[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024062909A1 - Terminal material and terminal - Google Patents

Terminal material and terminal Download PDF

Info

Publication number
WO2024062909A1
WO2024062909A1 PCT/JP2023/032243 JP2023032243W WO2024062909A1 WO 2024062909 A1 WO2024062909 A1 WO 2024062909A1 JP 2023032243 W JP2023032243 W JP 2023032243W WO 2024062909 A1 WO2024062909 A1 WO 2024062909A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
terminal
terminal material
plating layer
particles
Prior art date
Application number
PCT/JP2023/032243
Other languages
French (fr)
Japanese (ja)
Inventor
将嘉 鶴
慎太郎 山本
翔生 桂
弘高 伊藤
貴之 湖山
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2024062909A1 publication Critical patent/WO2024062909A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/64Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present disclosure relates to terminal materials and terminals.
  • wiring harnesses can be reduced by directly connecting devices such as engines and motors to electronic components (referred to as "ECU") that control them.
  • Patent Document 1 roughens the copper alloy base material, performs Ni plating, Cu plating, and Sn plating thereon, and performs reflow treatment to form a predetermined Cu-Sn layer.
  • a technique for exposing the surface of the Sn layer is disclosed. Although this technique makes it difficult for micro-sliding wear to occur, once micro-sliding wear occurs, it may easily lead to material exposure.
  • Non-Patent Documents 1 and 2 various improvements in wear resistance based on ideas other than increasing the hardness of the plating film have been investigated, mainly as disclosed in Non-Patent Documents 1 and 2.
  • CB carbon black
  • CNT carbon nanotubes
  • Non-Patent Documents 1 and 2 when carbon particle dispersion plating is applied to the terminal material and sliding (insertion and removal) is repeated, the plating film will break down as the contact portion wears. The carbon particles held in the carbon particles may fall off. Since carbon-based particles have good electrical conductivity, if they fall off the terminal surface and accumulate around the contacts, they may cause a short circuit in the contacts. Further, the prior art related to (3) above may not be able to sufficiently suppress slight sliding wear.
  • This disclosure has been made in light of these circumstances, and one of its objectives is to provide a terminal material and terminal that can adequately suppress short circuits at the contacts due to the falling off of conductive particles, and that has sufficient resistance to fretting wear and conductivity.
  • the silver-containing film includes a silver plating layer containing 50% by mass or more of silver, and particles made of a non-conductive organic compound with an equivalent circle diameter of 50 ⁇ m or less that are in contact with the silver plating layer,
  • the terminal material has a contact resistance of 1 m ⁇ or less on the silver-containing film side surface when subjected to the following micro-sliding abrasion test.
  • the surface having the projections of the mating material is reciprocated by applying a vertical load of 3 N, sliding distance: 50 ⁇ m, and sliding speed: 100 ⁇ m/sec against the silver-containing film side surface of the terminal material to be tested.
  • One cycle is sliding for 10,000 cycles.
  • Aspect 2 of the present invention is The terminal material according to aspect 1, wherein the silver plating layer contains 90% by mass or more of silver.
  • Aspect 4 of the present invention is A terminal using the terminal material according to any one of aspects 1 to 3.
  • FIG. 1 is a schematic cross-sectional view of an example of a terminal material according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of another example of a terminal material according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of another example of the terminal material according to the embodiment of the present invention.
  • FIG. 1 shows the results of micro-sliding wear resistance evaluation of terminal material No. 1.
  • FIG. 2 shows the results of the micro-sliding wear resistance evaluation of the terminal material No. 2.
  • FIG. These are the results of the micro-sliding wear resistance evaluation of the terminal material No. 3.
  • FIG. 5 shows the results of micro-sliding wear resistance evaluation of terminal material No. 5.
  • FIG. 6 shows the results of the micro-sliding wear resistance evaluation of the terminal material No. 6.
  • the present inventors investigated from various angles in order to realize a terminal material that can sufficiently suppress short-circuiting of contacts due to shedding of conductive particles and has sufficient micro-sliding wear resistance and conductivity.
  • a predetermined layer structure having a silver plating layer and a silver-containing film containing particles made of a non-conductive organic compound with an equivalent circle diameter of 50 ⁇ m or less, which are in contact with (supported by) the silver plating layer, is formed. It has been found that sufficient micro-sliding wear resistance and electrical conductivity can be obtained by this method.
  • the non-conductive organic compound is in contact with the silver plating layer in the form of particles rather than a film, the silver plating layer can be exposed on the surface of the terminal material, so it maintains the initial conductivity as a terminal material. can.
  • the above mechanism does not limit the technical scope of the embodiments of the present invention.
  • the terminal material according to the embodiment of the present invention includes a base material made of copper or a copper alloy, and a base layer that is one or more layers made of one or more selected from the group consisting of Ni, Co, and Fe. , a silver-containing film in this order, and the silver-containing film is made of a silver plating layer containing 50% by mass or more of silver, and a non-conductive organic compound having an equivalent circle diameter of 50 ⁇ m or less that is in contact with the silver plating layer.
  • the contact resistance of the silver-containing film side surface is 1 m ⁇ or less when subjected to the following micro-sliding abrasion test.
  • the surface having the projections of the mating material is reciprocated by applying a vertical load of 3 N, sliding distance: 50 ⁇ m, and sliding speed: 100 ⁇ m/sec against the silver-containing film side surface of the terminal material to be tested.
  • One cycle is sliding for 10,000 cycles.
  • FIG. 1 shows a schematic cross-sectional view of an example of a terminal material according to an embodiment of the present invention.
  • a terminal material 1 includes a base material 2 made of copper or a copper alloy (hereinafter sometimes simply referred to as "base material 2") and one material selected from the group consisting of Ni, Co, and Fe.
  • particles 4b (hereinafter sometimes simply referred to as "particles 4b") made of a non-conductive organic compound and having a diameter of 50 ⁇ m or less.
  • the terminal material 1 has a contact resistance of 1 m ⁇ or less on the surface of the silver-containing film 4 when subjected to the above-mentioned micro-sliding abrasion test.
  • one or more of copper alloys such as CuFeP, CuNiSi, CuTiCr, CuSnP, and CuMg may be used as the material for the base material 2.
  • the properties required for the terminal material electrical conductivity, springiness, strength, etc.
  • the material of the base material 2 can be appropriately selected depending on the required characteristics.
  • the terminal material 1 including the base material 2 can be used in a high-temperature environment, such as in the engine room of an internal combustion engine or in a connecting part of an electric vehicle battery.
  • a high-temperature environment Cu in the base material 2 diffuses toward the silver-containing film 4 and reaches the surface of the silver-containing film 4, which may further generate Cu oxides and increase the contact resistance of the terminal material 1. Therefore, between the base material 2 and the silver-containing film 4, a base layer 3, which is one or more layers made of one or more selected from the group consisting of Ni, Co, and Fe, is provided. Thereby, diffusion of Cu from the base material 2 into the silver-containing film 4 can be suppressed. It is particularly preferable that the base layer 3 contains Ni in terms of plating workability and the like. Further, the base layer 3 may have multiple layers.
  • the average thickness of the base layer 3 (for example, the average thickness of the base layer 3 obtained from cross sections of two or more arbitrary locations of the terminal material) is preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more. This suppresses pinholes and effectively prevents copper diffusion. On the other hand, if the base layer 3 becomes too thick, the effect of suppressing Cu diffusion may become saturated. From the viewpoints of productivity, cost, and processability during terminal molding, the average thickness of the base layer 3 is preferably 3.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less.
  • the silver plating layer 4a is a layer containing 50% by mass or more of silver.
  • As the silver plating layer 4a in addition to soft Ag plating, hard Ag plating, bright Ag plating, semi-bright Ag plating, etc. used for normal terminal surface treatment, corrosion resistance (sulfidation resistance, etc.) of the silver-containing film 4 can be improved. It is also possible to use Ag alloy plating containing Sn and/or Ni etc. for the purpose of improving micro-sliding wear resistance. However, since micro-sliding wear resistance can be imparted mainly by particles 4b made of non-conductive organic compounds, if there is no other purpose such as improving corrosion resistance, a pure Ag plating layer with excellent conductivity may be used as a carrier. For example, it is preferable that silver is contained in an amount of 90% by mass or more, more preferably 95% by mass or more, and even more preferably 99% by mass or more.
  • the average thickness of the silver plating layer 4a (for example, the average thickness of the silver plating layer 4a obtained from two or more arbitrary cross sections of the terminal material) is not particularly limited, and can be adjusted as appropriate depending on the application, but For example, the thickness may be 100 ⁇ m or less, or even 50 ⁇ m or less.
  • non-conductive means not exhibiting conductivity; for example, the volume resistivity measured based on ASTM D257 is approximately 10 3 [ ⁇ cm] or more. refers to something that indicates the value of
  • organic compounds include carbon-containing compounds such as carbon monoxide, carbon dioxide, carbonates, hydrocyanic acid, cyanates, thiocyanates, B 4 C and SiC. This refers to compounds excluding compounds with simple structures such as.
  • a silicone resin having a siloxane bond (-Si-O-Si-) as its main chain and an organic group in its side chain is included in the "organic compound" in this specification.
  • the "unit molecular structure” means one repeating unit in the case of a high molecule (polymer), and each molecule in the case of a non-polymer.
  • the term "particle” means a relatively small substance with an equivalent circle diameter of 50 ⁇ m or less, and may have any shape.
  • the average particle diameter (average equivalent circle diameter) of the particles 4b may be 10 ⁇ m or less.
  • the average particle diameter of the particles 4b may be 0.1 ⁇ m or more.
  • FIG. 2 shows a schematic cross-sectional view of another example of a terminal material according to an embodiment of the present invention, in which the particles 4b are embedded in the silver plating layer 4a in the terminal material 11.
  • embedded means that, for each particle 4b, either all of the particles 4b are embedded in the silver plating layer 4a, or a portion of the particles 4b is embedded in the silver plating layer 4a, with the remaining portion exposed on the surface of the silver plating layer 4a.
  • FIG. 3 shows a schematic cross-sectional view of another example of the terminal material according to the embodiment of the present invention, and in the terminal material 21, the particles 4b are completely buried in the silver plating layer 4a.
  • the particles 4b may be large enough to be completely buried in the silver plating layer 4a, that is, the average particle size of the particles 4b may be less than the thickness of the silver plating layer 4a.
  • the particles are in contact may mean, for example, that the particles 4b are in contact with (adhere to) the surface of the silver plating layer 4a as shown in FIG. It may be eutectoid (buried) in the silver plating layer 4a. In that case, each particle 4b may be completely buried in the silver plating layer 4a as shown in FIG. 3, or a part of each particle 4b may be exposed on the surface of the silver plating layer 4a as shown in FIG. Good too. Note that whether or not "the particles are in contact” can be determined, for example, by observing the cross section of the terminal material 1 (11, 21).
  • particles 4b are eutectoid (buried) in silver plating layer 4a as shown in FIG. 2, or silver plating is used as shown in FIG. Preferably, it is completely buried in the layer 4a.
  • the particles 4b may be in contact with (adhering to) the surface of the silver plating layer 4a as shown in FIG. It is preferable that it is eutectoid (buried) in the plating layer 4a.
  • the conductive particles may be in contact with the silver plating layer 4a depending on the case, but the fewer the conductive particles are, the more the contact will be damaged due to their falling off. This is preferable because short circuits can be suppressed. Therefore, it is preferable that 50% by volume or more of the particles 4b in contact with the terminal materials 1, 11, and 21 according to the embodiment of the present invention are made of a non-conductive organic compound, and 60% by volume or more, 70% by volume or more. It is more preferably at least 80 vol%, or at least 90 vol%, and even more preferably the particles 4b are made entirely (100 vol%) of a non-conductive organic compound. Further, the terminal materials 1, 11, and 21 according to the embodiments of the present invention may be in contact with inorganic particles depending on the case.
  • the terminal materials 1, 11, and 21 according to the embodiments of the present invention may include other layers (for example, a strike plating layer, etc.) in order to achieve the object of the present disclosure.
  • the terminal material 1 As a method for manufacturing the terminal material 1 according to the embodiment of the present invention, for example, first, under general conditions, Ni, Co, and Fe, which are materials having a copper diffusion suppressing effect, are placed on a base material 2 such as a copper plate. A predetermined plating solution containing one or more selected from the group is energized to form the base layer 3. Thereafter, a silver (or silver alloy) plating solution is energized under general conditions to form a silver plating layer 4a. Then, a dispersion of particles 4b made of a non-conductive organic compound is applied to the surface. Thereby, terminal material 1 is obtained. Note that, depending on the case, strike silver plating treatment may be performed before silver plating treatment.
  • particles 4b made of a non-conductive organic compound are dispersed in a silver (or silver alloy) plating solution and electroplated with stirring.
  • a terminal material eutectoid in the silver plating layer 4a (terminal material 11 in which part of the particles 4b are exposed on the surface of the silver plating layer 4a or terminal material 21 in which all the particles 4b are buried in the silver plating layer 4a) is obtained.
  • the amount of particles 4b eutectoided into the silver plating layer 4a is determined by the balance between the adsorption frequency of (A) and the plating film growth rate of (B), the plating conditions (and plating bath conditions)
  • the plating conditions By changing the amount of eutectoid, it is possible to change the amount of eutectoid.
  • the process by performing the process using a plating solution that does not contain the particles 4b dispersed in the plating solution, or by changing the stirring speed of the plating solution to reduce the adsorption frequency of (A), etc.
  • By providing a layer that does not eutectoid particles 4b on the outermost surface side of the plating it is possible to manufacture the terminal material 21 in which all the particles 4b are buried in the silver plating layer 4a.
  • the terminal materials 1, 11, and 21 according to the embodiments of the present invention have sufficient electrical conductivity as well as sufficient fretting wear resistance. Specifically, the terminal materials 1, 11, and 21 according to the embodiments of the present invention can reduce the initial contact resistance to 1.0 m ⁇ or less, and can also reduce the contact resistance to 1.0 m ⁇ or less even after 10,000 cycles of the fretting wear test described below. It is preferable that the terminal materials 1, 11, and 21 according to the embodiments of the present invention can reduce the contact resistance to 1.0 m ⁇ or less even after 20,000 cycles of the fretting wear test described below.
  • a terminal material to be tested and a mating material having a hemispherical protrusion with a curvature radius R of 1.8 mm formed on the silver-containing film side surface of the terminal material by, for example, a hand press are prepared, and the surface of the mating material having the protrusion is slid back and forth against the silver-containing film side surface of the terminal material to be tested for a predetermined number of cycles with an applied normal load of 3 N, a sliding distance of 50 ⁇ m, and a sliding speed of 100 ⁇ m/sec.
  • a sliding tester for example, a CRS-B1050CHO manufactured by Yamazaki Seiki Kenkyusho can be used.
  • the terminal according to the embodiment of the present invention includes terminal materials 1, 11, and 21 according to the embodiment of the present invention.
  • the terminal according to the embodiment of the present invention can be produced by molding the terminal materials 1, 11 and 21 according to the embodiment of the present invention into a terminal shape, or by first molding a base material 2 into a terminal shape, and then forming the base material 2 into a terminal shape.
  • the base layer 3 is one or more layers made of one or more selected from the group consisting of Ni, Co, and Fe, and the silver-containing film 4 (silver plating layer 4a and particles 4b made of a non-conductive organic compound). ).
  • Terminals according to embodiments of the present invention can be used to directly connect equipment such as engines and motors to an ECU.
  • a predetermined amount of agent (dispersant) is dispersed in the plating solution, and while stirring, electricity is applied for 5 minutes at a current density of 3 A/dm 2 with a pure Ag plate as the counter electrode, resulting in semi-gloss Ag plating with a thickness of approximately 10 ⁇ m.
  • No. 1 which includes a silver-containing film in which each particle is eutectoid (buried) in a layer (silver content of 99% by mass or more). Terminal materials Nos. 1 to 4 were obtained.
  • No. As surfactants 1 to 3 Surflon S231 (manufactured by AGC Seimi Chemical) was used, and the amount added was 50 g/L.
  • sodium naphthalene sulfonate was used as a surfactant and carboxymethyl cellulose (CMC) was used as a dispersant (stabilizer).
  • Terminal materials No. 1 to No. 4 No. 1 containing no particles made of a non-conductive organic compound was used.
  • Terminal materials Nos. 5 and 6 were prepared.
  • No. 5 is No. 1 to 4, a semi-bright Ag plating layer (silver content of 99% by mass or more).
  • No. 6 is No.
  • a strike Ag plating layer (silver content of 99% by mass or more) with a thickness of about 0.1 ⁇ m is formed using a cyan bath as the strike Ag plating solution, and then a semi-bright Ag plating solution is used as a glossy one.
  • No. 5 cm x 5 cm) was prepared, and the surface of the mating material having the protrusions was prepared.
  • Terminal materials Nos. 5 and 6 had a contact resistance of more than 1.0 m ⁇ in less than 10,000 cycles of the micro-sliding abrasion test. This is No. In the terminal materials No. 5 and 6, the particles made of the non-conductive organic compound are not in contact with the silver plating layer, and the base material (or base layer) is easily exposed due to slight sliding wear. This is thought to be due to an increase in contact resistance due to oxidation. In addition, No. 6 is No. Although the silver plating layer was made harder by the action of the brightener than in No. 5, and the timing at which the contact resistance increased was slightly delayed, no significant improvement was observed.
  • Terminal material 1 Terminal material 2 Base material 3 Base layer 4 Silver-containing film 4a Silver plating layer 4b Particles made of non-conductive organic compound 11 Terminal material 21 Terminal material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Contacts (AREA)

