transport efficiency. On the other hand, if the PEI ratio is too high, it becomes difficult for pDNA to separate from PEI in the cytoplasm or nucleus, which is thought to reduce the transfection efficiency.
 (試験例8:pDNA-PEI複合体の構成による導入効率の検討)
 pHに依存してイオン化する脂質であるCL15F6、負電荷をもつ(アニオン性)脂質であるホスファチジルセリン(PS、DOPS)、および、他の脂質としてDSPCを含む複合体を作製した。CL15F6/DOPS/DSPC/コレステロール/DMG-PEG2kの比は(X/Y/10/30/1mоl%)とし、X(CL15F6)とY(DOPS)の含有比を下記表1のようにした、サンプルNo.1~4を調整した。
(Test Example 8: Examination of the transfection efficiency depending on the composition of pDNA-PEI complex)
A complex containing CL15F6, a lipid that ionizes depending on pH, phosphatidylserine (PS, DOPS), a negatively charged (anionic) lipid, and DSPC as another lipid was prepared. Samples No. 1 to 4 were prepared in which the ratio of CL15F6/DOPS/DSPC/cholesterol/DMG-PEG2k was (X/Y/10/30/1 mol%) and the content ratio of X (CL15F6) and Y (DOPS) was as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 図19に、各脂質の含有比による複合体のサイズと数量の関係のグラフ図を示した。縦軸に正規化された数量、横軸にサイズを示した。図中、PS0はDOPSが0%であるサンプルNo.0、PS7はDOPSが7%であるサンプルNo.1、PS28はDOPSが28%であるサンプルNo.4に相当する。 Figure 19 shows a graph of the relationship between the size and quantity of the complex depending on the content ratio of each lipid. The vertical axis shows the normalized quantity, and the horizontal axis shows the size. In the figure, PS0 corresponds to sample No. 0 with 0% DOPS, PS7 corresponds to sample No. 1 with 7% DOPS, and PS28 corresponds to sample No. 4 with 28% DOPS.
 図20に、各脂質の含有比による複合体のゼータ電位のグラフ図を示した。縦軸にゼータ電位、横軸に表1のサンプルNo.を示している。サンプルNo.2がゼータ電位0に近く、DOPSの含有量が少なくなればゼータ電位が正に、多くなれば負となり、PS28%のサンプルNo.4でおよそ-4mVである。 Figure 20 shows a graph of the zeta potential of the complex depending on the content ratio of each lipid. The vertical axis shows the zeta potential, and the horizontal axis shows the sample number in Table 1. Sample No. 2 has a zeta potential close to 0, and as the DOPS content decreases, the zeta potential becomes positive, and as the DOPS content increases, the zeta potential becomes negative, with sample No. 4, which contains 28% PS, being approximately -4 mV.
 図21に、各脂質の含有比による複合体の導入効率、生存率のグラフ図を示した。15kbpのpDNAを各複合体に導入し、導入効率をGFPの発現率%として図中の丸マークで、細胞生存率%を図中の四角マークで示した。
 アニオン性脂質の含有率(複合体の電荷)は、含有率に依存して導入効率を減少はさせないという結果が得られた。
A graph of the introduction efficiency and survival rate of the complex depending on the content ratio of each lipid is shown in Figure 21. 15 kbp pDNA was introduced into each complex, and the introduction efficiency is shown as the GFP expression rate % by a circle mark in the figure, and the cell survival rate % by a square mark in the figure.
The results showed that the content of anionic lipid (charge of the complex) did not decrease the transfection efficiency depending on the content.
 図22に、各脂質の含有比による複合体の細胞取り込みのグラフ図を示した。
 図23に、各脂質の含有比による複合体のトランスフェクションの性能を示した。
 それぞれPS0%、PS7%、PS28%とサンプルNo.との対応は図19のPS0、PS7、PS28と同様である。
 アニオン性脂質の含有比に依存して、細胞取り込みについては減少するという結果が得られた。
FIG. 22 shows a graph of the cellular uptake of the complex depending on the content ratio of each lipid.
FIG. 23 shows the transfection performance of the complex depending on the content ratio of each lipid.
