[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024053298A1 - 活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体 - Google Patents

活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体 Download PDF

Info

Publication number
WO2024053298A1
WO2024053298A1 PCT/JP2023/028358 JP2023028358W WO2024053298A1 WO 2024053298 A1 WO2024053298 A1 WO 2024053298A1 JP 2023028358 W JP2023028358 W JP 2023028358W WO 2024053298 A1 WO2024053298 A1 WO 2024053298A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
component
acrylate
group
compound
Prior art date
Application number
PCT/JP2023/028358
Other languages
English (en)
French (fr)
Inventor
賢一郎 岡
郁馬 清水
泰廣 高田
義信 出口
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2023573419A priority Critical patent/JP7533803B2/ja
Publication of WO2024053298A1 publication Critical patent/WO2024053298A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D155/00Coating compositions based on homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C09D123/00 - C09D153/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to an active energy ray-curable antifogging coating composition, a cured product, and a laminate.
  • fogging is a phenomenon that occurs when water droplets adhering to the surface cause diffuse reflection of light.
  • Anti-fogging methods to prevent such fogging generally include a method of reducing the contact angle of water, a method of absorbing water adhering to the surface, and a method of imparting water repellency to the surface to repel water.
  • the method of reducing the contact angle of water is often used because it is simple and has good antifogging performance.
  • an antifogging resin composition As a method of reducing the contact angle of water, attempts have been made to apply an antifogging resin composition to the surface of a glass or plastic base material to form an antifogging film.
  • Conventional antifogging resin compositions are generally a combination of a hydrophilic polymer and a surfactant, and are thermosetting compositions that use catalysts or isocyanates, or compounds that have polymerizable reactive groups to initiate polymerization. There are compositions that can be cured by active energy rays.
  • the surfactant bleeds out after long-term use, resulting in a decrease in antifogging properties and deterioration of the appearance of the coating film. It also has poor cloudiness. Therefore, there is a need for a highly durable antifogging resin composition that can withstand long-term use and cleaning steps when dirt is attached.
  • an antifogging resin composition with excellent antifogging properties, antifogging durability, and abrasion resistance
  • an ethyl oxide composition that does not use a surfactant and has an average number of added moles of ethylene oxide in the range of 10 to 30.
  • An ultraviolet curable antifogging composition containing bisphenol A di(meth)acrylate, a hydrophilic monofunctional monomer, a polar diluting solvent, and a photopolymerization initiator is known (for example, see Patent Document 1).
  • Patent Document 2 describes a composition with excellent primary antifogging properties immediately after coating film preparation and secondary antifogging properties after durability tests such as water resistance tests, including hydroxyl group-containing (meth) having a specific epoxy equivalent.
  • Compositions containing an acrylate compound, certain amounts of a nonionic antifog agent, and an aqueous unsaturated group-containing miscibility promoter are disclosed.
  • the present invention has been made in view of the above problems, and is an active energy ray-curable antifogging paint that has long-lasting antifogging properties and is excellent in abrasion resistance, bleed resistance, adhesion, and moist heat resistance.
  • An object of the present invention is to provide a composition, a cured product, and a laminate.
  • an active energy ray-curable antifogging coating composition containing a radically polymerizable compound (A) having a specific structure and a water-soluble surfactant (B) can solve the above problems. , completed the present invention.
  • An active energy ray-curable antifogging coating composition containing a radically polymerizable compound (A) having a structure of any one of the following formulas (1) to (3) and a water-soluble surfactant (B).
  • n is an integer from 0 to 10
  • the average number of ethylene oxide modifications per (meth)acryloyl group in this compound is 1.
  • the average number of ethylene oxide modifications per (meth)acryloyl group in this compound is 1.
  • n is an integer from 0 to 3
  • At least one of the plurality of X represents a (meth)acryloyl group modified with ethylene oxide. The average number of ethylene oxide modifications per (meth)acryloyl group in this compound is 1 to 1.
  • Composition [3] The active energy ray-curable antifogging coating composition of [1] or [2], further containing a polyfunctional (meth)acrylate (E) that is not modified with ethylene oxide.
  • the active energy ray-curable antifogging coating composition according to any one of [1] to [3], which contains a polyfunctional (meth)acrylate (F) having a polyethylene glycol structure.
  • a cured product obtained by irradiating the active energy ray-curable resin composition of any one of [1] to [4] with active energy rays.
  • the active energy ray-curable antifogging coating composition of the present invention has long-lasting antifogging properties and forms cured coatings and cured products with excellent abrasion resistance, bleed resistance, adhesion, and heat and humidity resistance. can.
  • This cured coating film can withstand high-temperature, high-humidity environments and situations where there are many opportunities for contact with people and objects, and exhibits excellent antifogging properties.
  • the compound represented by formula (1) is referred to as “compound (1)”, and the compounds represented by other formulas are also referred to in the same manner.
  • “acrylate” and “methacrylate” are collectively referred to as “(meth)acrylate,” and “(meth)acryloyl” and “acryloyl” are collectively referred to as “(meth)acryloyl.”
  • the radically polymerizable compound (A) is referred to as “component (A)”, and the other compounds (B) to (C) are also referred to in the same manner.
  • the active energy ray-curable antifogging coating composition of the present invention (hereinafter sometimes simply referred to as "composition") contains a radically polymerizable compound (A) and a water-soluble surfactant (B) as essential components. .
  • composition contains a radically polymerizable compound (A) and a water-soluble surfactant (B) as essential components.
  • A radically polymerizable compound
  • B water-soluble surfactant
  • initial antifogging properties and repeated antifogging properties of coating films obtained by curing the composition were tested. If these test results are excellent, it is considered to have anti-fog properties and anti-fog durability.
  • abrasion resistance, adhesion to the substrate before and after the heat and humidity test, and bleed resistance after the heat and humidity test were tested. If these test results are excellent, it is assumed that the abrasion resistance, bleed resistance, adhesion, and heat and humidity resistance are excellent.
  • the radically polymerizable compound (A) is a compound having the structure of any one of the above formulas (1) to (3), and is a component that imparts antifogging properties to the cured coating film of the present invention.
  • the number of (meth)acryloyl groups in one molecule of the component (A) is 1 to 8.
  • the range is preferably 3 to 6, more preferably 3 to 6.
  • the compound of component (A) has an average modification number of ethylene oxide per (meth)acryloyl group (hereinafter referred to as "EO average modification number") in the range of 1 to 5, and in the range of 1 to 3. It is more preferable that the number is in the range of 1 to 2, and particularly preferably in the range of 1 to 2. The smaller the EO average modification number, the better the abrasion resistance, bleed resistance, and substrate adhesion of the cured coating film.
  • EO average modification number average modification number of ethylene oxide per (meth)acryloyl group
  • Specific examples of the compound represented by formula (1) include ethoxylated glycerol tri(meth)acrylate and ethoxylated 1,2,3,4-butanetetroltetra(meth)acrylate having an average modification number of EO of 1 to 5.
  • Examples include acrylate.
  • Specific examples of the compound represented by formula (2) include ethoxylated pentaerythritol tri(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, and ethoxylated dipentaerythritol pentaacrylate having an average modification number of 1 to 5 EOs.
  • Examples include (meth)acrylate, ethoxylated dipentaerythritol hexa(meth)acrylate, and the like.
  • Specific examples of the compound represented by formula (3) include ethoxylated trimethylolpropane tri(meth)acrylate and ethoxylated ditrimethylolpropane tetra(meth)acrylate having an average modification number of EO of 1 to 5.
  • compounds (1) to (3) can be used alone or in combination of two or more.
  • the preferable lower limit of the content of component (A) in the composition of the present invention is 1%, 2%, 3%, and 5% based on the total amount of radically polymerizable compounds contained in the composition. , 7%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% , which is 55%.
  • Preferable upper limit values of the content are 100%, 95%, 90%, 85%, 80%, and 75% with respect to the total amount of radically polymerizable compounds contained in the composition. , 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25% It is.
  • the composition of the present invention may contain a radically polymerizable compound in addition to component (A), and has properties such as abrasion resistance, bleed resistance, substrate adhesion, and antifogging properties of the cured coating film. , and can be used in combination depending on the required performance such as anti-fog durability. Therefore, the optimal combination of the upper limit and the lower limit varies depending on the combination of radically polymerizable compounds other than component (A), and will be explained later.
  • the water-soluble surfactant (B) is a component that improves the antifogging properties and antifogging durability of a cured coating film.
  • water-soluble herein is defined as one in which no staining or separation is visually observed when surfactant and water are mixed at a mass ratio of 1:1 at 25°C.
  • the surfactant is water-soluble, the antifogging properties and antifogging durability of the cured coating film will be improved.
  • the antifogging properties and antifogging durability of the cured coating film will be reduced.
  • Component (B) is selected from anionic surfactants, cationic surfactants, and nonionic surfactants, and may be a single component or a combination of multiple components.
  • anionic surfactant conventionally known surfactants can be used as long as they are water-soluble; for example, fatty acid salts such as sodium oleate and potassium oleate; higher alcohol sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate.
  • esters Alkylbenzenesulfonates and alkylnaphthalenesulfonates such as sodium dodecylbenzenesulfonate and sodium alkylnaphthalenesulfonate; naphthalenesulfonic acid dialkylphosphate salts, marine condensates, dialkylsulfosuccinates, dialkylphosphate salts, polyoxyethylene Examples include polyoxyethylene sulfate salts such as sodium alkyl phenyl ether sulfate; fluorine-containing anionic surfactants such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates. Among them, dioctyl sulfosuccinate is more preferable from the viewpoint of long-lasting antifogging properties and bleed resistance.
  • cationic surfactant all conventionally known surfactants can be used as long as they are water-soluble, such as ethanolamines, laurylamine acetate, triethanolamine monoformate, stearamide ethyl diethylamine acetate, etc.