Abstract

This terminal material comprises, in the following order, a base material which comprises copper or a copper alloy, one or more underlayers which are constituted by one or more element selected from the group consisting of Ni, Co, and Fe, and a silver-containing film. The silver-containing film includes a silver plating layer which contains not less than 50 mass% silver, and particles which comprise a non-conductive organic compound and which have a circle-equivalent diameter in contact with the silver plating layer of not more than 50 μm. When the following fretting test is performed, the contact resistance of the silver-containing-film-side surface is not more than 1 mΩ. Fretting test: Prepared are the terminal material which is to be tested and a counterpart material, in which is formed a hemispherical protrusion having a curvature radius R of 1.8 mm with respect to the silver-containing-film-side surface of the terminal material. The surface of the counterpart material which has the protrusion is caused to slide for 10,000 cycles against the silver-containing-film-side surface of the terminal material to be tested, wherein one cycle involves sliding back and forth with an applied vertical load of 3N, a sliding distance of 50 μm, and a sliding speed of 100 μm/second.

Description

端子材料および端子Terminal materials and terminals
 本開示は端子材料および端子に関する。 The present disclosure relates to terminal materials and terminals.
 近年の自動車軽量化に伴い、自動車に使用されるワイヤハーネスの使用量を低減することが求められている。例えば、エンジン、モーターなどの機器を、それらを制御する電子部品(「ECU」と称する)に直接接続することで、ワイヤハーネスを低減できる。 As automobiles become lighter in recent years, there is a need to reduce the amount of wire harnesses used in automobiles. For example, wiring harnesses can be reduced by directly connecting devices such as engines and motors to electronic components (referred to as "ECU") that control them.
 エンジンおよびモーターなどの機器は、激しく振動するため、接続に使用されるコネクタおよびそれを構成する端子は激しい振動にさらされる。振動により、端子において微摺動摩耗(すなわち、微小な摺動が繰返されて接点のめっき等が摩耗する現象)が生じ得る。近年の端子の小型化による接圧の低下および振動環境の悪化により、微摺動摩耗が生じる可能性はさらに高まっている。 Equipment such as engines and motors vibrate violently, so the connectors used to connect them and the terminals that make them up are exposed to violent vibration. Vibration can cause micro-friction wear in the terminals (i.e., the phenomenon in which repeated tiny friction wears away the plating on the contacts). In recent years, the miniaturization of terminals has led to a decrease in contact pressure and a worsening vibration environment, further increasing the likelihood of micro-friction wear occurring.
 微摺動摩耗に対して、特許文献1は、銅合金の母材を粗面化し、その上にNiめっき、Cuめっき、及びSnめっきを施してリフロー処理を行い、所定のCu-Sn層をSn層表面に露出させる技術を開示している。この技術によれば、微摺動摩耗が生じにくくなるものの、いったん微摺動摩耗が生じると素材露出まで至りやすいおそれがある。 To deal with slight sliding wear, Patent Document 1 roughens the copper alloy base material, performs Ni plating, Cu plating, and Sn plating thereon, and performs reflow treatment to form a predetermined Cu-Sn layer. A technique for exposing the surface of the Sn layer is disclosed. Although this technique makes it difficult for micro-sliding wear to occur, once micro-sliding wear occurs, it may easily lead to material exposure.
 耐摩耗性を向上させるために、Agめっき膜の適用も検討されている。古くからAgめっき膜の高硬度化による耐摩耗性の改善を目的とし、
 (1)結晶粒微細化によるAgめっき膜の高硬度化
 (2)Agと、Se(セレン)またはSb(アンチモン)等との合金化による高硬度化
等の検討が行われている。しかしながら、上記(1)および(2)のいずれの手法によっても微摺動摩耗に対しては効果が不十分である。また、SeおよびSbは有毒な元素であり、管理に注意を要するうえ、合金化に伴って導電性の低下を招くという問題もある。
In order to improve wear resistance, application of an Ag plating film is also being considered. Since ancient times, the aim has been to improve the wear resistance by increasing the hardness of the Ag plating film.
(1) Increasing the hardness of the Ag plating film through grain refinement (2) Increasing the hardness by alloying Ag with Se (selenium), Sb (antimony), etc. is being investigated. However, both methods (1) and (2) are insufficiently effective against slight sliding wear. Further, Se and Sb are toxic elements that require careful management, and there is also the problem that conductivity decreases as they are alloyed.
 また、めっき膜の高硬度化以外の着想による耐摩耗性の改善も種々検討されており、主には、非特許文献1および2に開示されるように、
 (3)炭素系粒子のAgめっき膜中への共析(分散めっき)による耐摩耗性の改善
の検討も行われている。これらの検討には、主に固体潤滑剤として作用するグラファイト、カーボンブラック(CB)、又はカーボンナノチューブ(CNT)が用いられてきた。実際、非特許文献1においては、Agめっき液中にグラファイト粒子を懸濁させてめっき処理を行ったAg-グラファイト複合めっき膜により、Agめっき膜だけでなく、硬質Ag-Sb合金めっき膜と比較しても良好な耐摩耗性を実現できることが示されている。
In addition, various improvements in wear resistance based on ideas other than increasing the hardness of the plating film have been investigated, mainly as disclosed in Non-Patent Documents 1 and 2.
(3) Studies are also being conducted to improve wear resistance by eutectoiding (dispersion plating) carbon-based particles into the Ag plating film. These studies have mainly used graphite, carbon black (CB), or carbon nanotubes (CNT), which act as solid lubricants. In fact, in Non-Patent Document 1, a comparison was made not only with Ag plating films but also with hard Ag-Sb alloy plating films using an Ag-graphite composite plating film that was plated by suspending graphite particles in an Ag plating solution. It has been shown that good wear resistance can be achieved even if
特開2014-208904号JP2014-208904
 非特許文献1および2に開示されるような上記(3)に係る先行技術では、炭素粒子分散めっきを端子材料に適用して摺動(挿抜)を繰り返すと、接点部の摩耗に従ってめっき膜中に保持されていた炭素粒子が脱落し得る。炭素系粒子は良好な導電性をもつため、端子表面から脱落して接点周囲に堆積すると、接点の短絡を招くおそれがある。また、上記(3)に係る先行技術では、微摺動摩耗を十分に抑制できないおそれもある。 In the prior art related to (3) above as disclosed in Non-Patent Documents 1 and 2, when carbon particle dispersion plating is applied to the terminal material and sliding (insertion and removal) is repeated, the plating film will break down as the contact portion wears. The carbon particles held in the carbon particles may fall off. Since carbon-based particles have good electrical conductivity, if they fall off the terminal surface and accumulate around the contacts, they may cause a short circuit in the contacts. Further, the prior art related to (3) above may not be able to sufficiently suppress slight sliding wear.
 本開示はこのような状況に鑑みてなされたものであり、その目的の1つは、導電性粒子の脱落による接点の短絡を十分に抑制でき、かつ十分な耐微摺動摩耗性および導電性を有する端子材料および端子を提供することである。 This disclosure has been made in light of these circumstances, and one of its objectives is to provide a terminal material and terminal that can adequately suppress short circuits at the contacts due to the falling off of conductive particles, and that has sufficient resistance to fretting wear and conductivity.
 本発明の態様1は、
 銅または銅合金からなる母材と、Ni、CoおよびFeからなる群から選択されるいずれか1種以上から構成される1層以上である下地層と、銀含有膜とをこの順に有し、
 前記銀含有膜は、銀を50質量%以上含む銀めっき層と、前記銀めっき層に接触させた円相当直径が50μm以下の非導電性有機化合物からなる粒子と、を含み、
 下記微摺動摩耗試験を施したときの銀含有膜側表面の接触抵抗が1mΩ以下である、端子材料である。

微摺動摩耗試験:試験対象の前記端子材料と、当該端子材料の銀含有膜側表面に対して曲率半径R=1.8mmの半球状の突起を形成した相手材と、を準備し、前記相手材の前記突起を有する表面を、前記試験対象の前記端子材料の銀含有膜側表面に対し、印加する垂直荷重:3N、摺動距離:50μm、摺動速度:100μm/秒で往復摺動させることを1サイクルとして、10000サイクル摺動させる。
Aspect 1 of the present invention is
A base material made of copper or a copper alloy, a base layer which is one or more layers made of one or more selected from the group consisting of Ni, Co and Fe, and a silver-containing film, in this order,
The silver-containing film includes a silver plating layer containing 50% by mass or more of silver, and particles made of a non-conductive organic compound with an equivalent circle diameter of 50 μm or less that are in contact with the silver plating layer,
The terminal material has a contact resistance of 1 mΩ or less on the silver-containing film side surface when subjected to the following micro-sliding abrasion test.