The correspondence between PS0%, PS7%, and PS28% and the sample numbers is the same as PS0, PS7, and PS28 in FIG.
The results showed that the cellular uptake decreased depending on the content ratio of anionic lipid.
 (試験例9:ポリカチオンの合成)
 核酸複合体組成物に含まれるポリカチオンとしては、これまでは式(7)の分岐型ポリカチオン、式(8)の直鎖型ポリカチオン等を使用していた。これらに加えて、式(9)、式(10)、式(11)で示すポリカチオンを合成した。式(7)~式(9)に示すように、本実施形態では主鎖中に-NH-を有する構造であれば適宜ポリカチオンとして使用できると考えられる。
(Test Example 9: Synthesis of polycations)
As the polycation contained in the nucleic acid complex composition, a branched polycation of formula (7), a linear polycation of formula (8), etc. have been used so far. In addition to these, polycations shown in formulas (9), (10), and (11) have been synthesized. As shown in formulas (7) to (9), in this embodiment, it is considered that any structure having -NH- in the main chain can be used as a polycation.
 特に式(10)、式(11)のポリカチオンを使用した場合、核酸としてsiRNAを用い、siRNA-ポリカチオンの複合体を用いてKD活性を確認すると、PEI、DOTAPを使用した場合に比べて高い効果が得られた。これらのポリカチオンを脂質ナノ粒子と組み合わせた場合の遺伝子導入効率の検証や、他の各種核酸、各種細胞の高効率の遺伝子導入に応用することが期待される。また、これらの構造についての知見を活かして、さらに他の構造のポリカチオンを合成し用いることも期待される。 In particular, when polycations of formula (10) and formula (11) were used, siRNA was used as the nucleic acid, and KD activity was confirmed using siRNA-polycation complexes, and a higher effect was obtained compared to when PEI or DOTAP was used. It is expected that these polycations will be used to verify gene transfer efficiency when combined with lipid nanoparticles, and for highly efficient gene transfer of various other nucleic acids and various cells. It is also expected that knowledge of these structures can be utilized to synthesize and use polycations of still other structures.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 (式中、Rは適宜有機置換基であってもよく、式中のそれぞれのRが同一でも異なっていてもよい。例えば炭素数20以下の直鎖または分岐鎖であってもよい。)
Figure JPOXMLDOC01-appb-C000032
(wherein R may be an appropriate organic substituent, and each R in the formula may be the same or different. For example, it may be a straight or branched chain having 20 or less carbon atoms.)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 (試験例10:siRNAへの応用)
 短鎖核酸としてsiRNAを用いた核酸複合体組成物および遺伝子導入用脂質粒子を作製し、siRNAの細胞への導入効果、すなわちsiRNAによるノックダウン活性を調べた。
 核酸複合体組成物作製条件は以下の通りである。
(Test Example 10: Application to siRNA)
A nucleic acid complex composition and lipid particles for gene transfer were prepared using siRNA as the short nucleic acid, and the effect of transferring siRNA into cells, that is, the knockdown activity by siRNA, was examined.
The conditions for preparing the nucleic acid complex composition are as follows.
 使用したsiRNA:サイズ21 ntのsiRNA(siGL4)
 使用したポリカチオン:PEI(ポリエチレンイミン)
 水相:70μg/mL siRNA+PEI in 25mM酢酸緩衝液(pH 4.0)
 脂質溶液:8mM DOTAP/DSPC/Cholesterol/DMG-PEG2k(60/10/30/1mol%)
 マイクロ流体デバイスに、500μL/min FRR=6で送液、透析を行った。その他の条件は、上述の遺伝子導入用脂質粒子の作製、トランスフェクション効率測定の項目と同様に行った。
 ルシフェラーゼ(Luc)発現HeLa細胞を用いて、siRNAによるLucノックダウン活性および細胞の生存率を評価した。
siRNA used: 21 nt siRNA (siGL4)
Polycation used: PEI (polyethyleneimine)
Aqueous phase: 70 μg/mL siRNA + PEI in 25 mM acetate buffer (pH 4.0)
Lipid solution: 8 mM DOTAP/DSPC/Cholesterol/DMG-PEG2k (60/10/30/1 mol%)
Dialysis was performed by feeding the solution to the microfluidic device at 500 μL/min and FRR = 6. The other conditions were the same as those in the above-mentioned production of lipid particles for gene introduction and measurement of transfection efficiency.
