[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024062877A1 - Chemical liquid and processing method - Google Patents

Chemical liquid and processing method Download PDF

Info

Publication number
WO2024062877A1
WO2024062877A1 PCT/JP2023/031582 JP2023031582W WO2024062877A1 WO 2024062877 A1 WO2024062877 A1 WO 2024062877A1 JP 2023031582 W JP2023031582 W JP 2023031582W WO 2024062877 A1 WO2024062877 A1 WO 2024062877A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical solution
formula
solution according
ring
mass
Prior art date
Application number
PCT/JP2023/031582
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 大井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024062877A1 publication Critical patent/WO2024062877A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks

Definitions

  • the present invention relates to a chemical solution and a treatment method.
  • Patent Document 1 discloses an etching solution (chemical solution) suitable for selectively removing silicon-germanium alloy rather than germanium from a microelectronic device. Specifically, an etching solution containing water, an oxidizing agent (quinone), a fluoride ion source, and a corrosion inhibitor is disclosed.
  • the objects to be treated with the chemical solution include germanium (hereinafter also simply referred to as "Ge”) and silicon-germanium (hereinafter also simply referred to as "SiGe”).
  • Examples include objects to be treated that include.
  • Ge germanium
  • SiGe silicon-germanium
  • Examples include objects to be treated that include.
  • an object of the present invention is to provide a chemical solution that, when applied to a workpiece containing Ge and SiGe, has excellent SiGe removability and suppresses surface roughening of Ge.
  • Another object of the present invention is to provide a method for treating an object to be treated.
  • the present inventor has completed the present invention as a result of intensive studies to solve the above problems. That is, it has been found that the above problem can be solved by the following configuration.
  • Requirement 1 n in the above formula (1) is 2, R 1 represents a hydrogen atom, Ar in the above formula (1) represents a benzene ring, and two groups represented by -X-R 1 The bonding positions are the 1st and 4th positions of the benzene ring.
  • Requirement 3 n in the above formula (1) is 2, Ar in the above formula (1) represents an anthracene ring, and the bonding positions of the two groups represented by -XR 1 are on the anthracene ring. They are in 9th and 10th place.
  • [10] The drug solution according to any one of [1] to [9], wherein the ratio of the content of the quinone compound to the content of the aromatic compound is 10.0 to 200.0.
  • the solvent contains one or more solvents selected from the group consisting of water, alcohol solvent, ether solvent, ester solvent, amide solvent, and sulfoxide solvent.
  • the drug solution described in item 1. [12] The chemical solution according to any one of [1] to [11], which is applied to a treated object containing germanium and silicon-germanium.
  • a method for treating a workpiece comprising a step of bringing the chemical solution according to any one of [1] to [11] into contact with a workpiece containing germanium and silicon-germanium.
  • the present invention it is possible to provide a chemical solution that is excellent in removing SiGe and suppresses surface roughening of Ge when applied to a workpiece containing Ge and SiGe. Further, the present invention can also provide a method for treating an object to be treated.
  • a numerical range expressed using “to” means a range that includes the numerical values before and after “to” as the lower limit and upper limit.
  • ppm is an abbreviation for “parts per million” and means 10-6 .
  • ppb is an abbreviation for “parts per billion” and means 10-9 .
  • ppt is an abbreviation for "parts per trillion” and means 10-12 .
  • the “content” of the component means the total content of those two or more components.
  • germanium refers to a material substantially composed of Ge element only.
  • the above “substantially” means that the content of Ge element is 90 atomic % or more with respect to the total atoms of the material. Therefore, as long as the content of Ge element is within the above range, other elements (excluding Si element) may be included.
  • Si-germanium refers to a material substantially composed of only Si and Ge elements. The above “substantially” means that the total content of Si and Ge elements is 90 atomic % or more with respect to the total atoms of the material. Therefore, other elements may be included as long as the total content of Si and Ge elements is within the above range.
  • the content ratio of Si and Ge elements is not particularly limited, and the ratio of the content of Ge elements to the total amount of Si and Ge elements is preferably 30 to 80 atomic %.
  • exposure includes exposure to deep ultraviolet light such as a mercury lamp or excimer laser, X-rays, or EUV light, and drawing with a particle beam such as an electron beam or ion beam.
  • Preparation includes not only preparing by synthesizing or blending specific materials, but also procuring predetermined items by purchasing or the like.
  • the bonding direction of a divalent group is, unless otherwise specified, when Y in a compound represented by "X-Y-Z" is -COO-, the compound is "X -O-CO-Z" or "X-CO-O-Z".
  • the chemical solution of the present invention includes an aromatic compound represented by formula (1) described below, a quinone compound having a quinone structure, a halide ion source, and a solvent.
  • an aromatic compound represented by formula (1) described below a quinone compound having a quinone structure
  • a halide ion source a solvent
  • the chemical solution of the present invention exhibits SiGe etching ability by containing a quinone compound, a halide ion source, and a solvent.
  • the chemical solution of the present invention contains an aromatic compound
  • the aromatic compound and the quinone compound act cooperatively on the SiGe residue that has not been completely etched, resulting in excellent SiGe removability.
  • aromatic compounds have a higher affinity for Ge than for SiGe, and that aromatic compounds tend to gather near the surface of Ge. It is thought that the aromatic compound present near the surface of Ge acts in concert with the quinone compound, and as a result, surface roughness of Ge is suppressed.
  • the components contained in the medicinal solution will be explained below.
  • Ar represents an aromatic ring.
  • the aromatic ring represented by Ar may have a monocyclic structure or a multicyclic structure.
  • the aromatic ring represented by Ar may contain heteroatoms other than carbon atoms. Examples of heteroatoms include nitrogen atoms, oxygen atoms, and sulfur atoms. It is also preferable that the aromatic ring represented by Ar does not contain a heteroatom.
  • Examples of the aromatic ring represented by Ar include a benzene ring, a pyridine ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a pyrene ring, with a benzene ring, a naphthalene ring, or an anthracene ring being preferred; More preferred.
  • X each independently represents a Group 16 element
  • R 1 each independently represents a hydrogen atom or a substituent.
  • n is 2 or more
  • 2 or more X's may be the same or different from each other
  • 2 or more R1 's may be the same or different from each other. It's okay.
  • the Group 16 element represented by X includes an oxygen atom, a sulfur atom, a selenium atom, and a tellurium atom, preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • all Xs in formula (1) are preferably oxygen atoms or sulfur atoms, more preferably oxygen atoms.
  • the type of substituent represented by R 1 is not particularly limited, and includes a hydrocarbon group that may have a hetero atom. Among these, aliphatic hydrocarbon groups are preferred, and alkyl groups are more preferred.
  • the alkyl group is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and even more preferably a methyl group.
  • At least one R 1 is preferably a hydrogen atom, and more preferably all R 1 are hydrogen atoms.
  • n represents an integer of 2 or more. The integer represented by n is preferably 2 to 6, more preferably 2 to 4, and even more preferably 2.
  • R 2 represents a substituent.
  • substituent represented by R 2 include an alkyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom).
  • the alkyl group represented by R 2 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
  • m represents an integer of 0 or more.
  • the integer represented by m is preferably 0 to 4, more preferably 0 to 2, and even more preferably 0.
  • Two or more groups represented by -X-R 1 may be bonded to any position of the group represented by Ar. Among these, it is preferable that any one of the following requirements 1 to 4 be satisfied.
  • Requirement 3 n is 2, R 1 represents a hydrogen atom, Ar in formula (1) represents an anthracene ring, and the bonding position of the two groups represented by -XR 1 is 9 of the anthracene ring. and 10th place.
  • the aromatic compound is preferably an aromatic compound represented by formula (2). Each symbol in formula (2) will be explained below.
  • R3 and R4 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group represented by R3 and R4 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
  • At least one of R3 and R4 is preferably a hydrogen atom, and more preferably R3 and R4 are a hydrogen atom.
  • X 1 and X 2 each independently represent a Group 16 element.
  • the Group 16 elements represented by X 1 and X 2 include an oxygen atom, a sulfur atom, a selenium atom, and a tellurium atom, preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • both X 1 and X 2 in formula (2) are preferably oxygen atoms or sulfur atoms, and more preferably oxygen atoms.
  • R 5 to R 8 each independently represent a hydrogen atom or a substituent.
  • substituents represented by R 5 to R 8 include an alkyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom).
  • the alkyl group represented by R 5 to R 8 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
  • the substituents represented by R 5 and R 6 and the substituents represented by R 7 and R 8 may be bonded to each other to form a ring.
  • the ring formed may be an alicyclic ring or an aromatic ring, and an aromatic ring is preferred. It is also preferable that R 5 to R 8 are all hydrogen atoms.
  • aromatic compounds include hydroquinone (1,4-benzenediol), catechol (1,2-benzenediol), resorcinol (1,3-benzenediol), methylhydroquinone, 1,2,4- Benzenetriol, 1,3,5-benzenetriol, 1,2,3-benzenetriol, 1,2,3,4-benzenetetraol, 1,2,4,5-benzenetetraol, naphthohydroquinone (1, 4-naphthalenediol), 1,5-naphthalenediol, anthrahydroquinone (9,10-anthracenediol), leucoquinizarin (1,4-dihydro-9,10-anthracenediol), 1,4-benzenedithiol, 1,2 -Benzenedithiol, 1,3-benzenedithiol, 1,4-naphthalenedithiol, 1,5-naphthalenedithiol, 4-hydroxybenzenedithiol, mequinol (4-me
  • hydroquinone, catechol, naphthohydroquinone, leucoquinizarin, 1,4-benzenedithiol, 1,5-naphthalenedithiol, 4-hydroxybenzenethiol, or 4-(methylthio)benzenethiol are preferred, and hydroquinone, naphthohydroquinone, and leucoquinizarin , 1,4-benzenedithiol, or 4-hydroxybenzenedithiol are more preferred.
  • the content of the aromatic compound is preferably 0.1 mass ppb to 5 mass %, more preferably 5 mass ppb to 1 mass %, and further 0.001 to 0.5 mass %, based on the total mass of the chemical solution. Preferably, 0.005 to 0.1% by weight is particularly preferable.
  • the aromatic compounds may be used alone or in combination of two or more. When two or more types of aromatic compounds are used, it is preferable that the total amount is within the above-mentioned preferred content range.
  • the drug solution of the present invention contains a quinone compound having a quinone structure.
  • the quinone structure refers to a cyclic structure containing two carbonyl groups.
  • the quinone compound may have a monocyclic structure or a multicyclic structure, but a monocyclic structure is preferable.
  • the quinone compound preferably has a carbon atom-carbon atom double bond adjacent to the carbonyl group.
  • the number of carbon atoms constituting the cyclic structure of the quinone compound is preferably 6 to 15, more preferably 6 to 10, and even more preferably 6.
  • the number of carbon atoms contained in the quinone compound is preferably 6 to 20, more preferably 6 to 10, and even more preferably 6 to 8.
  • a quinone compound that exhibits an oxidizing effect is also preferred.
  • quinone compounds include p-benzoquinone, o-benzoquinone, 1,4-naphthoquinone, 1,5-naphthoquinone, 1,2-naphthoquinone, 2,6-naphthoquinone, anthraquinone, phenanthrenequinone, acenaphthoquinone, 2,6 -dimethyl-1,4-benzoquinone, 2,5-dimethyl-1,4-benzoquinone, trimethyl-1,4-benzoquinone, tetramethyl-1,4-benzoquinone, tetrachloro-1,4-benzoquinone, tetrafluoro- Examples include 1,4-benzoquinone, 2,5-diphenyl-1,4-benzoquinone, and 2,3-dichloro-5,6-dicyano-p-benzoquinone. Among these, p-benzoquinone,
  • the content of the quinone compound is preferably 0.01 to 10% by mass, more preferably 0.05 to 3.0% by mass, and even more preferably 0.1 to 2.0% by mass, based on the total mass of the drug solution. .
  • the ratio of the content of the quinone compound to the content of the aromatic compound is preferably 0.3 to 10000000.0, more preferably 10.0 to 200.0.
  • One type of quinone compound may be used alone, or two or more types may be used. When two or more types of quinone compounds are used, the total amount thereof is preferably within the above-mentioned preferred content range.
  • the quinone compound may exist as a tautomer in the drug solution.
  • the chemical solution of the present invention includes a source of halide ions.
  • the halide ion source refers to a compound capable of releasing halide ions or halogen-containing ions in the chemical solution.
  • the halide ion source may be a halide ion or a halogen-containing ion.
  • Examples of halogen atoms contained in the halide ion source include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms, with fluorine atoms and chlorine atoms being preferred, and fluorine atoms being more preferred.
  • the halide ion source is preferably a fluoride ion source.
  • the fluoride ion source is a compound capable of releasing fluoride ions (F ⁇ ) or fluorine-containing ions in a chemical solution.
  • Fluorine-containing ions include the bifluoride ion (HF 2 ⁇ ), SiF 6 2 ⁇ , TiF 6 2 ⁇ , ZrF 6 2 ⁇ , PF 6 ⁇ , and BF 4 ⁇ .
  • the fluoride ion source is often a fluoride ion or a salt of a fluorine-containing ion and a cation.
  • Cations preferably included in the fluoride ion source include H + , Li + , Na + , K + , and NH 4 + , with H + being preferred.
  • Fluoride ion sources include hydrogen fluoride (HF), ammonium fluoride (NH 4 F), hexafluorosilicic acid (H 2 SiF 6 ), hexafluorosilicic acid (Na 2 SiF 6 ), and hexafluorotitanic acid ( H 2 TiF 6 ), hexafluorozirconic acid (H 2 ZrF 6 ), hexafluorophosphoric acid (HPF 6 ), or hexafluoroboric acid (HBF 4 ) is preferred, and hydrogen fluoride or ammonium fluoride is more preferred; Hydrogen fluoride is more preferred.
  • HF hydrogen fluoride
  • NH 4 F ammonium fluoride
  • H 2 SiF 6 hexafluorosilicic acid
  • Na 2 SiF 6 hexafluorosilicic acid
  • H 2 TiF 6 hexafluorozirconic acid
  • HPF 6 hexafluorophosphoric acid
  • the content of the halide ion source is preferably 0.004 to 20% by mass, more preferably 0.01 to 10% by mass, even more preferably 0.02 to 10% by mass, based on the total mass of the chemical solution. Particularly preferred is .4 to 7.5% by weight.
  • One type of halide ion source may be used alone, or two or more types may be used as a halide ion source. When two or more types of halide ion sources are used, the total amount thereof is preferably within the above-mentioned preferred content range.
  • a solution may be used as the halide ion source. When the halide ion source is a solution, the content of the halide ion source is the content of the fluoride ion source contained in the solution.
  • the drug solution of the present invention contains a solvent.
  • the solvent is not particularly limited, but preferably one or more solvents selected from the group consisting of water, alcohol solvents, ether solvents, ester solvents, amide solvents, and sulfoxide solvents; water, alcohol solvents, ether solvents, and More preferably, one or more solvents are selected from the group consisting of , sulfoxide solvents. It is also preferred that the solvent is miscible with water in any ratio.
  • the alcohol solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, -methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
  • the number of carbon atoms in the alcohol solvent is preferably 1 to 8, more preferably 1 to 4.
  • ether solvent examples include diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, tetrahydrofuran, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, alkylene glycol monoalkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether), alkylene glycol dialkyl ethers (diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol,
  • ester solvent examples include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methyl lactate, ethyl lactate, and butyl lactate.
  • amide solvent examples include formamide, monomethylformamide, dimethylformamide, acetamide, monomethylacetamide, dimethylacetamide, monoethylacetamide, diethylacetamide, and N-methylpyrrolidone.
  • Examples of the sulfoxide solvent include dimethyl sulfoxide.
  • the content of the solvent is preferably 60 to 99.99 mass %, more preferably 80 to 99.9 mass %, based on the total mass of the chemical solution.
  • the solvent may be used alone or in combination of two or more kinds. When two or more solvents are used, the total amount thereof is preferably within the above-mentioned preferred content range.
  • the drug solution may contain arbitrary components in addition to the above-mentioned components.
  • the components that the drug solution may contain will be explained below.
  • the drug solution may contain a basic compound.
  • a basic compound is a compound that exhibits alkalinity (pH greater than 7.0) in an aqueous solution.
  • Examples of the basic compound include organic bases, inorganic bases, and salts thereof.
  • Examples of the organic base include quaternary ammonium salts, alkylamine compounds or salts thereof, amine oxide compounds, nitro compounds, nitroso compounds, oxime compounds, ketooxime compounds, aldoxime compounds, lactam compounds, and isocyanide compounds. .
  • a trialkylamine compound is preferred.
  • the alkyl group portion of the alkylamine compound may have a substituent, and examples of the substituent include, but are not limited to, a hydroxy group and a phenyl group. Note that the methylene group constituting the above alkyl group portion may be substituted with a divalent linking group such as -O-.
  • alkyl group moieties may be bonded to each other to form a ring.
  • trialkylamine compounds include methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, N-methyldiethanolamine, N-ethyldiethanolamine, N,N-dimethylethanolamine, N-methylmorpholine, and , N-ethylmorpholine, and salts thereof.
  • Examples of the inorganic base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides, and ammonia or salts thereof.
  • the content of the basic compound is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the total mass of the chemical solution.
  • the upper limit is not particularly limited, but is preferably 20.0% by mass or less based on the total mass of the chemical solution.
  • the chemical solution may contain an acidic compound.
  • An acidic compound is an acidic compound that exhibits acidity (pH less than 7.0) in an aqueous solution.
  • Examples of acidic compounds include inorganic acids, organic acids, and salts thereof.
  • the acidic compound is a compound different from the halide ion source described above.
  • inorganic acids examples include sulfuric acid, phosphoric acid, nitric acid, and salts thereof.
  • the organic acids include, for example, carboxylic acids, sulfonic acids, and salts thereof.
  • carboxylic acid include lower (C1-C4) aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, and butyric acid, and salts thereof.
  • Sulfonic acids include, for example, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid (tosylic acid), and salts thereof.
  • the content of the acidic compound is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the total mass of the chemical solution.
  • the upper limit is not particularly limited, but is preferably 20.0% by mass or less based on the total mass of the chemical solution.
  • the chemical solution may contain a surfactant.
