[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024059970A1 - 电池单体、电池和用电装置 - Google Patents

电池单体、电池和用电装置 Download PDF

Info

Publication number
WO2024059970A1
WO2024059970A1 PCT/CN2022/119634 CN2022119634W WO2024059970A1 WO 2024059970 A1 WO2024059970 A1 WO 2024059970A1 CN 2022119634 W CN2022119634 W CN 2022119634W WO 2024059970 A1 WO2024059970 A1 WO 2024059970A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
battery
thickness
battery cell
cell according
Prior art date
Application number
PCT/CN2022/119634
Other languages
English (en)
French (fr)
Inventor
吴李力
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280087635.2A priority Critical patent/CN118476065A/zh
Priority to PCT/CN2022/119634 priority patent/WO2024059970A1/zh
Publication of WO2024059970A1 publication Critical patent/WO2024059970A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • Embodiments of the present application provide a battery cell, a battery and a power device, which can effectively improve the performance of the battery without affecting the volume and weight of the battery.
  • a battery unit including: at least two battery units, each of the at least two battery units includes a composite current collector, and two adjacent ones of the at least two battery units Battery cells share the composite current collector, and the composite current collector includes a first current collector and a second current collector; wherein the density of the first current collector is smaller than the density of the second current collector, and the third current collector The thickness of the current collector is greater than the thickness of the second current collector.
  • the current collector is configured as a composite current collector including a first current collector and a second current collector. Since the first current collector and the second current collector have different working potential ranges and different stress and strain characteristics, by adjusting the thickness of the current collector, the problem of current collector curling and cracking during cold pressing or other manufacturing processes can be avoided. , thereby effectively improving battery performance.
  • the density of the first current collector is small, setting the thickness of the first current collector to be relatively large will have less impact on the volume and weight of the battery cells and even the battery.
  • the thickness of the first current collector is less than or equal to 20 ⁇ m.
  • the elongation rate has the same purpose.
  • the thickness of the first current collector is between 10 ⁇ m and 15 ⁇ m.
  • the thickness of the second current collector is between 50 nm and 6 ⁇ m.
  • the second current collector is obtained by evaporation on the surface of the first current collector.
  • the second current collector is arranged on the surface of the first current collector through an evaporation process.
  • the purity of the second current collector obtained is higher; on the other hand, compared with other processes, the purity of the second current collector is higher.
  • the thickness of the second current collector is smaller, which can further reduce the volume and weight of the battery cells and even the battery.
  • the thickness of the second current collector is controllable, which is beneficial to improving the energy density of the battery.
  • the thickness of the second current collector is between 500 nm and 2 ⁇ m.
  • the thickness of the second current collector is set between 500 nm and 2 ⁇ m, that is, the thickness of the second current collector is set thin, which can effectively reduce the volume and weight of the battery cells and even the battery.
  • the second current collector is obtained by rolling on the surface of the first current collector.
  • the thickness of the second current collector is between 4 ⁇ m and 6 ⁇ m.
  • the volume resistivity of the first current collector is greater than or equal to 2*10 -8 ⁇ m and less than or equal to 1*10 -5 ⁇ m .
  • a volume resistivity of the second current collector is less than or equal to 8*10 ⁇ 8 ⁇ m.
  • the volume resistivity of the second current collector can be less than or equal to 8*10 -8 ⁇ m, that is, the volume resistivity of the second current collector is set smaller, which can reduce the interface impedance, thereby making the battery Achieve low impedance performance.
  • the second current collector can also serve as a conductive layer to improve the conductivity of the composite current collector.
  • the tensile strength of the composite current collector is between 450MPa and 1500MPa.
  • the integrity of the second current collector can be ensured, thereby ensuring the performance of the battery cells and the battery.
  • setting the tensile strength of the composite current collector to a larger value avoids the problem of damage when it is stretched under force, greatly increasing the service life of the composite current collector, thereby reducing the cost of the battery cells.
  • the first current collector is disposed on a side close to the cathode active material layer, and the material of the first current collector includes aluminum, nickel foil and stainless steel foil. at least one of them.
  • the material of the first current collector includes nickel foil and/or stainless steel foil, which can make the composite current collector have high tensile strength, thereby avoiding the stretching and extension of the composite current collector, and then the deformation, film support or fracture and other problems. For example, when the composite current collector is stretched, if the surface cracks of the second current collector will cause the first current collector to be exposed at the negative electrode, so that reaction corrosion occurs. The performance of the battery is further improved.
  • the second current collector is disposed on a side close to the negative active material layer, and the material of the second current collector is copper.
  • the binding force between the first current collector and the second current collector is greater than or equal to 100 N/m.
  • the composite current collector is used to electrically connect two adjacent battery units arranged on both sides of the composite current collector. Therefore, the bonding force between the first current collector and the second current collector is set to be greater than or equal to 100N/m. , so that there is a strong bonding effect between the first current collector and the second current collector, effectively ensuring the electrical connectivity of the two adjacent battery units arranged on both sides.
  • the composite current collector further includes a third current collector, and the third current collector and the second current collector are respectively disposed on both sides of the first current collector.
  • a third current collector on one side of the first current collector, direct contact between the first current collector and the electrolyte can be prevented, ensuring that the first current collector is not corroded within a wide potential range, thereby effectively ensuring that the battery cells and Battery performance.
  • the first current collector is arranged between the second current collector and the third current collector, and the thickness of the first current collector is relatively large, so that the first current collector can play a role in supporting the composite current collector, thereby improving the composite current collector.
  • the tensile strength of the current collector is relatively large.
  • the thickness of the third current collector is smaller than the thickness of the first current collector.
  • the thickness of the third current collector can be as small as possible.
  • the thickness of the third current collector is set to less than The thickness of the first current collector can relatively easily prevent direct contact between the first current collector and the electrolyte without having a small impact on the volume and weight of the battery.
  • the thickness of the third current collector is between 50 nm and 5 ⁇ m.
  • the third current collector does not affect the overall thickness and volume of the battery cell and battery, and prevents the first current collector from contacting the electrolyte.
  • the third current collector is made of aluminum.
  • the material of the third current collector can reduce the production cost of battery cells and batteries. Furthermore, aluminum has a lower density, which can increase the energy density of the battery.
  • the third current collector can also serve as a conductive layer to improve the conductivity of the composite current collector.
  • the volume resistivity of the third current collector is less than or equal to 8*10 -8 ⁇ m.
  • the volume resistivity of the third current collector can be less than or equal to 8*10 -8 ⁇ m, that is, the volume resistivity of the third current collector is set smaller, which can reduce the interface impedance and thus improve the The electrical conductivity of the composite current collector allows the battery to achieve low impedance performance.
  • a battery including: a plurality of battery cells in the above-mentioned first aspect or its respective implementations; and a box, the box being used to accommodate the battery cells.
  • an electrical device including: the battery in the second aspect, the battery being used to provide electrical energy to the electrical device.
  • Figure 1 is a schematic diagram of a vehicle according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of a battery cell according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a battery unit according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of a battery cell according to another embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups)
  • multiple sheets refers to more than two sheets (including two sheets).
  • lithium-ion batteries usually use flammable and explosive organic electrolytes, which cannot meet consumers' safety needs for batteries, and their energy density has reached its limit.
  • Solid-state batteries that replace organic electrolytes with solid electrolytes are expected to become the safest alternatives to lithium-ion batteries currently on the market.
  • a solid-state battery is a battery that uses a solid positive electrode, a solid negative electrode, and a solid electrolyte, does not contain any liquid, and all materials are composed of solid materials. Compared with lithium-ion batteries, solid-state batteries have at least the following advantages:
  • Lithium-ion batteries use organic electrolytes. Under abnormal conditions such as overcharging and internal short circuits, lithium-ion batteries are prone to heat, causing the electrolyte to swell, spontaneously ignite or even explode. Many solid-state electrolyte materials are non-flammable, non-corrosive, non-volatile, and do not have leakage problems. Compared with liquid electrolytes, the safety of solid-state batteries is greatly improved.
  • the negative electrode of solid-state batteries can be made of metallic lithium, which can significantly reduce the amount of negative electrode material and significantly increase the energy density of the entire solid-state battery.
  • Lithium-ion batteries require the use of separators and electrolytes, which together occupy only 40% of the volume and 25% of the mass of the lithium-ion battery.
  • the distance between the positive and negative electrodes can be shortened to only a few to a dozen microns, so that the thickness of the solid-state battery can be greatly reduced, thereby reducing the solid-state The size of the battery.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • the battery generally includes a box for encapsulating one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • a battery cell usually includes at least two battery cells, each battery unit includes a current collector, and two adjacent battery cells share a current collector, and the current collector serves to electrically connect the battery cells on both sides.
  • the current collector stress extension difference and the current collector corrosion reaction caused by the different lithium potentials on both sides seriously affect the performance of the solid-state battery.
