[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024053687A1 - 継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体 - Google Patents

継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体 Download PDF

Info

Publication number
WO2024053687A1
WO2024053687A1 PCT/JP2023/032583 JP2023032583W WO2024053687A1 WO 2024053687 A1 WO2024053687 A1 WO 2024053687A1 JP 2023032583 W JP2023032583 W JP 2023032583W WO 2024053687 A1 WO2024053687 A1 WO 2024053687A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
joint device
weighted
power source
target value
Prior art date
Application number
PCT/JP2023/032583
Other languages
English (en)
French (fr)
Inventor
善明 小谷
拓洋 小野
里樹 松本
寛 太田
正洋 岡野
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2024053687A1 publication Critical patent/WO2024053687A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/64Knee joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical

Definitions

  • the present invention relates to a joint device, a knee joint device, a method for controlling a joint device, a control program for a joint device, and a storage medium storing the control program.
  • Patent Document 1 describes an electric prosthetic leg equipped with a transmission having two power transmission paths with different gear ratios in order to smoothly ascend and descend stairs.
  • this electric prosthetic leg it is stated that the power transmission path is changed when the knee joint mechanism is extended with a load applied to the electric prosthesis during climbing and when the knee joint mechanism is extended with no load applied. has been done.
  • the present invention provides a joint device that can perform appropriate control both in a loaded state and in a non-loaded state, a method for controlling the joint device, a control program for the joint device, and a storage medium storing the control program.
  • the present invention a first member; a second member; a connecting part that connects the first member and the second member so that the angle formed by the second member can be changed;
  • a joint device comprising: an expansion/contraction device capable of expanding and contracting the angle formed by the first member and the second member,
  • the expansion/contraction device is comprising a power source, a power transmission section that transmits the power of the power source, and a control section that controls the power source
  • the coupling device includes: Provided to transition between a weighted state that receives external weighting and a non-weighted state that does not receive weighting,
  • the control unit includes: (A) When in the loaded state, Controlling the power source based on a torque target value that is a target value of torque that is correlated to the torque that expands or contracts the angle formed by the expansion/contraction device, (B) When in the non-weighted state, The power source is controlled based on a position target value that is a position target value that is correlated to the angle
  • the present invention a first member; a second member; a connecting part that connects the first member and the second member so that the angle formed by the second member can be changed;
  • a joint device comprising: an expansion/contraction device capable of expanding and contracting the angle formed by the first member and the second member,
  • the expansion/contraction device is a power source, a power transmission section that transmits the power of the power source, an intermittent mechanism disposed on a power transmission path of the power transmission section to switch off and connect the power on the power transmission path, the power source and the intermittent a control unit that controls the mechanism;
  • the coupling device includes: Provided to transition between a weighted state that receives external weighting and a non-weighted state that does not receive weighting,
  • the control unit includes: (A) When in the loaded state, controlling the disconnection mechanism to a connected state that connects the power transmission path; Controlling the power source so that power is not generated or stopped, (B) When in the non-weighted state, controlling the disconnection mechanism to
  • the present invention a first member; a second member; a connecting part that connects the first member and the second member so that the angle formed by the second member can be changed;
  • a method for controlling a joint device comprising: an expansion/contraction device capable of expanding and contracting the angle formed by the first member and the second member,
  • the expansion/contraction device is comprising a power source and a power transmission section that transmits the power of the power source
  • the coupling device includes: Provided to transition between a weighted state that receives external weighting and a non-weighted state that does not receive weighting,
  • the control method includes: (A) When in the loaded state, controlling the power source based on a torque target value that is a target value of torque that is correlated to the torque that expands or contracts the angle formed by the expansion/contraction device; (B) When in the non-weighted state, The method further includes the step of controlling the power source based on a position target value that is a position target value that correlates to the angle formed by
  • the present invention a first member; a second member; a connecting part that connects the first member and the second member so that the angle formed by the second member can be changed;
  • a control program for a joint device comprising: an expansion/contraction device capable of expanding and contracting the angle formed by the first member and the second member,
  • the expansion/contraction device is comprising a power source and a power transmission section that transmits the power of the power source
  • the coupling device includes: Provided to transition between a weighted state that receives external weighting and a non-weighted state that does not receive weighting,
  • the control program includes: (A) When in the loaded state, controlling the power source based on a torque target value that is a target value of torque that is correlated to the torque that expands or contracts the angle formed by the expansion/contraction device; (B) When in the non-weighted state, A computer is caused to execute the step of controlling the power source based on a position target value that is a position target value that correlates to the angle
  • the present invention A computer-readable storage medium that stores the control program.
  • control can be performed appropriately both in a loaded state and in a non-loaded state.
  • FIG. 1 is a perspective view of the electric prosthetic leg 1 according to the first embodiment, viewed diagonally from the front.
  • FIG. 1 is an exploded perspective view of the electric prosthetic leg 1.
  • FIG. FIG. 1 is a cross-sectional view of the electric prosthetic leg 1.
  • FIG. FIG. 3 is a cross-sectional view of the expansion and contraction device 140.
  • FIG. 2 is a cross-sectional view of a main part showing a bent state of the electric prosthetic leg 1.
  • FIG. FIG. 2 is a cross-sectional view of the main parts of the electric prosthetic leg 1 showing the maximum bending state. It is a sectional view of a two-way clutch.
  • FIG. 3 is a perspective view of a retainer 282.
  • FIGS. 2A and 2B are diagrams showing the operation of the operating mechanism 240, in which (A) is a diagram showing a state where the intermittent part 212 and the intermittent part 222 are off, and (B) is a diagram showing a state where the intermittent part 212 is off and the intermittent part 222 is on. , (C) is a diagram showing a state in which the intermittent section 212 is on and the intermittent section 222 is off. (A) is a cross-sectional view showing a state in which the interrupting portion 222 is off, and (B) is a view showing the position of the operating rod 241 at that time.
  • (A) is a cross-sectional view showing a state in which the interrupting portion 222 is operated from off to on, and (B) is a view showing the position of the operating rod 241 at that time.
  • (A) is a sectional view showing the normal rotation ON state of the interrupting portion 222, and (B) is a view showing the position of the operating rod 241 at that time.
  • (A) is a sectional view showing the reverse ON state of the intermittent portion 222, and (B) is a view showing the position of the operating rod 241 at that time.
  • (A) is a cross-sectional view showing a state in which the interrupting portion 222 is operated from on to off, and (B) is a view showing the position of the operating rod 241 at that time.
  • FIG. 2 is a sectional view of an electric prosthetic leg 1 according to a second embodiment.
  • 1 is a functional block diagram of an electric prosthetic leg 1.
  • FIG. FIG. 3 is a diagram illustrating the motion of the human and the electric prosthetic leg (ascending motion) when ascending the stairs.
  • FIG. 3 is a diagram illustrating the motion of a human and an electric prosthetic leg when walking on a flat surface (a walking motion on a flat surface).
  • (A) is a diagram illustrating a knee angle, (B) a thigh angle, and (C) a lower leg angle.
  • This summarizing each phase and control method of the ascending mode and the level ground/descending mode. It is a figure explaining torque control. It is a diagram explaining early swing phase_method 1.
  • FIG. 3 is a diagram illustrating the late swing phase.
  • FIG. 6 is a diagram illustrating transitions between repetitive motions of early swing phase, late swing phase, and stance phase.
  • 3 is a diagram showing an example of an electric circuit 16 connecting a battery B and a motor M.
  • FIG. 3 is a table explaining the states of switch SW1, transistors Tr1 to Tr3, and motor M in each walking mode. This is a table explaining the ON/OFF states of transistors Tr1 to Tr3 according to the user's weight.
  • the front-back direction, left-right direction, and up-down direction are defined based on the user of the electric prosthetic leg.
  • the front of the electric prosthesis is shown as Fr, the back as Rr, the left side as L, the right side as R, the upper side as U, and the lower side as D.
  • the electric prosthetic leg 1 of this embodiment is a prosthetic leg that is attached to the leg of a person without a knee, and includes a below-knee member 110 located below the knee, and a lower-knee member 110 located below the knee.
  • an above-knee member 120 that is attached to and located above the knee; a knee joint mechanism 130 that connects the below-knee member 110 and the above-knee member 120 so that the angle formed by them can be changed; and the below-knee member 110 and the above-knee member 120.
  • an expansion/contraction device 200 that can expand and reduce the angle formed by the below-knee member 110 and the above-knee member 120; It includes a buffer mechanism 160 for buffering, a sensor device 270, and a battery B for supplying power to the expansion/contraction device 200 and the like.
  • the above-knee member 120 includes an adapter 121 connected to a socket (not shown), and an above-knee base 126 to which the adapter 121 is attached to an upper wall 125.
  • the socket is a joint member provided on the thigh, and by connecting the adapter 121 to the socket, the above-knee member 120 is integrated with the thigh.
  • the below-knee member 110 includes a box-shaped main frame 111 that is open at the top and rear, side covers 112 that cover both left and right sides of the main frame 111, and a removable rear cover 113 that covers the rear opening of the main frame 111 so that it can be opened and closed. and an adapter 122 attached to the lower surface of the main frame 111.
  • the above-knee member 120 is provided on the upper part of the main frame 111 of the below-knee member 110 via a connecting shaft 135 that constitutes a knee joint mechanism 130, and the adapter 122 of the main frame 111 has a leg portion extending downward. 114 are connected.
  • an expansion/contraction device 200 capable of enlarging and contracting the angle formed by the below-knee member 110 and the above-knee member 120 is provided.
  • the expansion/contraction device 200 is an expansion/contraction device 140 that can expand and contract the angle formed by the below-knee member 110 and the above-knee member 120 by expanding and contracting.
  • the telescopic device 140 extends in the vertical direction, and is mechanically connected to the above-knee member 120 on one side in the extending direction, and mechanically connected to the below-knee member 110 on the other side in the extending direction, as will be described in detail later. be done.
  • “mechanically connected” is a concept that includes a configuration in which the components are directly connected and a configuration in which they are connected via another member.
  • the telescopic device 140 is connected to a motor M that outputs rotational power, a transmission T that transmits the power of the motor M, and a transmission T that can transmit power.
  • a spindle unit SP that converts the rotational power output from the transmission into translational motion (telescopic motion); a first disconnection mechanism 210 and a second disconnection mechanism 220 provided in the transmission T; and a first disconnection mechanism 210 and a second disconnection mechanism. 220, and a control unit 10 that controls the motor M and operates the operating mechanism 240 to control the first disconnection mechanism 210 and the second disconnection mechanism 220.
  • the motor M is, for example, a permanent magnet electric motor, and is arranged behind and above the transmission T, and the spindle unit SP is arranged in front of and above the transmission T.
  • the spindle unit SP is arranged on the opposite side of the transmission T from the motor M on the power transmission path.
  • the motor M is a gear mechanism built-in motor that includes a motor main body 171 and a gear mechanism 172 that reduces the output rotation of the motor main body 171.
  • the spindle unit SP includes a spindle 173 formed with a male thread and a sleeve 174 formed with a female thread. As the spindle 173 rotates, the sleeve 174 moves in translation along the axis of the spindle 173.
  • the spindle 173 receives the rotational power of the motor M transmitted by the transmission T and performs rotational motion.
  • the sleeve 174 is supported by the unit case 250 so as to be non-rotatable and movable up and down. Therefore, when the spindle 173 rotates to one side in response to the rotational power of the motor M transmitted by the transmission T, the sleeve 174 is translated away from the transmission T, and when the spindle 173 rotates to the other side, the sleeve 174 rotates to the other side. 174 is translated so as to approach the transmission T.
  • translational movement of the sleeve 174 away from the transmission T is sometimes referred to as an extension operation of the spindle unit SP, and conversely, translational movement of the sleeve 174 toward the transmission T is referred to as an extension operation of the spindle unit SP. This is sometimes called a reduction operation.
  • the distance between the sleeve 174 and the transmission T expands or contracts depending on the rotational direction of the spindle 173.
  • the upper end of the sleeve 174 is connected to the above-knee member 120 via a link member 175.
  • the below-knee member 110 and the above-knee member 120 rotate about the articulating shaft 135. This changes the angle formed by the above-knee member 120 and the below-knee member 110.
  • the angle formed by the above-knee member 120 and the below-knee member 110 is defined by the first imaginary line L1 connecting the center of the connecting shaft 135 of the knee joint mechanism 130 and the adapter 121 of the above-knee member 120, and the angle between the knee joint mechanism 130 and the below-knee member 110. This is an angle defined by the center of the connecting shaft 135 and the second imaginary line L2 extending vertically downward through the below-knee member 110.
  • one side of one circumference is a first angle ⁇ 1
  • the other side is a second angle ⁇ 2
  • the second angle ⁇ 2 is the smaller of the first angle ⁇ 1 and the second angle ⁇ 2 in the range of relative movement between the below-knee member 110 and the above-knee member 120
  • the use of the electric prosthetic leg 1 The angle formed by the back side of the person's knee (back knee angle) is the second angle ⁇ 2.
  • the first angle ⁇ 1 takes a value of about 175[deg] to 300[deg]
  • the second angle ⁇ 2 takes a value of about 60[deg] to 185[deg].
  • FIG. 3 shows a state in which the knee joint mechanism 130 is extended, and the first angle ⁇ 1 is approximately 175 [deg], and the second angle ⁇ 2 is approximately 185 [deg].
  • FIG. 5 is a sectional view of a main part showing the bent state of the electric prosthetic leg 1, in which the first angle ⁇ 1 is about 240 [deg], and the second angle ⁇ 2 is about 120 [deg].
  • FIG. 6 is a cross-sectional view of the main part of the electric prosthetic leg 1 showing the maximum bending state, and the first angle ⁇ 1 is about 300 [deg], and the second angle ⁇ 2 is about 60 [deg].
  • the expansion/contraction device 200 of the present embodiment expands/contracts the expansion/contraction device 140 by converting the rotational movement into the expansion/contraction movement by the spindle unit SP of the expansion/contraction device 140, and accordingly the expansion/contraction between the below-knee member 110 and the above-knee member 120.
  • it does not have a part that expands and contracts (moves) like the expansion and contraction device 140 (spindle unit SP), and a gear mesh is used between the below-knee member 110 and the above-knee member 120.
  • a mechanism (or the like) may be provided to enlarge or reduce the angle formed by the below-knee member 110 and the above-knee member 120.
  • the transmission T includes a first transmission mechanism T1 having a first transmission section that transmits the power of the motor M to the spindle unit SP at a first gear ratio;
  • the second transmission mechanism T2 includes a second transmission section that transmits transmission to the spindle unit SP at a second transmission ratio different from the transmission ratio.
  • the first transmission mechanism T1 and the second transmission mechanism T2 are switched between a power cutoff state and a power connection state by disconnection mechanisms 210 and 220.
  • the first speed change ratio and the second speed change ratio may be different as long as they are different, and one of the first speed change mechanism T1 and the second speed change mechanism T2 may be a speed reduction mechanism and the other speed increase mechanism, or either One may be a constant velocity mechanism and the other may be a speed reduction mechanism or a speed increase mechanism, both may be a speed reduction mechanism, or both may be a speed increase mechanism.
  • the first gear ratio is a rotation speed on the side opposite to the motor M (spindle This is the ratio of the rotation speed after shifting, which is the rotation speed of the unit SP side).
  • the second gear ratio is a rotation speed on the side opposite to the motor M (spindle This is the ratio of the rotation speed after shifting, which is the rotation speed of the unit SP side).
  • the first gear ratio of the first transmission mechanism T1 when the first gear ratio of the first transmission mechanism T1 is smaller than 1, the rotation speed on the side opposite to the motor M (spindle unit SP side) decreases compared to the rotation speed on the motor M side, and the torque increases.
  • the second speed ratio of the second speed change mechanism T2 is larger than 1, the rotation speed on the side opposite to the motor M (spindle unit SP side) increases more than the rotation speed on the motor M side, and the torque decreases.
  • the first speed change ratio is set to be smaller than 1
  • the second speed change ratio is set to be larger than 1
  • the first speed change mechanism T1 is arranged below the second speed change mechanism T2.
  • the first transmission mechanism T1 and the second transmission mechanism T2 include a first shaft 181 rotatably arranged on the downward extension of the output shaft 172a of the gear mechanism section 172, and a first shaft 181 rotatably arranged on the downward extension of the spindle 173 of the spindle unit SP.
  • a second shaft 182 that is rotatably arranged is included.
  • the first shaft 181 is integrally rotatably connected to the output shaft 172a of the gear mechanism section 172 of the motor M via a coupling 187 that allows an axial center error.
  • the second shaft 182 is integrally rotatably connected to the spindle 173 of the spindle unit SP. Note that the second shaft 182 of this embodiment is integrated with the spindle 173 of the spindle unit SP, but the second shaft 182 is connected to the spindle 173 of the spindle unit SP using spline fitting or coupling. You may.
  • the first transmission mechanism T1 includes a first transmission section composed of a first drive gear 183 and a first driven gear 184 that mesh with each other.
  • the first drive gear 183 is rotatably supported by the first shaft 181
  • the first driven gear 184 is rotatably supported by the second shaft 182.
  • the rotation axes of the first driven gear 184 and the second shaft 182 coincide with each other.
  • the first transmission mechanism T1 of this embodiment is a deceleration transmission mechanism in which the first drive gear 183 has a smaller diameter than the first driven gear 184, and can extend and retract the spindle unit SP at low speed and high torque.
  • the second transmission mechanism T2 includes a second transmission section composed of a second drive gear 185 and a second driven gear 186 that mesh with each other.
  • the second drive gear 185 is supported by the first shaft 181 so as to be integrally rotatable, and the second driven gear 186 is supported by the second shaft 182 so as to be relatively rotatable.
  • the second driven gear 186 and the second shaft 182 have the same rotational axis.
  • the second transmission mechanism T2 of this embodiment is a speed increasing transmission mechanism in which the second drive gear 185 has a larger diameter than the second driven gear 186, and can extend and contract the spindle unit SP at high speed and with low torque. .
  • the second transmission mechanism T2 is arranged above the first transmission mechanism T1, but the second transmission mechanism T2 may be arranged below the first transmission mechanism T1.
  • the first shaft 181 and the second shaft 182 of this embodiment are each formed integrally from the beginning, it is also possible to form the upper and lower gear support parts as separate bodies and then integrally connect (combine) them. good.
  • the first disconnection mechanism 210 includes a disconnection section 212 provided between the first driven gear 184 and the second shaft 182.
  • the second disconnection mechanism 220 includes a disconnection section 222 provided between the second driven gear 186 and the second shaft 182.
  • These intermittent parts 212 and 222 have a common configuration and can be switched between a cutoff state in which power transmission is cut off and a power transmission enabled state in which rotational power in both one direction and the other direction can be transmitted. It is composed of Note that details of the intermittent parts 212 and 222 will be described later.
  • the operating mechanism 240 includes an operating rod 241 that is capable of intermittent operation of the intermittent parts 212 and 222, and a servo motor 242 that linearly moves the operating rod 241.
  • the second shaft 182 is a hollow shaft having an internal space S2 extending in the rotational axis direction (also referred to as the vertical direction), and the operating rod 241 is disposed in this internal space S2.
  • the operating rod 241 is provided with a rack 241a at its lower end exposed from the internal space S2.
  • the operating rod 241 is supported by bearings B4 and B5 disposed in the internal space S2 so that it cannot rotate relative to the rack 241a and can move forward and backward integrally in the direction of the rotation axis.
  • a lid member 188 having an insertion hole through which the operating rod 241 is inserted is screwed into the lower end of the second shaft 182 . The lid member 188 prevents foreign matter from entering the internal space S2 and facilitates replacement of the operating rod 241.
  • a pinion 243 provided on an output shaft 242a of a servo motor 242 is engaged with the rack 241a, and the vertical position of the operating rod 241 is switched in accordance with the drive of the servo motor 242.
  • Small diameter portions 241b1, 241b2 and large diameter portions 241c1 to 241c3, which will be described later, are formed on the outer circumference of the operating rod 241. operates the intermittent parts 212 and 222 intermittently. Note that details of the operating mechanism 240 will be described later.
  • the unit case 250 includes an upper case 251, a middle case 252, and a lower case 253. These upper case 251, middle case 252, and lower case 253 are formed separately from each other.
  • the upper case 251 houses the spindle unit SP.
  • the space S1 formed by the middle case 252 and the lower case 253 includes the second drive gear 185 and the second driven gear 186, the first drive gear 183 and the first driven gear 184, the intermittent parts 212 and 222, and the operating mechanism 240. A portion of it is accommodated.
  • the unit case 250 has a three-stage structure of an upper case 251, a middle case 252, and a lower case 253, and can not only casing the transmission T and spindle unit SP, but also unitize the telescopic device 140 including the motor M.
  • the unit case 250 is attached to the main frame 111 via a bracket (not shown).
  • the mechanical stop mechanism 150 includes a stopper member 151 provided on the below-knee member 110, a first contact portion 152 provided on the above-knee base 126 of the above-knee member 120, and A second contact portion 153 is provided.
  • the first contact portion 152 contacts the stopper member 151, thereby preventing the knee joint mechanism 130 from bending in the opposite direction. Ru.
  • the second contact portion 153 contacts the stopper member 151, so that the knee joint mechanism 130 is further bent from the maximum bending state. things are regulated. Note that while walking with the electric prosthetic leg 1, the state of maximum flexion shown in FIG. 6 does not occur.