  • the surfactant is not particularly limited as long as it is a compound having a hydrophilic group and a hydrophobic group (lipophilic group) in one molecule, and examples thereof include anionic surfactants, cationic surfactants, and nonionic surfactants.
  • hydrophobic group that the surfactant has examples include aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and combinations thereof.
  • the number of carbon atoms in the hydrophobic group is preferably 6 or more, more preferably 10 or more.
  • the hydrophobic group does not contain an aromatic hydrocarbon group and is composed only of an aliphatic hydrocarbon group, the number of carbon atoms in the hydrophobic group is preferably 8 or more, more preferably 10 or more.
  • the upper limit of the number of carbon atoms in the hydrophobic group is not particularly limited, but is preferably 24 or less, more preferably 20 or less.
  • the content of the surfactant is not particularly limited, but is preferably 10 mass ppm or more, more preferably 30 mass ppm or more, based on the total mass of the chemical solution.
  • the upper limit is not particularly limited, but from the viewpoint of suppressing foaming of the chemical solution, it is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the chemical solution.
  • the chemical solution may contain an anticorrosive agent.
  • the anticorrosive agent is added to the chemical solution for the purpose of preventing etching of other materials present on the object to be treated, which will be described later.
  • the above-mentioned aromatic compounds are not included in the anticorrosive agent.
  • the type of anticorrosive agent is appropriately selected depending on the quality of other materials present in the object to be treated.
  • anticorrosive agents include amine compounds, imine compounds, thiol compounds, and thioether compounds. Among these, imine compounds are preferred, and unsaturated heterocyclic compounds containing nitrogen are more preferred. Examples of nitrogen-containing unsaturated heterocyclic compounds include pyridine, triazine, imidazole, benzimidazole, purine, and xanthine, and derivatives thereof.
  • the amount of the corrosion inhibitor is not particularly limited, but is preferably 0.1% by mass or more, and more preferably 1% by mass or more, based on the total mass of the chemical solution. There is no particular upper limit, but is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total mass of the chemical solution.
  • the drug solution of the present invention does not substantially contain insoluble particles.
  • insoluble particles refer to particles such as inorganic solids and organic solids, which ultimately exist as particles without being dissolved in the drug solution.
  • substantially free of insoluble particles means that when the medicinal solution is diluted 10,000 times with a solvent contained in the medicinal solution to prepare a measurement composition, particles with a particle size of 50 nm or more contained in 1 mL of the measurement composition are This means that the number is 40,000 or less.
  • the number of particles contained in the measurement composition can be measured in the liquid phase using a commercially available particle counter.
  • Insoluble particles include, for example, inorganic solids such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; polystyrene, polyacrylic resin, and Examples include particles of organic solids such as polyvinyl chloride. Examples of methods for removing insoluble particles from a chemical solution include purification treatment such as filtering.
  • Coarse particles mean particles having a diameter (particle size) of 1 ⁇ m or more when the shape of the particles is considered to be a sphere. Note that particles included in the above-mentioned insoluble particles may be included in coarse particles.
  • the content of coarse particles in the chemical solution is preferably 100 or less, and more preferably 50 or less, per 1 mL of the drug solution.
  • the lower limit is preferably 0 or more, more preferably 0.01 or more per mL of the chemical solution.
  • Coarse particles contained in chemical solutions include particles such as dust, organic solids, and inorganic solids contained as impurities in raw materials, as well as dust, dirt, organic solids, and inorganic solids introduced as contaminants during the preparation of drug solutions. This refers to particles such as solid substances that ultimately exist as particles without being dissolved in the drug solution.
  • the content of coarse particles present in the chemical solution can be measured in the liquid phase using a commercially available measuring device using a light scattering particle-in-liquid measurement method using a laser as a light source. Examples of methods for removing coarse particles include purification treatment such as filtering, which will be described later.
  • the drug solution can be manufactured by a known method.
  • the method for producing the chemical solution will be described in detail below.
  • a drug solution can be produced by mixing the above-mentioned components.
  • the order and/or timing of mixing the above components is not particularly limited, and for example, an aromatic compound, a quinone compound, and a halide ion source are sequentially added to a container containing a purified solvent (e.g., ethanol). After that, a method of stirring and mixing can be mentioned.
  • a pH adjuster may be added to adjust the pH of the mixed solution.
  • when adding the solvent and each component to the container they may be added all at once, or may be added in multiple portions.
  • the stirring device and stirring method used to prepare the chemical solution may be a device known as a stirrer or disperser.
  • stirrers include industrial mixers, portable stirrers, mechanical stirrers, and magnetic stirrers.
  • dispersers include industrial dispersers, homogenizers, ultrasonic dispersers, and bead mills.
  • the mixing of each component in the preparation process of the medicinal solution, the purification treatment described below, and the storage of the produced medicinal solution be carried out at a temperature of 40°C or lower, more preferably a temperature of 30°C or lower.
  • the lower limit is preferably 5°C or higher, more preferably 10°C or higher.
  • the above-mentioned drug solution may be used as a diluted drug solution (diluted drug solution) after passing through a dilution step of diluting it using a diluent.
  • a diluted chemical solution is also one form of the chemical solution of the present invention as long as it satisfies the requirements of the present invention.
  • the diluent examples include a solvent and an aqueous solution containing isopropanolamine (1-amino-2-propanol) or ammonia. It is preferable to perform a purification treatment on the diluent used in the dilution step in advance. Further, it is more preferable to perform a purification treatment on the diluted chemical solution obtained in the dilution step. Examples of the purification treatment include ion component reduction treatment using an ion exchange resin or RO membrane, etc., and foreign matter removal using filtering, both of which are described as purification treatment for the above chemical solution. preferable.
  • the dilution rate of the chemical solution in the dilution step may be adjusted as appropriate depending on the type and content of each component, and the target and purpose for which the chemical solution is used.
  • the ratio of the diluted chemical solution to the undiluted chemical solution is preferably 1.5 to 10,000 times in mass ratio or volume ratio (volume ratio at 23 ° C.), more preferably 2 to 2,000 times, and 50 to 1,000 times. More preferred.
  • a chemical solution (diluted chemical solution) containing each component in an amount obtained by dividing the suitable content of each component (excluding the solvent) that can be contained in the above drug solution by a dilution ratio (for example, 100) in the above range can also be suitably put into practical use.
  • the preferred content of each component (excluding the solvent) relative to the total mass of the diluted chemical solution is, for example, the amount explained as the preferred content of each component relative to the total mass of the drug solution (medical solution before dilution) within the above range. This is the amount divided by the dilution factor (for example, 100).
  • the change in pH before and after dilution is preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.5 or less. It is preferable that the pH of the drug solution before dilution and the pH of the diluted drug solution are each in the above preferred embodiment.
  • the specific method of the dilution process for diluting the chemical solution may be similar to that of the chemical solution preparation process described above.
  • the stirring device and stirring method used in the dilution process may also be the same as those of the known stirring devices described in the chemical solution preparation process described above.
  • the chemical solution is used for manufacturing semiconductors. More specifically, it is preferably used for manufacturing semiconductor devices.
  • the chemical solution can also be used in the process of manufacturing semiconductor devices, and for example, it can be used to remove germanium-based materials present on the substrate, insulating films, resist films, antireflection films, etching residues, and ashing residues. (hereinafter also simply referred to as "residue"), etc.
  • the chemical solution may be used to treat the substrate after chemical mechanical polishing.
  • the chemical solution is preferably used for treating a workpiece containing Ge and SiGe (hereinafter also simply referred to as a "workpiece").
  • the device obtained by treating the object to be treated with a chemical solution is preferably a field effect transistor (FET), more preferably a gate-all-around-FET (GAA-FET).
  • FET field effect transistor
  • GAA-FET gate-all-around-FET
  • the chemical solution is preferably used in the GAA-FET manufacturing process.
  • the GAA-FET refers to an FET having a structure in which a side surface of a channel between a drain and a source is covered with a gate over the entire circumference.
  • the channel in the GAA-FET may be constructed from a nano-sized wire-like member.
  • the production of GAA-FET includes, for example, a process of selectively removing SiGe from a processed object having a nanostructure, and the solvent of the present invention can be preferably used in the above process. More specifically, first, SiGe layers and Ge layers are alternately deposited on a silicon wafer by heteroepitaxy. Hereinafter, the alternately stacked SiGe layers and Ge layers will also be simply referred to as "SiGe layer-Ge layer stack".
  • a hard mask of silicon oxide and silicon nitride is formed in this order on the SiGe layer-Ge layer stack, and after processing the hard mask into a desired shape, the SiGe layer-Ge layer stack is formed along the shape of the hard mask. Process.
  • the shape to be processed can be selected as appropriate, for example, the SiGe layer-Ge layer stacked film can be processed into a fin shape.
  • the SiGe layer and the Ge layer are exposed in the cross section.
  • the SiGe layer is selectively etched and nanowire-shaped Ge can be formed.
  • the object to be processed includes Ge and SiGe.
  • the object to be processed is not particularly limited as long as it contains Ge and SiGe, but usually Ge and SiGe are arranged on the substrate.
  • “on the substrate” includes any aspects of the front and back of the substrate, the side surfaces, and inside the grooves.
  • Ge and SiGe are arranged on the substrate refers to cases where Ge and SiGe are directly on the surface of the substrate, and cases where Ge and SiGe are placed on the substrate via another layer. Including cases.
  • “Ge and SiGe are arranged on the substrate” does not matter in any form as long as Ge and SiGe are present on the substrate at the same time.
  • Ge and SiGe may be in contact with each other, or may be in contact with each other through another layer or member.
  • Ge and SiGe may be present on the same substrate but not in contact with each other.
  • the substrate is not particularly limited, and includes, for example, a metal substrate, a semiconductor substrate, a conductive substrate other than metal, a metal oxide substrate, a glass substrate, and a resin substrate.
  • semiconductor substrates are preferred.
  • semiconductor substrates include semiconductor wafers, photomask glass substrates, liquid crystal display glass substrates, plasma display glass substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, and magneto-optical substrates.
  • Examples include substrates for disks.
  • materials constituting the semiconductor substrate include silicon, germanium, Group III-V compounds such as GaAs, and combinations thereof.
  • Examples of uses of devices obtained by processing a workpiece include DRAM (Dynamic Random Access Memory), FRAM (registered trademark) (Ferroelectric Random Access Memory), and MRAM (Magnetore Access Memory). sistive Random Access Memory), PRAM (Phase change Random) (Access Memory), logic circuits, and processors.
  • the form of Ge or SiGe on the substrate may be any of a film, a wiring, a plate, a column, and a particle arrangement.
  • the workpiece may include layers and/or structures other than Ge and SiGe as desired.
  • one or more members selected from the group consisting of metal wiring, a gate electrode, a source electrode, a drain electrode, an insulating layer, a ferromagnetic layer, and a non-magnetic layer may be disposed on the substrate.
  • the substrate may include an exposed integrated circuit structure.
  • the integrated circuit structure includes, for example, interconnect features such as metal wiring and dielectric materials.
  • Metals and alloys used in the interconnect features include, for example, aluminum, copper aluminum alloys, copper, nickel, nickel silicide, cobalt, cobalt silicide, ruthenium, platinum, gold, titanium, tantalum, tungsten, titanium nitride, and tantalum nitride.
  • the substrate may include one or more layers of a material selected from the group consisting of silicon oxide, silicon nitride, silicon carbide, and carbon-doped silicon oxide.
  • the method for treating a workpiece of the present invention includes a step A of contacting a workpiece containing Ge and SiGe with the above-mentioned solvent.
  • SiGe in the workpiece is selectively etched.
  • the object to be treated used in this treatment method is as described above.
  • Examples of contact methods include immersing the object in a tank, spraying the solvent onto the object, flowing the solvent over the object, and combinations thereof. Among them, a method in which the object to be treated is immersed in a solvent is preferred.
  • mechanical stirring methods may be used to further speed up treatment with the solvent.
  • Mechanical stirring methods include, for example, a method of circulating the solvent over the object to be treated, a method of flowing or spraying the solvent over the object to be treated, and a method of stirring the solvent with ultrasonic or megasonic waves. It will be done.
  • the processing time of step A can be adjusted as appropriate.
  • the treatment time time of contact between the solvent and the object to be treated
  • the temperature of the solvent during treatment is preferably 10 to 100°C, more preferably 15 to 60°C.
  • This treatment method may include other steps in addition to the above step A.
  • Other processes include, for example, the process of forming one or more structures selected from the group consisting of metal interconnects, gate structures, source structures, drain structures, insulating layers, ferromagnetic layers, non-magnetic layers, etc. Examples include layer formation, etching, chemical-mechanical polishing, and metamorphosis), a resist formation process, an exposure process and a removal process, a heat treatment process, a cleaning process, and an inspection process.
  • This processing method can be performed at any stage of the back end process (BEOL: Back end of the line), middle process (MOL: Middle of the line), or front end process (FEOL: Front end of the line). It is preferable to do this in a front-end process or a middle process.
  • a 2 cm x 2 cm sample was cut out from the obtained laminate.
  • the samples were immersed in each chemical solution (25° C.) for 10 minutes for treatment.
  • the surface of the sample was washed by supplying water at 500 mL/min for 30 seconds, and the surface was dried by blowing with nitrogen. After drying, the sample surface was observed using a scanning electron microscope/energy dispersive X-ray spectroscopy, and the area of SiGe residue observed within 1 ⁇ m 2 was calculated.
  • the removability of the residue (SiGe) was evaluated according to the following evaluation criteria according to the area of the SiGe residue. Note that whether or not it was a SiGe residue was analyzed by detecting Si characteristic X-rays.
  • ER2/ER1 was 0.9 or more.
  • ER2/ER1 was 0.8 or more and less than 0.9.
  • -3 ER2/ER1 was 0.7 or more and less than 0.8.
  • -2 ER2/ER1 was 0.6 or more and less than 0.7.
  • -1 ER2/ER1 was less than 0.6.
  • Table 1 shows the formulation of the chemical solution and the above evaluation results.
  • the content of each component in the chemical solution is shown in mass % with respect to the total mass of the drug solution.
  • the content of hydrofluoric acid is shown in the column of the amount of halide ion source.
  • the content of hydrogen fluoride in the chemical solution is the value obtained by multiplying the content of hydrofluoric acid by 0.48.
  • the "B/A" column represents the ratio of the quinone compound content to the aromatic compound content in the drug solution.
  • Example 8 and Example 7 From the comparison between Example 8 and Example 7 and the comparison between Example 10 and Example 9, when the content of the aromatic compound is 5 ppb to 1% by mass based on the total mass of the chemical solution, It was confirmed that it was excellent in removability, surface roughness evaluation, and storage stability. From a comparison between Example 31 and Examples 1, 2, and 37, when Ar in formula (1) represents a benzene ring, a naphthalene ring, or an anthracene ring, evaluation of removability, surface roughness, and storage It was confirmed that it has excellent stability.
  • Example 22 and Example 1 From the comparison between Example 22 and Example 1, the comparison between Example 21 and Example 2, and the comparison between Example 5 and Example 4, if any of the above requirements 1 to 4 are satisfied, removal It was confirmed that the material had excellent properties in terms of surface roughness, surface roughness evaluation, and storage stability. From a comparison of Example 32 and Examples 1, 3, and 4, it was found that when X in formula (1) is an oxygen atom or a sulfur atom, respectively, the removability, evaluation of surface roughness, and storage stability are excellent. was confirmed. From a comparison between Examples 2 and 3 and Example 1, when X 1 and X 2 represent oxygen atoms and R 3 and R 4 represent hydrogen atoms in formula (2), evaluation of removability and surface roughness , and was confirmed to have excellent storage stability.
  • Example 11 From a comparison between Example 11 and Example 1, it was confirmed that when the halide ion source contains hydrogen fluoride, it is excellent in removability, evaluation of surface roughness, and storage stability. From the comparison between Example 13 and Example 14 and the comparison between Example 16 and Example 15, when the content of hydrogen fluoride is 0.01 to 10% by mass based on the total mass of the chemical solution, It was confirmed that it is excellent in evaluating surface roughness. From the comparison between Example 17 and Example 18 and the comparison between Example 20 and Example 19, it was found that the ratio of the quinone compound content to the aromatic compound content was 10.0 to 200.0. In some cases, it was confirmed that the evaluation of surface roughness was excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention addresses the problem of providing a chemical liquid which exhibits excellent removability of SiGe, while being suppressed in surface roughening of Ge if applied to an object to be processed containing Ge and SiGe. A chemical liquid according to the present invention contains an aromatic compound that is represented by formula (1), a quinone compound that has a quinone structure, a halide ion source and a solvent. In formula (1), Ar represents an aromatic ring; each X independently represents a group 16 element; each R2 independently represents a hydrogen atom or a substituent; n represents an integer of 2 or more; each R2 independently represents a substituent; and m represents an integer of 0 or more.