  • a battery cell which includes a composite current collector, and the composite current collector includes a first current collector and a second collective.
  • the density of the first current collector is less than the density of the second current collector
  • the thickness is greater than the thickness of the second current collector.
  • the density of the first current collector is smaller than the density of the second current collector, and the thickness of the first current collector is set to be greater than the thickness of the second current collector, so that the elongation of the first current collector and the elongation of the second current collector Just the same.
  • the density of the first current collector is small, setting the thickness of the first current collector to be relatively large will have less impact on the volume and weight of the battery cells and even the battery.
  • the power-consuming device may be, for example, a vehicle, a mobile phone, a portable device, a laptop, a ship, a spacecraft, an electric toy, an electric tool, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may be the solid-state battery mentioned above.
  • the battery may include multiple battery cells.
  • multiple battery cells can be connected in series, parallel, or mixed. Hybrid refers to a mixture of series and parallel. Batteries may also be called battery packs.
  • multiple battery cells can be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel, or mixed to form a battery.
  • multiple battery cells can directly form a battery, or they can first form a battery module, and then the battery module can form a battery.
  • multiple battery cells in the embodiment of the present application may be connected in series.
  • FIG. 2 it is a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box (or cover), the inside of the box is a hollow structure, and a plurality of battery cells 10 are accommodated in the box.
  • the box body may include two parts, here respectively referred to as the first part 111 and the second part 112.
  • the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of the plurality of battery cells 20 , and each of the first part 111 and the second part 112 may have an opening.
  • both the first part 111 and the second part 112 may be hollow rectangular parallelepipeds with only one open surface.
  • the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the second part 112 interlock with each other.
  • the box body may include a bottom plate 112a, a side plate 112b and a beam.
  • a plurality of battery cells 20 are connected in parallel or in series or in mixed combination and then placed in a box formed by the first part 111 and the second part 112 being fastened together.
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the electrically conductive means can also be part of the busbar.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power.
  • the battery unit 20 includes at least two battery units 21.
  • Each battery unit 21 of the at least two battery units 21 includes a composite current collector 211, and two adjacent battery units 21 of the at least two battery units 21 share a composite current collector.
  • the composite current collector 211 includes a first current collector 2111 and a second current collector 2112. The density of the first current collector 2111 is less than the density of the second current collector 222 and the thickness of the first current collector 2111 is greater than the thickness of the second current collector 2112 .
  • the battery cells 20 may be battery cells in a solid-state battery, and multiple battery cells 20 may be connected in series.
  • the first current collector 2111 may be disposed on a side close to the cathode active material layer.
  • the first current collector 2111 may be close to the positive electrode side
  • the second current collector 2112 may be close to the negative electrode side.
  • Each battery cell 21 may include a separator, an active material layer, and a composite current collector 211 .
  • the active material layer includes a positive active material layer and a negative active material layer, and the positive active material layer and the negative active material layer are respectively coated on both sides of the current collector.
  • the battery unit 20 includes battery units 21 a and 21 b, wherein each of the battery unit 21 a and the battery unit 21 b includes a separator 23 , a positive active material layer 221 , a negative active material layer 222 and a composite current collector 211 .
  • the composite current collector 211 is provided on the side of the battery unit 21a closest to the battery unit 21b; for the battery unit 21b, the composite current collector 211 is provided on the side of the battery unit 21b closest to the battery unit 21a.
  • the thickness of the first current collector 2111 may be less than or equal to 20 ⁇ m.
  • the thickness of the first current collector 2111 may be between 5 ⁇ m and 20 ⁇ m. Further, the thickness of the first current collector 2111 may be between 10 ⁇ m and 15 ⁇ m. For example, the thickness of the first current collector 2111 may be 12 ⁇ m or 13 ⁇ m.
  • the elongation of current collector 2112 serves the same purpose.
  • the thickness of the second current collector 2112 may be between 50 nm and 6 ⁇ m. Further, the thickness of the second current collector 2112 may be between 100 nm and 6 ⁇ m or between 50 nm and 5 ⁇ m. For example, the thickness of the second current collector 2112 may be 80 nm, 600 nm, or 1 ⁇ m.
  • the thickness of the second current collector 2112 to 50nm-6 ⁇ m can relatively easily achieve the elongation of the first current collector 2111 and the second current collector without affecting the volume and weight of the battery.
  • the elongation of fluid 2112 serves the same purpose.
  • the second current collector 2112 is disposed on the surface of the first current collector 2111 .
  • the thickness of the second current collector 2112 is also different.
  • the second current collector 2112 may be evaporated on the surface of the first current collector 2111.
  • the second current collector 2112 can be obtained by evaporating on the surface of the first current collector 2111 in a vacuum environment.
  • the second current collector 2112 is disposed on the surface of the first current collector 2111 through an evaporation process. In this way, on the one hand, the purity of the second current collector 2112 obtained is higher; on the other hand, compared to other processes, The thickness of the second current collector 2112 obtained is smaller, which can further reduce the volume and weight of the battery cells and even the battery. On the other hand, the thickness of the second current collector 2112 obtained is controllable, which is beneficial to improving the energy density of the battery. .
  • the thickness of the second current collector 2112 may be between 500 nm and 2 ⁇ m. For example, 800nm or 1.5 ⁇ m. Setting the thickness of the second current collector 2112 between 500 nm and 2 ⁇ m, that is, setting the thickness of the second current collector 2112 thin, can effectively reduce the volume and weight of the battery cells and even the battery.
  • the second current collector 2112 may be obtained by rolling the surface of the first current collector 2111.
  • the thickness of the second current collector 2112 may be between 4 ⁇ m and 6 ⁇ m. Such as 3 ⁇ m.
  • the second current collector 2112 can also be disposed on the surface of the first current collector 2111 through other methods in this embodiment.
  • the second current collector 2112 can be disposed on the surface of the first current collector 2111 through welding; for another example, the second current collector 2112 can be disposed on the surface of the first current collector 2111 through glue.
  • the volume resistivity of the first current collector 2111 may be less than or equal to 1*10 ⁇ 5 ⁇ m.
  • the volume resistivity of the first current collector 2111 may be 2*10 ⁇ 6 ⁇ m.
  • the temperature of 23°C in the embodiment of the present application is not an absolute 23°C. Temperatures near 23°C, such as 23 ⁇ 2°C, are all within the scope of the embodiment of the present application.
  • the volume resistivity of the first current collector 2111 may be less than or equal to 1*10 -5 ⁇ m.
  • volume resistivity of the first current collector 2111 may be greater than or equal to 2*10 -8 ⁇ m.
  • the volume resistivity of the first current collector may be 3*10 -8 ⁇ m, or may be 9*10 -8 ⁇ m, or may be 5*10 -6 ⁇ m.
  • the volume resistivity of the second current collector 2112 may be less than or equal to 8*10 -8 ⁇ m.
  • the volume resistivity of the second current collector 2112 may be less than or equal to 4*10 -8 ⁇ m.
  • the volume resistivity of the second current collector 2112 may be 1*10 -8 ⁇ m or 6*10 -9 ⁇ m.
  • the volume resistivity of the second current collector 2112 can be less than or equal to 8*10 -8 ⁇ m, that is, the volume resistivity of the second current collector 2112 is set to be small, which can reduce the interface impedance, so that the battery can achieve low impedance performance.
  • the second current collector 2112 can also take into account the role of a conductive layer to improve the conductivity of the composite current collector 211.
  • the first current collector 2111 may be disposed on a side close to the positive active material layer, and since the density of the first current collector 2111 is smaller than the density of the second current collector 2112. Therefore, the material of the first current collector 2111 may include at least one of aluminum, nickel foil, and stainless steel foil.
  • the material of the first current collector 2111 can reduce the production cost of battery cells and batteries. Furthermore, aluminum has a lower density, which can increase the energy density of the battery.
  • the material of the first current collector 2111 includes nickel foil and/or stainless steel foil, which can make the composite current collector 211 have high tensile strength. , thereby avoiding the stretching and extension of the composite current collector 211, which may lead to problems such as deformation, film support or breakage. For example, when the composite current collector 211 is stretched under force, if the surface cracks of the second current collector 2112 will cause the first current collector to 2111 is exposed to the negative electrode, causing reactive corrosion. Further improves battery performance.
  • the material of the second current collector 2112 may include but is not limited to copper.
  • first current collector 2111 can also be disposed on the side close to the negative active material layer
  • second current collector 2112 can be disposed on the side close to the positive active material layer
  • the first current collector 2111 will be exposed.
  • the material of the first current collector 2111 is aluminum and the material of the second current collector 2112 is copper, and the first current collector 2111 is close to the positive electrode side, and the second current collector 2112 is close to the negative electrode side. Then when the composite current collector 211 is stretched under force, if cracks appear in the copper layer, the aluminum will be exposed at the negative electrode, causing reactive corrosion of the aluminum, seriously affecting the performance of the battery cells and the battery.
  • the tensile strength of the composite current collector 211 in the embodiment of the present application is relatively large.
  • the tensile strength of the composite current collector 211 can be between 450MPa-1500MPa. For example, 500MPa or 1200MPa or between 600MPa-1000MPa.
  • the integrity of the second current collector 2112 can be ensured, thereby ensuring the performance of the battery cell and the battery.
  • the tensile strength of the composite current collector 211 is set to be relatively large, thereby avoiding damage when it is stretched, so that the service life of the composite current collector 211 can be greatly increased, thereby reducing the cost of the battery cell.
  • the bonding force between the first current collector 2111 and the second current collector 2112 may be greater than or equal to 100 N/m. Such as 200N/m, 300N/m or 500N/m.