Micro-sliding wear test: Prepare the terminal material to be tested and a mating material in which a hemispherical protrusion with a radius of curvature R = 1.8 mm is formed on the surface of the terminal material on the silver-containing film side. The surface having the projections of the mating material is reciprocated by applying a vertical load of 3 N, sliding distance: 50 μm, and sliding speed: 100 μm/sec against the silver-containing film side surface of the terminal material to be tested. One cycle is sliding for 10,000 cycles.
 本発明の態様2は、
 前記銀めっき層は銀を90質量%以上含む、態様1に記載の端子材料である。
Aspect 2 of the present invention is
The terminal material according to aspect 1, wherein the silver plating layer contains 90% by mass or more of silver.
 本発明の態様3は、
 前記非導電性有機化合物が、単位分子構造内に、カルボニル基(-C(=O)-)を含み、かつ環構造を有しない、態様1または2に記載の端子材料である。
Aspect 3 of the present invention is
The terminal material according to aspect 1 or 2, wherein the non-conductive organic compound contains a carbonyl group (-C(=O)-) in a unit molecule structure and does not have a ring structure.
 本発明の態様4は、
 態様1~3のいずれか1つに記載の端子材料を用いた端子である。
Aspect 4 of the present invention is
A terminal using the terminal material according to any one of aspects 1 to 3.
 本発明の実施形態によれば、導電性粒子の脱落による接点の短絡を十分に抑制でき、かつ十分な耐微摺動摩耗性および導電性を有する端子材料および端子を提供することが可能である。 According to the embodiments of the present invention, it is possible to provide a terminal material and a terminal that can sufficiently suppress short-circuiting of contacts due to shedding of conductive particles and have sufficient micro-sliding wear resistance and conductivity. .
図1は、本発明の実施形態に係る端子材料の一例の模式断面図である。FIG. 1 is a schematic cross-sectional view of an example of a terminal material according to an embodiment of the present invention. 図2は、本発明の実施形態に係る端子材料の他の一例の模式断面図である。FIG. 2 is a schematic cross-sectional view of another example of a terminal material according to an embodiment of the present invention. 図3は、本発明の実施形態に係る端子材料の他の一例の模式断面図である。FIG. 3 is a schematic cross-sectional view of another example of the terminal material according to the embodiment of the present invention. 図4は、No.1の端子材料の耐微摺動摩耗性評価結果である。FIG. 1 shows the results of micro-sliding wear resistance evaluation of terminal material No. 1. 図5は、No.2の端子材料の耐微摺動摩耗性評価結果である。FIG. 2 shows the results of the micro-sliding wear resistance evaluation of the terminal material No. 2. 図6は、No.3の端子材料の耐微摺動摩耗性評価結果である。FIG. These are the results of the micro-sliding wear resistance evaluation of the terminal material No. 3. 図7は、No.4の端子材料の耐微摺動摩耗性評価結果である。FIG. This is the result of evaluating the slight sliding wear resistance of the terminal material No. 4. 図8は、No.5の端子材料の耐微摺動摩耗性評価結果である。FIG. 5 shows the results of micro-sliding wear resistance evaluation of terminal material No. 5. 図9は、No.6の端子材料の耐微摺動摩耗性評価結果である。FIG. These are the results of the micro-sliding wear resistance evaluation of the terminal material No. 6.
 本発明者らは、導電性粒子の脱落による接点の短絡を十分に抑制でき、かつ十分な耐微摺動摩耗性および導電性を有する端子材料を実現するべく、様々な角度から検討した。その結果、銀めっき層と、銀めっき層に接触(担持)させた円相当直径が50μm以下の非導電性有機化合物からなる粒子と、を含む銀含有膜、を有する所定の層構成にすることにより、十分な耐微摺動摩耗性および導電性が得られることを見出した。これは、微摺動(およびそれによる発熱等)により、例えば非導電性有機化合物の一部が分解して端子材料表面近傍に拡散移動し、及び/又は、非導電性有機化合物の一部が端子材料表面近傍の銀めっき層と反応し、端子材料表面近傍の摩擦係数を下げる等により、耐微摺動摩耗性が高まるためであると考えられる。なお、当該分解物及び反応物は少量であり、端子材料の導電性を低下させないと考えられる。また、非導電性有機化合物は、膜形態ではなく粒子形態で銀めっき層に接触していることにより、銀めっき層が端子材料表面に露出し得るため、端子材料としての初期の導電性も維持できる。
 以上により、導電性粒子の脱落による接点の短絡のおそれを十分に抑制でき、かつ十分な耐微摺動摩耗性および導電性を有する端子材料を実現することができた。
 なお、上記メカニズムは、本発明の実施形態の技術的範囲を制限するものではない。
The present inventors investigated from various angles in order to realize a terminal material that can sufficiently suppress short-circuiting of contacts due to shedding of conductive particles and has sufficient micro-sliding wear resistance and conductivity. As a result, a predetermined layer structure having a silver plating layer and a silver-containing film containing particles made of a non-conductive organic compound with an equivalent circle diameter of 50 μm or less, which are in contact with (supported by) the silver plating layer, is formed. It has been found that sufficient micro-sliding wear resistance and electrical conductivity can be obtained by this method. This is because, due to slight sliding (and the heat generated by it), for example, a part of the non-conductive organic compound decomposes and diffuses to the vicinity of the terminal material surface, and/or a part of the non-conductive organic compound This is thought to be due to the fact that it reacts with the silver plating layer near the surface of the terminal material and lowers the coefficient of friction near the surface of the terminal material, thereby increasing micro-sliding wear resistance. Note that the decomposed products and reactants are small amounts and are considered not to reduce the conductivity of the terminal material. In addition, since the non-conductive organic compound is in contact with the silver plating layer in the form of particles rather than a film, the silver plating layer can be exposed on the surface of the terminal material, so it maintains the initial conductivity as a terminal material. can.
As a result of the above, it was possible to sufficiently suppress the risk of short-circuiting of contacts due to shedding of conductive particles, and to realize a terminal material having sufficient micro-sliding wear resistance and conductivity.
Note that the above mechanism does not limit the technical scope of the embodiments of the present invention.
 以下に、本発明の実施形態が規定する各要件の詳細を示す。 Details of each requirement defined by the embodiment of the present invention are shown below.
 本発明の実施形態に係る端子材料は、銅または銅合金からなる母材と、Ni、CoおよびFeからなる群から選択されるいずれか1種以上から構成される1層以上である下地層と、銀含有膜とをこの順に有し、前記銀含有膜は、銀を50質量%以上含む銀めっき層と、前記銀めっき層に接触させた円相当直径が50μm以下の非導電性有機化合物からなる粒子と、を含み、下記微摺動摩耗試験を施したときの銀含有膜側表面の接触抵抗が1mΩ以下である。
微摺動摩耗試験:試験対象の前記端子材料と、当該端子材料の銀含有膜側表面に対して曲率半径R=1.8mmの半球状の突起を形成した相手材と、を準備し、前記相手材の前記突起を有する表面を、前記試験対象の前記端子材料の銀含有膜側表面に対し、印加する垂直荷重:3N、摺動距離:50μm、摺動速度:100μm/秒で往復摺動させることを1サイクルとして、10000サイクル摺動させる。
 上記により、導電性粒子の脱落による接点の短絡を十分に抑制でき、かつ十分な耐微摺動摩耗性および導電性を示すことが可能である。
The terminal material according to the embodiment of the present invention includes a base material made of copper or a copper alloy, and a base layer that is one or more layers made of one or more selected from the group consisting of Ni, Co, and Fe. , a silver-containing film in this order, and the silver-containing film is made of a silver plating layer containing 50% by mass or more of silver, and a non-conductive organic compound having an equivalent circle diameter of 50 μm or less that is in contact with the silver plating layer. The contact resistance of the silver-containing film side surface is 1 mΩ or less when subjected to the following micro-sliding abrasion test.
Micro-sliding wear test: Prepare the terminal material to be tested and a mating material in which a hemispherical protrusion with a radius of curvature R = 1.8 mm is formed on the surface of the terminal material on the silver-containing film side. The surface having the projections of the mating material is reciprocated by applying a vertical load of 3 N, sliding distance: 50 μm, and sliding speed: 100 μm/sec against the silver-containing film side surface of the terminal material to be tested. One cycle is sliding for 10,000 cycles.
As a result of the above, it is possible to sufficiently suppress short-circuiting of contacts due to shedding of conductive particles, and to exhibit sufficient micro-sliding wear resistance and conductivity.
 図1は、本発明の実施形態に係る端子材料の一例の模式断面図を示す。図1において、端子材料1は、銅または銅合金からなる母材2(以下単に「母材2」と称することがある)と、Ni、CoおよびFeからなる群から選択されるいずれか1種以上から構成される1層以上である下地層3と、銀含有膜4とをこの順に含み、銀含有膜4は、銀めっき層4aと、銀めっき層4aに接触(付着)した円相当直径が50μm以下の非導電性有機化合物からなる粒子4b(以下単に「粒子4b」と称することがある)とを含む。端子材料1は、上記微摺動摩耗試験を施したときの銀含有膜4側表面の接触抵抗が1mΩ以下となる。 FIG. 1 shows a schematic cross-sectional view of an example of a terminal material according to an embodiment of the present invention. In FIG. 1, a terminal material 1 includes a base material 2 made of copper or a copper alloy (hereinafter sometimes simply referred to as "base material 2") and one material selected from the group consisting of Ni, Co, and Fe. The base layer 3, which is one or more layers composed of the above, and the silver-containing film 4 are included in this order, and the silver-containing film 4 has a silver plating layer 4a and a circle equivalent diameter in contact with (adhering to) the silver plating layer 4a. particles 4b (hereinafter sometimes simply referred to as "particles 4b") made of a non-conductive organic compound and having a diameter of 50 μm or less. The terminal material 1 has a contact resistance of 1 mΩ or less on the surface of the silver-containing film 4 when subjected to the above-mentioned micro-sliding abrasion test.
 母材2の材料には、無酸素銅(OFC)等の純銅に加えて、CuFeP系、CuNiSi系、CuTiCr系、CuSnP系、CuMg系等の銅合金のうち一種以上が適用され得る。なお、端子材料は、使用場所によって要求される特性(導電率、バネ性、強度等)も異なる。そのため、要求される特性に応じて母材2の材料(およびその調質条件)が適宜選定され得る。 In addition to pure copper such as oxygen-free copper (OFC), one or more of copper alloys such as CuFeP, CuNiSi, CuTiCr, CuSnP, and CuMg may be used as the material for the base material 2. Note that the properties required for the terminal material (electrical conductivity, springiness, strength, etc.) differ depending on the location of use. Therefore, the material of the base material 2 (and its refining conditions) can be appropriately selected depending on the required characteristics.
 母材2を含む端子材料1(及びそれを用いた端子)は、例えば、内燃機関エンジンのエンジンルーム内、又は電気自動車のバッテリーの接続部分等の高温環境下で使用され得る。高温環境下では、母材2のCuが銀含有膜4の方に拡散して銀含有膜4表面に達し、さらにCu酸化物を生成して端子材料1の接触抵抗を増大させるおそれがある。
 そのため、母材2と、銀含有膜4との間に、Ni、CoおよびFeからなる群から選択されるいずれか1種以上から構成される1層以上である下地層3を設ける。これにより、母材2からCuが銀含有膜4に拡散するのを抑制することができる。
下地層3は、Niを含むことがめっき施工性等の点で特に好ましい。また、下地層3は複数層であってもよい。