Description

薬液、処理方法Chemical solution, treatment method
 本発明は、薬液および処理方法に関する。 The present invention relates to a chemical solution and a treatment method.
 回路、および、素子を形成する際、薬液を用いたエッチングプロセスを実施することは一般的である。この際、基板上には複数の材料が存在していることがあるため、エッチングに用いる薬液は、特定の材料のみを選択的に取り除くことが可能であることが望ましい。 When forming circuits and elements, it is common to perform an etching process using a chemical solution. At this time, since a plurality of materials may exist on the substrate, it is desirable that the chemical solution used for etching can selectively remove only a specific material.
 例えば、特許文献1には、マイクロエレクトロニクスデバイスからゲルマニウムよりもシリコン-ゲルマニウム合金を選択的に除去するのに適したエッチング溶液(薬液)が開示されている。具体的には、水、酸化剤(キノン)、フッ化物イオン源、および、腐食防止剤を含むエッチング溶液(薬液)が開示されている。 For example, Patent Document 1 discloses an etching solution (chemical solution) suitable for selectively removing silicon-germanium alloy rather than germanium from a microelectronic device. Specifically, an etching solution containing water, an oxidizing agent (quinone), a fluoride ion source, and a corrosion inhibitor is disclosed.
特開2019-165218号公報JP 2019-165218 A
 薬液によって処理される被処理物としては、上記特許文献1に記載のように、ゲルマニウム(以下、単に「Ge」ともいう。)と、シリコン-ゲルマニウム(以下、単に「SiGe」ともいう。)とを含む被処理物が挙げられる。
 上記のようなGeとSiGeとを含む被処理物を処理する場合、SiGeの除去性に優れることが求められ、近年その除去性の向上が求められている。また、上記のような被処理物を処理した際には、被処理物に含まれるGeの表面荒れが抑制されることも求められる。
 本発明者が特許文献1に記載の薬液を用いてGeとSiGeとを含む被処理物を処理したところ、SiGeの除去性およびGeの表面荒れの抑制の両立ができず、改善の余地があることを知見した。
As described in Patent Document 1, the objects to be treated with the chemical solution include germanium (hereinafter also simply referred to as "Ge") and silicon-germanium (hereinafter also simply referred to as "SiGe"). Examples include objects to be treated that include.
When processing a workpiece containing Ge and SiGe as described above, it is required to have excellent removability of SiGe, and in recent years, there has been a demand for improvement in the removability. Further, when processing the above-mentioned object to be processed, it is also required that surface roughness of Ge contained in the object to be processed is suppressed.
When the present inventor treated a workpiece containing Ge and SiGe using the chemical solution described in Patent Document 1, it was not possible to achieve both removability of SiGe and suppression of surface roughening of Ge, and there is room for improvement. I found out that.
 そこで、本発明は、GeとSiGeとを含む被処理物に適用された際に、SiGeの除去性に優れ、かつ、Geの表面荒れが抑制される、薬液の提供を課題とする。
 また、本発明は、被処理物の処理方法の提供も課題とする。
Therefore, an object of the present invention is to provide a chemical solution that, when applied to a workpiece containing Ge and SiGe, has excellent SiGe removability and suppresses surface roughening of Ge.
Another object of the present invention is to provide a method for treating an object to be treated.
 本発明者は、上記課題を解決すべく鋭意検討した結果、本発明を完成させるに至った。すなわち、以下の構成により上記課題が解決されることを見出した。 The present inventor has completed the present invention as a result of intensive studies to solve the above problems. That is, it has been found that the above problem can be solved by the following configuration.
 〔1〕 後段に示す式(1)で表される芳香族化合物と、
 キノン構造を有するキノン化合物と、
 ハロゲン化物イオン源と、
 溶媒とを含む、薬液。
 〔2〕 上記芳香族化合物の含有量が、上記薬液全質量に対して、5質量ppb~1質量%である、〔1〕に記載の薬液。
 〔3〕 上記式(1)中のArが、ベンゼン環、ナフタレン環、または、アントラセン環を表す、〔1〕または〔2〕に記載の薬液。
 〔4〕 下記要件1~4のいずれかを満たす、〔3〕に記載の薬液。
 要件1:上記式(1)中のnが2であり、Rが水素原子を表し、上記式(1)中のArがベンゼン環を表し、2つの-X-Rで表される基の結合位置が上記ベンゼン環の1位および4位である。
 要件2:上記式(1)中のnが2であり、Rが水素原子を表し、上記式(1)中のArがナフタレン環を表し、2つの-X-Rで表される基の結合位置が上記ナフタレン環の1位および4位である。
 要件3:上記式(1)中のnが2であり、上記式(1)中のArがアントラセン環を表し、2つの-X-Rで表される基の結合位置が上記アントラセン環の9位および10位である。
 要件4:上記式(1)中のnが4であり、上記式(1)中のArがアントラセン環を表し、4つの-X-Rで表される基の結合位置が上記アントラセン環の1位、4位、9位、および、10位である。
 〔5〕 上記式(1)中のXが、それぞれ独立に酸素原子または硫黄原子である、〔1〕~〔4〕のいずれか1つに記載の薬液。
 〔6〕 上記芳香族化合物が、後段に示す式(2)で表される化合物である、〔1〕~〔5〕のいずれか1つに記載の薬液。
 〔7〕 上記式(2)中、XおよびXが酸素原子を表し、RおよびRが水素原子を表す、〔6〕に記載の薬液。
 〔8〕 上記ハロゲン化物イオン源が、フッ化水素を含む、〔1〕~〔7〕のいずれか1つに記載の薬液。
 〔9〕 上記フッ化水素の含有量が、薬液全質量に対して、0.01~10質量%である、〔8〕に記載の薬液。
 〔10〕 上記芳香族化合物の含有量に対する、上記キノン化合物の含有量の比が、10.0~200.0である、〔1〕~〔9〕のいずれか1つに記載の薬液。
 〔11〕 上記溶媒が、水、アルコール溶媒、エーテル溶媒、エステル溶媒、アミド溶媒、および、スルホキシド溶媒からなる群から選択される1種以上の溶媒を含む、〔1〕~〔10〕のいずれか1つに記載の薬液。
 〔12〕 ゲルマニウムと、シリコン-ゲルマニウムとを含む被処理物に適用される、〔1〕~〔11〕のいずれか1つに記載の薬液。
 〔13〕 ゲルマニウムと、シリコン-ゲルマニウムとを含む被処理物に対して、〔1〕~〔11〕のいずれか1つに記載の薬液を接触させる工程を含む、被処理物の処理方法。
[1] An aromatic compound represented by formula (1) shown in the latter part,
A quinone compound having a quinone structure,
a halide ion source;
A chemical solution containing a solvent.
[2] The chemical solution according to [1], wherein the content of the aromatic compound is 5 ppb to 1% by mass based on the total mass of the chemical solution.
[3] The chemical solution according to [1] or [2], wherein Ar in the formula (1) represents a benzene ring, a naphthalene ring, or an anthracene ring.
[4] The chemical solution according to [3], which satisfies any of requirements 1 to 4 below.
Requirement 1: n in the above formula (1) is 2, R 1 represents a hydrogen atom, Ar in the above formula (1) represents a benzene ring, and two groups represented by -X-R 1 The bonding positions are the 1st and 4th positions of the benzene ring.
Requirement 2: n in the above formula (1) is 2, R 1 represents a hydrogen atom, Ar in the above formula (1) represents a naphthalene ring, and two groups represented by -X-R 1 The bonding positions are the 1st and 4th positions of the naphthalene ring.
Requirement 3: n in the above formula (1) is 2, Ar in the above formula (1) represents an anthracene ring, and the bonding positions of the two groups represented by -XR 1 are on the anthracene ring. They are in 9th and 10th place.
Requirement 4: n in the above formula (1) is 4, Ar in the above formula (1) represents an anthracene ring, and the bonding positions of the four groups represented by -XR 1 are on the anthracene ring. They are 1st, 4th, 9th, and 10th.
[5] The chemical solution according to any one of [1] to [4], wherein X in the formula (1) is each independently an oxygen atom or a sulfur atom.
[6] The drug solution according to any one of [1] to [5], wherein the aromatic compound is a compound represented by formula (2) shown in the latter part.
[7] The chemical solution according to [6], wherein in the above formula (2), X 1 and X 2 represent oxygen atoms, and R 3 and R 4 represent hydrogen atoms.
[8] The chemical solution according to any one of [1] to [7], wherein the halide ion source contains hydrogen fluoride.
[9] The chemical liquid according to [8], wherein the content of hydrogen fluoride is 0.01 to 10% by mass based on the total mass of the chemical liquid.
[10] The drug solution according to any one of [1] to [9], wherein the ratio of the content of the quinone compound to the content of the aromatic compound is 10.0 to 200.0.
[11] Any one of [1] to [10], wherein the solvent contains one or more solvents selected from the group consisting of water, alcohol solvent, ether solvent, ester solvent, amide solvent, and sulfoxide solvent. The drug solution described in item 1.
[12] The chemical solution according to any one of [1] to [11], which is applied to a treated object containing germanium and silicon-germanium.
[13] A method for treating a workpiece, comprising a step of bringing the chemical solution according to any one of [1] to [11] into contact with a workpiece containing germanium and silicon-germanium.
 本発明によれば、GeとSiGeとを含む被処理物に適用された際に、SiGeの除去性に優れ、かつ、Geの表面荒れが抑制される、薬液を提供できる。
 また、本発明は、被処理物の処理方法も提供できる。
According to the present invention, it is possible to provide a chemical solution that is excellent in removing SiGe and suppresses surface roughening of Ge when applied to a workpiece containing Ge and SiGe.
Further, the present invention can also provide a method for treating an object to be treated.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
The present invention will be explained in detail below.
Although the description of the constituent elements described below may be made based on typical embodiments of the present invention, the present invention is not limited to such embodiments.
 以下、本明細書における各記載の意味を表す。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値、および、上限値として含む範囲を意味する。
 本明細書において「ppm」とは“parts per million”の略であり、10-6を意味する。また、「ppb」とは“parts per billion”の略であり、10-9を意味する。「ppt」とは“parts per trillion”の略であり、10-12を意味する。
 本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
The following describes the meaning of each description in this specification.
In this specification, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower limit and upper limit.
In this specification, "ppm" is an abbreviation for "parts per million" and means 10-6 . "ppb" is an abbreviation for "parts per billion" and means 10-9 . "ppt" is an abbreviation for "parts per trillion" and means 10-12 .
In this specification, when two or more types of a component are present, the "content" of the component means the total content of those two or more components.
 本明細書において、「ゲルマニウム」とは、実質的にGe元素のみから構成される材料のことをいう。上記実質的とは、材料全原子に対して、Ge元素の含有量が90原子%以上であることを意味する。よって、Ge元素の含有量が上記範囲内であれば、他の元素(ただし、Si元素を除く)が含まれていてもよい。
 また、本明細書において、「シリコン-ゲルマニウム」とは、実質的にSi元素およびGe元素のみから構成される材料のことをいう。上記実質的とは、材料全原子に対して、Si元素およびGe元素の合計含有量が90原子%以上であることを意味する。よって、Si元素およびGe元素の合計含有量が上記範囲内であれば、他の元素が含まれていてもよい。また、シリコン-ゲルマニウムにおいては、Si元素とGe元素との含有量比は特に制限されず、Si元素およびGe元素の合計量に対するGe元素の含有量の割合は、30~80原子%が好ましい。
In this specification, "germanium" refers to a material substantially composed of Ge element only. The above "substantially" means that the content of Ge element is 90 atomic % or more with respect to the total atoms of the material. Therefore, as long as the content of Ge element is within the above range, other elements (excluding Si element) may be included.
In this specification, "silicon-germanium" refers to a material substantially composed of only Si and Ge elements. The above "substantially" means that the total content of Si and Ge elements is 90 atomic % or more with respect to the total atoms of the material. Therefore, other elements may be included as long as the total content of Si and Ge elements is within the above range. In addition, in silicon-germanium, the content ratio of Si and Ge elements is not particularly limited, and the ratio of the content of Ge elements to the total amount of Si and Ge elements is preferably 30 to 80 atomic %.
 「露光」とは、特段の断りがない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線またはEUV光による露光と、電子線またはイオンビーム等の粒子線による描画とを含む。
 「準備」とは、特定の材料を合成ないし調合等して備えること以外に、購入等により所定の物を調達することを含む。
Unless otherwise specified, "exposure" includes exposure to deep ultraviolet light such as a mercury lamp or excimer laser, X-rays, or EUV light, and drawing with a particle beam such as an electron beam or ion beam.
"Preparation" includes not only preparing by synthesizing or blending specific materials, but also procuring predetermined items by purchasing or the like.
 2価の基(例えば、-COO-)の結合方向は、特段の断りがない限り、「X-Y-Z」で表される化合物中のYが-COO-である場合、化合物は「X-O-CO-Z」、および、「X-CO-O-Z」のいずれであってもよい。 The bonding direction of a divalent group (for example, -COO-) is, unless otherwise specified, when Y in a compound represented by "X-Y-Z" is -COO-, the compound is "X -O-CO-Z" or "X-CO-O-Z".
<薬液>
 本発明の薬液は、後述する式(1)で表される芳香族化合物と、キノン構造を有するキノン化合物と、ハロゲン化物イオン源と、溶媒とを含む。
 本発明の薬液用いてGeとSiGeとを含む被処理物を処理した際に、SiGeの除去性に優れ、かつ、Geの表面荒れが抑制される機序は必ずしも明らかではないが、本発明者は以下のように推測している。
 本発明の薬液は、キノン化合物と、ハロゲン化物イオン源と、溶媒とを含むことで、SiGeのエッチング能を発現する。さらに、本発明の薬液は、芳香族化合物を含むため、エッチングし切れなかったSiGeの残渣に対して芳香族化合物とキノン化合物とが協奏的に作用し、SiGeの除去性に優れると考えられる。
 また、芳香族化合物は、Geに対する親和性がSiGeに対する親和性よりも高いと考えられ、Geの表面付近に芳香族化合物が集まりやすいと考えられる。Geの表面付近に存在する芳香族化合物は、キノン化合物と協奏的に作用し、結果としてGeの表面荒れが抑制されると考えられる。
 以下、薬液に含まれる成分について説明する。
<Medical solution>
The chemical solution of the present invention includes an aromatic compound represented by formula (1) described below, a quinone compound having a quinone structure, a halide ion source, and a solvent.
Although the mechanism by which SiGe is excellently removed and surface roughness of Ge is suppressed when a workpiece containing Ge and SiGe is treated using the chemical solution of the present invention is not necessarily clear, the present inventor speculates as follows.
The chemical solution of the present invention exhibits SiGe etching ability by containing a quinone compound, a halide ion source, and a solvent. Furthermore, since the chemical solution of the present invention contains an aromatic compound, it is thought that the aromatic compound and the quinone compound act cooperatively on the SiGe residue that has not been completely etched, resulting in excellent SiGe removability.
Further, it is thought that aromatic compounds have a higher affinity for Ge than for SiGe, and that aromatic compounds tend to gather near the surface of Ge. It is thought that the aromatic compound present near the surface of Ge acts in concert with the quinone compound, and as a result, surface roughness of Ge is suppressed.
The components contained in the medicinal solution will be explained below.
[芳香族化合物]
 本発明の薬液は、式(1)で表される芳香族化合物を含む。
 以下、式(1)中の各記号について説明する。
[Aromatic compounds]
The chemical solution of the present invention contains an aromatic compound represented by formula (1).
Each symbol in formula (1) will be explained below.
 式(1)中、Arは、芳香族環を表す。
 Arが表す芳香族環は、単環構造であっても複環構造であってもよい。
 Arが表す芳香族環は、炭素原子以外のヘテロ原子を含んでいてもよい。ヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられる。Arが表す芳香族環は、ヘテロ原子を含まないことも好ましい。
 Arが表す芳香族環としては、例えば、ベンゼン環、ピリジン環、ナフタレン環、アントラセン環、フェナントレン環、および、ピレン環が挙げられ、ベンゼン環、ナフタレン環、または、アントラセン環が好ましく、ベンゼン環がより好ましい。
In formula (1), Ar represents an aromatic ring.
The aromatic ring represented by Ar may have a monocyclic structure or a multicyclic structure.
The aromatic ring represented by Ar may contain heteroatoms other than carbon atoms. Examples of heteroatoms include nitrogen atoms, oxygen atoms, and sulfur atoms. It is also preferable that the aromatic ring represented by Ar does not contain a heteroatom.
Examples of the aromatic ring represented by Ar include a benzene ring, a pyridine ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a pyrene ring, with a benzene ring, a naphthalene ring, or an anthracene ring being preferred; More preferred.
 式(1)中、Xは、それぞれ独立に16族元素を表し、Rは、それぞれ独立に水素原子または置換基を表す。つまり、後述するように、nは2以上であるため、2以上のXは、それぞれ互いに同一であっても異なっていてもよく、2以上のRは、それぞれ互いに同一であっても異なっていてもよい。
 Xが表す16族元素としては、酸素原子、硫黄原子、セレン原子、および、テルル原子が挙げられ、酸素原子または硫黄原子が好ましく、酸素原子がより好ましい。また、式(1)中の全てのXが、酸素原子または硫黄原子であることが好ましく、酸素原子であることがより好ましい。
 Rが表す置換基の種類は特に制限されず、ヘテロ原子を有していてもよい炭化水素基が挙げられる。なかでも、脂肪族炭化水素基が好ましく、アルキル基がより好ましい。アルキル基としては、炭素数1~5のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。Rは、少なくとも1つが水素原子であることが好ましく、全てのRが水素原子であることがより好ましい。
 式(1)中、nは、2以上の整数を表す。
 nが表す整数は、2~6が好ましく、2~4がより好ましく、2がさらに好ましい。
In formula (1), X each independently represents a Group 16 element, and R 1 each independently represents a hydrogen atom or a substituent. In other words, as will be described later, since n is 2 or more, 2 or more X's may be the same or different from each other, and 2 or more R1 's may be the same or different from each other. It's okay.