  • the composite current collector 211 is used to electrically connect two adjacent battery cells 21 disposed on both sides of the composite current collector 211. Therefore, the bonding force between the first current collector 2111 and the second current collector 2112 is set to be greater than or Equal to 100 N/m, there is a strong bonding effect between the first current collector 2111 and the second current collector 2112, effectively ensuring the electrical connectivity of the two adjacent battery units 21 arranged on both sides.
  • Table 1 shows several possible embodiments of composite current collectors according to embodiments of the present application. It should be understood that Table 1 is only an example, and the embodiments of the present application are not limited thereto.
  • Example d1 d2 v1 v2 F 1 2 0.05 2.8* 10-8 5*10 -9 100 2 2 0.2 4*10 -8 7*10 -9 120 3 3 0.2 5*10 -8 9*10 -9 135 4 5 0.2 8*10 -8 1*10 -8 150 5 7.5 0.8 8*10 -8 2* 10-8 200 6 10 1.5 8*10 -8 3* 10-8 255 7 11 2 1*10 -7 3*10 -8 300 8 13 3 2*10 -7 3*10 -8 350 9 15 4 5*10 -7 5*10 -8 500 10 16 5 7.5* 10-7 6.5*10 -8 500
  • d1 and d2 are the thicknesses of the first current collector 2111 and the second current collector 2112, respectively, in ⁇ m
  • v1 and v2 are the volume resistivities of the first current collector 2111 and the second current collector 2112, respectively, in ⁇ m
  • F is the bonding force between the first current collector 2111 and the second current collector 2112, in N/m.
  • the battery cells in the embodiments of the present application were compared with other battery cells, as shown in Table 2.
  • the elongation is measured when the tensile strength is 200MPa, the energy density is in Wh/Kg, and the cycle number indicates the number of times the battery cell can be reused.
  • the current collector in the comparative example is not a composite current collector and only includes one current collector, such as the first current collector, d2 in the comparative example is 0, and v2 and F do not exist.
  • the embodiment of the present application As can be seen from Table 2, under the conditions that the thickness and volume resistivity of the current collector of the comparative example are the same as those of the current collector 221 of the embodiment of the present application, under the same tensile strength, the embodiment of the present application The elongation rate of the composite current collector 211 is less than that of the current collector of the comparative example, the energy density is greater than that of the comparative example, and the number of cycles is greater than that of the comparative example. That is to say, under the same conditions, various properties of the composite current collector 211 or the battery cell of the embodiment of the present application are better than those of the current collector or battery cell of the comparative example.
  • test method for the tensile strength and volume resistivity of the embodiment of the present application will be introduced below. It should be understood that the testing methods of tensile strength and volume resistivity in the embodiments of the present application are not limited to this.
  • the specific test method for tensile strength can be as follows: take a composite current collector sample cut to 20mm*20mm, fix the sample to the test fixture of the high-speed rail tensile machine, and set the standard distance between the two clamps of the tensile machine to 50mm, and the tensile speed 5mm/min. The force the sample endures when stretched is divided by the original cross-sectional area of the sample to obtain the tensile strength. The tensile strength and displacement curves are recorded. During the tensile process of the sample, the material enters the strengthening stage after passing through the yield stage. With the sudden drop in tensile strength, the corresponding sample breaks in tension. The tensile strength at this time is the tensile strength of the sample.
  • volume resistivity R ⁇ d, where ⁇ is the sheet resistance of the sample in ⁇ ; d is the thickness of the sample in m. First test the sheet resistance ⁇ of the sample, and then multiply ⁇ and d to get the volume resistivity.
  • the four-probe method can be used to test the sheet resistance ⁇ of the sample.
  • the method can be, for example: using the RTS-9 type dual electrical four-probe tester.
  • the test environment is: normal temperature 23 ⁇ 2°C, 0.1MPa, relative Humidity ⁇ 65%.
  • clean the surface of the sample then place it horizontally on the test platform, and put down the four probes so that the probes are in good contact with the surface of the sample.
  • adjust the current range of the automatic test mode calibration sample measure the square resistance at the appropriate current range, and collect 8 to 10 data points of the same sample for data measurement accuracy and error analysis. Finally, the average value of the 8 to 10 data obtained is used as the sheet resistance of the sample.
  • a second current collector 2112 can be provided on the surface of the first current collector 2111. As mentioned above, the second current collector 2112 can be formed on the surface of the first current collector 2111 in two ways.
  • Method 1 Evaporation method.
  • the first current collector 2111 that has undergone surface cleaning treatment is first placed in a vacuum plating chamber, and the high-purity metal wire in the metal evaporation chamber is melted and evaporated at a high temperature of 1300°C to 2000°C, such as 1500°C, and then the evaporated The metal is cooled by the cooling system in the vacuum coating chamber for 1 hour, and is finally deposited on the first current collector 2111, so that a second current collector 2112 can be formed on the surface of the first current collector 2111.
  • Method 2 Mechanical calendering method.
  • the first current collector 2111 and the second current collector 2112 after surface cleaning are placed in a composite calendering device.
  • the composite calendering temperature may be 20-200° C. (e.g., 170° C.), and the composite calendering pressure may be 0.5-10 MPa (e.g., 2.5 MPa).
  • the second current collector 2112 may be formed on the surface of the first current collector 2111.
  • a positive active material layer is prepared on one side of the first current collector 2111, and a negative active material layer is prepared on one side of the second current collector 2112.
  • the positive active material layer can be prepared according to conventional methods in the art. For example, first, the positive electrode active material, conductive agent and binder are dispersed in a solvent to form a uniform positive electrode slurry.
  • the solvent may be N-Methylpyrrolidone (NMP). Then, the positive electrode slurry is coated on the surface of the first current collector 2111, and after drying and other processes, the positive electrode active material layer can be obtained.
  • NMP N-Methylpyrrolidone
  • the method of preparing the negative active material layer is similar to the method of preparing the positive active material layer.
  • the negative active material, conductive agent, binder and thickener are dispersed in a solvent to form a uniform negative electrode slurry.
  • the solvent can be NMP or deionized water.
  • the negative electrode slurry is coated on the surface of the second current collector 2112, and after drying and other processes, the negative electrode active material layer can be obtained.
  • the first current collector 2111 may be in direct contact with the electrolyte, various chemical reactions may occur, affecting the performance of the battery cells and the battery.
  • the composite current collector 211 may also include a third current collector 2113 .
  • the third current collector 2113 and the second current collector 2112 are respectively arranged on both sides of the first current collector 2111.
  • the third current collector 2113 By arranging the third current collector 2113 on one side of the first current collector 2111, direct contact between the first current collector 2111 and the electrolyte can be prevented, ensuring that the first current collector 2111 is not corroded within a wide potential range, thereby effectively ensuring Cell and battery performance. Furthermore, the first current collector 2111 is disposed between the second current collector 2112 and the third current collector 2113, and the thickness of the first current collector 221 is relatively large, so that the first current collector 2111 can support the composite current collector 211. function, thereby improving the tensile strength of the composite current collector 211.
  • the second current collector 2112 can also prevent the first current collector 2111 from direct contact with the electrolyte, that is, the second current collector 2112 can act as a protective layer.
  • the thickness of the third current collector 2113 can be as small as possible, as long as it can prevent the first current collector 2111 from being in direct contact with the electrolyte.
  • the fluid 2111 is in direct contact with the electrolyte.
  • the thickness of the third current collector 2113 may be smaller than the thickness of the first current collector 2111 .
  • the thickness of the third current collector 2113 may be between 50 nm and 5 ⁇ m. By setting the thickness of the third current collector 2113 between 50 nm and 5 ⁇ m, the third current collector 2113 does not affect the overall thickness and volume of the battery cell and battery, and prevents the first current collector 2111 from contacting the electrolyte.
  • the third current collector 2113 can be close to the negative electrode side.
  • the material of the third current collector 2113 may be but is not limited to copper.
  • the third current collector 2113 can be close to the positive electrode side.
  • the material of the third current collector 2113 may be but is not limited to aluminum.
  • the material of the third current collector 2113 can reduce the production cost of battery cells and batteries. Furthermore, aluminum has a lower density, which can increase the energy density of the battery.
  • the third current collector 2113 can also serve as a conductive layer to improve the conductivity of the composite current collector 211.
  • the third current collector 2113 can also be obtained by evaporation on the surface of the first current collector 2111.
  • the third current collector 2113 can be obtained by evaporating on the surface of the first current collector 2111 in a vacuum environment.
  • the third current collector 2113 may be obtained by rolling the surface of the first current collector 2111.
  • the volume resistivity of the third current collector 2113 may be less than or equal to 8*10 ⁇ 8 ⁇ m.
  • the volume resistivity of the third current collector 2113 can be less than or equal to 8*10 -8 ⁇ m, that is, the volume resistivity of the third current collector 2113 is set smaller, which can reduce the interface impedance, thus It can improve the conductivity of the composite current collector 211 and enable the battery to achieve low impedance performance.
  • the area of the positive electrode piece of the battery cell may be smaller than the area of the negative electrode piece.
  • the width and length of the positive electrode piece can be smaller than the width and length of the negative electrode piece.
  • a ring of inactive coating can be applied around the positive electrode active material layer. For example, apply a circle of boehmite, insulating glue, etc.
  • An embodiment of the present application also provides a battery, which may include the battery cells in the aforementioned embodiments.
  • the battery may also include other structures such as a box body and bus components, which will not be described in detail here.
  • An embodiment of the present application also provides an electrical device.
  • the electrical device may include the battery in the previous embodiment, and the battery is used to provide electrical energy to the electrical device.
  • the electrical device may be the vehicle 1, ship or spacecraft in Figure 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本申请实施例提供了一种电池单体、电池和用电装置,能够在不影响电池的体积和重量的基础上,有效提高电池的性能。该电池单体包括:至少两个电池单元(21),所述至少两个电池单元(21)中的每个电池单元包括复合集流体(211),所述至少两个电池单元(21)中相邻的两个电池单元共用所述复合集流体(211),所述复合集流体(211)包括第一集流体(2111)和第二集流体(2112);其中,所述第一集流体(2111)的密度小于所述第二集流体(2112)的密度,且所述第一集流体(2111)的厚度大于所述第二集流体(2112)的厚度。