Luciferase (Luc)-expressing HeLa cells were used to assess Luc knockdown activity and cell viability by siRNA.
 図24は、siRNAを用いた核酸複合体組成物による発現率と生存率を示すグラフ図である。それぞれ30nM、60nM、120nMの核酸複合体組成物を含む遺伝子導入用脂質粒子を用いている。(a)は縦軸がLucの発現率(%)を示し、横軸は核酸複合体組成物の調整時に用いたsiRNA(siGL4):PEIの比を示した。(b)は縦軸が細胞生存率(%)を示し、横軸は核酸複合体組成物の調整時に用いたsiRNA(siGL4):PEIの比を示した。 Figure 24 is a graph showing the expression rate and survival rate of a nucleic acid complex composition using siRNA. Lipid particles for gene transfer containing 30 nM, 60 nM, and 120 nM of the nucleic acid complex composition were used. In (a), the vertical axis shows the Luc expression rate (%), and the horizontal axis shows the ratio of siRNA (siGL4):PEI used when preparing the nucleic acid complex composition. In (b), the vertical axis shows the cell survival rate (%), and the horizontal axis shows the ratio of siRNA (siGL4):PEI used when preparing the nucleic acid complex composition.
 図の結果より、siRNA(siGL4)とPEIとを用いた核酸複合体組成物によりルシフェラーゼ活性の低下が見られた。また、一部のsiRNA:PEIの比では細胞生存率の低下が見られた。siRNA:PEIが1:1においては、他の比に比べてノックダウン活性が最も高く、また細胞生存率も高かった。これらの結果から、長鎖DNAを用いた核酸複合体組成物と同様にsiRNA:PEIが1:1において有効であることが明らかとなった。 The results in the figure show that a nucleic acid complex composition using siRNA (siGL4) and PEI reduced luciferase activity. In addition, a reduced cell viability was observed at some siRNA:PEI ratios. A 1:1 siRNA:PEI ratio showed the highest knockdown activity and also high cell viability compared to other ratios. These results demonstrate that a 1:1 siRNA:PEI ratio is effective, just like a nucleic acid complex composition using long-chain DNA.
 図25は、siRNAを用いた核酸複合体組成物のPEI分子量ごとの発現率と生存率を示すグラフ図である。それぞれW/O PEI、分子量600、1200、2000、10000のPEIを用いた核酸複合体組成物を含む遺伝子導入用脂質粒子を用いている。このうち分子量10000のものが他の試験例で使用しているものと同様である。(a)は縦軸がLucの発現率(%)を示し、横軸は核酸複合体組成物の調整時に用いたsiRNA(siGL4):PEIの比を示した。(b)は縦軸が細胞生存率(%)を示し、横軸は核酸複合体組成物の調整時に用いたsiRNA(siGL4):PEIの比を示した。 Figure 25 is a graph showing the expression rate and survival rate for each PEI molecular weight of the nucleic acid complex composition using siRNA. Lipid particles for gene transfer containing nucleic acid complex compositions using W/O PEI and PEI with molecular weights of 600, 1200, 2000, and 10000 were used. Of these, the one with a molecular weight of 10000 is the same as that used in other test examples. In (a), the vertical axis shows the Luc expression rate (%), and the horizontal axis shows the ratio of siRNA (siGL4):PEI used when preparing the nucleic acid complex composition. In (b), the vertical axis shows the cell survival rate (%), and the horizontal axis shows the ratio of siRNA (siGL4):PEI used when preparing the nucleic acid complex composition.