  • Amine salts alkyltrimethylammonium salts such as lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride; dilauryldimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylbenzylammonium chloride, stearyldimethylbenzylammonium chloride, etc.
  • Examples include dialkyldimethylammonium salts; fluorine-containing cationic surfactants such as perfluoroalkyltrimethylammonium salts. Among them, quaternary ammonium salts having 10 to 36 carbon atoms are preferred, quaternary ammonium salts having 10 to 24 carbon atoms are more preferred, and alkyltrimethylammonium salts having 10 to 20 carbon atoms are even more preferred.
  • nonionic surfactant all conventionally known surfactants can be used as long as they are water-soluble; for example, polyoxyethylene higher alcohol ethers such as polyoxyethylene lauryl ether and polyoxyethylene oleyl ether; Polyoxyethylene alkylaryl ethers such as polyoxyethylene octylphenol and polyoxyethylene nonylphenol; polyoxyethylene acyl esters such as polyoxyethylene glycol monostearate; polypropylene glycol ethylene oxide adducts, polyoxyethylene sorbitan monolaurate, Polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monostearate; phosphate esters such as alkyl phosphate esters and polyoxyethylene alkyl ether phosphates; sugar esters, cellulose ethers; perfluoroalkyl amine oxides , perfluoroalkyl ethylene oxide adduct, oligomer having a perfluoroalkyl group and a hydrophilic group,
  • polyoxyalkylene alkyl ethers having 8 to 20 carbon atoms and polyoxyethylene styrenated phenyl ethers are preferred, and among them, polyoxyalkylene alkyl ethers having 8 to 20 carbon atoms are more preferred, and more preferred are polyoxyalkylene alkyl ethers having 8 to 20 carbon atoms in the hydrophobic group. 20 polyoxyalkylene alkyl ethers are preferred.
  • polyoxyalkylene alkyl ethers having a hydrophobic group having 10 to 16 carbon atoms More preferred are polyoxyalkylene alkyl ethers having an HLB value of 6 to 18 and containing an ethylene oxide group having 10 to 16 carbon atoms as a hydrophobic group. It is ether.
  • Component (B) is not particularly limited, but among the above, it is preferable to contain at least an anionic surfactant from the viewpoint of antifogging durability and bleed resistance, and the anionic surfactant and cation It is more preferred to use both surfactants.
  • the blending ratio [(anion)/(cation)] is preferably in the range of 100/1 to 5/1, and 33/1 to 10/1. A range of 1 is particularly preferred. By setting it as these ranges, antifogging property will last and bleed resistance will improve.
  • the content of component (B) is in the range of 0.5 to 10.0% by mass based on the total amount of radically polymerizable compounds contained in the composition. It is preferably in the range of 0.75 to 7.5% by weight, more preferably in the range of 1.0 to 5.0% by weight.
  • the composition of the present invention may contain radically polymerizable compounds other than component (A).
  • radically polymerizable compounds other than component (A) include compounds (C) having carboxy groups and (meth)acryloyl groups, compounds (D) having alkoxylyl groups and (meth)acryloyl groups, and compounds modified with ethylene oxide.
  • examples include polyfunctional (meth)acrylate (E) without polyfunctional (meth)acrylate (E), polyfunctional (meth)acrylate (F) with polyethylene glycol structure, and the like.
  • component (E) does not correspond to component (C) or component (D)
  • component (F) is a compound that does not correspond to component (A), component (C), or component (D).
  • Compound (C) having a carboxy group and (meth)acryloyl group is a component that improves adhesion to a substrate, particularly to a glass substrate.
  • component (C) shall not contain an alkoxylyl group in its molecule.
  • component (C) for example, (meth)acrylic acid, crotonic acid, o-, m-, p-vinylbenzoic acid, ⁇ -haloalkyl, alkoxyl, halogen, nitro, or cyano substituted product of (meth)acrylic acid , ⁇ -carboxyethyl (meth)acrylate, 2-(meth)acryloyloxyethylsuccinic acid, ⁇ -carboxypolycaprolactone mono(meth)acrylate, 2-(meth)acryloyloxyethyl hydrogen phthalate, 2-(meth)acryloyloxy Unsaturated monocarboxylic acids such as propyl hydrogen phthalate, 2-(meth)acryloyloxypropylhexahydrohydrogen phthalate, 2-(meth)acryloyloxypropyltetrahydrohydrogen phthalate; fumaric acid, maleic acid, itaconic acid, citraconic acid, alken
  • alcohols having a (meth)acryloyl group include monofunctional acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl ( Hydroxy alkyl methacrylates such as meth)acrylate, 3-hydroxybutyl(meth)acrylate, 4-hydroxybutyl(meth)acrylate, glycerol mono(meth)acrylate, or cyclohexanedimethanol mono(meth)acrylate, and many others.
  • monofunctional acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate
  • 2-hydroxybutyl ( Hydroxy alkyl methacrylates such as meth)acrylate, 3-hydroxybutyl(meth)acrylate, 4-hydroxybutyl(meth)acrylate, glycerol mono(meth)acrylate, or cyclo
  • Functional acrylates include trimethylolpropane di(meth)acrylate, pentaerythritol tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol ethylene oxide modified penta(meth)acrylate.
  • component (C) it is more preferable to use (meth)acrylic acid, a reaction product of an acid anhydride and an alcohol having a (meth)acryloyl group, etc., such as 2-(meth)acryloyloxyethylsuccinic acid, 2-(meth)acryloyloxyethylhexahydrophthalic acid is particularly preferred.
  • the lower limit of the preferable content of component (C) in the composition of the present invention is 0.5%, 1%, and 2% based on the total amount of radically polymerizable compounds contained in the composition, 3%, 5%, 7%, 10%, and 15%.
  • the preferable upper limit values of the content are 30%, 25%, 20%, and 15% based on the total amount of radically polymerizable compounds contained in the composition.
  • the composition of the present invention may contain a radically polymerizable compound other than the component (A) and the component (C), as described below, and improves the abrasion resistance, bleed resistance, and substrate adhesion of the cured coating film. They can be used in combination depending on the required performance, such as , antifogging properties, and antifogging durability. Therefore, the optimal combination of the upper limit and the lower limit varies depending on the combination of radically polymerizable compounds other than component (A) and component (C), and will be explained later.
  • Compound (D) having an alkoxylyl group and a (meth)acryloyl group is a component that improves adhesion to a substrate, particularly to a glass substrate.
  • component (D) shall not contain a carboxy group in its molecule.
  • the alkoxysilyl group in component (D) includes 1 to 3 alkyl groups, preferably having 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms, such as trimethoxysilyl group, triethoxysilyl group, dimethoxysilyl group, etc.
  • Examples include 2- or 3-substituted silyl groups. Among these, trimethoxysilyl group and triethoxysilyl group are preferred from the viewpoint of substrate adhesion, and trimethoxysilyl group is particularly preferred.
  • Component (D) is not particularly limited as long as it has the above-mentioned alkoxysilyl group and (meth)acryloyl group in its structure, but for example, the allyl group of acrylic acid allyl ester or methacrylic acid allyl ester
  • examples include structures in which alkoxysilyl groups are introduced by silylation, and structures derived from this include acrylic acid (3-trimethoxysilylpropyl), acrylic acid (3-triethoxysilylpropyl), methacrylic acid (3-trimethoxysilylpropyl), and methacrylic acid (3-trimethoxysilylpropyl).
  • methoxysilylpropyl methacrylic acid (3-triethoxysilylpropyl), etc.
  • Commercially available products include product names "KBM510”, “KBM5103”, “KBM503”, and “KBM5803” (all manufactured by Shin-Etsu Chemical Co., Ltd.). These compounds can be used alone or in combination of two or more.
  • 3-(meth)acryloxypropyltrimethoxysilane is particularly preferred from the viewpoint of improving substrate adhesion and heat resistance.
  • These compounds can be used alone or in combination of two or more.
  • the lower limit of the preferable content of component (D) in the composition of the present invention is 0.5%, 1%, and 2% based on the total amount of radically polymerizable compounds contained in the composition, 3%, 5%, 7%, 10%, and 15%.
  • the preferable upper limit values of the content are 30%, 25%, 20%, and 15% based on the total amount of radically polymerizable compounds contained in the composition.
  • the composition of the present invention may contain radically polymerizable compounds other than the components (A) and (D), and improves the abrasion resistance, bleed resistance, and substrate adhesion of the cured coating film. They can be used in combination depending on the required performance, such as , antifogging properties, and antifogging durability. Therefore, the optimal combination of the upper and lower limits of the content varies depending on the combination of radically polymerizable compounds other than component (A) and component (D), and will be explained later.
  • polyfunctional (meth)acrylate (E) not modified with ethylene oxide The polyfunctional (meth)acrylate (E) that is not modified with ethylene oxide is a component that improves the adhesion to the substrate.
  • component (E) is a compound containing no carboxy group or/and alkoxylyl group.
  • Examples of the polyfunctional (meth)acrylate (E) not modified with ethylene oxide include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, and 1,9-nonanediol.
  • Examples include (meth)acrylate compounds, epoxy (meth)acrylate compounds synthesized by addition reaction of bisphenol-type epoxy resins or novolac-type epoxy resins, and (meth)acrylic acid.
  • Commercially available products include dipentaerythritol penta(meth)acrylate (manufactured by Toagosei Co., Ltd. under the trade name "Aronix (registered trademark)") (M-400, M-403, M-404, M-405, M-406, etc.) ), pentaerythritol tri(meth)acrylate (manufactured by Toagosei Co., Ltd. under the trade name "Aronix (registered trademark)” (M-306, M-305, M-303, M-452, M-450, etc.)) etc. can also be used. These compounds can be used alone or in combination of two or more.
