WO2024062797A1 - Crystallised glass - Google Patents
Crystallised glass Download PDFInfo
- Publication number
- WO2024062797A1 WO2024062797A1 PCT/JP2023/029313 JP2023029313W WO2024062797A1 WO 2024062797 A1 WO2024062797 A1 WO 2024062797A1 JP 2023029313 W JP2023029313 W JP 2023029313W WO 2024062797 A1 WO2024062797 A1 WO 2024062797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- component
- less
- components
- crystallized glass
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 107
- 239000013078 crystal Substances 0.000 claims abstract description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 25
- WVMPCBWWBLZKPD-UHFFFAOYSA-N dilithium oxido-[oxido(oxo)silyl]oxy-oxosilane Chemical compound [Li+].[Li+].[O-][Si](=O)O[Si]([O-])=O WVMPCBWWBLZKPD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910021493 α-cristobalite Inorganic materials 0.000 claims abstract description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 22
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052593 corundum Inorganic materials 0.000 abstract description 5
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 5
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 description 20
- 239000011734 sodium Substances 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 13
- 238000003426 chemical strengthening reaction Methods 0.000 description 12
- 238000002834 transmittance Methods 0.000 description 12
- 238000004031 devitrification Methods 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 5
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052670 petalite Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YTZVWGRNMGHDJE-UHFFFAOYSA-N tetralithium;silicate Chemical compound [Li+].[Li+].[Li+].[Li+].[O-][Si]([O-])([O-])[O-] YTZVWGRNMGHDJE-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 239000006112 glass ceramic composition Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- -1 vergilite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
Definitions
- the present invention relates to crystallized glass, particularly hard crystallized glass.
- glass materials have begun to be used for the cover glass and housing of smartphones to increase the degree of design freedom. These glass members are required to be resistant to scratches and resistant to breakage even when subjected to impact from external factors, such as when a smartphone is dropped on asphalt.
- Crystallized glass is a type of glass with increased strength and hardness. Crystallized glass is made by depositing crystals inside glass, and is known to have better mechanical strength than amorphous glass. Furthermore, it is also known to increase strength and hardness by forming a compressive stress layer on the surface by chemical strengthening or the like.
- Patent Document 1 discloses a glass-ceramic material having a transparent or translucent petalite crystalline phase and a lithium silicate crystalline phase, which has rapid ion exchangeability and high fracture toughness.
- Patent Document 2 discloses a reinforced crystallized glass containing ⁇ -cristobalite.
- An object of the present invention is to provide a hard crystallized glass.
- (Configuration 1) Contains ⁇ -cristobalite and lithium disilicate as the main crystal phase, In terms of oxide mass%, Content of two SiO components: 65.0% to 85.0%, Content of three Al 2 O components: 1.5% to 5.9%, Content of P 2 O 5 components: more than 0% and less than 5.0%, Content of Li 2 O component 5.0% to 10.8%, Content of two ZrO components: 4.0% to 12.5%, and [(Content of 2 SiO components + Content of Li 2 O component)/Content of 3 Al 2 O components] More than 13.9, A crystallized glass characterized by: (Configuration 2) In terms of oxide mass%, Content of three B 2 O components: 0% to 5.0%, Content of Na 2 O component 0% to 5.0%, K 2 O component content 0% to 5.0%, MgO component content 0% to 5.0%, Content of CaO component: 0% to 5.0%, Content of ZnO component: 0% to 5.0%, Content of two TiO components: 0% to 5.0%, Content of Gd
- (Configuration 4) The crystallized glass according to any one of Structures 1 to 3, wherein the content of the two ZrO components is more than 7% and 12.5% or less.
- (Configuration 5) In terms of oxide mass%, [(Content of K 2 O component + content of 3 components of Al 2 O) / content of 2 components of ZrO] less than 0.88, The crystallized glass according to any one of Structures 1 to 4, characterized in that: (Configuration 6) In terms of oxide mass%, [(Content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components) / content of 2 ZrO components] less than 1.32, The crystallized glass according to any one of Structures 1 to 5, characterized in that: (Configuration 7) The crystallized glass according to any one of Structures 1 to 6, which has a compressive stress layer on its surface. (Configuration 8) The crystallized glass according to any one of Structures 1 to 7, which is used for a glass member of a
- hard crystallized glass can be provided.
- the crystallized glass of the present invention can be used as a component for smartphone housings, portable electronic devices such as tablet PCs and wearable devices, and for protection used in transportation vehicles such as cars and airplanes. It can be used as a member for protectors, heads-up display boards, etc.
- each component is expressed in mass % in terms of oxide.
- “in terms of oxide” refers to the amount of water contained in crystallized glass when the total mass of the oxides is 100% by mass, assuming that all the constituent components of crystallized glass are decomposed and converted to oxides. The amount of oxide of each component contained is expressed in mass %. In this specification, A% to B% represents A% or more and B% or less.
- the crystallized glass of the present invention contains ⁇ -cristobalite and lithium disilicate as main crystal phases. By including both of these crystal phases in a predetermined composition, the present invention has higher hardness than a crystallized glass that contains ⁇ -cristobalite but not lithium disilicate. Crystalline phases also include solid solutions.
- the "main crystalline phase” refers to the crystalline phase that is contained the most among the main crystalline phases identified from the peak of the X-ray diffraction pattern of crystallized glass, that is, the crystalline phase that is contained the first and second most. It is a crystalline phase.
- ⁇ -cristobalite may be the first predominant crystalline phase
- lithium disilicate may be the first predominant crystalline phase.
- the crystallized glass may further contain one or more other crystal phases selected from petalite, vergilite, quartz, and lithium monosilicate crystals, but it is preferable that these crystal phases are present in small amounts or not included. .
- Crystallized glass containing ⁇ -cristobalite and lithium disilicate as main crystal phases can be obtained by crystallizing raw glass having the following composition by heat treatment.
- the composition of crystallized glass is expressed as oxide mass%,
- the content of two SiO components is 65.0% to 85.0%,
- the content of the three Al 2 O components is 1.5% to 5.9%,
- the content of P 2 O 5 components is more than 0% and not more than 5.0%,
- the content of Li 2 O component is 5.0% to 10.8%,
- the content of ZrO 2 components is 4.0% to 12.5%
- [(Content of 2 SiO components + Content of Li 2 O components)/Content of 3 Al 2 O components] is more than 13.9.
- a predetermined crystal phase can be obtained. If the Al 2 O 3 component is more than the above upper limit, a lithium aluminum silicate crystal phase is likely to be generated, and if the SiO 2 component and Li 2 O component are outside the above range, lithium disilicate is not formed and only ⁇ -cristobalite is generated. It becomes easier.
- the SiO 2 component is a skeleton component constituting crystallized glass, and is an essential component necessary for increasing stability and precipitating a desired crystal phase. Setting the content of the two SiO components to 85.0% or less can suppress excessive increases in viscosity and deterioration of solubility, and setting the content to 65.0% or more can improve the stability of crystallized glass. can be improved. Therefore, the upper limit is preferably 85.0% or less, more preferably 83.0% or less, even more preferably 80.0% or less. Further, the lower limit is preferably 65.0% or more, more preferably 68.0% or more, and even more preferably more than 70.0%.
- the three Al 2 O components are skeleton components constituting crystallized glass, and are essential components necessary to improve stability.
- the content of the Al 2 O 3 components is 5.9% or less, the transmittance at 450 nm can be increased and deterioration of devitrification can be suppressed, and when the content is 1.5% or more, the stability It can suppress sexual deterioration. Therefore, the upper limit is preferably 5.9% or less, more preferably 5.5% or less, even more preferably 5.3% or less. Further, the lower limit is preferably 1.5% or more, more preferably 1.8% or more, and even more preferably 2.0% or more.
- the P 2 O 5 component is an essential component that promotes crystal formation of crystallized glass.
- the content of the P 2 O 5 component is 5.0% or less, phase separation of the glass can be suppressed. Moreover, if it is 0%, the desired crystal phase cannot be obtained. Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less. Further, the lower limit is preferably more than 0%, more preferably 0.5% or more, and even more preferably 1.0% or more.
- the Li 2 O component is an essential component necessary for improving the meltability of the raw glass, increasing the manufacturability, and precipitating a desired crystal phase.
- the content of the Li 2 O component is 10.8% or less, deterioration of devitrification can be suppressed, and when it is 5.0% or more, deterioration of viscosity and meltability can be suppressed, Manufacturability can be improved.
- a desired crystal phase can be obtained. Therefore, the upper limit is preferably 10.8% or less, more preferably 10.5% or less, for example, 10.2% or less, 8.9% or less, or 8.5% or less.
- the lower limit is preferably 5.0% or more, more preferably 6.2% or more, even more preferably 7.0% or more, and can be, for example, 8.1% or more, or 9.0% or more.
- the ZrO 2 component is a component that serves as a crystal nucleating agent.
- the content of the two ZrO components is 12.5% or less, deterioration in solubility can be suppressed.
- the content of the two ZrO components is 4.0% or more, it becomes easy to increase the transmittance at 450 nm. Therefore, the upper limit is preferably 12.5% or less, for example, 12.0% or less, 11.5% or less, 11.0% or less, 10.0% or less, or 9.0% or less.
- the lower limit is 4.0% or more, more preferably 4.7% or more, more preferably 5.7% or more, still more preferably more than 6.9%, for example, more than 7%, or 10%. It can be 5% or more.
- the glass according to the present invention can be produced even when the MgO component is 0%, it is an optional component that improves low-temperature meltability when it is contained in an amount exceeding 0%.
- optional components are components that may or may not be included.
- the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and still more preferably less than 2.0%.
- the lower limit is preferably set to 0% or more, more preferably 0.1% or more, and still more preferably 0.2% or more.
- the ZnO component is an optional component that improves low-temperature meltability when contained in an amount exceeding 0%, although it is possible to produce the glass according to the present invention even when the ZnO component is 0%.
- the content of the ZnO component is 5.0% or less, chemical strengthening becomes easier. Therefore, the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and still more preferably less than 2.0%.
- the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.2% or more.
- the glass according to the present invention can be produced even when the CaO component is 0%, it is an optional component that improves low-temperature meltability when it is contained in an amount exceeding 0%.
- the content of the CaO component is 5.0% or less, chemical strengthening becomes easier. Therefore, the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and even more preferably less than 1.0%.
- the lower limit is preferably more than 0%, more preferably 0.1% or more, more preferably 0.2% or more, and still more preferably 0.3% or more.
- the K 2 O component and the Na 2 O component are optional components that improve the meltability of the raw glass and increase the productivity.
- the content of each of the K 2 O component and the Na 2 O component is 5.0% or less, deterioration of devitrification can be suppressed.
- the glass according to the present invention can be produced even when the K 2 O component and Na 2 O component are 0%, but when they are contained in excess of 0%, deterioration of viscosity and meltability are suppressed, and productivity is improved. can be increased. Therefore, the upper limit of the Na 2 O component is preferably 5.0% or less, more preferably 4.0% or less, more preferably less than 3.0%, and still more preferably less than 2.0%.
- the lower limit is preferably 0% or more, more preferably 0.2% or more, and even more preferably 0.3% or more.
- the upper limit of the K 2 O component is preferably 5.0% or less, more preferably 4.0% or less, and can be, for example, 3.0% or less, 2.0% or less, or 1.0% or less.
- the lower limit is 0% or more, more preferably 0.2% or more, even more preferably 0.3% or more, for example, 0.5% or more, 1.0% or more, 2.0% or more, It can be 2.5% or more, or 3.0% or more.
- the Sb 2 O 3 component is an optional component that functions as a clarifying agent when producing raw glass. If the Sb 2 O 3 component is contained excessively, the transmittance in the short wavelength region of the visible light region may deteriorate. Therefore, the upper limit is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, more preferably 0.6% or less, even more preferably 0.5% or less. Preferably, the lower limit is 0% or more, more preferably 0.01% or more, and even more preferably 0.03 or more.
- the B 2 O 3 component is an optional component that has the effect of lowering the viscosity of the raw glass.
- the content of the three B 2 O components is 5.0% or less, deterioration of devitrification can be suppressed.
- the glass according to the present invention can be produced even when the content of the three B 2 O components is 0%, but when the content exceeds 0%, deterioration of the viscosity and meltability of the original glass can be suppressed. . Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
- the TiO2 component is an optional component that has the effect of increasing the refractive index.
- the content of the two TiO components is 5.0% or less, deterioration of devitrification can be suppressed.
- the glass according to the present invention can be produced even when the content of the TiO 2 component is 0%, the refractive index can be increased when the content exceeds 0%. Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
- the Gd 2 O 3 component is an optional component that has the effect of increasing the refractive index.
- the content of the three Gd 2 O components is 5.0% or less, deterioration of devitrification can be suppressed.
- the glass according to the present invention can be produced even when the content of the Gd 2 O 3 component is 0%, the refractive index can be increased when the content exceeds 0%. Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
- the Nb 2 O 5 component is an optional component that has the effect of increasing the refractive index.
- the content of the Nb 2 O 5 component is 3.0% or less, deterioration of devitrification can be suppressed.
- the glass according to the present invention can be produced even when the content of the Nb 2 O 5 component is 0%, but when the content exceeds 0%, the refractive index can be increased. Therefore, the upper limit is preferably 3.0% or less, more preferably 2.0% or less, and even more preferably 1.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
- the glass according to the present invention can be produced even with 0% of the SrO component and the BaO component, these are optional components that improve low-temperature melting property when contained in excess of 0%.
- the content of each of the SrO component and the BaO component is 5.0% or less, the glass is easily strengthened when chemically strengthened. Therefore, the upper limit of each of the SrO component and the BaO component can be preferably set to 5.0% or less, more preferably 3.0% or less, and further preferably 1.0% or less.
- the glass according to the present invention can be made.
- the preferable upper limit of [content of CaO component + content of MgO component] is 5.0% or less, more preferably 3.0% or less, more preferably less than 3.0%, and still more preferably 1.0% or less.
- the preferable lower limit of [content of CaO component+content of MgO component] is 0% or more, more preferably 0.1% or more, and still more preferably 0.2% or more.
- the glass according to the present invention can be produced even if the total content of the K 2 O component and the Na 2 O component [content of the K 2 O component + content of the Na 2 O component] is 0%; In some cases, deterioration of viscosity can be suppressed and an increase in melting temperature can be suppressed. Further, by setting the content to 5.0% or less, deterioration of devitrification can be suppressed. Therefore, [content of K 2 O component + content of Na 2 O component] preferably has an upper limit of 5.0% or less, more preferably 4.0% or less, more preferably less than 4.0%, and more preferably 3 It should be less than .0%, more preferably less than 2.0%. Further, the lower limit is preferably 0% or more, more preferably 0.2% or more, and still more preferably 0.3% or more.
- the preferable upper limit of [(content of SiO 2 components + content of Li 2 O components)/content of Al 2 O 3 components] is 50.0 or less, more preferably 48.0 or less, still more preferably 45.0 or less. do. Further, the preferable lower limit is more than 13.9, more preferably 14.5 or more, and still more preferably 15.0 or more.
- [(Content of K 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] may be less than 0.88. By setting it to less than 0.88, ⁇ -cristobalite and lithium disilicate can be easily produced as the main crystal phases. Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/content of 2 components of ZrO] is less than 0.88, more preferably 0.87 or less, still more preferably 0.85 or less. do. Further, the lower limit is preferably 0.10 or more, more preferably 0.15 or more, and still more preferably 0.20 or more.
- [(Content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components)/content of 2 ZrO components] may be less than 1.32. By setting it to less than 1.32, ⁇ -cristobalite and lithium disilicate can be easily produced as the main crystal phases. Therefore, the preferable upper limit of [(content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components)/content of 2 ZrO components] is less than 1.32, more preferably 1. 28 or less, more preferably 1.25 or less. Further, the lower limit is preferably 0.2 or more, more preferably 0.3 or more, and still more preferably 0.4 or more.