 図の結果より、PEIがいずれの分子量でもある程度のノックアウト活性が見られたが、細胞生存率はPEIの分子量が600~2000の場合は低下(細胞毒性)が見られ、他の試験例同様の分子量10000のPEIを使用したものが最も生存率が高かった。一方、PEIの分子量にかかわらず、siRNA:PEIが1:1において最も活性が高かった。 The results in the figure show that all molecular weights of PEI showed some degree of knockout activity, but cell viability decreased (cytotoxicity) when the molecular weight of PEI was between 600 and 2000, and the highest viability was achieved when PEI with a molecular weight of 10,000, as in the other test examples, was used. Meanwhile, regardless of the molecular weight of PEI, activity was highest when the siRNA:PEI ratio was 1:1.
 図26は、siRNAとPEIの複合体のみを細胞に導入した発現率と生存率を示すグラフ図である。すなわち、上述の遺伝子導入用脂質粒子にかえて核酸複合体組成物のみを導入している。
 (a)は縦軸がLucの発現率(%)を示し、横軸は核酸複合体組成物の調整時に用いたsiRNA(siGL4):PEIの比を示した。(b)は縦軸が細胞生存率(%)を示し、横軸は核酸複合体組成物の調整時に用いたsiRNA(siGL4):PEIの比を示した。
 図に示すように、Luc発現率では、siRNA:PEIが1:1ではノックダウン活性が見られたが、遺伝子導入用脂質粒子を用いた場合に比べてノックダウン活性は低かった。siRNA:PEIが1:5では高いノックダウン活性が見られた。一方、細胞生存率では、siRNA:PEIが1:1では生存率が高く、1:5ではやや低下した。
26 is a graph showing the expression rate and survival rate when only the siRNA-PEI complex was introduced into cells, that is, only the nucleic acid complex composition was introduced instead of the above-mentioned lipid particles for gene transfer.
In (a), the vertical axis indicates the Luc expression rate (%), and the horizontal axis indicates the ratio of siRNA (siGL4):PEI used in preparing the nucleic acid complex composition. In (b), the vertical axis indicates the cell viability (%), and the horizontal axis indicates the ratio of siRNA (siGL4):PEI used in preparing the nucleic acid complex composition.
As shown in the figure, the knockdown activity of Luc expression was observed when siRNA:PEI was 1:1, but the knockdown activity was lower than that when lipid particles for gene introduction were used. A high knockdown activity was observed when siRNA:PEI was 1:5. On the other hand, the cell viability was high when siRNA:PEI was 1:1, but slightly decreased when siRNA:PEI was 1:5.
 (試験例11:他のポリカチオンを用いたsiRNAへの応用)
 ポリカチオンとして、試験例10のPEIにかえて、試験例9で示した式(11)の化合物を用いて同様のルシフェラーゼ活性の低下と細胞生存率の試験を行った。
 図27は、siRNAと式(11)のポリカチオン化合物を用いた核酸複合体組成物による発現率と生存率を示すグラフ図である。
 (a)は縦軸がLucの発現率(%)を示し、横軸は核酸複合体組成物の調整時に用いたsiRNA(siGL4):ポリカチオン化合物の比を示した。(b)は縦軸が細胞生存率(%)を示し、横軸は核酸複合体組成物の調整時に用いたsiRNA(siGL4):ポリカチオン化合物の比を示した。
 図の結果より、siRNAのみを導入したもの(1:0)よりも、式(11)のポリカチオン化合物との複合体を用いたもの(1:1)がノックアウト活性は高かった。また、細胞生存率もsiRNAと式(11)のポリカチオン化合物との複合体を用いたもの(1:1)の方が高かった。
(Test Example 11: Application to siRNA using other polycations)
Instead of PEI in Test Example 10, the compound of formula (11) shown in Test Example 9 was used as the polycation, and a similar test on the decrease in luciferase activity and cell viability was carried out.
FIG. 27 is a graph showing the expression rate and survival rate for a nucleic acid complex composition using siRNA and a polycationic compound of formula (11).
In (a), the vertical axis indicates the expression rate (%) of Luc, and the horizontal axis indicates the ratio of siRNA (siGL4) to polycationic compound used in preparing the nucleic acid complex composition. In (b), the vertical axis indicates the cell viability (%), and the horizontal axis indicates the ratio of siRNA (siGL4) to polycationic compound used in preparing the nucleic acid complex composition.