The terminal material 1 including the base material 2 (and a terminal using the same) can be used in a high-temperature environment, such as in the engine room of an internal combustion engine or in a connecting part of an electric vehicle battery. In a high-temperature environment, Cu in the base material 2 diffuses toward the silver-containing film 4 and reaches the surface of the silver-containing film 4, which may further generate Cu oxides and increase the contact resistance of the terminal material 1.
Therefore, between the base material 2 and the silver-containing film 4, a base layer 3, which is one or more layers made of one or more selected from the group consisting of Ni, Co, and Fe, is provided. Thereby, diffusion of Cu from the base material 2 into the silver-containing film 4 can be suppressed.
It is particularly preferable that the base layer 3 contains Ni in terms of plating workability and the like. Further, the base layer 3 may have multiple layers.
 下地層3の平均厚さ(例えば、端子材料の任意の2箇所以上の断面から取得した下地層3の平均の厚さ)は、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましい。これにより、ピンホールなどが抑制され、銅の拡散を効果的に防止できる。一方、下地層3は厚くなると、Cuの拡散抑制効果が飽和し得る。生産性、コストおよび端子成形時の加工性の観点から、下地層3の平均厚さは、3.0μm以下であることが好ましく、より好ましくは2.0μm以下である。 The average thickness of the base layer 3 (for example, the average thickness of the base layer 3 obtained from cross sections of two or more arbitrary locations of the terminal material) is preferably 0.1 μm or more, and more preferably 0.2 μm or more. This suppresses pinholes and effectively prevents copper diffusion. On the other hand, if the base layer 3 becomes too thick, the effect of suppressing Cu diffusion may become saturated. From the viewpoints of productivity, cost, and processability during terminal molding, the average thickness of the base layer 3 is preferably 3.0 μm or less, and more preferably 2.0 μm or less.
 銀めっき層4aは、銀を50質量%以上含む層である。銀めっき層4aとしては、通常の端子表面処理に使用される軟質Agめっき、硬質Agめっき、光沢Agめっきおよび半光沢Agめっき等の他に、銀含有膜4の耐食性(耐硫化性など)改善および耐微摺動摩耗性改善等を目的としてSn及び/又はNi等を含有するAg合金めっきを使用することも可能である。ただし、耐微摺動摩耗性は、主に非導電性有機化合物からなる粒子4bにより付与できるため、耐食性改善等他の目的がない場合は、導電性に優れる純Agめっき層を担体として使用することが好ましく、例えば銀を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましく、99質量%以上含むことがさらに好ましい。 The silver plating layer 4a is a layer containing 50% by mass or more of silver. As the silver plating layer 4a, in addition to soft Ag plating, hard Ag plating, bright Ag plating, semi-bright Ag plating, etc. used for normal terminal surface treatment, corrosion resistance (sulfidation resistance, etc.) of the silver-containing film 4 can be improved. It is also possible to use Ag alloy plating containing Sn and/or Ni etc. for the purpose of improving micro-sliding wear resistance. However, since micro-sliding wear resistance can be imparted mainly by particles 4b made of non-conductive organic compounds, if there is no other purpose such as improving corrosion resistance, a pure Ag plating layer with excellent conductivity may be used as a carrier. For example, it is preferable that silver is contained in an amount of 90% by mass or more, more preferably 95% by mass or more, and even more preferably 99% by mass or more.
 銀めっき層4aの平均厚さ(例えば、端子材料の任意の2箇所以上の断面から取得した銀めっき層4aの平均の厚さ)は特に制限されず、用途に応じて適宜調整され得るが、例えば100μm以下、さらには50μm以下の厚さであってもよい。 The average thickness of the silver plating layer 4a (for example, the average thickness of the silver plating layer 4a obtained from two or more arbitrary cross sections of the terminal material) is not particularly limited, and can be adjusted as appropriate depending on the application, but For example, the thickness may be 100 μm or less, or even 50 μm or less.
 非導電性有機化合物からなる粒子4bについて、「非導電性」とは、導電性を示さないことを意味し、例えばASTM D257に基づき測定した体積抵抗率が、概ね10[Ω・cm]以上の値を示すものをいう。 Regarding the particles 4b made of a non-conductive organic compound, "non-conductive" means not exhibiting conductivity; for example, the volume resistivity measured based on ASTM D257 is approximately 10 3 [Ω·cm] or more. refers to something that indicates the value of
 非導電性有機化合物からなる粒子4bについて、「有機化合物」とは、炭素を含む化合物のうち、一酸化炭素、二酸化炭素、炭酸塩、青酸、シアン酸塩、チオシアン酸塩、BCおよびSiC等のように簡単な構造の化合物を除いたものを指す。例えばシロキサン結合(-Si-O-Si-)が主鎖であって側鎖に有機基を有するシリコーン樹脂は、本明細書における「有機化合物」に含むものとする。 Regarding the particles 4b made of non-conductive organic compounds, "organic compounds" include carbon-containing compounds such as carbon monoxide, carbon dioxide, carbonates, hydrocyanic acid, cyanates, thiocyanates, B 4 C and SiC. This refers to compounds excluding compounds with simple structures such as. For example, a silicone resin having a siloxane bond (-Si-O-Si-) as its main chain and an organic group in its side chain is included in the "organic compound" in this specification.
 非導電性有機化合物は、単位分子構造内に、フルオロ基(-F)、メチル基(-CH)、カルボニル基(-C(=O)-)、アミノ基(-NRであって、RおよびRは水素または炭化水素基であり、RおよびRは同じでも異なっていてもよい)およびヒドロキシ基(-OH)からなる群から選択されるいずれか1種以上を含むことが好ましい。より好ましくは、単位分子構造内に、カルボニル基(-C(=O)-)を含み、かつ環構造を有しないことである。これにより、耐微摺動摩耗性をより高めることができる。
 ここで、「単位分子構造」とは、高分子(重合体)の場合にはその1繰り返し単位、非重合体の場合には個々の分子を意味する。
The non-conductive organic compound has a fluoro group (-F), a methyl group (-CH 3 ), a carbonyl group (-C(=O)-), an amino group (-NR 1 R 2 ) in the unit molecular structure. R 1 and R 2 are hydrogen or a hydrocarbon group, and R 1 and R 2 may be the same or different) and a hydroxy group (-OH). It is preferable to include. More preferably, the unit molecule structure contains a carbonyl group (-C(=O)-) and does not have a ring structure. Thereby, the resistance to slight sliding wear can be further improved.
Here, the "unit molecular structure" means one repeating unit in the case of a high molecule (polymer), and each molecule in the case of a non-polymer.
 非導電性有機化合物からなる粒子4bについて、「粒子」とは、円相当直径が50μm以下の比較的小さな物質を意味し、形状はどのようなものであってもよい。本発明の一実施形態では、導電性の観点から、粒子4bの平均粒径(平均円相当直径)は10μm以下としてもよい。また、本発明の一実施形態では、耐微摺動摩耗性の観点から、粒子4bの平均粒径は0.1μm以上としてもよい。 Regarding the particles 4b made of a non-conductive organic compound, the term "particle" means a relatively small substance with an equivalent circle diameter of 50 μm or less, and may have any shape. In one embodiment of the present invention, from the viewpoint of conductivity, the average particle diameter (average equivalent circle diameter) of the particles 4b may be 10 μm or less. Moreover, in one embodiment of the present invention, from the viewpoint of micro-sliding wear resistance, the average particle diameter of the particles 4b may be 0.1 μm or more.
 図2は、本発明の実施形態に係る端子材料の他の一例の模式断面図を示しており、端子材料11において、粒子4bは銀めっき層4a中に埋没している。ここで「埋没」とは、各粒子4bにつき、全て銀めっき層4a中に埋没しているか、又は一部が銀めっき層4a中に埋没し、残りの部分が銀めっき層4a表面に露出していることを意味する。 FIG. 2 shows a schematic cross-sectional view of another example of a terminal material according to an embodiment of the present invention, in which the particles 4b are embedded in the silver plating layer 4a in the terminal material 11. Here, "embedded" means that, for each particle 4b, either all of the particles 4b are embedded in the silver plating layer 4a, or a portion of the particles 4b is embedded in the silver plating layer 4a, with the remaining portion exposed on the surface of the silver plating layer 4a.
 図3は、本発明の実施形態に係る端子材料の他の一例の模式断面図を示しており、端子材料21において、粒子4bは、銀めっき層4a中に全て埋没している。図3の場合、粒子4bは、銀めっき層4a中に全て埋没しうる大きさであり得、すなわち、粒子4bの平均粒径は、銀めっき層4aの厚さ未満であり得る。 FIG. 3 shows a schematic cross-sectional view of another example of the terminal material according to the embodiment of the present invention, and in the terminal material 21, the particles 4b are completely buried in the silver plating layer 4a. In the case of FIG. 3, the particles 4b may be large enough to be completely buried in the silver plating layer 4a, that is, the average particle size of the particles 4b may be less than the thickness of the silver plating layer 4a.
 本発明の実施形態に係る端子材料において「粒子が接触している」とは、例えば図1のように粒子4bが銀めっき層4a表面に接触(付着)していてもよく、例えば粒子4bが銀めっき層4a中に共析して(埋没して)いてもよい。その場合、各粒子4bは、図3のように銀めっき層4a中に全て埋没していてもよく、図2のように、各粒子4bの一部が銀めっき層4a表面に露出していてもよい。なお「粒子が接触している」か否かは、例えば、端子材料1(11、21)の断面を観察することで判断できる。 In the terminal material according to the embodiment of the present invention, "the particles are in contact" may mean, for example, that the particles 4b are in contact with (adhere to) the surface of the silver plating layer 4a as shown in FIG. It may be eutectoid (buried) in the silver plating layer 4a. In that case, each particle 4b may be completely buried in the silver plating layer 4a as shown in FIG. 3, or a part of each particle 4b may be exposed on the surface of the silver plating layer 4a as shown in FIG. Good too. Note that whether or not "the particles are in contact" can be determined, for example, by observing the cross section of the terminal material 1 (11, 21).
 導電性をより高める(接触抵抗をより低下させる)観点では、図2のように粒子4bが銀めっき層4a中に共析して(埋没して)いる形態か、図3のように銀めっき層4a中に全て埋没している形態が好ましい。一方で、耐微摺動摩耗性をより高める観点では、図1のように粒子4bが銀めっき層4a表面に接触(付着)している形態か、または、図2のように粒子4bが銀めっき層4a中に共析して(埋没して)いる形態が好ましい。 From the viewpoint of further increasing conductivity (further reducing contact resistance), particles 4b are eutectoid (buried) in silver plating layer 4a as shown in FIG. 2, or silver plating is used as shown in FIG. Preferably, it is completely buried in the layer 4a. On the other hand, from the viewpoint of further improving micro-sliding wear resistance, the particles 4b may be in contact with (adhering to) the surface of the silver plating layer 4a as shown in FIG. It is preferable that it is eutectoid (buried) in the plating layer 4a.