- [Content of 3 Al 2 O components/content of 2 ZrO components] may be greater than 0 and less than or equal to 1.0. By setting it to 1.0 or less, it becomes easier to obtain a desired crystal phase, and by setting it to more than 0, it becomes easier to suppress deterioration of devitrification. Therefore, the preferable upper limit of [content of 3 Al 2 O components/content of 2 ZrO components] is 1.0 or less, more preferably 0.9 or less, still more preferably 0.8 or less. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
- [Li 2 O component content + Al 2 O 3 component content] may be 6.5% to 15.5%.
- the content is 15.5% or less, the formation of a lithium aluminum silicate crystal phase can be easily suppressed, and when the content is 6.5% or more, a desired crystal phase can be obtained and the glass can be easily stabilized. Therefore, the preferable upper limit of [content of Li 2 O component + content of three Al 2 O components] is 15.5% or less, more preferably 15.0% or less, and more preferably 14.0% or less. Further, the preferable lower limit is 6.5% or more, more preferably 8.0% or more, and still more preferably 10.0% or more.
- [(Li 2 O component content + Al 2 O 3 component content)/ZrO 2 component content] may be set to 1.0 to 2.7.
- the preferable upper limit of [(content of Li 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] is 2.7 or less, more preferably 2.4 or less, and even more preferably 2.1 or less.
- the preferable lower limit is 1.0 or more, more preferably 1.3 or more, and even more preferably 1.6 or more.
- [Content of 2 SiO components/(Content of 5 P 2 O components+Content of Li 2 O component+Content of Na 2 O component+Content of K 2 O component)] may be set to 4.5 or more. When it is 4.5 or more, it becomes easier to obtain a desired crystal phase. Therefore, the lower limit is preferably 4.5 or more, more preferably 5.0 or more.
- the upper limit of [SiO 2 component content/(P 2 O 5 component content + Li 2 O component content + Na 2 O component content + K 2 O component content)] is, for example, 20.0 or less, 10.0 or less , or 7.5 or less.
- [Content of K 2 O component/Content of ZrO 2 component] may be greater than 0 and less than 0.5. When it is less than 0.5, it becomes easier to obtain a desired crystalline phase, and when it is more than 0, deterioration in viscosity and meltability can be suppressed, and productivity can be easily improved. Therefore, the upper limit of [K 2 O component content/ZrO 2 component content] is preferably less than 0.5, more preferably 0.4 or less, and even more preferably 0.3 or less. Further, the lower limit is preferably greater than 0, more preferably 0.1 or more.
- [(Content of K 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] may be greater than 0 and not more than 0.85. When it is 0.85 or less, it becomes easier to suppress the formation of lithium aluminum silicate crystal phase, and when it is more than 0, it becomes easier to stabilize the glass. Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/content of 2 components of ZrO] is 0.85 or less, more preferably 0.80 or less, still more preferably 0.75 or less. do. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
- [(Content of K 2 O component + content of 3 Al 2 O components)/(content of ZnO component + content of 2 ZrO components)] may be greater than 0 and not more than 0.95. When it is 0.95 or less, it becomes easier to suppress the formation of lithium aluminum silicate crystal phase, and when it is more than 0, it becomes easier to stabilize the glass. Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/(content of ZnO component + content of 2 components of ZrO)] is 0.95 or less, more preferably 0.90 or less, even more preferably shall be 0.85 or less. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
- the crystallized glass of the present invention contains Bi 2 O 3 , Cr 2 O 3 , CuO, La 2 O 3 , MnO, MoO 3 , PbO, V 2 O 5 , WO 3 , within a range that does not impair the effects of the present invention.
- Each of the three Y 2 O components may or may not be included. Not including these components has the effect of preventing deterioration of transmittance.
- the crystallized glass may or may not contain other components not mentioned above as long as the characteristics of the crystallized glass of the present invention are not impaired.
- metal components such as Yb, Lu, Fe, Co, Ni, and Ag (including oxides of these metals) are used.
- the upper limit of the content of the fining agent can be preferably set to 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, and most preferably 0.6% or less.
- the Vickers hardness (Hv0.2: Hv at a test load of 200 gf) of the crystallized glass of the present invention is preferably 630 or more, more preferably 690 or more, and still more preferably 710 or more. Vickers hardness tends to increase by decreasing the ZrO 2 component, increasing the Li 2 O component, or decreasing the K 2 O component.
- the transmittance at a wavelength of 450 nm is 0% to 80%, and may be, for example, 20% or more, 30% or more, or 50% or more. Further, it may be less than 20%.
- the transmittance can be adjusted by adjusting the content of the ZrO 2 component, Li 2 O component, or K 2 O component.
- the crystallized glass of the present invention can be produced by the following method. Specifically, raw glass is manufactured by uniformly mixing raw materials so that each component is within a predetermined content range, and melt-molding. Next, this raw glass is crystallized to produce crystallized glass.
- the heat treatment for crystal precipitation may be carried out in one step or may be carried out in two steps.
- first a nucleation step is performed by heat treatment at a first temperature
- a crystal growth step is performed by heat treatment at a second temperature higher than the nucleation step.
- the first temperature of the two-step heat treatment is preferably 400°C to 680°C, more preferably 450°C to 650°C, still more preferably 500°C to 600°C.
- the holding time at the first temperature is preferably 30 minutes to 2000 minutes, more preferably 180 minutes to 1440 minutes.
- the second temperature of the two-step heat treatment is preferably 680°C or higher, for example 700°C to 800°C, preferably 700°C to 750°C.
- the holding time at the second temperature is preferably 30 minutes to 600 minutes, more preferably 60 minutes to 400 minutes.
- the nucleation step and the crystal growth step are carried out consecutively at a single temperature step.
- the temperature is raised to a predetermined heat treatment temperature, and after reaching the heat treatment temperature, the temperature is maintained for a certain period of time, and then the temperature is lowered.
- the heat treatment temperature is preferably 680° C. or higher, for example, 700° C. to 800° C., and preferably 700° C. to 750° C.
- the holding time at the heat treatment temperature is preferably 30 minutes to 500 minutes, and more preferably 60 minutes to 400 minutes.
- a compressive stress layer may be formed on the surface by strengthening the crystallized glass.
- a method for forming a compressive stress layer in strengthened crystallized glass for example, an alkali component present in the surface layer of the crystallized glass is exchange-reacted with an alkali component having a larger ionic radius to form a compressive stress layer in the surface layer. There is a chemical strengthening method to do this.
- the chemical strengthening method can be carried out, for example, in the following steps.
- the crystallized glass is brought into contact with or immersed in a molten salt containing potassium or sodium, such as potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), or a mixed or complex salt thereof.
- a molten salt containing potassium or sodium such as potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), or a mixed or complex salt thereof.
- KNO 3 potassium nitrate
- NaNO 3 sodium nitrate
- the treatment of contacting or immersing in this molten salt may be carried out in one step or in two steps.
- the material is brought into contact with or immersed in a salt containing potassium or sodium, or a mixed salt thereof heated at 350° C. to 550° C. for 1 minute to 1440 minutes.
- a two-step chemical strengthening treatment for example, first, it is contacted or immersed in a sodium salt or a mixed salt of a potassium salt and a sodium salt heated at 350° C. to 550° C. for 1 minute to 1440 minutes, preferably 30 minutes to 1000 minutes. .
- secondly it is brought into contact with or immersed in potassium salt or a mixed salt of potassium salt and sodium salt heated at 350° C. to 550° C. for 1 minute to 1440 minutes, preferably 60 minutes to 600 minutes.
- the present invention contains lithium disilicate as the main crystal phase, but can be chemically strengthened in two stages, where the lithium is exchanged for sodium, and then the sodium is exchanged for potassium. This two-stage chemical strengthening can increase the compressive stress value of the outermost surface.
- the compressive stress value (CS) of the outermost surface of the strengthened crystallized glass is preferably 400 MPa or more, more preferably 500 MPa or more.
- the depth (DOL zero) when the compressive stress of the compressive stress layer is 0 MPa is preferably 120 ⁇ m or more, more preferably 130 ⁇ m or more.
- the central tensile stress (CT) can be, for example, 30 MPa or more, or 40 MPa or more.
- (Si+Li)/Al is an abbreviation for [( SiO2 component content + Li2O component content)/ Al2O3 component content]
- (K+Al)/Zr is an abbreviation for [( K2O component content + Al2O3 component content)/ ZrO2 component content]
- (P+K+ Mg + Al )/Zr is an abbreviation for [( P2O5 component content + K2O component content + MgO component content + Al2O3 component content)/ ZrO2 component content].
- the mixed raw materials were put into a platinum crucible and melted in an electric furnace at 1300°C to 1600°C for 2 to 24 hours depending on the melting difficulty of the glass composition. Thereafter, the molten glass was stirred to homogenize, the temperature was lowered to 1000°C to 1450°C, and then poured into a mold and slowly cooled to produce raw glass. The obtained raw glass was heated under the crystallization conditions shown in Tables 1 to 4 to produce crystallized glass.
- the crystal phase of the crystallized glass was determined from the angle of the peak appearing in the X-ray diffraction pattern using an X-ray diffraction analyzer (D8 Discover, manufactured by Bruker).
- the precipitated crystal phases are listed in Tables 1 to 4.
- cri. is an abbreviation for ⁇ -cristobalite
- LS2 is an abbreviation for lithium disilicate
- LS is an abbreviation for lithium monosilicate crystal
- Quartz is an abbreviation for quartz
- Petalite is an abbreviation for petalite. It is.
- the main crystalline phases in all examples were ⁇ -cristobalite and lithium disilicate.
- crystallized glass having the following composition (% by mass) was used. This crystallized glass contains petalite and lithium disilicate as main crystal phases. 78.3% of SiO 2 component, 8.1% of Al 2 O 3 component, 0.2% of B 2 O 3 component, 11.9% of Li 2 O component, 1.7% of Na 2 O component. , K 2 O component 0.0%, ZnO component 0.0%, ZrO 2 component 4.0%, P 2 O 5 component 2.2%.
- Example 8 the produced crystallized glass was cut and ground to obtain crystallized glass substrates having the material thicknesses (substrate thicknesses) shown in Table 5.
- substrate thicknesses material thicknesses shown in Table 5.
- primary strengthening (first stage) and secondary strengthening (second stage) were performed under the conditions shown in Table 5 to obtain strengthened crystallized glass.
- the compressive stress value (CS [MPa]) at the outermost surface was measured using a glass surface stress meter FSM-6000LE series manufactured by Orihara Seisakusho.
- a light source with a wavelength of 596 nm was used as the light source of the measuring device.
- 28.2 was used as a representative value in the examples, and 26.2 was used in the comparative examples. The results are shown in Table 5.
- the depth (DOL zero [ ⁇ m]) and center tensile stress (CT [(MPa)]) when the compressive stress of the compressive stress layer is 0 MPa were measured using a scattered light photoelastic stress meter (manufactured by Orihara Seisakusho, SLP-1000). It was measured using A light source with a wavelength of 518 nm was used as the measurement light source. For the photoelastic constant at a wavelength of 518 nm, 28.8 was used as a representative value in the examples, and 26.6 was used in the comparative examples. The results are shown in Table 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
A crystallised glass containing α-cristobalite and lithium disilicate as main crystal phases and containing, in mass%, 65.0%-85.0% of a SiO2 component, 1.5%-5.9% of an Al2O3 component, more than 0% and 5.0% or less of a P2O5 component, 5.0%-10.8% of a Li2O component, and 4.0%-12.5% of a ZrO2 component in terms of oxide, wherein [(the content of the SiO2 component + the content of the Li2O component)/the content of the Al2O3 component] is more than 13.9.
Description
本発明は、結晶化ガラス、特に硬い結晶化ガラスに関する。
The present invention relates to crystallized glass, particularly hard crystallized glass.
近年、スマートフォンの意匠の自由度を高めるため、そのカバーガラスや筐体に、ガラス部材が使用されはじめている。これらのガラス部材は、傷がつき難く、スマートフォンがアスファルトに落下した場合など、外的要因による衝撃を受けても割れ難いことが求められている。
In recent years, glass materials have begun to be used for the cover glass and housing of smartphones to increase the degree of design freedom. These glass members are required to be resistant to scratches and resistant to breakage even when subjected to impact from external factors, such as when a smartphone is dropped on asphalt.
ガラスの強度や硬度を高めたものとして、結晶化ガラスがある。結晶化ガラスはガラス内部に結晶を析出させたものであり、アモルファスガラスよりも機械的強度が優れていることが知られている。さらに、化学強化などにより表面に圧縮応力層を形成して強度や硬度を高めることも知られている。
Crystallized glass is a type of glass with increased strength and hardness. Crystallized glass is made by depositing crystals inside glass, and is known to have better mechanical strength than amorphous glass. Furthermore, it is also known to increase strength and hardness by forming a compressive stress layer on the surface by chemical strengthening or the like.
特許文献1には、迅速なイオン交換可能性、及び高い破壊靭性を有する、透明又は半透明なペタライト結晶質相及びリチウムシリケート結晶質相を有するガラスセラミック材料が開示されている。
Patent Document 1 discloses a glass-ceramic material having a transparent or translucent petalite crystalline phase and a lithium silicate crystalline phase, which has rapid ion exchangeability and high fracture toughness.
特許文献2には、α-クリストバライトを含有する強化結晶化ガラスが開示されている。
Patent Document 2 discloses a reinforced crystallized glass containing α-cristobalite.
しかしながら、スマートフォンのガラス部材などの用途において、さらに硬度が高いガラスが求められていた。
However, for applications such as smartphone glass components, there was a demand for glass with even higher hardness.
本発明の目的は、硬い結晶化ガラスを提供することである。
An object of the present invention is to provide a hard crystallized glass.
本発明者らは鋭意研究の結果、所定の組成を有するガラスを所定の条件で熱処理することにより、主結晶相として、α-クリストバライトとジケイ酸リチウムを共に含む結晶化ガラスが得られ、さらに、α-クリストバライトにジケイ酸リチウムが加わることにより、硬度が高くなることを見出した。また、ジケイ酸リチウムを主結晶相として含む結晶化ガラスは2段階化学強化され難いが、所定の組成と主結晶相であれば2段階化学強化され易いことを見出した。これら知見により本発明を完成させた。
As a result of intensive research, the inventors have discovered that by heat treating glass having a specified composition under specified conditions, crystallized glass containing both α-cristobalite and lithium disilicate as the main crystal phase can be obtained, and that the addition of lithium disilicate to α-cristobalite increases hardness. They also discovered that while crystallized glass containing lithium disilicate as the main crystal phase is difficult to two-stage chemically strengthen, glass with a specified composition and main crystal phase is easy to two-stage chemically strengthen. These findings led to the completion of the present invention.
本発明は以下を提供する。
(構成1)
主結晶相として、α-クリストバライトおよびジケイ酸リチウムを含有し、
酸化物換算の質量%で、
SiO2成分の含量 65.0%~85.0%、
Al2O3成分の含量 1.5%~5.9%、
P2O5成分の含量 0%超5.0%以下、
Li2O成分の含量 5.0%~10.8%、
ZrO2成分の含量 4.0%~12.5%、
であり、
[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量] 13.9超、
であることを特徴とする結晶化ガラス。
(構成2)
酸化物換算の質量%で、
B2O3成分の含量 0%~5.0%、
Na2O成分の含量 0%~5.0%、
K2O成分の含量 0%~5.0%、
MgO成分の含量 0%~5.0%、
CaO成分の含量 0%~5.0%、
ZnO成分の含量 0%~5.0%、
TiO2成分の含量 0%~5.0%、
Gd2O3成分の含量 0%~5.0%、
Sb2O3成分の含量 0%~3.0%、
Nb2O5成分の含量 0%~3.0%、
であることを特徴とする構成1に記載の結晶化ガラス。
(構成3)
ZrO2成分の含量が、4.7%~12.5%であることを特徴とする構成1または2に記載の結晶化ガラス。
(構成4)
ZrO2成分の含量が、7%超12.5%以下であることを特徴とする構成1~構成3のいずれかに記載の結晶化ガラス。
(構成5)
酸化物換算の質量%で、
[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量] 0.88未満、
であることを特徴とする構成1~構成4のいずれかに記載の結晶化ガラス。
(構成6)
酸化物換算の質量%で、
[(P2O5成分の含量+K2O成分の含量+MgO成分の含量+Al2O3成分の含量)/ZrO2成分の含量] 1.32未満、
であることを特徴とする構成1~構成5のいずれかに記載の結晶化ガラス。
(構成7)
表面に圧縮応力層を有することを特徴とする構成1~構成6のいずれかに記載の結晶化ガラス。
(構成8)
スマートフォンのガラス部材に用いることを特徴とする構成1~構成7のいずれかに記載の結晶化ガラス。 The present invention provides the following.