The results in the figure show that the knockout activity was higher when the complex with the polycationic compound of formula (11) (1:1) was used than when only siRNA was introduced (1:0).The cell viability was also higher when the complex with the polycationic compound of formula (11) (1:1) was used.
 (試験例12:BACへの応用)
 長鎖DNAをポリカチオンによりコンパクト化(コンパクション)したDNAポリカチオン複合体を製造し、複合体を搭載した脂質ナノ粒子(LNP)を製造する試験として、分子量の大きい長鎖pDNAであるバクテリア人工染色体(BAC)を使用した試験を行った。
(Test Example 12: Application to BAC)
A DNA-polycation complex was produced by compacting long-chain DNA with polycations, and a test was conducted to produce lipid nanoparticles (LNPs) carrying the complex using bacterial artificial chromosomes (BAC), which are long-chain pDNA with a large molecular weight.
 BACとしては、EGFPをコードしている231kbpの長鎖pDNAを用いた。
 作製条件としては、
 水相:5.5μg/mL BAC:PEI=1:1 in 25mM酢酸緩衝液(pH4.0)
 脂質溶液:1mM CL15F6/DSPC/Cholesterol/DMG-PEG2k(60/10/30/1 mol%)
 を作製した(CL15F6-1:1-LNP)。また、比較例としてBAC:PEIが1:0の例(CL15F6-1:0-LNP)、同様に1:0で脂質としてSM102を用いた例(SM102-1:0-LNP)を作製した。
 マイクロ流体デバイスに、500μL/min FRR=6で送液、透析によって各BAC-DNA搭載脂質ナノ粒子(BAC-LNP)を得た。上記以外の条件については、上述した(遺伝子導入用脂質粒子の作製)で示した工程と同様の方法により作製した。製造されたBAC-LNPの粒子径およびゼータ電荷(ゼータ電位)も上述した工程と同様に測定した。
As the BAC, a 231 kbp long pDNA encoding EGFP was used.
The preparation conditions are as follows:
Aqueous phase: 5.5 μg/mL BAC:PEI=1:1 in 25 mM acetate buffer (pH 4.0)
Lipid solution: 1 mM CL15F6/DSPC/cholesterol/DMG-PEG2k (60/10/30/1 mol%)
As comparative examples, an example in which BAC:PEI was 1:0 (CL15F6-1:0-LNP) and an example in which SM102 was used as the lipid at 1:0 (SM102-1:0-LNP) were also prepared.
The microfluidic device was fed with 500 μL/min FRR=6, and each BAC-DNA-loaded lipid nanoparticle (BAC-LNP) was obtained by dialysis. Other conditions than those mentioned above were prepared in the same manner as in the process shown in (Preparation of lipid particles for gene transfer) above. The particle size and zeta charge (zeta potential) of the produced BAC-LNP were also measured in the same manner as in the process described above.
 図28に、上述の各BAC-LNPの粒子径の測定結果を示した。(a)はCL15F6-1:1-LNP、CL15F6-1:0-LNP、SM102-1:0-LNPの粒径分布を示した。(b)は平均粒子径を示した。 Figure 28 shows the results of measuring the particle size of each of the BAC-LNPs mentioned above. (a) shows the particle size distribution of CL15F6-1:1-LNP, CL15F6-1:0-LNP, and SM102-1:0-LNP. (b) shows the average particle size.
 この各BAC-LNPを用いてトランスフェクション効率を測定した。HeLa細胞を使用し、アッセイ条件としてはドーズ量を1.0μg/mLに変更した他は、試験例3の15kbpのDNAを用いた場合と同様に行った。その他の工程については上述した(トランスフェクション効率測定)で示した工程に準じて行った。
 図28に、上述の各BAC-LNPを用いたトランスフェクションの結果を示した。(a)は作製した粒子のトランスフェクション効率を示した。コントロールとしてLNPを用いていないCL15F6-1:1-complexと、トランスフェクションキットのLf3kを示した。(b)はトランスフェクション時のそれぞれの細胞生存率を示した。
The transfection efficiency was measured using each BAC-LNP. HeLa cells were used, and the assay conditions were changed to a dose of 1.0 μg/mL, but the same procedures were carried out as in the case of using 15 kbp DNA in Test Example 3. The other steps were similar to those described above in (Transfection Efficiency Measurement).