  • the preferable lower limit of the content of component (E) in the composition of the present invention is 7%, 9%, 10%, and 18% based on the total amount of radically polymerizable compounds contained in the composition. , 27%, 30%, and 50%.
  • the preferable upper limit values of the content are 95%, 90%, 70%, 66.5%, and 63%, based on the total amount of radically polymerizable compounds contained in the composition. 50%, 49%, 27%, and 25%.
  • the composition of the present invention may contain radically polymerizable compounds other than component (A) and component (E), as described below, and improves the abrasion resistance, bleed resistance, and substrate adhesion of the cured coating film. They can be used in combination depending on the required performance, such as , antifogging properties, and antifogging durability. Therefore, the optimal combination of the upper and lower limits of the content varies depending on the combination of radically polymerizable compounds other than component (A) and component (E), and will be explained later.
  • Polyfunctional (meth)acrylate (F) having polyethylene glycol structure Polyfunctional (meth)acrylate (F) having a polyethylene glycol structure imparts hydrophilicity and increases the rigidity of a cured coating film, thereby improving antifogging durability and bleed resistance.
  • component (F) is a compound that does not fall under component (A), component (C), or component (D).
  • component (F) Various known components can be used as component (F), and the raw materials and manufacturing methods are not limited.
  • polyethylene glycol, isocyanate compounds, and (meth)acrylate compounds having hydroxyl groups are essential reaction raw materials.
  • the product may be a product that uses polyethylene glycol and a (meth)acrylate compound having a carboxylic acid group as essential reaction materials.
  • polyethylene glycol commercially available products may be used, such as the "PEG” series manufactured by Sanyo Chemical Industries, Ltd. (PEG-200, PEG-400, PEG-600, PEG-1000, PEG-2000, PEG-4000, etc.). ) etc.
  • isocyanate compound examples include aromatic isocyanates such as diphenylmethane diisocyanate and toluene diisocyanate; 1,6-hexamethylene diisocyanate, 1,4-butane diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4- Aliphatic isocyanates such as trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate; isophorone diisocyanate, 4,4'-methylenebis(cyclohexylisocyanate), 1,3-bis(isocyanatomethyl)cyclohexane, norbornane diisocyanate, hydrogenated xylene
  • aromatic isocyanates such as diphenylmethane diisocyanate and toluene diisocyanate
  • dimers or trimers (isocyanurate, biuret, allophanate, etc.) of these isocyanate compounds may be used.
  • dimers or trimers (isocyanurate, biuret, allophanate, etc.) of these isocyanate compounds may be used.
  • aliphatic isocyanates are more preferable from the viewpoint of durability of antifogging properties and bleeding resistance after a heat and humidity test, and it is particularly preferable to use hexamethylene diisocyanate or an isocyanurate thereof.
  • dipentaerythritol penta(meth)acrylate (commercially available products include various products under the trade name "Aronix (registered trademark)" manufactured by Toagosei Co., Ltd.
  • Examples of compounds having a carboxylic acid group include (meth)acrylic acid, crotonic acid, o-, m-, p-vinylbenzoic acid, and haloalkyl, alkoxyl, halogen, nitro, or cyano-substituted ⁇ -position of (meth)acrylic acid.
  • component (F) each compound can be used alone or two or more kinds can be used in combination.
  • component (F) is preferably a compound containing 4 or more (meth)acryloyl groups in the molecule, more preferably 6 or more.
  • the number average molecular weight of the polyethylene glycol used as a raw material for component (F) is preferably 200 to 4,000, preferably 400 to 4,000, and particularly preferably 600 to 4,000.
  • the preferable lower limit of the content of component (F) in the composition of the present invention is 10%, 20%, 30%, and 40% based on the total amount of radically polymerizable compounds contained in the composition. , which is 50%.
  • the preferable upper limit values of the content are 90%, 80%, 70%, 60%, and 50% with respect to the total amount of radically polymerizable compounds contained in the composition.
  • the composition of the present invention may contain radically polymerizable compounds other than component (A) and component (F), as described below, and improves the abrasion resistance, bleed resistance, and substrate adhesion of the cured coating film. They can be used in combination depending on the required performance, such as , antifogging properties, and antifogging durability. Therefore, the optimal combination of the upper and lower limits of the content varies depending on the combination of radically polymerizable compounds other than component (A) and component (F), and will be explained later.
  • the composition of the present invention contains component (A) as an essential component as a radically polymerizable compound, and improves the abrasion resistance, bleed resistance, substrate adhesion, antifogging property, and antifogging durability of the cured coating film.
  • component (A) as an essential component as a radically polymerizable compound, and improves the abrasion resistance, bleed resistance, substrate adhesion, antifogging property, and antifogging durability of the cured coating film.
  • component (C) to (F) can be used in combination as optional components, and examples of combinations of each component are shown below.
  • Example containing component (A) Even when containing component (A) as a radically polymerizable compound and not containing components (C) to (F), wear resistance, bleed resistance, substrate adhesion, antifogging properties, and antifogging durability are maintained. A composition capable of forming a cured coating film having the following properties is obtained.
  • the content of component (A) relative to the total amount of radically polymerizable compounds contained in the composition is preferably 50 to 100% by mass, and 70 to 100% by mass. It is particularly preferably within the range of 90 to 100% by mass. Within these ranges, the composition can form a cured coating film with excellent abrasion resistance, bleed resistance, substrate adhesion, antifogging properties, and antifogging durability.
  • component (C) and component (D) are preferable to further contain component (C) and component (D).
  • component (C) and component (D) significantly improves the adhesion to the glass substrate.
  • Example containing component (A), component (C), and component (D) An example containing component (A), component (C) and component (D) as a radically polymerizable compound, but not component (E) and (F) will be described below.
  • component (C) and component (D) together in addition to component (A), the adhesion to the substrate before and after the heat resistance test is improved. Adhesion to various known substrates in general is improved, and adhesion to glass substrates in particular is improved.
  • the content of component (A) is in the range of 50 to 99% by mass based on the total amount of radically polymerizable compounds contained in the composition. It is preferably in the range of 60 to 95% by weight, more preferably in the range of 70 to 90% by weight. Further, the total content of component (C) and component (D) is preferably in the range of 1 to 50% by mass, and 5 to 40% by mass based on the total amount of radically polymerizable compounds contained in the composition. The amount is more preferably within the range, and particularly preferably within the range of 10 to 30% by mass.
  • component (A), component (C), and component (D) By setting the total content of component (A), component (C), and component (D) within these ranges, anti-fog properties, anti-fog durability, bleed resistance, and abrasion resistance can be improved while also providing moisture and heat resistance. Adhesion to the base material after the test is further improved.
  • the blending ratio of component (D) to component (C) [(C)/(D)] is preferably in the range of 90/10 to 10/90, and preferably in the range of 80/20 to 20/80. More preferably, the range is from 75/25 to 25/75. By setting it as these ranges, the base material adhesiveness after a heat-and-moisture test will improve.
  • component (E) If further improvement in bleed resistance and abrasion resistance is required, it is preferable to further contain component (E).
  • Example containing component (A), component (C), component (D), and component (E) An example containing component (A), component (C), component (D), and component (E) as a radically polymerizable compound but not containing component (F) will be described below.
  • component (E) in addition to component (C) and component (D), the adhesiveness to the base material is improved, and the bleed resistance and abrasion resistance are further improved.
  • the content of component (A) is preferably in the range of 2 to 70% by mass based on the total amount of radically polymerizable compounds contained in the composition, It is more preferably in the range of 3.5 to 65% by weight, particularly preferably in the range of 5 to 50% by weight. Further, the total content of components (C) to (E) is preferably in the range of 30 to 98% by mass, and preferably in the range of 35 to 97% by mass, based on the total amount of radically polymerizable compounds contained in the composition. It is more preferable that the amount is 50 to 95% by mass.
  • the base material after the heat-and-moisture test has excellent anti-fog properties and anti-fog durability. Adhesion, bleed resistance, and abrasion resistance are further improved.
  • the blending ratio of component (C), component (D), and component (E) [(C)/(D)/(E)] may be in the range of 40/40/20 to 15/15/70. It is preferably in the range of 30/30/40 to 16/16/68, and particularly preferably in the range of 25/25/50 to 20/20/80. By setting it as these ranges, the base material adhesion after a heat-and-moisture test, bleed resistance, and abrasion resistance will improve.
  • component (F) If further improvement in antifogging durability is required, it is preferable to further contain component (F).
  • Example containing component (A), component (C), component (D), component (E), and component (F) Examples containing component (A), component (C), component (D), component (E), and component (F) as radically polymerizable compounds will be described below.
  • component (F) in addition to components (C) to (E), it improves the adhesion to the substrate after the heat-and-moisture test, bleed resistance, and abrasion resistance, and further improves the durability of anti-fog. improves.
  • the content of component (A) is preferably in the range of 1 to 56% by mass based on the total amount of radically polymerizable compounds contained in the composition, It is more preferably in the range of 2 to 49% by weight, and particularly preferably in the range of 3 to 42% by weight. Further, the total content of component (C) and component (D) is preferably in the range of 5 to 35% by mass, and 8 to 32% by mass based on the total amount of radically polymerizable compounds contained in the composition. The amount is more preferably within the range, and particularly preferably within the range of 10 to 30% by mass.
  • the total content of component (E) and component (F) is preferably in the range of 28 to 89% by mass, and 35 to 88% by mass based on the total amount of radically polymerizable compounds contained in the composition. It is more preferable that the amount is 42 to 87% by mass.
  • the blending ratio of component (F) to component (E) [(E)/(F)] should be in the range of 10/90 to 75/25. It is preferably in the range of 20/80 to 55/45, more preferably in the range of 25/75 to 41/59. By setting it as these ranges, the base material adhesion after a heat-and-moisture test, bleed resistance, and abrasion resistance will improve.