(Configuration 1)
Contains α-cristobalite and lithium disilicate as the main crystal phase,
In terms of oxide mass%,
Content of two SiO components: 65.0% to 85.0%,
Content of three Al 2 O components: 1.5% to 5.9%,
Content of P 2 O 5 components: more than 0% and less than 5.0%,
Content of Li 2 O component 5.0% to 10.8%,
Content of two ZrO components: 4.0% to 12.5%,
and
[(Content of 2 SiO components + Content of Li 2 O component)/Content of 3 Al 2 O components] More than 13.9,
A crystallized glass characterized by:
(Configuration 2)
In terms of oxide mass%,
Content of three B 2 O components: 0% to 5.0%,
Content of Na 2 O component 0% to 5.0%,
K 2 O component content 0% to 5.0%,
MgO component content 0% to 5.0%,
Content of CaO component: 0% to 5.0%,
Content of ZnO component: 0% to 5.0%,
Content of two TiO components: 0% to 5.0%,
Content of Gd 2 O 3 components 0% to 5.0%,
Content of three Sb 2 O components: 0% to 3.0%,
Content of Nb 2 O 5 components 0% to 3.0%,
The crystallized glass according to configuration 1, characterized in that:
(Configuration 3)
The crystallized glass according to configuration 1 or 2, wherein the content of the two ZrO components is 4.7% to 12.5%.
(Configuration 4)
The crystallized glass according to any one of Structures 1 to 3, wherein the content of the two ZrO components is more than 7% and 12.5% or less.
(Configuration 5)
In terms of oxide mass%,
[(Content of K 2 O component + content of 3 components of Al 2 O) / content of 2 components of ZrO] less than 0.88,
The crystallized glass according to any one of Structures 1 to 4, characterized in that:
(Configuration 6)
In terms of oxide mass%,
[(Content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components) / content of 2 ZrO components] less than 1.32,
The crystallized glass according to any one of Structures 1 to 5, characterized in that:
(Configuration 7)
The crystallized glass according to any one of Structures 1 to 6, which has a compressive stress layer on its surface.
(Configuration 8)
The crystallized glass according to any one of Structures 1 to 7, which is used for a glass member of a smartphone.
(構成1)
主結晶相として、α-クリストバライトおよびジケイ酸リチウムを含有し、
酸化物換算の質量%で、
SiO2成分の含量 65.0%~85.0%、
Al2O3成分の含量 1.5%~5.9%、
P2O5成分の含量 0%超5.0%以下、
Li2O成分の含量 5.0%~10.8%、
ZrO2成分の含量 4.0%~12.5%、
であり、
[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量] 13.9超、
であることを特徴とする結晶化ガラス。
(構成2)
酸化物換算の質量%で、
B2O3成分の含量 0%~5.0%、
Na2O成分の含量 0%~5.0%、
K2O成分の含量 0%~5.0%、
MgO成分の含量 0%~5.0%、
CaO成分の含量 0%~5.0%、
ZnO成分の含量 0%~5.0%、
TiO2成分の含量 0%~5.0%、
Gd2O3成分の含量 0%~5.0%、
Sb2O3成分の含量 0%~3.0%、
Nb2O5成分の含量 0%~3.0%、
であることを特徴とする構成1に記載の結晶化ガラス。
(構成3)
ZrO2成分の含量が、4.7%~12.5%であることを特徴とする構成1または2に記載の結晶化ガラス。
(構成4)
ZrO2成分の含量が、7%超12.5%以下であることを特徴とする構成1~構成3のいずれかに記載の結晶化ガラス。
(構成5)
酸化物換算の質量%で、
[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量] 0.88未満、
であることを特徴とする構成1~構成4のいずれかに記載の結晶化ガラス。
(構成6)
酸化物換算の質量%で、
[(P2O5成分の含量+K2O成分の含量+MgO成分の含量+Al2O3成分の含量)/ZrO2成分の含量] 1.32未満、
であることを特徴とする構成1~構成5のいずれかに記載の結晶化ガラス。
(構成7)
表面に圧縮応力層を有することを特徴とする構成1~構成6のいずれかに記載の結晶化ガラス。
(構成8)
スマートフォンのガラス部材に用いることを特徴とする構成1~構成7のいずれかに記載の結晶化ガラス。 The present invention provides the following.
(Configuration 1)
Contains α-cristobalite and lithium disilicate as the main crystal phase,
In terms of oxide mass%,
Content of two SiO components: 65.0% to 85.0%,
Content of three Al 2 O components: 1.5% to 5.9%,
Content of P 2 O 5 components: more than 0% and less than 5.0%,
Content of Li 2 O component 5.0% to 10.8%,
Content of two ZrO components: 4.0% to 12.5%,
and
[(Content of 2 SiO components + Content of Li 2 O component)/Content of 3 Al 2 O components] More than 13.9,
A crystallized glass characterized by:
(Configuration 2)
In terms of oxide mass%,
Content of three B 2 O components: 0% to 5.0%,
Content of Na 2 O component 0% to 5.0%,
K 2 O component content 0% to 5.0%,
MgO component content 0% to 5.0%,
Content of CaO component: 0% to 5.0%,
Content of ZnO component: 0% to 5.0%,
Content of two TiO components: 0% to 5.0%,
Content of Gd 2 O 3 components 0% to 5.0%,
Content of three Sb 2 O components: 0% to 3.0%,
Content of Nb 2 O 5 components 0% to 3.0%,
The crystallized glass according to configuration 1, characterized in that:
(Configuration 3)
The crystallized glass according to configuration 1 or 2, wherein the content of the two ZrO components is 4.7% to 12.5%.
(Configuration 4)
The crystallized glass according to any one of Structures 1 to 3, wherein the content of the two ZrO components is more than 7% and 12.5% or less.
(Configuration 5)
In terms of oxide mass%,
[(Content of K 2 O component + content of 3 components of Al 2 O) / content of 2 components of ZrO] less than 0.88,
The crystallized glass according to any one of Structures 1 to 4, characterized in that:
(Configuration 6)
In terms of oxide mass%,
[(Content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components) / content of 2 ZrO components] less than 1.32,
The crystallized glass according to any one of Structures 1 to 5, characterized in that:
(Configuration 7)
The crystallized glass according to any one of Structures 1 to 6, which has a compressive stress layer on its surface.
(Configuration 8)
The crystallized glass according to any one of Structures 1 to 7, which is used for a glass member of a smartphone.
本発明によれば、硬い結晶化ガラスを提供できる。
According to the present invention, hard crystallized glass can be provided.
本発明の結晶化ガラスは、硬度が高い性質に鑑み、スマートフォンの筐体、タブレット型PCやウェアラブル端末などの携帯電子機器の部材として利用したり、車や飛行機などの輸送機体で使用される保護プロテクターやヘッドアップディスプレイ用基板などの部材として利用可能である。
In view of its high hardness, the crystallized glass of the present invention can be used as a component for smartphone housings, portable electronic devices such as tablet PCs and wearable devices, and for protection used in transportation vehicles such as cars and airplanes. It can be used as a member for protectors, heads-up display boards, etc.
以下、本発明の結晶化ガラスの実施形態および実施例について詳細に説明するが、本発明は、以下の実施形態および実施例に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
The following provides a detailed explanation of embodiments and examples of the crystallized glass of the present invention, but the present invention is in no way limited to the following embodiments and examples, and can be practiced with appropriate modifications within the scope of the object of the present invention.
本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算の質量%で表示する。ここで、「酸化物換算」とは、結晶化ガラス構成成分が全て分解され酸化物へ変化すると仮定した場合に、当該酸化物の総質量を100質量%としたときの、結晶化ガラス中に含有される各成分の酸化物の量を、質量%で表記したものである。本明細書において、A%~B%はA%以上B%以下を表す。
In this specification, unless otherwise specified, the content of each component is expressed in mass % in terms of oxide. Here, "in terms of oxide" refers to the amount of water contained in crystallized glass when the total mass of the oxides is 100% by mass, assuming that all the constituent components of crystallized glass are decomposed and converted to oxides. The amount of oxide of each component contained is expressed in mass %. In this specification, A% to B% represents A% or more and B% or less.
本発明の結晶化ガラスは、主結晶相として、α-クリストバライトとジケイ酸リチウムを含む。本発明は、所定の組成においてこれら結晶相を共に含むことにより、α-クリストバライトは含有するがジケイ酸リチウムは含有しない結晶化ガラスと比較して、さらに硬度が高くなる。結晶相には固溶体も含まれる。
本発明において、「主結晶相」とは、結晶化ガラスのX線回折図形のピークから認定される主要な結晶相のうち最も多く含有される結晶相、即ち1番目と2番目に多く含有される結晶相である。α-クリストバライトが1番目の主結晶相であってもよく、ジケイ酸リチウムが1番目の主結晶相であってもよい。
結晶化ガラスは、さらに、ペタライト、バージライト、クオーツ及びモノケイ酸リチウム結晶から選択される1種以上の他の結晶相を含んでいてもよいが、これら結晶相は少ないか、含まないことが好ましい。 The crystallized glass of the present invention contains α-cristobalite and lithium disilicate as main crystal phases. By including both of these crystal phases in a predetermined composition, the present invention has higher hardness than a crystallized glass that contains α-cristobalite but not lithium disilicate. Crystalline phases also include solid solutions.
In the present invention, the "main crystalline phase" refers to the crystalline phase that is contained the most among the main crystalline phases identified from the peak of the X-ray diffraction pattern of crystallized glass, that is, the crystalline phase that is contained the first and second most. It is a crystalline phase. α-cristobalite may be the first predominant crystalline phase, and lithium disilicate may be the first predominant crystalline phase.
The crystallized glass may further contain one or more other crystal phases selected from petalite, vergilite, quartz, and lithium monosilicate crystals, but it is preferable that these crystal phases are present in small amounts or not included. .
本発明において、「主結晶相」とは、結晶化ガラスのX線回折図形のピークから認定される主要な結晶相のうち最も多く含有される結晶相、即ち1番目と2番目に多く含有される結晶相である。α-クリストバライトが1番目の主結晶相であってもよく、ジケイ酸リチウムが1番目の主結晶相であってもよい。
結晶化ガラスは、さらに、ペタライト、バージライト、クオーツ及びモノケイ酸リチウム結晶から選択される1種以上の他の結晶相を含んでいてもよいが、これら結晶相は少ないか、含まないことが好ましい。 The crystallized glass of the present invention contains α-cristobalite and lithium disilicate as main crystal phases. By including both of these crystal phases in a predetermined composition, the present invention has higher hardness than a crystallized glass that contains α-cristobalite but not lithium disilicate. Crystalline phases also include solid solutions.
In the present invention, the "main crystalline phase" refers to the crystalline phase that is contained the most among the main crystalline phases identified from the peak of the X-ray diffraction pattern of crystallized glass, that is, the crystalline phase that is contained the first and second most. It is a crystalline phase. α-cristobalite may be the first predominant crystalline phase, and lithium disilicate may be the first predominant crystalline phase.
The crystallized glass may further contain one or more other crystal phases selected from petalite, vergilite, quartz, and lithium monosilicate crystals, but it is preferable that these crystal phases are present in small amounts or not included. .
主結晶相としてα-クリストバライトとジケイ酸リチウムを含む結晶化ガラスは、以下の組成を有する原ガラスを熱処理により結晶化することにより得られる。
結晶化ガラスの組成は、酸化物換算の質量%で、
SiO2成分の含量が65.0%~85.0%、
Al2O3成分の含量が1.5%~5.9%、
P2O5成分の含量が0%超5.0%以下、
Li2O成分の含量が5.0%~10.8%、
ZrO2成分の含量が4.0%~12.5%であり、
[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量]が13.9超である。 Crystallized glass containing α-cristobalite and lithium disilicate as main crystal phases can be obtained by crystallizing raw glass having the following composition by heat treatment.
The composition of crystallized glass is expressed as oxide mass%,
The content of two SiO components is 65.0% to 85.0%,
The content of the three Al 2 O components is 1.5% to 5.9%,
The content of P 2 O 5 components is more than 0% and not more than 5.0%,
The content of Li 2 O component is 5.0% to 10.8%,
The content of ZrO 2 components is 4.0% to 12.5%,
[(Content of 2 SiO components + Content of Li 2 O components)/Content of 3 Al 2 O components] is more than 13.9.
結晶化ガラスの組成は、酸化物換算の質量%で、
SiO2成分の含量が65.0%~85.0%、
Al2O3成分の含量が1.5%~5.9%、
P2O5成分の含量が0%超5.0%以下、
Li2O成分の含量が5.0%~10.8%、
ZrO2成分の含量が4.0%~12.5%であり、
[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量]が13.9超である。 Crystallized glass containing α-cristobalite and lithium disilicate as main crystal phases can be obtained by crystallizing raw glass having the following composition by heat treatment.
The composition of crystallized glass is expressed as oxide mass%,
The content of two SiO components is 65.0% to 85.0%,
The content of the three Al 2 O components is 1.5% to 5.9%,
The content of P 2 O 5 components is more than 0% and not more than 5.0%,
The content of Li 2 O component is 5.0% to 10.8%,
The content of ZrO 2 components is 4.0% to 12.5%,
[(Content of 2 SiO components + Content of Li 2 O components)/Content of 3 Al 2 O components] is more than 13.9.
特に、SiO2成分、Al2O3成分、Li2O成分の含量を上記範囲とすることにより、所定の結晶相が得られる。Al2O3成分が上記上限より多いとリチウムアルミニウムシリケート結晶相が生成され易く、SiO2成分とLi2O成分が上記範囲から外れるとジケイ酸リチウムが形成されずにα-クリストバライトのみが生成され易くなる。
In particular, by setting the contents of the SiO 2 component, Al 2 O 3 component, and Li 2 O component within the above ranges, a predetermined crystal phase can be obtained. If the Al 2 O 3 component is more than the above upper limit, a lithium aluminum silicate crystal phase is likely to be generated, and if the SiO 2 component and Li 2 O component are outside the above range, lithium disilicate is not formed and only α-cristobalite is generated. It becomes easier.
SiO2成分は、結晶化ガラスを構成する骨格成分であり、安定性を高め、所望の結晶相を析出させるために必要な必須成分である。SiO2成分の含有量を85.0%以下とすると、過剰な粘性の上昇や熔解性の悪化を抑制することができ、また、65.0%以上とすることで、結晶化ガラスの安定性を向上することができる。
したがって、好ましくは上限を85.0%以下、より好ましくは83.0%以下、さらに好ましくは80.0%以下とする。また、好ましくは下限を65.0%以上、より好ましくは68.0%以上、さらに好ましくは70.0%超とする。 The SiO 2 component is a skeleton component constituting crystallized glass, and is an essential component necessary for increasing stability and precipitating a desired crystal phase. Setting the content of the two SiO components to 85.0% or less can suppress excessive increases in viscosity and deterioration of solubility, and setting the content to 65.0% or more can improve the stability of crystallized glass. can be improved.
Therefore, the upper limit is preferably 85.0% or less, more preferably 83.0% or less, even more preferably 80.0% or less. Further, the lower limit is preferably 65.0% or more, more preferably 68.0% or more, and even more preferably more than 70.0%.
したがって、好ましくは上限を85.0%以下、より好ましくは83.0%以下、さらに好ましくは80.0%以下とする。また、好ましくは下限を65.0%以上、より好ましくは68.0%以上、さらに好ましくは70.0%超とする。 The SiO 2 component is a skeleton component constituting crystallized glass, and is an essential component necessary for increasing stability and precipitating a desired crystal phase. Setting the content of the two SiO components to 85.0% or less can suppress excessive increases in viscosity and deterioration of solubility, and setting the content to 65.0% or more can improve the stability of crystallized glass. can be improved.