 本発明の実施形態に係る端子材料1、11および21は、場合によっては導電性粒子が銀めっき層4aに接触していてもよいが、導電性粒子が少なければ少ない程、その脱落による接点の短絡を抑制でき好ましい。そのため、本発明の実施形態に係る端子材料1、11および21に接触している粒子の、50体積%以上が非導電性有機化合物からなる粒子4bであることが好ましく、60体積%以上、70体積%以上、80体積%以上、90体積%以上がより好ましく、全て(100体積%)が非導電性有機化合物からなる粒子4bであることがさらに好ましい。また、本発明の実施形態に係る端子材料1、11および21は、場合によっては無機粒子が接触していてもよい。 In the terminal materials 1, 11, and 21 according to the embodiments of the present invention, the conductive particles may be in contact with the silver plating layer 4a depending on the case, but the fewer the conductive particles are, the more the contact will be damaged due to their falling off. This is preferable because short circuits can be suppressed. Therefore, it is preferable that 50% by volume or more of the particles 4b in contact with the terminal materials 1, 11, and 21 according to the embodiment of the present invention are made of a non-conductive organic compound, and 60% by volume or more, 70% by volume or more. It is more preferably at least 80 vol%, or at least 90 vol%, and even more preferably the particles 4b are made entirely (100 vol%) of a non-conductive organic compound. Further, the terminal materials 1, 11, and 21 according to the embodiments of the present invention may be in contact with inorganic particles depending on the case.
 本発明の実施形態に係る端子材料1、11および21は、本開示の目的を達成する上で他の層(例えばストライクめっき層等)を含んでいてもよい。 The terminal materials 1, 11, and 21 according to the embodiments of the present invention may include other layers (for example, a strike plating layer, etc.) in order to achieve the object of the present disclosure.
 本発明の実施形態に係る端子材料1の製造方法としては、例えば、まず銅板などの母材2上に、一般的な条件で、銅拡散抑制効果を有する材料であるNi、CoおよびFeからなる群から選択されるいずれか1種以上を含む所定のめっき液に通電して、下地層3を形成する。その後、一般的な条件で銀(または銀合金)めっき液に通電して銀めっき層4aを形成する。そして非導電性有機化合物からなる粒子4bの分散液を表面に塗布する。これにより、端子材料1が得られる。なお、場合によっては、銀めっき処理を施す前に、ストライク銀めっき処理を施してもよい。 As a method for manufacturing the terminal material 1 according to the embodiment of the present invention, for example, first, under general conditions, Ni, Co, and Fe, which are materials having a copper diffusion suppressing effect, are placed on a base material 2 such as a copper plate. A predetermined plating solution containing one or more selected from the group is energized to form the base layer 3. Thereafter, a silver (or silver alloy) plating solution is energized under general conditions to form a silver plating layer 4a. Then, a dispersion of particles 4b made of a non-conductive organic compound is applied to the surface. Thereby, terminal material 1 is obtained. Note that, depending on the case, strike silver plating treatment may be performed before silver plating treatment.
 上記製造方法において、銀(または銀合金)めっき液中に非導電性有機化合物からなる粒子4bを分散させて、攪拌しながら電気めっき処理を行うことで、非導電性有機化合物からなる粒子4bが銀めっき層4a中に共析した端子材料(銀めっき層4a表面に粒子4bの一部が露出した端子材料11または銀めっき層4a中に粒子4bが全て埋没した端子材料21)が得られる。 In the above manufacturing method, particles 4b made of a non-conductive organic compound are dispersed in a silver (or silver alloy) plating solution and electroplated with stirring. A terminal material eutectoid in the silver plating layer 4a (terminal material 11 in which part of the particles 4b are exposed on the surface of the silver plating layer 4a or terminal material 21 in which all the particles 4b are buried in the silver plating layer 4a) is obtained.
 めっき液中に粒子4bを分散させて電気めっきを行い、銀めっき層4a中に粒子4bを共析させるプロセスにおいては、以下の反応(A)および(B)が同時に進行する。
 (A)基材表面に、液中分散粒子が静電気的または物理的に吸着(接触)する反応
 (B)基材表面に、銀めっき層4aが堆積(成長)する反応
 (A)で吸着した粒子4bが(B)の銀めっき層4a中に取り込まれることで「共析」が生じる。共析めっきが定常的に進行する条件においては、反応初期に吸着した粒子4bが銀めっき層4a中に取り込まれるのと同時に、新たな粒子4bの吸着が発生する。このため、めっき処理を停止した場合にも、多くの場合で最表面に粒子4bの露出が見られ、通常の共析めっきプロセスにおいて、銀めっき層4a表面に粒子4bの一部が露出した端子材料11を容易に製造することができる。
 ここで、銀めっき層4a中への粒子4bの共析量は、(A)の吸着頻度と(B)のめっき膜成長速度とのバランスで決定されるため、めっき条件(およびめっき浴条件)を変化させることで共析量を変化させることが可能となる。例えば、めっき処理の終盤において、めっき液中に分散した粒子4bを含まないめっき液を用いて処理を行う、あるいはめっき液の攪拌速度を変化させて(A)の吸着頻度を低下させるなどにより、めっきの最表面側に粒子4bを共析させない層を設けることで、銀めっき層4a中に粒子4bが全て埋没した端子材料21を製造することが可能となる。
In the process of electroplating by dispersing particles 4b in a plating solution and eutectoiding particles 4b into silver plating layer 4a, the following reactions (A) and (B) proceed simultaneously.
(A) Reaction in which particles dispersed in liquid are electrostatically or physically adsorbed (contacted) on the surface of the substrate (B) Reaction in which silver plating layer 4a is deposited (grown) on the surface of the substrate (A) "Eutectoid" occurs when the particles 4b are incorporated into the silver plating layer 4a of (B). Under conditions where eutectoid plating progresses steadily, adsorption of new particles 4b occurs at the same time as the particles 4b adsorbed at the initial stage of the reaction are taken into the silver plating layer 4a. For this reason, even when the plating process is stopped, particles 4b are often exposed on the outermost surface, and in the normal eutectoid plating process, terminals with some of the particles 4b exposed on the surface of the silver plating layer 4a are Material 11 can be easily manufactured.
Here, since the amount of particles 4b eutectoided into the silver plating layer 4a is determined by the balance between the adsorption frequency of (A) and the plating film growth rate of (B), the plating conditions (and plating bath conditions) By changing the amount of eutectoid, it is possible to change the amount of eutectoid. For example, at the final stage of the plating process, by performing the process using a plating solution that does not contain the particles 4b dispersed in the plating solution, or by changing the stirring speed of the plating solution to reduce the adsorption frequency of (A), etc. By providing a layer that does not eutectoid particles 4b on the outermost surface side of the plating, it is possible to manufacture the terminal material 21 in which all the particles 4b are buried in the silver plating layer 4a.
 本発明の実施形態に係る端子材料1、11および21は、十分な導電性だけでなく、十分な耐微摺動摩耗性を有する。具体的には、本発明の実施形態に係る端子材料1、11および21は、初期の接触抵抗を1.0mΩ以下にでき、且つ下記微摺動摩耗試験10000サイクル後においても接触抵抗を1.0mΩ以下にできる。本発明の実施形態に係る端子材料1、11および21は、下記微摺動摩耗試験20000サイクル後においても接触抵抗を1.0mΩ以下にできることが好ましい。
<微摺動摩耗試験>
 試験対象の端子材料と、当該端子材料の銀含有膜側表面に対して例えばハンドプレス等によって曲率半径R=1.8mmの半球状の突起を形成した相手材と、を準備し、相手材の前記突起を有する表面を、試験対象の端子材料の銀含有膜側表面に対し、印加する垂直荷重:3N、摺動距離:50μm、摺動速度:100μm/秒で往復摺動させることを1サイクルとして、所定サイクル摺動させる。摺動試験機としては、例えば山崎精機研究所製CRS-B1050CHOを用いることができる。
The terminal materials 1, 11, and 21 according to the embodiments of the present invention have sufficient electrical conductivity as well as sufficient fretting wear resistance. Specifically, the terminal materials 1, 11, and 21 according to the embodiments of the present invention can reduce the initial contact resistance to 1.0 mΩ or less, and can also reduce the contact resistance to 1.0 mΩ or less even after 10,000 cycles of the fretting wear test described below. It is preferable that the terminal materials 1, 11, and 21 according to the embodiments of the present invention can reduce the contact resistance to 1.0 mΩ or less even after 20,000 cycles of the fretting wear test described below.
<Fresh Wear Test>
A terminal material to be tested and a mating material having a hemispherical protrusion with a curvature radius R of 1.8 mm formed on the silver-containing film side surface of the terminal material by, for example, a hand press are prepared, and the surface of the mating material having the protrusion is slid back and forth against the silver-containing film side surface of the terminal material to be tested for a predetermined number of cycles with an applied normal load of 3 N, a sliding distance of 50 μm, and a sliding speed of 100 μm/sec. As a sliding tester, for example, a CRS-B1050CHO manufactured by Yamazaki Seiki Kenkyusho can be used.
 本発明の実施形態に係る端子は、本発明の実施形態に係る端子材料1、11および21を含む。本発明の実施形態に係る端子は、本発明の実施形態に係る端子材料1、11および21を端子形状に成形するか、又は先に母材2を端子形状に成形した後、その母材2にNi、CoおよびFeからなる群から選択されるいずれか1種以上から構成される1層以上である下地層3ならびに銀含有膜4(銀めっき層4aおよび非導電性有機化合物からなる粒子4b)を形成すること等により製造できる。本発明の実施形態に係る端子は、エンジン、モーターなどの機器をECUに直接接続するために使用され得る。 The terminal according to the embodiment of the present invention includes terminal materials 1, 11, and 21 according to the embodiment of the present invention. The terminal according to the embodiment of the present invention can be produced by molding the terminal materials 1, 11 and 21 according to the embodiment of the present invention into a terminal shape, or by first molding a base material 2 into a terminal shape, and then forming the base material 2 into a terminal shape. The base layer 3 is one or more layers made of one or more selected from the group consisting of Ni, Co, and Fe, and the silver-containing film 4 (silver plating layer 4a and particles 4b made of a non-conductive organic compound). ). Terminals according to embodiments of the present invention can be used to directly connect equipment such as engines and motors to an ECU.
 以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の実施形態の技術的範囲に包含される。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples. The embodiments of the present invention are not limited by the following examples, and can be implemented with appropriate changes within the scope that can meet the spirit described above and below. It is included within the technical scope of the embodiment.