Description

电池单体、电池和用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池和用电装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,电池的性能是一个不可忽视的问题。电池的性能不仅影响电池电池相关产品的发展和应用,而且还影响消费者对电动车辆的接受度。因此,如何提高电池的性能,是一项亟待解决的问题。
发明内容
本申请实施例提供一种电池单体、电池和用电装置,能够在不影响电池的体积和重量的基础上,有效提高电池的性能。
第一方面,提供了一种电池单体,包括:至少两个电池单元,所述至少两个电池单元中的每个电池单元包括复合集流体,所述至少两个电池单元中相邻的两个电池单元共用所述复合集流体,所述复合集流体包括第一集流体和第二集流体;其中,所述第一集流体的密度小于所述第二集流体的密度,且所述第一集流体的厚度大于所述第二集流体的厚度。
本申请实施例,将集流体设置为包括第一集流体和第二集流体的复合集流体。由于第一集流体和第二集流体具有不同的工作电位区间、不同的受力应变特性,因此通过调控集流体厚度,可以避免在冷压或者其他生产制造过程中出现集流体打卷开裂的问题,从而有效提高了电池的性能。
进一步地,由于第一集流体的密度较小,因此将第一集流体的厚度 设置的相对较大,对电池单体甚至电池的体积和重量的影响较小。
在一些可能的实现方式中,所述第一集流体的厚度小于或等于20μm。
通过多次实验证明,发现将第一集流体的厚度设置为小于或等于20μm,在不影响电池的体积和重量的情况下,能够比较容易地实现第一集流体的延伸率和第二集流体的延伸率相同的目的。
在一些可能的实现方式中,所述第一集流体的厚度在10μm-15μm之间。
在一些可能的实现方式中,所述第二集流体的厚度在50nm-6μm之间。
通过多次实验证明,发现将第二集流体的厚度设置在50nm-6μm,在不影响电池的体积和重量的情况下,能够比较容易地实现第一集流体的延伸率和第二集流体的延伸率相同的目的。
在一些可能的实现方式中,所述第二集流体为在所述第一集流体表面进行蒸镀得到的。
该技术方案,通过蒸镀工艺将第二集流体设置在第一集流体的表面,如此,一方面,得到的第二集流体的纯度较高;另一方面,相对于其他工艺,得到的第二集流体的厚度较小,从而能够进一步减小电池单体甚至电池的体积和重量;再一方面,得到的第二集流体的厚度可控,有利于电池能量密度的提升。
在一些可能的实现方式中,所述第二集流体的厚度在500nm-2μm之间。
上述技术方案,将第二集流体的厚度设置在500nm-2μm之间,即将第二集流体的厚度设置地较薄,能够有效减小电池单体甚至电池的体积和重量。
在一些可能的实现方式中,所述第二集流体为在所述第一集流体表面进行压延得到的。
在一些可能的实现方式中,所述第二集流体的厚度在4μm-6μm之间。
在一些可能的实现方式中,在温度为23℃的条件下,所述第一集流 体的体积电阻率大于或等于2*10 -8Ω·m且小于或等于1*10 -5Ω·m。
在一些可能的实现方式中,在温度为23℃的条件下,所述第二集流体的体积电阻率小于或等于8*10 -8Ω·m。
该技术方案,将第二集流体的体积电阻率可以小于或等于8*10 -8Ω·m,即将第二集流体的体积电阻率设置的较小,这样能够减小界面阻抗,从而使电池实现低阻抗的性能。此外,第二集流体还可以兼顾导电层作用,以提高复合集流体的导电性。
在一些可能的实现方式中,所述复合集流体的抗拉强度在450MPa-1500MPa之间。
如此,在复合集流体受力拉伸时,可以保证第二集流体的完整性,进而保证电池单体以及电池的性能。此外,将复合集流体的抗拉强度设置的较大,避免了在其受力拉伸时的损坏问题,使得该复合集流体的使用寿命能够大大增加,进而减小了电池单体的成本。
在一些可能的实现方式中,相对于所述第二集流体,所述第一集流体设置在靠近正极活性物质层的一侧,所述第一集流体的材料包括铝、镍箔和不锈钢箔中的至少一种。
由于铝的成本较低,因此,将第一集流体的材料设置为包括铝,能够减小电池单体以及电池的生产成本。进一步地,铝的密度较低,从而能够提高电池的能量密度。
此外,镍箔和不锈钢箔的抗拉强度较高,可以达到1000MPa甚至更高,因此,第一集流体的材料包括镍箔和/或不锈钢箔,能够使复合集流体具有高抗拉强度,从而避免复合集流体的拉伸延展,进而出现变形、托膜或断裂等问题,比如,在复合集流体受力拉伸时,如果第二集流体表面裂纹会导致第一集流体暴露在负极处,从而发生反应腐蚀。进一步提高了电池的性能。
在一些可能的实现方式中,相对于所述第一集流体,所述第二集流体设置在靠近负极活性物质层的一侧,所述第二集流体的材料为铜。
在一些可能的实现方式中,所述第一集流体和第二集流体之间的结合力大于或等于100N/m。
上述技术方案,复合集流体用于电连接设置在其两侧的相邻的两个电池单元,因此,将第一集流体和第二集流体之间的结合力设置为大于或等于100N/m,使得第一集流体和第二集流体之间有强粘接作用,有效保证了设置在其两侧的相邻的两个电池单元的电连接性。
在一些可能的实现方式中,所述复合集流体还包括第三集流体,所述第三集流体和所述第二集流体分别设置在所述第一集流体的两侧。
通过在第一集流体的一侧设置第三集流体,能够防止第一集流体与电解液的直接接触,保证第一集流体在宽电位区间内不被腐蚀,进而有效保证了电池单体和电池的性能。
进一步地,第一集流体设置在第二集流体和第三集流体的中间,且第一集流体的厚度较大,这样第一集流体可以起到支撑复合集流体的作用,从而提高了复合集流体的抗拉强度。
在一些可能的实现方式中,所述第三集流体的厚度小于所述第一集流体的厚度。
由于第三集流体起隔离的作用,即防止第一集流体与电解液直接接触,因此,第三集流体的厚度可以尽可能的小,比如上述技术方案将第三集流体的厚度设置为小于第一集流体的厚度,如此在对电池的体积和重量的影响较小的情况下,能够比较容易地防止第一集流体与电解液的直接接触。
在一些可能的实现方式中,所述第三集流体的厚度在50nm-5μm之间。
通过将第三集流体的厚度设置在50nm-5μm之间,第三集流体即不影响电池单体和电池的整体厚度和体积,又防止了第一集流体与电解液的接触。
在一些可能的实现方式中,所述第三集流体的材料为铝。
由于铝的成本较低,因此,将第三集流体的材料设置为包括铝,能够减小电池单体以及电池的生产成本。进一步地,铝的密度较低,从而能够提高电池的能量密度。此外,第三集流体还可以兼顾导电层作用,以提高复合集流体的导电性。
在一些可能的实现方式中,所述第三集流体的体积电阻率小于或等于8*10 -8Ω·m。
该技术方案,将第三集流体的体积电阻率可以小于或等于8*10 -8Ω·m,即将第三集流体的体积电阻率设置的较小,这样能够减小界面阻抗,从而能够提高复合集流体的导电性,使电池实现低阻抗的性能。
第二方面,提供了一种电池,包括:多个上述第一方面或其各实现方式中的电池单体;箱体,所述箱体用于容纳所述电池单体。
第三方面,提供了一种用电装置,包括:上述第二方面中的电池,所述电池用于为所述用电装置提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一种实施例的车辆的示意图。
图2是本申请一种实施例的电池的结构示意图。
图3是本申请实施例的电池单体的示意性图。
图4是本申请实施例的电池单元的示意性图。
图5是本申请另一种实施例的电池单体的示意性图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装 置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定 连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
目前电动车辆上使用的电池大多是锂离子电池,但锂离子电池通常采用易燃易爆的有机电解液,无法满足消费者对于电池的安全性需求,且其能量密度已达到极限。而通过固态电解质取代有机电解液的固态电池有望成为目前市场上锂离子电池最安全的替代品。
固态电池是一种使用固体正极、固体负极和固体电解质,不含有任何液体,所有材料均由固态材料组成的电池。相比于锂离子电池,固态电池至少具有以下优点:
(1)高安全性能。锂离子电池采用有机电解液,在过度充电、内部短路等异常的情况下,锂离子电池容易发热,造成电解液气胀、自燃甚至爆炸等情况。而很多固态电解质材料不可燃、无腐蚀、不挥发,且不存在漏液的问题,相比于液体电解液,固态电池的安全性大幅提高。
(2)高能量密度。固态电池的负极可采用金属锂,这样可以明显减轻负极材料的用量,使得整个固态电池的能量密度有明显提高。
(3)体积小。锂离子电池中,需要使用隔膜和电解液,这两者加起来占据了锂离子电池中仅40%的体积和25%的质量。在使用固态电池后,即使用固态电解质取代隔膜和电解液后,正负极之间的距离可以缩短到只有几到十几个微米,这样固态电池的厚度就能大大地降低,从而减小固态电池的体积。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以 包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体通常情况下包括至少两个电池单元,每个电池单元均包括集流体,且相邻的两个电池单元共用一个集流体,集流体起电连接其两侧的电池单元的作用。集流体两侧分别为正极活性材料和负极活性材料,由于正极活性材料和负极活性材料不同,导致它们的耐受电压区间、耐受应力的能力也会不同。这样,在冷压过程中由于集流体两侧活性材料的不同可能会导致延伸率的差异,进而出现集流体打卷的问题。此外,在充放电过程中由于集流体两侧活性材料体积膨胀不同导致集流体应力延伸差异和两侧对锂电位不同导致的集流体腐蚀反应,严重影响固态电池的性能。