The Group 16 element represented by X includes an oxygen atom, a sulfur atom, a selenium atom, and a tellurium atom, preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom. Furthermore, all Xs in formula (1) are preferably oxygen atoms or sulfur atoms, more preferably oxygen atoms.
The type of substituent represented by R 1 is not particularly limited, and includes a hydrocarbon group that may have a hetero atom. Among these, aliphatic hydrocarbon groups are preferred, and alkyl groups are more preferred. The alkyl group is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and even more preferably a methyl group. At least one R 1 is preferably a hydrogen atom, and more preferably all R 1 are hydrogen atoms.
In formula (1), n represents an integer of 2 or more.
The integer represented by n is preferably 2 to 6, more preferably 2 to 4, and even more preferably 2.
 式(1)中、Rは、置換基を表す。
 Rが表す置換基としては、アルキル基、および、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)が挙げられる。Rが表すアルキル基は、炭素数1~5のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。
 なお、式(1)にRが複数含まれる場合、複数のRはそれぞれ異なっていてもよく、同一であってもよい。
 式(1)中、mは、0以上の整数を表す。
 mが表す整数は、0~4が好ましく、0~2がより好ましく、0がさらに好ましい。
In formula (1), R 2 represents a substituent.
Examples of the substituent represented by R 2 include an alkyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom). The alkyl group represented by R 2 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
In addition, when a plurality of R2 's are included in formula (1), the plurality of R2 's may be different from each other or may be the same.
In formula (1), m represents an integer of 0 or more.
The integer represented by m is preferably 0 to 4, more preferably 0 to 2, and even more preferably 0.
 2つ以上の-X-Rで表される基は、それそれArで表される基のどの位置に結合していてもよい。
 なかでも、下記の要件1~4のいずれかを満たすことが好ましい。
 要件1:nが2であり、Rが水素原子を表し、式(1)中のArがベンゼン環を表し、2つの-X-Rで表される基の結合位置がベンゼン環の1位および4位である。
 要件2:nが2であり、Rが水素原子を表し、式(1)中のArがナフタレン環を表し、2つの-X-Rで表される基の結合位置がナフタレン環の1位および4位である。
 要件3:nが2であり、Rが水素原子を表し、式(1)中のArがアントラセン環を表し、2つの-X-Rで表される基の結合位置がアントラセン環の9位および10位である。
 要件4:nが4であり、Rが水素原子を表し、式(1)中のArがアントラセン環を表し、4つの-X-Rで表される基の結合位置がアントラセン環の1位、4位、9位、および、10位である。
Two or more groups represented by -X-R 1 may be bonded to any position of the group represented by Ar.
Among these, it is preferable that any one of the following requirements 1 to 4 be satisfied.
Requirement 1: n is 2, R 1 represents a hydrogen atom, Ar in formula (1) represents a benzene ring, and the bonding position of the two groups represented by -XR 1 is 1 of the benzene ring. and 4th place.
Requirement 2: n is 2, R 1 represents a hydrogen atom, Ar in formula (1) represents a naphthalene ring, and the bonding position of the two groups represented by -XR 1 is 1 of the naphthalene ring. and 4th place.
Requirement 3: n is 2, R 1 represents a hydrogen atom, Ar in formula (1) represents an anthracene ring, and the bonding position of the two groups represented by -XR 1 is 9 of the anthracene ring. and 10th place.
Requirement 4: n is 4, R 1 represents a hydrogen atom, Ar in formula (1) represents an anthracene ring, and the bonding position of the four groups represented by -XR 1 is 1 of the anthracene ring. 1st place, 4th place, 9th place, and 10th place.
 芳香族化合物は、式(2)で表される芳香族化合物であることが好ましい。
 以下、式(2)中の各記号について説明する。
The aromatic compound is preferably an aromatic compound represented by formula (2).
Each symbol in formula (2) will be explained below.
 式(2)中、RおよびRは、それぞれ独立に、水素原子またはアルキル基を表す。
 RおよびRが表すアルキル基は、炭素数1~5のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましく、メチル基がさらに好ましい。RおよびRは、少なくとも1つが水素原子であることが好ましく、RおよびRが水素原子であることがより好ましい。
In formula (2), R3 and R4 each independently represent a hydrogen atom or an alkyl group.
The alkyl group represented by R3 and R4 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group. At least one of R3 and R4 is preferably a hydrogen atom, and more preferably R3 and R4 are a hydrogen atom.
 式(2)中、XおよびXは、それぞれ独立に、16族元素を表す。
 XおよびXが表す16族元素としては、酸素原子、硫黄原子、セレン原子、および、テルル原子が挙げられ、酸素原子または硫黄原子が好ましく、酸素原子がより好ましい。また、式(2)中のXおよびXの両方が、酸素原子または硫黄原子であることが好ましく、酸素原子であることがより好ましい。
In formula (2), X 1 and X 2 each independently represent a Group 16 element.
The Group 16 elements represented by X 1 and X 2 include an oxygen atom, a sulfur atom, a selenium atom, and a tellurium atom, preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom. Furthermore, both X 1 and X 2 in formula (2) are preferably oxygen atoms or sulfur atoms, and more preferably oxygen atoms.
 式(2)中、R~Rは、それぞれ独立に、水素原子または置換基を表す。
 R~Rが表す置換基としては、アルキル基、および、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)が挙げられる。R~Rが表すアルキル基は、炭素数1~5のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。
 RおよびRが表す置換基、ならびに、RおよびRが表す置換基は、それぞれ互いに結合して環を形成していてもよい。形成される環は、脂環であっても芳香族環であってもよく、芳香族環が好ましい。
 R~Rは、いずれも水素原子であることも好ましい。
In formula (2), R 5 to R 8 each independently represent a hydrogen atom or a substituent.
Examples of the substituents represented by R 5 to R 8 include an alkyl group and a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom). The alkyl group represented by R 5 to R 8 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
The substituents represented by R 5 and R 6 and the substituents represented by R 7 and R 8 may be bonded to each other to form a ring. The ring formed may be an alicyclic ring or an aromatic ring, and an aromatic ring is preferred.
It is also preferable that R 5 to R 8 are all hydrogen atoms.
 芳香族化合物の具体的な例としては、ヒドロキノン(1,4-ベンゼンジオール)、カテコール(1,2-ベンゼンジオール)、レゾルシノール(1,3-ベンゼンジオール)、メチルヒドロキノン、1,2,4-ベンゼントリオール、1,3,5-ベンゼントリオール、1,2,3-ベンゼントリオール、1,2,3,4-ベンゼンテトラオール、1,2,4,5-ベンゼンテトラオール、ナフトヒドロキノン(1,4-ナフタレンジオール)、1,5-ナフタレンジオール、アントラヒドロキノン(9,10-アントラセンジオール)、ロイコキニザリン(1,4-ジヒドロ-9,10-アントラセンジオール)、1,4-ベンゼンジチオール、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ナフタレンジチオール、1,5-ナフタレンジチオール、4-ヒドロキシベンゼンチオール、メキノール(4-メトキシフェノール)、2-メトキシフェノール、4-(メチルチオ)ベンゼンチオール、2,3-ジヒドロキシピリジン、2,4-ジヒドロキシピリジン、および、1,4-ベンゼンジセレノール等が挙げられる。
 なかでも、ヒドロキノン、カテコール、ナフトヒドロキノン、ロイコキニザリン、1,4-ベンゼンジチオール、1,5-ナフタレンジチオール、4-ヒドロキシベンゼンチオール、または、4-(メチルチオ)ベンゼンチオールが好ましく、ヒドロキノン、ナフトヒドロキノン、ロイコキニザリン、1,4-ベンゼンジチオール、または、4-ヒドロキシベンゼンチオールがより好ましい。
Specific examples of aromatic compounds include hydroquinone (1,4-benzenediol), catechol (1,2-benzenediol), resorcinol (1,3-benzenediol), methylhydroquinone, 1,2,4- Benzenetriol, 1,3,5-benzenetriol, 1,2,3-benzenetriol, 1,2,3,4-benzenetetraol, 1,2,4,5-benzenetetraol, naphthohydroquinone (1, 4-naphthalenediol), 1,5-naphthalenediol, anthrahydroquinone (9,10-anthracenediol), leucoquinizarin (1,4-dihydro-9,10-anthracenediol), 1,4-benzenedithiol, 1,2 -Benzenedithiol, 1,3-benzenedithiol, 1,4-naphthalenedithiol, 1,5-naphthalenedithiol, 4-hydroxybenzenedithiol, mequinol (4-methoxyphenol), 2-methoxyphenol, 4-(methylthio)benzene Examples include thiol, 2,3-dihydroxypyridine, 2,4-dihydroxypyridine, and 1,4-benzenediselenol.
Among them, hydroquinone, catechol, naphthohydroquinone, leucoquinizarin, 1,4-benzenedithiol, 1,5-naphthalenedithiol, 4-hydroxybenzenethiol, or 4-(methylthio)benzenethiol are preferred, and hydroquinone, naphthohydroquinone, and leucoquinizarin , 1,4-benzenedithiol, or 4-hydroxybenzenedithiol are more preferred.
 芳香族化合物の含有量は、薬液の全質量に対して、0.1質量ppb~5質量%が好ましく、5質量ppb~1質量%がより好ましく、0.001~0.5質量%がさらに好ましく、0.005~0.1質量%が特に好ましい。
 芳香族化合物は、1種を単独で用いてもよく、2種以上を用いてもよい。
 芳香族化合物を2種以上用いる場合、その合計量が、上記好ましい含有量の範囲であることが好ましい。
The content of the aromatic compound is preferably 0.1 mass ppb to 5 mass %, more preferably 5 mass ppb to 1 mass %, and further 0.001 to 0.5 mass %, based on the total mass of the chemical solution. Preferably, 0.005 to 0.1% by weight is particularly preferable.
The aromatic compounds may be used alone or in combination of two or more.
When two or more types of aromatic compounds are used, it is preferable that the total amount is within the above-mentioned preferred content range.
[キノン化合物]
 本発明の薬液は、キノン構造を有するキノン化合物を含む。
 キノン構造とは、2つのカルボニル基を含む環状の構造を指す。
 キノン化合物は、単環構造であってもよく、複環構造であってもよいが、単環構造が好ましい。キノン化合物は、カルボニル基に隣接する炭素原子-炭素原子の二重結合を有することが好ましい。
 キノン化合物の環状構造を構成する炭素原子は、6~15が好ましく、6~10がより好ましく、6がさらに好ましい。キノン化合物に含まれる炭素数は、6~20が好ましく、6~10がより好ましく、6~8がさらに好ましい。
 キノン化合物としては、酸化作用を発現するキノン化合物も好ましい。
[Quinone compound]
The drug solution of the present invention contains a quinone compound having a quinone structure.
The quinone structure refers to a cyclic structure containing two carbonyl groups.
The quinone compound may have a monocyclic structure or a multicyclic structure, but a monocyclic structure is preferable. The quinone compound preferably has a carbon atom-carbon atom double bond adjacent to the carbonyl group.
The number of carbon atoms constituting the cyclic structure of the quinone compound is preferably 6 to 15, more preferably 6 to 10, and even more preferably 6. The number of carbon atoms contained in the quinone compound is preferably 6 to 20, more preferably 6 to 10, and even more preferably 6 to 8.
As the quinone compound, a quinone compound that exhibits an oxidizing effect is also preferred.
 キノン化合物の例としては、p-ベンゾキノン、o-ベンゾキノン、1,4-ナフトキノン、1,5-ナフトキノン、1,2-ナフトキノン、2,6-ナフトキノン、アントラキノン、フェナントレンキノン、アセナフトキノン、2,6-ジメチル-1,4-ベンゾキノン、2,5-ジメチル-1,4-ベンゾキノン、トリメチル-1,4-ベンゾキノン、テトラメチル-1,4-ベンゾキノン、テトラクロロ-1,4-ベンゾキノン、テトラフルオロ-1,4-ベンゾキノン、2,5-ジフェニル-1,4-ベンゾキノン、および、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノンが挙げられる。
 なかでも、p-ベンゾキノン、o-ベンゾキノン、または、1,4-ナフトキノンが好ましく、p-ベンゾキノン、または、o-ベンゾキノンがより好ましい。
Examples of quinone compounds include p-benzoquinone, o-benzoquinone, 1,4-naphthoquinone, 1,5-naphthoquinone, 1,2-naphthoquinone, 2,6-naphthoquinone, anthraquinone, phenanthrenequinone, acenaphthoquinone, 2,6 -dimethyl-1,4-benzoquinone, 2,5-dimethyl-1,4-benzoquinone, trimethyl-1,4-benzoquinone, tetramethyl-1,4-benzoquinone, tetrachloro-1,4-benzoquinone, tetrafluoro- Examples include 1,4-benzoquinone, 2,5-diphenyl-1,4-benzoquinone, and 2,3-dichloro-5,6-dicyano-p-benzoquinone.
Among these, p-benzoquinone, o-benzoquinone, or 1,4-naphthoquinone is preferred, and p-benzoquinone or o-benzoquinone is more preferred.
 キノン化合物の含有量は、薬液の全質量に対して、0.01~10質量%が好ましく、0.05~3.0質量%がより好ましく、0.1~2.0質量%がさらに好ましい。
 芳香族化合物の含有量に対する、キノン化合物の含有量の比は、0.3~10000000.0が好ましく、10.0~200.0がより好ましい。
 キノン化合物は、1種を単独で用いてもよく、2種以上用いてもよい。
 キノン化合物を2種以上用いる場合、その合計量が、上記好ましい含有量の範囲であることが好ましい。
 また、キノン化合物は、薬液中で互変異性体として存在していてもよい。
The content of the quinone compound is preferably 0.01 to 10% by mass, more preferably 0.05 to 3.0% by mass, and even more preferably 0.1 to 2.0% by mass, based on the total mass of the drug solution. .
The ratio of the content of the quinone compound to the content of the aromatic compound is preferably 0.3 to 10000000.0, more preferably 10.0 to 200.0.
One type of quinone compound may be used alone, or two or more types may be used.
When two or more types of quinone compounds are used, the total amount thereof is preferably within the above-mentioned preferred content range.
Moreover, the quinone compound may exist as a tautomer in the drug solution.
[ハロゲン化物イオン源]
 本発明の薬液は、ハロゲン化物イオン源を含む。
 ハロゲン化物イオン源とは、薬液中でハロゲン化物イオンまたはハロゲン含有イオンを放出し得る化合物をいう。本発明の薬液中において、ハロゲン化物イオン源は、ハロゲン化物イオンまたはハロゲン含有イオンとなっていてもよい。
 ハロゲン化物イオン源に含まれるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子が挙げられ、フッ素原子または塩素原子が好ましく、フッ素原子がより好ましい。すなわち、ハロゲン化物イオン源は、フッ化物イオン源が好ましい。なおフッ化物イオン源とは、薬液中でフッ化物イオン(F)またはフッ素含有イオンを放出し得る化合物である。
 フッ素含有イオンとしては、ビフルオリドイオン(HF )、SiF 2-、TiF 2-、ZrF 2-、PF 、および、BF が挙げられる。
[Halide ion source]
The chemical solution of the present invention includes a source of halide ions.
The halide ion source refers to a compound capable of releasing halide ions or halogen-containing ions in the chemical solution. In the chemical solution of the present invention, the halide ion source may be a halide ion or a halogen-containing ion.
Examples of halogen atoms contained in the halide ion source include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms, with fluorine atoms and chlorine atoms being preferred, and fluorine atoms being more preferred. That is, the halide ion source is preferably a fluoride ion source. The fluoride ion source is a compound capable of releasing fluoride ions (F ) or fluorine-containing ions in a chemical solution.
Fluorine-containing ions include the bifluoride ion (HF 2 ), SiF 6 2− , TiF 6 2− , ZrF 6 2− , PF 6 , and BF 4 .
 フッ化物イオン源は、フッ化物イオンまたはフッ素含有イオンとカチオンとの塩である場合が多い。
 フッ化物イオン源に好ましく含まれるカチオンとしては、H、Li、Na、K、および、NH が挙げられ、Hが好ましい。
 フッ化物イオン源としては、フッ化水素(HF)、フッ化アンモニウム(NHF)、ヘキサフルオロケイ酸(HSiF)、ヘキサフルオロケイ酸(NaSiF)、ヘキサフルオロチタン酸(HTiF)、ヘキサフルオロジルコニウム酸(HZrF)、ヘキサフルオロリン酸(HPF)、または、ヘキサフルオロホウ酸(HBF)が好ましく、フッ化水素またはフッ化アンモニウムがより好ましく、フッ化水素がさらに好ましい。
The fluoride ion source is often a fluoride ion or a salt of a fluorine-containing ion and a cation.
Cations preferably included in the fluoride ion source include H + , Li + , Na + , K + , and NH 4 + , with H + being preferred.
Fluoride ion sources include hydrogen fluoride (HF), ammonium fluoride (NH 4 F), hexafluorosilicic acid (H 2 SiF 6 ), hexafluorosilicic acid (Na 2 SiF 6 ), and hexafluorotitanic acid ( H 2 TiF 6 ), hexafluorozirconic acid (H 2 ZrF 6 ), hexafluorophosphoric acid (HPF 6 ), or hexafluoroboric acid (HBF 4 ) is preferred, and hydrogen fluoride or ammonium fluoride is more preferred; Hydrogen fluoride is more preferred.
 ハロゲン化物イオン源の含有量は、薬液の全質量に対して、0.004~20質量%が好ましく、0.01~10質量%がより好ましく、0.02~10質量%がさらに好ましく、0.4~7.5質量%が特に好ましい。
 ハロゲン化物イオン源は、1種を単独で用いてもよく、2種以上を用いてもよい。ハロゲン化物イオン源を2種類以上用いる場合、その合計量が、上記好ましい含有量の範囲であることが好ましい。
 ハロゲン化物イオン源は、溶液を用いてもよい。ハロゲン化物イオン源が溶液の場合、ハロゲン化物イオン源の含有量は、溶液に含まれるフッ化物イオン源の含有量である。
The content of the halide ion source is preferably 0.004 to 20% by mass, more preferably 0.01 to 10% by mass, even more preferably 0.02 to 10% by mass, based on the total mass of the chemical solution. Particularly preferred is .4 to 7.5% by weight.
One type of halide ion source may be used alone, or two or more types may be used as a halide ion source. When two or more types of halide ion sources are used, the total amount thereof is preferably within the above-mentioned preferred content range.
A solution may be used as the halide ion source. When the halide ion source is a solution, the content of the halide ion source is the content of the fluoride ion source contained in the solution.
[溶媒]
 本発明の薬液は、溶媒を含む。
 溶媒は、特に制限されないが、水、アルコール溶媒、エーテル溶媒、エステル溶媒、アミド溶媒、および、スルホキシド溶媒からなる群から選択される1種以上の溶媒が好ましく、水、アルコール溶媒、エーテル溶媒、および、スルホキシド溶媒からなる群から選択される1種以上の溶媒がより好ましい。
 溶媒は、水と任意の比率で混和することも好ましい。
[solvent]
The drug solution of the present invention contains a solvent.
The solvent is not particularly limited, but preferably one or more solvents selected from the group consisting of water, alcohol solvents, ether solvents, ester solvents, amide solvents, and sulfoxide solvents; water, alcohol solvents, ether solvents, and More preferably, one or more solvents are selected from the group consisting of , sulfoxide solvents.
It is also preferred that the solvent is miscible with water in any ratio.
 アルコール溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、および、1,4-ブタンジオールが挙げられる。