The results of transfection using each of the BAC-LNPs described above are shown in Figure 28. (a) shows the transfection efficiency of the prepared particles. As controls, CL15F6-1:1-complex not using LNP and Lf3k from the transfection kit are shown. (b) shows the respective cell viability rates at the time of transfection.
 図の結果によれば、CL15F6-1:1-LNP、すなわちBAC:PEI=1:1のコア粒子を搭載したLNPのみが、高いトランスフェクション効率を示した。また、細胞生存率もBACのみを用いたLNP(CL15F6-1:0-LNP)よりも高くなった。
 以上の結果より、本実施形態のDNAとポリカチオンの複合体、核酸複合体組成物、遺伝子導入用脂質粒子は、バクテリア人工染色体(BAC)のようなさらに分子量の大きい核酸の導入にも有効であることが示された。
According to the results in the figure, only CL15F6-1:1-LNP, i.e., LNP loaded with a core particle of BAC:PEI = 1:1, showed high transfection efficiency. Also, the cell viability was higher than that of LNP using only BAC (CL15F6-1:0-LNP).
The above results demonstrate that the DNA/polycation complex, nucleic acid complex composition, and lipid particles for gene introduction of the present embodiment are also effective for introducing nucleic acids with larger molecular weights, such as bacterial artificial chromosomes (BACs).
 本発明の核酸複合体組成物、遺伝子導入用脂質粒子及びそれを用いた遺伝子導入方法によれば、核酸分子の細胞内への導入、細胞への拡散の効率が高く、高い遺伝子導入効率を持つ。

       
According to the nucleic acid complex composition, lipid particles for gene transfer, and gene transfer method using the same of the present invention, the efficiency of transfer and diffusion of nucleic acid molecules into cells is high, resulting in high gene transfer efficiency.

Claims (19)

  1.  核酸分子と、
     炭素原子および窒素原子を含有する分子鎖からなるカチオン分子が重合してなる構造を含むポリカチオンと、
     を含む、核酸複合体組成物。
    A nucleic acid molecule,
    a polycation having a structure formed by polymerizing cationic molecules each having a molecular chain containing a carbon atom and a nitrogen atom;
    A nucleic acid complex composition comprising:
  2.  前記ポリカチオンが、ポリエチレンイミンを含む、請求項1に記載の核酸複合体組成物。 The nucleic acid complex composition of claim 1, wherein the polycation comprises polyethyleneimine.
  3.  前記ポリカチオンが、下記式(9)の化合物を含む、請求項1または2に記載の核酸複合体組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Rは互いに同一又は異なる有機置換基である)
    The nucleic acid complex composition according to claim 1 or 2, wherein the polycation comprises a compound represented by the following formula (9):
    Figure JPOXMLDOC01-appb-C000001
    (wherein R are the same or different organic substituents)
  4.  前記ポリカチオンが、下記式(10)または下記式(11)の化合物を含む、請求項3に記載の核酸複合体組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    The nucleic acid complex composition according to claim 3 , wherein the polycation comprises a compound represented by the following formula (10) or (11):
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  5.  前記核酸分子が、1kbp以上の長鎖核酸である、請求項1または2に記載の核酸複合体組成物。 The nucleic acid complex composition according to claim 1 or 2, wherein the nucleic acid molecule is a long-chain nucleic acid of 1 kbp or more.
  6.  前記核酸分子が、1kbp未満の短鎖核酸である、請求項1または2に記載の核酸複合体組成物。 The nucleic acid complex composition according to claim 1 or 2, wherein the nucleic acid molecule is a short-chain nucleic acid of less than 1 kbp.
  7.  前記核酸分子が、siRNAである、請求項1または2に記載の核酸複合体組成物。 The nucleic acid complex composition according to claim 1 or 2, wherein the nucleic acid molecule is siRNA.