  • component (C) and component (D) it is particularly preferable to contain component (C) and component (D).
  • component (C) and component (D) it is possible to form a cured coating film with excellent antifogging properties, antifogging durability, substrate adhesion, abrasion resistance, and bleed resistance even without containing any components.
  • Example containing component (A) and component (E) An example containing components (A) and (E) as radically polymerizable compounds but not containing components (C), (D), and (F) will be described below.
  • component (E) By containing component (E) in addition to component (A), antifogging properties, antifogging durability, substrate adhesion, abrasion resistance, and bleed resistance are further improved.
  • the content of component (A) is relative to the total amount of radically polymerizable compounds contained in the composition. It is preferably in the range of 5 to 90% by weight, more preferably in the range of 10 to 70% by weight, and particularly preferably in the range of 30 to 50% by weight.
  • the content of component (E) is preferably in the range of 10 to 95% by mass, more preferably in the range of 30 to 90% by mass, based on the total amount of radically polymerizable compounds contained in the composition. , a range of 50 to 70% by mass is particularly preferred.
  • component (F) If even better bleed resistance and antifogging durability are required, it is preferable to further contain component (F).
  • Example containing component (A), component (E), and component (F) An example containing component (A), component (E) and component (F) as a radically polymerizable compound, but not component (C) and component (D) will be described below.
  • component (E) component and the (F) component in addition to the (A) component, the bleed resistance and antifogging durability are further improved.
  • the content of component (A) is preferably in the range of 1 to 63% by mass, and 2 It is more preferably in the range of ⁇ 56% by weight, and particularly preferably in the range of 3 ⁇ 49% by weight. Further, the total content of component (E) and component (F) is preferably in the range of 30 to 99% by mass, and 44 to 98% by mass based on the total amount of radically polymerizable compounds contained in the composition. It is more preferably within the range, and particularly preferably within the range of 50 to 97% by mass.
  • the mixing ratio of component (F) to component (E) [(E)/(F)] is preferably in the range of 9/91 to 75/25, and preferably in the range of 18/82 to 55/45. is more preferable, and a range of 25/75 to 38/72 is particularly preferable. Within these ranges, bleed resistance and anti-fogging durability are improved.
  • the active energy ray-curable antifogging coating composition of the present invention may contain a photopolymerization initiator.
  • photopolymerization initiator examples include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl(2,4,6-trimethoxybenzoyl)phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1- 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one and the like.
  • the above photopolymerization initiators can be used alone or in combination of two or more.
  • the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and 1 to 5 parts by mass based on the total amount of radically polymerizable compounds contained in the composition. Parts by mass are particularly preferred. It is preferable that the content of the photopolymerization initiator is 0.1 part by mass or more because the curing reaction proceeds suitably and a cured coating film having high hardness can be obtained. On the other hand, it is preferable that the content of the photopolymerization initiator is 10 parts by mass or less because yellowing and the like are less likely to occur and a cured product having high transparency can be obtained.
  • composition of the present invention may contain a solvent.
  • a solvent By including a solvent, the viscosity of the composition can be adjusted.
  • solvent examples include alcohol solvents such as methanol, ethanol, 1-propanol, t-butanol, and diacetone alcohol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol.
  • alcohol solvents such as methanol, ethanol, 1-propanol, t-butanol, and diacetone alcohol
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol.
  • Alcohol ether solvents such as monoethyl ether, carbitol, cellosolve; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; ester solvents such as methyl acetate, ethyl acetate, butyl acetate; toluene, xylene, dibutylhydroxytoluene, etc. Examples include aromatic solvents.
  • the above-mentioned solvents can be used alone or in combination of two or more.
  • the content of the solvent is preferably 0 to 300 parts by mass, more preferably 0 to 100 parts by mass, based on 100 parts by mass of the solid content of the active energy ray-curable antifogging coating composition. . It is preferable that the content of the solvent is 300 parts by mass or less because the film thickness can be easily controlled. In addition, it is preferable that the content of the solvent is 10 parts by mass or more, since various coating methods such as spray coating and flow coating can be employed.
  • active energy ray-curable antifogging coating composition of the present invention may contain other additives as necessary.
  • Typical other components include, for example, radically polymerizable compounds, various resins, fillers, ultraviolet absorbers, and leveling agents.
  • a (meth)acrylate compound other than the components (A), (C) to (F), or a compound having a double bond such as a vinyl group may be blended.
  • examples include monofunctional (meth)acrylate compound ⁇ that does not have a carboxyl group and/or alkoxylyl group, and compound ⁇ that has all an alkoxylyl group, a carboxyl group, and a (meth)acryloyl group in the molecule.
  • Examples of the monofunctional (meth)acrylate compound ⁇ having no carboxy group and/or alkoxylyl group include acryloylmorpholine, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, caprolactone-modified hydroxy (meth)acrylate (for example, product name "Plaxel” manufactured by Daicel Corporation), reaction product of phthalic anhydride or succinic anhydride and hydroxyalkyl (meth)acrylate, mono(meth)acrylate obtained from polyester diol obtained from succinic acid and ethylene glycol.
  • meth)acrylate mono(meth)acrylate of polyester diol obtained from succinic acid and propylene glycol
  • polyethylene glycol mono(meth)acrylate polypropylene glycol mono(meth)acrylate
  • 2-hydroxy-3-(meth)acryloyloxypropyl (meth)acrylate acrylamide, dimethylacrylamide, diethylacrylamide, amino(meth)acrylate, (meth)acrylate containing ionic groups such as sulfonic acid groups and quaternary ammonium salts
  • (meth)acrylic acid of various epoxy esters examples include additives.
  • a compound having a trialkoxysilyl group and succinic anhydride such as X12-967C manufactured by Shin-Etsu Chemical Co., Ltd.
  • trialkoxysilyl After modifying the hydroxyl group of epoxy acrylate with an acid anhydride, a reaction product obtained from a dehydration condensation reaction between a group and a compound having a (meth)acryloyl group (KBM-503, KBM-5103, etc. manufactured by Shin-Etsu Chemical Co., Ltd.), Examples include reactants in which a (meth)acrylate having a glycidyl group is partially made reactive.
  • a liquid organic polymer may be used to adjust the viscosity.
  • the liquid organic polymer is a liquid organic polymer that does not directly contribute to the curing reaction, and includes, for example, carboxyl group-containing polymer modified products (Floren G-900, NC-500: Kyoei Kagaku Kogyo Co., Ltd.), acrylic polymers (Floren WK-20: Kyoei Kagaku Kogyo Co., Ltd.), special modified phosphoric acid ester amine salt (HIPLAAD (registered trademark) ED-251: Kusumoto Kasei Co., Ltd.), modified acrylic block copolymer (DISPERBYK (registered trademark) 2000; Byk Chemie Co., Ltd.), etc. can be mentioned.
  • carboxyl group-containing polymer modified products Floren G-900, NC-500: Kyoei Kagaku Kogyo Co., Ltd.
  • acrylic polymers Floren WK-20: Kyoei Kagaku Kogyo Co.
  • thermosetting resins and thermoplastic resins can be used.
  • a thermosetting resin is a resin that has the property of becoming substantially insoluble and infusible when cured by means such as heating, radiation, or a catalyst.
  • a thermosetting resin is a resin that has the property of becoming substantially insoluble and infusible when cured by means such as heating, radiation, or a catalyst.
  • Specific examples include phenolic resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl terephthalate resin, epoxy resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin.
  • thermosetting polyimide resins examples include resins, thermosetting polyimide resins, benzoxazine resins, active ester resins, aniline resins, cyanate ester resins, styrene-maleic anhydride (SMA) resins, and the like. These thermosetting resins can be used alone or in combination of two or more.
  • Thermoplastic resin refers to a resin that can be melt-molded by heating. Specific examples include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, polyvinyl chloride resin, Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone resin, polyarylate resin, thermoplastic polyimide resin, polyamideimide resin
  • silica can be blended for the purpose of improving hard coat properties.
  • the silica is not limited, and known fine silica particles such as powdered silica and colloidal silica can be used.
  • Commercially available powdered silica particles include, for example, the "Aerosil (registered trademark)" series (50, 200, etc.) manufactured by Nippon Aerosil Co., Ltd., and the "Sildex” series (H31, H32, H32, etc.) manufactured by AGC Co., Ltd.
  • colloidal silica includes, for example, the product names "Methanol Silica Sol”, “IPA-ST”, “MEK-ST”, “PGM-ST”, “NBA-ST”, and “Methanol Silica Sol” manufactured by Nissan Chemical Industries, Ltd. XBA-ST”, “DMAC-ST”, “ST-UP”, “ST-OUP”, “ST-20”, “ST-40”, “ST-C”, “ST-N”, “ST- Examples include “O”, "ST-50”, “ST-OL”, etc.
  • Reactive silica may be used as the silica.
  • the reactive silica include reactive compound-modified silica.
  • the reactive compound include a reactive silane coupling agent having a hydrophobic group, a compound having a (meth)acryloyl group, a compound having a maleimide group, and a compound having a glycidyl group.
  • powdered silica modified with a compound having a (meth)acryloyl group includes (meth)acryloyl
  • colloidal silica modified with a compound having a group includes the product names "MIBK-SD”, “MIBK-SD-L”, “MIBK-AC-2140Z”, and "MEK-AC-2140Z” manufactured by Nissan Chemical Industries, Ltd. ” etc.
  • silica modified with a glycidyl group such as 3-glycidoxypropyltrimethoxysilane and then subjected to an addition reaction with acrylic acid, or 3-isocyanatepropyltriethoxysilane and a compound having a hydroxyl group and a (meth)acryloyl group can be used as urethane.
  • Reactive silica also includes silica modified with chemical reaction.