  • the buffer mechanism 160 is provided on the above-knee member 120 side, and includes a pressing portion 162 that can press the upper end of the link member 175 with the urging force of a spring 161 (for example, a compression coil spring).
  • a spring 161 for example, a compression coil spring.
  • a lower end portion of the link member 175 is rotatably connected to the sleeve 174 of the spindle unit SP via a first rotating portion 176, and an upper end portion of the link member 175 is connected to the above-knee member 120 via a second rotating portion 177. are rotatably connected via.
  • a cam portion 178 is formed at the upper end of the link member 175.
  • the cam portion 178 has a small diameter outer circumferential portion 178a having a small diameter centered on the second rotating portion 177, a large diameter outer circumferential portion 178b having a long distance from the second rotating portion 177, a small diameter outer circumferential portion 178a, and a large diameter outer circumferential portion. 178b and a connecting outer circumferential portion 178c that connects the connecting portions 178b without a step.
  • the cam portion 178 moves from the large diameter outer peripheral portion 178b to the large diameter outer peripheral portion 178b, the cam portion 178 comes into contact with the pressing portion 162, and the large diameter outer peripheral portion 178b pushes the pressing portion 162 against the biasing force of the spring 161. In other words, the cam portion 178 is pressed in the return direction by the urging force of the spring 161. As a result, the biasing force of the spring 161 acts as resistance, and the impact when the first contact portion 152 contacts the stopper member 151 is buffered.
  • Each of the intermittent parts 212 and 222 has a common configuration and can be switched between a cutoff state in which power transmission is cut off and a power transmission enabled state in which rotational power in both one direction and the other direction can be transmitted.
  • Each disconnection section 212, 222 of this embodiment is configured using a two-way clutch 280 with a forced release function, as shown in FIG.
  • the two-way clutch 280 includes a plurality of rollers 281 (three in this embodiment) disposed between the outer circumferential surface of the second shaft 182 and the inner circumferential surface of the gears 184 and 186, and a plurality of rollers 281 arranged in a predetermined manner.
  • a retainer 282 held at intervals; a plurality of (three in this embodiment) pins 283 that penetrate the second shaft 182 in the radial direction and are operated by the operating mechanism 240 to a forced free position and a forced free release position; A plurality of (three in this embodiment) guides 284 are provided on the retainer 282 and define the relative rotational position of the retainer 282 with respect to the second shaft 182 when the pin 283 is in the forced free position.
  • the roller 281 may be a ball or a sprag.
  • the radial distance A between the outer peripheral surface of the second shaft 182 and the inner peripheral surface of the gears 184 and 186 is smaller than the diameter B of the roller 281. Further, flat portions 182a are formed on the outer peripheral portion of the second shaft 182 at predetermined intervals in the circumferential direction, and the interval A is larger than the diameter B at the center side of the flat portion 182a in the circumferential direction.
  • the roller 281 meshes with the outer peripheral surface of the second shaft 182 and the inner peripheral surface of the gears 184 and 186 (engaged state).
  • the shaft 182 and the gears 184 and 186 are connected to be rotatable together in two directions (forced free release state).
  • the retainer 282 has a ring shape that can rotate relative to the second shaft 182 and the gears 184, 186, and includes a plurality of roller holding parts 282a that hold the rollers 281 and a guide 284. It has a plurality of guide holding parts 282b.
  • a plurality of rubber balls 282c are embedded in the outer peripheral surface of the retainer 282 at predetermined intervals in the circumferential direction. These rubber balls 282c create appropriate friction between the gears 184, 186 and the retainer 282, thereby preventing unintended idling in the forced free release state.
  • the member that generates friction between the gears 184, 186 and the retainer 282 is not limited to the rubber balls 282c, but may be an O-ring.
  • the pin 283 has a conical convex portion 283a on the radially outer end
  • the guide 284 has a conical convex portion 283a on the radially inner end surface that fits (engages) with the convex portion 283a. It has a recess 284a.
  • the operating rod 241 includes, in order from above, a first large diameter portion 241c1, a first small diameter portion 241b1, a second large diameter portion 241c2, a second small diameter portion 241b2, and a third large diameter portion 241c3. They are formed at predetermined lengths and intervals.
  • the operating rod 241 is provided to be able to control the two interrupting parts 212 and 222 simultaneously, but may be provided separately for each of the interrupting parts 212 and 222.
  • the intermittent parts 212 and 222 are switched by the operating mechanism 240 between a forced free state (hereinafter referred to as an OFF state) and a forced free release state (hereinafter referred to as an ON state).
  • a forced free state hereinafter referred to as an OFF state
  • a forced free release state hereinafter referred to as an ON state
  • FIG. 11 show that the operating rod 241 is moved from a position where the second large diameter portion 241c2 pushes out the pin 283 of the interrupted portion 222 in the outer diameter direction, and the first small diameter portion 241b1 moves in the inner diameter direction of the pin 283.
  • the pin 283 has already moved in the inner diameter direction, but in reality, at the timing when the second shaft 182 and the second driven gear 186 start to rotate relative to each other, the retainer 283 rotates together with the second driven gear 186.
  • the guide 284 pushes the pin 283 back in the radial direction on the inclined surface of the recess 284a.
  • the operating rod 241 is moved from a position where the first small diameter portion 241b1 allows the pin 283 of the interrupting portion 222 to return in the inner radial direction to a position where the first large diameter portion 241c1 becomes the pin.
  • the retainer 283 is moved to the position where it is pushed out in the radial direction, the convex part 283a of the pin 283 fits into the concave part 284a of the guide 284, and the relative rotational position of the retainer 282 with respect to the second shaft 182 is adjusted by the guiding action of the pin 283 and the guide 284. is fixed in a predetermined position.
  • the interrupting parts 212, 222 and the operating mechanism 240 are provided on the second shaft 182 side, but as in the second embodiment shown in FIG. 15, they are provided on the first shaft 181 side. It's okay. That is, in the electric prosthetic leg 1 of the second embodiment, the interrupting portion 212 of the first disconnecting mechanism 210 is provided between the first drive gear 183 and the first shaft 181, and the interrupting portion 222 of the second disconnecting mechanism 220 is provided between the first driving gear 183 and the first shaft 181. , are provided between the second drive gear 185 and the first shaft 181. Since the other configurations are generally the same or similar to the first embodiment, the following description will also be explained using the electric prosthetic leg 1 of the first embodiment as an example.
  • the sensor device 270 includes a knee angle sensor 271 provided in the knee joint mechanism 130 (articulation shaft 135), a load sensor 272 built in the adapter 122, and a sensor device disposed near the motor M. It includes an IMU (Inertial Measurement Unit) 273 mounted on a board (not shown).
  • IMU Inertial Measurement Unit
  • the knee angle sensor 271 detects the knee angle ( ⁇ [deg]).
  • the knee angle ( ⁇ [deg]) is the angle formed by the extension line L11 of the above-knee member 120 passing through the articulation axis 135 and the below-knee member 110, as shown in FIG. 19(A).
  • the knee angle ⁇ is an angle obtained by subtracting the second angle ⁇ 2 described above from 180 [deg], and is a supplementary angle of the second angle ⁇ 2.
  • the knee angle ⁇ takes a negative value
  • the knee angle ⁇ takes a positive value (+deg). Take. Therefore, since the possible range of the second angle ⁇ 2 is approximately 60 [deg] to 185 [deg], the possible range of the knee angle ⁇ is approximately -5 [deg] to 120 [deg].
  • the load sensor 272 detects the load applied to the electric prosthetic leg 1, in other words, the load from the user of the electric prosthetic leg 1.
  • the load sensor 272 is set so that the tensile load takes a positive value and the compressive load takes a negative value. Therefore, in the loaded state where the electric prosthetic leg 1 is in contact with the ground (hereinafter sometimes referred to as the stance phase), an external load (compressive load) is applied to the electric prosthetic leg 1, so it takes a negative value, and the electric prosthetic leg 1 separates from the ground.
  • the non-loaded state hereinafter sometimes referred to as swing phase
  • a tensile load is applied due to the own weight of the electric prosthetic leg 1, so it takes a positive value.
  • the IMU 273 acquires 3-axis angular velocity and 3-axis acceleration. Assuming that the three axes of the orthogonal coordinate system are the X, Y, and Z axes, the IMU 273 has an X-axis angular velocity ⁇ x [deg/s], a Y-axis angular velocity ⁇ y [deg/s], and a Z-axis angular velocity ⁇ z [deg/s]. , X-axis acceleration Ax [m/s 2 ], Y-axis acceleration Ay [m/s 2 ], and Z-axis acceleration Az [m/s 2 ].
  • the control unit 10 drives the electric prosthetic leg 1 in a climbing mode (to be described later) when the user walks up stairs, and drives the electric prosthetic leg 1 when the user walks on flat ground or descends the stairs. 1 is driven in a level ground/descending mode which will be described later.
  • the control unit 10 receives information from the sensor device 270 and controls the electric prosthetic leg 1 in each mode. More specifically, information from the knee angle sensor 271, load sensor 272, and IMU 273 is input to the control unit 10.
  • the control unit 10 acquires the knee angle ⁇ from the knee angle sensor 271 and the load from the load sensor 272, and calculates the lower leg angle ⁇ s from the 3-axis angular velocity and the 3-axis acceleration detected by the IMU 273. Further, the control unit 10 calculates the thigh angle ⁇ t from the knee angle ⁇ and the lower leg angle ⁇ s. In addition, the control unit 10 can calculate the angular velocities and angular accelerations of the knee angle ⁇ , the crus angle ⁇ s, and the thigh angle ⁇ t, as well as the accelerations of the below-knee member 110 and the above-knee member 120.
  • the lower leg angle ⁇ s is defined as the relationship between the center line extending in the extending direction of the below-knee member 110 centered on the articulating shaft 135 and the vertical line VL1 passing through the articulating shaft 135, as shown in FIG. 19(C).
  • the lower leg angle ⁇ s takes a negative value (-deg) when the lower knee member 110 is located in front of the vertical line VL1, and the lower leg angle ⁇ s takes a negative value (-deg) when the lower knee member 110 is located behind the vertical line VL1.
  • the angle ⁇ s takes a positive value (+deg).
  • the thigh angle ⁇ t is defined by the vertical line VL2 passing through the hip joint 124 of the thigh 123 to which the above-knee member 120 is attached, and the center extending in the extending direction of the above-knee member 120.
  • the thigh angle ⁇ t takes a negative value (-deg) when the above-knee member 120 is in front of the vertical line VL2, and the above-knee member 120 is behind the vertical line VL2.
  • Sometimes the thigh angle ⁇ t takes a positive value (+deg).
  • control unit 10 controls the operating mechanism 240 (servo motor 242) that switches the first intermittent mechanism 210 and the second intermittent mechanism 220 between a cutoff state and a power transmittable state based on this information, and A motor M that outputs power for extending and bending the electric prosthetic leg 1 is controlled.
  • operating mechanism 240 servo motor 242
  • a motor M that outputs power for extending and bending the electric prosthetic leg 1 is controlled.
  • the control unit 10 controls a phase determination unit 11 that determines whether the electric prosthetic leg 1 is in the stance phase or the swing phase, and transitions to either the ascending mode or the level ground/descending mode.
  • the mode acquisition unit 12 includes a mode acquisition unit 12 that anticipates and acquires a certain situation, and a motor control unit 13 that controls a motor M that expands and contracts the expansion device 140 and a servo motor 242 (operation mechanism 240) that drives the operation rod 241.
  • the phase determination unit 11 determines that the load detected by the load sensor 272 is equal to or higher than a first threshold value (for example, -90 [N]) to be in the swing leg phase, and when the load is equal to or less than a second threshold value (for example, -110 [N]), the phase is determined to be in the stance leg phase. It is determined to be a phase. In addition, the phase determination unit 11 determines that the transition from the stance phase to the swing phase has occurred when the state has been determined to be the stance phase, and when the value exceeds a first threshold value (for example, ⁇ 90 [N]).
  • a first threshold value for example, -90 [N]
  • the state is determined to be the idle leg phase and the value becomes equal to or less than the second threshold value (for example, -110 [N])
  • the second threshold value for example, -110 [N]
  • the first threshold value and the second threshold value may be the same value, but it is preferable that hysteresis is provided to set them to different values. This can reduce hunting.
  • the mode acquisition unit 12 predicts and acquires the transition from the ascending mode to the level ground/descending mode, and the transition from the level ground/descending mode to the ascending mode, based on predetermined conditions.
  • the mode acquisition unit 12 allows mode transition by using a changeover switch provided on the electric prosthetic leg 1 or an electric switch that receives signals from a user's terminal device, such as a smartphone, mobile phone, tablet, or smart watch. may be obtained.
  • the motor control unit 13 controls the motor M to extend and contract the extension device 140 to extend and bend the electric prosthetic leg 1. Further, the motor control unit 13 controls the servo motor 242 to move the operating rod 241 to switch the first disconnection mechanism 210 and the second disconnection mechanism 220 between a disconnected state and a power transmittable state.
  • the power transmission possible state there is a transmission state in which power is transmitted via the first transmission mechanism T1 (hereinafter referred to as a high torque side connection state), and a transmission state in which power is transmitted through the second transmission mechanism T2. (hereinafter referred to as the high-speed side connection state).
  • the electrically powered prosthetic leg 1 configured in this way can smoothly ascend stairs, whereas conventional passive prosthetic legs equipped with a passive damper had to go up one step at a time with the non-prosthetic leg (healthy leg). It becomes possible.
  • the climbing mode is the mode when the user walks as if climbing stairs.
  • FIG. 17 is a diagram showing the operation of the human and the electric prosthetic leg (ascending operation) when ascending the stairs.
  • FIG. 17(G) is a diagram showing the transition phase from the early swing phase to the late swing phase and the late swing phase
  • FIG. 17(H) is a diagram showing the transition phase from the late swing phase to the stance phase and the stance phase.
  • the knee joint mechanism 130 is bent when a load is applied to the electric prosthetic leg 1 when climbing the stairs with the electric prosthetic leg 1 forward. A large amount of power is required to extend from.
  • the motor control unit 13 drives the servo motor 242 to bring the first disconnection mechanism 210 and the second disconnection mechanism 220 into the high-torque side connection state (as shown in FIG. 20).
  • stance phase In this high-torque side connected state, when the motor M is rotated in the extension direction, that is, in the direction that enlarges the second angle ⁇ 2, the power of the motor M is transmitted to the first shaft 181, the first drive gear 183, and the first driven gear. 184, the signal is transmitted to the disconnection section 212 of the first disconnection mechanism 210, the second shaft 182, and the spindle unit SP.
  • the sleeve 174 moves to extend away from the transmission T, and the above-knee member 120 to which the sleeve 174 is connected rotates around the connecting shaft 135 relative to the below-knee member 110 to which the transmission T is attached.
  • the power for this extension is the power that is made into a high torque when decelerated by the first transmission mechanism T1, so when moving the electric prosthetic leg 1 forward and climbing the stairs, a large load is applied to the electric prosthetic leg 1. Even when the knee joint mechanism 130 is bent, it is possible to reliably extend the knee joint mechanism 130 from a bent state.
  • the knee joint mechanism 130 is bent from the extended state while a load is applied to the healthy leg, as shown in FIGS. There is a need. At this time, it is necessary to quickly fold the electric prosthetic leg 1 and then quickly land on the next step.
  • the knee joint mechanism 130 is bent from an extended state, a large amount of power is not required, but quick action is required.
  • the motor control unit 13 drives the servo motor 242 to control the first intermittent mechanism 210 and the second intermittent
  • the mechanism 220 is transitioned from the high-torque side connected state to the high-speed side connected state (transition phase (stance leg ⁇ early swing leg) in FIG. 20), and during this period, the motor M is brought into a non-driving state.
  • the non-driving state of the motor M means that the motor M is controlled so that no power is generated or the motor M is stopped.
  • the subsequent early swing phase (early swing phase in FIG.
  • the motor M in this high rotation side connected state, the motor M is rotated in the bending direction opposite to the extension direction ((E) to (G) in FIG. 17). ). Then, the power of the motor M is transmitted to the first shaft 181, the second drive gear 185, the second driven gear 186, the disconnection section 222 of the second disconnection mechanism 220, the second shaft 182, and the spindle unit SP.
  • the sleeve 174 contracts so as to approach the transmission T, and the below-knee member 110 to which the transmission T is attached rotates around the connecting shaft 135 relative to the above-knee member 120 to which the sleeve 174 is connected. As a result, the knee joint mechanism 130 bends.
  • the motor M is once brought to a non-driving state (transition phase (early swing phase ⁇ late swing phase) in FIG. 20). Then, in the late swing phase (FIGS. 17(G) to (H)), the motor M is rotated in the extension direction in this high rotation side connected state (the late swing phase in FIG. 20). Then, the power of the motor M is transmitted to the first shaft 181, the first drive gear 183, the first driven gear 184, the disconnection section 222 of the first disconnection mechanism 210, the second shaft 182, and the spindle unit SP.
  • the sleeve 174 is extended away from the transmission T, the above-knee member 120 to which the sleeve 174 is connected rotates about the connecting shaft 135, and the knee joint mechanism 130 is extended. Since the power for bending and extending the leg during the free leg is reduced in torque when the speed is increased by the second transmission mechanism T2, it is possible to quickly bend and extend the knee joint mechanism 130.
  • the motor control unit 13 drives the servo motor 242 to switch the first disconnection mechanism 210 and the second disconnection mechanism 220 from the high rotation side connected state.
  • a transition is made to the high torque side connected state (transition phase (late swing leg ⁇ stance leg) in FIG. 20), and the motor M is brought into a non-driving state.
  • the motor control unit 13 controls the motor M, it is a target value of torque that is correlated to the torque that expands or contracts the angle formed by the telescoping device 140 during the stance phase, in other words, in the high-torque side connection state. Control is performed based on the torque target value (hereinafter referred to as torque control). On the other hand, the motor control unit 13 performs control based on a position target value that is a position target value correlated to the angle formed by the telescopic device 140 during the idle leg phase, in other words, in the high rotation side connection state (hereinafter referred to as position (referred to as control).
  • position referred to as control
  • the torque control targets the q-axis current, which is proportional to the torque that expands or contracts the angle formed by the expansion and contraction device 140.
  • the torque target value is replaced by the target q-axis current. That is, once the torque target value is determined, the target q-axis current is determined, and when the target q-axis current is determined, the torque target value is determined.
  • the target q-axis current is the target Iq [A]
  • the vertical component of the load is FZa [N]
  • the thigh length which is the length between the hip joint 124 and the joint shaft 135, is L [m].
  • the knee angle is ⁇ [deg]
  • the correction coefficient is ⁇
  • the target Iq is expressed by the following (1).
  • Formula (1) assumes that the below-knee member 110 is a rod fixed to the above-knee member 120, and calculates the torque by multiplying the force (FZa ⁇ sin ⁇ ) required to push up the above-knee member 120 by the thigh length L. , the target q-axis current is calculated.
  • the motor control unit 13 generates power of the motor M in a direction to extend the knee joint mechanism 130 in a bent state based on this torque target value (target q-axis current).
  • the correction coefficient ⁇ is a value based on the torque constant (Kt) [Nm/A] for the q-axis current, and is a value that also includes the meaning of step-up speed adjustment at the time of mounting.
  • the torque target value (target q-axis current) is determined based on the load FZa (weight), the knee angle ⁇ , and the thigh length L.
  • the motor control unit 13 drives the motor M in the extension direction based on this torque target value (target q-axis current) in the stance phase of the ascending mode in which torque control is performed.
  • the load FZa in equation (1) may be set based on the user's weight. For example, an absolute value of body weight may be used, or a value obtained by multiplying body weight by a coefficient may be used.
  • Position control uses a position target value (target angle) as a control target.
  • the method of determining the position target value (target angle) is different between the early swing phase and the late swing phase shown in FIG.
  • the control unit 10 controls the motor M based on position target values determined based on different parameters in the early swing phase and the late swing phase.
  • two methods are possible. Either method may be adopted.
  • the second step is a period in which the electric prosthetic leg 1 is swung forward until ascending the stage, and is also a period in which the knee bending angle ⁇ [deg] is fixed and held.
  • the knee bending angle ⁇ [deg] is the angle formed by the center line extending in the extending direction of the below-knee member 110 and the vertical line VL1 passing through the connecting shaft 135, as shown in FIG. 22(C). .
  • the knee angle ⁇ is controlled.
  • the target knee angle ⁇ is expressed by equation (3).
  • Target knee angle ⁇ [deg] ⁇ [deg] - ⁇ t [deg] (3)
  • the target knee angle ⁇ is determined based on the thigh angle ⁇ t and the knee bending angle ⁇ , more specifically, based on the difference between the thigh angle ⁇ t and the knee bending angle ⁇ .
  • the motor control unit 13 controls the knee bending angle ⁇ [deg], which is a fixed value, to adjust the knee angle ⁇ in accordance with the fluctuation of the thigh angle ⁇ t. Note that from the viewpoint of preventing tripping, ⁇ [deg] is set to about 80 [deg], for example.
  • the knee angle ⁇ is controlled.
  • the target knee angle ⁇ is expressed by equation (4) where ⁇ is the magnification and ⁇ [deg] is the correction angle.
  • Target knee angle ⁇ [deg] ⁇ ⁇ ( ⁇ t [deg] - ⁇ [deg]) (4)
  • the target knee angle ⁇ is determined based on the thigh angle ⁇ t, and the motor control unit 13 bends the knee lower side member 110 backward by a certain magnification of the knee angle ⁇ based on the thigh angle ⁇ t. control like this.
  • the magnification ⁇ is set to, for example, 3, and the magnification ⁇ is set to, for example, about 10 [deg].
  • the late swing phase is a preparation period for ground contact.
  • the knee angle ⁇ is controlled.
  • the target knee angle ⁇ is expressed by equation (5).
  • Target knee angle ⁇ [deg] thigh angle ⁇ t [deg] + adjustment angle ⁇ [deg] (5)
  • the target knee angle ⁇ is determined based on the thigh angle ⁇ t and the adjustment angle ⁇ , and as shown in FIG. It is controlled so that it is always approximately perpendicular to the horizontal floor surface. In other words, the knee angle ⁇ is controlled to be approximately equal to the thigh angle ⁇ t.
  • the adjustment angle ⁇ [deg] is the angle formed by the center line extending in the extending direction of the below-knee member 110 and the vertical line VL1 passing through the connecting shaft 135, and is When the below-knee member 110 is located at , the adjustment angle ⁇ takes a negative value, and when the below-knee member 110 is located behind the vertical line VL1, the adjustment angle ⁇ takes a positive value.