Therefore, the upper limit is preferably 85.0% or less, more preferably 83.0% or less, even more preferably 80.0% or less. Further, the lower limit is preferably 65.0% or more, more preferably 68.0% or more, and even more preferably more than 70.0%.
Al2O3成分は、結晶化ガラスを構成する骨格成分であり、安定性を高めるために必要な必須成分である。Al2O3成分の含有量が5.9%以下であると、450nmにおける透過率を高くし、失透性の悪化を抑制することができ、また、1.5%以上であると、安定性の悪化を抑制することができる。
したがって、好ましくは上限を5.9%以下、より好ましくは5.5%以下、さらに好ましくは5.3%以下とする。また、好ましくは下限を1.5%以上、より好ましくは1.8%以上、さらに好ましくは2.0%以上とできる。 The three Al 2 O components are skeleton components constituting crystallized glass, and are essential components necessary to improve stability. When the content of the Al 2 O 3 components is 5.9% or less, the transmittance at 450 nm can be increased and deterioration of devitrification can be suppressed, and when the content is 1.5% or more, the stability It can suppress sexual deterioration.
Therefore, the upper limit is preferably 5.9% or less, more preferably 5.5% or less, even more preferably 5.3% or less. Further, the lower limit is preferably 1.5% or more, more preferably 1.8% or more, and even more preferably 2.0% or more.
したがって、好ましくは上限を5.9%以下、より好ましくは5.5%以下、さらに好ましくは5.3%以下とする。また、好ましくは下限を1.5%以上、より好ましくは1.8%以上、さらに好ましくは2.0%以上とできる。 The three Al 2 O components are skeleton components constituting crystallized glass, and are essential components necessary to improve stability. When the content of the Al 2 O 3 components is 5.9% or less, the transmittance at 450 nm can be increased and deterioration of devitrification can be suppressed, and when the content is 1.5% or more, the stability It can suppress sexual deterioration.
Therefore, the upper limit is preferably 5.9% or less, more preferably 5.5% or less, even more preferably 5.3% or less. Further, the lower limit is preferably 1.5% or more, more preferably 1.8% or more, and even more preferably 2.0% or more.
P2O5成分は、結晶化ガラスの結晶形成を促す必須成分である。P2O5成分の含有量が5.0%以下であると、ガラスの分相を抑制することができる。また、0%であると、所望の結晶相を得られない。
したがって、好ましくは上限を5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下とする。また、好ましくは下限を0%超、より好ましくは0.5%以上、さらに好ましくは1.0%以上とできる。 The P 2 O 5 component is an essential component that promotes crystal formation of crystallized glass. When the content of the P 2 O 5 component is 5.0% or less, phase separation of the glass can be suppressed. Moreover, if it is 0%, the desired crystal phase cannot be obtained.
Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less. Further, the lower limit is preferably more than 0%, more preferably 0.5% or more, and even more preferably 1.0% or more.
したがって、好ましくは上限を5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下とする。また、好ましくは下限を0%超、より好ましくは0.5%以上、さらに好ましくは1.0%以上とできる。 The P 2 O 5 component is an essential component that promotes crystal formation of crystallized glass. When the content of the P 2 O 5 component is 5.0% or less, phase separation of the glass can be suppressed. Moreover, if it is 0%, the desired crystal phase cannot be obtained.
Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less. Further, the lower limit is preferably more than 0%, more preferably 0.5% or more, and even more preferably 1.0% or more.
Li2O成分は、原ガラスの熔融性を向上させ、製造性を高め、かつ所望の結晶相を析出させるために必要な必須成分である。Li2O成分の含有量が10.8%以下であると、失透性の悪化を抑制することができ、また、5.0%以上とすると粘性の悪化と熔融性の悪化を抑制し、製造性を高めることができる。また、所望の結晶相を得ることができる。
したがって、好ましくは上限は10.8%以下、より好ましくは10.5%以下であり、例えば、10.2%以下、8.9%以下、または8.5%以下とできる。また、好ましくは下限は5.0%以上、より好ましくは6.2%以上、さらに好ましくは7.0%以上であり、例えば、8.1%以上、または9.0%以上とできる。 The Li 2 O component is an essential component necessary for improving the meltability of the raw glass, increasing the manufacturability, and precipitating a desired crystal phase. When the content of the Li 2 O component is 10.8% or less, deterioration of devitrification can be suppressed, and when it is 5.0% or more, deterioration of viscosity and meltability can be suppressed, Manufacturability can be improved. Moreover, a desired crystal phase can be obtained.
Therefore, the upper limit is preferably 10.8% or less, more preferably 10.5% or less, for example, 10.2% or less, 8.9% or less, or 8.5% or less. Further, the lower limit is preferably 5.0% or more, more preferably 6.2% or more, even more preferably 7.0% or more, and can be, for example, 8.1% or more, or 9.0% or more.
したがって、好ましくは上限は10.8%以下、より好ましくは10.5%以下であり、例えば、10.2%以下、8.9%以下、または8.5%以下とできる。また、好ましくは下限は5.0%以上、より好ましくは6.2%以上、さらに好ましくは7.0%以上であり、例えば、8.1%以上、または9.0%以上とできる。 The Li 2 O component is an essential component necessary for improving the meltability of the raw glass, increasing the manufacturability, and precipitating a desired crystal phase. When the content of the Li 2 O component is 10.8% or less, deterioration of devitrification can be suppressed, and when it is 5.0% or more, deterioration of viscosity and meltability can be suppressed, Manufacturability can be improved. Moreover, a desired crystal phase can be obtained.
Therefore, the upper limit is preferably 10.8% or less, more preferably 10.5% or less, for example, 10.2% or less, 8.9% or less, or 8.5% or less. Further, the lower limit is preferably 5.0% or more, more preferably 6.2% or more, even more preferably 7.0% or more, and can be, for example, 8.1% or more, or 9.0% or more.
ZrO2成分は、結晶の核形成剤となる成分である。ZrO2成分の含有量が12.5%以下であると熔解性の悪化を抑制することができる。ZrO2成分の含有量が4.0%以上であると、450nmにおける透過率を高くさせ易くなる。
したがって、好ましくは上限は12.5%以下であり、例えば、12.0%以下、11.5%以下、11.0%以下、10.0%以下、または9.0%以下とできる。また、好ましくは下限は4.0%以上、より好ましくは4.7%以上、より好ましくは5.7%以上、さらに好ましくは6.9%超であり、例えば、7%超、または10.5%以上とできる。 The ZrO 2 component is a component that serves as a crystal nucleating agent. When the content of the two ZrO components is 12.5% or less, deterioration in solubility can be suppressed. When the content of the two ZrO components is 4.0% or more, it becomes easy to increase the transmittance at 450 nm.
Therefore, the upper limit is preferably 12.5% or less, for example, 12.0% or less, 11.5% or less, 11.0% or less, 10.0% or less, or 9.0% or less. Also, preferably the lower limit is 4.0% or more, more preferably 4.7% or more, more preferably 5.7% or more, still more preferably more than 6.9%, for example, more than 7%, or 10%. It can be 5% or more.
したがって、好ましくは上限は12.5%以下であり、例えば、12.0%以下、11.5%以下、11.0%以下、10.0%以下、または9.0%以下とできる。また、好ましくは下限は4.0%以上、より好ましくは4.7%以上、より好ましくは5.7%以上、さらに好ましくは6.9%超であり、例えば、7%超、または10.5%以上とできる。 The ZrO 2 component is a component that serves as a crystal nucleating agent. When the content of the two ZrO components is 12.5% or less, deterioration in solubility can be suppressed. When the content of the two ZrO components is 4.0% or more, it becomes easy to increase the transmittance at 450 nm.
Therefore, the upper limit is preferably 12.5% or less, for example, 12.0% or less, 11.5% or less, 11.0% or less, 10.0% or less, or 9.0% or less. Also, preferably the lower limit is 4.0% or more, more preferably 4.7% or more, more preferably 5.7% or more, still more preferably more than 6.9%, for example, more than 7%, or 10%. It can be 5% or more.
MgO成分は、0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に低温熔融性を向上させる任意成分である。本発明において任意成分とは含んでも含まなくてもよい成分である。MgO成分の含有量が5.0%以下であると、化学強化を行う際に強化しやすくなる。
したがって、好ましくは上限を5.0%以下、より好ましくは3.0%以下、さらに好ましくは2.0%未満とできる。また、好ましくは下限を0%以上、より好ましくは0.1%以上、さらに好ましくは0.2%以上とできる。 Although the glass according to the present invention can be produced even when the MgO component is 0%, it is an optional component that improves low-temperature meltability when it is contained in an amount exceeding 0%. In the present invention, optional components are components that may or may not be included. When the content of the MgO component is 5.0% or less, chemical strengthening becomes easier.
Therefore, the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and still more preferably less than 2.0%. Further, the lower limit is preferably set to 0% or more, more preferably 0.1% or more, and still more preferably 0.2% or more.
したがって、好ましくは上限を5.0%以下、より好ましくは3.0%以下、さらに好ましくは2.0%未満とできる。また、好ましくは下限を0%以上、より好ましくは0.1%以上、さらに好ましくは0.2%以上とできる。 Although the glass according to the present invention can be produced even when the MgO component is 0%, it is an optional component that improves low-temperature meltability when it is contained in an amount exceeding 0%. In the present invention, optional components are components that may or may not be included. When the content of the MgO component is 5.0% or less, chemical strengthening becomes easier.
Therefore, the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and still more preferably less than 2.0%. Further, the lower limit is preferably set to 0% or more, more preferably 0.1% or more, and still more preferably 0.2% or more.
ZnO成分は、0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に低温熔融性を向上させる任意成分である。ZnO成分の含有量が5.0%以下であると、化学強化を行う際に強化しやすくなる。
したがって、好ましくは上限を5.0%以下、より好ましくは3.0%以下、さらに好ましくは2.0%未満とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.2%以上とできる。 The ZnO component is an optional component that improves low-temperature meltability when contained in an amount exceeding 0%, although it is possible to produce the glass according to the present invention even when the ZnO component is 0%. When the content of the ZnO component is 5.0% or less, chemical strengthening becomes easier.
Therefore, the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and still more preferably less than 2.0%. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.2% or more.
したがって、好ましくは上限を5.0%以下、より好ましくは3.0%以下、さらに好ましくは2.0%未満とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.2%以上とできる。 The ZnO component is an optional component that improves low-temperature meltability when contained in an amount exceeding 0%, although it is possible to produce the glass according to the present invention even when the ZnO component is 0%. When the content of the ZnO component is 5.0% or less, chemical strengthening becomes easier.
Therefore, the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and still more preferably less than 2.0%. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.2% or more.
CaO成分は、0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に低温熔融性を向上させる任意成分である。CaO成分の含有量が5.0%以下であると、化学強化を行う際に強化しやすくなる。
したがって、好ましくは上限を5.0%以下、より好ましくは3.0%以下、さらに好ましくは1.0%未満とできる。また、好ましくは下限を0%超、より好ましくは0.1%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上とできる。 Although the glass according to the present invention can be produced even when the CaO component is 0%, it is an optional component that improves low-temperature meltability when it is contained in an amount exceeding 0%. When the content of the CaO component is 5.0% or less, chemical strengthening becomes easier.
Therefore, the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and even more preferably less than 1.0%. Further, the lower limit is preferably more than 0%, more preferably 0.1% or more, more preferably 0.2% or more, and still more preferably 0.3% or more.
したがって、好ましくは上限を5.0%以下、より好ましくは3.0%以下、さらに好ましくは1.0%未満とできる。また、好ましくは下限を0%超、より好ましくは0.1%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上とできる。 Although the glass according to the present invention can be produced even when the CaO component is 0%, it is an optional component that improves low-temperature meltability when it is contained in an amount exceeding 0%. When the content of the CaO component is 5.0% or less, chemical strengthening becomes easier.
Therefore, the upper limit is preferably 5.0% or less, more preferably 3.0% or less, and even more preferably less than 1.0%. Further, the lower limit is preferably more than 0%, more preferably 0.1% or more, more preferably 0.2% or more, and still more preferably 0.3% or more.
K2O成分、Na2O成分は、原ガラスの熔融性を向上させ、製造性を高める任意成分である。K2O成分、Na2O成分のそれぞれの含有量が5.0%以下であると、失透性の悪化を抑制することができる。また、K2O成分、Na2O成分が0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に粘性の悪化と熔融性の悪化を抑制し、製造性を高めることができる。
したがって、Na2O成分は、好ましくは上限を5.0%以下、より好ましくは4.0%以下、より好ましくは3.0%未満、さらに好ましくは2.0%未満とする。また、好ましくは下限を0%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上とする。
K2O成分は、好ましくは上限は5.0%以下、より好ましくは4.0%以下であり、例えば、3.0%以下、2.0%以下、または1.0%以下とできる。また、好ましくは下限は0%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上であり、例えば、0.5%以上、1.0%以上、2.0%以上、2,5%以上、または3.0%以上とできる。 The K 2 O component and the Na 2 O component are optional components that improve the meltability of the raw glass and increase the productivity. When the content of each of the K 2 O component and the Na 2 O component is 5.0% or less, deterioration of devitrification can be suppressed. Further, the glass according to the present invention can be produced even when the K 2 O component and Na 2 O component are 0%, but when they are contained in excess of 0%, deterioration of viscosity and meltability are suppressed, and productivity is improved. can be increased.
Therefore, the upper limit of the Na 2 O component is preferably 5.0% or less, more preferably 4.0% or less, more preferably less than 3.0%, and still more preferably less than 2.0%. Further, the lower limit is preferably 0% or more, more preferably 0.2% or more, and even more preferably 0.3% or more.
The upper limit of the K 2 O component is preferably 5.0% or less, more preferably 4.0% or less, and can be, for example, 3.0% or less, 2.0% or less, or 1.0% or less. Also, preferably the lower limit is 0% or more, more preferably 0.2% or more, even more preferably 0.3% or more, for example, 0.5% or more, 1.0% or more, 2.0% or more, It can be 2.5% or more, or 3.0% or more.
したがって、Na2O成分は、好ましくは上限を5.0%以下、より好ましくは4.0%以下、より好ましくは3.0%未満、さらに好ましくは2.0%未満とする。また、好ましくは下限を0%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上とする。
K2O成分は、好ましくは上限は5.0%以下、より好ましくは4.0%以下であり、例えば、3.0%以下、2.0%以下、または1.0%以下とできる。また、好ましくは下限は0%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上であり、例えば、0.5%以上、1.0%以上、2.0%以上、2,5%以上、または3.0%以上とできる。 The K 2 O component and the Na 2 O component are optional components that improve the meltability of the raw glass and increase the productivity. When the content of each of the K 2 O component and the Na 2 O component is 5.0% or less, deterioration of devitrification can be suppressed. Further, the glass according to the present invention can be produced even when the K 2 O component and Na 2 O component are 0%, but when they are contained in excess of 0%, deterioration of viscosity and meltability are suppressed, and productivity is improved. can be increased.
Therefore, the upper limit of the Na 2 O component is preferably 5.0% or less, more preferably 4.0% or less, more preferably less than 3.0%, and still more preferably less than 2.0%. Further, the lower limit is preferably 0% or more, more preferably 0.2% or more, and even more preferably 0.3% or more.
The upper limit of the K 2 O component is preferably 5.0% or less, more preferably 4.0% or less, and can be, for example, 3.0% or less, 2.0% or less, or 1.0% or less. Also, preferably the lower limit is 0% or more, more preferably 0.2% or more, even more preferably 0.3% or more, for example, 0.5% or more, 1.0% or more, 2.0% or more, It can be 2.5% or more, or 3.0% or more.