为了解决上述问题,本申请实施例提供了一种电池单体,该电池单体包括复合集流体,该复合集流体包括第一集流体和第二集体。其中,第一集流体的密度小于第二集流体的密度,且厚度大于第二集流体的厚度。通过将集流体设置为包括第一集流体和第二集流体的复合集流体,由于第一集流体和第二集流体具有不同的工作电位区间、不同的受力应变特性,因此通过调控集流体厚度,可以避免在冷压或者其他生产制造过程中出现集流体打卷开裂的问题,从而有效提高了电池的性能。此外,由于在相同的延伸条件下,密度越大的集流体的厚度越小。因此,第一集流体的密度小于第二集流体的密度,且将第一集流体的厚度设置为大于第二集流体的厚度,这样第一集流体的延伸率和第二集流体的延伸率就是相同的。
进一步地,由于第一集流体的密度较小,因此将第一集流体的厚度设置的相对较大,对电池单体甚至电池的体积和重量的影响较小。
本申请实施例描述的技术方案均适用于各种使用电池的用电装置。
用电装置例如可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配 电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
可选地,电池10可以为上文提到的固态电池。
为了满足不同的使用电力需求,电池可以包括多个电池单体。其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。可选地,本申请实施例的多个电池单体之间可以是串联的。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体(或称罩体),箱体内部为中空结构,多个电池单体10容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112 的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。其中,箱体可以包括底板112a、侧板112b和梁。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。
如图3所示,为本申请实施例的一种电池单体20的示意性图。该电池单体20包括至少两个电池单元21,至少两个电池单元21中每个电池单元21包括复合集流体211,且至少两个电池单元21中相邻的两个电池单元21共用一个复合集流体211。其中,复合集流体211包括第一集流体2111和第二集流体2112。其中,第一集流体2111的密度小于第二集流体222的密度且第一集流体2111的厚度大于第二集流体2112的厚度。
可选地,电池单体20可以是固态电池中的电池单体,多个电池单体20之间可以是串联的。
可选地,相对于第二集流体2112,第一集流体2111可以设置在靠近正极活性物质层的一侧。换言之,第一集流体2111可以靠近正极侧,第二集流体2112可以靠近负极侧。
每个电池单元21可以包括隔离膜、活性物质层和复合集流体211。活性物质层包括正极活性物质层和负极活性物质层,正极活性物质层和负极活性物质层分别涂覆于集流体的两侧。如图4所示,电池单体20包括电池单元21a和21b,其中,电池单元21a和电池单元21b均包括包括隔离膜23、正极活性物质层221、负极活性物质层222以及复合集流体211。并且, 针对电池单元21a,复合集流体211设置在电池单元21a的最靠近电池单元21b的一侧;针对电池单元21b,复合集流体211设置在电池单元21b的最靠近电池单元21a的一侧。
在一些实施例中,第一集流体2111的厚度可以小于或等于20μm。
例如,第一集流体2111的厚度可以在5μm-20μm之间。进一步地,第一集流体2111的厚度可以在10μm-15μm之间。比如,第一集流体2111的厚度可以为12μm或13μm等。
通过多次实验证明,发现将第一集流体2111的厚度设置为小于或等于20μm,在不影响电池的体积和重量的情况下,能够比较容易地实现第一集流体2111的延伸率和第二集流体2112的延伸率相同的目的。
在一些实施例中,第二集流体2112的厚度可以在50nm-6μm之间。进一步地,第二集流体2112的厚度可以在100nm-6μm之间或50nm-5μm之间。例如,第二集流体2112的厚度可以为80nm或600nm或1μm。
通过多次实验证明,发现将第二集流体2112的厚度设置在50nm-6μm,在不影响电池的体积和重量的情况下,能够比较容易地实现第一集流体2111的延伸率和第二集流体2112的延伸率相同的目的。
在本申请实施例中,第二集流体2112设置在第一集流体2111的表面。其中,随着用于得到第二集流体2112的工艺的不同,第二集流体2112的厚度也是不同的。
具体而言,第二集流体2112可以是在第一集流体2111的表面进行蒸镀得到的。比如,可以在真空环境下,通过在第一集流体2111表面进行蒸镀得到第二集流体2112。
该技术方案,通过蒸镀工艺将第二集流体2112设置在第一集流体2111的表面,如此,一方面,得到的第二集流体2112的纯度较高;另一方面,相对于其他工艺,得到的第二集流体2112的厚度较小,从而能够进一步减小电池单体甚至电池的体积和重量;再一方面,得到的第二集流体2112的厚度可控,有利于电池能量密度的提升。
在这种情况下,第二集流体2112的厚度可以在500nm-2μm之间。例如,800nm或1.5μm。将第二集流体2112的厚度设置在500nm-2μm之 间,即将第二集流体2112的厚度设置地较薄,能够有效减小电池单体甚至电池的体积和重量。
或者,第二集流体2112可以是在第一集流体2111的表面进行压延得到的。在这种情况下,第二集流体2112的厚度可以在4μm-6μm之间。如3μm。
应理解,除了蒸镀和压延工艺之外,本申请实施例也可以通过其他方式将第二集流体2112设置在第一集流体2111的表面。比如,可以通过焊接方式将第二集流体2112设置在第一集流体2111的表面;再比如,可以通过胶水将第二集流体2112设置在第一集流体2111的表面。
在一些实施中,在温度为23℃的条件下,第一集流体2111的体积电阻率可以小于或等于1*10 -5Ω·m。比如,第一集流体2111的体积电阻率可以为2*10 -6Ω·m。
需要说明的是,本申请实施例的温度23℃并不是绝对的23℃,23℃附近,比如23±2℃,都属于本申请实施例的范围。
进一步地,在温度为23℃且相对湿度小于或等于65%rh的情况下,第一集流体2111的体积电阻率可以小于或等于1*10 -5Ω·m。
进一步地,第一集流体2111的体积电阻率可以大于或等于2*10 -8Ω·m。
示例性地,第一集流体的体积电阻率可以为3*10 -8Ω·m,或者,可以为9*10 -8Ω·m,再或者,可以为5*10 -6Ω·m。
在温度为23℃的条件下,第二集流体2112的体积电阻率可以小于或等于8*10 -8Ω·m。比如,第二集流体2112的体积电阻率可以小于或等于4*10 -8Ω·m。例如,第二集流体2112的体积电阻率可以为1*10 -8Ω·m或6*10 -9Ω·m。
该技术方案,将第二集流体2112的体积电阻率可以小于或等于8*10 -8Ω·m,即将第二集流体2112的体积电阻率设置的较小,这样能够减小界面阻抗,从而使电池实现低阻抗的性能。此外,第二集流体2112还可以兼顾导电层作用,以提高复合集流体211的导电性。
如前文所述,相对于第二集流体2112,第一集流体2111可以设置 在靠近正极活性物质层的一侧,并且由于第一集流体2111的密度小于第二集流体2112的密度。因此,第一集流体2111的材料可以包括铝、镍箔和不锈钢箔中的至少一种。
由于铝的成本较低,因此,将第一集流体2111的材料设置为包括铝,能够减小电池单体以及电池的生产成本。进一步地,铝的密度较低,从而能够提高电池的能量密度。
此外,镍箔和不锈钢箔的抗拉强度较高,可以达到1000MPa甚至更高,因此,第一集流体2111的材料包括镍箔和/或不锈钢箔,能够使复合集流体211具有高抗拉强度,从而避免复合集流体211的拉伸延展,进而出现变形、托膜或断裂等问题,比如,在复合集流体211受力拉伸时,如果第二集流体2112表面裂纹会导致第一集流体2111暴露在负极处,从而发生反应腐蚀。进一步提高了电池的性能。
可选地,由于相对于第一集流体2111,第二集流体2112设置在靠近负极活性物质层的一侧,因此,第二集流体2112的材料可以包括但不限于铜。
当然,第一集流体2111也可以设置在靠近负极活性物质层的一侧,第二集流体2112可以设置在靠近正极活性物质层的一侧。
若复合集流体211的抗拉强度较小,那么在复合集流体211受力拉伸时,如果第二集流体2112出现裂纹会导致第一集流体2111暴露在外。比如,若第一集流体2111的材料为铝,第二集流体2112的材料为铜,且第一集流体2111靠近正极侧,第二集流体2112靠近负极侧。那么在复合集流体211受力拉伸时,如果铜层出现裂纹则会导致铝暴露在负极处,从而使铝发生反应腐蚀,严重影响了电池单体以及电池的性能。
因此,本申请实施例的复合集流体211的抗拉强度较大,通过多次试验测量,复合集流体211的抗拉强度可以在450MPa-1500MPa之间。比如,500MPa或1200MPa或在600MPa-1000MPa之间。
如此,在复合集流体211受力拉伸时,可以保证第二集流体2112的完整性,进而保证电池单体以及电池的性能。此外,将复合集流体211的抗拉强度设置的较大,避免了在其受力拉伸时的损坏问题,使得该复合集 流体211的使用寿命能够大大增加,进而减小了电池单体的成本。