  • the adjustment angle ⁇ [deg] is an adjustment angle that is set in consideration of the user's feeling when ascending the stairs.
  • the adjustment angle ⁇ is set so that the below-knee member 110 is located on the same side as the above-knee member 120 with respect to the vertical line VL1.
  • the electric prosthetic leg 1 is set so that the toe is lower than the heel, for example, 5 [deg].
  • Transition condition 1 Thigh angle ⁇ t is within the first predetermined range
  • the first predetermined range is, for example, a range less than -50[deg]. That is, as described above, the thigh angle ⁇ t takes a negative value when the above-knee member 120 is located in front of the vertical line VL2 (see (B) in FIG. 19). ) is swung forward by a predetermined amount is determined based on this condition.
  • Transition condition 2 Load FZa is within the second predetermined range
  • the second predetermined range is, for example, ⁇ 110 [N] or less. That is, as described above, the load sensor 272 is set so that the tensile load takes a positive value and the compressive load takes a negative value, so when the load FZa becomes -110 [N] or less, the electric prosthetic leg 1 is grounded. It is determined that the state has transitioned to the stance state. This matches the criteria for determining from the swing phase to the stance phase by the phase determination unit 11.
  • Transition condition 3 Load FZa is within the third predetermined range
  • the third predetermined range is, for example, a range of ⁇ 90 [N] or more. This matches the criteria for determining from the stance phase to the swing phase by the phase determination unit 11.
  • Transition condition 4 Thigh angle ⁇ t is within the fourth predetermined range
  • the fourth predetermined range is, for example, a range less than -15 [deg].
  • FIG. 18 is a diagram illustrating the motion of a human and an electric prosthetic leg when walking on a flat surface (a walking motion on a flat surface).
  • FIG. 18 (A) to (D) are the stance phase;
  • FIG. 18 (D) is the transition phase from stance to swing;
  • FIG. 18 (E) to (H) are the swing phase;
  • ) is a diagram showing the transition phase from the swing leg to the stance leg.
  • the motor M In the level ground/descending mode, the motor M is always in a non-driving state.
  • the motor M is not driven, as shown in FIGS. 18A to 18D, in the stance phase in which a load is applied to the electric prosthetic leg 1, it is necessary to prevent so-called knee bending.
  • the motor control unit 13 drives the servo motor 242 to bring the first disconnection mechanism 210 and the second disconnection mechanism 220 into the high rotation side connection state.
  • the interrupting portion 222 is in the on state, so that the motor M and the spindle unit SP are in a power transmission state via the second transmission mechanism T2.
  • the motor M is held in a non-driving state in this high-speed connected state, the external force acting on the electric prosthetic leg 1 in the bending direction is transmitted from the spindle unit SP to the motor M via the second transmission mechanism T2.
  • the purpose of connecting to the high rotation side is to prevent so-called knee bending, and it is not necessarily necessary to connect to the high rotation side. It may be a state.
  • FIG. 20 and the following description a case will be described in which the first intermittent mechanism 210 and the second intermittent mechanism 220 are brought into the high rotation side connected state during the stance phase in the level ground/descending mode.
  • the motor control unit 13 drives the servo motor 242 to turn the first disconnection mechanism 210 and the second disconnection mechanism 220 into the disconnected state ( Transition phase (stance leg ⁇ swing leg) in FIG. 20.
  • the interrupting section 212 and the interrupting section 222 are turned off, so that the motor M and the spindle unit SP are not connected during the idle leg (idle leg phase in FIG. 20).
  • the knee joint mechanism 130 is allowed to freely extend and bend. Note that the same control as walking on level ground is performed when descending stairs.
  • the motor control unit 13 drives the servo motor 242 to change the first disconnection mechanism 210 and the second disconnection mechanism 220 from the disconnected state to the high rotation side connection. state (transition phase (swing leg ⁇ stance leg) in FIG. 20).
  • FIG. 26 is a diagram showing an example of the electric circuit 16 connecting the battery B and the motor M. Note that in this electric circuit 16, a path connecting battery B and servo motor 242 is omitted.
  • An inverter 18 is provided between battery B and motor M via switch SW1. Inverter 18 converts DC power from battery B into AC power and supplies it to motor M. Between the switch SW1 and the inverter 18, there are a circuit D1 in which a resistor R1 and a transistor Tr1 are connected in series, a circuit D2 in which a resistor R2 and a transistor Tr2 are connected in series, and a resistor R3 and a transistor Tr3.
  • the circuit D3 connected in series is connected in parallel.
  • this electric circuit 16 by opening the switch SW1 (OFF) and closing at least one of the transistors Tr1 to Tr3 (ON), a dynamic brake is generated and friction (control) is applied to the rotation of the motor M. power) can be generated.
  • the number of transistors that are closed (ON) during the stance phase in the flat ground/descending mode is increased. That is, when the weight of the user is light, the number of transistors that are closed (ON) is reduced, and when the weight of the user is heavy, the number of transistors that are closed (ON) is increased.
  • these settings are preferably set as initial settings in the program when the user of the electric prosthetic leg 1 is determined.
  • the method for increasing the friction generated by the motor M is not limited to changing the number of transistors that are turned on.
  • the duty ratio of PWM (Pulse Width Modulation) control when the transistor is closed (ON) may be changed by using only one transistor (only the circuit D1).
  • the duty ratio of PWM control when turning on the closed state (ON) is set small, and if the weight of the user is heavy, the PWM control when turning on the closed state (ON) is set small.
  • the duty ratio may be set to a large value.
  • this setting is also set as an initial setting in the program when the user of the electric prosthetic leg 1 is determined.
  • the rotational speed of the motor M is increased when the external force in the bending direction acting on the electric prosthetic leg 1 is transmitted from the spindle unit SP to the motor M via the second transmission mechanism T2. Just let it happen. Therefore, the rotation speed of the motor M is set to increase when the high rotation side connection state is established in the stance phase in the flat ground/descending mode. That is, the gear ratio in the high rotation side connected state, that is, the second gear ratio of the second transmission mechanism T2 is increased.
  • the first gear ratio of the first transmission mechanism T1 increases by the increase in the second gear ratio of the second transmission mechanism T2. It is preferable to also adjust the ratio. Therefore, if the weight of the user is heavy, the second gear ratio of the second transmission mechanism T2 is set to be large, and if the user's weight is light, the second gear ratio of the second transmission mechanism T2 is set to be small. Set it like this. In addition, in the stance phase in the level ground/downshift mode, when the high torque side connection state is used instead of the high rotation side connection state, in order to increase the friction of the transmission T, the first Set the gear ratio to be large. In this setting as well, it is preferable that the specifications of the transmission T be set when the user of the electric prosthetic leg 1 is determined.
  • FIG. 20 is a table summarizing each phase and control method of the ascending mode and the level ground/descending mode.
  • the motor control unit 13 performs torque control on the motor M during the stance leg phase of the ascending mode, and performs position control of the motor M during the swing leg phase of the ascending mode. In this way, even in the same step-up mode, the electric prosthetic leg 1 can be appropriately controlled by changing the control of the motor M between the stance phase and the swing phase.
  • the motor control unit 13 controls the torque of the motor M in the ascending mode, and does not drive the motor M in the flat ground/descending mode, that is, so that the motor M does not generate power, or , controls the motor M to stop.
  • the electric prosthetic leg 1 can be appropriately controlled according to the walking mode.
  • the motor control unit 13 controls the position of the motor M in the ascending mode, and does not drive the motor M in the flat ground/descending mode, that is, so that no power is generated by the motor M.
  • the motor M is controlled to stop. In this way, even in the swing phase, by changing the control of the motor M between the level ground/descending mode and the ascending mode, it is possible to appropriately control the electric prosthetic leg 1 according to the walking mode.
  • the above-described control method in the ascending mode and the level ground/descending mode can be realized by executing a program prepared in advance on a computer (processor).
  • This program is stored in a computer-readable storage medium and executed by being read from the storage medium. Further, this program may be provided in a form stored in a non-transitory storage medium such as a flash memory, or may be provided via a network such as the Internet.
  • the transmission T has two power transmission paths, the first transmission mechanism T1 and the second transmission mechanism T2, but the transmission T is not limited to this, and has only one transmission mechanism, and is in the step-up mode.
  • the gear ratio may be changed at the same gear ratio during the stance phase and the idle phase.
  • a prosthetic limb device (electric prosthetic limb) applied to a knee joint is illustrated as an embodiment of the joint device of the present invention, but the invention is not limited to this, and a prosthetic limb device (electric prosthetic limb) applied to an elbow joint is exemplified.
  • the wearer may be an animal other than a human, or may be a robot.
  • the below-knee member 110 of the above embodiment becomes the distal end side of the above-knee member 120, that is, the forearm.
  • a first member lower knee member 110
  • a second member above-knee member 120
  • a connecting part knee joint mechanism 130
  • a joint device electric prosthetic leg 1 comprising an expansion/contraction device (expansion/contraction device 200) capable of expanding and contracting the angle formed by the first member and the second member
  • the expansion/contraction device is It has a power source (motor M), a power transmission section (transmission T) that transmits the power of the power source, and a control section (control section 10) that controls the power source
  • the coupling device includes: Provided to transition between a weighted state (stance phase) in which external weight is applied and a non-weighted state (swivel phase) in which no weight is applied,
  • the control unit includes: (A) When in the loaded state, Controlling the power source (torque control) based on a torque target value that
  • the joint device can be appropriately controlled by changing the control of the power source between the loaded state and the non-loaded state.
  • the torque target value can be appropriately set.
  • the torque target value is determined based on the weight (body weight) of the wearer.
  • the torque target value can be appropriately set.
  • the torque target value is determined based on the formed angle or a supplementary angle of the formed angle (knee angle ⁇ , second formed angle ⁇ 2).
  • the torque target value can be appropriately set.
  • the joint device is attached to the first part of the first part (thigh region 123) which is the main wearer and the second part (upper body) which rotates relative to the first part,
  • the second member is provided to be attached to the first portion so that the first member is closer to the distal end of the attachment main body than the second member,
  • the torque target value is the length between the connecting part and another connecting part (hip joint 124) of the wearer, which connects the first part and the second part so that the other angle formed can be changed.
  • a joint device determined based on (thigh length L).
  • the torque target value can be appropriately set.
  • the joint device includes: (A) When in the loaded state, controlling the power source to generate power in a direction in which the joint device in a state where the first member and the second member are bent is in a state where the first member and the second member are in an extended state; fitting device.
  • the joint device can be extended while supporting the load.
  • the joint device according to any one of (1) to (6),
  • the positional target value is based on the rotational axis (hip joint 124) of the second member, the first part (thigh region 123) that is mainly worn, and the second part (upper body) that rotates relative to the first part.
  • the joint device is determined based on the first angle (thigh angle ⁇ t) formed with a reference line (vertical line VL2) passing through the joint device.
  • the position target value can be appropriately set.
  • the position target value can be appropriately set.
  • the coupling device according to (8), The second angle is determined such that the first member is located on the same side as the second member with respect to the other reference line.
  • the position target value can be set more appropriately.
  • the position target value can be set more appropriately.
  • the position target value can be set more appropriately.
  • the joint device according to (11), The positional target value is based on the rotational axis (hip joint 124) of the second member, the first part (thigh region 123) that is mainly worn, and the second part (upper body) that rotates relative to the first part.
  • a joint device that is determined based on the difference between a first angle (thigh angle ⁇ t) formed with a reference line (vertical line VL2) passing through and the third angle formed.
  • the position target value can be set more appropriately.
  • the position target value can be set more appropriately.
  • the joint device according to any one of (1) to (10), A period from transitioning from the weighted state to the non-weighted state until transitioning to the weighted state again is defined as a non-weighted period, When the first half of the non-weighting period is the first non-weighting period (early swing phase) and the second half is the second non-weighting period (late swing phase),
  • the control unit includes: A joint device that controls the power source based on the position target value determined by different determination methods in the first non-weighting period and the second non-weighting period.
  • each of the operations in the early non-weighting period and the operation in the latter non-weighting period can be optimized.
  • control can be smoothly transferred from the early non-weighting period to the latter non-weighting period.
  • control can be smoothly transferred from the late non-weighting period to the weighting period.
  • a period from transitioning from the weighted state to the non-weighted state until transitioning to the weighted state again is defined as a non-weighted period
  • the control unit in the weighted period, When the weight falls within a third predetermined range (-90 [N] or more), A joint device that switches to control during the non-weighting period.
  • control can be smoothly transferred from the weighted period to the non-weighted period.
  • control can be smoothly transferred from the non-weighted period to the weighted period.
  • the coupling device according to any one of (1) to (19),
  • the expansion/contraction device further includes a disconnection mechanism that is disposed on a power transmission path of the power transmission section and switches between disconnection and connection of power in the power transmission path,
  • the control unit further controls the disconnection mechanism,
  • the control unit includes: (B) When in the non-weighted state, controlling the disconnection mechanism to a disconnection state that disconnects the power transmission path (idle leg phase in the flat ground/descending mode); A joint device that controls the power source so that power is not generated or stopped instead of controlling the power source based on the position target value.
  • the joint device can be appropriately controlled both in the loaded state and in the non-loaded state.
  • the joint device includes: (A) When in the loaded state, controlling the disconnection mechanism to a connected state that connects the power transmission path (stance phase in the case of level ground/descending mode); A joint device that controls the power source so that no power is generated or the power source is stopped instead of controlling the power source based on the torque target value.
  • the joint device can be appropriately controlled both in the loaded state and in the non-loaded state.
  • the joint device is configured such that the control unit is capable of adjusting a braking force for stopping the power source.
  • the braking force can be adjusted using the friction that occurs when the power source is not driven.
  • the coupling device according to (23), The control unit is a joint device that generates the braking force set according to the weight (body weight) of the wearer.
  • the power transmission section is a first power transmission path (first transmission mechanism T1) that transmits the power at a first transmission ratio; a second power transmission path (second transmission mechanism T2) that transmits the power at a second transmission ratio different from the first transmission ratio;
  • the expansion/contraction device is a first disconnection mechanism (first disconnection mechanism 210) that is disposed on the first power transmission path and switches between disconnection and connection of power in the first power transmission path; further comprising a second disconnection mechanism (second disconnection mechanism 220) disposed on the second power transmission path and switching between disconnection and connection of power on the second power transmission path,
  • the control unit includes: A joint device further controlling the first disconnection mechanism and the second disconnection mechanism.
  • control unit in addition to controlling the power source, the control unit also controls the first disconnection mechanism and the second disconnection mechanism.
  • the joint device is a ratio of the rotation speed after shifting to the rotation speed before shifting, which is the rotation speed on the power source side of the first transmission section (first transmission mechanism T1) in the first power transmission path
  • the second speed ratio is the ratio of the rotation speed after shifting to the rotation speed before shifting, which is the rotation speed on the power source side of the second transmission section (second transmission mechanism T2) in the second power transmission path.
  • the coupling device is configured such that the first gear ratio is smaller than the second gear ratio.
  • the power of the power source can be transmitted at different speed ratios.
  • At least one of the first gear ratio and the second gear ratio is determined based on the weight (body weight) of the wearer.
  • the high torque state and the high rotation state can be appropriately balanced.
  • the coupling device according to any one of (1) to (28),
  • the first member is mounted on the mounting main body such that the first member is closer to the distal end of the mounting main body than the second member,
  • a joint device which is a prosthetic limb device in which the connecting portion functions as a joint of the wearer.
  • the coupling device according to (29), The prosthesis device is a joint device that is a prosthesis device that is attached to the leg of the wearer.
  • a first member (below-knee member 110); a second member (above-knee member 120); a connecting part (knee joint mechanism 130) that connects the first member and the second member so that the angle formed by the second member can be changed;
  • a joint device (electric prosthetic leg 1) comprising an expansion/contraction device (expansion/contraction device 200) capable of expanding and contracting the angle formed by the first member and the second member,
  • the expansion/contraction device is A power source (motor M), a power transmission section (transmission T) that transmits the power of the power source, and an intermittent device disposed on a power transmission path of the power transmission section to switch off and connect the power on the power transmission path.
  • the coupling device includes: Provided to transition between a weighted state (stance phase) in which external weight is applied and a non-weighted state (swivel phase) in which no weight is applied,
  • the control unit includes: (A) When in the above-mentioned loaded state (standing state in flat ground/descending mode), controlling the disconnection mechanism to a connected state that connects the power transmission path; Controlling the power source so that power is not generated or stopped, (B) When in the non-weighted state (idle leg state in level ground/descending mode), controlling the disconnection mechanism to a disconnection state that disconnects the power transmission path; A joint device that controls the power source so that no power is generated or the power source is stopped.
  • the joint device can be appropriately controlled both in the loaded state and in the non-loaded state.
  • the joint device according to (32),
  • the first member is mounted on the mounting main body such that the first member is closer to the distal end of the mounting main body than the second member,
  • the prosthetic limb device is a prosthetic limb device that is attached to the leg of the wearer,
  • the control unit includes: (A) When in the loaded state, (a) When walking on level ground or walking down stairs (level ground/descending mode), controlling the disconnection mechanism to the connected state connecting the power transmission path (stance phase); Controlling the power source so that power is not generated or stopped, (b) When walking as if climbing stairs (climbing mode), controlling the disconnection mechanism to the connected state connecting the power transmission path (stance phase);
  • the joint device can be appropriately controlled by changing the control of the power source between the level ground/descending mode and the ascending mode.
  • the joint device according to (32) or (33),
  • the first member is mounted on the mounting main body such that the first member is closer to the distal end of the mounting main body than the second member,
  • the prosthetic limb device is a prosthetic limb device that is attached to the leg of the wearer,
  • the control unit includes: (B) When in the non-weighted state, (a) When walking on level ground or walking down stairs (level ground/descending mode), controlling the disconnection mechanism to the disconnection state that disconnects the power transmission path (idle leg phase); Controlling the power source so that power is not generated or stopped, (b) When walking as if climbing stairs (climbing mode), controlling the disconnection mechanism to the connected state connecting the power transmission path (idle leg phase);
  • the joint device can be appropriately controlled by changing the control of the power source between the level ground/descending mode and the ascending mode.
  • a first member (below-knee member 110); a second member (above-knee member 120); a connecting part (knee joint mechanism 130) that connects the first member and the second member so that the angle formed by the second member (second angle ⁇ 2, knee angle ⁇ ) can be changed;
  • a method for controlling a joint device (electric prosthetic leg 1) comprising an expansion/contraction device (expansion/contraction device 200) capable of expanding and contracting the angle formed by the first member and the second member,
  • the expansion/contraction device is It has a power source (motor M) and a power transmission section (transmission T) that transmits the power of the power source
  • the coupling device includes: Provided to transition between a weighted state (stance phase) in which external weight is applied and a non-weighted state (swivel phase) in which no weight is applied,
  • the control method includes: (A) When in the weighted state (stance phase of ascending mode), controlling the power source based on a torque
  • the joint device can be appropriately controlled by changing the control of the power source between the loaded state and the non-loaded state.
  • a first member (lower knee member 110); a second member (above-knee member 120); a connecting part (knee joint mechanism 130) that connects the first member and the second member so that the angle formed by the second member (second angle ⁇ 2, knee angle ⁇ ) can be changed;
  • a control program for a joint device (electric prosthetic leg 1) comprising an expansion/contraction device (expansion/contraction device 200) capable of expanding and contracting the angle formed by the first member and the second member,
  • the expansion/contraction device is It has a power source (motor M) and a power transmission section (transmission T) that transmits the power of the power source
  • the coupling device includes: Provided to transition between a weighted state (stance phase) in which external weight is applied and a non-weighted state (swivel phase) in which no weight is applied,
  • the control program includes: (A) When in the loaded state, controlling the power source based on a torque target value that is a target value of torque that is
  • the joint device can be appropriately controlled by changing the control of the power source between the loaded state and the non-loaded state.
  • the joint device can be appropriately controlled by changing the control of the power source between the loaded state and the non-loaded state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Prostheses (AREA)