 アルコール溶媒の炭素数としては、1~8が好ましく、1~4がより好ましい。
Examples of the alcohol solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, -methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
The number of carbon atoms in the alcohol solvent is preferably 1 to 8, more preferably 1 to 4.
 エーテル溶媒としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、テトラヒドロフラン、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール、アルキレングリコールモノアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル)、アルキレングリコールジアルキルエーテル(ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、および、トリエチレングリコールジメチルエーテル)が挙げられる。
 エーテル溶媒の炭素数としては、3~16が好ましく、4~14がより好ましい。
Examples of the ether solvent include diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, tetrahydrofuran, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, alkylene glycol monoalkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether), alkylene glycol dialkyl ethers (diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, triethylene glycol diethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether).
The ether solvent preferably has 3 to 16 carbon atoms, and more preferably has 4 to 14 carbon atoms.
 エステル溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、乳酸メチル、乳酸エチル、および、乳酸ブチルが挙げられる。 Examples of the ester solvent include methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, methyl lactate, ethyl lactate, and butyl lactate.
 アミド溶媒としては、例えば、ホルムアミド、モノメチルホルムアミド、ジメチルホルムアミド、アセトアミド、モノメチルアセトアミド、ジメチルアセトアミド、モノエチルアセトアミド、ジエチルアセトアミド、および、N-メチルピロリドンが挙げられる。 Examples of the amide solvent include formamide, monomethylformamide, dimethylformamide, acetamide, monomethylacetamide, dimethylacetamide, monoethylacetamide, diethylacetamide, and N-methylpyrrolidone.
 スルホキシド溶媒としては、例えば、ジメチルスルホキシドが挙げられる。 Examples of the sulfoxide solvent include dimethyl sulfoxide.
 溶媒の含有量は、薬液の全質量に対して、60~99.99質量%が好ましく、80~99.9質量%がより好ましい。
 溶媒は、1種を単独で用いてもよく、2種以上を用いてもよい。
 溶媒を2種以上用いる場合、その合計量が、上記好ましい含有量の範囲であることが好ましい。
The content of the solvent is preferably 60 to 99.99 mass %, more preferably 80 to 99.9 mass %, based on the total mass of the chemical solution.
The solvent may be used alone or in combination of two or more kinds.
When two or more solvents are used, the total amount thereof is preferably within the above-mentioned preferred content range.
[任意成分]
 薬液は、上述した成分以外に任意成分を含んでいてもよい。
 以下、薬液が含み得る成分について説明する。
[Optional ingredients]
The drug solution may contain arbitrary components in addition to the above-mentioned components.
The components that the drug solution may contain will be explained below.
(塩基性化合物)
 薬液は、塩基性化合物を含んでいてもよい。
 塩基性化合物とは、水溶液中でアルカリ性(pHが7.0超)を示す化合物である。
 塩基性化合物としては、例えば、有機塩基、無機塩基、および、それらの塩が挙げられる。
(basic compound)
The drug solution may contain a basic compound.
A basic compound is a compound that exhibits alkalinity (pH greater than 7.0) in an aqueous solution.
Examples of the basic compound include organic bases, inorganic bases, and salts thereof.
 有機塩基としては、例えば、第4級アンモニウム塩、アルキルアミン化合物またはその塩、アミンオキシド化合物、ニトロ化合物、ニトロソ化合物、オキシム化合物、ケトオキシム化合物、アルドオキシム化合物、ラクタム化合物、および、イソシアニド化合物が挙げられる。
 アルキルアミン化合物としては、トリアルキルアミン化合物が好ましい。アルキルアミン化合物のアルキル基部分は、置換基を有していてもよく、置換基としては、特に制限されないが、例えば、ヒドロキシ基およびフェニル基が挙げられる。なお、上記アルキル基部分を構成するメチレン基は、-O-等の2価連結基で置換されていてもよい。また、上記アルキル基部分は、互いに結合して環を形成していてもよい。
 トリアルキルアミン化合物の具体的な例としては、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N,N-ジメチルエタノールアミン、N-メチルモルホリン、および、N-エチルモルホリン、ならびに、それらの塩が挙げられる。
Examples of the organic base include quaternary ammonium salts, alkylamine compounds or salts thereof, amine oxide compounds, nitro compounds, nitroso compounds, oxime compounds, ketooxime compounds, aldoxime compounds, lactam compounds, and isocyanide compounds. .
As the alkylamine compound, a trialkylamine compound is preferred. The alkyl group portion of the alkylamine compound may have a substituent, and examples of the substituent include, but are not limited to, a hydroxy group and a phenyl group. Note that the methylene group constituting the above alkyl group portion may be substituted with a divalent linking group such as -O-. Furthermore, the alkyl group moieties may be bonded to each other to form a ring.
Specific examples of trialkylamine compounds include methylamine, ethylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, N-methyldiethanolamine, N-ethyldiethanolamine, N,N-dimethylethanolamine, N-methylmorpholine, and , N-ethylmorpholine, and salts thereof.
 無機塩基としては、例えば、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属水酸化物、アルカリ土類金属水酸化物、ならびに、アンモニア、または、その塩が挙げられる。 Examples of the inorganic base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides, and ammonia or salts thereof.
 塩基性化合物の含有量は特に制限されないが、薬液の全質量に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。上限は特に制限されないが、薬液の全質量に対して、20.0質量%以下が好ましい。 The content of the basic compound is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the total mass of the chemical solution. The upper limit is not particularly limited, but is preferably 20.0% by mass or less based on the total mass of the chemical solution.
(酸性化合物)
 薬液は、酸性化合物を含んでいてもよい。
 酸性化合物とは、水溶液中で酸性(pHが7.0未満)を示す酸性化合物である。
 酸性化合物としては、例えば、無機酸、有機酸、および、それらの塩が挙げられる。
 ただし、酸性化合物は、上述したハロゲン化物イオン源とは異なる化合物である。
(acidic compound)
The chemical solution may contain an acidic compound.
An acidic compound is an acidic compound that exhibits acidity (pH less than 7.0) in an aqueous solution.
Examples of acidic compounds include inorganic acids, organic acids, and salts thereof.
However, the acidic compound is a compound different from the halide ion source described above.
 無機酸としては、例えば、硫酸、リン酸、硝酸、および、それらの塩が挙げられる。 Examples of inorganic acids include sulfuric acid, phosphoric acid, nitric acid, and salts thereof.
 有機酸としては、例えば、カルボン酸、スルホン酸、および、それらの塩が挙げられる。
 カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、および、酪酸等の低級(炭素数1~4)脂肪族モノカルボン酸、ならびに、それらの塩が挙げられる。
 スルホン酸としては、例えば、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸(トシル酸)、および、それらの塩が挙げられる。
The organic acids include, for example, carboxylic acids, sulfonic acids, and salts thereof.
Examples of the carboxylic acid include lower (C1-C4) aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, and butyric acid, and salts thereof.
Sulfonic acids include, for example, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid (tosylic acid), and salts thereof.
 酸性化合物の含有量は特に制限されないが、薬液の全質量に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。上限は特に制限されないが、薬液の全質量に対して、20.0質量%以下が好ましい。 The content of the acidic compound is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the total mass of the chemical solution. The upper limit is not particularly limited, but is preferably 20.0% by mass or less based on the total mass of the chemical solution.
(界面活性剤)
 薬液は、界面活性剤を含んでいてもよい。
 界面活性剤としては、1分子中に親水基と疎水基(親油基)とを有する化合物であれば特に制限されず、例えば、アニオン性界面活性剤、カチオン性界面活性剤、および、ノニオン性界面活性剤が挙げられる。
(Surfactant)
The chemical solution may contain a surfactant.
The surfactant is not particularly limited as long as it is a compound having a hydrophilic group and a hydrophobic group (lipophilic group) in one molecule, and examples thereof include anionic surfactants, cationic surfactants, and nonionic surfactants.
 界面活性剤が有する疎水基としては、例えば、脂肪族炭化水素基、芳香族炭化水素基、および、それらの組合せが挙げられる。
 疎水基が芳香族炭化水素基を含む場合、疎水基の炭素数は、6以上が好ましく、10以上がより好ましい。
 疎水基が芳香族炭化水素基を含まず、脂肪族炭化水素基のみから構成される場合、疎水基の炭素数は、8以上が好ましく、10以上がより好ましい。疎水基の炭素数の上限は特に制限されないが、24以下が好ましく、20以下がより好ましい。
Examples of the hydrophobic group that the surfactant has include aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and combinations thereof.
When the hydrophobic group contains an aromatic hydrocarbon group, the number of carbon atoms in the hydrophobic group is preferably 6 or more, more preferably 10 or more.
When the hydrophobic group does not contain an aromatic hydrocarbon group and is composed only of an aliphatic hydrocarbon group, the number of carbon atoms in the hydrophobic group is preferably 8 or more, more preferably 10 or more. The upper limit of the number of carbon atoms in the hydrophobic group is not particularly limited, but is preferably 24 or less, more preferably 20 or less.
 界面活性剤の含有量は特に制限されないが、薬液の全質量に対して、10質量ppm以上が好ましく、30質量ppm以上がより好ましい。上限は特に制限されないが、薬液の泡立ちを抑制する点から、薬液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。 The content of the surfactant is not particularly limited, but is preferably 10 mass ppm or more, more preferably 30 mass ppm or more, based on the total mass of the chemical solution. The upper limit is not particularly limited, but from the viewpoint of suppressing foaming of the chemical solution, it is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the chemical solution.
(防食剤)
 薬液は、防食剤を含んでいてもよい。
 防食剤は、後述する被処理物上に存在する他の材料のエッチングを防ぐ目的で薬液に添加される。
 ただし、防食剤には、上記芳香族化合物は含めない。
 防食剤の種類は、被処理物に存在する他の材料の材質によって適宜選択される。
 防食剤としては、例えば、アミン化合物、イミン化合物、チオール化合物、および、チオエーテル化合物が挙げられる。中でも、イミン化合物が好ましく、窒素を含む不飽和複素環式化合物がより好ましい。
 窒素を含む不飽和複素環式化合物としては、例えば、ピリジン、トリアジン、イミダゾール、ベンズイミダゾール、プリン、および、キサンチン、ならびに、それらの誘導体が挙げられる。
(Anti-corrosion agent)
The chemical solution may contain an anticorrosive agent.
The anticorrosive agent is added to the chemical solution for the purpose of preventing etching of other materials present on the object to be treated, which will be described later.
However, the above-mentioned aromatic compounds are not included in the anticorrosive agent.
The type of anticorrosive agent is appropriately selected depending on the quality of other materials present in the object to be treated.
Examples of anticorrosive agents include amine compounds, imine compounds, thiol compounds, and thioether compounds. Among these, imine compounds are preferred, and unsaturated heterocyclic compounds containing nitrogen are more preferred.
Examples of nitrogen-containing unsaturated heterocyclic compounds include pyridine, triazine, imidazole, benzimidazole, purine, and xanthine, and derivatives thereof.
 防食剤の含有量は特に制限されないが、薬液の全質量に対して、0.1質量%以上が好ましく、1質量%以上がより好ましい。上限は特に制限されないが、薬液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。 The amount of the corrosion inhibitor is not particularly limited, but is preferably 0.1% by mass or more, and more preferably 1% by mass or more, based on the total mass of the chemical solution. There is no particular upper limit, but is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total mass of the chemical solution.
(不溶性粒子)
 本発明の薬液は、不溶性粒子を実質的に含まないことが好ましい。
 上記「不溶性粒子」とは、無機固形物および有機固形物等の粒子であって、最終的に薬液中で溶解せずに粒子として存在するものが該当する。
 上記「不溶性粒子を実質的に含まない」とは、薬液が含む溶媒で薬液を10000倍に希釈して測定用組成物とし、測定用組成物の1mL中に含まれる粒径50nm以上の粒子の個数が、40000個以下であることを意味する。なお、測定用組成物に含まれる粒子の個数は、市販のパーティクルカウンターを利用して液相で測定できる。
 市販のパーティクルカウンター装置としてはリオン社製、PMS社製の装置が使用できる。前者の代表装置としてはKS-19F、後者の代表装置としてはChem20などが挙げられる。より大きな粒子を測定する為には、KS-42シリーズ、LiQuilaz II Sシリーズ等の装置が使用できる。
 不溶性粒子としては、例えば、シリカ(コロイダルシリカおよびヒュームドシリカを含む)、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、酸化マンガン、および、炭化珪素等の無機固形物;ポリスチレン、ポリアクリル樹脂、および、ポリ塩化ビニル等の有機固形物等の粒子が挙げられる。
 薬液から不溶性粒子を除去する方法としては、例えば、フィルタリング等の精製処理が挙げられる。
(Insoluble particles)
Preferably, the drug solution of the present invention does not substantially contain insoluble particles.
The above-mentioned "insoluble particles" refer to particles such as inorganic solids and organic solids, which ultimately exist as particles without being dissolved in the drug solution.
The above-mentioned phrase "substantially free of insoluble particles" means that when the medicinal solution is diluted 10,000 times with a solvent contained in the medicinal solution to prepare a measurement composition, particles with a particle size of 50 nm or more contained in 1 mL of the measurement composition are This means that the number is 40,000 or less. The number of particles contained in the measurement composition can be measured in the liquid phase using a commercially available particle counter.
As a commercially available particle counter device, devices manufactured by Rion Corporation and PMS Corporation can be used. A representative device of the former is KS-19F, and a representative device of the latter is Chem20. To measure larger particles, instruments such as the KS-42 series and LiQuilaz II S series can be used.
Insoluble particles include, for example, inorganic solids such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; polystyrene, polyacrylic resin, and Examples include particles of organic solids such as polyvinyl chloride.
Examples of methods for removing insoluble particles from a chemical solution include purification treatment such as filtering.
[薬液の物性]
(粗大粒子)
 薬液は、粗大粒子を含んでいてもよいが、その含有量が低いことが好ましい。
 粗大粒子とは、粒子の形状を球体とみなした場合における直径(粒径)が1μm以上である粒子を意味する。なお、上記不溶性粒子に含まれる粒子は、粗大粒子に含まれ得る。
 薬液における粗大粒子の含有量は、粒径1μm以上の粒子の含有量が、薬液1mLあたり100個以下であることが好ましく、50個以下であることがより好ましい。下限は、薬液1mLあたり0個以上が好ましく、0.01個以上がより好ましい。
 薬液に含まれる粗大粒子は、原料に不純物として含まれる塵、埃、有機固形物および無機固形物等の粒子、ならびに、薬液の調製中に汚染物として持ち込まれる塵、埃、有機固形物および無機固形物等の粒子であって、最終的に薬液中で溶解せずに粒子として存在するものが該当する。
 薬液中に存在する粗大粒子の含有量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して液相で測定できる。
 粗大粒子の除去方法としては、例えば、後述するフィルタリング等の精製処理が挙げられる。
[Physical properties of chemical solution]
(coarse particles)
Although the chemical solution may contain coarse particles, it is preferable that the content thereof is low.
Coarse particles mean particles having a diameter (particle size) of 1 μm or more when the shape of the particles is considered to be a sphere. Note that particles included in the above-mentioned insoluble particles may be included in coarse particles.
The content of coarse particles in the chemical solution is preferably 100 or less, and more preferably 50 or less, per 1 mL of the drug solution. The lower limit is preferably 0 or more, more preferably 0.01 or more per mL of the chemical solution.
Coarse particles contained in chemical solutions include particles such as dust, organic solids, and inorganic solids contained as impurities in raw materials, as well as dust, dirt, organic solids, and inorganic solids introduced as contaminants during the preparation of drug solutions. This refers to particles such as solid substances that ultimately exist as particles without being dissolved in the drug solution.
The content of coarse particles present in the chemical solution can be measured in the liquid phase using a commercially available measuring device using a light scattering particle-in-liquid measurement method using a laser as a light source.
Examples of methods for removing coarse particles include purification treatment such as filtering, which will be described later.
<薬液の製造方法>
 薬液は、公知の方法により製造できる。以下、薬液の製造方法について詳述する。
<Method for producing chemical solution>
The drug solution can be manufactured by a known method. The method for producing the chemical solution will be described in detail below.
[調液工程]
 薬液の調液方法は、例えば、上記各成分を混合することにより薬液を製造できる。
 上記各成分を混合する順序および/またはタイミングは、特に制限されず、例えば、精製した溶媒(例えばエタノール)を入れた容器に、芳香族化合物、キノン化合物、および、ハロゲン化物イオン源を順次添加した後、撹拌して混合する方法が挙げられる。また、pH調整剤を添加して混合液のpHを調整して調液してもよい。また、溶媒および各成分を容器に添加する場合、一括して添加してもよいし、複数回にわたって分割して添加してもよい。
[Liquid preparation process]