在一些实施例中,第一集流体2111和第二集流体2112之间的结合力可以大于或等于100N/m。如200N/m、300N/m或500N/m。
上述技术方案,复合集流体211用于电连接设置在其两侧的相邻的两个电池单元21,因此,将第一集流体2111和第二集流体2112之间的结合力设置为大于或等于100N/m,使得第一集流体2111和第二集流体2112之间有强粘接作用,有效保证了设置在其两侧的相邻的两个电池单元21的电连接性。
表1示出了本申请实施例的复合集流体的几种可能的实施例。应理解,表1仅为示例,本申请实施例并不限于此。
表1
实施例 d1 d2 v1 v2 F
1 2 0.05 2.8*10 -8 5*10 -9 100
2 2 0.2 4*10 -8 7*10 -9 120
3 3 0.2 5*10 -8 9*10 -9 135
4 5 0.2 8*10 -8 1*10 -8 150
5 7.5 0.8 8*10 -8 2*10 -8 200
6 10 1.5 8*10 -8 3*10 -8 255
7 11 2 1*10 -7 3*10 -8 300
8 13 3 2*10 -7 3*10 -8 350
9 15 4 5*10 -7 5*10 -8 500
10 16 5 7.5*10- 7 6.5*10 -8 500
表1中的d1和d2分别为第一集流体2111和第二集流体2112的厚度,单位为μm,v1和v2分别为第一集流体2111和第二集流体2112的体积电阻率,单位为Ω·m。F为第一集流体2111和第二集流体2112之间的结合力,单位为N/m。
为了进一步验证本申请实施例的电池单体的性能,将本申请实施例 的电池单体与其他电池单体进行了比较,具体如表2所示。
表2
Figure PCTCN2022119634-appb-000001
其中,延伸率为在拉伸强度为200MPa时测量的,能量密度的单位为Wh/Kg,循环数表示该电池单体可以重复使用的次数。
需要说明的是,由于对比例的集流体不是复合集流体,只包括一个集流体,例如第一集流体,因此,对比例中的d2为0,且不存在v2和F。
从表2中可以看出,在对比例的集流体的厚度以及体积电阻率与本申请实施例的一集流体221的厚度以及体积电阻率相同的条件下,相同拉伸强度下本申请实施例的复合集流体211的延伸率小于对比例的集流体的延伸率,能量密度大于对比例的能量密度,并且循环数大于对比例的循环数。也就是说,在相同条件下,本申请实施例的复合集流体211或者电池单体的各种性能均优于对比例的集流体或者电池单体的性能。
下面将介绍一下本申请实施例的抗拉强度以及体积电阻率的一种测试方法。应理解,本申请实施例的抗拉强度和体积电阻率的测试方法并不限于此。
抗拉强度的测试方法具体可以为:取裁剪为20mm*20mm的复合集流体样品,将样品固定到高铁拉力机的测试夹具上,并设定拉力机两夹具中间标准距离为50mm,拉伸速度5mm/min。样品在拉伸时所承受的力,除以样品原始横截面积,得到拉伸强度,记录拉伸强度和位移曲线。样品在拉伸过程中,材料经过屈服阶段后进入强化阶段,随着拉伸强度的突降,对应样品拉伸断裂,此时的拉伸强度即为样品的抗拉强度。
体积电阻率的测试方法具体可以为:体积电阻率R=ρ·d,其中, ρ为样品的方块电阻,单位为Ω;d为样品以m为单位的厚度。先测试样品的方块电阻ρ,之后,将ρ与d相乘,即可得到体积电阻率。
本申请实施例可以采用四探针法测试样品的方块电阻ρ,方法例如可以为:使用RTS-9型双电测四探针测试仪,测试环境为:常温23±2℃,0.1MPa,相对湿度≤65%。测试时,将样品进行表面清洁,然后水平置于测试台上,将四探针放下,使探针与样品表面良好接触。之后调节自动测试模式标定样品的电流量程,在合适的电流量程下进行方块电阻的测量,并采集相同样品的8至10个数据点作为数据测量准确性和误差分析。最后将得到的8至10个数据的平均值作为样品的方块电阻。
下面将描述电池单元21的一种可能的制备方法。
首先,可以在第一集流体2111表面设置第二集流体2112。如前文所述,可以通过两种方式在第一集流体2111表面形成第二集流体2112。
方式一:蒸镀法。
具体而言,先将经过表面清洁处理的第一集流体2111置于真空镀室内,以1300℃~2000℃,例如1500℃的高温将金属蒸发室内的高纯金属丝熔化蒸发,然后将蒸发后的金属经过真空镀室内的冷却系统冷却1个小时,最后沉积于第一集流体2111上,从而可在第一集流体2111表面形成第二集流体2112。
方式二:机械压延法。
具体而言,将经过表面清洁处理的第一集流体2111和第二集流体2112置于复合压延设备中。其中,复合压延温度可以为20-200℃(例如170℃)、复合压延压力可以为0.5-10MPa(例如2.5MPa)。经过复合压延设备复合压延后可在第一集流体2111表面形成第二集流体2112。
然后,在第一集流体2111的一侧制备正极活性物质层,且在第二集流体2112的一侧制备负极活性物质层。
可以按照本领域常规方法制备正极活性物质层。例如,首先,将正极活性材料、导电剂及粘结剂分散于溶剂中,以形成均匀的正极浆料。其中,溶剂可以是N-甲基吡咯烷酮(N-Methylpyrrolidone,NMP)。然后,将正极浆料涂覆在第一集流体2111的表面,并经烘干等工序后,可得到正 极活性物质层。
制备负极活性物质层的方法与制备正极活性物质层的方法类似。首先,将负极活性材料、导电剂、粘结剂及增稠剂分散于溶剂中,以形成均匀的负极浆料。其中,溶剂可以是NMP或去离子水。之后,将负极浆料涂覆在第二集流体2112表面,并经烘干等工序后,可得到负极活性物质层。
考虑到第一集流体2111可能会与电解液直接接触,进而发生各种化学反应的问题,影响电池单体以及电池的性能。
因此,如图5所示,在本申请实施例中,复合集流体211还可以包括第三集流体2113。其中,第三集流体2113和第二集流体2112分别设置在第一集流体2111的两侧。
通过在第一集流体2111的一侧设置第三集流体2113,能够防止第一集流体2111与电解液的直接接触,保证第一集流体2111在宽电位区间内不被腐蚀,进而有效保证了电池单体和电池的性能。进一步地,第一集流体2111设置在第二集流体2112和第三集流体2113的中间,且第一集流体221的厚度较大,这样第一集流体2111可以起到支撑复合集流体211的作用,从而提高了复合集流体211的抗拉强度。
同理可知,在本申请实施例中,第二集流体2112也可以防止第一集流体2111与电解液的直接接触,即第二集流体2112可以充当保护层的角色。
由于第三集流体2113起到一个隔离的作用,即防止第一集流体2111与电解液直接接触,因此,通常情况下,第三集流体2113的厚度可以尽可能小,只要能防止第一集流体2111与电解液直接接触即可。
因此,在一些实施例中,第三集流体2113的厚度可以小于第一集流体2111的厚度。
例如,第三集流体2113的厚度可以在50nm-5μm之间。通过将第三集流体2113的厚度设置在50nm-5μm之间,第三集流体2113既不影响电池单体和电池的整体厚度和体积,又防止了第一集流体2111与电解液的接触。
若第二集流体2112靠近正极侧,则第三集流体2113可以靠近负极 侧。此时,第三集流体2113的材料可以为但不限于铜。
若第二集流体2112靠近负极侧,则第三集流体2113可以靠近正极侧。此时,第三集流体2113的材料可以为但不限于铝。
由于铝的成本较低,因此,将第三集流体2113的材料设置为包括铝,能够减小电池单体以及电池的生产成本。进一步地,铝的密度较低,从而能够提高电池的能量密度。此外,第三集流体2113还可以兼顾导电层作用,以提高复合集流体211的导电性。
与第二集流体2112类似,第三集流体2113也可以是在第一集流体2111的表面进行蒸镀得到的。比如,可以在真空环境下,通过在第一集流体2111表面进行蒸镀得到第三集流体2113。或者,第三集流体2113可以是在第一集流体2111的表面进行压延得到的。
为了进一步提高复合集流体211的导电性,在一些实施例中,第三集流体2113的体积电阻率可以小于或等于8*10 -8Ω·m。
该技术方案,将第三集流体2113的体积电阻率可以小于或等于8*10 -8Ω·m,即将第三集流体2113的体积电阻率设置的较小,这样能够减小界面阻抗,从而能够提高复合集流体211的导电性,使电池实现低阻抗的性能。
在本申请实施例中,电池单体的正极极片的面积可以小于负极极片的面积。可选地,正极极片的宽度和长度都可以小于负极极片的宽度和长度。该技术方案,将负极极片的面积设置的较大,即将负极极片的容量设置的较大,使得负极极片能够承受更多的锂离子,从而能够避免析锂等不良的现象的产生,进一步提高了电池的性能。
在一些异常情况下,比如从正极极片脱嵌出的锂离子较多,但锂离子嵌入负极极片的阻力太大,导致锂离子无法等量的嵌入负极极片,从而引起析锂等现象的发生。为了避免这种情况,即为了不让太多的锂离子从正极极片脱嵌出来,可选地,在本申请实施例中,可以在正极活性物质层周围涂敷一圈非活性涂层。例如,涂敷一圈勃姆石、绝缘胶等。
本申请实施例还提供一种电池,该电池可以包括前述各实施例中的电池单体。在一些实施例中,该电池还可以包括箱体、汇流部件等其他结 构,在此不再一一赘述。
本申请实施例还提供了一种用电装置,该用电装置可以包括前述实施例中的电池,电池用于向该用电装置提供电能。
在一些实施例中,用电装置可以为图1中的车辆1、船舶或航天器。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (22)