Abstract

電動義足(1)の制御部(10)は、加重状態である立脚フェーズのときに、モータ(M)を、拡縮装置(200)のトルクに相関するトルクの目標値であるトルク目標値に基づいて制御し、非加重状態である遊脚フェーズのときに、モータ(M)を、拡縮装置(200)の位置の目標値である位置目標値に基づいて制御する。

Description

継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体
 本発明は、継手装置、膝継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体に関する。
 従来より、膝継手装置の一例として、ロボットの脚部や、事故や病気で脚を切断した人に装着する義足装置が知られている。例えば、特許文献1には、階段の昇段及び降段をスムーズに行うべく、変速比の異なる2つの動力伝達経路を有する変速機を搭載した電動義足が記載されている。この電動義足では、昇段時に電動義足に荷重がかかった状態で膝関節機構を伸展させるときと、荷重がかかっていない状態で膝関節機構を伸展させるときとでは、動力伝達経路を変えることが記載されている。
国際公開第2021/251500号
 このような継手装置において、荷重がかかった加重状態、荷重がかかっていない非加重状態などの具体的使用状態でどのように制御を行うのがよいかについて検討の余地があった。
 本発明は、加重状態においても非加重状態においても適切な制御を行うことができる継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体を提供する。
 本発明は、
 第1部材と、
 第2部材と、
 前記第1部材と前記第2部材との成す角を変更可能に連接する連接部と、
 前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置と、を備える継手装置であって、
 前記拡縮装置は、
 動力源と、前記動力源の動力を伝達する動力伝達部と、前記動力源を制御する制御部と、を有し、
 前記継手装置は、
 外部からの加重を受ける加重状態と、加重を受けない非加重状態と、を遷移するように設けられ、
 前記制御部は、
(A)前記加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御し、
(B)前記非加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御する。
 また、本発明は、
 第1部材と、
 第2部材と、
 前記第1部材と前記第2部材との成す角を変更可能に連接する連接部と、
 前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置と、を備える継手装置であって、
 前記拡縮装置は、
 動力源と、前記動力源の動力を伝達する動力伝達部と、前記動力伝達部の動力伝達路上に配置され該動力伝達路における動力の遮断及び接続を切り替える断続機構と、前記動力源及び前記断続機構を制御する制御部と、を有し、
 前記継手装置は、
 外部からの加重を受ける加重状態と、加重を受けない非加重状態と、を遷移するように設けられ、
 前記制御部は、
(A)前記加重状態のときに、
 前記断続機構を、前記動力伝達路を接続する接続状態に制御し、
 前記動力源を、動力が生じないように、又は、停止するように制御し、
(B)前記非加重状態のときに、
 前記断続機構を、前記動力伝達路を遮断する遮断状態に制御し、
 前記動力源を、動力が生じないように、又は、停止するように制御する。
 また、本発明は、
 第1部材と、
 第2部材と、
 前記第1部材と前記第2部材との成す角を変更可能に連接する連接部と、
 前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置と、を備える継手装置の制御方法であって、
 前記拡縮装置は、
 動力源と、前記動力源の動力を伝達する動力伝達部と、を有し、
 前記継手装置は、
 外部からの加重を受ける加重状態と、加重を受けない非加重状態と、を遷移するように設けられ、
 前記制御方法は、
(A)前記加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御するステップと、
(B)前記非加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御するステップと、を備える。
 また、本発明は、
 第1部材と、
 第2部材と、
 前記第1部材と前記第2部材との成す角を変更可能に連接する連接部と、
 前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置と、を備える継手装置の制御プログラムであって、
 前記拡縮装置は、
 動力源と、前記動力源の動力を伝達する動力伝達部と、を有し、
 前記継手装置は、
 外部からの加重を受ける加重状態と、加重を受けない非加重状態と、を遷移するように設けられ、
 前記制御プログラムは、
(A)前記加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御するステップと、
(B)前記非加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御するステップと、をコンピュータに実行させる。
 また、本発明は、
 上記制御プログラムを記憶した、コンピュータが読み取り可能な記憶媒体である。
 本発明によれば、加重状態においても非加重状態においても適切に制御を行うことができる。
第1実施形態の電動義足1を斜め前方から見た斜視図である。 電動義足1の分解斜視図である。 電動義足1の断面図である。 伸縮装置140の断面図である。 電動義足1の屈曲状態を示す要部断面図である。 電動義足1の最大屈曲状態を示す要部断面図である。 二方向クラッチの断面図である。 リテーナ282の斜視図である。 操作機構240の動作を示す図であり、(A)は断続部212及び断続部222がオフの状態を示す図、(B)は断続部212がオフ、断続部222がオンの状態を示す図、(C)は断続部212がオン、断続部222がオフの状態を示す図である。 (A)は、断続部222がオフの状態を示す断面図であり、(B)はそのときの操作ロッド241の位置を示す図である。 (A)は、断続部222がオフからオンに操作された状態を示す断面図であり、(B)はそのときの操作ロッド241の位置を示す図である。 (A)は、断続部222の正転オン状態を示す断面図であり、(B)はそのときの操作ロッド241の位置を示す図である。 (A)は、断続部222の逆転オン状態を示す断面図であり、(B)はそのときの操作ロッド241の位置を示す図である。 (A)は、断続部222がオンからオフに操作された状態を示す断面図であり、(B)はそのときの操作ロッド241の位置を示す図である。 第2実施形態の電動義足1の断面図である。 電動義足1の機能ブロック図である。 昇段時の人間及び電動義足の動作(昇段動作)を示す図である。 平地歩行時の人間及び電動義足の動作(平地歩行動作)を示す図である。 (A)は膝角度、(B)は大腿角、(C)は下腿角を説明する図である。 昇段モード及び平地・降段モードの各フェーズと制御方法をまとめた表である。 トルク制御を説明する図である。 遊脚前期フェーズ_方式1を説明する図である。 遊脚前期フェーズ_方式2を説明する図である。 遊脚後期フェーズを説明する図である。 遊脚前期フェーズ、遊脚後期フェーズ、立脚フェーズの繰り返し動作間の遷移を説明する図である。 バッテリBとモータMを繋ぐ電気回路16の一例を示す図である。 各歩行モードにおける、スイッチSW1とトランジスタTr1~Tr3とモータMの状態を説明する表である。 使用者の体重に応じたトランジスタTr1~Tr3のON/OFF状態を説明する表である。
 以下、本発明の継手装置の一実施形態である電動義足について図面を参照しながら説明する。なお、以下の説明では、電動義足の使用者を基準に前後方向、左右方向、上下方向を定義する。図面には、電動義足の前方をFr、後方をRr、左側をL、右側をR、上方をU、下方をDとして示す。
 本実施形態の電動義足1は、図1~図4に示すように、ひざのない人の脚部に装着される義足であり、ひざの下側に位置する膝下側部材110と、大腿部に装着され、ひざの上側に位置する膝上側部材120と、膝下側部材110と膝上側部材120との成す角を変更可能に連接する膝関節機構130と、膝下側部材110と膝上側部材120との成す角を拡大及び縮小可能な拡縮装置200と、膝下側部材110と膝上側部材120との成す角の変更範囲を機械的に制限するメカストップ機構150と、メカストップ機構150による衝撃を緩衝する緩衝機構160と、センサ装置270と、拡縮装置200などに電力を供給するバッテリBと、を備える。
 膝上側部材120は、不図示のソケットに連結されるアダプター121と、上壁部125にアダプター121が取り付けられた膝上側基部126と、を備える。ソケットは、大腿部に設けられるジョイント部材であり、ソケットにアダプター121を連結することで、大腿部に膝上側部材120が一体化される。
 膝下側部材110は、上部及び後部が開口する箱形状のメインフレーム111と、メインフレーム111の左右両側面を覆うサイドカバー112と、メインフレーム111の後部開口を開閉可能に覆う着脱自在なリヤカバー113と、メインフレーム111の下面に取り付けられたアダプター122と、を備える。
 膝下側部材110のメインフレーム111の上部には、膝関節機構130を構成する連接軸135を介して膝上側部材120が設けられ、メインフレーム111のアダプター122には、下方に延在する脚部114が連結される。
 膝上側部材120及び膝下側部材110により形成された空間には、膝下側部材110と膝上側部材120との成す角を拡大及び縮小可能な拡縮装置200が設けられる。拡縮装置200は、伸縮することにより膝下側部材110と膝上側部材120との成す角を拡大及び縮小可能な伸縮装置140である。伸縮装置140は、上下方向に延在し、詳しくは後述するが、延在方向の一方側が膝上側部材120に機械的に接続され、延在方向の他方側が膝下側部材110に機械的に接続される。なお、「機械的に接続」とは、直接接続される構成、及び他部材を介して接続される構成を含む概念である。
 図3及び図4に示すように、伸縮装置140は、回転動力を出力するモータMと、モータMの動力を伝達する変速機Tと、変速機Tに動力伝達可能に接続され、変速機Tから出力される回転動力を並進運動(伸縮運動)に変換するスピンドルユニットSPと、変速機Tに設けられる第1断続機構210及び第2断続機構220と、第1断続機構210及び第2断続機構220を切り替え操作する操作機構240と、モータMを制御するとともに、操作機構240を操作して第1断続機構210及び第2断続機構220を制御する制御部10と、を備える。
 モータMは、例えば、永久磁石型電動機であり、変速機Tの後方且つ上方に配置され、スピンドルユニットSPは、変速機Tの前方且つ上方に配置される。スピンドルユニットSPは、動力の伝達経路上で変速機Tに対してモータMと反対側に配置される。モータMは、モータ本体部171と、モータ本体部171の出力回転を減速するギヤ機構部172と、を備えるギヤ機構内蔵モータである。スピンドルユニットSPは、雄ねじが形成されたスピンドル173と、雌ねじが形成されたスリーブ174と、を有し、スピンドル173の回転によりスリーブ174がスピンドル173の軸心に沿って並進運動する。
 具体的に説明すると、スピンドル173は、変速機Tによって伝達されたモータMの回転動力を受けて回転運動を行う。一方、スリーブ174は、ユニットケース250に回転不能且つ上下移動可能に支持されている。したがって、変速機Tによって伝達されたモータMの回転動力を受けてスピンドル173が一方側に回転すると、スリーブ174が変速機Tから離れるように並進移動し、スピンドル173が他方側に回転すると、スリーブ174が変速機Tに近づくように並進移動する。なお、スリーブ174が変速機Tから離れるように並進移動することをスピンドルユニットSPの伸長動作と呼ぶことがあり、反対にスリーブ174が変速機Tに近づくように並進移動することをスピンドルユニットSPの縮小動作と呼ぶことがある。
 即ち、スピンドル173の回転方向に応じてスリーブ174と変速機Tとの距離が伸縮する。スリーブ174の上端部は、リンク部材175を介して膝上側部材120に連結されている。スピンドル173の回転方向に応じてスリーブ174と変速機Tとの距離が伸縮することで、膝下側部材110と膝上側部材120とが連接軸135を中心に回転する。これにより、膝上側部材120と膝下側部材110との成す角が変わる。
 ここで、膝上側部材120と膝下側部材110との成す角は、膝関節機構130の連接軸135の中心と膝上側部材120のアダプター121とを結ぶ第1仮想線L1と、膝関節機構130の連接軸135の中心と膝下側部材110を通って鉛直方向下方に延びる第2仮想線L2とにより区画形成される角である。膝関節機構130の連接軸135を中心とした膝下側部材110と膝上側部材120との成す角のうち、1周の一方側を第1成す角θ1、他方側を第2成す角θ2とし、第1成す角θ1及び第2成す角θ2のうち、膝下側部材110と膝上側部材120とが相対移動する範囲における最小成す角度が小さい方を第2成す角θ2とすると、電動義足1の使用者の膝裏側の成す角(膝裏角)が、第2成す角θ2となる。第1成す角θ1は約175[deg]~300[deg]の値をとり、第2成す角θ2は約60[deg]~185[deg]の値をとる。
 図3は、膝関節機構130が伸展した状態を示すものであり、第1成す角θ1が約175[deg]、第2成す角θ2が約185[deg]である。図5は、電動義足1の屈曲状態を示す要部断面図であり、第1成す角θ1が約240[deg]、第2成す角θ2が約120[deg]である。図6は、電動義足1の最大屈曲状態を示す要部断面図であり、第1成す角θ1が約300[deg]、第2成す角θ2が約60[deg]である。
 なお、本実施形態の拡縮装置200は、伸縮装置140のスピンドルユニットSPによる回動運動から伸縮運動への変換によって伸縮装置140を伸縮させ、それに伴って膝下側部材110と膝上側部材120との成す角を拡大及び縮小させるものであったが、伸縮装置140(スピンドルユニットSP)のような伸縮(運動)する部分を有さず、膝下側部材110と膝上側部材120との間にギヤ噛み合い機構(など)を設けて、膝下側部材110と膝上側部材120との成す角を拡大及び縮小させるものであってもよい。
 図3及び図4に戻って、変速機Tは、モータMの動力を第1変速比でスピンドルユニットSPに伝達する第1変速部を有する第1変速機構T1と、モータMの動力を第1変速比とは異なる第2変速比でスピンドルユニットSPに伝達する第2変速部を有する第2変速機構T2と、を備える。第1変速機構T1及び第2変速機構T2は、断続機構210、220によって動力の遮断状態と接続状態とが切り替えられる。
 このような変速機Tによれば、変速比の異なる2つの動力伝達路を備えることで、膝関節機構130における伸展と屈曲の動作スピード及び発生動力を切り替えることができる。第1変速比及び第2変速比は異なっていればよく、第1変速機構T1と第2変速機構T2とは、いずれか一方が減速機構で他方が増速機構であってもよく、いずれか一方が等速機構で他方が減速機構又は増速機構であってもよく、両方が減速機構であってもよく、両方が増速機構であってもよい。
 第1変速比は、第1変速機構T1における第1変速部よりもモータM側の回転数である変速前回転数に対する、第1変速機構T1における第1変速部よりも反モータM側(スピンドルユニットSP側)の回転数である変速後回転数の比率である。第2変速比は、第2変速機構T2における第2変速部よりもモータM側の回転数である変速前回転数に対する、第2変速機構T2における第2変速部よりも反モータM側(スピンドルユニットSP側)の回転数である変速後回転数の比率である。
 例えば、第1変速機構T1の第1変速比が1より小さい場合、反モータM側(スピンドルユニットSP側)の回転数はモータM側の回転数よりも減少し、トルクが増加する。第2変速機構T2の第2変速比が1より大きい場合、反モータM側(スピンドルユニットSP側)の回転数はモータM側の回転数よりも増加し、トルクが減少する。本実施形態では、第1変速比が1より小さく、第2変速比が1よりも大きく設定されており、第1変速機構T1が第2変速機構T2よりも下方に配置されている。
 第1変速機構T1及び第2変速機構T2には、ギヤ機構部172の出力軸172aの下方延長線上に回転可能に配置される第1シャフト181と、スピンドルユニットSPのスピンドル173の下方延長線上に回転可能に配置される第2シャフト182と、が含まれる。第1シャフト181は、軸心誤差を許容するカップリング187を介して、モータMのギヤ機構部172の出力軸172aに一体回転可能に連結される。第2シャフト182は、スピンドルユニットSPのスピンドル173に一体回転可能に接続されている。なお、本実施形態の第2シャフト182は、スピンドルユニットSPのスピンドル173と一体化されているが、第2シャフト182は、スピンドルユニットSPのスピンドル173とし、スプライン嵌合やカップリングを用いて連結してもよい。
 第1変速機構T1は、互いに噛み合う第1駆動ギヤ183及び第1従動ギヤ184から構成される第1変速部を備える。第1駆動ギヤ183は、第1シャフト181に一体回転可能に支持され、第1従動ギヤ184は、第2シャフト182に相対回転可能に支持されている。第1従動ギヤ184及び第2シャフト182は、互いの回転軸線が一致する。本実施形態の第1変速機構T1は、第1駆動ギヤ183を第1従動ギヤ184よりも小径とした減速伝達機構であり、スピンドルユニットSPを低速且つ高トルクで伸縮動作させることができる。
 第2変速機構T2は、互いに噛み合う第2駆動ギヤ185及び第2従動ギヤ186から構成される第2変速部を備える。第2駆動ギヤ185は、第1シャフト181に一体回転可能に支持され、第2従動ギヤ186は、第2シャフト182に相対回転可能に支持されている。第2従動ギヤ186及び第2シャフト182は、互いの回転軸線が一致する。本実施形態の第2変速機構T2は、第2駆動ギヤ185を第2従動ギヤ186よりも大径とした増速伝達機構であり、スピンドルユニットSPを高速且つ低トルクで伸縮動作させることができる。なお、本実施形態では、第1変速機構T1の上側に第2変速機構T2を配置しているが、第1変速機構T1の下側に第2変速機構T2を配置してもよい。また、本実施形態の第1シャフト181及び第2シャフト182は、それぞれ、最初から一体形成されるが、上下のギヤ支持部を別体として形成した後、一体的に連結(結合)してもよい。
 第1断続機構210は、第1従動ギヤ184と第2シャフト182との間に設けられる断続部212を備える。第2断続機構220は、第2従動ギヤ186と第2シャフト182との間に設けられる断続部222を備える。これらの断続部212、222は、共通の構成を有しており、動力伝達を遮断する遮断状態と、一方向及び他方向の両方向の回転動力を伝達可能な動力伝達可能状態と、に切り替え可能に構成される。なお、断続部212、222の詳細は後述する。
 操作機構240は、断続部212、222を断続操作可能に設けられる操作ロッド241と、操作ロッド241を直線移動させるサーボモータ242と、を備える。
 第2シャフト182は、回転軸線方向(上下方向とも称する)に延びる内部空間S2を有する中空軸であり、この内部空間S2に操作ロッド241が配置される。操作ロッド241は、内部空間S2から露出する下端部にラック241aが設けられる。操作ロッド241は、内部空間S2に配置された軸受B4、B5によりラック241aと相対回転不能且つ回転軸線方向に一体で進退移動可能に支持される。第2シャフト182の下端部は、操作ロッド241が挿通する挿通孔を有する蓋部材188が螺合する。蓋部材188は、内部空間S2への異物の侵入を防止するとともに、操作ロッド241の取り換えを容易にする。ラック241aには、サーボモータ242の出力軸242aに設けられるピニオン243が噛み合っており、サーボモータ242の駆動に応じて、操作ロッド241の上下方向のポジションが切り替えられる。操作ロッド241の外周部には、後述する小径部241b1、241b2及び大径部241c1~241c3が形成されており、操作ロッド241のポジションに応じて、小径部241b1、241b2及び大径部241c1~241c3が断続部212、222を断続操作する。なお、操作機構240の詳細は後述する。
 図3~図5に示すように、ユニットケース250は、アッパーケース251、ミドルケース252及びロワケース253を備える。これらアッパーケース251、ミドルケース252及びロワケース253は、互いに別体に形成されている。
 アッパーケース251は、スピンドルユニットSPを収容する。