Sb2O3成分は、原ガラスを製造する際の清澄剤として機能する任意成分である。Sb2O3成分を過剰に含有すると、可視光領域の短波長領域における透過率が悪くなる恐れがある。したがって、好ましくは上限を3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下、より好ましくは0.6%以下、さらに好ましくは0.5%以下とできる。好ましくは下限を0%以上、より好ましくは0.01%以上、より好ましくは0.03以上とできる。
The Sb 2 O 3 component is an optional component that functions as a clarifying agent when producing raw glass. If the Sb 2 O 3 component is contained excessively, the transmittance in the short wavelength region of the visible light region may deteriorate. Therefore, the upper limit is preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, more preferably 0.6% or less, even more preferably 0.5% or less. Preferably, the lower limit is 0% or more, more preferably 0.01% or more, and even more preferably 0.03 or more.
B2O3成分は、原ガラスの粘性を下げる効果を有する任意成分である。B2O3成分の含有量が5.0%以下であると、失透性の悪化を抑制することができる。また、B2O3成分の含有量が0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に原ガラスの粘性悪化と熔融性の悪化を抑制することができる。
したがって、好ましくは上限を、5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.3%以上とできる。 The B 2 O 3 component is an optional component that has the effect of lowering the viscosity of the raw glass. When the content of the three B 2 O components is 5.0% or less, deterioration of devitrification can be suppressed. Further, the glass according to the present invention can be produced even when the content of the three B 2 O components is 0%, but when the content exceeds 0%, deterioration of the viscosity and meltability of the original glass can be suppressed. .
Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
したがって、好ましくは上限を、5.0%以下、より好ましくは4.5%以下、さらに好ましくは4.0%以下とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.3%以上とできる。 The B 2 O 3 component is an optional component that has the effect of lowering the viscosity of the raw glass. When the content of the three B 2 O components is 5.0% or less, deterioration of devitrification can be suppressed. Further, the glass according to the present invention can be produced even when the content of the three B 2 O components is 0%, but when the content exceeds 0%, deterioration of the viscosity and meltability of the original glass can be suppressed. .
Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
TiO2成分は、屈折率を上昇させる効果を有する任意成分である。TiO2成分の含有量が5.0%以下であると、失透性の悪化を抑制することができる。また、TiO2成分の含有量が0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に屈折率を上昇させることができる。
したがって、好ましくは上限を、5.0%以下、より好ましくは4.5%以下、より好ましくは4.0%以下とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.3%以上とできる。 The TiO2 component is an optional component that has the effect of increasing the refractive index. When the content of the two TiO components is 5.0% or less, deterioration of devitrification can be suppressed. Further, although the glass according to the present invention can be produced even when the content of the TiO 2 component is 0%, the refractive index can be increased when the content exceeds 0%.
Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
したがって、好ましくは上限を、5.0%以下、より好ましくは4.5%以下、より好ましくは4.0%以下とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.3%以上とできる。 The TiO2 component is an optional component that has the effect of increasing the refractive index. When the content of the two TiO components is 5.0% or less, deterioration of devitrification can be suppressed. Further, although the glass according to the present invention can be produced even when the content of the TiO 2 component is 0%, the refractive index can be increased when the content exceeds 0%.
Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
Gd2O3成分は、屈折率を上昇させる効果を有する任意成分である。Gd2O3成分の含有量が5.0%以下であると、失透性の悪化を抑制することができる。また、Gd2O3成分の含有量が0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に屈折率を上昇させることができる。
したがって、好ましくは上限を、5.0%以下、より好ましくは4.5%以下、より好ましくは4.0%以下とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.3%以上とできる。 The Gd 2 O 3 component is an optional component that has the effect of increasing the refractive index. When the content of the three Gd 2 O components is 5.0% or less, deterioration of devitrification can be suppressed. Although the glass according to the present invention can be produced even when the content of the Gd 2 O 3 component is 0%, the refractive index can be increased when the content exceeds 0%.
Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
したがって、好ましくは上限を、5.0%以下、より好ましくは4.5%以下、より好ましくは4.0%以下とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.3%以上とできる。 The Gd 2 O 3 component is an optional component that has the effect of increasing the refractive index. When the content of the three Gd 2 O components is 5.0% or less, deterioration of devitrification can be suppressed. Although the glass according to the present invention can be produced even when the content of the Gd 2 O 3 component is 0%, the refractive index can be increased when the content exceeds 0%.
Therefore, the upper limit is preferably 5.0% or less, more preferably 4.5% or less, and even more preferably 4.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
Nb2O5成分は、屈折率を上昇させる効果を有する任意成分である。Nb2O5成分の含有量が3.0%以下であると、失透性の悪化を抑制することができる。また、Nb2O5成分の含有量が0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に屈折率を上昇させることができる。
したがって、好ましくは上限を、3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.3%以上とできる。 The Nb 2 O 5 component is an optional component that has the effect of increasing the refractive index. When the content of the Nb 2 O 5 component is 3.0% or less, deterioration of devitrification can be suppressed. Further, the glass according to the present invention can be produced even when the content of the Nb 2 O 5 component is 0%, but when the content exceeds 0%, the refractive index can be increased.
Therefore, the upper limit is preferably 3.0% or less, more preferably 2.0% or less, and even more preferably 1.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
したがって、好ましくは上限を、3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下とできる。また、好ましくは下限を0%以上、より好ましくは0%超、より好ましくは0.1%以上、さらに好ましくは0.3%以上とできる。 The Nb 2 O 5 component is an optional component that has the effect of increasing the refractive index. When the content of the Nb 2 O 5 component is 3.0% or less, deterioration of devitrification can be suppressed. Further, the glass according to the present invention can be produced even when the content of the Nb 2 O 5 component is 0%, but when the content exceeds 0%, the refractive index can be increased.
Therefore, the upper limit is preferably 3.0% or less, more preferably 2.0% or less, and even more preferably 1.0% or less. Further, the lower limit is preferably 0% or more, more preferably more than 0%, more preferably 0.1% or more, and still more preferably 0.3% or more.
SrO成分、BaO成分は、0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に低温熔融性を向上させる任意成分である。SrO成分、BaO成分のそれぞれの含有量が5.0%以下であると、化学強化を行う際に強化しやすくなる。
したがって、SrO成分、BaO成分は、好ましくはそれぞれの上限を5.0%以下、より好ましくは3.0%以下、さらに好ましくは1.0%以下とできる。 Although the glass according to the present invention can be produced even with 0% of the SrO component and the BaO component, these are optional components that improve low-temperature melting property when contained in excess of 0%. When the content of each of the SrO component and the BaO component is 5.0% or less, the glass is easily strengthened when chemically strengthened.
Therefore, the upper limit of each of the SrO component and the BaO component can be preferably set to 5.0% or less, more preferably 3.0% or less, and further preferably 1.0% or less.
したがって、SrO成分、BaO成分は、好ましくはそれぞれの上限を5.0%以下、より好ましくは3.0%以下、さらに好ましくは1.0%以下とできる。 Although the glass according to the present invention can be produced even with 0% of the SrO component and the BaO component, these are optional components that improve low-temperature melting property when contained in excess of 0%. When the content of each of the SrO component and the BaO component is 5.0% or less, the glass is easily strengthened when chemically strengthened.
Therefore, the upper limit of each of the SrO component and the BaO component can be preferably set to 5.0% or less, more preferably 3.0% or less, and further preferably 1.0% or less.
CaO成分及びMgO成分の合計含有量[CaO成分の含量+MgO成分の含量]は、5.0%以下とすることで化学強化がしにくくなることを抑制でき、0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に熔融性の悪化を抑制することができる。
したがって、[CaO成分の含量+MgO成分の含量]の好ましい上限は5.0%以下、より好ましくは3.0%以下、より好ましくは3.0%未満、さらに好ましくは1.0%以下とする。
また、[CaO成分の含量+MgO成分の含量]の好ましい下限は0%以上、より好ましくは0.1%以上、さらに好ましくは0.2%以上とできる。 By setting the total content of CaO component and MgO component [content of CaO component + content of MgO component] to 5.0% or less, it is possible to prevent chemical strengthening from becoming difficult, and even at 0%, the glass according to the present invention can be made. However, if the content exceeds 0%, deterioration of meltability can be suppressed.
Therefore, the preferable upper limit of [content of CaO component + content of MgO component] is 5.0% or less, more preferably 3.0% or less, more preferably less than 3.0%, and still more preferably 1.0% or less. .
Further, the preferable lower limit of [content of CaO component+content of MgO component] is 0% or more, more preferably 0.1% or more, and still more preferably 0.2% or more.
したがって、[CaO成分の含量+MgO成分の含量]の好ましい上限は5.0%以下、より好ましくは3.0%以下、より好ましくは3.0%未満、さらに好ましくは1.0%以下とする。
また、[CaO成分の含量+MgO成分の含量]の好ましい下限は0%以上、より好ましくは0.1%以上、さらに好ましくは0.2%以上とできる。 By setting the total content of CaO component and MgO component [content of CaO component + content of MgO component] to 5.0% or less, it is possible to prevent chemical strengthening from becoming difficult, and even at 0%, the glass according to the present invention can be made. However, if the content exceeds 0%, deterioration of meltability can be suppressed.
Therefore, the preferable upper limit of [content of CaO component + content of MgO component] is 5.0% or less, more preferably 3.0% or less, more preferably less than 3.0%, and still more preferably 1.0% or less. .
Further, the preferable lower limit of [content of CaO component+content of MgO component] is 0% or more, more preferably 0.1% or more, and still more preferably 0.2% or more.
K2O成分及びNa2O成分の合計含有量[K2O成分の含量+Na2O成分の含量]は、0%でも本発明に係るガラスを作製することができるが、0%超含有する場合に粘性の悪化を抑制し、熔融温度が高くなることを抑制することができる。また、5.0%以下とすることで失透性の悪化を抑制することができる。
したがって、[K2O成分の含量+Na2O成分の含量]は、好ましくは上限を5.0%以下、より好ましくは4.0%以下、より好ましくは4.0%未満、より好ましくは3.0%未満、さらに好ましくは2.0%未満とする。また、好ましくは下限を0%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上とする。 The glass according to the present invention can be produced even if the total content of the K 2 O component and the Na 2 O component [content of the K 2 O component + content of the Na 2 O component] is 0%; In some cases, deterioration of viscosity can be suppressed and an increase in melting temperature can be suppressed. Further, by setting the content to 5.0% or less, deterioration of devitrification can be suppressed.
Therefore, [content of K 2 O component + content of Na 2 O component] preferably has an upper limit of 5.0% or less, more preferably 4.0% or less, more preferably less than 4.0%, and more preferably 3 It should be less than .0%, more preferably less than 2.0%. Further, the lower limit is preferably 0% or more, more preferably 0.2% or more, and still more preferably 0.3% or more.
したがって、[K2O成分の含量+Na2O成分の含量]は、好ましくは上限を5.0%以下、より好ましくは4.0%以下、より好ましくは4.0%未満、より好ましくは3.0%未満、さらに好ましくは2.0%未満とする。また、好ましくは下限を0%以上、より好ましくは0.2%以上、さらに好ましくは0.3%以上とする。 The glass according to the present invention can be produced even if the total content of the K 2 O component and the Na 2 O component [content of the K 2 O component + content of the Na 2 O component] is 0%; In some cases, deterioration of viscosity can be suppressed and an increase in melting temperature can be suppressed. Further, by setting the content to 5.0% or less, deterioration of devitrification can be suppressed.
Therefore, [content of K 2 O component + content of Na 2 O component] preferably has an upper limit of 5.0% or less, more preferably 4.0% or less, more preferably less than 4.0%, and more preferably 3 It should be less than .0%, more preferably less than 2.0%. Further, the lower limit is preferably 0% or more, more preferably 0.2% or more, and still more preferably 0.3% or more.
[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量]は13.9超とすることで主結晶相としてα-クリストバライトとジケイ酸リチウムを生成できる。
したがって、[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量]の好ましい上限は50.0以下、より好ましくは48.0以下、さらに好ましくは45.0以下とする。また、好ましい下限は13.9超、より好ましくは14.5以上、さらに好ましくは15.0以上とする。 By setting [(content of SiO 2 components + content of Li 2 O components)/content of Al 2 O 3 components] to more than 13.9, α-cristobalite and lithium disilicate can be produced as the main crystal phases.
Therefore, the preferable upper limit of [(content of SiO 2 components + content of Li 2 O components)/content of Al 2 O 3 components] is 50.0 or less, more preferably 48.0 or less, still more preferably 45.0 or less. do. Further, the preferable lower limit is more than 13.9, more preferably 14.5 or more, and still more preferably 15.0 or more.
したがって、[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量]の好ましい上限は50.0以下、より好ましくは48.0以下、さらに好ましくは45.0以下とする。また、好ましい下限は13.9超、より好ましくは14.5以上、さらに好ましくは15.0以上とする。 By setting [(content of SiO 2 components + content of Li 2 O components)/content of Al 2 O 3 components] to more than 13.9, α-cristobalite and lithium disilicate can be produced as the main crystal phases.
Therefore, the preferable upper limit of [(content of SiO 2 components + content of Li 2 O components)/content of Al 2 O 3 components] is 50.0 or less, more preferably 48.0 or less, still more preferably 45.0 or less. do. Further, the preferable lower limit is more than 13.9, more preferably 14.5 or more, and still more preferably 15.0 or more.
[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]を0.88未満としてもよい。0.88未満とすることで主結晶相としてα-クリストバライトとジケイ酸リチウムを生成し易くできる。
したがって、[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の好ましい上限は0.88未満、より好ましくは0.87以下、さらに好ましくは0.85以下とする。また、好ましい下限は0.10以上、より好ましくは0.15以上、さらに好ましくは0.20以上とする。 [(Content of K 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] may be less than 0.88. By setting it to less than 0.88, α-cristobalite and lithium disilicate can be easily produced as the main crystal phases.
Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/content of 2 components of ZrO] is less than 0.88, more preferably 0.87 or less, still more preferably 0.85 or less. do. Further, the lower limit is preferably 0.10 or more, more preferably 0.15 or more, and still more preferably 0.20 or more.
したがって、[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の好ましい上限は0.88未満、より好ましくは0.87以下、さらに好ましくは0.85以下とする。また、好ましい下限は0.10以上、より好ましくは0.15以上、さらに好ましくは0.20以上とする。 [(Content of K 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] may be less than 0.88. By setting it to less than 0.88, α-cristobalite and lithium disilicate can be easily produced as the main crystal phases.
Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/content of 2 components of ZrO] is less than 0.88, more preferably 0.87 or less, still more preferably 0.85 or less. do. Further, the lower limit is preferably 0.10 or more, more preferably 0.15 or more, and still more preferably 0.20 or more.
[(P2O5成分の含量+K2O成分の含量+MgO成分の含量+Al2O3成分の含量)/ZrO2成分の含量]を1.32未満としてもよい。1.32未満とすることで主結晶相としてα-クリストバライトとジケイ酸リチウムを生成し易くできる。
したがって、[(P2O5成分の含量+K2O成分の含量+MgO成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の好ましい上限は1.32未満、より好ましくは1.28以下、さらに好ましくは1.25以下とする。また、好ましい下限は0.2以上、より好ましくは0.3以上、さらに好ましくは0.4以上とする。 [(Content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components)/content of 2 ZrO components] may be less than 1.32. By setting it to less than 1.32, α-cristobalite and lithium disilicate can be easily produced as the main crystal phases.
Therefore, the preferable upper limit of [(content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components)/content of 2 ZrO components] is less than 1.32, more preferably 1. 28 or less, more preferably 1.25 or less. Further, the lower limit is preferably 0.2 or more, more preferably 0.3 or more, and still more preferably 0.4 or more.
したがって、[(P2O5成分の含量+K2O成分の含量+MgO成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の好ましい上限は1.32未満、より好ましくは1.28以下、さらに好ましくは1.25以下とする。また、好ましい下限は0.2以上、より好ましくは0.3以上、さらに好ましくは0.4以上とする。 [(Content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components)/content of 2 ZrO components] may be less than 1.32. By setting it to less than 1.32, α-cristobalite and lithium disilicate can be easily produced as the main crystal phases.
Therefore, the preferable upper limit of [(content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components)/content of 2 ZrO components] is less than 1.32, more preferably 1. 28 or less, more preferably 1.25 or less. Further, the lower limit is preferably 0.2 or more, more preferably 0.3 or more, and still more preferably 0.4 or more.