 厚さ0.3mmの純銅(銅含有量99質量%以上)を母材とし、アセトン洗浄にて母材表面を脱脂した後、無光沢Niワット浴を用い、Ni板を対極として、5A/dmの電流密度で2分間の通電を行い、厚さ1μmの下地層(Ni含有量99質量%以上)を形成した。その後市販のストライクAgめっき液(大和化成株式会社製ダインシルバーGPE-ST)を用い、5A/dmの電流密度で1分間の通電を行い、厚さ約0.1μmのストライクAgめっき層(銀含有量99質量%以上)を形成した。その後、市販の非シアン系半光沢Agめっき液(大和化成株式会社製ダインシルバーGPE-SB)を用い、表1に示す種々の円相当直径50μm以下の非導電性有機化合物からなる粒子と界面活性剤(分散剤)をめっき液中に所定量分散させ、攪拌を行いながら、純Ag板を対極として3A/dmの電流密度で5分間の通電を行い、厚さ約10μmの半光沢Agめっき層(銀含有量99質量%以上)中に各粒子が共析した(埋没した)銀含有膜を含む、No.1~4の端子材料を得た。なお、No.1~3の界面活性剤としては、サーフロンS231(AGCセイミケミカル製)を用い、添加量は50g/Lとした。またNo.4は、界面活性剤としてナフタレンスルホン酸ソーダ、分散剤(安定剤)としてカルボキシメチルセルロース(CMC)を用いた。 Using pure copper (copper content of 99% by mass or more) with a thickness of 0.3 mm as a base material, the surface of the base material was degreased by washing with acetone, and then using a matte Ni Watt bath and using a Ni plate as a counter electrode, 5A/d. Current was applied for 2 minutes at a current density of 2 to form a 1 μm thick underlayer (Ni content of 99% by mass or more). Thereafter, using a commercially available strike Ag plating solution (Dyne Silver GPE-ST manufactured by Daiwa Kasei Co., Ltd.), electricity was applied for 1 minute at a current density of 5 A/dm 2 to form a strike Ag plating layer (silver) with a thickness of approximately 0.1 μm. content of 99% by mass or more). After that, using a commercially available non-cyanide semi-bright Ag plating solution (Dyne Silver GPE-SB, manufactured by Daiwa Kasei Co., Ltd.), we coated the surface-active particles with various non-conductive organic compound particles with equivalent circle diameters of 50 μm or less shown in Table 1. A predetermined amount of agent (dispersant) is dispersed in the plating solution, and while stirring, electricity is applied for 5 minutes at a current density of 3 A/dm 2 with a pure Ag plate as the counter electrode, resulting in semi-gloss Ag plating with a thickness of approximately 10 μm. No. 1, which includes a silver-containing film in which each particle is eutectoid (buried) in a layer (silver content of 99% by mass or more). Terminal materials Nos. 1 to 4 were obtained. In addition, No. As surfactants 1 to 3, Surflon S231 (manufactured by AGC Seimi Chemical) was used, and the amount added was 50 g/L. Also No. In No. 4, sodium naphthalene sulfonate was used as a surfactant and carboxymethyl cellulose (CMC) was used as a dispersant (stabilizer).
 No.1~4の端子材料の比較として、非導電性有機化合物からなる粒子を含まないNo.5および6の端子材料を作製した。No.5はNo.1~4とは異なり、半光沢Agめっき液中に種々の非導電性有機化合物からなる粒子と界面活性剤(分散剤)を分散させずに、厚さ約10μmの半光沢Agめっき層(銀含有量99質量%以上)を形成した。No.6は、No.1~4とは異なり、ストライクAgめっき液をシアン浴のものとして、厚さ約0.1μmのストライクAgめっき層(銀含有量99質量%以上)を形成した後、半光沢Agめっき液を光沢Agめっき液(メタローテクノロジーズ製N-BRIGHT)に変更し、光沢Agめっき液中に種々の非導電性有機化合物からなる粒子と界面活性剤(分散剤)を分散させずに、純Ag板を対極として1.5A/dmの電流密度で15分間の通電を行い、厚さ約10μmの光沢Agめっき層(銀含有量99質量%以上)を形成した。 No. As a comparison of terminal materials No. 1 to No. 4, No. 1 containing no particles made of a non-conductive organic compound was used. Terminal materials Nos. 5 and 6 were prepared. No. 5 is No. 1 to 4, a semi-bright Ag plating layer (silver content of 99% by mass or more). No. 6 is No. Unlike in steps 1 to 4, a strike Ag plating layer (silver content of 99% by mass or more) with a thickness of about 0.1 μm is formed using a cyan bath as the strike Ag plating solution, and then a semi-bright Ag plating solution is used as a glossy one. By changing to an Ag plating solution (N-BRIGHT manufactured by Metallo Technologies), pure Ag plates were produced without dispersing particles and surfactants (dispersants) made of various non-conductive organic compounds in the bright Ag plating solution. As a counter electrode, electricity was applied for 15 minutes at a current density of 1.5 A/dm 2 to form a glossy Ag plating layer (silver content of 99% by mass or more) with a thickness of about 10 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 No.1~No.6の端子材料に対して、初期の接触抵抗評価および耐微摺動摩耗性評価を行った。 No. 1~No. Initial contact resistance evaluation and micro-sliding wear resistance evaluation were performed on the terminal material No. 6.
<初期の接触抵抗評価>
 No.1~6の端子材料の銀含有膜側表面に対して、電気接点シミュレータ(山崎精機研究所製)を使用して、四端子法により、解放電圧20mV、電流10mA、荷重3Nの条件にて5回測定を実施し、その平均値を初期の接触抵抗値とした。接触抵抗が1.0mΩ超となるものを、導電性が不良(×)であるとし、1.0mΩ以下となるものを、導電性が十分(〇)であるとした。
<Initial contact resistance evaluation>
No. Using an electrical contact simulator (manufactured by Yamazaki Seiki Laboratory), the silver-containing film side surface of the terminal materials Nos. 1 to 6 was subjected to a four-terminal method under conditions of an open voltage of 20 mV, a current of 10 mA, and a load of 3 N. The measurement was carried out twice, and the average value was taken as the initial contact resistance value. When the contact resistance exceeded 1.0 mΩ, the conductivity was determined to be poor (×), and when the contact resistance was 1.0 mΩ or less, the conductivity was determined to be sufficient (◯).
<耐微摺動摩耗性評価>
 No.1~6の端子材料(サイズ10cm×10cm)と、当該端子材料の銀含有膜側表面に対してハンドプレスによって曲率半径R=1.8mmの半球状の突起を形成した相手材(サイズ0.5cm×5cm)とを準備し、相手材の前記突起を有する表面を、No.1~6の端子材料の銀含有膜側表面に対し、摺動試験機として、山崎精機研究所製CRS-B1050CHOを用いて、印加する垂直荷重:3N、摺動距離:50μm、摺動速度:100μm/秒で往復摺動させることを1サイクルとして、所定サイクル摺動させ、各サイクル後の接触抵抗を上記と同様の方法で測定した。結果を図4~図9に示す。図4~図9は、それぞれ、試験No.1~6の端子材料に対して微摺動摩耗試験をN=2で行った結果である。
 接触抵抗が1.0mΩ超となるサイクル数であって、N=2のうちサイクル数の短い方が、10000未満のものを不良(×)、10000以上20000未満のものを〇(十分)、20000以上のものを◎(良好)とした。また、20000サイクル後に摩耗痕を観察し、母材(または下地層)の露出の有無を評価した。
<Slight sliding wear resistance evaluation>
No. Terminal materials Nos. 1 to 6 (size 10 cm x 10 cm) and a mating material (size 0.5 cm) in which hemispherical protrusions with a radius of curvature R = 1.8 mm were formed by hand pressing on the silver-containing film side surface of the terminal materials. No. 5 cm x 5 cm) was prepared, and the surface of the mating material having the protrusions was prepared. Vertical load: 3N, sliding distance: 50 μm, sliding speed: applied to the silver-containing film side surface of the terminal materials 1 to 6 using a CRS-B1050CHO manufactured by Yamazaki Seiki Laboratory as a sliding tester. One cycle was reciprocating sliding at 100 μm/sec, and sliding was performed for a predetermined number of cycles, and the contact resistance after each cycle was measured in the same manner as above. The results are shown in FIGS. 4 to 9. FIGS. 4 to 9 respectively show test No. These are the results of micro-sliding wear tests conducted on terminal materials Nos. 1 to 6 with N=2.
The number of cycles at which the contact resistance exceeds 1.0 mΩ, the shorter of which is less than 10,000 among N = 2, is considered defective (x), and those with a contact resistance of 10,000 or more and less than 20,000 are ○ (satisfactory), 20,000. The above items were rated as ◎ (good). In addition, wear marks were observed after 20,000 cycles, and the presence or absence of exposure of the base material (or base layer) was evaluated.
 以上の結果を表2にまとめた。なお、「短絡防止」の欄には、銀めっき層に接触している粒子の50体積%以上が非導電性粒子である場合、粒子の脱落による接点の短絡を十分に抑制できる(〇)とし、銀めっき層に接触している粒子の50体積%未満が非導電性粒子である場合(すなわち銀めっき層に接触している粒子の50体積%超が導電性粒子である場合)、粒子の脱落による接点の短絡のおそれがある(×)とした。「総合判定」の欄には、「短絡防止」、「導電性」および「耐微摺動摩耗性」の欄において全て「〇」判定の場合、「〇」と記載し、その上で「耐微摺動摩耗性」の欄が「◎」判定の場合「◎」と記載し、「短絡防止」、「導電性」および「耐微摺動摩耗性」の欄において「×」判定が1つでもある場合、「×」と記載した。 The above results are summarized in Table 2. In addition, in the "Short circuit prevention" column, if 50% by volume or more of the particles in contact with the silver plating layer are non-conductive particles, short circuits at the contact points due to falling particles can be sufficiently suppressed (○). , if less than 50% by volume of the particles in contact with the silver plating layer are non-conductive particles (i.e. more than 50% by volume of the particles in contact with the silver plating layer are conductive particles), It was rated as (×) that there is a risk of a short circuit in the contacts due to falling off. In the “Overall Judgment” column, if all of the “Short Circuit Prevention”, “Conductivity”, and “Slight Abrasion Resistance” columns are judged as “〇”, write “〇”, and then write “〇”. If there is a judgment of “◎” in the “Slight sliding abrasion resistance” column, write “◎”, and if there is one “×” judgment in the “Short circuit prevention”, “Conductivity” and “Slight sliding abrasion resistance” columns. If it is, it is marked as “×”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、次のように考察できる。表2のNo.1~4の端子材料は、いずれも本発明の実施形態で規定する要件を満足しており、導電性粒子の脱落による接点の短絡を十分に抑制でき、かつ十分な導電性および耐微摺動摩耗性を有していた。そのうちNo.1~3の銀含有膜は、非導電性有機化合物が、単位分子構造内に、カルボニル基(-C(=O)-)を含み、且つ環構造を有しないという好ましい要件を満たしていたため、接触抵抗が1.0mΩ超となるサイクル数が20000以上であった。 From the results in Table 2, the following can be considered. No. of Table 2 All of the terminal materials Nos. 1 to 4 satisfy the requirements specified in the embodiment of the present invention, can sufficiently suppress short circuits of contacts due to falling off of conductive particles, and have sufficient conductivity and micro-sliding resistance. It had abrasive properties. Among them No. Silver-containing films 1 to 3 satisfied the preferable requirements that the non-conductive organic compound contains a carbonyl group (-C(=O)-) in the unit molecular structure and does not have a ring structure, The number of cycles at which the contact resistance exceeded 1.0 mΩ was 20,000 or more.
 No.5および6の端子材料は、微摺動摩耗試験10000サイクル未満で接触抵抗が1.0mΩ超となった。これは、No.5および6の端子材料において、非導電性有機化合物からなる粒子が銀めっき層に接触しておらず、微摺動摩耗によって容易に母材(または下地層)が露出し、その母材等が酸化して接触抵抗が増大したことに起因すると考えられる。なお、No.6は、No.5よりも光沢剤の作用により銀めっき層が硬質化しており、接触抵抗が増大するタイミングが若干遅くなっているものの、大幅な改善は認められなかった。 No. Terminal materials Nos. 5 and 6 had a contact resistance of more than 1.0 mΩ in less than 10,000 cycles of the micro-sliding abrasion test. This is No. In the terminal materials No. 5 and 6, the particles made of the non-conductive organic compound are not in contact with the silver plating layer, and the base material (or base layer) is easily exposed due to slight sliding wear. This is thought to be due to an increase in contact resistance due to oxidation. In addition, No. 6 is No. Although the silver plating layer was made harder by the action of the brightener than in No. 5, and the timing at which the contact resistance increased was slightly delayed, no significant improvement was observed.
 本出願は、出願日が2022年9月22日である日本国特許出願、特願第2022-151505号を基礎出願とする優先権主張を伴う。特願第2022-151505号は参照することにより本明細書に取り込まれる。 This application claims priority to the Japanese patent application, Japanese Patent Application No. 2022-151505, whose filing date is September 22, 2022, as the basic application. Japanese Patent Application No. 2022-151505 is incorporated herein by reference.
 1   端子材料
 2   母材
 3   下地層
 4   銀含有膜
 4a  銀めっき層
 4b  非導電性有機化合物からなる粒子
 11  端子材料
 21  端子材料
1 Terminal material 2 Base material 3 Base layer 4 Silver-containing film 4a Silver plating layer 4b Particles made of non-conductive organic compound 11 Terminal material 21 Terminal material