  • the shape of the silica fine particles is not particularly limited, and may be spherical, hollow, porous, rod-like, plate-like, fibrous, or irregularly shaped.
  • the product name "Silinax (registered trademark)" manufactured by Nippon Steel Mining Co., Ltd., etc. can be used as commercially available hollow silica fine particles.
  • the primary particle diameter is preferably in the range of 5 to 200 nm. When it is 5 nm or more, the inorganic fine particles in the composition are sufficiently dispersed, and when it is 200 nm or less, sufficient strength of the cured product can be maintained.
  • the amount of silica blended is preferably 3 to 60% by weight based on 100% by weight of the composition.
  • Fillers other than silica include inorganic fillers and organic fillers. There is no limitation on the shape of the filler, and examples thereof include particle-like, plate-like, and fibrous fillers. Fillers with excellent heat resistance include alumina, magnesia, titania, zirconia, etc.; fillers with excellent heat conductivity include boron nitride, aluminum nitride, alumina oxide, titanium oxide, magnesium oxide, zinc oxide, silicon oxide, etc.; Excellent examples include metal fillers and/or metal-coated fillers using single metals or alloys (e.g., iron, copper, magnesium, aluminum, gold, silver, platinum, zinc, manganese, stainless steel, etc.); excellent barrier properties.
  • Fillers with excellent heat resistance include alumina, magnesia, titania, zirconia, etc.
  • fillers with excellent heat conductivity include boron nitride, aluminum nitride, alumina oxide, titanium oxide, magnesium oxide, zinc oxide, silicon oxide, etc.
  • Minerals such as mica, clay, kaolin, talc, zeolite, wollastonite, and smectite, potassium titanate, magnesium sulfate, sepiolite, zonolite, aluminum borate, calcium carbonate, titanium oxide, barium sulfate, and zinc oxide.
  • magnesium hydroxide those with a high refractive index include barium titanate, zirconia oxide, titanium oxide, etc.; those exhibiting photocatalytic properties include titanium, cerium, zinc, copper, aluminum, tin, indium, phosphorus, carbon, Photocatalytic metals such as sulfur, terium, nickel, iron, cobalt, silver, molybdenum, strontium, chromium, barium, and lead, composites of the above metals, and their oxides; those with excellent wear resistance include alumina and zirconia.
  • metals such as magnesium oxide, and their composites and oxides; those with excellent conductivity include metals such as silver and copper, tin oxide, indium oxide, etc.; those with excellent ultraviolet shielding include titanium oxide, Zinc oxide, etc.
  • These inorganic fine particles may be appropriately selected depending on the intended use, and may be used alone or in combination. Moreover, since the above-mentioned inorganic fine particles have various properties other than those listed in the examples, they may be selected depending on the application at the appropriate time.
  • Inorganic fibers include inorganic fibers such as carbon fiber, glass fiber, boron fiber, alumina fiber, and silicon carbide fiber, as well as carbon fiber, activated carbon fiber, graphite fiber, glass fiber, tungsten carbide fiber, and silicon carbide fiber (silicon carbide fiber). ), ceramic fibers, alumina fibers, natural fibers, mineral fibers such as basalt, boron fibers, boron nitride fibers, boron carbide fibers, and metal fibers. Examples of the metal fibers include aluminum fibers, copper fibers, brass fibers, stainless steel fibers, and steel fibers.
  • Organic fibers include synthetic fibers made of resin materials such as polybenzazole, aramid, PBO (polyparaphenylenebenzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, polyarylate, cellulose, pulp, Examples include natural fibers such as cotton, wool, and silk, and regenerated fibers such as proteins, polypeptides, and alginic acid.
  • resin materials such as polybenzazole, aramid, PBO (polyparaphenylenebenzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, polyarylate, cellulose, pulp, Examples include natural fibers such as cotton, wool, and silk, and regenerated fibers such as proteins, polypeptides, and alginic acid.
  • the amount of filler blended is preferably 0 to 60% by mass based on 100% by mass of the composition.
  • ultraviolet absorbers examples include benzophenone-based, benzotriazole-based, benzotriazine-based, cyclic iminoester-based, cyanoacrylate-based, polymer-type ultraviolet absorbers, and the like.
  • a light stabilizer can also be used in the composition of the present invention for the purpose of improving light resistance.
  • the light stabilizer include hindered amine stabilizers (HALS).
  • Various surface modifiers may be added to the composition of the present invention for the purpose of increasing the leveling property during coating, the sliding property of the cured film, and the scratch resistance, etc.
  • various additives that modify surface physical properties which are commercially available under the names of surface conditioners, leveling agents, slippery agents, antifouling agents, etc., can be used. Among them, silicone-based surface modifiers and fluorine-based surface modifiers are preferred.
  • silicone polymers and oligomers having silicone chains and polyalkylene oxide chains silicone polymers and oligomers having silicone chains and polyester chains, fluorine polymers and oligomers having perfluoroalkyl groups and polyalkylene oxide chains, Examples include fluoropolymers and oligomers having perfluoroalkyl ether chains and polyalkylene oxide chains. One or more of these may be used.
  • a material containing a (meth)acryloyl group in the molecule may be used.
  • Specific surface modifiers include EBECRYL (registered trademark) 350 (manufactured by Daicel Allnex), BYK-333 (manufactured by BYK-Chemie Japan), BYK-377 (manufactured by BYK-Chemie Japan), and BYK-378 (manufactured by BYK-Chemie Japan).
  • BYK-UV3500 (manufactured by BYK-Chemie Japan), BYK-UV3505 (manufactured by BYK-Chemie Japan), BYK-UV3576 (manufactured by BYK-Chemie Japan), Megafac (registered trademark) RS-75 (manufactured by BYK-Chemie Japan) (manufactured by DIC), Megafac (registered trademark) RS-76-E (manufactured by DIC), Megafac (registered trademark) RS-72-K (manufactured by DIC), Megafac (registered trademark) RS-76-NS (manufactured by DIC), Megafac (registered trademark) RS-90 (manufactured by DIC), Megafac (registered trademark) RS-91 (manufactured by DIC), Megafac (registered trademark) RS-55 (manufacture
  • the composition of the present invention can be suitably used as a cured coating film that imparts antifogging properties to a substrate by applying active energy rays to at least one surface of a substrate made of various materials.
  • a cured coating film made of the composition of the present invention has long-lasting antifogging properties, and can form cured coating films and cured products that are excellent in abrasion resistance, bleed resistance, adhesion, and heat and humidity resistance.
  • This cured coating can withstand high-temperature, high-humidity environments and situations where there are many opportunities for contact with people and objects, and exhibits excellent anti-fog properties, making it suitable for automotive applications, display applications, and home interiors. It can be suitably used as an anti-fog coating.
  • the cured product of the present invention can be obtained by irradiating the active energy ray-curable antifogging coating composition of the present invention with active energy rays.
  • the cured product is in the form of a film, it is considered a cured coating film.
  • the laminate of the present invention includes at least a base material and a cured coating film.
  • the base material there are no particular limitations on the base material, and it may be selected as appropriate depending on the application. Examples include plastic, glass, wood, metal, metal oxide, paper, silicon, or modified silicon, and the base material can be obtained by joining different materials. It may also be a base material.
  • the shape of the base material is not particularly limited, and may be any shape depending on the purpose, such as a flat plate, a sheet shape, or a three-dimensional shape having curvature on the entire surface or a part thereof. Furthermore, there are no restrictions on the hardness, thickness, etc. of the base material.
  • the plastic base material is not particularly limited as long as it is made of resin, and for example, the above-mentioned thermosetting resin or thermoplastic resin may be used.
  • the material may be a base material containing a single resin or a combination of resins, and may have a single layer or a laminated structure of two or more layers.
  • these plastic base materials may be fiber reinforced (FRP).
  • the base material may include known antistatic agents, antifogging agents, antiblocking agents, ultraviolet absorbers, antioxidants, pigments, organic fillers, inorganic fillers, light stabilizers, etc., within a range that does not impede the effects of the present invention. It may contain known additives such as crystal nucleating agents and lubricants.
  • the laminate of the present invention may further have a second base material on the base material and the cured coating film.
  • the material of the second base material is not particularly limited, and examples thereof include glass, wood, metal, metal oxide, plastic, paper, silicon, modified silicon, etc., and the second base material is a base material obtained by joining different materials. Good too.
  • the shape of the base material is not particularly limited, and may be any shape depending on the purpose, such as a flat plate, a sheet shape, or a three-dimensional shape having curvature on the entire surface or a part thereof. Furthermore, there are no restrictions on the hardness, thickness, etc. of the base material.
  • the cured coating film made of the composition of the present invention has high adhesion to both plastics and inorganic materials, it can also be preferably used as an interlayer material for different materials.
  • the base material is plastic and the second base material is an inorganic layer.
  • inorganic layers include quartz, sapphire, glass, optical films, ceramic materials, inorganic oxides, vapor deposited films (CVD, PVD, sputtering), magnetic films, reflective films, Ni, Cu, Cr, Fe, stainless steel, etc.
  • Plastic layers such as polyester, polycarbonate, polyimide, TFT array substrates, PDP electrode plates, conductive substrates such as ITO and metal, insulating substrates
  • silicon-based substrates such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon.
  • the laminate of the present invention can be obtained by applying the active energy ray-curable antifogging coating composition of the present invention to at least one surface of a base material made of various materials and then irradiating the composition with active energy rays. Coating to the base material can be performed by directly applying the composition to the base material or by directly molding and curing the composition. In the case of direct coating, there are no particular limitations on the coating method, including spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, Examples include screen printing method, inkjet method, and the like.
  • a cured coating film of the composition of the present invention may be directly formed and laminated onto a substrate made of various materials.
  • a semi-cured cured product may be laminated on the base material and then completely cured, or a completely cured cured product may be laminated on the base material.