As a method for preparing a drug solution, for example, a drug solution can be produced by mixing the above-mentioned components.
The order and/or timing of mixing the above components is not particularly limited, and for example, an aromatic compound, a quinone compound, and a halide ion source are sequentially added to a container containing a purified solvent (e.g., ethanol). After that, a method of stirring and mixing can be mentioned. Alternatively, a pH adjuster may be added to adjust the pH of the mixed solution. Furthermore, when adding the solvent and each component to the container, they may be added all at once, or may be added in multiple portions.
 薬液の調液に使用する撹拌装置および撹拌方法は、撹拌機または分散機として公知の装置を使用すればよい。撹拌機としては、例えば、工業用ミキサー、可搬型撹拌器、メカニカルスターラーおよびマグネチックスターラーが挙げられる。分散機としては、例えば、工業用分散器、ホモジナイザー、超音波分散器およびビーズミルが挙げられる。 The stirring device and stirring method used to prepare the chemical solution may be a device known as a stirrer or disperser. Examples of stirrers include industrial mixers, portable stirrers, mechanical stirrers, and magnetic stirrers. Examples of dispersers include industrial dispersers, homogenizers, ultrasonic dispersers, and bead mills.
 薬液の調液工程における各成分の混合および後述する精製処理、ならびに、製造された薬液の保管は、40℃以下で行うことが好ましく、30℃以下で行うことがより好ましい。また、下限は、5℃以上が好ましく、10℃以上がより好ましい。上記の温度範囲で薬液の調液、処理および/または保管を行うことにより、長期間安定に性能を維持できる。 It is preferable that the mixing of each component in the preparation process of the medicinal solution, the purification treatment described below, and the storage of the produced medicinal solution be carried out at a temperature of 40°C or lower, more preferably a temperature of 30°C or lower. Further, the lower limit is preferably 5°C or higher, more preferably 10°C or higher. By preparing, treating and/or storing the chemical solution within the above temperature range, performance can be maintained stably for a long period of time.
[希釈工程]
 上記薬液は、希釈剤を用いて希釈する希釈工程を経た後、希釈された薬液(希釈薬液)として使用に供されてもよい。
 なお、希釈薬液も、本発明の要件を満たす限り、本発明の薬液の一形態である。
[Dilution process]
The above-mentioned drug solution may be used as a diluted drug solution (diluted drug solution) after passing through a dilution step of diluting it using a diluent.
Note that a diluted chemical solution is also one form of the chemical solution of the present invention as long as it satisfies the requirements of the present invention.
 希釈液としては、溶媒、および、イソプロパノールアミン(1-アミノ-2-プロパノール)またはアンモニアを含む水溶液が挙げられる。
 希釈工程に用いる希釈液に対しては、事前に精製処理を行うことが好ましい。また、希釈工程により得られた希釈薬液に対して、精製処理を行うことがより好ましい。
 精製処理としては、上記薬液に対する精製処理として記載した、イオン交換樹脂またはRO膜等を用いたイオン成分低減処理およびフィルタリングを用いた異物除去が挙げられ、これらのうちいずれかの処理を行うことが好ましい。
Examples of the diluent include a solvent and an aqueous solution containing isopropanolamine (1-amino-2-propanol) or ammonia.
It is preferable to perform a purification treatment on the diluent used in the dilution step in advance. Further, it is more preferable to perform a purification treatment on the diluted chemical solution obtained in the dilution step.
Examples of the purification treatment include ion component reduction treatment using an ion exchange resin or RO membrane, etc., and foreign matter removal using filtering, both of which are described as purification treatment for the above chemical solution. preferable.
 希釈工程における薬液の希釈率は、各成分の種類および含有量、ならびに、薬液の使用対象および目的に応じて適宜調整すればよい。希釈前の薬液に対する希釈薬液の比率(希釈倍率)は、質量比または体積比(23℃における体積比)で1.5~10000倍が好ましく、2~2000倍がより好ましく、50~1000倍がさらに好ましい。 The dilution rate of the chemical solution in the dilution step may be adjusted as appropriate depending on the type and content of each component, and the target and purpose for which the chemical solution is used. The ratio of the diluted chemical solution to the undiluted chemical solution (dilution ratio) is preferably 1.5 to 10,000 times in mass ratio or volume ratio (volume ratio at 23 ° C.), more preferably 2 to 2,000 times, and 50 to 1,000 times. More preferred.
 また、上記薬液に含まれ得る各成分(溶媒は除く)の好適な含有量を、上記範囲の希釈倍率(例えば100)で除した量で各成分を含む薬液(希釈薬液)も好適に実用できる。
 換言すると、希釈薬液の全質量に対する各成分(溶媒は除く)の好適含有量は、例えば、薬液(希釈前の薬液)の全質量に対する各成分の好適含有量として説明した量を、上記範囲の希釈倍率(例えば100)で除した量である。
Further, a chemical solution (diluted chemical solution) containing each component in an amount obtained by dividing the suitable content of each component (excluding the solvent) that can be contained in the above drug solution by a dilution ratio (for example, 100) in the above range can also be suitably put into practical use. .
In other words, the preferred content of each component (excluding the solvent) relative to the total mass of the diluted chemical solution is, for example, the amount explained as the preferred content of each component relative to the total mass of the drug solution (medical solution before dilution) within the above range. This is the amount divided by the dilution factor (for example, 100).
 希釈前後におけるpHの変化(希釈前の薬液のpHと希釈薬液のpHとの差分)は、2.0以下が好ましく、1.8以下がより好ましく、1.5以下がさらに好ましい。
 希釈前の薬液のpHおよび希釈薬液のpHは、それぞれ、上記好適態様であることが好ましい。
The change in pH before and after dilution (the difference between the pH of the chemical solution before dilution and the pH of the diluted chemical solution) is preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.5 or less.
It is preferable that the pH of the drug solution before dilution and the pH of the diluted drug solution are each in the above preferred embodiment.
 薬液を希釈する希釈工程の具体的方法は、上記の薬液の調液工程に準じて行えばよい。希釈工程で使用する撹拌装置および撹拌方法もまた、上記の薬液の調液工程において挙げた公知の撹拌装置を用いて行えばよい。 The specific method of the dilution process for diluting the chemical solution may be similar to that of the chemical solution preparation process described above. The stirring device and stirring method used in the dilution process may also be the same as those of the known stirring devices described in the chemical solution preparation process described above.
<薬液の用途>
 薬液は、半導体の製造に用いられることが好ましい。より具体的には、半導体素子の製造に用いられることが好ましい。
 薬液は、半導体素子を製造するための工程にも用いることができ、例えば、基板上に存在するゲルマニウムで構成される材料、絶縁膜、レジスト膜、反射防止膜、エッチング残渣物、および、アッシング残渣物(以下、単に「残渣物」ともいう。)等の処理に使用できる。薬液は、化学機械研磨後の基板の処理に用いてもよい。
 特に、GeとSiGeとを含む被処理物(以下、単に「被処理物」ともいう。)の処理に、薬液は好ましく用いられる。被処理物を薬液で処理して得られる素子としては、電界効果トランジスタ(FET:Field Effect Transistor)が好ましく挙げられ、全周ゲートFET(GAA-FET:Gate-All-Around-FET)がより好ましく挙げられる。すなわち、薬液は、GAA-FETの製造プロセスに用いられることが好ましい。
 なお、GAA-FETとは、ドレインおよびソース間のチャネルの側面部分が、全周にわたってゲートで覆われている構造を有するFETをいう。GAA-FETにおけるチャネルは、ナノサイズのワイヤ状の部材から構成される態様が挙げられる。GAA-FETの製造においては、例えば、ナノ構造を有する被処理物から、選択的にSiGeを除去するプロセスが含まれ、上記プロセスに本発明の溶媒を好ましく用いることができる。
 より具体的には、まず、SiGe層およびGe層をシリコンウエハ上にヘテロエピタキシによって交互に堆積する。以下、交互に積層されたSiGe層およびGe層のことを単に「SiGe層-Ge層積層膜」ともいう。
 SiGe層-Ge層積層膜の構成としては、例えば、厚い(例えば50nm以上)SiGe層(Si:Ge=70:30(原子数比))を形成後、膜厚10nmのSiGe層(Si:Ge=65:33(原子数比))およびGe層を交互に積層したものが挙げられる。
 次に、SiGe層-Ge層積層膜上に、酸化ケイ素および窒化ケイ素のハードマスクこの順に形成し、ハードマスクを所望の形状に加工後、ハードマスクの形状に沿ってSiGe層-Ge層積層膜を加工する。加工される形状は、適宜選択できるが、例えばフィン状にSiGe層-Ge層積層膜を加工できる。加工後のSiGe層-Ge層積層膜では、断面にSiGe層およびGe層が露出する。
 上述した状態の構造物が形成されたシリコンウエハを被処理物として用い、本発明の薬液を用いて処理すると、SiGe層が選択的にエッチングされ、ナノワイヤ状のGeが形成できる。
<Applications of chemical liquid>
Preferably, the chemical solution is used for manufacturing semiconductors. More specifically, it is preferably used for manufacturing semiconductor devices.
The chemical solution can also be used in the process of manufacturing semiconductor devices, and for example, it can be used to remove germanium-based materials present on the substrate, insulating films, resist films, antireflection films, etching residues, and ashing residues. (hereinafter also simply referred to as "residue"), etc. The chemical solution may be used to treat the substrate after chemical mechanical polishing.
In particular, the chemical solution is preferably used for treating a workpiece containing Ge and SiGe (hereinafter also simply referred to as a "workpiece"). The device obtained by treating the object to be treated with a chemical solution is preferably a field effect transistor (FET), more preferably a gate-all-around-FET (GAA-FET). Can be mentioned. That is, the chemical solution is preferably used in the GAA-FET manufacturing process.
Note that the GAA-FET refers to an FET having a structure in which a side surface of a channel between a drain and a source is covered with a gate over the entire circumference. The channel in the GAA-FET may be constructed from a nano-sized wire-like member. The production of GAA-FET includes, for example, a process of selectively removing SiGe from a processed object having a nanostructure, and the solvent of the present invention can be preferably used in the above process.
More specifically, first, SiGe layers and Ge layers are alternately deposited on a silicon wafer by heteroepitaxy. Hereinafter, the alternately stacked SiGe layers and Ge layers will also be simply referred to as "SiGe layer-Ge layer stack".
As for the structure of the SiGe layer-Ge layer stack, for example, after forming a thick (for example, 50 nm or more) SiGe layer (Si:Ge=70:30 (atomic ratio)), a 10 nm thick SiGe layer (Si:Ge =65:33 (atomic ratio)) and one in which Ge layers are alternately stacked.
Next, a hard mask of silicon oxide and silicon nitride is formed in this order on the SiGe layer-Ge layer stack, and after processing the hard mask into a desired shape, the SiGe layer-Ge layer stack is formed along the shape of the hard mask. Process. Although the shape to be processed can be selected as appropriate, for example, the SiGe layer-Ge layer stacked film can be processed into a fin shape. In the processed SiGe layer-Ge layer stacked film, the SiGe layer and the Ge layer are exposed in the cross section.
When a silicon wafer on which a structure in the above-mentioned state is formed is used as an object to be processed and treated with the chemical solution of the present invention, the SiGe layer is selectively etched and nanowire-shaped Ge can be formed.
<被処理物の処理方法>
 以下、本発明の薬液を用いたGeとSiGeとを含む被処理物の処理方法について説明する。
<Method for processing objects>
Hereinafter, a method for treating a workpiece containing Ge and SiGe using the chemical solution of the present invention will be described.
[被処理物]
 被処理物は、GeとSiGeとを含む。
 被処理物はGeとSiGeとを含んでいれば特に制限されないが、通常、基板上にGeおよびSiGeが配置されている。
 ここで「基板上」とは、基板の表裏、側面、および溝内のいずれの態様も含む。
 また、「基板上にGeとSiGeとが配置されている」とは、基板の表面上に直接GeとSiGeとがある場合、および、基板上に他の層を介してGeとSiGeとがある場合も含む。
 また、「基板上にGeとSiGeとが配置されている」とは、GeとSiGeとが基板上に同時に存在していれば、その存在形態は問わない。例えば、GeとSiGeとが接していてもよく、他の層や部材を介して接していてもよい。他にも、同一基板上に存在するがGeとSiGeとが接していない形態であってもよい。
[Object to be processed]
The object to be processed includes Ge and SiGe.
The object to be processed is not particularly limited as long as it contains Ge and SiGe, but usually Ge and SiGe are arranged on the substrate.
Here, "on the substrate" includes any aspects of the front and back of the substrate, the side surfaces, and inside the grooves.
Furthermore, "Ge and SiGe are arranged on the substrate" refers to cases where Ge and SiGe are directly on the surface of the substrate, and cases where Ge and SiGe are placed on the substrate via another layer. Including cases.
Furthermore, "Ge and SiGe are arranged on the substrate" does not matter in any form as long as Ge and SiGe are present on the substrate at the same time. For example, Ge and SiGe may be in contact with each other, or may be in contact with each other through another layer or member. Alternatively, Ge and SiGe may be present on the same substrate but not in contact with each other.
 基板とは、特に制限されないが、例えば、金属基板、半導体基板、金属以外の導電性基板、金属酸化物基板、ガラス基板、および、樹脂基板が挙げられる。中でも、半導体基板が好ましい。
 半導体基板としては、例えば、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、および、光磁気ディスク用基板が挙げられる。
 半導体基板を構成する材料としては、例えば、ケイ素、ゲルマニウム、および、GaAs等の第III-V族化合物、ならびに、それらの組み合わせが挙げられる。
The substrate is not particularly limited, and includes, for example, a metal substrate, a semiconductor substrate, a conductive substrate other than metal, a metal oxide substrate, a glass substrate, and a resin substrate. Among these, semiconductor substrates are preferred.
Examples of semiconductor substrates include semiconductor wafers, photomask glass substrates, liquid crystal display glass substrates, plasma display glass substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, and magneto-optical substrates. Examples include substrates for disks.
Examples of materials constituting the semiconductor substrate include silicon, germanium, Group III-V compounds such as GaAs, and combinations thereof.
 被処理物を処理して得られる素子の用途としては、例えば、DRAM(Dynamic Random Access Memory)、FRAM(登録商標)(Ferroelectric Random Access Memory)、MRAM(Magnetoresistive Random Access Memory)、PRAM(Phase change Random Access Memory)、ロジック回路、および、プロセッサが挙げられる。 Examples of uses of devices obtained by processing a workpiece include DRAM (Dynamic Random Access Memory), FRAM (registered trademark) (Ferroelectric Random Access Memory), and MRAM (Magnetore Access Memory). sistive Random Access Memory), PRAM (Phase change Random) (Access Memory), logic circuits, and processors.
 基板上のGeまたはSiGeの形態としては、膜状、配線状、板状、柱状、および、粒子状に配置された形態のいずれであってもよい。 The form of Ge or SiGe on the substrate may be any of a film, a wiring, a plate, a column, and a particle arrangement.
 被処理物は、GeおよびSiGe以外に、所望に応じた層もしくは構造、または、その両方を含んでいてもよい。
 例えば、基板上には、金属配線、ゲート電極、ソース電極、ドレイン電極、絶縁層、強磁性層、および、非磁性層からなる群より選択される1つ以上の部材が配置されていてもよい。
 基板は、曝露された集積回路構造を含んでいてもよい。
 集積回路構造としては、例えば、金属配線および誘電材料等の相互接続機構が挙げられる。相互接続機構に使用する金属および合金としては、例えば、アルミニウム、銅アルミニウム合金、銅、ニッケル、ニッケルシリサイド、コバルト、コバルトシリサイド、ルテニウム、白金、金、チタン、タンタル、タングステン、窒化チタン、および、窒化タンタルが挙げられる。基板は、酸化ケイ素、窒化ケイ素、炭化ケイ素、および、炭素ドープ酸化ケイ素からなる群より選択される材料の層を1つ以上含んでいてもよい。
The workpiece may include layers and/or structures other than Ge and SiGe as desired.
For example, one or more members selected from the group consisting of metal wiring, a gate electrode, a source electrode, a drain electrode, an insulating layer, a ferromagnetic layer, and a non-magnetic layer may be disposed on the substrate.
The substrate may include an exposed integrated circuit structure.
The integrated circuit structure includes, for example, interconnect features such as metal wiring and dielectric materials. Metals and alloys used in the interconnect features include, for example, aluminum, copper aluminum alloys, copper, nickel, nickel silicide, cobalt, cobalt silicide, ruthenium, platinum, gold, titanium, tantalum, tungsten, titanium nitride, and tantalum nitride. The substrate may include one or more layers of a material selected from the group consisting of silicon oxide, silicon nitride, silicon carbide, and carbon-doped silicon oxide.
[処理方法]
 本発明の被処理物の処理方法(以下、「本処理方法」ともいう。)は、GeおよびSiGeを含む被処理物と、上述した溶媒を接触させる工程Aを有する。本処理方法を実施することにより、被処理物中のSiGeが選択的にエッチングされる。
 本処理方法で用いられる被処理物については上述したとおりである。
[Processing method]
The method for treating a workpiece of the present invention (hereinafter also referred to as the present treatment method) includes a step A of contacting a workpiece containing Ge and SiGe with the above-mentioned solvent. By carrying out the present treatment method, SiGe in the workpiece is selectively etched.
The object to be treated used in this treatment method is as described above.