  8.  前記核酸分子の含有量Mに対する前記ポリカチオンの含有量Mの質量比が、M/M=0.10を超え、M/M=5未満である、請求項1または2に記載の核酸複合体組成物。 The nucleic acid complex composition according to claim 1 or 2, wherein the mass ratio of the polycation content M C to the nucleic acid molecule content M D is greater than M c /M D =0.10 and less than M c /M D =5.
  9.  前記核酸分子と前記ポリカチオンとの複合体が正電荷を有する、請求項1または2に記載の核酸複合体組成物。 The nucleic acid complex composition according to claim 1 or 2, wherein the complex between the nucleic acid molecule and the polycation has a positive charge.
  10.  下記式(9)の化合物を含むポリカチオン。
    Figure JPOXMLDOC01-appb-C000004
     (式中、Rは互いに同一又は異なる有機置換基である)
    A polycation comprising a compound represented by the following formula (9):
    Figure JPOXMLDOC01-appb-C000004
    (wherein R are the same or different organic substituents)
  11.  下記式(10)または下記式(11)の化合物を含む、請求項10に記載のポリカチオン。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    The polycation according to claim 10, comprising a compound of the following formula (10) or the following formula (11):
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  12.  請求項1に記載の核酸複合体組成物と、
     脂質膜粒子と、を含む、遺伝子導入用脂質粒子。
    The nucleic acid complex composition of claim 1 ;
    A lipid particle for gene transfer comprising:
  13.  前記脂質膜粒子がカチオン性脂質を含む、請求項12に記載の遺伝子導入用脂質粒子。 The lipid particle for gene transfer according to claim 12, wherein the lipid membrane particle contains a cationic lipid.
  14.  前記脂質膜粒子の細胞への遺伝子導入効率が30%を超える、請求項12または13に記載の遺伝子導入用脂質粒子。 The lipid particle for gene transfer according to claim 12 or 13, wherein the efficiency of gene transfer into cells of the lipid membrane particle exceeds 30%.
  15.  核酸分子の細胞への遺伝子導入方法であって、
     請求項12または13に記載の遺伝子導入用脂質粒子を細胞に導入する、遺伝子導入方法。
    A method for transfecting a nucleic acid molecule into a cell, comprising the steps of:
    A method for gene transfer, comprising introducing the lipid particle for gene transfer according to claim 12 or 13 into a cell.
  16.  請求項1または2に記載の核酸複合体組成物の製造用キットであって、
     核酸分子およびポリカチオンを含む、核酸複合体組成物の製造用キット。
    A kit for producing the nucleic acid complex composition according to claim 1 or 2,
    A kit for producing a nucleic acid complex composition comprising a nucleic acid molecule and a polycation.
  17.  流路構造体をさらに含む、請求項16に記載の核酸複合体組成物の製造用キット。 The kit for producing the nucleic acid complex composition according to claim 16, further comprising a flow path structure.
  18.  請求項12または13に記載の遺伝子導入用脂質粒子の製造用キットであって、
     核酸分子、ポリカチオンおよび脂質膜粒子を含む、遺伝子導入用脂質粒子の製造用キット。
    A kit for producing the lipid particle for gene introduction according to claim 12 or 13, comprising:
    A kit for producing lipid particles for gene transfer, comprising a nucleic acid molecule, a polycation and a lipid membrane particle.
  19.  流路構造体をさらに含む、請求項18に記載の遺伝子導入用脂質粒子の製造用キット。 The kit for producing lipid particles for gene introduction according to claim 18, further comprising a flow path structure.