 ミドルケース252とロワケース253とにより形成される空間S1には、第2駆動ギヤ185及び第2従動ギヤ186、第1駆動ギヤ183及び第1従動ギヤ184、断続部212、222、及び操作機構240の一部が収容される。
 ユニットケース250は、アッパーケース251、ミドルケース252及びロワケース253の3段構造によって、変速機T及びスピンドルユニットSPをケーシングできるだけでなく、モータMも含めた伸縮装置140をユニット化する。
 また、ユニットケース250は、不図示のブラケットを介してメインフレーム111に取付けられる。
 メカストップ機構150は、図3、図5及び図6に示すように、膝下側部材110に設けられるストッパ部材151と、膝上側部材120の膝上側基部126に設けられる第1当接部152及び第2当接部153と、を備える。図3に示す状態(第2成す角θ2が約185[deg])では、第1当接部152がストッパ部材151に当接することで、膝関節機構130が逆方向に屈曲することが規制される。また、図6に示す状態(第2成す角θ2が約60[deg])では、第2当接部153がストッパ部材151に当接することで、膝関節機構130が最大屈曲状態から更に屈曲することが規制される。なお、電動義足1で歩行中に、図6に示す最大屈曲状態となることはない。
 緩衝機構160は、膝上側部材120側に設けられ、ばね161(例えば、圧縮コイルばね)の付勢力でリンク部材175の上端部を押圧可能な押圧部162を備える。リンク部材175の下端部は、スピンドルユニットSPのスリーブ174に第1回動部176を介して回動可能に連結され、リンク部材175の上端部は、膝上側部材120に第2回動部177を介して回動可能に連結される。リンク部材175の上端部には、カム部178が形成されている。カム部178は、第2回動部177を中心とする小径な小径外周部178aと、第2回動部177からの距離が長い大径外周部178bと、小径外周部178aと大径外周部178bを段差なく連結させる連結外周部178cと、を連続的に有する。
 図5及び図6に示すように、膝関節機構130が屈曲した状態では、押圧部162がカム部178の小径外周部178aと対向しているため、押圧部162とカム部178とは離間している。図3に示すように、スピンドルユニットSPの縮小動作に応じて膝関節機構130が伸展し、伸展側のメカストップ位置に近づくと、押圧部162とカム部178との対向位置が連結外周部178cから大径外周部178bに移動するのに伴い、カム部178は、押圧部162に当接するとともに、大径外周部178bが押圧部162をばね161の付勢力に抗して押し込む。言い換えると、カム部178は、ばね161の付勢力で戻し方向に押圧される。これにより、ばね161の付勢力が抵抗となり、第1当接部152がストッパ部材151に当接する際の衝撃が緩衝される。
 つぎに、断続部212、222及び操作機構240の詳細について、図7以降を参照して説明する。
 各断続部212、222は、共通の構成を有しており、動力伝達を遮断する遮断状態と、一方向及び他方向の両方向の回転動力を伝達可能な動力伝達可能状態と、に切り替え可能に構成される。本実施形態の各断続部212、222は、図7に示すように、強制フリー機能を備える二方向クラッチ280を用いて構成されている。二方向クラッチ280は、第2シャフト182の外周面部とギヤ184、186の内周面部との間に配置される複数(本実施形態では3つ)のローラ281と、複数のローラ281を所定の間隔に保持するリテーナ282と、第2シャフト182を径方向に貫通し、操作機構240によって強制フリー位置と強制フリー解除位置とに操作される複数(本実施形態では3つ)のピン283と、リテーナ282に設けられ、ピン283が強制フリー位置のとき第2シャフト182に対するリテーナ282の相対回転位置を規定する複数(本実施形態では3つ)のガイド284と、を備える。ローラ281は、ボールでもよく、スプラグでもよい。
 第2シャフト182の外周面部とギヤ184、186の内周面部との径方向の間隔Aは、ローラ281の直径Bよりも小さい。また、第2シャフト182の外周部には、周方向に所定の間隔で平坦部182aが形成されており、平坦部182aの周方向中央側では、間隔Aが直径Bよりも大きい。
 つまり、ローラ281が平坦部182aの周方向中央部に保持される状態では、ローラ281が第2シャフト182の外周面部及びギヤ184、186の内周面部に噛み合わず(非係合状態)、第2シャフト182とギヤ184、186との相対回転が許容される(強制フリー状態)。
 一方、ローラ281が第2シャフト182に対する周方向の移動が許容される状態では、ローラ281が第2シャフト182の外周面部及びギヤ184、186の内周面部に噛み合い(係合状態)、第2シャフト182とギヤ184、186とが二方向において一体回転可能に接続される(強制フリー解除状態)。
 図8に示すように、リテーナ282は、第2シャフト182及びギヤ184、186に対して相対回転可能なリング形状であり、ローラ281を保持する複数のローラ保持部282aと、ガイド284を保持する複数のガイド保持部282bと、を有する。
 また、リテーナ282の外周面には、複数のゴム球282cが周方向に所定の間隔で埋設されている。これらのゴム球282cは、ギヤ184、186とリテーナ282との間に適度な摩擦を生じさせることで、強制フリー解除状態における意図しない空転を防止する。なお、ギヤ184、186とリテーナ282との間に摩擦を生じさせる部材は、ゴム球282cに限らず、Oリングであってもよい。
 図7に戻って、ピン283は、径方向外側の端部に円錐状の凸部283aを有し、ガイド284は、径方向内側の端面に凸部283aと嵌合(係合)する円錐状の凹部284aを有する。ピン283の凸部283aがガイド284の凹部284aに嵌合すると、ピン283及びガイド284によるガイド作用によって、第2シャフト182に対するリテーナ282の相対回転位置が強制フリー状態となる所定の位置に位置決めされる。
 図9に示すように、操作ロッド241には、上方から順に、第1大径部241c1、第1小径部241b1、第2大径部241c2、第2小径部241b2、第3大径部241c3が所定の長さ及び間隔で形成されている。操作ロッド241は、2つの断続部212、222を同時に制御可能に設けられているが、断続部212、222ごとに別々に設けられていてもよい。
 以下の説明では、断続部212、222を同時に制御する操作機構240の動作について図9を参照しながら説明する。
 図9に示すように、断続部212、222は、操作機構240によって強制フリー状態(以下、適宜オフ状態と称する)と強制フリー解除状態(以下、適宜オン状態と称する)とに切り替えられる。
 操作機構240の操作ロッド241は、図9の(A)に示す上位置にあるとき、第2大径部241c2が断続部222のピン283を外径方向に押し出しつつ、第3大径部241c3が断続部212のピン283を外径方向に押し出すことで、断続部212及び断続部222をオフ状態とする。
 また、操作機構240の操作ロッド241は、図9の(B)に示す中位置にあるとき、第1小径部241b1が断続部222のピン283が内径方向に戻ることを許容しつつ、第3大径部241c3が断続部212のピン283を外径方向に押し出すことで、断続部222をオン状態、断続部212をオフ状態とする。
 また、操作機構240の操作ロッド241は、図9の(C)に示す下位置にあるとき、第1大径部241c1が断続部222のピン283を外径方向に押し出しつつ、第2小径部241b2が断続部212のピン283が内径方向に戻ることを許容することで、断続部222をオフ状態、断続部212をオン状態とする。
 つぎに、二方向クラッチ280の動作について、断続部222を例に、図10~図14を参照しつつ説明する。以下の例では、断続部222における図9の(A)から(B)を経て(C)へ移行する場合を例に説明する。
 図10の(A)及び(B)に示すように、操作ロッド241の第2大径部241c2が断続部222のピン283を外径方向に押し出す状態では、ピン283の凸部283aがガイド284の凹部284aに嵌合し、第2シャフト182に対するリテーナ282の相対回転位置が所定の位置で固定される。この状態では、ローラ281が平坦部182aの周方向中央部に保持されるため、ローラ281が第2シャフト182の外周面部及び第2従動ギヤ186の内周面部に噛み合わず、第2シャフト182と第2従動ギヤ186との相対回転が許容されるオフ状態となる。
 図11の(A)及び(B)は、操作ロッド241が、第2大径部241c2が断続部222のピン283を外径方向に押し出す位置から第1小径部241b1がピン283の内径方向への戻りを許容する位置に移動した状態を示している。図11では、既にピン283が内径方向に移動しているが、実際は、第2シャフト182と第2従動ギヤ186との相対回転が生じたタイミングで、第2従動ギヤ186と連れ回りするリテーナ282のガイド284が凹部284aの傾斜面でピン283を内径方向に押し戻す。
 図12の(A)及び(B)に示すように、ピン283の内径方向への戻りが許容される状態で、第2シャフト182と第2従動ギヤ186との間に図中の矢印で示す正転方向の相対回転が生じると、第2従動ギヤ186と連れ回りするリテーナ282がローラ281を第2シャフト182に対して正転方向に移動させる。これにより、ローラ281は、第2シャフト182の外周面部及び第2従動ギヤ186の内周面部に噛み合い、正転方向において第2シャフト182と第2従動ギヤ186とを一体的に回転させる正転オン状態を出現させる。
 図13の(A)及び(B)に示すように、ピン283の内径方向への戻りが許容される状態で、第2シャフト182と第2従動ギヤ186との間に図中の矢印で示す逆転方向の相対回転が生じると、第2従動ギヤ186と連れ回りするリテーナ282がローラ281を第2シャフト182に対して逆転方向に移動させる。これにより、ローラ281は、第2シャフト182の外周面部及び第2従動ギヤ186の内周面部に噛み合い、逆転方向において第2シャフト182と第2従動ギヤ186とを一体的に回転させる逆転オン状態を出現させる。
 図14の(A)及び(B)に示すように、操作ロッド241が、第1小径部241b1が断続部222のピン283の内径方向の戻りを許容する位置から第1大径部241c1がピン283を外径方向に押し出す位置に移動すると、ピン283の凸部283aがガイド284の凹部284aに嵌合し、ピン283及びガイド284によるガイド作用によって、第2シャフト182に対するリテーナ282の相対回転位置が所定の位置に位置決め状態で固定される。この状態では、ローラ281が平坦部182aの周方向中央部に保持されるため、ローラ281が第2シャフト182の外周面部及び第2従動ギヤ186の内周面部に噛み合わず、第2シャフト182と第2従動ギヤ186との相対回転が許容されるオフ状態となる。
 なお、上記実施形態では、断続部212、222及び操作機構240が第2シャフト182側に設けられていたが、図15に示す第2実施形態のように、第1シャフト181側に設けられていてもよい。即ち、第2実施形態の電動義足1では、第1断続機構210の断続部212が、第1駆動ギヤ183と第1シャフト181との間に設けられ、第2断続機構220の断続部222が、第2駆動ギヤ185と第1シャフト181との間に設けられる。その他の構成は概ね第1実施形態と同一又は同様であるため、以降の説明も第1実施形態の電動義足1を例に説明する。
 センサ装置270は、図16に示すように、膝関節機構130(連接軸135)に設けられた膝角度センサ271と、アダプター122に内蔵された荷重センサ272と、モータMの近傍に配置された不図示の基板に搭載されたIMU(Inertial Measurement Unit)273と、を含む。
 膝角度センサ271は、膝角度(θ[deg])を検出する。膝角度(θ[deg])は、図19の(A)に示すように、連接軸135を通る膝上側部材120の延長線L11と膝下側部材110との成す角である。言い換えると、膝角度θは、180[deg]から前述の第2成す角θ2を引いた角度であり、第2成す角θ2の補角である。延長線L11よりも前方に膝下側部材110があるときに膝角度θはマイナスの値をとり、延長線L11よりも後方に膝下側部材110があるときに膝角度θはプラスの値(+deg)をとる。したがって、第2成す角θ2のとり得る範囲が約60[deg]~185[deg]なので、膝角度θのとり得る範囲は、約-5[deg]~120[deg]である。
 荷重センサ272は、電動義足1が受ける加重、言い換えると電動義足1の使用者からの荷重を検出する。荷重センサ272は、引張荷重が正、圧縮荷重が負の値をとるように設定される。したがって、電動義足1が接地した加重状態(以降、立脚フェーズと称する場合がある)では電動義足1に外部から加重(圧縮荷重)が作用するので負の値をとり、電動義足1が地面から離間した非加重状態(以降、遊脚フェーズと称する場合がある)では外部から加重を受けないものの電動義足1の自重により引張荷重が作用するので正の値をとる。
 IMU273は、3軸の角速度及び3軸の加速度を取得する。直交座標系の3軸をX軸、Y軸、Z軸とすると、IMU273は、X軸角速度ωx[deg/s]、Y軸角速度ωy[deg/s]、Z軸角速度ωz[deg/s]、X軸加速度Ax[m/s]、Y軸加速度Ay[m/s]、Z軸加速度Az[m/s]を検出する。
 続いて、電動義足1を制御する制御部10について説明する。
 制御部10は、使用者が階段を昇るよう歩行するときに電動義足1を後述する昇段モードで駆動し、使用者が平地を進むよう歩行する、若しくは、階段を降りるよう歩行するときに電動義足1を後述する平地・降段モードで駆動する。制御部10は、センサ装置270からの情報を受けて、各モードで電動義足1を制御する。より具体的に説明すると、制御部10には、膝角度センサ271、荷重センサ272、及びIMU273からの情報が入力される。制御部10は、膝角度センサ271から膝角度θを取得し、荷重センサ272から荷重を取得するともに、IMU273で検出した3軸の角速度及び3軸の加速度から下腿角θsを算出する。また、制御部10は、膝角度θ及び下腿角θsから大腿角θtを算出する。制御部10は、その他、膝角度θ、下腿角θs、及び大腿角θtのそれぞれの角速度や角加速度、また膝下側部材110、膝上側部材120の加速度等を算出することができる。
 ここで、下腿角θsは、図19の(C)に示すように、連接軸135を中心とした膝下側部材110の延在方向に延びる中心線と、連接軸135を通る鉛直線VL1との成す角であり、鉛直線VL1よりも前方に膝下側部材110があるときに下腿角θsはマイナスの値(-deg)をとり、鉛直線VL1よりも後方に膝下側部材110があるときに下腿角θsはプラスの値(+deg)をとる。
 また、大腿角θtは、図19の(B)に示すように、膝上側部材120が取り付けられる大腿部123の股関節124を通る鉛直線VL2と、膝上側部材120の延在方向に延びる中心線との成す角であり、鉛直線VL2よりも前方に膝上側部材120があるときに大腿角θtはマイナスの値(-deg)をとり、鉛直線VL2よりも後方に膝上側部材120があるときに大腿角θtはプラスの値(+deg)をとる。
 制御部10は、各モードで、これらの情報に基づいて第1断続機構210及び第2断続機構220の遮断状態と動力伝達可能状態とを切り替える操作機構240(サーボモータ242)を制御するとともに、電動義足1を伸展させたり屈曲させたりするための動力を出力するモータMを制御する。
 図16に戻って、制御部10は、電動義足1が立脚フェーズであるか遊脚フェーズであるかを判定するフェーズ判定部11と、昇段モード又は平地・降段モードの何れか一方に遷移することを予想して取得するモード取得部12と、伸縮装置140を伸縮させるモータM及び操作ロッド241を駆動するサーボモータ242(操作機構240)を制御するモータ制御部13と、を備える。
 フェーズ判定部11は、荷重センサ272で検出した荷重が第1閾値(例えば-90[N])以上では遊脚フェーズと判定し、荷重が第2閾値(例えば-110[N])以下では立脚フェーズと判定する。また、フェーズ判定部11は、立脚フェーズと判定している状態で、第1閾値(例えば-90[N])以上になった場合に立脚フェーズから遊脚フェーズへ遷移したと判定する。一方、遊脚フェーズと判定している状態で、第2閾値(例えば-110[N])以下になった場合に遊脚フェーズから立脚フェーズへ遷移したと判定する。なお、第1閾値と第2閾値は同一の値でもよいが、ヒステリシスを設けることで異なる値とすることが好ましい。これによりハンティングを抑制できる。
 モード取得部12は、予め定められた条件に基づいて、昇段モードから平地・降段モードに遷移すること、及び、平地・降段モードから昇段モードに遷移することを予想して取得する。また、モード取得部12は、電動義足1に設けられた切替スイッチや、使用者の端末装置、例えば、スマートフォン、携帯電話、タブレット、スマートウォッチ等からの信号を受けつける電気的なスイッチによって、モード遷移を取得してもよい。
 モータ制御部13は、モータMを制御して伸縮装置140を伸縮させ電動義足1を伸展させたり屈曲させたりする。また、モータ制御部13は、サーボモータ242を制御して操作ロッド241を動かし第1断続機構210及び第2断続機構220の遮断状態と動力伝達可能状態とを切り替える。また、動力伝達可能状態においては、第1変速機構T1を介して動力伝達状態となる変速状態(以下、高トルク側接続状態)と、第2変速機構T2を介して動力伝達状態となる変速状態(以下、高回転側接続状態)と、を切り替える。
<昇段モード>
 このように構成された電動義足1では、これまでの受動ダンパーを備える受動義足では、非義足側の足(健常足)で一段ずつ上がらざるをえなかった階段の昇段動作をスムーズに行うことが可能となる。使用者が階段を昇るよう歩行するときのモードが昇段モードである。
 図17は、昇段時の人間及び電動義足の動作(昇段動作)を示す図である。
 図17の(A)~(D)は立脚フェーズ、図17の(D)~(E)が立脚から遊脚前期への遷移フェーズ、図17の(E)~(G)は遊脚前期フェーズ、図17の(G)は遊脚前期から遊脚後期への遷移フェーズ及び遊脚後期フェーズ、図17の(H)は遊脚後期から立脚への遷移フェーズ及び立脚フェーズを示す図である。
 図17の(A)~(D)に示すように、電動義足1を前に出して階段を昇る(昇段)際に電動義足1に荷重がかかった状態で、膝関節機構130を屈曲した状態から伸展するとき大きな動力が必要となる。
 立脚時(図17の(A)~(D))、モータ制御部13はサーボモータ242を駆動して第1断続機構210及び第2断続機構220を高トルク側接続状態とする(図20の立脚フェーズ)。この高トルク側接続状態で、モータMを伸展方向、即ち第2成す角θ2を拡大する方向に回転させると、モータMの動力が、第1シャフト181、第1駆動ギヤ183、第1従動ギヤ184、第1断続機構210の断続部212、第2シャフト182、スピンドルユニットSPへと伝達される。これにより、スリーブ174が変速機Tから離れるように伸長動作し、変速機Tが取り付けられた膝下側部材110に対し、スリーブ174が連結された膝上側部材120が連接軸135を中心に回転して、膝関節機構130が伸展する。この伸展させる動力は、第1変速機構T1で減速される際に高トルク化された動力なので、電動義足1を前に出して階段を昇る際に電動義足1に大きな荷重がかかった状態であっても、膝関節機構130を屈曲した状態から確実に伸展させることが可能になる。
 一方、階段の昇段動作をスムーズに行うためには、図17の(D)→(G)に示すように、健常足に荷重がかかった状態で、膝関節機構130が伸展した状態から屈曲させる必要がある。このとき、素早く電動義足1を折りたたみ、その後、素早く次の段に着地する必要がある。膝関節機構130が伸展した状態から屈曲させる際には、大きな動力は必要ないが素早い動作が必要となる。
 具体的に説明すると、立脚から遊脚前期の遷移時(図17の(D)~(E))には、モータ制御部13はサーボモータ242を駆動して第1断続機構210及び第2断続機構220を高トルク側接続状態から高回転側接続状態に遷移させ(図20の遷移フェーズ(立脚→遊脚前期))、この間、モータMを非駆動状態とする。モータMの非駆動状態とは、モータMの動力が生じないように、又は、モータMが停止するように制御することを意味する。その後の遊脚前期(図20の遊脚前期フェーズ)には、この高回転側接続状態で、モータMを伸展方向とは反対の屈曲方向に回転させる(図17の(E)~(G))。そうすると、モータMの動力が、第1シャフト181、第2駆動ギヤ185、第2従動ギヤ186、第2断続機構220の断続部222、第2シャフト182、スピンドルユニットSPへと伝達される。これにより、スリーブ174が変速機Tに近づくように縮小動作し、スリーブ174が連結された膝上側部材120に対し、変速機Tが取り付けられた膝下側部材110が連接軸135を中心に回転して、膝関節機構130が屈曲する。