  1. 一种电池单体,其特征在于,包括:
    至少两个电池单元(21),所述至少两个电池单元(21)中的每个电池单元包括复合集流体(211),所述至少两个电池单元(21)中相邻的两个电池单元共用所述复合集流体(211),所述复合集流体(211)包括第一集流体(2111)和第二集流体(2112);
    其中,所述第一集流体(2111)的密度小于所述第二集流体(2112)的密度,且所述第一集流体(2111)的厚度大于所述第二集流体(2112)的厚度。
  2. 根据权利要求1所述的电池单体,其特征在于,所述第一集流体(2111)的厚度小于或等于20μm。
  3. 根据权利要求2所述的电池单体,其特征在于,所述第一集流体(2111)的厚度在10μm-15μm之间。
  4. 根据权利要求1至3中任一项所述的电池单体,其特征在于,所述第二集流体(2112)的厚度在50nm-6μm之间。
  5. 根据权利要求4所述的电池单体,其特征在于,所述第二集流体(2112)为在所述第一集流体(2111)表面进行蒸镀得到的。
  6. 根据权利要求5所述的电池单体,其特征在于,所述第二集流体(2112)的厚度在500nm-2μm之间。
  7. 根据权利要求4所述的电池单体,其特征在于,所述第二集流体(2112)为在所述第一集流体(2111)表面进行压延得到的。
  8. 根据权利要求7所述的电池单体,其特征在于,所述第二集流体(2112)的厚度在4μm-6μm之间。
  9. 根据权利要求1至8中任一项所述的电池单体,其特征在于,在温度为23℃的条件下,所述第一集流体(2111)的体积电阻率大于或等于2*10 -8Ω·m且小于或等于1*10 -5Ω·m。
  10. 根据权利要求1至9中任一项所述的电池单体,其特征在于,在温度为23℃的条件下,所述第二集流体(2112)的体积电阻率小于或等于 8*10 -8Ω·m。
  11. 根据权利要求1至10中任一项所述的电池单体,其特征在于,所述复合集流体(211)的抗拉强度在450MPa-1500MPa之间。
  12. 根据权利要求1至11中任一项所述的电池单体,其特征在于,相对于所述第二集流体(2112),所述第一集流体(2111)设置在靠近正极活性物质层的一侧,所述第一集流体(2111)的材料包括铝、镍箔和不锈钢箔中的至少一种。
  13. 根据权利要求1至12中任一项所述的电池单体,其特征在于,相对于所述第一集流体(2111),所述第二集流体(2112)设置在靠近负极活性物质层的一侧,所述第二集流体(2112)的材料为铜。
  14. 根据权利要求1至13中任一项所述的电池单体,其特征在于,所述第一集流体(2111)和第二集流体(2112)之间的结合力大于或等于100N/m。
  15. 根据权利要求1至14中任一项所述的电池单体,其特征在于,所述复合集流体(211)还包括第三集流体(2113),所述第三集流体(2113)和所述第二集流体(2112)分别设置在所述第一集流体(2111)的两侧。
  16. 根据权利要求14所述的电池单体,其特征在于,所述第三集流体(2113)的厚度小于所述第一集流体(2111)的厚度。
  17. 根据权利要求16所述的电池单体,其特征在于,所述第三集流体(2113)的厚度在50nm-5μm之间。
  18. 根据权利要求15至17中任一项所述的电池单体,其特征在于,所述第三集流体(2113)的材料为铝。
  19. 根据权利要求15至18中任一项所述的电池单体,其特征在于,所述第三集流体(2113)的体积电阻率小于或等于8*10 -8Ω·m。
  20. 一种电池,其特征在于,包括:
    根据权利要求1至19中任一项所述的多个电池单体;
    箱体,所述箱体用于容纳所述多个电池单体。
  21. 根据权利要求20所述的电池,其特征在于,所述多个电池单体 之间串联连接。
  22. 一种用电装置,其特征在于,包括:根据权利要求20或21所述的电池,所述电池用于为所述用电装置提供电能。
PCT/CN2022/119634 2022-09-19 2022-09-19 电池单体、电池和用电装置 WO2024059970A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280087635.2A CN118476065A (zh) 2022-09-19 2022-09-19 电池单体、电池和用电装置
PCT/CN2022/119634 WO2024059970A1 (zh) 2022-09-19 2022-09-19 电池单体、电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119634 WO2024059970A1 (zh) 2022-09-19 2022-09-19 电池单体、电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024059970A1 true WO2024059970A1 (zh) 2024-03-28