Claims (5)

  1.  銅または銅合金からなる母材と、Ni、CoおよびFeからなる群から選択されるいずれか1種以上から構成される1層以上である下地層と、銀含有膜とをこの順に有し、
     前記銀含有膜は、銀を50質量%以上含む銀めっき層と、前記銀めっき層に接触させた円相当直径が50μm以下の非導電性有機化合物からなる粒子と、を含み、
     下記微摺動摩耗試験を施したときの銀含有膜側表面の接触抵抗が1mΩ以下である、端子材料。
     微摺動摩耗試験:試験対象の前記端子材料と、当該端子材料の銀含有膜側表面に対して曲率半径R=1.8mmの半球状の突起を形成した相手材と、を準備し、前記相手材の前記突起を有する表面を、前記試験対象の前記端子材料の銀含有膜側表面に対し、印加する垂直荷重:3N、摺動距離:50μm、摺動速度:100μm/秒で往復摺動させることを1サイクルとして、10000サイクル摺動させる。
    A base material made of copper or a copper alloy, a base layer which is one or more layers made of one or more selected from the group consisting of Ni, Co and Fe, and a silver-containing film, in this order,
    The silver-containing film includes a silver plating layer containing 50% by mass or more of silver, and particles made of a non-conductive organic compound with an equivalent circle diameter of 50 μm or less that are in contact with the silver plating layer,
    A terminal material whose contact resistance on the silver-containing film side surface is 1 mΩ or less when subjected to the following micro-sliding abrasion test.
    Micro-sliding wear test: Prepare the terminal material to be tested and a mating material in which a hemispherical protrusion with a radius of curvature R = 1.8 mm is formed on the surface of the terminal material on the silver-containing film side. The surface having the projections of the mating material is reciprocated by applying a vertical load of 3 N, sliding distance: 50 μm, and sliding speed: 100 μm/sec against the silver-containing film side surface of the terminal material to be tested. One cycle is sliding for 10,000 cycles.
  2.  前記銀めっき層は銀を90質量%以上含む、請求項1に記載の端子材料。 The terminal material according to claim 1, wherein the silver plating layer contains 90% by mass or more of silver.
  3.  前記非導電性有機化合物が、単位分子構造内に、カルボニル基(-C(=O)-)を含み、かつ環構造を有しない、請求項1に記載の端子材料。 The terminal material according to claim 1, wherein the non-conductive organic compound contains a carbonyl group (-C(=O)-) in a unit molecule structure and does not have a ring structure.
  4.  前記非導電性有機化合物が、単位分子構造内に、カルボニル基(-C(=O)-)を含み、かつ環構造を有しない、請求項2に記載の端子材料。 The terminal material according to claim 2, wherein the non-conductive organic compound contains a carbonyl group (-C(=O)-) in a unit molecule structure and does not have a ring structure.
  5.  請求項1~4のいずれか1項に記載の端子材料を用いた端子。 A terminal using the terminal material described in any one of claims 1 to 4.
PCT/JP2023/032243 2022-09-22 2023-09-04 Terminal material and terminal WO2024062909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022151505A JP7459202B1 (en) 2022-09-22 2022-09-22 Terminal material and terminal
JP2022-151505 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062909A1 true WO2024062909A1 (en) 2024-03-28