 遊脚前期から遊脚後期への遷移時(図17の(G))には、一度モータMを非駆動状態とする(図20の遷移フェーズ(遊脚前期→遊脚後期))。そして、遊脚後期(図17(G)~(H))には、この高回転側接続状態で、モータMを伸展方向に回転させる(図20の遊脚後期フェーズ)。そうするとモータMの動力が、第1シャフト181、第1駆動ギヤ183、第1従動ギヤ184、第1断続機構210の断続部222、第2シャフト182、スピンドルユニットSPへと伝達される。これにより、スリーブ174が変速機Tから離れるように伸長動作し、スリーブ174が連結された膝上側部材120が連接軸135を中心に回転して、膝関節機構130が伸展する。そして、この遊脚時における屈曲及び伸展させる動力は、第2変速機構T2で増速される際に低トルク化された動力なので、膝関節機構130を素早く屈曲及び伸展させることが可能になる。
 遊脚後期から立脚への遷移時(図17の(H))には、モータ制御部13はサーボモータ242を駆動して第1断続機構210及び第2断続機構220を高回転側接続状態から高トルク側接続状態に遷移させ(図20の遷移フェーズ(遊脚後期→立脚))、モータMを非駆動状態とする。
 昇段モードにおいて、モータ制御部13がモータMを制御するに際し、立脚フェーズ、言い換えると高トルク側接続状態のとき、伸縮装置140の成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御する(以下、トルク制御と称する)。一方、モータ制御部13は遊脚フェーズ、言い換えると高回転側接続状態のとき、伸縮装置140の成す角の角度に相関する位置の目標値である位置目標値に基づいて制御する(以下、位置制御と称する)。以下、トルク制御、位置制御、トルク制御と位置制御との遷移について詳細に説明する。
(トルク制御)
 トルク制御は、伸縮装置140の成す角を拡大又は縮小するトルクと比例関係にあるq軸電流を制御対象とする。言い換えると、トルク目標値は目標q軸電流に置き換えられる。即ち、トルク目標値が決まれば目標q軸電流が決まり、目標q軸電流を決めるとトルク目標値が決まる。図21を参照して、目標q軸電流を目標Iq[A]、荷重の鉛直方向成分をFZa[N]、股関節124と連接軸135との間の長さである大腿長をL[m]、膝角度をθ[deg]、補正係数をαとすると、目標Iqは、以下の(1)で表される。
 目標Iq[A]=FZa[N]×Sinθ[deg]×L[m]×α  (1)
 (1)式は、膝下側部材110を膝上側部材120に固定された棒と考え、膝上側部材120を押し上げる為に必要な力(FZa×sinθ)に大腿長Lを乗じてトルクを算出し、目標q軸電流を演算したものである。モータ制御部13は、このトルク目標値(目標q軸電流)に基づいて屈曲した状態の膝関節機構130を伸展する方向にモータMの動力を発生させる。なお、補正係数αは、q軸電流に対するトルク定数(Kt)[Nm/A]に基づく値であり、装着時の昇段速度調整等の意味合いも含めた値となる。
 即ち、トルク目標値(目標q軸電流)は、荷重FZa(加重)、膝角度θ、及び大腿長Lに基づいて決定される。図20にも示すように、モータ制御部13は、トルク制御が行われる昇段モードの立脚フェーズにおいて、このトルク目標値(目標q軸電流)に基づいてモータMを伸展方向に駆動する。
 なお、(1)式の荷重FZaの代わりに使用者の体重に基づいて設定してもよい。例えば、体重の絶対値を用いてもよく、体重に係数をかけたものを用いてもよい。
(位置制御)
 位置制御は、位置目標値(目標角度)を制御対象とする。図20に示す遊脚前期フェーズと遊脚後期フェーズとで、位置目標値(目標角度)の決定方法が異なる。言い換えると、制御部10は、遊脚前期フェーズと遊脚後期フェーズとで、異なるパラメータに基づいて決定された位置目標値に基づいてモータMを制御する。また、遊脚前期フェーズでは、2つの方式が考えられる。いずれの方式を採用してもよい。
(遊脚前期フェーズ_方式1)
 遊脚前期フェーズ_方式1は、遊脚前期フェーズにおいて、大腿部123を一旦後ろに振る動作を要する。方式1は、乗りこえる段差への躓きを確実に防止することを目的としたものである。図22の(A)及び(B)は、方式1の第1ステップ(Step1工程)を示し、図22の(C)及び(D)は、方式1の第2ステップ(Step2工程)を示している。第1ステップ(Step1工程)は、遊脚への遷移直後から電動義足1を大腿角θtが所定角度(例えば、20[deg])以上後方に振るまでの期間である。第2ステップ(Step2工程)は、昇段までの電動義足1を前に振る期間であり、膝曲げ角γ[deg]を固定させて保持させる期間でもある。なお、膝曲げ角γ[deg]は、図22の(C)に示すように、膝下側部材110の延在方向に延びる中心線と、連接軸135を通る鉛直線VL1との成す角である。
 方式1では、膝角度θを制御対象とする。目標膝角度θは、(2)式で表される。
 目標膝角度θ[deg]=0[deg] (2)
 即ち、方式1の第1ステップ(Step1工程)では、目標膝角度θは、膝角度θ(θ=0)に基づいて制御され、モータ制御部13は膝関節機構130を伸展させた状態を維持するよう制御する。なお、図22の(A)から(B)への遷移は、使用者が上体と大腿部123との回動軸(回動の基準)である股関節124を中心に大腿部123を回転させることで実現される。
 方式1の第2ステップ(Step2工程)では、膝角度θを制御対象とする。目標膝角度θは、(3)式で表される。
 目標膝角度θ[deg]=γ[deg]-θt[deg] (3)
 即ち、方式1の第2ステップ(Step2工程)では、目標膝角度θは、大腿角θt及び膝曲げ角γに基づいて、より具体的には大腿角θtと膝曲げ角γとの差分に基づいて決定され、モータ制御部13は固定値である膝曲げ角γ[deg]に対し大腿角θtの変動にあわせて膝角度θを調整するよう制御する。なお、躓き防止の観点から、γ[deg]は、例えば80[deg]程度に設定される。
(遊脚前期フェーズ_方式2)
 遊脚前期フェーズ_方式2は、方式1で行っていた大腿部123を一旦後ろに振る動作をなくし、歩行時間を短縮し昇段時の使用者の負担を軽減することを目的としたものである。方式2では、図23の(A)~(D)を通して制御対象の決定方法を統一するものである。言い換えると、制御部10は、遊脚前期フェーズを通して同じパラメータに基づいて決定された位置目標値に基づいてモータMを制御する。
 方式2では、膝角度θを制御対象とする。目標膝角度θは、倍率をδ、補正角をε[deg]として(4)式で表される。
 目標膝角度θ[deg]=δ×(θt[deg]-ε[deg])                                 (4)
 即ち、方式2では、目標膝角度θは、大腿角θtに基づいて決定され、モータ制御部13は大腿角θtを基に膝角度θをある一定の倍率で、膝下側部材110を後方に折り曲げるよう制御する。大腿部123が前方に振られるに従って、躓きを防ぐには膝曲げ角γを増加させる必要がある。つまり、大腿角θtに比例して膝曲げ角γを増加させる必要がある。躓き防止の観点から、倍率δは、例えば3、εは、例えば10[deg]程度に設定される。
(遊脚後期フェーズ)
 遊脚後期フェーズは、接地準備期間となる。遊脚後期フェーズでは、膝角度θを制御対象とする。目標膝角度θは、(5)式で表される。
 目標膝角度θ[deg]=大腿角θt[deg]+調整角度β[deg] (5)
 即ち、目標膝角度θは、大腿角θt及び調整角度βに基づいて決定され、モータ制御部13は、図24に示すように、体重支持に向け大腿角θtによらず、膝下側部材110を常に水平床面に対して略垂直になるよう制御する。言い換えると、膝角度θが大腿角θtと略等しくなるよう制御する。調整角度β[deg]は、図24に示すように、膝下側部材110の延在方向に延びる中心線と、連接軸135を通る鉛直線VL1との成す角であり、鉛直線VL1よりも前方に膝下側部材110があるときに調整角度βはマイナスの値をとり、鉛直線VL1よりも後方に膝下側部材110があるときに調整角度βはプラスの値をとる。調整角度β[deg]は、使用者の昇段時の感覚等を考慮して設定される調整角度である。調整角度βは、膝下側部材110が鉛直線VL1に対して、膝上側部材120と同じ側に位置するよう設定される。電動義足1ではかかとよりも爪先が低くなるよう設定され、例えば5[deg]である。
(遷移条件)
 昇段時は、遊脚前期フェーズ、遊脚後期フェーズ、立脚フェーズの繰り返し動作になる。続いて、図25に基づいて遷移条件について説明する。
 (遊脚前期フェーズから遊脚後期フェーズへの遷移)
 遊脚前期フェーズから遊脚後期フェーズへの遷移は、以下の遷移条件1が成立した場合に実行される。
 遷移条件1:大腿角θtが第1所定範囲となったこと
 第1所定範囲は、例えば-50[deg]未満の範囲である。即ち、上述したように大腿角θtは鉛直線VL2よりも前方に膝上側部材120があるときにマイナスの値をとるので(図19の(B)参照)、大腿部123(膝上側部材120)が前方に所定量だけ振り上げられたことをこの条件で判定する。
 (遊脚後期フェーズから立脚フェーズへの遷移)
 遊脚後期フェーズから立脚フェーズへの遷移は、以下の遷移条件2が成立した場合に実行される。
 遷移条件2:荷重FZaが第2所定範囲となったこと
 第2所定範囲は、例えば-110[N]以下の範囲である。即ち、上述したように荷重センサ272は、引張荷重が正、圧縮荷重が負の値をとるように設定されるので、荷重FZaが-110[N]以下になることで、電動義足1が接地して立脚状態に遷移したことを判定する。これは、フェーズ判定部11による遊脚フェーズから立脚フェーズへの判定基準と一致する。
 (立脚フェーズから遊脚前期フェーズへの遷移)
 立脚フェーズから遊脚前期フェーズへの遷移は、以下の遷移条件3が成立した場合に実行される。
 遷移条件3:荷重FZaが第3所定範囲となったこと
 第3所定範囲は、例えば-90[N]以上の範囲である。これは、フェーズ判定部11による立脚フェーズから遊脚フェーズへの判定基準と一致する。
 なお、以下の遷移条件4が成立した後、遷移条件3が成立した場合に電動義足1が離地して遊脚状態に遷移したことを判定することが好ましい。
 遷移条件4: 大腿角θtが第4所定範囲となったこと
 第4所定範囲は、例えば-15[deg]未満の範囲である。遷移条件4で体重移動に伴って大腿部123(膝上側部材120)が後方に移動してきたことを判定し、その後に第3遷移条件で荷重FZaが小さくなることを判定することで、遊脚フェーズから立脚フェーズへの遷移をより確実に判定することができる。
<平地・降段モード>
 使用者が平地を進むよう歩行する、若しくは、階段を降りるよう歩行するモードが平地・降段モードである。なお、平地とは、階段のような段差がないことを意味し、水平な場所以外に、上り坂、下り坂を含む概念である。図18は、平地歩行時の人間及び電動義足の動作(平地歩行動作)を示す図である。
 図18の(A)~(D)は立脚フェーズ、図18の(D)は立脚から遊脚への遷移フェーズ、図18の(E)~(H)は遊脚フェーズ、図18の(H)は遊脚から立脚への遷移フェーズを示す図である。
 平地・降段モードでは、常にモータMの非駆動状態とする。モータMの非駆動状態において、図18の(A)~(D)に示すように、電動義足1に荷重がかかった立脚フェーズでは、いわゆる膝折れを防止する必要がある。
 立脚時(図18の(A)~(D))、モータ制御部13はサーボモータ242を駆動して第1断続機構210及び第2断続機構220を高回転側接続状態とする。(図20の立脚フェーズ)。高回転側接続状態では、断続部222がオン状態となるので、モータMとスピンドルユニットSPが第2変速機構T2を介して動力伝達状態となる。この高回転側接続状態で、モータMを非駆動状態に保持すると、電動義足1に作用する屈曲方向の外力がスピンドルユニットSPから第2変速機構T2を介してモータMに伝達されるので、モータM及び変速機Tのフリクションを利用して屈曲方向の外力を減衰させることにより、いわゆる膝折れが防止される。なお、平地・降段モードにおける立脚フェーズのときに、高回転側接続状態にするのは、いわゆる膝折れを防止するためであり、必ずしも高回転側接続状態にする必要はなく、高トルク側接続状態にしてもよい。図20及び以下の説明では、平地・降段モードにおける立脚フェーズのときに第1断続機構210及び第2断続機構220を高回転側接続状態とする場合について説明する。
 一方、図18の(E)~(H)に示すように、電動義足1に外部から荷重がかからない遊脚時には、電動義足1を自由に振れる必要がある。したがって、立脚から遊脚への遷移時(図18の(D))には、モータ制御部13はサーボモータ242を駆動して第1断続機構210及び第2断続機構220を遮断状態とする(図20の遷移フェーズ(立脚→遊脚))。この遮断状態では、断続部212及び断続部222がオフ状態となるため、遊脚時はモータMとスピンドルユニットSPが接続されない遮断状態となる(図20の遊脚フェーズ)。この状態で、モータMを非駆動状態に保持すると、膝関節機構130の自由な伸展及び屈曲が許容される。なお、階段を下りる降段も、平地歩行と同様の制御が行われる。
 遊脚から立脚への遷移フェーズ(図18の(H))には、モータ制御部13はサーボモータ242を駆動して第1断続機構210及び第2断続機構220を遮断状態から高回転側接続状態に遷移させる(図20の遷移フェーズ(遊脚→立脚))。
 ここで、膝折れを防止する機能についてより詳細に説明する。
 上述したように平地・降段モードの立脚時には、電動義足1で使用者の体重を支えて膝折れを防止する必要があるが、使用者の体重は一定ではない。そのため、モータM及び変速機Tで発生し得るフリクションが可変であることが好ましい。
 先ずは、モータMで発生するフリクションを変更する方法について図26~図28を参照しながら説明する。図26は、バッテリBとモータMを繋ぐ電気回路16の一例を示す図である。なお、この電気回路16では、バッテリBとサーボモータ242を繋ぐ経路を省略している。バッテリBとモータMとの間には、スイッチSW1を介してインバータ18が設けられている。インバータ18は、バッテリBからの直流電力を交流電力に変換し、モータMに供給する。スイッチSW1とインバータ18との間には、抵抗器R1とトランジスタTr1が直列に接続された回路D1と、抵抗器R2とトランジスタTr2が直列に接続された回路D2と、抵抗器R3とトランジスタTr3が直列に接続された回路D3と、が並列に接続されている。この電気回路16では、スイッチSW1を開状態(OFF)にしてトランジスタTr1~Tr3の少なくとも1つを閉状態(ON)にすることで、発電ブレーキを発生させモータMの回転に対してフリクション(制動力)を発生させることができる。
 図27も参照して、このような電気回路16において、昇段モードの立脚フェーズ及び遊脚フェーズ、即ちモータMの駆動時には、スイッチSW1を閉状態(ON)且つ全てのトランジスタTr1~Tr3を開状態(OFF)にしてインバータ18をスイッチング制御することで、モータMを伸展方向に回転させたり屈曲方向に回転させたりすることができる。一方、平地・降段モード、即ち、モータMの非駆動時には、スイッチSW1を開状態(OFF)にしてモータMへのバッテリBからの電力供給を停止する。
 平地・降段モードにおける遊脚フェーズでは、全てのトランジスタTr1~Tr3を開状態(OFF)にする。平地・降段モードにおける遊脚フェーズでは、上述したように自由な膝関節機構130の自由な伸展及び屈曲を許容するため、発電ブレーキによる制動力を発生させない。一方、平地・降段モードにおける立脚フェーズでは、トランジスタTr1~Tr3の少なくとも1つを閉状態(ON)にすることで、発電ブレーキによるフリクションを発生させることができる。発電ブレーキによるフリクションは、閉状態(ON)となるトランジスタの数に依存し、閉状態となるトランジスタが多ければ多いほど、発電ブレーキによるフリクションが増加する。
 したがって、図28に示すように、使用者の体重が重くなるに従って、平地・降段モードにおける立脚フェーズで閉状態(ON)にするトランジスタの数を増加させる。即ち、使用者の体重が軽い場合には閉状態(ON)にするトランジスタの数を減らし、使用者の体重が重い場合には閉状態(ON)にするトランジスタの数を増やす。なお、これらの設定は、電動義足1の使用者が決まった際に、プログラムに初期設定として設定されることが好ましい。
 また、モータMで発生させるフリクションを増加させる方法として、閉状態(ON)にするトランジスタの数を変更することに限らない。例えば、トランジスタを1つのみ(回路D1のみ)として、トランジスタを閉状態(ON)にする際のPWM(Pulse Width Modulation)制御のデューティー比を変更してもよい。例えば、使用者の体重が軽い場合には閉状態(ON)にする際のPWM制御のデューティー比を小さく設定し、使用者の体重が重い場合には閉状態(ON)にする際のPWM制御のデューティー比を大きく設定してもよい。この設定も、電動義足1の使用者が決まった際に、プログラムに初期設定として設定されることが好ましい。
 続いて、変速機Tのフリクションを変更する方法について説明する。
 変速機Tのフリクションを大きくするためには、電動義足1に作用する屈曲方向の外力がスピンドルユニットSPから第2変速機構T2を介してモータMに伝達される際のモータMの回転数を増加させればよい。そのため、平地・降段モードにおける立脚フェーズで、高回転側接続状態とした際のモータMの回転数が増加するように設定する。即ち、高回転側接続状態の際の変速比、即ち第2変速機構T2の第2変速比を大きくする。なお、第1変速比に対する第2変速比は、1.5~3.0の範囲が好ましいので、第2変速機構T2の第2変速比を大きくした分、第1変速機構T1の第1変速比も調整することが好ましい。したがって、使用者の体重が重い場合には第2変速機構T2の第2変速比が大きくなるよう設定し、使用者の体重が軽い場合には第2変速機構T2の第2変速比が小さくなるよう設定する。なお、平地・降段モードにおける立脚フェーズで、高回転側接続状態の代わりに高トルク側接続状態とする場合には、変速機Tのフリクションを大きくするためには第1変速機構T1の第1変速比が大きくなるよう設定する。この設定も、電動義足1の使用者が決まった際に、変速機Tの仕様が設定されることが好ましい。
 図20は、昇段モード及び平地・降段モードの各フェーズと制御方法をまとめた表である。図20に示すように、昇段モードの立脚フェーズではモータ制御部13はモータMをトルク制御し、昇段モードの遊脚フェーズではモータMを位置制御する。このように同じ昇段モードであっても、立脚フェーズと遊脚フェーズとでモータMの制御を変えることで電動義足1を適切に制御することができる。
 また、同じ立脚フェーズであっても、昇段モードではモータ制御部13はモータMをトルク制御し、平地・降段モードではモータMを非駆動、即ち、モータMの動力が生じないように、又は、モータMが停止するように制御する。このように立脚フェーズでも、平地・降段モードと昇段モードとでモータMの制御を変えることで、歩行モードに応じて適切に電動義足1の制御を行うことができる。
 さらに、同じ遊脚フェーズであっても、昇段モードではモータ制御部13はモータMを位置制御し、平地・降段モードではモータMを非駆動、即ち、モータMの動力が生じないように、又は、モータMが停止するように制御する。このように遊脚フェーズでも、平地・降段モードと昇段モードとでモータMの制御を変えることで、歩行モードに応じて適切に電動義足1の制御を行うことができる。
 上述の昇段モード及び平地・降段モードにおける制御方法は、予め用意されたプログラムをコンピュータ(プロセッサ)で実行することにより実現できる。本プログラムは、コンピュータが読み取り可能な記憶媒体に記憶され、記憶媒体から読み出されることによって実行される。また、本プログラムは、フラッシュメモリ等の非一過性の記憶媒体に記憶された形で提供されてもよいし、インターネット等のネットワークを介して提供されてもよい。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 例えば、上記実施形態では、変速機Tは第1変速機構T1と第2変速機構T2の2つの動力伝達経路を有していたが、これに限らず1つの変速機構のみを有し、昇段モードの立脚フェーズ及び遊脚フェーズにおいて同じ変速比で変速するものであってもよい。
 例えば、上記実施形態では、本発明の継手装置の一実施形態としての膝関節に適用した義足装置(電動義足)を例示したが、これに限らず、肘関節に適用した義肢装置(電動義肢)であってもよく、装着主体としては人間以外の他の動物であってもよく、ロボットであってもよい。肘関節に適用する場合、上記実施形態の膝下側部材110が、膝上側部材120に対して装着主体の末端側、即ち前腕となる。