  • in-mold molding, insert molding, vacuum molding, extrusion lamination molding, press molding, etc. can be used.
  • the composition of the present invention contains a compound having a polymerizable unsaturated group, it can be cured by irradiation with active energy rays.
  • active energy rays include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • ultraviolet (UV) rays are particularly preferred in terms of curability and convenience.
  • examples of devices for irradiating the ultraviolet rays include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, electrodeless lamps (fusion lamps), chemical lamps, Examples include black light lamps, mercury-xenon lamps, short arc lamps, helium-cadmium lasers, argon lasers, sunlight, and LED lamps.
  • ultraviolet ray irradiation is appropriately selected depending on the type and amount of the photopolymerization initiator used.
  • the composition of the present invention may undergo a heating step before curing with active energy rays.
  • a heating step By introducing the heating step, it is possible to dry the solvent contained in the composition and improve the adhesion to the substrate.
  • the heating device include a hot air dryer, an IR heating dryer, a heating hot plate, and the like.
  • the adhesion to the base material can be improved by heating at 50°C to 110°C, preferably 70°C to 100°C.
  • the base material is an inorganic base material such as glass or steel plate
  • the adhesion to the base material can be improved by heating at 80 to 140 °C, preferably 90 to 130 °C, and more preferably 100 to 120 °C. .
  • the active energy ray-curable antifogging coating composition of the present invention has long-lasting antifogging properties and forms cured coatings and cured products with excellent abrasion resistance, bleed resistance, adhesion, and heat and humidity resistance.
  • ⁇ Aronix M-306'' product name: ⁇ Aronix M-306'', containing approximately 30% by weight of pentaerythritol tetraacrylate) (356.9 parts by weight) and polyethylene glycol ( ⁇ PEG-1000'', manufactured by Sanyo Chemical Industries, Ltd., number average molecular weight: approx. 1000) (496.5 parts by mass) was charged in portions over 1 hour.
  • Synthesis Example 2 Synthesis of polyfunctional (meth)acrylate compound (F-2) having a polyethylene glycol structure
  • Synthesis example 1 was repeated except that 168.2 parts by mass of hexamethylene diisocyanate was changed to 222.3 parts by mass of isophorone diisocyanate (trade name "IPDI", manufactured by Covestro).
  • Acrylate compound (F-2) (containing about 10% by mass of pentaerythritol tetraacrylate in solid content) was obtained.
  • Synthesis Example 6 Synthesis of polyfunctional (meth)acrylate compound (F-6) having a polyethylene glycol structure
  • Polyethylene glycol was changed from 165.5 parts by mass of "PEG-1000” manufactured by Sanyo Chemical Industries, Ltd. (number average molecular weight approximately 1000) to 97.4 parts by mass of "PEG-600” manufactured by Sanyo Chemical Industries (number average molecular weight approximately 600).
  • a polyfunctional (meth)acrylate compound (F-6) having a polyethylene glycol structure and having a solid content of 80 wt% was obtained in the same manner as in Synthesis Example 3 except for the following steps.
  • Synthesis Example 7 Synthesis of polyfunctional (meth)acrylate compound (F-7) having a polyethylene glycol structure
  • the polyethylene glycol was changed from 165.5 parts by mass of "PEG-1000” manufactured by Sanyo Chemical Industries, Ltd. (number average molecular weight approximately 1000) to 333.2 parts by mass of "PEG-2000” manufactured by Sanyo Chemical Industries (number average molecular weight approximately 2000).
  • a polyfunctional (meth)acrylate compound (F-7) having a polyethylene glycol structure and having a solid content of 80 wt% was obtained in the same manner as in Synthesis Example 3 except for the following steps.
  • Synthesis Example 8 Synthesis of polyfunctional (meth)acrylate compound (F-8) having a polyethylene glycol structure
  • the polyethylene glycol was changed from 165.5 parts by mass of "PEG-1000” manufactured by Sanyo Chemical Industries, Ltd. (number average molecular weight approximately 1000) to 663.1 parts by mass of "PEG-4000” manufactured by Sanyo Chemical Industries (number average molecular weight approximately 4000).
  • a polyfunctional (meth)acrylate compound (F-8) having a polyethylene glycol structure and having a solid content of 80 wt% was obtained in the same manner as in Synthesis Example 3 except for the following steps.
  • Example 1 As solid content, 100 parts by mass of trimethylolpropane EO-modified triacrylate (modification number 3, EO average modification number 1, "Miramer M3130” manufactured by MIWON), sodium alkylbenzenesulfonate (manufactured by Lion Specialty Chemicals, product name " 0.5 parts by mass of "Lipon LH-200”) and 3 parts by mass of a photopolymerization initiator (1.5 parts by mass of Omnirad 2959 (manufactured by IGM), 1.5 parts by mass of Omnirad 819 (manufactured by IGM)), and propylene
  • An active energy ray-curable antifogging coating composition (1) was prepared by uniformly mixing glycol monomethyl ether so that the solid content was 40 wt%.
  • Examples 2-83, Comparative Examples 1-2 The active energy ray-curable antifogging coating compositions (2) to (83), (R1) to ( R2) was obtained.
  • PET base material The active energy ray-curable antifogging coating compositions (1) to (22), (62) to (81), and (R1) to (R2) of each example were applied to a polyethylene terephthalate (PET) base material (manufactured by Toray Industries, Inc.).
  • PET polyethylene terephthalate
  • Ultraviolet rays were irradiated under the conditions of 250 mJ/cm 2 , and the obtained laminate of the PET base material and the cured coating film was used as an evaluation sample (PET base material).
  • evaluation of bleed resistance after heat and humidity test The evaluation sample (PET base material) and evaluation sample (glass base material) obtained above were left standing under the conditions of 50°C and 95% RH, and the presence or absence of bleed was checked every 25 hours to check for the occurrence of bleed. The time it took to confirm was measured. Those with no bleeding after 25 hours were considered to be passed.
  • Cuts were made in the cured coating film side of the evaluation sample (PET base material) and the evaluation sample (glass base material) in a 10 ⁇ 10 grid pattern with a width of 1 mm using a cutter.
  • Cellophane tape (“CT-24", manufactured by Nichiban Co., Ltd.) was pasted on the grid-shaped area, peeled off, and the presence or absence of peeling was observed.
  • ⁇ A-DPH-12E Ethoxylated dipentaerythritol polyacrylate (EO average modification number 1) Pentaerythritol polyacrylate (EO average modification number 2), trade name "NK Ester A-DPH-12E", manufactured by Shin Nakamura Chemical Co., Ltd.
  • A-DPH-24E Ethoxylated dipentaerythritol polyacrylate (EO average modification number 4) ), product name "NK Ester A-DPH-24E", manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • DPEA42 [(B) Component] ⁇ Alkylbenzene sulfonate: Sodium alkylbenzene sulfonate, trade name "Lipon LH-200", manufactured by Lion Specialty Chemicals ⁇ OT-100: sodium dioctyl sulfosuccinate, trade name "Aerosol OT-100", manufactured by Solvay Corporation ⁇ 12W -37: Dodecyltrimethylammonium salt, trade name "Lipocard 12-37W”, solid content 37 parts by mass, manufactured by Lion Specialty Chemicals TM-16: Cetyltrimethylammonium chloride, trade name "Levon TM-16", Solid content 30 parts by mass, manufactured by Sanyo Chemical Industries, Ltd.
  • TM-18 Stearyltrimethylammonium chloride, trade name "Levon TM-18", solid content 70 parts by mass, manufactured by Sanyo Chemical Industries, Ltd.
  • 2C-75 Dicocoyl dimethyl chloride Ammonium, trade name "Lipocard 2C-75”, solid content 75 parts by mass, manufactured by Lion Specialty Chemicals
  • DSV Distearyldimethylammonium chloride, trade name "Cation DSV", manufactured by Sanyo Chemical Industries, Ltd.
  • NL110 Poly Oxyethylene alkyl ether (HLB: 14.4), trade name "NL-110", manufactured by Sanyo Chemical Industries, Ltd.
  • ⁇ KBM-5103 3-acryloxypropyltrimethoxysilane, trade name "KBM-5103", Shin-Etsu Chemical Co., Ltd.
  • KBM-5803 8-Methacryloxyoctyltrimethoxysilane, trade name "KBM-5803", manufactured by Shin-Etsu Chemical [Component (E)]
  • ⁇ TEMPTA Trimethylolpropane triacrylate, brand name "TEMPTA”, manufactured by Daicel Allnex Co., Ltd.
  • ⁇ PETA Pentaerythritol tetraacrylate, brand name "Aronix M-450", manufactured by Toagosei Co., Ltd.