[Al2O3成分の含量/ZrO2成分の含量]を0超1.0以下としてもよい。1.0以下とすることで所望の結晶相を得易くなり、0超とすることで失透性の悪化を抑制し易くなる。
したがって、[Al2O3成分の含量/ZrO2成分の含量]の好ましい上限は1.0以下、より好ましくは0.9以下、さらに好ましくは0.8以下とする。また、好ましい下限は0超、より好ましくは0.1以上、さらに好ましくは0.2以上とする。 [Content of 3 Al 2 O components/content of 2 ZrO components] may be greater than 0 and less than or equal to 1.0. By setting it to 1.0 or less, it becomes easier to obtain a desired crystal phase, and by setting it to more than 0, it becomes easier to suppress deterioration of devitrification.
Therefore, the preferable upper limit of [content of 3 Al 2 O components/content of 2 ZrO components] is 1.0 or less, more preferably 0.9 or less, still more preferably 0.8 or less. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
したがって、[Al2O3成分の含量/ZrO2成分の含量]の好ましい上限は1.0以下、より好ましくは0.9以下、さらに好ましくは0.8以下とする。また、好ましい下限は0超、より好ましくは0.1以上、さらに好ましくは0.2以上とする。 [Content of 3 Al 2 O components/content of 2 ZrO components] may be greater than 0 and less than or equal to 1.0. By setting it to 1.0 or less, it becomes easier to obtain a desired crystal phase, and by setting it to more than 0, it becomes easier to suppress deterioration of devitrification.
Therefore, the preferable upper limit of [content of 3 Al 2 O components/content of 2 ZrO components] is 1.0 or less, more preferably 0.9 or less, still more preferably 0.8 or less. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
[Li2O成分の含量+Al2O3成分の含量]を6.5%~15.5%としてもよい。15.5%以下とすることでリチウムアルミニウムシリケート結晶相の生成を抑制し易くなり、6.5%以上とすることで所望の結晶相が得られつつ、ガラスを安定化し易くなる。
したがって、[Li2O成分の含量+Al2O3成分の含量]の好ましい上限は15.5%以下、より好ましくは15.0%以下、より好ましくは14.0%以下とする。また、好ましい下限は6.5%以上、より好ましくは8.0%以上、さらに好ましくは10.0%以上とする。 [Li 2 O component content + Al 2 O 3 component content] may be 6.5% to 15.5%. When the content is 15.5% or less, the formation of a lithium aluminum silicate crystal phase can be easily suppressed, and when the content is 6.5% or more, a desired crystal phase can be obtained and the glass can be easily stabilized.
Therefore, the preferable upper limit of [content of Li 2 O component + content of three Al 2 O components] is 15.5% or less, more preferably 15.0% or less, and more preferably 14.0% or less. Further, the preferable lower limit is 6.5% or more, more preferably 8.0% or more, and still more preferably 10.0% or more.
したがって、[Li2O成分の含量+Al2O3成分の含量]の好ましい上限は15.5%以下、より好ましくは15.0%以下、より好ましくは14.0%以下とする。また、好ましい下限は6.5%以上、より好ましくは8.0%以上、さらに好ましくは10.0%以上とする。 [Li 2 O component content + Al 2 O 3 component content] may be 6.5% to 15.5%. When the content is 15.5% or less, the formation of a lithium aluminum silicate crystal phase can be easily suppressed, and when the content is 6.5% or more, a desired crystal phase can be obtained and the glass can be easily stabilized.
Therefore, the preferable upper limit of [content of Li 2 O component + content of three Al 2 O components] is 15.5% or less, more preferably 15.0% or less, and more preferably 14.0% or less. Further, the preferable lower limit is 6.5% or more, more preferably 8.0% or more, and still more preferably 10.0% or more.
[(Li2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]を1.0~2.7としてもよい。2.7以下とすることでリチウムアルミニウムシリケート結晶相の生成を抑制し易くなり、1.0以上とすることで所望の結晶相が得られつつ、ガラスを安定化し易くなる。
したがって、[(Li2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の好ましい上限は2.7以下、より好ましくは2.4以下、さらに好ましくは2.1以下とする。また、好ましい下限は1.0以上、より好ましくは1.3以上、さらに好ましくは1.6以上とする。 [(Li 2 O component content + Al 2 O 3 component content)/ZrO 2 component content] may be set to 1.0 to 2.7. By setting it to 2.7 or less, it becomes easier to suppress the formation of a lithium aluminum silicate crystal phase, and by setting it to 1.0 or more, it becomes easier to stabilize the glass while obtaining a desired crystal phase.
Therefore, the preferable upper limit of [(content of Li 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] is 2.7 or less, more preferably 2.4 or less, and even more preferably 2.1 or less. do. Further, the preferable lower limit is 1.0 or more, more preferably 1.3 or more, and even more preferably 1.6 or more.
したがって、[(Li2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の好ましい上限は2.7以下、より好ましくは2.4以下、さらに好ましくは2.1以下とする。また、好ましい下限は1.0以上、より好ましくは1.3以上、さらに好ましくは1.6以上とする。 [(Li 2 O component content + Al 2 O 3 component content)/ZrO 2 component content] may be set to 1.0 to 2.7. By setting it to 2.7 or less, it becomes easier to suppress the formation of a lithium aluminum silicate crystal phase, and by setting it to 1.0 or more, it becomes easier to stabilize the glass while obtaining a desired crystal phase.
Therefore, the preferable upper limit of [(content of Li 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] is 2.7 or less, more preferably 2.4 or less, and even more preferably 2.1 or less. do. Further, the preferable lower limit is 1.0 or more, more preferably 1.3 or more, and even more preferably 1.6 or more.
[SiO2成分の含量/(P2O5成分の含量+Li2O成分の含量+Na2O成分の含量+K2O成分の含量)]を4.5以上としてもよい。4.5以上とすることで所望の結晶相が得易くなる。
したがって、好ましい下限は4.5以上、さらに好ましくは5.0以上とする。また、[SiO2成分の含量/(P2O5成分の含量+Li2O成分の含量+Na2O成分の含量+K2O成分の含量)]を20.0以下とすることで、所望の結晶相を析出させ、過剰な粘性の上昇や熔解性の悪化を抑制することができる。したがって、[SiO2成分の含量/(P2O5成分の含量+Li2O成分の含量+Na2O成分の含量+K2O成分の含量)]の上限は例えば20.0以下、10.0以下、または7.5以下としてもよい。 [Content of 2 SiO components/(Content of 5 P 2 O components+Content of Li 2 O component+Content of Na 2 O component+Content of K 2 O component)] may be set to 4.5 or more. When it is 4.5 or more, it becomes easier to obtain a desired crystal phase.
Therefore, the lower limit is preferably 4.5 or more, more preferably 5.0 or more. In addition, by setting [content of SiO 2 components/(content of P 2 O 5 components + content of Li 2 O component + content of Na 2 O component + content of K 2 O component)] to 20.0 or less, desired crystals can be obtained. It is possible to precipitate a phase and suppress excessive increase in viscosity and deterioration of solubility. Therefore, the upper limit of [SiO 2 component content/(P 2 O 5 component content + Li 2 O component content + Na 2 O component content + K 2 O component content)] is, for example, 20.0 or less, 10.0 or less , or 7.5 or less.
したがって、好ましい下限は4.5以上、さらに好ましくは5.0以上とする。また、[SiO2成分の含量/(P2O5成分の含量+Li2O成分の含量+Na2O成分の含量+K2O成分の含量)]を20.0以下とすることで、所望の結晶相を析出させ、過剰な粘性の上昇や熔解性の悪化を抑制することができる。したがって、[SiO2成分の含量/(P2O5成分の含量+Li2O成分の含量+Na2O成分の含量+K2O成分の含量)]の上限は例えば20.0以下、10.0以下、または7.5以下としてもよい。 [Content of 2 SiO components/(Content of 5 P 2 O components+Content of Li 2 O component+Content of Na 2 O component+Content of K 2 O component)] may be set to 4.5 or more. When it is 4.5 or more, it becomes easier to obtain a desired crystal phase.
Therefore, the lower limit is preferably 4.5 or more, more preferably 5.0 or more. In addition, by setting [content of SiO 2 components/(content of P 2 O 5 components + content of Li 2 O component + content of Na 2 O component + content of K 2 O component)] to 20.0 or less, desired crystals can be obtained. It is possible to precipitate a phase and suppress excessive increase in viscosity and deterioration of solubility. Therefore, the upper limit of [SiO 2 component content/(P 2 O 5 component content + Li 2 O component content + Na 2 O component content + K 2 O component content)] is, for example, 20.0 or less, 10.0 or less , or 7.5 or less.
[K2O成分の含量/ZrO2成分の含量]を0超0.5未満としてもよい。0.5未満とすることで所望の結晶相が得易くなり、0超とすることで粘性の悪化と熔融性の悪化を抑制し、製造性を高め易くなる。
したがって、[K2O成分の含量/ZrO2成分の含量]の好ましい上限は0.5未満、より好ましくは0.4以下、さらに好ましくは0.3以下とする。また、好ましい下限は0超、より好ましくは0.1以上とする。 [Content of K 2 O component/Content of ZrO 2 component] may be greater than 0 and less than 0.5. When it is less than 0.5, it becomes easier to obtain a desired crystalline phase, and when it is more than 0, deterioration in viscosity and meltability can be suppressed, and productivity can be easily improved.
Therefore, the upper limit of [K 2 O component content/ZrO 2 component content] is preferably less than 0.5, more preferably 0.4 or less, and even more preferably 0.3 or less. Further, the lower limit is preferably greater than 0, more preferably 0.1 or more.
したがって、[K2O成分の含量/ZrO2成分の含量]の好ましい上限は0.5未満、より好ましくは0.4以下、さらに好ましくは0.3以下とする。また、好ましい下限は0超、より好ましくは0.1以上とする。 [Content of K 2 O component/Content of ZrO 2 component] may be greater than 0 and less than 0.5. When it is less than 0.5, it becomes easier to obtain a desired crystalline phase, and when it is more than 0, deterioration in viscosity and meltability can be suppressed, and productivity can be easily improved.
Therefore, the upper limit of [K 2 O component content/ZrO 2 component content] is preferably less than 0.5, more preferably 0.4 or less, and even more preferably 0.3 or less. Further, the lower limit is preferably greater than 0, more preferably 0.1 or more.
[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]を0超0.85以下としてもよい。0.85以下とすることでリチウムアルミニウムシリケート結晶相の生成を抑制し易くなり、0超とすることでガラスを安定化し易くなる。
したがって、[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の好ましい上限は0.85以下、より好ましくは0.80以下、さらに好ましくは0.75以下とする。また、好ましい下限は0超、より好ましくは0.1以上、さらに好ましくは0.2以上とする。 [(Content of K 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] may be greater than 0 and not more than 0.85. When it is 0.85 or less, it becomes easier to suppress the formation of lithium aluminum silicate crystal phase, and when it is more than 0, it becomes easier to stabilize the glass.
Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/content of 2 components of ZrO] is 0.85 or less, more preferably 0.80 or less, still more preferably 0.75 or less. do. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
したがって、[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の好ましい上限は0.85以下、より好ましくは0.80以下、さらに好ましくは0.75以下とする。また、好ましい下限は0超、より好ましくは0.1以上、さらに好ましくは0.2以上とする。 [(Content of K 2 O component + content of 3 Al 2 O components)/content of 2 ZrO components] may be greater than 0 and not more than 0.85. When it is 0.85 or less, it becomes easier to suppress the formation of lithium aluminum silicate crystal phase, and when it is more than 0, it becomes easier to stabilize the glass.
Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/content of 2 components of ZrO] is 0.85 or less, more preferably 0.80 or less, still more preferably 0.75 or less. do. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
[(K2O成分の含量+Al2O3成分の含量)/(ZnO成分の含量+ZrO2成分の含量)]を0超0.95以下としてもよい。0.95以下とすることでリチウムアルミニウムシリケート結晶相の生成を抑制し易くなり、0超とすることでガラスを安定化し易くなる。
したがって、[(K2O成分の含量+Al2O3成分の含量)/(ZnO成分の含量+ZrO2成分の含量)]の好ましい上限は0.95以下、より好ましくは0,90以下、さらに好ましくは0.85以下とする。また、好ましい下限は0超、より好ましくは0.1以上、さらに好ましくは0.2以上とする。 [(Content of K 2 O component + content of 3 Al 2 O components)/(content of ZnO component + content of 2 ZrO components)] may be greater than 0 and not more than 0.95. When it is 0.95 or less, it becomes easier to suppress the formation of lithium aluminum silicate crystal phase, and when it is more than 0, it becomes easier to stabilize the glass.
Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/(content of ZnO component + content of 2 components of ZrO)] is 0.95 or less, more preferably 0.90 or less, even more preferably shall be 0.85 or less. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
したがって、[(K2O成分の含量+Al2O3成分の含量)/(ZnO成分の含量+ZrO2成分の含量)]の好ましい上限は0.95以下、より好ましくは0,90以下、さらに好ましくは0.85以下とする。また、好ましい下限は0超、より好ましくは0.1以上、さらに好ましくは0.2以上とする。 [(Content of K 2 O component + content of 3 Al 2 O components)/(content of ZnO component + content of 2 ZrO components)] may be greater than 0 and not more than 0.95. When it is 0.95 or less, it becomes easier to suppress the formation of lithium aluminum silicate crystal phase, and when it is more than 0, it becomes easier to stabilize the glass.
Therefore, the preferable upper limit of [(content of K 2 O component + content of 3 components of Al 2 O)/(content of ZnO component + content of 2 components of ZrO)] is 0.95 or less, more preferably 0.90 or less, even more preferably shall be 0.85 or less. Further, the preferable lower limit is more than 0, more preferably 0.1 or more, and still more preferably 0.2 or more.
本発明の結晶化ガラスは、本発明の効果を損なわない範囲で、Bi2O3、Cr2O3、CuO、La2O3、MnO、MoO3、PbO、V2O5、WO3、Y2O3成分をそれぞれ含んでもよいし、含まなくてもよい。これらの成分を含まないことで透過率が悪化することを防ぐ効果がある。
The crystallized glass of the present invention contains Bi 2 O 3 , Cr 2 O 3 , CuO, La 2 O 3 , MnO, MoO 3 , PbO, V 2 O 5 , WO 3 , within a range that does not impair the effects of the present invention. Each of the three Y 2 O components may or may not be included. Not including these components has the effect of preventing deterioration of transmittance.
さらに結晶化ガラスには、上述されていない他の成分を、本発明の結晶化ガラスの特性を損なわない範囲で、含んでもよいし、含まなくてもよい。例えば、Yb、Lu、Fe、Co、NiおよびAgなどの金属成分(これらの金属酸化物を含む)などである。
Further, the crystallized glass may or may not contain other components not mentioned above as long as the characteristics of the crystallized glass of the present invention are not impaired. For example, metal components such as Yb, Lu, Fe, Co, Ni, and Ag (including oxides of these metals) are used.
またガラスの清澄剤として、Sb2O3成分の他、SnO2成分、CeO2成分、As2O3成分、およびF、NOx、SOxの群から選択された一種または二種以上を含んでもよいし、含まなくてもよい。ただし、清澄剤の含有量は、好ましくは上限を3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下、最も好ましくは0.6%以下とできる。
Further, as a fining agent for glass, in addition to Sb2O3 , SnO2 , CeO2, As2O3 , and one or more selected from the group consisting of F, NOx , and SOx may or may not be included. However , the upper limit of the content of the fining agent can be preferably set to 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, and most preferably 0.6% or less.
一方、Pb、Th、Tl、Os、Be、ClおよびSeの各成分は、近年有害な化学物質として使用を控える傾向にあるため、これらを実質的に含有しないことが好ましい。
On the other hand, since there is a trend in recent years to refrain from using Pb, Th, Tl, Os, Be, Cl, and Se as harmful chemical substances, it is preferable that these components are not substantially contained.