Family

ID=90454172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032243 WO2024062909A1 (en) 2022-09-22 2023-09-04 Terminal material and terminal

Country Status (3)

Country Link
JP (2) JP7459202B1 (en)
TW (1) TW202413732A (en)
WO (1) WO2024062909A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223290A (en) * 1997-02-07 1998-08-21 Sumitomo Wiring Syst Ltd Connecting terminal
JP2013129902A (en) * 2011-12-22 2013-07-04 Om Sangyo Kk Plated product and method for producing the same
JP2014118632A (en) * 2012-12-19 2014-06-30 Furukawa Electric Co Ltd:The Method for manufacturing capsule, method for manufacturing plating material including the capsule, and plating material including the capsule
JP2021119257A (en) * 2020-01-30 2021-08-12 Dowaメタルテック株式会社 Composite plated material and its manufacturing method
US20210254231A1 (en) * 2018-07-05 2021-08-19 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Silver electrolyte for depositing dispersion silver layers and contact surfaces with dispersion silver layers
JP2022154356A (en) * 2021-03-30 2022-10-13 株式会社神戸製鋼所 Contact material and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229204A (en) 2013-03-15 2016-01-06 恩索恩公司 The galvanic deposit of silver and fluoropolymer nanoparticle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223290A (en) * 1997-02-07 1998-08-21 Sumitomo Wiring Syst Ltd Connecting terminal
JP2013129902A (en) * 2011-12-22 2013-07-04 Om Sangyo Kk Plated product and method for producing the same
JP2014118632A (en) * 2012-12-19 2014-06-30 Furukawa Electric Co Ltd:The Method for manufacturing capsule, method for manufacturing plating material including the capsule, and plating material including the capsule
US20210254231A1 (en) * 2018-07-05 2021-08-19 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Silver electrolyte for depositing dispersion silver layers and contact surfaces with dispersion silver layers
JP2021119257A (en) * 2020-01-30 2021-08-12 Dowaメタルテック株式会社 Composite plated material and its manufacturing method
JP2022154356A (en) * 2021-03-30 2022-10-13 株式会社神戸製鋼所 Contact material and method for producing the same

Also Published As

Publication number Publication date
TW202413732A (en) 2024-04-01
JP7459202B1 (en) 2024-04-01
JP2024048406A (en) 2024-04-09
JP2024050638A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP2009135097A (en) Metal material for electric and electronic equipment, method of manufacturing metal material for electric and electronic equipment
US20210254230A1 (en) Silver electrolyte for depositing dispersion silver layers and contact surfaces with dispersion silver layers
TWI824434B (en) Contact materials and manufacturing methods
US20210254231A1 (en) Silver electrolyte for depositing dispersion silver layers and contact surfaces with dispersion silver layers
KR20230028211A (en) Composites, manufacturing methods and terminals for composites
JP2020117747A (en) Composite plated material, and method of producing the same
WO2024062909A1 (en) Terminal material and terminal
JP2012057212A (en) Composite plated material, and electric component and electronic component using the same
CN114175420B (en) Metallic material for sliding contact, method for producing the same, brush material for motor, and vibrating motor
JP7121232B2 (en) Copper terminal material, copper terminal, and method for producing copper terminal material
JP7470321B2 (en) Sn-graphene composite plating film metal terminal and its manufacturing method
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP2015059260A (en) Electrical contact material for connector and production method thereof
JP5442385B2 (en) Conductive member and manufacturing method thereof
WO2024009698A1 (en) Contact material
JP2016130362A (en) Silver plated material and manufacturing method of the same
JP2021008670A (en) Composite plated material, and method of producing the same
JP7577099B2 (en) Metal-organic compound composite material
JP2024006857A (en) contact material
JP2023030837A (en) High conductivity tin-graphene composite plating for onboard terminal-electronic component
JP2022170877A (en) METALLIC COMPONENT COMPRISING SUBSTRATE COATED WITH Ag-GRAPHENE COMPOSITE PLATING FILM, AND METHOD OF PRODUCING THE SAME
JP6753306B2 (en) Copper plate with coating layer
WO2021029254A1 (en) Terminal material for connectors
JP2015042771A (en) Metal material for electronic component, connector terminal using the same, connector, and electronic component
JP2024102795A (en) Composite material, terminal and method of manufacturing terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868033

Country of ref document: EP

Kind code of ref document: A1