 接触させる方法としては、例えば、タンクに入れた溶媒中に被処理物を浸漬する方法、被処理物上に溶媒を噴霧する方法、被処理物上に溶媒を流す方法、および、それらを組み合わせた方法が挙げられ、被処理物を溶媒に浸漬する方法が好ましい。 Examples of contact methods include immersing the object in a tank, spraying the solvent onto the object, flowing the solvent over the object, and combinations thereof. Among them, a method in which the object to be treated is immersed in a solvent is preferred.
 さらに、溶媒による処理速度をより増進するために、機械式撹拌方法を用いてもよい。
 機械式撹拌方法としては、例えば、被処理物上で溶媒を循環させる方法、被処理物上で溶媒を流過または噴霧させる方法、および、超音波またはメガソニックにて溶媒を撹拌する方法が挙げられる。
Additionally, mechanical stirring methods may be used to further speed up treatment with the solvent.
Mechanical stirring methods include, for example, a method of circulating the solvent over the object to be treated, a method of flowing or spraying the solvent over the object to be treated, and a method of stirring the solvent with ultrasonic or megasonic waves. It will be done.
 工程Aの処理時間は、適宜調整できる。
 処理時間(溶媒と被処理物との接触時間)は、0.5~60分間が好ましく、1~20分間がより好ましい。
 処理の際の溶媒の温度は、10~100℃が好ましく、15~60℃がより好ましい。
The processing time of step A can be adjusted as appropriate.
The treatment time (time of contact between the solvent and the object to be treated) is preferably 0.5 to 60 minutes, more preferably 1 to 20 minutes.
The temperature of the solvent during treatment is preferably 10 to 100°C, more preferably 15 to 60°C.
(その他工程)
 本処理方法は、上記工程A以外に、その他工程を有していてもよい。
 その他の工程としては、例えば、金属配線、ゲート構造、ソース構造、ドレイン構造、絶縁層、強磁性層、および、非磁性層等からなる群より選択される1つ以上の各構造の形成工程(例えば、層形成、エッチング、化学機械研磨、および、変成)、レジストの形成工程、露光工程および除去工程、熱処理工程、洗浄工程、ならびに、検査工程が挙げられる。
 本処理方法は、バックエンドプロセス(BEOL:Back end of the line)、ミドルプロセス(MOL:Middle of the line)、および、フロントエンドプロセス(FEOL:Front end of the line)中のいずれの段階で行ってもよく、フロントエンドプロセスまたはミドルプロセス中で行うことが好ましい。
(Other processes)
This treatment method may include other steps in addition to the above step A.
Other processes include, for example, the process of forming one or more structures selected from the group consisting of metal interconnects, gate structures, source structures, drain structures, insulating layers, ferromagnetic layers, non-magnetic layers, etc. Examples include layer formation, etching, chemical-mechanical polishing, and metamorphosis), a resist formation process, an exposure process and a removal process, a heat treatment process, a cleaning process, and an inspection process.
This processing method can be performed at any stage of the back end process (BEOL: Back end of the line), middle process (MOL: Middle of the line), or front end process (FEOL: Front end of the line). It is preferable to do this in a front-end process or a middle process.
 以下に実施例に基づいて本発明をさらに詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
The present invention will be explained in more detail below based on Examples.
The materials, usage amounts, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the Examples shown below.
<薬液の調製>
 後段の表1に示す含有量となるように、溶媒と各成分とを混合して混合液を得た後、混合液を撹拌機によって十分に撹拌し、各実施例および各比較例に用いた薬液を得た。より具体的には、テフロン(登録商標)でコーティングされた1インチの撹拌子を入れた250mLのビーカー中に溶媒を入れたあと、キノン化合物以外の各成分を添加して混合し、次いで、処理に用いる直前でキノン化合物をさらに添加して混合し、薬液を得た。
 なお、表1中の薬液の含有量は質量基準であり、各成分の合計の残部は溶媒である。
 以下、後段の表1に記載の略称を以下に示す。
<Preparation of chemical solution>
After mixing the solvent and each component to obtain a mixed solution so as to have the content shown in Table 1 below, the mixed solution was sufficiently stirred with a stirrer and used in each example and each comparative example. Obtained drug solution. More specifically, after placing the solvent in a 250 mL beaker containing a 1-inch stirring bar coated with Teflon (registered trademark), each component other than the quinone compound was added and mixed, and then treated. Immediately before use, a quinone compound was further added and mixed to obtain a drug solution.
Note that the content of the chemical solution in Table 1 is based on mass, and the remainder of the total of each component is the solvent.
Hereinafter, the abbreviations listed in Table 1 below are shown below.
[キノン化合物]
 ・p-BQ:p-ベンゾキノン
 ・o-BQ:o-ベンゾキノン
 ・NQ:1,4-ナフトキノン
 ・AQ:アントラキノン
 ・mCPBA:メタクロロ過安息香酸
[Quinone compound]
・p-BQ: p-benzoquinone ・o-BQ: o-benzoquinone ・NQ: 1,4-naphthoquinone ・AQ: anthraquinone ・mCPBA: metachloroperbenzoic acid
[ハロゲン化物イオン源]
 ・HF:48質量%のフッ酸(フッ化水素が溶液全質量に対して48質量%含まれる水溶液)
 ・NHF:フッ化アンモニウム
[Halide ion source]
・HF: 48% by mass hydrofluoric acid (aqueous solution containing 48% by mass of hydrogen fluoride based on the total mass of the solution)
・NH 4 F: Ammonium fluoride
[溶媒]
 ・EtOH:エタノール
 ・EG:エチレングリコール
 ・DMSO:ジメチルスルホキシド
 ・THF:テトラヒドロフラン
 ・水:超純水
 ・DMF:N,N-ジメチルホルムアミド
 ・NMP:N-メチルピロリドン
 ・AcOEt:酢酸エチル
[solvent]
・EtOH: ethanol ・EG: ethylene glycol ・DMSO: dimethyl sulfoxide ・THF: tetrahydrofuran ・Water: ultrapure water ・DMF: N,N-dimethylformamide ・NMP: N-methylpyrrolidone ・AcOEt: ethyl acetate
<評価>
 以下の手順で各薬液を用いたサンプルの処理を実施し、評価を行った。
<Evaluation>
Samples were treated and evaluated using each chemical solution according to the following procedure.
[除去性]
 まず、ゲルマニウムウエハ上に、SiGe(Si:Ge=75:25(原子数比))の層を膜厚が5nmとなるように堆積した積層体を得た。得られた積層体から、2cm×2cmのサンプルを切り出した。
 サンプルを各薬液(25℃)に10分間浸漬し、処理を行った。処理後、サンプルの表面に500mL/分の水を30秒間供給して洗浄し、表面を窒素ブローして乾燥した。乾燥後、走査型電子顕微鏡-エネルギー分散型X線分光法でサンプル表面の観察を行い、1μm内に観察されるSiGeの残渣の面積を算出した。SiGeの残渣の面積に応じて、下記評価基準で残渣(SiGe)の除去性を評価した。なお、SiGeの残渣であるか否かは、Siの特性X線を検出して分析した。
[Removability]
First, a laminate was obtained by depositing a layer of SiGe (Si:Ge=75:25 (atomic ratio)) to a thickness of 5 nm on a germanium wafer. A 2 cm x 2 cm sample was cut out from the obtained laminate.
The samples were immersed in each chemical solution (25° C.) for 10 minutes for treatment. After the treatment, the surface of the sample was washed by supplying water at 500 mL/min for 30 seconds, and the surface was dried by blowing with nitrogen. After drying, the sample surface was observed using a scanning electron microscope/energy dispersive X-ray spectroscopy, and the area of SiGe residue observed within 1 μm 2 was calculated. The removability of the residue (SiGe) was evaluated according to the following evaluation criteria according to the area of the SiGe residue. Note that whether or not it was a SiGe residue was analyzed by detecting Si characteristic X-rays.
(評価基準)
 ・5:残渣の面積が0.0001μm以下であった。
 ・4:残渣の面積が0.0001μm超0.001μm以下であった。
 ・3:残渣の面積が0.001μm超0.01μm以下であった。
 ・2:残渣の面積が0.01μm超0.1μm以下であった。
 ・1:残渣の面積が0.1μm超であった。
(Evaluation criteria)
5: The area of the residue was 0.0001 μm2 or less.
4: The area of the residue was greater than 0.0001 μm2 and less than or equal to 0.001 μm2 .
3: The area of the residue was greater than 0.001 μm2 and less than or equal to 0.01 μm2.
2: The area of the residue was greater than 0.01 μm2 and less than 0.1 μm2 .
1: The area of the residue was greater than 0.1 μm2 .
[表面荒れ]
 まず、ゲルマニウムウエハから、2cm×2cmのサンプルを切り出した。
 サンプルは、残渣の除去性の評価と同様の方法で各薬液に浸漬して処理を行い、洗浄および乾燥を行った。
 乾燥後のサンプルの表面を、原子間力顕微鏡を用いて観察した。原子間力顕微鏡には、日立ハイテク製のNanoNaviRealを用い、測定モードをコンタクトモードとし、カンチレバーは日立製SI-DF-40を用い、1μm四方の範囲で観察を行った。観察結果から、表面粗さ(算術平均線粗さRa)を求め、下記評価基準でGeの表面荒れを評価した。
[Surface roughness]
First, a 2 cm x 2 cm sample was cut out from a germanium wafer.
The samples were treated by being immersed in each chemical solution, washed, and dried in the same manner as in the evaluation of residue removability.
The surface of the sample after drying was observed using an atomic force microscope. For the atomic force microscope, NanoNaviReal manufactured by Hitachi High-Technology was used, the measurement mode was set to contact mode, and the cantilever was SI-DF-40 manufactured by Hitachi, and observation was performed in a 1 μm square area. From the observation results, the surface roughness (arithmetic mean linear roughness Ra) was determined, and the surface roughness of Ge was evaluated using the following evaluation criteria.
(評価基準)
 ・5:表面粗さが0.10nm以下であった。
 ・4:表面粗さが0.10nm超0.20nm以下であった。
 ・3:表面粗さが0.20nm超0.30nm以下であった。
 ・2:表面粗さが0.30nm超0.40nm以下であった。
 ・1:表面粗さが0.40nm超であった。
(Evaluation criteria)
-5: Surface roughness was 0.10 nm or less.
-4: Surface roughness was more than 0.10 nm and less than 0.20 nm.
-3: Surface roughness was more than 0.20 nm and less than 0.30 nm.
-2: Surface roughness was more than 0.30 nm and less than 0.40 nm.
-1: Surface roughness was over 0.40 nm.
[保存安定性]
 まず、ゲルマニウムウエハ上に、SiGe(Si:Ge=75:25(原子数比))の層を膜厚が100nmとなるように堆積した積層体を得た。得られた積層体から、2cm×2cmのサンプルを切り出した。
 サンプルは、残渣の除去性の評価と同様の方法で各薬液に浸漬して処理を行い、洗浄および乾燥を行った。
 乾燥後、SiGe層の膜厚を、光学式膜厚計(Ellipsometer M-2000、JA Woollam社製)で測定し、溶解速度ER1(Å/min)を算出した。
 同様の処理および膜厚の測定を、調製してからアイボーイ広口びん(アズワン社製)を用いて45℃で2週間保管した各薬液を用いて行い、溶解速度ER2(Å/min)を算出した。ER1に対するER2の比(ER2/ER1)を求め、下記評価基準で保存安定性を評価した。
[Storage stability]
First, a laminate was obtained by depositing a layer of SiGe (Si:Ge=75:25 (atomic ratio)) to a thickness of 100 nm on a germanium wafer. A 2 cm x 2 cm sample was cut out from the obtained laminate.
The samples were treated by being immersed in each chemical solution, washed, and dried in the same manner as in the evaluation of residue removability.
After drying, the thickness of the SiGe layer was measured using an optical thickness meter (Ellipsometer M-2000, manufactured by JA Woollam), and the dissolution rate ER1 (Å/min) was calculated.
Similar treatments and film thickness measurements were performed using each drug solution that had been prepared and stored at 45°C for 2 weeks using an Eyeboy wide-mouth bottle (manufactured by As One), and the dissolution rate ER2 (Å/min) was calculated. . The ratio of ER2 to ER1 (ER2/ER1) was determined, and the storage stability was evaluated using the following evaluation criteria.
(評価基準)
 ・5:ER2/ER1が0.9以上であった。
 ・4:ER2/ER1が0.8以上0.9未満であった。
 ・3:ER2/ER1が0.7以上0.8未満であった。
 ・2:ER2/ER1が0.6以上0.7未満であった。
 ・1:ER2/ER1が0.6未満であった。
(Evaluation criteria)
-5: ER2/ER1 was 0.9 or more.
-4: ER2/ER1 was 0.8 or more and less than 0.9.
-3: ER2/ER1 was 0.7 or more and less than 0.8.
-2: ER2/ER1 was 0.6 or more and less than 0.7.
-1: ER2/ER1 was less than 0.6.
<結果>
 薬液の配合および上記評価結果について表1に示す。
 表1中、薬液中の各成分の含有量は、薬液全質量に対する質量%で示す。
 なお、ハロゲン化物イオン源としてフッ酸を用いる場合、ハロゲン化物イオン源の量の欄にはフッ酸の含有量を示す。ハロゲン化物イオン源としてフッ酸を用いる場合、薬液中のフッ化水素の含有量は、フッ酸の含有量に0.48を乗じた値である。
 表1中、「B/A」欄は、薬液中の芳香族化合物の含有量に対する、キノン化合物の含有量の比を表す。
<Results>
Table 1 shows the formulation of the chemical solution and the above evaluation results.
In Table 1, the content of each component in the chemical solution is shown in mass % with respect to the total mass of the drug solution.
In addition, when hydrofluoric acid is used as a halide ion source, the content of hydrofluoric acid is shown in the column of the amount of halide ion source. When hydrofluoric acid is used as a halide ion source, the content of hydrogen fluoride in the chemical solution is the value obtained by multiplying the content of hydrofluoric acid by 0.48.
In Table 1, the "B/A" column represents the ratio of the quinone compound content to the aromatic compound content in the drug solution.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1の結果から、本発明の薬液は、SiGeの除去性に優れ、かつ、Geの表面荒れが抑制されることが確認された。なお、本発明の薬液をGeとSiGeとを含む被処理物に適用した際には、SiGeの除去性に優れ、かつ、Geの表面荒れが抑制されるといえる。
 一方、上記式(1)で表される芳香族化合物でない化合物を含む比較例1~3、キノン化合物を含まない比較例4、および、ハロゲン化物イオン源を含まない比較例5の薬液では、SiGeの除去性、および、Geの表面荒れの少なくとも一方が劣っていた。
 実施例8と実施例7との比較、および、実施例10と実施例9との比較から、芳香族化合物の含有量が、薬液全質量に対して5質量ppb~1質量%である場合、除去性、表面荒れの評価、および、保存安定性に優れることが確認された。
 実施例31と実施例1、2および37との比較から、式(1)中のArが、ベンゼン環、ナフタレン環、または、アントラセン環を表す場合、除去性、表面荒れの評価、および、保存安定性に優れることが確認された。
 実施例22と実施例1との比較、実施例21と実施例2との比較、および、実施例5と実施例4との比較から、上述した要件1~4をいずれかを満たす場合、除去性、表面荒れの評価、および、保存安定性に優れることが確認された。
 実施例32と実施例1、3および4との比較から、式(1)中のXがそれぞれ酸素原子または硫黄原子である場合、除去性、表面荒れの評価、および、保存安定性に優れることが確認された。
 実施例2および3と実施例1との比較から、式(2)中、XおよびXが酸素原子を表し、RおよびRが水素原子を表す場合、除去性、表面荒れの評価、および、保存安定性に優れることが確認された。
 実施例11と実施例1との比較から、ハロゲン化物イオン源がフッ化水素を含む場合、除去性、表面荒れの評価、および、保存安定性に優れることが確認された。
 実施例13と実施例14との比較、および、実施例16と実施例15との比較から、フッ化水素の含有量が、薬液全質量に対して0.01~10質量%である場合、表面荒れの評価に優れることが確認された。
 実施例17と実施例18との比較、および、実施例20と実施例19との比較から、芳香族化合物の含有量に対する、キノン化合物の含有量の比が、10.0~200.0である場合、表面荒れの評価に優れることが確認された。
From the results in Table 1, it was confirmed that the chemical solution of the present invention was excellent in removing SiGe and suppressed surface roughening of Ge. Note that when the chemical solution of the present invention is applied to an object to be treated containing Ge and SiGe, it can be said that the removability of SiGe is excellent and surface roughening of Ge is suppressed.
On the other hand, in the chemical solutions of Comparative Examples 1 to 3 containing compounds other than aromatic compounds represented by the above formula (1), Comparative Example 4 containing no quinone compound, and Comparative Example 5 containing no halide ion source, SiGe At least one of the removability of Ge and the surface roughness of Ge was poor.
From the comparison between Example 8 and Example 7 and the comparison between Example 10 and Example 9, when the content of the aromatic compound is 5 ppb to 1% by mass based on the total mass of the chemical solution, It was confirmed that it was excellent in removability, surface roughness evaluation, and storage stability.
From a comparison between Example 31 and Examples 1, 2, and 37, when Ar in formula (1) represents a benzene ring, a naphthalene ring, or an anthracene ring, evaluation of removability, surface roughness, and storage It was confirmed that it has excellent stability.
From the comparison between Example 22 and Example 1, the comparison between Example 21 and Example 2, and the comparison between Example 5 and Example 4, if any of the above requirements 1 to 4 are satisfied, removal It was confirmed that the material had excellent properties in terms of surface roughness, surface roughness evaluation, and storage stability.
From a comparison of Example 32 and Examples 1, 3, and 4, it was found that when X in formula (1) is an oxygen atom or a sulfur atom, respectively, the removability, evaluation of surface roughness, and storage stability are excellent. was confirmed.
From a comparison between Examples 2 and 3 and Example 1, when X 1 and X 2 represent oxygen atoms and R 3 and R 4 represent hydrogen atoms in formula (2), evaluation of removability and surface roughness , and was confirmed to have excellent storage stability.
From a comparison between Example 11 and Example 1, it was confirmed that when the halide ion source contains hydrogen fluoride, it is excellent in removability, evaluation of surface roughness, and storage stability.
From the comparison between Example 13 and Example 14 and the comparison between Example 16 and Example 15, when the content of hydrogen fluoride is 0.01 to 10% by mass based on the total mass of the chemical solution, It was confirmed that it is excellent in evaluating surface roughness.
From the comparison between Example 17 and Example 18 and the comparison between Example 20 and Example 19, it was found that the ratio of the quinone compound content to the aromatic compound content was 10.0 to 200.0. In some cases, it was confirmed that the evaluation of surface roughness was excellent.