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 第1部材(膝下側部材110)と、
 第2部材(膝上側部材120)と、
 前記第1部材と前記第2部材との成す角(第2成す角θ2、膝角度θ)を変更可能に連接する連接部(膝関節機構130)と、
 前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置(拡縮装置200)と、を備える継手装置(電動義足1)であって、
 前記拡縮装置は、
 動力源(モータM)と、前記動力源の動力を伝達する動力伝達部(変速機T)と、前記動力源を制御する制御部(制御部10)と、を有し、
 前記継手装置は、
 外部からの加重を受ける加重状態(立脚フェーズ)と、加重を受けない非加重状態(遊脚フェーズ)と、を遷移するように設けられ、
 前記制御部は、
(A)前記加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御(トルク制御)し、
(B)前記非加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御(位置制御)する、継手装置。
 (1)によれば、加重状態と非加重状態とで動力源の制御を変えることで、適切に継手装置の制御を行うことができる。
 (2) (1)に記載の継手装置であって、
 前記トルク目標値は、前記加重(荷重FZa)に基づいて決定される、継手装置。
 (2)によれば、トルク目標値を適切に設定できる。
 (3) (1)に記載の継手装置であって、
 前記トルク目標値は、装着主体の重量(体重)に基づいて決定される、継手装置。
 (3)によれば、トルク目標値を適切に設定できる。
 (4) (1)~(3)のいずれかに記載の継手装置であって、
 前記トルク目標値は、前記成す角に基づいて、又は、前記成す角の補角(膝角度θ、第2成す角θ2)に基づいて決定される、継手装置。
 (4)によれば、トルク目標値を適切に設定できる。
 (5) (1)~(4)のいずれかに記載の継手装置であって、
 装着主体の第1部分(大腿部123)と該第1部分と相対回動する第2部分(上体)とのうち前記第1部分に装着され、
  前記第1部材が前記第2部材よりも前記装着主体の末端側となるよう、前記第2部材が前記第1部分に装着されるよう設けられ、
 前記トルク目標値は、前記第1部分と前記第2部分との他の成す角を変更可能に連接する前記装着主体の他の連接部(股関節124)と、前記連接部との間の長さ(大腿長L)に基づいて決定される、継手装置。
 (5)によれば、トルク目標値を適切に設定できる。
 (6) (1)~(5)のいずれかに記載の継手装置であって、
 前記制御部は、
(A)前記加重状態のときに、
 前記動力源に、前記第1部材と前記第2部材とが屈曲した状態の前記継手装置が、前記第1部材と前記第2部材とが伸展した状態となる方向の動力が生じるよう制御する、継手装置。
 (6)によれば、負荷を支えながら継手装置を伸展させることができる。
 (7) (1)~(6)のいずれかに記載の継手装置であって、
 前記位置目標値は、前記第2部材と、装着主体の第1部分(大腿部123)と該第1部分と相対回動する第2部分(上体)との回動軸(股関節124)を通る基準線(鉛直線VL2)との第1成す角(大腿角θt)に基づいて決定される、継手装置。
 (7)によれば、位置目標値を適切に設定できる。
 (8) (1)~(7)に記載の継手装置であって、
 前記位置目標値は、前記第1部材と、前記第1部材及び前記第2部材の他の回動軸(連接軸135)を通る他の基準線(鉛直線VL1)との第2成す角(調整角度β)に基づいて決定される、継手装置。
 (8)によれば、位置目標値を適切に設定できる。
 (9) (8)に記載の継手装置であって、
 前記第2成す角は、前記第1部材が前記他の基準線に対して、前記第2部材と同じ側に位置するよう決定される、継手装置。
 (9)によれば、位置目標値をより適切に設定できる。
 (10) (7)に従属する(8)に記載の継手装置であって、
 前記加重状態から前記非加重状態に遷移してから、前記加重状態に再度遷移するまでの期間を非加重期間とし、
  該非加重期間の後半を後期非加重期間(後期遊脚フェーズ)としたとき、
 前記継手装置が前記後期非加重期間にあるときに、
  前記位置目標値は、前記第1成す角、又は、前記第2成す角に基づいて決定される、継手装置。
 (10)によれば、位置目標値をより適切に設定できる。
 (11) (1)~(10)のいずれかに記載の継手装置であって、
 前記位置目標値は、前記第1部材と、前記第1部材及び前記第2部材の他の回動軸(連接軸135)を通る他の基準線(鉛直線VL1)との第3成す角(膝曲げ角γ)に基づいて決定される、継手装置。
 (11)によれば、位置目標値をより適切に設定できる。
 (12) (11)に記載の継手装置であって、
 前記位置目標値は、前記第2部材と、装着主体の第1部分(大腿部123)と該第1部分と相対回動する第2部分(上体)との回動軸(股関節124)を通る基準線(鉛直線VL2)との第1成す角(大腿角θt)と、前記第3成す角との差分に基づいて決定される、継手装置。
 (12)によれば、位置目標値をより適切に設定できる。
 (13) (11)又は(12)に記載の継手装置であって、
 前記加重状態から前記非加重状態に遷移してから、前記加重状態に再度遷移するまでの期間を非加重期間とし、
  該非加重期間の前半を前期非加重期間(前期遊脚フェーズ)としたとき、
 前記継手装置が前記前期非加重期間にあるときに、
  前記位置目標値は、前記第3成す角に基づいて決定される、継手装置。
 (13)によれば、位置目標値をより適切に設定できる。
 (14) (1)~(10)のいずれかに記載の継手装置であって、
 前記加重状態から前記非加重状態に遷移してから、前記加重状態に再度遷移するまでの期間を非加重期間とし、
  該非加重期間の前半を前期非加重期間(前期遊脚フェーズ)、後半を後期非加重期間(後期遊脚フェーズ)としたとき、
 前記制御部は、
  前記前期非加重期間と前記後期非加重期間とで、異なる決定方法で決定された前記位置目標値に基づいて前記動力源を制御する、継手装置。
 (14)によれば、前期非加重期間の動作と後期非加重期間の動作のそれぞれを最適化することができる。
 (15) (14)に記載の継手装置であって、
 前記制御部は、前記前期非加重期間において、
  前記第2部材と、装着主体の第1部分と該第1部分と相対回動する第2部分との回動軸(股関節124)を通る基準線(鉛直線VL2)との第1成す角(大腿角θt)が第1所定範囲(-50[deg]未満)となったときに、
  前記後期非加重期間における制御に切り替える、継手装置。
 (15)によれば、前期非加重期間から後期非加重期間へスムーズに制御を移行することができる。
 (16) (14)又は(15)に記載の継手装置であって、
 前記非加重状態から前記加重状態に遷移してから、前記非加重状態に再度遷移するまでの期間を加重期間としたとき
 前記制御部は、前記後期非加重期間において、
 前記加重が第2所定範囲(-110[N]以下)となったときに、
  前記加重期間における制御に切り替える、継手装置。
 (16)によれば、後期非加重期間から加重期間へスムーズに制御を移行することができる。
 (17) (1)~(16)のいずれかに記載の継手装置であって、
 前記加重状態から前記非加重状態に遷移してから、前記加重状態に再度遷移するまでの期間を非加重期間とし、
 前記非加重状態から前記加重状態に遷移してから、前記非加重状態に再度遷移するまでの期間を加重期間としたとき
 前記制御部は、前記加重期間において、
  前記加重が第3所定範囲(-90[N]以上)となったときに、
  前記非加重期間における制御に切り替える、継手装置。
 (17)によれば、加重期間から非加重期間へスムーズに制御を移行することができる。
 (18) (17)に記載の継手装置であって、
 前記制御部は、前記加重期間において、
  前記第2部材と、装着主体の第1部分と該第1部分と相対回動する第2部分との回動軸(股関節124)を通る基準線(鉛直線VL2)との第1成す角(大腿角θt)が第4所定範囲(-15[deg]未満)となった後に
  前記加重が前記第3所定範囲となったときに、
  前記非加重期間における制御に切り替える、継手装置。
 (18)によれば、加重期間から非加重期間への遷移をより適切に判定することができる。
 (19) (17)又は(18)に記載の継手装置であって、
 前記制御部は、前記非加重期間において、
 前記加重が第5所定範囲(-110[N]以下)となったときに、
  前記加重期間における制御に切り替える、継手装置。
 (19)によれば、非加重期間から加重期間へスムーズに制御を移行することができる。
 (20) (1)~(19)のいずれかに記載の継手装置であって、
 前記拡縮装置は、前記動力伝達部の動力伝達路上に配置され該動力伝達路における動力の遮断及び接続を切り替える断続機構をさらに有し、
 前記制御部は、前記断続機構をさらに制御し、
 前記制御部は、
(B)前記非加重状態のときに、
 前記断続機構を、前記動力伝達路を遮断する遮断状態に制御し(平地・降段モードの場合の遊脚フェーズ)、
 前記動力源を、前記位置目標値に基づいて制御することに代えて、動力が生じないように、又は、停止するように制御する、継手装置。
 (20)によれば、加重状態においても非加重状態においても適切に継手装置の制御を行うことができる。
 (21) (20)に記載の継手装置であって、
 前記制御部は、
(A)前記加重状態のときに、
 前記断続機構を、前記動力伝達路を接続する接続状態に制御し(平地・降段モードの場合の立脚フェーズ)、
 前記動力源を、前記トルク目標値に基づいて制御することに代えて、動力が生じないように、又は、停止するように制御する、継手装置。
 (21)によれば、加重状態においても非加重状態においても適切に継手装置の制御を行うことができる。
 (22) (20)又は(21)に記載の継手装置であって、
 前記動力源は、永久磁石型電動機を有する、継手装置。
 (22)によれば、動力源の非駆動時に発生するフリクションを利用することができる。
 (23) (20)~(22)のいずれかに記載の継手装置であって、
 前記制御部は、前記動力源を停止させる制動力を調整可能に構成される、継手装置。
 (23)によれば、動力源の非駆動時に発生するフリクションを利用した制動力を調整することができる。
 (24) (23)に記載の継手装置であって、
 前記制御部は、装着主体の重量(体重)に応じて設定された前記制動力を発生させる、継手装置。
 (24)によれば、体重に応じた制動力を発生させることができる。
 (25) (1)~(24)のいずれかに記載の継手装置であって、
 前記動力伝達部は、
 前記動力を第1変速比で伝達する第1動力伝達路(第1変速機構T1)と、
 前記動力を前記第1変速比とは異なる第2変速比で伝達する第2動力伝達路(第2変速機構T2)と、を有し、
 前記拡縮装置は、
 前記第1動力伝達路上に配置され該第1動力伝達路における動力の遮断及び接続を切り替える第1断続機構(第1断続機構210)と、
 前記第2動力伝達路上に配置され該第2動力伝達路における動力の遮断及び接続を切り替える第2断続機構(第2断続機構220)と、をさらに有し、
 前記制御部は、
 前記第1断続機構及び前記第2断続機構をさらに制御する、継手装置。
 (25)によれば、制御部は動力源の制御に加えて、第1断続機構及び第2断続機構を
 (26) (25)に記載の継手装置であって、
 前記第1変速比を、前記第1動力伝達路における第1変速部(第1変速機構T1)よりも前記動力源側の回転数である変速前回転数に対する、変速後回転数の比率とし、
 前記第2変速比を、前記第2動力伝達路における第2変速部(第2変速機構T2)よりも前記動力源側の回転数である変速前回転数に対する、変速後回転数の比率としたとき、
 前記第1変速比は、前記第2変速比よりも小さくなるよう構成される、継手装置。
 (26)によれば、異なる変速比で動力源の動力を伝達することができる。
 (27) (25)又は(26)に記載の継手装置であって、
 前記第1変速比、及び前記第2変速比の少なくとも何れか一方は、装着主体の重量(体重)に基づいて決定される、継手装置。
 (27)によれば、体重に応じた変速比を設定することができる。
 (28) (25)~(27)のいずれかに記載の継手装置であって、
 前記第1変速比と前記第2変速比との比率が1.5~3.0となるよう設定される、継手装置。
 (28)によれば、高トルク状態と高回転状態とを適切にバランスさせることができる。
 (29) (1)~(28)のいずれかに記載の継手装置であって、
 装着主体に対して前記第1部材が前記第2部材よりも該装着主体の末端側となるよう装着され、
 前記連接部が、該装着主体の関節として機能するよう設けられる義肢装置である、継手装置。
 (29)によれば、スムーズな屈曲動作と伸展動作が可能になる。
 (30) (29)に記載の継手装置であって、
 前記義肢装置は、前記装着主体の脚部に装着される義足装置である、継手装置。
 (30)によれば、義足のスムーズな屈曲動作と伸展動作が可能になる。
 (31) (30)に記載の継手装置であって、
 前記義足装置は、前記第2部材が前記脚部の大腿部(大腿部123)に装着され、
 前記連接部が、前記大腿部と下腿部との間の膝関節として機能するよう設けられる、継手装置。
 (31)によれば、スムーズな屈曲動作と伸展動作が可能になる。
 (32) 第1部材(膝下側部材110)と、
 第2部材(膝上側部材120)と、
 前記第1部材と前記第2部材との成す角を変更可能に連接する連接部(膝関節機構130)と、
 前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置(拡縮装置200)と、を備える継手装置(電動義足1)であって、
 前記拡縮装置は、
 動力源(モータM)と、前記動力源の動力を伝達する動力伝達部(変速機T)と、前記動力伝達部の動力伝達路上に配置され該動力伝達路における動力の遮断及び接続を切り替える断続機構(第1断続機構210、第2断続機構220)と、前記動力源及び前記断続機構を制御する制御部(制御部10)と、を有し、
 前記継手装置は、
 外部からの加重を受ける加重状態(立脚フェーズ)と、加重を受けない非加重状態(遊脚フェーズ)と、を遷移するように設けられ、
 前記制御部は、
(A)前記加重状態のとき(平地・降段モードの立脚状態)に、
 前記断続機構を、前記動力伝達路を接続する接続状態に制御し、
 前記動力源を、動力が生じないように、又は、停止するように制御し、
(B)前記非加重状態(平地・降段モードの遊脚状態)のときに、
 前記断続機構を、前記動力伝達路を遮断する遮断状態に制御し、
 前記動力源を、動力が生じないように、又は、停止するように制御する、継手装置。
 (32)によれば、加重状態においても非加重状態においても適切に継手装置の制御を行うことができる。
 (33) (32)に記載の継手装置であって、
 装着主体に対して前記第1部材が前記第2部材よりも該装着主体の末端側となるよう装着され、
 前記連接部が、該装着主体の関節として機能するよう設けられる義肢装置であって、
 前記義肢装置は、前記装着主体の脚部に装着される義足装置であって、
 前記制御部は、
(A)前記加重状態のとき、
(a)平地を進むよう歩行する場合に、又は、階段を降りるよう歩行する場合(平地・降段モード)に、
 前記断続機構を、前記動力伝達路を接続する前記接続状態に制御し(立脚フェーズ)、
 前記動力源を、動力が生じないように、又は、停止するように制御し、
(b)階段を昇るよう歩行する場合(昇段モード)、
 前記断続機構を、前記動力伝達路を接続する前記接続状態に制御し(立脚フェーズ)、
 前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御する、継手装置。
 (33)によれば、同加重状態でも、平地・降段モードと昇段モードとで動力源の制御を変えることで、適切に継手装置の制御を行うことができる。
 (34) (32)又は(33)に記載の継手装置であって、
 装着主体に対して前記第1部材が前記第2部材よりも該装着主体の末端側となるよう装着され、
 前記連接部が、該装着主体の関節として機能するよう設けられる義肢装置であって、
 前記義肢装置は、前記装着主体の脚部に装着される義足装置であって、
 前記制御部は、
(B)前記非加重状態のとき、
(a)平地を進むよう歩行する場合に、又は、階段を降りるよう歩行する場合(平地・降段モード)に、
 前記断続機構を、前記動力伝達路を遮断する前記遮断状態に制御し(遊脚フェーズ)、
 前記動力源を、動力が生じないように、又は、停止するように制御し、
(b)階段を昇るよう歩行する場合(昇段モード)に、
 前記断続機構を、前記動力伝達路を接続する前記接続状態に制御し(遊脚フェーズ)、
 前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御する、継手装置。
 (34)によれば、同じ非加重状態でも、平地・降段モードと昇段モードとで動力源の制御を変えることで、適切に継手装置の制御を行うことができる。
 (35) 第1部材(膝下側部材110)と、
 第2部材(膝上側部材120)と、
 前記第1部材と前記第2部材との成す角(第2成す角θ2、膝角度θ)を変更可能に連接する連接部(膝関節機構130)と、
 前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置(拡縮装置200)と、を備える継手装置(電動義足1)の制御方法であって、
 前記拡縮装置は、
 動力源(モータM)と、前記動力源の動力を伝達する動力伝達部(変速機T)と、を有し、
 前記継手装置は、
 外部からの加重を受ける加重状態(立脚フェーズ)と、加重を受けない非加重状態(遊脚フェーズ)と、を遷移するように設けられ、
 前記制御方法は、
(A)前記加重状態のときに(昇段モードの立脚フェーズ)、
 前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御するステップと、
(B)前記非加重状態のときに(昇段モードの遊脚フェーズ)、
 前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御するステップと、を備える、継手装置の制御方法。
 (35)によれば、加重状態と非加重状態とで動力源の制御を変えることで、適切に継手装置の制御を行うことができる。
 (36) 第1部材(膝下側部材110)と、
 第2部材(膝上側部材120)と、
 前記第1部材と前記第2部材との成す角(第2成す角θ2、膝角度θ)を変更可能に連接する連接部(膝関節機構130)と、
 前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置(拡縮装置200)と、を備える継手装置(電動義足1)の制御プログラムであって、
 前記拡縮装置は、
 動力源(モータM)と、前記動力源の動力を伝達する動力伝達部(変速機T)と、を有し、
 前記継手装置は、
 外部からの加重を受ける加重状態(立脚フェーズ)と、加重を受けない非加重状態(遊脚フェーズ)と、を遷移するように設けられ、
 前記制御プログラムは、
(A)前記加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御するステップと、
(B)前記非加重状態のときに、
 前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御するステップと、をコンピュータに実行させる、継手装置の制御プログラム。
 (36)によれば、加重状態と非加重状態とで動力源の制御を変えることで、適切に継手装置の制御を行うことができる。
 (37) (36)に記載の制御プログラムを記憶した、コンピュータが読み取り可能な記憶媒体。
 (37)によれば、加重状態と非加重状態とで動力源の制御を変えることで、適切に継手装置の制御を行うことができる。
 なお、本出願は、2022年9月7日出願の日本特許出願(特願2022-142463)に基づくものであり、その内容は本出願の中に参照として援用される。
1 電動義足(継手装置)
10 制御部
110 膝下側部材(第1部材)
120 膝上側部材(第2部材)
123 大腿部(第1部分)
124 股関節(他の連接部、回動軸)
130 膝関節機構(連接部)
135 連接軸(他の回動軸)
200 拡縮装置
210 第1断続機構
220 第2断続機構
FZa 荷重(加重)
L 大腿長(他の連接部と連接部との間の長さ)
L11 延長線
M モータ(動力源)
T 変速機(動力伝達部)
T1 第1変速機構(第1動力伝達路)
T2 第2変速機構(第2動力伝達路)
VL1 鉛直線(他の基準線)
VL2 鉛直線(基準線)
θt 大腿角