  • the cured coating film of the active energy ray-curable antifogging coating composition of the present invention has long-term sustainable antifogging properties, and has excellent abrasion resistance, bleed resistance, adhesion, and heat and humidity resistance. It was confirmed that it can be formed. On the other hand, in Comparative Example 1 in which a compound with an average EO modification number of more than 5 was used as component (A), the bleed resistance and abrasion resistance were significantly reduced. Furthermore, it was confirmed that Comparative Example 2, which did not contain component (A), was inferior in antifogging properties, antifogging durability, bleed resistance, and substrate adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は長期持続可能な防曇性を有し、耐摩耗性、耐ブリード性、密着性、及び耐湿熱性に優れる硬化塗膜を形成できる活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体を提供する。 本発明は、下記式(1)~(3)のいずれかの構造を有するラジカル重合性化合物(A)、及び水溶性界面活性剤(B)を含む活性エネルギー線硬化型防曇塗料組成物;活性エネルギー線硬化型防曇塗料組成物の硬化物;硬化物からなる塗膜を有することを特徴とする積層体に関する。

Description

活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体
 本発明は、活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体に関する。
 近年、自動車用ヘッドランプ、バーチャルリアリティ(VR)のディスプレイ等には、曇りを防止する高い防曇性が求められている。ここで、曇りとは、表面に付着した水滴が光の乱反射を起こすことにより発生する現象である。このような曇りを防止する防曇方法としては、一般に、水の接触角を小さくする方法、表面に付着する水分を吸水する方法、表面に撥水性を付与して水を撥水する方法等が知られている。このうち、簡便かつ防曇性能が良好であることから、水の接触角を小さくする方法がよく用いられている。
 水の接触角を小さくする方法としては、基材であるガラスやプラスチックの表面に防曇性樹脂組成物を塗布し、防曇性被膜を形成する試みがなされている。従来の防曇性樹脂組成物は、親水性ポリマーと界面活性剤の配合物が一般的であり、触媒又はイソシアネート等を利用した熱硬化型の組成物や重合性反応基を有する化合物と重合開始剤による活性エネルギー線硬化型の組成物がある。
 しかし、従来の防曇性樹脂組成物は、長期の使用により界面活性剤がブリードアウトし、防曇性の低下や塗膜外観の劣化が起こること、また耐摩耗性や表面洗浄繰り返し後の防曇性にも劣る。したがって、長期の使用や汚れ付着時の洗浄工程にも耐えうる耐久性の高い防曇性樹脂組成物が求められている。
 そこで、防曇性、防曇性の耐久性、耐摩耗性に優れた防曇性樹脂組成物として、界面活性剤を使用せず、エチレンオキサイドの平均付加モル数が10~30の範囲のエトキシ化ビスフェノールAジ(メタ)アクリレートと、親水性単官能モノマーと、極性希釈溶剤及び光重合開始剤を含有する紫外線硬化型防曇組成物が知られている(例えば、特許文献1参照)。
 また特許文献2には、塗膜作成直後の一次防曇性、及び耐水性試験等の耐久性試験後の二次防曇性に優れる組成物として、特定のエポキシ当量を有する水酸基含有(メタ)アクリレート化合物と、特定量の非イオン性防曇剤と、水性不飽和基含有混和促進剤を含有する組成物が開示されている。
特開2005-239832号公報 特開2019-210396号公報
 しかしながら、特許文献1及び2に記載の発明では、耐湿熱試験後の耐ブリード性に関する検討は行われておらず、特許文献1及び2に記載の発明は耐久性が十分にある防曇性組成物に関するものとは言えなかった。
 本発明は上記課題に鑑みてなされたものであって、長期持続可能な防曇性を有し、耐摩耗性、耐ブリード性、密着性、及び耐湿熱性に優れる活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体を提供することにある。
 本発明者らは検討の結果、特定の構造を有するラジカル重合性化合物(A)と水溶性界面活性剤(B)を含む活性エネルギー線硬化型防曇塗料組成物が上記課題を解決できることを見出し、本発明を完成させた。
 即ち本発明は、以下の発明を提供するものである。
[1]下記式(1)~(3)のいずれかの構造を有するラジカル重合性化合物(A)、及び水溶性界面活性剤(B)を含む活性エネルギー線硬化型防曇塗料組成物。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、nは0~10の整数であり、(2+n)個のXはそれぞれ独立にエチレンオキサイドにより変性された(メタ)アクリロイル基[CH=CR-CO(OC)y-;Rは水素原子又はメチル基、yはエチレンオキサイドによる変性数を示す。]、(メタ)アクリロイル基[CH=CR-CO-;Rは水素原子又はメチル基を示す。]又は水素原子であり、複数のXのうち少なくとも1つはエチレンオキサイドにより変性された(メタ)アクリロイル基を示す。なお、この化合物の(メタ)アクリロイル基1個あたりのエチレンオキサイドの平均変性数は1~5個である。)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、nは0~4の整数であり、(4+2n)個のXはそれぞれ独立にエチレンオキサイドにより変性された(メタ)アクリロイル基[CH=CR-CO(OC)y-;Rは水素原子又はメチル基、yはエチレンオキサイドによる変性数を示す。]、(メタ)アクリロイル基[CH=CR-CO-;Rは水素原子又はメチル基を示す。]又は水素原子であり、複数のXのうち少なくとも1つはエチレンオキサイドにより変性された(メタ)アクリロイル基を示す。なお、この化合物の(メタ)アクリロイル基1個あたりのエチレンオキサイドの平均変性数は1~5個である。)
Figure JPOXMLDOC01-appb-C000006
(式(3)中、nは0~3の整数であり、(3+n)個のXはそれぞれ独立にエチレンオキサイドにより変性された(メタ)アクリロイル基[CH=CR-CO(OC)y-;Rは水素原子又はメチル基、yはエチレンオキサイドによる変性数を示す。]、(メタ)アクリロイル基[CH2=CR-CO-;Rは水素原子又はメチル基を示す。]又は水素原子であり、複数のXのうち少なくとも1つはエチレンオキサイドにより変性された(メタ)アクリロイル基を示す。なお、この化合物の(メタ)アクリロイル基1個あたりのエチレンオキサイドの平均変性数は1~5個である。)
[2]カルボキシ基及び(メタ)アクリロイル基を有する化合物(C)と、アルコキシリル基及び(メタ)アクリロイル基を有する化合物(D)をさらに含有する[1]の活性エネルギー線硬化型防曇塗料組成物。
[3]エチレンオキサイド変性されていない多官能(メタ)アクリレート(E)をさらに含有する[1]又は[2]の活性エネルギー線硬化型防曇塗料組成物。
[4]ポリエチレングリコール構造を有する多官能(メタ)アクリレート(F)を含有する[1]~[3]のいずれかの活性エネルギー線硬化型防曇塗料組成物。
[5][1]~[4]のいずれかの活性エネルギー線硬化性樹脂組成物に活性エネルギー線を照射してなる硬化物。
[6][5]の硬化物からなる硬化塗膜を、プラスチック基材の少なくとも一面に有する積層体。
[7][5]の硬化物からなる硬化塗膜を、ガラス基材の少なくとも一面に有する積層体。
 本発明の活性エネルギー線硬化型防曇塗料組成物は、長期持続可能な防曇性を有し、耐摩耗性、耐ブリード性、密着性、及び耐湿熱性に優れる硬化塗膜及び硬化物を形成できる。この硬化塗膜は、高温多湿環境下や、人や物との接触機会の多い状況にも耐え、優れた防曇性を発揮することから、本発明の活性エネルギー線硬化型防曇塗料組成物は、自動車用途、ディスプレイ用途、及び住宅の内装等における防曇性付与コート剤として好適に使用することができる。
 本明細書では、式(1)で表される化合物を「化合物(1)」といい、他の式で表される化合物も同様にいう。また、「アクリレート」と「メタクリレート」とを総称して「(メタ)アクリレート」といい、「(メタ)アクリロイル」と「アクリロイル」とを総称して「(メタ)アクリロイル」という。
 前記ラジカル重合性化合物(A)を「(A)成分」といい、他の化合物(B)~(C)成分も同様にいう。
<活性エネルギー線硬化型防曇塗料組成物>
 本発明の活性エネルギー線硬化型防曇塗料組成物(以下、単に「組成物」ということがある。)は、ラジカル重合性化合物(A)及び水溶性界面活性剤(B)を必須成分とする。
 本発明の評価方法としては、組成物を硬化させた塗膜の、初期防曇性、及び繰り返し防曇性を試験した。これら試験結果が優れる場合は、防曇性及び防曇持続性を有するものとする。さらに、耐摩耗性、耐湿熱試験前後の基材密着性、及び耐湿熱試験後の耐ブリード性を試験した。これらの試験結果が優れる場合は、耐摩耗性、耐ブリード性、密着性、及び耐湿熱性に優れるものとする。
[ラジカル重合性化合物(A)]
 ラジカル重合性化合物(A)は、前記式(1)~(3)のいずれかの構造を有する化合物であり、本発明の硬化塗膜に防曇性を付与する成分である。
 (A)成分の化合物は、1分子中の(メタ)アクリロイル基の数が多いほど組成物の硬化塗膜の耐摩耗性と耐ブリード性が良くなり、少なくすると硬化塗膜の基材に対する密着性、防曇性、及び防曇持続性が良くなる。したがって、硬化塗膜の耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性のバランスの観点から、1分子中の(メタ)アクリロイル基の数は1~8の範囲であることが好ましく、3~6の範囲であることがより好ましい。
 また(A)成分の化合物は、(メタ)アクリロイル基1個あたりのエチレンオキサイドの平均変性数(以下「EO平均変性数」という。)は1~5の範囲であり、1~3の範囲であることがより好ましく、1~2の範囲であることが特に好ましい。EO平均変性数は、少ないほど硬化塗膜の耐摩耗性、耐ブリード性、基材密着性が向上する。
 式(1)で示される化合物の具体例としては、EO平均変性数が1~5個のエトキシ化グリセロールトリ(メタ)アクリレートやエトキシ化1,2,3,4-ブタンテトロールテトラ(メタ)アクリレート等が挙げられる。
 式(2)で示される化合物の具体例としては、EO平均変性数が1~5個のエトキシ化ペンタエリスリトールトリ(メタ) アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ジペンタエリスリトールペンタ(メタ)アクリレート、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 式(3)で示される化合物の具体例としては、EO平均変性数が1~5個のエトキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。
 (A)成分として、化合物(1)~(3)を単独で用いることも2種以上を併用することもできる。