Family

ID=90453530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119634 WO2024059970A1 (zh) 2022-09-19 2022-09-19 电池单体、电池和用电装置

Country Status (2)

Country Link
CN (1) CN118476065A (zh)
WO (1) WO2024059970A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312245A (zh) * 2007-05-24 2008-11-26 日产自动车株式会社 非水溶剂二次电池用集电体及使用该集电体的电极和电池
JP2010067580A (ja) * 2008-09-12 2010-03-25 Nissan Motor Co Ltd 双極型二次電池
CN101719562A (zh) * 2009-12-25 2010-06-02 中国科学院电工研究所 一种高电压电池的电芯
CN114843620A (zh) * 2022-05-30 2022-08-02 中国第一汽车股份有限公司 一种固态电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312245A (zh) * 2007-05-24 2008-11-26 日产自动车株式会社 非水溶剂二次电池用集电体及使用该集电体的电极和电池
JP2010067580A (ja) * 2008-09-12 2010-03-25 Nissan Motor Co Ltd 双極型二次電池
CN101719562A (zh) * 2009-12-25 2010-06-02 中国科学院电工研究所 一种高电压电池的电芯
CN114843620A (zh) * 2022-05-30 2022-08-02 中国第一汽车股份有限公司 一种固态电池及其制备方法

Also Published As

Publication number Publication date
CN118476065A (zh) 2024-08-09

Similar Documents

Publication Publication Date Title
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
US20230300952A1 (en) Electrical apparatus, battery, heating film and manufacturing method and manufacturing device thereof
WO2023245924A1 (zh) 电池以及用电装置
CN112290080A (zh) 一种可低温充电的锂离子电池
US20230299302A1 (en) Electrode assembly and processing method and device therefor, battery cell, battery and power consuming device
US20100282529A1 (en) Electrochemical cell and energy storage assembly
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
US20100273043A1 (en) Electrochemical cell with weld points connections and energy storage assembly
WO2024059970A1 (zh) 电池单体、电池和用电装置
US20230387518A1 (en) Electrode plate, battery cell, battery and electrical device
US20240266638A1 (en) Battery and power consuming device
US20230361429A1 (en) Electrode assembly, battery cell, battery, and electrical apparatus
WO2023221649A1 (zh) 电池和用电设备
CN115832606B (zh) 隔离膜、锂离子电池、电池模块、电池包及用电装置
WO2024036752A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023197133A1 (zh) 电池单体的壳体、电池单体、电池以及用电装置
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023060517A1 (zh) 一种极片、电极组件、电池单体、电池以及用电设备
CN115832193B (zh) 极片、电极组件、电池单体和电池
CN118943341A (zh) 极片、电极组件、电池单体和电池
US11862776B2 (en) Battery, power consumption device, and method and device for producing battery
WO2024087055A1 (zh) 正极极片、电极组件、电池单体、电池及用电设备
US20240088447A1 (en) Electrode assembly, battery cell, battery and electrical device
WO2023226671A1 (zh) 负极片、电极组件、电池单体、电池和用电设备
WO2023212867A1 (zh) 正极极片、电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280087635.2

Country of ref document: CN