Claims (37)

  1.  第1部材と、
     第2部材と、
     前記第1部材と前記第2部材との成す角を変更可能に連接する連接部と、
     前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置と、を備える継手装置であって、
     前記拡縮装置は、
     動力源と、前記動力源の動力を伝達する動力伝達部と、前記動力源を制御する制御部と、を有し、
     前記継手装置は、
     外部からの加重を受ける加重状態と、加重を受けない非加重状態と、を遷移するように設けられ、
     前記制御部は、
    (A)前記加重状態のときに、
     前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御し、
    (B)前記非加重状態のときに、
     前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御する、継手装置。
  2.  請求項1に記載の継手装置であって、
     前記トルク目標値は、前記加重に基づいて決定される、継手装置。
  3.  請求項1に記載の継手装置であって、
     前記トルク目標値は、装着主体の重量に基づいて決定される、継手装置。
  4.  請求項1~3のいずれか1項に記載の継手装置であって、
     前記トルク目標値は、前記成す角に基づいて、又は、前記成す角の補角に基づいて決定される、継手装置。
  5.  請求項1~4のいずれか一項に記載の継手装置であって、
     装着主体の第1部分と該第1部分と相対回動する第2部分とのうち前記第1部分に装着され、
      前記第1部材が前記第2部材よりも前記装着主体の末端側となるよう、前記第2部材が前記第1部分に装着されるよう設けられ、
     前記トルク目標値は、前記第1部分と前記第2部分との他の成す角を変更可能に連接する前記装着主体の他の連接部と、前記連接部との間の長さに基づいて決定される、継手装置。
  6.  請求項1~5のいずれか一項に記載の継手装置であって、
     前記制御部は、
    (A)前記加重状態のときに、
     前記動力源に、前記第1部材と前記第2部材とが屈曲した状態の前記継手装置が、前記第1部材と前記第2部材とが伸展した状態となる方向の動力が生じるよう制御する、継手装置。
  7.  請求項1~6のいずれか一項に記載の継手装置であって、
     前記位置目標値は、前記第2部材と、装着主体の第1部分と該第1部分と相対回動する第2部分との回動軸を通る基準線との第1成す角に基づいて決定される、継手装置。
  8.  請求項1~7のいずれか一項に記載の継手装置であって、
     前記位置目標値は、前記第1部材と、前記第1部材及び前記第2部材の他の回動軸を通る他の基準線との第2成す角に基づいて決定される、継手装置。
  9.  請求項8に記載の継手装置であって、
     前記第2成す角は、前記第1部材が前記他の基準線に対して、前記第2部材と同じ側に位置するよう決定される、継手装置。
  10.  請求項7に従属する請求項8に記載の継手装置であって、
     前記加重状態から前記非加重状態に遷移してから、前記加重状態に再度遷移するまでの期間を非加重期間とし、
      該非加重期間の後半を後期非加重期間としたとき、
     前記継手装置が前記後期非加重期間にあるときに、
      前記位置目標値は、前記第1成す角、又は、前記第2成す角に基づいて決定される、継手装置。
  11.  請求項1~10のいずれか一項に記載の継手装置であって、
     前記位置目標値は、前記第1部材と、前記第1部材及び前記第2部材の他の回動軸を通る他の基準線との第3成す角に基づいて決定される、継手装置。
  12.  請求項11に記載の継手装置であって、
     前記位置目標値は、前記第2部材と、装着主体の第1部分と該第1部分と相対回動する第2部分との回動軸を通る基準線との第1成す角と、前記第3成す角との差分に基づいて決定される、継手装置。
  13.  請求項11又は12に記載の継手装置であって、
     前記加重状態から前記非加重状態に遷移してから、前記加重状態に再度遷移するまでの期間を非加重期間とし、
      該非加重期間の前半を前期非加重期間としたとき、
     前記継手装置が前記前期非加重期間にあるときに、
      前記位置目標値は、前記第3成す角に基づいて決定される、継手装置。
  14.  請求項1~10のいずれか一項に記載の継手装置であって、
     前記加重状態から前記非加重状態に遷移してから、前記加重状態に再度遷移するまでの期間を非加重期間とし、
      該非加重期間の前半を前期非加重期間、後半を後期非加重期間としたとき、
     前記制御部は、
      前記前期非加重期間と前記後期非加重期間とで、異なる決定方法で決定された前記位置目標値に基づいて前記動力源を制御する、継手装置。
  15.  請求項14に記載の継手装置であって、
     前記制御部は、前記前期非加重期間において、
      前記第2部材と、装着主体の第1部分と該第1部分と相対回動する第2部分との回動軸を通る基準線との第1成す角が第1所定範囲となったときに、
      前記後期非加重期間における制御に切り替える、継手装置。
  16.  請求項14又は15に記載の継手装置であって、
     前記非加重状態から前記加重状態に遷移してから、前記非加重状態に再度遷移するまでの期間を加重期間としたとき
     前記制御部は、前記後期非加重期間において、
     前記加重が第2所定範囲となったときに、
      前記加重期間における制御に切り替える、継手装置。
  17.  請求項1~16のいずれか一項に記載の継手装置であって、
     前記加重状態から前記非加重状態に遷移してから、前記加重状態に再度遷移するまでの期間を非加重期間とし、
     前記非加重状態から前記加重状態に遷移してから、前記非加重状態に再度遷移するまでの期間を加重期間としたとき
     前記制御部は、前記加重期間において、
      前記加重が第3所定範囲となったときに、
      前記非加重期間における制御に切り替える、継手装置。
  18.  請求項17に記載の継手装置であって、
     前記制御部は、前記加重期間において、
      前記第2部材と、装着主体の第1部分と該第1部分と相対回動する第2部分との回動軸を通る基準線との第1成す角が第4所定範囲となった後に
      前記加重が前記第3所定範囲となったときに、
      前記非加重期間における制御に切り替える、継手装置。
  19.  請求項17又は18に記載の継手装置であって、
     前記制御部は、前記非加重期間において、
     前記加重が第5所定範囲となったときに、
      前記加重期間における制御に切り替える、継手装置。
  20.  請求項1~19のいずれか一項に記載の継手装置であって、
     前記拡縮装置は、前記動力伝達部の動力伝達路上に配置され該動力伝達路における動力の遮断及び接続を切り替える断続機構をさらに有し、
     前記制御部は、前記断続機構をさらに制御し、
     前記制御部は、
    (B)前記非加重状態のときに、
     前記断続機構を、前記動力伝達路を遮断する遮断状態に制御し、
     前記動力源を、前記位置目標値に基づいて制御することに代えて、動力が生じないように、又は、停止するように制御する、継手装置。
  21.  請求項20に記載の継手装置であって、
     前記制御部は、
    (A)前記加重状態のときに、
     前記断続機構を、前記動力伝達路を接続する接続状態に制御し、
     前記動力源を、前記トルク目標値に基づいて制御することに代えて、動力が生じないように、又は、停止するように制御する、継手装置。
  22.  請求項20又は21に記載の継手装置であって、
     前記動力源は、永久磁石型電動機を有する、継手装置。
  23.  請求項20~22のいずれか一項に記載の継手装置であって、
     前記制御部は、前記動力源を停止させる制動力を調整可能に構成される、継手装置。
  24.  請求項23に記載の継手装置であって、
     前記制御部は、装着主体の重量に応じて設定された前記制動力を発生させる、継手装置。
  25.  請求項1~24のいずれか一項に記載の継手装置であって、
     前記動力伝達部は、
     前記動力を第1変速比で伝達する第1動力伝達路と、
     前記動力を前記第1変速比とは異なる第2変速比で伝達する第2動力伝達路と、を有し、
     前記拡縮装置は、
     前記第1動力伝達路上に配置され該第1動力伝達路における動力の遮断及び接続を切り替える第1断続機構と、
     前記第2動力伝達路上に配置され該第2動力伝達路における動力の遮断及び接続を切り替える第2断続機構と、をさらに有し、
     前記制御部は、
     前記第1断続機構及び前記第2断続機構をさらに制御する、継手装置。
  26.  請求項25に記載の継手装置であって、
     前記第1変速比を、前記第1動力伝達路における第1変速部よりも前記動力源側の回転数である変速前回転数に対する、変速後回転数の比率とし、
     前記第2変速比を、前記第2動力伝達路における第2変速部よりも前記動力源側の回転数である変速前回転数に対する、変速後回転数の比率としたとき、
     前記第1変速比は、前記第2変速比よりも小さくなるよう構成される、継手装置。
  27.  請求項25又は26に記載の継手装置であって、
     前記第1変速比、及び前記第2変速比の少なくとも何れか一方は、装着主体の重量に基づいて決定される、継手装置。
  28.  請求項25~27のいずれか一項に記載の継手装置であって、
     前記第1変速比と前記第2変速比との比率が1.5~3.0となるよう設定される、継手装置。
  29.  請求項1~28のいずれか一項に記載の継手装置であって、
     装着主体に対して前記第1部材が前記第2部材よりも該装着主体の末端側となるよう装着され、
     前記連接部が、該装着主体の関節として機能するよう設けられる義肢装置である、継手装置。
  30.  請求項29に記載の継手装置であって、
     前記義肢装置は、前記装着主体の脚部に装着される義足装置である、継手装置。
  31.  請求項30に記載の継手装置であって、
     前記義足装置は、前記第2部材が前記脚部の大腿部に装着され、
     前記連接部が、前記大腿部と下腿部との間の膝関節として機能するよう設けられる、継手装置。
  32.  第1部材と、
     第2部材と、
     前記第1部材と前記第2部材との成す角を変更可能に連接する連接部と、
     前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置と、を備える継手装置であって、
     前記拡縮装置は、
     動力源と、前記動力源の動力を伝達する動力伝達部と、前記動力伝達部の動力伝達路上に配置され該動力伝達路における動力の遮断及び接続を切り替える断続機構と、前記動力源及び前記断続機構を制御する制御部と、を有し、
     前記継手装置は、
     外部からの加重を受ける加重状態と、加重を受けない非加重状態と、を遷移するように設けられ、
     前記制御部は、
    (A)前記加重状態のときに、
     前記断続機構を、前記動力伝達路を接続する接続状態に制御し、
     前記動力源を、動力が生じないように、又は、停止するように制御し、
    (B)前記非加重状態のときに、
     前記断続機構を、前記動力伝達路を遮断する遮断状態に制御し、
     前記動力源を、動力が生じないように、又は、停止するように制御する、継手装置。
  33.  請求項32に記載の継手装置であって、
     装着主体に対して前記第1部材が前記第2部材よりも該装着主体の末端側となるよう装着され、
     前記連接部が、該装着主体の関節として機能するよう設けられる義肢装置であって、
     前記義肢装置は、前記装着主体の脚部に装着される義足装置であって、
     前記制御部は、
    (A)前記加重状態のとき、
    (a)平地を進むよう歩行する場合に、又は、階段を降りるよう歩行する場合に、
     前記断続機構を、前記動力伝達路を接続する前記接続状態に制御し、
     前記動力源を、動力が生じないように、又は、停止するように制御し、
    (b)階段を昇るよう歩行する場合、
     前記断続機構を、前記動力伝達路を接続する前記接続状態に制御し、
     前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御する、継手装置。
  34.  請求項32又は33に記載の継手装置であって、
     装着主体に対して前記第1部材が前記第2部材よりも該装着主体の末端側となるよう装着され、
     前記連接部が、該装着主体の関節として機能するよう設けられる義肢装置であって、
     前記義肢装置は、前記装着主体の脚部に装着される義足装置であって、
     前記制御部は、
    (B)前記非加重状態のとき、
    (a)平地を進むよう歩行する場合に、又は、階段を降りるよう歩行する場合に、
     前記断続機構を、前記動力伝達路を遮断する前記遮断状態に制御し、
     前記動力源を、動力が生じないように、又は、停止するように制御し、
    (b)階段を昇るよう歩行する場合に、
     前記断続機構を、前記動力伝達路を接続する前記接続状態に制御し、
     前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御する、継手装置。
  35.  第1部材と、
     第2部材と、
     前記第1部材と前記第2部材との成す角を変更可能に連接する連接部と、
     前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置と、を備える継手装置の制御方法であって、
     前記拡縮装置は、
     動力源と、前記動力源の動力を伝達する動力伝達部と、を有し、
     前記継手装置は、
     外部からの加重を受ける加重状態と、加重を受けない非加重状態と、を遷移するように設けられ、
     前記制御方法は、
    (A)前記加重状態のときに、
     前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御するステップと、
    (B)前記非加重状態のときに、
     前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御するステップと、を備える、継手装置の制御方法。
  36.  第1部材と、
     第2部材と、
     前記第1部材と前記第2部材との成す角を変更可能に連接する連接部と、
     前記第1部材と前記第2部材との前記成す角を拡大及び縮小可能な拡縮装置と、を備える継手装置の制御プログラムであって、
     前記拡縮装置は、
     動力源と、前記動力源の動力を伝達する動力伝達部と、を有し、
     前記継手装置は、
     外部からの加重を受ける加重状態と、加重を受けない非加重状態と、を遷移するように設けられ、
     前記制御プログラムは、
    (A)前記加重状態のときに、
     前記動力源を、前記拡縮装置の前記成す角を拡大又は縮小するトルクに相関するトルクの目標値であるトルク目標値に基づいて制御するステップと、
    (B)前記非加重状態のときに、
     前記動力源を、前記拡縮装置の前記成す角の角度に相関する位置の目標値である位置目標値に基づいて制御するステップと、をコンピュータに実行させる、継手装置の制御プログラム。
  37.  請求項36に記載の制御プログラムを記憶した、コンピュータが読み取り可能な記憶媒体。
PCT/JP2023/032583 2022-09-07 2023-09-06 継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体 WO2024053687A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-142463 2022-09-07
JP2022142463 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024053687A1 true WO2024053687A1 (ja) 2024-03-14

Family

ID=90191264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032583 WO2024053687A1 (ja) 2022-09-07 2023-09-06 継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体

Country Status (1)

Country Link
WO (1) WO2024053687A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150127118A1 (en) * 2012-06-12 2015-05-07 Iwalk, Inc. Prosthetic, orthotic or exoskeleton device
US20160158029A1 (en) * 2014-12-08 2016-06-09 Rehabilitation Institute Of Chicago Powered and passive assistive device and related methods
WO2018092325A1 (ja) * 2016-11-18 2018-05-24 Cyberdyne株式会社 義足動作補助装置及び義足動作補助方法
WO2020203762A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 継手装置
US20220202596A1 (en) * 2019-07-02 2022-06-30 Korea Labor Welfare Corporation Co., Ltd. Hybrid-type artificial limb device and control method therefor
WO2022186081A1 (ja) * 2021-03-02 2022-09-09 本田技研工業株式会社 継手装置
WO2023113001A1 (ja) * 2021-12-15 2023-06-22 本田技研工業株式会社 動力伝達装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150127118A1 (en) * 2012-06-12 2015-05-07 Iwalk, Inc. Prosthetic, orthotic or exoskeleton device
US20160158029A1 (en) * 2014-12-08 2016-06-09 Rehabilitation Institute Of Chicago Powered and passive assistive device and related methods
WO2018092325A1 (ja) * 2016-11-18 2018-05-24 Cyberdyne株式会社 義足動作補助装置及び義足動作補助方法
WO2020203762A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 継手装置
US20220202596A1 (en) * 2019-07-02 2022-06-30 Korea Labor Welfare Corporation Co., Ltd. Hybrid-type artificial limb device and control method therefor
WO2022186081A1 (ja) * 2021-03-02 2022-09-09 本田技研工業株式会社 継手装置
WO2023113001A1 (ja) * 2021-12-15 2023-06-22 本田技研工業株式会社 動力伝達装置

Similar Documents

Publication Publication Date Title
US9289316B2 (en) Quasi-active prosthetic joint system
US9066819B2 (en) Combined active and passive leg prosthesis system and a method for performing a movement with such a system
JP7368458B2 (ja) 継手装置
WO2021040039A1 (ja) 継手装置
WO2022260098A1 (ja) 継手装置
WO2022186081A1 (ja) 継手装置
EP2928419B1 (en) Knee joint prosthesis
EP3995113A1 (en) Hybrid-type artificial limb device and control method therefor
WO2023113001A1 (ja) 動力伝達装置
WO2024053687A1 (ja) 継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体
JP2024037543A (ja) 膝継手装置、情報処理装置、膝継手装置の情報処理方法、膝継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体
EP2842522B1 (en) Microprocessor controlled prosthetic ankle system for footwear and terrain adaptation
WO2024053688A1 (ja) 継手装置、膝継手装置、継手装置の制御方法、継手装置の制御プログラム、及び、該制御プログラムを記憶した記憶媒体
JP2022133999A (ja) 継手装置
WO2021251500A1 (ja) 継手装置
US20240016629A1 (en) Powered Knee and Ankle Joint System with Adaptive Control
CN209884437U (zh) 小腿假肢阻尼器和下肢假肢
JP2023088641A (ja) 動力伝達装置
JP2022133998A (ja) 継手装置
WO2024135748A1 (ja) 継手装置
JP2022133997A (ja) 継手装置
WO2023113002A1 (ja) 断続装置
WO2023112999A1 (ja) 断続装置及び継手装置
JP2023088643A (ja) 動力伝達装置
JP2023088638A (ja) 断続装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863225

Country of ref document: EP

Kind code of ref document: A1