Claims (13)

  1.  式(1)で表される芳香族化合物と、
     キノン構造を有するキノン化合物と、
     ハロゲン化物イオン源と、
     溶媒とを含む、薬液。

     式(1)中、Arは、芳香族環を表す。
     Xは、それぞれ独立に16族元素を表し、Rは、それぞれ独立に水素原子または置換基を表す。nは、2以上の整数を表す。
     Rは、それぞれ独立に置換基を表す。mは、0以上の整数を表す。
    An aromatic compound represented by formula (1);
    A quinone compound having a quinone structure;
    a source of halide ions;
    and a solvent.

    In formula (1), Ar represents an aromatic ring.
    Each X independently represents a Group 16 element, each R 1 independently represents a hydrogen atom or a substituent, and n represents an integer of 2 or more.
    Each R2 independently represents a substituent. m represents an integer of 0 or more.
  2.  前記芳香族化合物の含有量が、前記薬液全質量に対して、5質量ppb~1質量%である、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the content of the aromatic compound is 5 mass ppb to 1 mass % based on the total mass of the chemical solution.
  3.  前記式(1)中のArが、ベンゼン環、ナフタレン環、または、アントラセン環を表す、請求項1または2に記載の薬液。 The chemical solution according to claim 1 or 2, wherein Ar in the formula (1) represents a benzene ring, a naphthalene ring, or an anthracene ring.
  4.  下記要件1~4のいずれかを満たす、請求項3に記載の薬液。
     要件1:前記式(1)中のnが2であり、Rが水素原子を表し、前記式(1)中のArがベンゼン環を表し、2つの-X-Rで表される基の結合位置が前記ベンゼン環の1位および4位である。
     要件2:前記式(1)中のnが2であり、Rが水素原子を表し、前記式(1)中のArがナフタレン環を表し、2つの-X-Rで表される基の結合位置が前記ナフタレン環の1位および4位である。
     要件3:前記式(1)中のnが2であり、前記式(1)中のArがアントラセン環を表し、2つの-X-Rで表される基の結合位置が前記アントラセン環の9位および10位である。
     要件4:前記式(1)中のnが4であり、前記式(1)中のArがアントラセン環を表し、4つの-X-Rで表される基の結合位置が前記アントラセン環の1位、4位、9位、および、10位である。
    The drug solution according to claim 3, which satisfies any of the following requirements 1 to 4.
    Requirement 1: n in the above formula (1) is 2, R 1 represents a hydrogen atom, Ar in the above formula (1) represents a benzene ring, and two groups represented by -X-R 1 The bonding positions are the 1st and 4th positions of the benzene ring.
    Requirement 2: n in the above formula (1) is 2, R 1 represents a hydrogen atom, Ar in the above formula (1) represents a naphthalene ring, and two groups represented by -X-R 1 The bonding positions are the 1st and 4th positions of the naphthalene ring.
    Requirement 3: n in the above formula (1) is 2, Ar in the above formula (1) represents an anthracene ring, and the bonding positions of the two groups represented by -XR 1 are on the anthracene ring. They are in 9th and 10th place.
    Requirement 4: n in the above formula (1) is 4, Ar in the above formula (1) represents an anthracene ring, and the bonding positions of the four groups represented by -XR 1 are on the anthracene ring. They are 1st, 4th, 9th, and 10th.
  5.  前記式(1)中のXが、それぞれ独立に酸素原子または硫黄原子である、請求項1または2に記載の薬液。 The chemical solution according to claim 1 or 2, wherein X in the formula (1) is each independently an oxygen atom or a sulfur atom.
  6.  前記芳香族化合物が、式(2)で表される化合物である、請求項1または2に記載の薬液。

     式(2)中、RおよびRは、それぞれ独立に水素原子またはアルキル基を表す。
     XおよびXは、それぞれ独立に16族元素を表す。
     R~Rは、それぞれ独立に水素原子または置換基を表す。
     RおよびRが表す置換基、ならびに、RおよびRが表す置換基は、それぞれ互いに結合して環を形成していてもよい。
    The drug solution according to claim 1 or 2, wherein the aromatic compound is a compound represented by formula (2).

    In formula (2), R 3 and R 4 each independently represent a hydrogen atom or an alkyl group.
    X 1 and X 2 each independently represent a group 16 element.
    R 5 to R 8 each independently represent a hydrogen atom or a substituent.
    The substituents represented by R 5 and R 6 and the substituents represented by R 7 and R 8 may be bonded to each other to form a ring.
  7.  前記式(2)中、XおよびXが酸素原子を表し、RおよびRが水素原子を表す、請求項6に記載の薬液。 The chemical solution according to claim 6, wherein in the formula (2), X 1 and X 2 represent oxygen atoms, and R 3 and R 4 represent hydrogen atoms.
  8.  前記ハロゲン化物イオン源が、フッ化水素を含む、請求項1または2に記載の薬液。 The chemical solution according to claim 1 or 2, wherein the halide ion source contains hydrogen fluoride.
  9.  前記フッ化水素の含有量が、薬液全質量に対して、0.01~10質量%である、請求項8に記載の薬液。 The chemical solution according to claim 8, wherein the content of the hydrogen fluoride is 0.01 to 10% by mass based on the total mass of the chemical solution.
  10.  前記芳香族化合物の含有量に対する、前記キノン化合物の含有量の比が、10.0~200.0である、請求項1または2に記載の薬液。 The chemical solution according to claim 1 or 2, wherein the ratio of the content of the quinone compound to the content of the aromatic compound is 10.0 to 200.0.
  11.  前記溶媒が、水、アルコール溶媒、エーテル溶媒、エステル溶媒、アミド溶媒、および、スルホキシド溶媒からなる群から選択される1種以上の溶媒を含む、請求項1または2に記載の薬液。 The drug solution according to claim 1 or 2, wherein the solvent includes one or more solvents selected from the group consisting of water, alcohol solvents, ether solvents, ester solvents, amide solvents, and sulfoxide solvents.
  12.  ゲルマニウムと、シリコン-ゲルマニウムとを含む被処理物に適用される、請求項1または2に記載の薬液。 The chemical solution according to claim 1 or 2, which is applied to a treated object containing germanium and silicon-germanium.
  13.  ゲルマニウムと、シリコン-ゲルマニウムとを含む被処理物に対して、請求項1または2に記載の薬液を接触させる工程を含む、被処理物の処理方法。 A method for treating a workpiece, comprising the step of bringing the chemical solution according to claim 1 into contact with a workpiece containing germanium and silicon-germanium.
PCT/JP2023/031582 2022-09-21 2023-08-30 Chemical liquid and processing method WO2024062877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022150022 2022-09-21
JP2022-150022 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024062877A1 true WO2024062877A1 (en) 2024-03-28

Family

ID=90454154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031582 WO2024062877A1 (en) 2022-09-21 2023-08-30 Chemical liquid and processing method

Country Status (2)

Country Link
TW (1) TW202419609A (en)
WO (1) WO2024062877A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157714A (en) * 2015-02-23 2016-09-01 富士フイルム株式会社 Etchant, etching method and manufacturing method of semiconductor substrate product
JP2017108122A (en) * 2015-11-25 2017-06-15 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Etching compositions and methods for using the same
JP2019165225A (en) * 2018-03-16 2019-09-26 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Etching solution for tungsten word line recess
JP2019165218A (en) * 2018-03-09 2019-09-26 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Etching solution for selectively removing silicon-germanium alloy from silicon-germanium/germanium stack during manufacture of semiconductor device
WO2021166571A1 (en) * 2020-02-18 2021-08-26 富士フイルム株式会社 Treatment method and treatment solution for object of interest

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157714A (en) * 2015-02-23 2016-09-01 富士フイルム株式会社 Etchant, etching method and manufacturing method of semiconductor substrate product
JP2017108122A (en) * 2015-11-25 2017-06-15 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Etching compositions and methods for using the same
JP2019165218A (en) * 2018-03-09 2019-09-26 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Etching solution for selectively removing silicon-germanium alloy from silicon-germanium/germanium stack during manufacture of semiconductor device
JP2019165225A (en) * 2018-03-16 2019-09-26 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Etching solution for tungsten word line recess
WO2021166571A1 (en) * 2020-02-18 2021-08-26 富士フイルム株式会社 Treatment method and treatment solution for object of interest

Also Published As

Publication number Publication date
TW202419609A (en) 2024-05-16

Similar Documents

Publication Publication Date Title
TWI737798B (en) Process liquid, method for cleaning substrate, and method for manufacturing semiconductor device
TW201819612A (en) Treatment fluid and method for treating laminate
US11072767B2 (en) Treatment liquid, kit, and method for washing substrate
US20230279294A1 (en) Composition and method for treating substrate
US11239093B2 (en) Method for treating substrate, method for manufacturing semiconductor device, and kit for treating substrate
US20230420266A1 (en) Composition for treating semiconductor and method for treating object to be treated
JP7573626B2 (en) Composition and method for treating substrate
WO2019167970A1 (en) Composition having suppressed alumina damage and production method for semiconductor substrate using same
WO2024062877A1 (en) Chemical liquid and processing method
TW202140753A (en) Treating liquid
WO2024202835A1 (en) Processing solution, processing method
WO2021039137A1 (en) Cleanser composition
WO2023157655A1 (en) Composition, compound, resin, method for processing substrate, and method for producing semiconductor device
WO2024004781A1 (en) Chemical solution, method for processing substrate, method for manufacturing semiconductor device, compound, and resin
TW202416373A (en) Method for treating object to be treated, processing liquid, and method for manufacturing electronic device
CN114364779B (en) Treatment liquid and method for treating object to be treated
JP7553577B2 (en) Composition and method for treating substrate
WO2023162853A1 (en) Composition for producing semiconductor, method for processing article to be processed, and method for producing semiconductor element
TW202313934A (en) Chemical liquid and treatment method
WO2024070946A1 (en) Composition, method for treating substrate, method for producing semiconductor device, and compound
TW202436610A (en) Semiconductor processing liquid, method for treating object to be treated, and method for manufacturing electronic device
WO2023248649A1 (en) Processing liquid, substrate processing method, and manufacturing method for semiconductor device
WO2024166627A1 (en) Semiconductor processing liquid, processing method for object to be processed, and manufacturing method for electronic device
WO2023047959A1 (en) Treatment liquid for semiconductor production and treatment method for object to be treated
JP2022096448A (en) Rinsing agent composition for silicon wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868001

Country of ref document: EP

Kind code of ref document: A1