PCT/JP2023/035730 2022-09-30 2023-09-29 Nucleic acid complex composition, lipid particles for transfection, and transfection method using same WO2024071409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158025 2022-09-30
JP2022158025 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071409A1 true WO2024071409A1 (en) 2024-04-04

Family

ID=90478187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035730 WO2024071409A1 (en) 2022-09-30 2023-09-29 Nucleic acid complex composition, lipid particles for transfection, and transfection method using same

Country Status (1)

Country Link
WO (1) WO2024071409A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135905A1 (en) * 2010-04-28 2011-11-03 国立大学法人北海道大学 Lipid membrane structure
WO2016121942A1 (en) * 2015-01-30 2016-08-04 日油株式会社 Cationic lipid
JP2021172597A (en) * 2020-04-21 2021-11-01 国立大学法人北海道大学 Lipid nanoparticle
WO2022071582A1 (en) * 2020-10-02 2022-04-07 国立大学法人北海道大学 Lipid nanoparticle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011135905A1 (en) * 2010-04-28 2011-11-03 国立大学法人北海道大学 Lipid membrane structure
WO2016121942A1 (en) * 2015-01-30 2016-08-04 日油株式会社 Cationic lipid
JP2021172597A (en) * 2020-04-21 2021-11-01 国立大学法人北海道大学 Lipid nanoparticle
WO2022071582A1 (en) * 2020-10-02 2022-04-07 国立大学法人北海道大学 Lipid nanoparticle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATTHIEU SOETE: "Sequence-Encoded Macromolecules with Increased Data Storage Capacity through a Thiol-Epoxy Reaction", ACS MACRO LETTERS, vol. 10, no. 5, 18 May 2021 (2021-05-18), pages 616 - 622, XP093156207, ISSN: 2161-1653, DOI: 10.1021/acsmacrolett.1c00275 *
STEFAN MOMMER: "An epoxy thiolactone on stage: four component reactions, synthesis of poly(thioether urethane)s and the respective hydrogels", POLYMER CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 7, no. 12, 1 January 2016 (2016-01-01), Cambridge , pages 2291 - 2298, XP093156196, ISSN: 1759-9954, DOI: 10.1039/C6PY00231E *

Similar Documents

Publication Publication Date Title
US11883535B2 (en) Liposomal particles, methods of making same and uses thereof
Pinnapireddy et al. Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown
KR101198354B1 (en) Ldl-like cationic nanoparticles for deliverying nucleic acid gene, method for preparing thereof and method for deliverying nucleic acid gene using the same
Navarro et al. Phospholipid–polyethylenimine conjugate-based micelle-like nanoparticles for siRNA delivery
Haghiralsadat et al. A novel approach on drug delivery: investigation of a new nano-formulation of liposomal doxorubicin and biological evaluation of entrapped doxorubicin on various osteosarcoma cell lines
CN113677332B (en) Delivery system comprising silicon nanoparticles
Skandrani et al. Lipid nanocapsules functionalized with polyethyleneimine for plasmid DNA and drug co-delivery and cell imaging
Tahara et al. Chitosan-modified poly (D, L-lactide-co-glycolide) nanospheres for improving siRNA delivery and gene-silencing effects
Zhou et al. Lipid-coated nano-calcium-phosphate (LNCP) for gene delivery
KR102650691B1 (en) Kit for preparing nanoparticle composition for delivering drug comprising polylactic acid salt
Lee et al. DNA amplification in neutral liposomes for safe and efficient gene delivery
Boloix et al. Engineering pH‐Sensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics
EP1955695A1 (en) Nanocapsules of lipophilic complexes of nucleic acids
Mozafari et al. Importance of divalent cations in nanolipoplex gene delivery
Dreaden et al. RNA‐peptide nanoplexes drug DNA damage pathways in high‐grade serous ovarian tumors
Nele et al. Lipid nanoparticles for RNA delivery: Self-assembling vs driven-assembling strategies
JP2001511171A (en) Stabilized cationic transfection agent / nucleic acid particle formulation
US20130195962A1 (en) Lipid membrane structure
WO2024071409A1 (en) Nucleic acid complex composition, lipid particles for transfection, and transfection method using same
WO2022158290A1 (en) Aminopolyester and lipid nanoparticles
Navarro et al. The “non-viral” approach for siRNA delivery in cancer treatment: a special focus on micelles and liposomes
US9090912B1 (en) Nucleic acid complex and nucleic acid-delivering composition
US20190328903A1 (en) Polymer nanoparticle composition for plasmid dna delivery, and preparation method therefor
EP3632410A1 (en) Lipidic polynucleotide carriers for cellular delivery
KR20240118489A (en) Method for preparation of single-pot and organic solvent-free thermocycling technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872628

Country of ref document: EP

Kind code of ref document: A1