本発明の結晶化ガラスのビッカース硬度(Hv0.2:試験荷重200gfでのHv)は、好ましくは630以上、より好ましくは690以上、さらに好ましくは710以上である。ビッカース硬度は、ZrO2成分を少なくする、Li2O成分を多くする、またはK2O成分を少なくすることにより、高くなる傾向がある。
The Vickers hardness (Hv0.2: Hv at a test load of 200 gf) of the crystallized glass of the present invention is preferably 630 or more, more preferably 690 or more, and still more preferably 710 or more. Vickers hardness tends to increase by decreasing the ZrO 2 component, increasing the Li 2 O component, or decreasing the K 2 O component.
本発明の結晶化ガラスは、厚さ1mmであるとき、波長450nmにおいて、透過率は0%~80%であり、例えば、20%以上、30%以上、または50%以上としてもよい。また、20%未満としてもよい。透過率は、ZrO2成分、Li2O成分、またはK2O成分の含量等により、調整できる。
When the crystallized glass of the present invention has a thickness of 1 mm, the transmittance at a wavelength of 450 nm is 0% to 80%, and may be, for example, 20% or more, 30% or more, or 50% or more. Further, it may be less than 20%. The transmittance can be adjusted by adjusting the content of the ZrO 2 component, Li 2 O component, or K 2 O component.
本発明の結晶化ガラスは、以下の方法で作製できる。具体的には、各成分が所定の含有量の範囲内になるように原料を均一に混合し、熔解成形して原ガラスを製造する。次に、この原ガラスを結晶化して結晶化ガラスを作製する。
The crystallized glass of the present invention can be produced by the following method. Specifically, raw glass is manufactured by uniformly mixing raw materials so that each component is within a predetermined content range, and melt-molding. Next, this raw glass is crystallized to produce crystallized glass.
結晶析出のための熱処理は、1段階でもよく2段階の温度で熱処理してもよい。
2段階熱処理では、まず第1の温度で熱処理することにより核形成工程を行い、この核形成工程の後に、核形成工程より高い第2の温度で熱処理することにより結晶成長工程を行う。
2段階熱処理の第1の温度は400℃~680℃が好ましく、より好ましくは450℃~650℃、さらに好ましくは500℃~600℃とできる。第1の温度での保持時間は30分~2000分が好ましく、180分~1440分がより好ましい。
2段階熱処理の第2の温度は680℃以上が好ましく、例えば700℃~800℃であり、好ましくは700℃~750℃である。第2の温度での保持時間は30分~600分が好ましく、60分~400分がより好ましい。 The heat treatment for crystal precipitation may be carried out in one step or may be carried out in two steps.
In the two-step heat treatment, first a nucleation step is performed by heat treatment at a first temperature, and after this nucleation step, a crystal growth step is performed by heat treatment at a second temperature higher than the nucleation step.
The first temperature of the two-step heat treatment is preferably 400°C to 680°C, more preferably 450°C to 650°C, still more preferably 500°C to 600°C. The holding time at the first temperature is preferably 30 minutes to 2000 minutes, more preferably 180 minutes to 1440 minutes.
The second temperature of the two-step heat treatment is preferably 680°C or higher, for example 700°C to 800°C, preferably 700°C to 750°C. The holding time at the second temperature is preferably 30 minutes to 600 minutes, more preferably 60 minutes to 400 minutes.
2段階熱処理では、まず第1の温度で熱処理することにより核形成工程を行い、この核形成工程の後に、核形成工程より高い第2の温度で熱処理することにより結晶成長工程を行う。
2段階熱処理の第1の温度は400℃~680℃が好ましく、より好ましくは450℃~650℃、さらに好ましくは500℃~600℃とできる。第1の温度での保持時間は30分~2000分が好ましく、180分~1440分がより好ましい。
2段階熱処理の第2の温度は680℃以上が好ましく、例えば700℃~800℃であり、好ましくは700℃~750℃である。第2の温度での保持時間は30分~600分が好ましく、60分~400分がより好ましい。 The heat treatment for crystal precipitation may be carried out in one step or may be carried out in two steps.
In the two-step heat treatment, first a nucleation step is performed by heat treatment at a first temperature, and after this nucleation step, a crystal growth step is performed by heat treatment at a second temperature higher than the nucleation step.
The first temperature of the two-step heat treatment is preferably 400°C to 680°C, more preferably 450°C to 650°C, still more preferably 500°C to 600°C. The holding time at the first temperature is preferably 30 minutes to 2000 minutes, more preferably 180 minutes to 1440 minutes.
The second temperature of the two-step heat treatment is preferably 680°C or higher, for example 700°C to 800°C, preferably 700°C to 750°C. The holding time at the second temperature is preferably 30 minutes to 600 minutes, more preferably 60 minutes to 400 minutes.
1段階熱処理では、1段階の温度で核形成工程と結晶成長工程を連続的に行う。通常、所定の熱処理温度まで昇温し、当該熱処理温度に達した後に一定時間その温度を保持し、その後、降温する。
1段階熱処理する場合、熱処理の温度は680℃以上が好ましく、例えば700℃~800℃であり好ましくは700℃~750℃である。また、熱処理の温度での保持時間は30分~500分が好ましく、60分~400分がより好ましい。 In the one-stage heat treatment, the nucleation step and the crystal growth step are carried out consecutively at a single temperature step. Usually, the temperature is raised to a predetermined heat treatment temperature, and after reaching the heat treatment temperature, the temperature is maintained for a certain period of time, and then the temperature is lowered.
In the case of one-stage heat treatment, the heat treatment temperature is preferably 680° C. or higher, for example, 700° C. to 800° C., and preferably 700° C. to 750° C. The holding time at the heat treatment temperature is preferably 30 minutes to 500 minutes, and more preferably 60 minutes to 400 minutes.
1段階熱処理する場合、熱処理の温度は680℃以上が好ましく、例えば700℃~800℃であり好ましくは700℃~750℃である。また、熱処理の温度での保持時間は30分~500分が好ましく、60分~400分がより好ましい。 In the one-stage heat treatment, the nucleation step and the crystal growth step are carried out consecutively at a single temperature step. Usually, the temperature is raised to a predetermined heat treatment temperature, and after reaching the heat treatment temperature, the temperature is maintained for a certain period of time, and then the temperature is lowered.
In the case of one-stage heat treatment, the heat treatment temperature is preferably 680° C. or higher, for example, 700° C. to 800° C., and preferably 700° C. to 750° C. The holding time at the heat treatment temperature is preferably 30 minutes to 500 minutes, and more preferably 60 minutes to 400 minutes.
結晶化ガラスを強化して表面に圧縮応力層を形成してもよい。強化結晶化ガラスにおける圧縮応力層の形成方法としては、例えば結晶化ガラスの表面層に存在するアルカリ成分を、それよりもイオン半径の大きなアルカリ成分と交換反応させ、表面層に圧縮応力層を形成する化学強化法がある。
A compressive stress layer may be formed on the surface by strengthening the crystallized glass. As a method for forming a compressive stress layer in strengthened crystallized glass, for example, an alkali component present in the surface layer of the crystallized glass is exchange-reacted with an alkali component having a larger ionic radius to form a compressive stress layer in the surface layer. There is a chemical strengthening method to do this.
化学強化法は、例えば次のような工程で実施することができる。結晶化ガラスを、カリウムまたはナトリウムを含有する塩、例えば硝酸カリウム(KNO3)、硝酸ナトリウム(NaNO3)またはその混合塩や複合塩の溶融塩に接触または浸漬させる。この溶融塩に接触または浸漬させる処理(化学強化処理)は、1段階でもよく2段階で処理してもよい。
The chemical strengthening method can be carried out, for example, in the following steps. The crystallized glass is brought into contact with or immersed in a molten salt containing potassium or sodium, such as potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), or a mixed or complex salt thereof. The treatment of contacting or immersing in this molten salt (chemical strengthening treatment) may be carried out in one step or in two steps.
1段階化学強化処理の場合、例えば、350℃~550℃で加熱したカリウムまたはナトリウムを含有する塩、またはその混合塩に1分~1440分接触または浸漬させる。
2段階化学強化処理の場合、例えば、第1に350℃~550℃で加熱したナトリウム塩またはカリウム塩とナトリウム塩の混合塩に1分~1440分、好ましくは30分~1000分接触または浸漬させる。続けて第2に350℃~550℃で加熱したカリウム塩またはカリウム塩とナトリウム塩の混合塩に1分~1440分、好ましくは60分~600分接触または浸漬させる。 In the case of one-step chemical strengthening treatment, for example, the material is brought into contact with or immersed in a salt containing potassium or sodium, or a mixed salt thereof heated at 350° C. to 550° C. for 1 minute to 1440 minutes.
In the case of a two-step chemical strengthening treatment, for example, first, it is contacted or immersed in a sodium salt or a mixed salt of a potassium salt and a sodium salt heated at 350° C. to 550° C. for 1 minute to 1440 minutes, preferably 30 minutes to 1000 minutes. . Continuously, secondly, it is brought into contact with or immersed in potassium salt or a mixed salt of potassium salt and sodium salt heated at 350° C. to 550° C. for 1 minute to 1440 minutes, preferably 60 minutes to 600 minutes.
2段階化学強化処理の場合、例えば、第1に350℃~550℃で加熱したナトリウム塩またはカリウム塩とナトリウム塩の混合塩に1分~1440分、好ましくは30分~1000分接触または浸漬させる。続けて第2に350℃~550℃で加熱したカリウム塩またはカリウム塩とナトリウム塩の混合塩に1分~1440分、好ましくは60分~600分接触または浸漬させる。 In the case of one-step chemical strengthening treatment, for example, the material is brought into contact with or immersed in a salt containing potassium or sodium, or a mixed salt thereof heated at 350° C. to 550° C. for 1 minute to 1440 minutes.
In the case of a two-step chemical strengthening treatment, for example, first, it is contacted or immersed in a sodium salt or a mixed salt of a potassium salt and a sodium salt heated at 350° C. to 550° C. for 1 minute to 1440 minutes, preferably 30 minutes to 1000 minutes. . Continuously, secondly, it is brought into contact with or immersed in potassium salt or a mixed salt of potassium salt and sodium salt heated at 350° C. to 550° C. for 1 minute to 1440 minutes, preferably 60 minutes to 600 minutes.
本発明は、主結晶相としてジケイ酸リチウムを含むが、リチウムをナトリウムで交換した後、ナトリウムをカリウムで交換する2段階化学強化ができる。このような2段階化学強化により、最表面の圧縮応力値を高くすることができる。
The present invention contains lithium disilicate as the main crystal phase, but can be chemically strengthened in two stages, where the lithium is exchanged for sodium, and then the sodium is exchanged for potassium. This two-stage chemical strengthening can increase the compressive stress value of the outermost surface.
強化した結晶化ガラスの最表面の圧縮応力値(CS)は、好ましくは400MPa以上、より好ましくは500MPa以上である。圧縮応力層の圧縮応力が0MPaのときの深さ(DOLzero)は、好ましくは120μm以上、より好ましくは130μm以上とできる。中心引張応力(CT)は、例えば30MPa以上、または40以上MPaとできる。
The compressive stress value (CS) of the outermost surface of the strengthened crystallized glass is preferably 400 MPa or more, more preferably 500 MPa or more. The depth (DOL zero) when the compressive stress of the compressive stress layer is 0 MPa is preferably 120 μm or more, more preferably 130 μm or more. The central tensile stress (CT) can be, for example, 30 MPa or more, or 40 MPa or more.
実施例1~27、比較例1,2
1.結晶化ガラスの製造
結晶化ガラスの各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、塩化物、メタ燐酸化合物などの原料を選定し、これらの原料を表1~4に記載の組成になるように秤量して均一に混合した。比較例1は特許文献2の実施例9である。
尚、表中の(Si+Li)/Alは[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量]の略であり、(K+Al)/Zrは[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の略であり、(P+K+Mg+Al)/Zrは[(P2O5成分の含量+K2O成分の含量+MgO成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の略である。 Examples 1 to 27, Comparative Examples 1 and 2
1. Production of Crystallized Glass As raw materials for each component of the crystallized glass, raw materials such as oxides, hydroxides, carbonates, nitrates, fluorides, chlorides, metaphosphate compounds, etc. corresponding to each component were selected, and these raw materials were weighed and mixed uniformly to obtain the compositions shown in Tables 1 to 4. Comparative Example 1 is Example 9 of Patent Document 2.
In the table, (Si+Li)/Al is an abbreviation for [( SiO2 component content + Li2O component content)/ Al2O3 component content], (K+Al)/Zr is an abbreviation for [( K2O component content + Al2O3 component content)/ ZrO2 component content], and (P+K+ Mg + Al )/Zr is an abbreviation for [( P2O5 component content + K2O component content + MgO component content + Al2O3 component content)/ ZrO2 component content].
1.結晶化ガラスの製造
結晶化ガラスの各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、塩化物、メタ燐酸化合物などの原料を選定し、これらの原料を表1~4に記載の組成になるように秤量して均一に混合した。比較例1は特許文献2の実施例9である。
尚、表中の(Si+Li)/Alは[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量]の略であり、(K+Al)/Zrは[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の略であり、(P+K+Mg+Al)/Zrは[(P2O5成分の含量+K2O成分の含量+MgO成分の含量+Al2O3成分の含量)/ZrO2成分の含量]の略である。 Examples 1 to 27, Comparative Examples 1 and 2
1. Production of Crystallized Glass As raw materials for each component of the crystallized glass, raw materials such as oxides, hydroxides, carbonates, nitrates, fluorides, chlorides, metaphosphate compounds, etc. corresponding to each component were selected, and these raw materials were weighed and mixed uniformly to obtain the compositions shown in Tables 1 to 4. Comparative Example 1 is Example 9 of Patent Document 2.
In the table, (Si+Li)/Al is an abbreviation for [( SiO2 component content + Li2O component content)/ Al2O3 component content], (K+Al)/Zr is an abbreviation for [( K2O component content + Al2O3 component content)/ ZrO2 component content], and (P+K+ Mg + Al )/Zr is an abbreviation for [( P2O5 component content + K2O component content + MgO component content + Al2O3 component content)/ ZrO2 component content].
次に、混合した原料を白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1300℃~1600℃で、2~24時間熔融した。その後、熔融したガラスを撹拌して均質化してから1000℃~1450℃に温度を下げてから金型に鋳込み、徐冷して原ガラスを作製した。得られた原ガラスを表1~4に示す結晶化条件で加熱して結晶化ガラスを作製した。
Next, the mixed raw materials were put into a platinum crucible and melted in an electric furnace at 1300°C to 1600°C for 2 to 24 hours depending on the melting difficulty of the glass composition. Thereafter, the molten glass was stirred to homogenize, the temperature was lowered to 1000°C to 1450°C, and then poured into a mold and slowly cooled to produce raw glass. The obtained raw glass was heated under the crystallization conditions shown in Tables 1 to 4 to produce crystallized glass.
結晶化ガラスの結晶相はX線回折分析装置(ブルカー製、D8Discover)を用いたX線回折図形において現れるピークの角度から判別した。析出した結晶相を表1~4に記載する。尚、表中、cri.はα-クリストバライトの略称であり、LS2はジケイ酸リチウムの略称であり、LSはモノケイ酸リチウム結晶の略称であり、Quartzはクオーツ(石英)の略称であり、Petaliteはペタライト(葉長石)の略称である。全ての実施例で主結晶相はα-クリストバライトとジケイ酸リチウムであった。
The crystal phase of the crystallized glass was determined from the angle of the peak appearing in the X-ray diffraction pattern using an X-ray diffraction analyzer (D8 Discover, manufactured by Bruker). The precipitated crystal phases are listed in Tables 1 to 4. In addition, in the table, cri. is an abbreviation for α-cristobalite, LS2 is an abbreviation for lithium disilicate, LS is an abbreviation for lithium monosilicate crystal, Quartz is an abbreviation for quartz, and Petalite is an abbreviation for petalite. It is. The main crystalline phases in all examples were α-cristobalite and lithium disilicate.
2.結晶化ガラスの評価
作製した結晶化ガラスを切断、研削して試料を作製して、以下の評価をした。結果を表1~4に示す。
(1)透過率(λ5,λ80)
1mm厚における反射損失を含む光線透過率を、分光光度計(日立ハイテクノロジー製、U-4000型)で測定した。透過率が5%となる波長(λ5)と透過率が80%となる波長(λ80)を求めた。 2. Evaluation of Crystallized Glass The prepared crystallized glass was cut and ground to prepare samples, and the following evaluations were made. The results are shown in Tables 1 to 4.
(1) Transmittance (λ5, λ80)
The light transmittance including reflection loss at a thickness of 1 mm was measured using a spectrophotometer (manufactured by Hitachi High Technologies, Model U-4000). The wavelength (λ5) at which the transmittance was 5% and the wavelength (λ80) at which the transmittance was 80% were determined.
作製した結晶化ガラスを切断、研削して試料を作製して、以下の評価をした。結果を表1~4に示す。
(1)透過率(λ5,λ80)
1mm厚における反射損失を含む光線透過率を、分光光度計(日立ハイテクノロジー製、U-4000型)で測定した。透過率が5%となる波長(λ5)と透過率が80%となる波長(λ80)を求めた。 2. Evaluation of Crystallized Glass The prepared crystallized glass was cut and ground to prepare samples, and the following evaluations were made. The results are shown in Tables 1 to 4.
(1) Transmittance (λ5, λ80)
The light transmittance including reflection loss at a thickness of 1 mm was measured using a spectrophotometer (manufactured by Hitachi High Technologies, Model U-4000). The wavelength (λ5) at which the transmittance was 5% and the wavelength (λ80) at which the transmittance was 80% were determined.
(2)透過率
分光光度計(日立ハイテクノロジー製、U-4000型)で、1mm厚における450nmにおける反射損失を含む光線透過率を測定した。 (2) Transmittance Light transmittance including reflection loss at 450 nm at a thickness of 1 mm was measured using a spectrophotometer (manufactured by Hitachi High Technologies, Model U-4000).
分光光度計(日立ハイテクノロジー製、U-4000型)で、1mm厚における450nmにおける反射損失を含む光線透過率を測定した。 (2) Transmittance Light transmittance including reflection loss at 450 nm at a thickness of 1 mm was measured using a spectrophotometer (manufactured by Hitachi High Technologies, Model U-4000).
(3)ビッカース硬度(Hv0.2)
対面角が136°のダイヤモンド四角錐圧子を用いて、試料面にピラミッド形状のくぼみをつけたときの荷重を、くぼみの長さから算出した表面積(mm2)で割った値で示した。(株)島津製作所マイクロビッカース硬度計HMV-G21Dを用い、試験荷重200gf、保持時間10秒で測定した。 (3) Vickers hardness (Hv0.2)
The load applied when a pyramidal indentation was made on the surface of the sample using a diamond pyramid indenter with a facing angle of 136° was divided by the surface area ( mm2 ) calculated from the length of the indentation. The measurement was performed using a micro Vickers hardness tester HMV-G21D manufactured by Shimadzu Corporation, with a test load of 200 gf and a holding time of 10 seconds.
対面角が136°のダイヤモンド四角錐圧子を用いて、試料面にピラミッド形状のくぼみをつけたときの荷重を、くぼみの長さから算出した表面積(mm2)で割った値で示した。(株)島津製作所マイクロビッカース硬度計HMV-G21Dを用い、試験荷重200gf、保持時間10秒で測定した。 (3) Vickers hardness (Hv0.2)
The load applied when a pyramidal indentation was made on the surface of the sample using a diamond pyramid indenter with a facing angle of 136° was divided by the surface area ( mm2 ) calculated from the length of the indentation. The measurement was performed using a micro Vickers hardness tester HMV-G21D manufactured by Shimadzu Corporation, with a test load of 200 gf and a holding time of 10 seconds.
3.化学強化
比較例2として、以下の組成(質量%)の結晶化ガラスを用いた。この結晶化ガラスは、主結晶相としてペタライトとジケイ酸リチウムを含有する。
SiO2成分を78.3%、Al2O3成分を8.1%、B2O3成分を0.2%、Li2O成分を11.9%、Na2O成分を1.7%、K2O成分を0.0%、ZnO成分を0.0%、ZrO2成分を4.0%、P2O5成分を2.2% 3. Chemical Strengthening As Comparative Example 2, crystallized glass having the following composition (% by mass) was used. This crystallized glass contains petalite and lithium disilicate as main crystal phases.
78.3% of SiO 2 component, 8.1% of Al 2 O 3 component, 0.2% of B 2 O 3 component, 11.9% of Li 2 O component, 1.7% of Na 2 O component. , K 2 O component 0.0%, ZnO component 0.0%, ZrO 2 component 4.0%, P 2 O 5 component 2.2%.
比較例2として、以下の組成(質量%)の結晶化ガラスを用いた。この結晶化ガラスは、主結晶相としてペタライトとジケイ酸リチウムを含有する。
SiO2成分を78.3%、Al2O3成分を8.1%、B2O3成分を0.2%、Li2O成分を11.9%、Na2O成分を1.7%、K2O成分を0.0%、ZnO成分を0.0%、ZrO2成分を4.0%、P2O5成分を2.2% 3. Chemical Strengthening As Comparative Example 2, crystallized glass having the following composition (% by mass) was used. This crystallized glass contains petalite and lithium disilicate as main crystal phases.
78.3% of SiO 2 component, 8.1% of Al 2 O 3 component, 0.2% of B 2 O 3 component, 11.9% of Li 2 O component, 1.7% of Na 2 O component. , K 2 O component 0.0%, ZnO component 0.0%, ZrO 2 component 4.0%, P 2 O 5 component 2.2%.
実施例8,24,27、比較例2では、作製した結晶化ガラスを切断、研削して、表5に示す材厚(基材厚み)の結晶化ガラス基板を得た。この結晶化ガラス基板を母材として用いて表5に示す条件で1次強化(1段目)と2次強化(2段目)を行い、強化結晶化ガラスを得た。
In Examples 8, 24, 27, and Comparative Example 2, the produced crystallized glass was cut and ground to obtain crystallized glass substrates having the material thicknesses (substrate thicknesses) shown in Table 5. Using this crystallized glass substrate as a base material, primary strengthening (first stage) and secondary strengthening (second stage) were performed under the conditions shown in Table 5 to obtain strengthened crystallized glass.
強化結晶化ガラスについて、最表面の圧縮応力値(CS[MPa])は、折原製作所製のガラス表面応力計FSM-6000LEシリーズを用いて測定した。測定機の光源として596nmの波長の光源を使用した。波長596nmにおける光弾性定数は、実施例では代表値として28.2、比較例では26.2を使用した。結果を表5に示す。
For the strengthened crystallized glass, the compressive stress value (CS [MPa]) at the outermost surface was measured using a glass surface stress meter FSM-6000LE series manufactured by Orihara Seisakusho. A light source with a wavelength of 596 nm was used as the light source of the measuring device. For the photoelastic constant at a wavelength of 596 nm, 28.2 was used as a representative value in the examples, and 26.2 was used in the comparative examples. The results are shown in Table 5.
圧縮応力層の圧縮応力が0MPaのときの深さ(DOLzero[μm])および中心引張応力(CT[(MPa)])は、散乱光光弾性応力計(折原製作所製、SLP-1000)を用いて測定した。測定光源は、518nmの波長の光源を使用した。波長518nmにおける光弾性定数は、実施例では代表値として28.8、比較例では26.6を使用した。結果を表5に示す。
The depth (DOL zero [μm]) and center tensile stress (CT [(MPa)]) when the compressive stress of the compressive stress layer is 0 MPa were measured using a scattered light photoelastic stress meter (manufactured by Orihara Seisakusho, SLP-1000). It was measured using A light source with a wavelength of 518 nm was used as the measurement light source. For the photoelastic constant at a wavelength of 518 nm, 28.8 was used as a representative value in the examples, and 26.6 was used in the comparative examples. The results are shown in Table 5.
上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。 Although some embodiments and/or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and/or It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of this invention.
The documents mentioned in this specification and the content of the application that is the basis of the priority right under the Paris Convention of this application are all incorporated by reference.
この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。 Although some embodiments and/or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and/or It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of this invention.
The documents mentioned in this specification and the content of the application that is the basis of the priority right under the Paris Convention of this application are all incorporated by reference.
Claims (8)
- 主結晶相として、α-クリストバライトおよびジケイ酸リチウムを含有し、
酸化物換算の質量%で、
SiO2成分の含量 65.0%~85.0%、
Al2O3成分の含量 1.5%~5.9%、
P2O5成分の含量 0%超5.0%以下、
Li2O成分の含量 5.0%~10.8%、
ZrO2成分の含量 4.0%~12.5%、
であり、
[(SiO2成分の含量+Li2O成分の含量)/Al2O3成分の含量] 13.9超、
であることを特徴とする結晶化ガラス。 Contains α-cristobalite and lithium disilicate as the main crystal phase,
In terms of oxide mass%,
Content of two SiO components: 65.0% to 85.0%,
Content of three Al 2 O components: 1.5% to 5.9%,
Content of P 2 O 5 components: more than 0% and less than 5.0%,
Content of Li 2 O component 5.0% to 10.8%,
Content of two ZrO components: 4.0% to 12.5%,
and
[(Content of 2 SiO components + Content of Li 2 O component)/Content of 3 Al 2 O components] More than 13.9,
A crystallized glass characterized by: - 酸化物換算の質量%で、
B2O3成分の含量 0%~5.0%、
Na2O成分の含量 0%~5.0%、
K2O成分の含量 0%~5.0%、
MgO成分の含量 0%~5.0%、
CaO成分の含量 0%~5.0%、
ZnO成分の含量 0%~5.0%、
TiO2成分の含量 0%~5.0%、
Gd2O3成分の含量 0%~5.0%、
Sb2O3成分の含量 0%~3.0%、
Nb2O5成分の含量 0%~3.0%、
であることを特徴とする請求項1に記載の結晶化ガラス。 In terms of oxide mass%,
Content of three B 2 O components: 0% to 5.0%,
Content of Na 2 O component 0% to 5.0%,
K 2 O component content 0% to 5.0%,
MgO component content 0% to 5.0%,
Content of CaO component: 0% to 5.0%,
Content of ZnO component: 0% to 5.0%,
Content of two TiO components: 0% to 5.0%,
Content of Gd 2 O 3 components 0% to 5.0%,
Content of three Sb 2 O components: 0% to 3.0%,
Content of Nb 2 O 5 components 0% to 3.0%,
The crystallized glass according to claim 1, characterized in that: - ZrO2成分の含量が、4.7%~12.5%であることを特徴とする請求項1または2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, characterized in that the content of the ZrO 2 component is 4.7% to 12.5%.
- ZrO2成分の含量が、7%超12.5%以下であることを特徴とする請求項1または2に記載の結晶化ガラス。 3. The crystallized glass according to claim 1, wherein the content of ZrO2 component is more than 7% and not more than 12.5%.
- 酸化物換算の質量%で、
[(K2O成分の含量+Al2O3成分の含量)/ZrO2成分の含量] 0.88未満、
であることを特徴とする請求項1または2に記載の結晶化ガラス。 In terms of oxide mass%,
[(Content of K 2 O component + content of 3 components of Al 2 O) / content of 2 components of ZrO] less than 0.88,
The crystallized glass according to claim 1 or 2, characterized in that: - 酸化物換算の質量%で、
[(P2O5成分の含量+K2O成分の含量+MgO成分の含量+Al2O3成分の含量)/ZrO2成分の含量] 1.32未満、
であることを特徴とする請求項1または2に記載の結晶化ガラス。 In terms of oxide mass%,
[(Content of P 2 O 5 components + content of K 2 O component + content of MgO component + content of 3 Al 2 O components) / content of 2 ZrO components] less than 1.32,
The crystallized glass according to claim 1 or 2, characterized in that: - 表面に圧縮応力層を有することを特徴とする請求項1または2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, which has a compressive stress layer on the surface.
- スマートフォンのガラス部材に用いることを特徴とする請求項1または2に記載の結晶化ガラス。 The crystallized glass according to claim 1 or 2, which is used for a glass member of a smartphone.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-150933 | 2022-09-22 | ||
JP2022150933A JP2024045871A (en) | 2022-09-22 | 2022-09-22 | crystallized glass |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024062797A1 true WO2024062797A1 (en) | 2024-03-28 |
Family
ID=90454311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/029313 WO2024062797A1 (en) | 2022-09-22 | 2023-08-10 | Crystallised glass |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024045871A (en) |
TW (1) | TW202413297A (en) |
WO (1) | WO2024062797A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001019490A (en) * | 1998-03-23 | 2001-01-23 | Ohara Inc | Glass ceramic material |
JP2001035417A (en) * | 1999-07-21 | 2001-02-09 | Ohara Inc | Glass ceramics for cathode-ray tube(crt) |
JP2001048584A (en) * | 1999-08-10 | 2001-02-20 | Ohara Inc | Glass ceramic for optical filter and optical glass |
JP2008254984A (en) * | 2007-04-06 | 2008-10-23 | Ohara Inc | Inorganic composition article |
JP2019517449A (en) * | 2016-05-27 | 2019-06-24 | コーニング インコーポレイテッド | Lithium disilicate glass ceramic composition and method thereof |
WO2020179872A1 (en) * | 2019-03-06 | 2020-09-10 | 株式会社 オハラ | Inorganic composition article and crystallized glass |
-
2022
- 2022-09-22 JP JP2022150933A patent/JP2024045871A/en active Pending
-
2023
- 2023-08-10 WO PCT/JP2023/029313 patent/WO2024062797A1/en unknown
- 2023-08-16 TW TW112130741A patent/TW202413297A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001019490A (en) * | 1998-03-23 | 2001-01-23 | Ohara Inc | Glass ceramic material |
JP2001035417A (en) * | 1999-07-21 | 2001-02-09 | Ohara Inc | Glass ceramics for cathode-ray tube(crt) |
JP2001048584A (en) * | 1999-08-10 | 2001-02-20 | Ohara Inc | Glass ceramic for optical filter and optical glass |
JP2008254984A (en) * | 2007-04-06 | 2008-10-23 | Ohara Inc | Inorganic composition article |
JP2019517449A (en) * | 2016-05-27 | 2019-06-24 | コーニング インコーポレイテッド | Lithium disilicate glass ceramic composition and method thereof |
WO2020179872A1 (en) * | 2019-03-06 | 2020-09-10 | 株式会社 オハラ | Inorganic composition article and crystallized glass |
Also Published As
Publication number | Publication date |
---|---|
TW202413297A (en) | 2024-04-01 |
JP2024045871A (en) | 2024-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI796316B (en) | crystallized glass | |
JP6765748B2 (en) | Crystallized glass and crystallized glass substrate | |
JP7013623B1 (en) | Crystallized glass and reinforced crystallized glass | |
JP2021181388A (en) | Crystallized glass | |
JP7189181B2 (en) | glass and crystallized glass | |
WO2024062797A1 (en) | Crystallised glass | |
WO2022080226A1 (en) | Crystallized glass | |
WO2024190443A1 (en) | Crystallized glass | |
WO2024162064A1 (en) | Glass including crystalline phase | |
JP7460586B2 (en) | crystallized glass | |
JP2021042116A (en) | Crystallized glass and reinforced crystallized glass | |
WO2023145965A1 (en) | Crystallized inorganic composition article | |
WO2023145956A1 (en) | Inorganic composition article | |
WO2024014500A1 (en) | Inorganic composition article | |
JP2024109520A (en) | Glass including crystal phase | |
WO2023095454A1 (en) | Inorganic composition article | |
WO2024225266A1 (en) | Inorganic composition article | |
WO2024014507A1 (en) | Inorganic composition article | |
WO2024143174A1 (en) | Inorganic composition article | |
WO2022168895A1 (en) | Crystallized glass and chemically strengthened glass | |
TW202204281A (en) | Reinforced crystallized glass | |
WO2021044841A1 (en) | Crystallized glass and reinforced crystallized glass | |
TW202438465A (en) | Glass containing a crystalline phase | |
CN118812159A (en) | Base glass, microcrystalline glass, preparation method of base glass, glass product and terminal equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23867922 Country of ref document: EP Kind code of ref document: A1 |