 中でも、(A)成分としては化合物(2)又は化合物(3)を少なくとも用いることが好ましく、EO平均変性数が1~3のエトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート又はEO平均変性数が1~3のエトキシ化トリメチロールプロパントリアクリレートがより好ましい。
 本発明の組成物における(A)成分の好ましい含有量の下限値は、組成物に含まれるラジカル重合性化合物の総量に対して1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、15%であり、20%であり、25%であり、30%であり、35%であり、40%であり、45%であり、50%であり、55%である。好ましい含有量の上限値は、組成物に含まれるラジカル重合性化合物の総量に対して、100%であり、95%であり、90%であり、85%であり、80%であり、75%であり、70%であり、65%であり、60%であり、55%であり、50%であり、45%であり、40%であり、35%であり、30%であり、25%である。
 本発明の組成物は、後述するように、(A)成分以外にもラジカル重合性化合物を含有しても良く、硬化塗膜の耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性などの求められる性能に応じて組み合わせて使用することができる。したがって、上限値及び下限値の最適な組み合わせは、(A)成分以外のラジカル重合性化合物の組み合わせ次第で異なるため、後述にて説明する。
[水溶性界面活性剤(B)]
 水溶性界面活性剤(B)は、硬化塗膜の防曇性、及び防曇持続性を向上させる成分である。なお、ここで水溶性とは、25℃において界面活性剤と水を1:1の質量比率で混合した際、ニゴリや分離が目視で確認されないものと定義する。界面活性剤が水溶性であると、硬化塗膜の防曇性、及び防曇持続性が良くなる。水溶性でない界面活性剤の場合、硬化塗膜について、防曇性、及び防曇持続性が低下する。
 (B)成分は、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤から選ばれ、単一成分または複数成分を組み合わせても良い。
 アニオン性界面活性剤としては、水溶性であれば従来公知のものを使用することができるが、例えば、オレイン酸ナトリウム、オレイン酸カリウムなどの脂肪酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウムなどの高級アルコール硫酸エステル類;ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩およびアルキルナフタレンスルホン酸塩;ナフタレンスルホン酸ジアルキルホスフェート塩、マリン縮合物、ジアルキルスルホコハク酸塩、ジアルキルホスフェート塩、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンサルフェート塩;パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステルなどのフッ素含有アニオン系界面活性剤等が挙げられる。中でも防曇性の持続性及び耐ブリード性の観点からジオクチルスルホコハク酸塩がより好ましい。
 カチオン性界面活性剤としては、水溶性であれば従来公知のものを全て使用することができるが、例えば、エタノールアミン類、ラウリルアミンアセテート、トリエタノールアミンモノ蟻酸塩、ステアラミドエチルジエチルアミン酢酸塩などのアミン塩;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライドなどのアルキルトリメチルアンモニウム塩;ジラウリルジメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、ラウリルジメチルベンジルアンモニウムクロライド、ステアリルジメチルベンジルアンモニウムクロライドなどのジアルキルジメチルアンモニウム塩;パーフルオロアルキルトリメチルアンモニウム塩などのフッ素含有カチオン系界面活性剤等が挙げられる。中でも炭素数10~36の第4級アンモニウム塩が好ましく、中でも炭素数10~24の第4級アンモニウム塩がより好ましく、さらに好ましくは炭素数10~20のアルキルトリメチルアンモニウム塩が好ましい。
 非イオン性界面活性剤としては、水溶性であれば従来公知のものを全て使用することができるが、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテルなどのポリオキシエチレン高級アルコールエーテル類;ポリオキシエチレンオクチルフェノール、ポリオキシエチレンノニルフェノールなどのポリオキシエチレンアルキルアリールエーテル類;ポリオキシエチレングリコールモノステアレートなどのポリオキシエチレンアシルエステル類;ポリプロピレングリコールエチレンオキサイド付加物、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノステアレートなどのポリオキシエチレンソルビタン脂肪酸エステル類;アルキルリン酸エステル、ポリオキシエチレンアルキルエーテルリン酸エステルなどのリン酸エステル類;シュガーエステル類、セルロースエーテル類;パーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキサイド付加物、パーフルオロアルキル基および親水性基を有するオリゴマー、パーフルオロアルキル基および親油性基を有するオリゴマー、パーフルオロアルキル基および親油性基を有するオリゴマー、パーフルオロアルキル基と親水性基および親油性基を有するオリゴマーなどのフッ素含有非イオン系界面活性剤等が挙げられる。中でも、炭素数8~20のポリオキシアルキレンアルキルエーテル、ポリオキシエチレンスチレン化フェニルエーテルが好ましく、中でも炭素数8~20のポリオキシアルキレンアルキルエーテルが好ましく、更に好ましくは、疎水基の炭素数8~20のポリオキシアルキレンアルキルエーテルが好ましく。より好ましくは、疎水基の炭素数10~16のポリオキシアルキレンアルキルエーテルであり、さらに好ましくは、HLB値6~18かつ疎水基の炭素数10~16のエチレンオキサイド基を含有するポリオキシアルキレンアルキルエーテルである。
 (B)成分は特に限定されるものではないが、上述した中でも防曇性の持続性及び耐ブリード性の観点からアニオン性界面活性剤を少なくとも含有することが好ましく、アニオン性界面活性剤とカチオン性界面活性剤を両方使用することがより好ましい。
 アニオン性界面活性剤とカチオン性界面活性剤を併用する場合、その配合比率[(アニオン)/(カチオン)]は100/1~5/1の範囲であることが好ましく、33/1~10/1の範囲であることが特に好ましい。これらの範囲とすることで防曇性が持続し、耐ブリード性が向上する。
 防曇性の長期持続及び耐ブリード性向上の観点から、(B)成分の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して0.5~10.0質量%の範囲であることが好ましく、0.75~7.5質量%の範囲であることであることがより好ましく、1.0~5.0質量%の範囲であることであることが特に好ましい。
 本発明の組成物は、(A)成分以外のラジカル重合性化合物を含有しても良い。(A)成分以外のラジカル重合性化合物として、例えば、カルボキシ基及び(メタ)アクリロイル基を有する化合物(C)、アルコキシリル基及び(メタ)アクリロイル基を有する化合物(D)、エチレンオキサイド変性されていない多官能(メタ)アクリレート(E)、ポリエチレングリコール構造を有する多官能(メタ)アクリレート(F)等が挙げられる。ただし、(E)成分は(C)成分および(D)成分に該当せず、(F)成分は(A)成分、(C)成分、及び(D)成分に該当しない化合物である。
[カルボキシ基及び(メタ)アクリロイル基を有する化合物(C)]
 カルボキシ基及び(メタ)アクリロイル基を有する化合物(C)は、基材密着性を向上させ、特にガラス基材への密着性を向上させる成分である。ただし、(C)成分は分子内にアルコキシリル基を含まないものとする。
 (C)成分として、例えば、(メタ)アクリル酸 や、クロトン酸、o-、m-、p-ビニル安息香酸、(メタ)アクリル酸のα位ハロアルキル、アルコキシル、ハロゲン、ニトロ、若しくはシアノ置換体、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルコハク酸、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート 、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート等の不飽和モノカルボン酸;フマル酸、マレイン酸、イタコン酸、シトラコン酸、アルケニルコハク酸、アルカジエニルコハク酸、エンディック酸等の不飽和ジカルボン酸;該不飽和ジカルボン酸とモノアルコールとから得られる、ハーフエステル化合物;(メタ)アクリロイル基を有するアルコールと、テトラヒドロ無水フタル酸、無水フタル酸、ヘキサヒドロ無水フタル酸、無水コハク酸、無水マレイン酸のような酸無水物との反応生成物等が挙げられる。
 (メタ)アクリロイル基を有するアルコールの例として、単官能アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、又はシクロヘキサンジメタノールモノ(メタ)アクリレート等のヒドロキシアルキルメタアクリレート類が挙げられ、多官能アクリレートとしては、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールエチレンオキサイド変性ペンタ(メタ)アクリレート、ジペンタエリスリトールプロピレンオキサイド変性ペンタ(メタ)アクリレート、ジペンタエリスリトールカプロラクトン変性ペンタ(メタ)アクリレート、グリセロールアクリレートメタクリレート、グリセロールジメタクリレート、2-ヒドロキシ-3-アクリロイルプロピルメタクリレート、エポキシ基含有化合物とカルボキシ(メタ)アクリレートとの反応物、水酸基含有ポリオールポリアクリレートが挙げられる。また、市販品として、例えばアロニックス(登録商標)M510、M520(東亞合成社製)等も使用することができる。これら化合物は、単独で用いることも2種以上を併用することもできる。
 中でも、(C)成分は、(メタ)アクリル酸、酸無水物と(メタ)アクリロイル基を有するアルコールの反応生成物等を使用することがより好ましく、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸が特に好ましい。
 本発明の組成物における(C)成分の好ましい含有量の下限値は、組成物に含まれるラジカル重合性化合物の総量に対して0.5%であり、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、15%である。好ましい含有量の上限値は、組成物に含まれるラジカル重合性化合物の総量に対して、30%であり、25%であり、20%であり、15%である。
 本発明の組成物は、後述するように、(A)成分および(C)成分以外のラジカル重合性化合物を含有しても良く、硬化塗膜の耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性などの求められる性能に応じて組み合わせて使用することができる。したがって、上限値及び下限値の最適な組み合わせは、(A)成分および(C)成分以外のラジカル重合性化合物の組み合わせ次第で異なるため、後述にて説明する。
[アルコキシリル基及び(メタ)アクリロイル基を有する化合物(D)]
 アルコキシリル基及び(メタ)アクリロイル基を有する化合物(D)は、基材密着性を向上させ、特にガラス基材への密着性を向上させる成分である。ただし、(D)成分は分子内にカルボキシ基を含まないものとする。
 (D)成分におけるアルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、ジメトキシシリル基等の炭素数1~4、好ましくは炭素数1~2のアルキル基が1~3個、好ましくは2又は3個置換したシリル基が挙げられる。これらの中でも、基材密着性の点から、トリメトキシシリル基、トリエトキシシリル基、が好ましく、トリメトキシシリル基が特に好ましい。
 (D)成分としては、化合物の構造中に上記のアルコキシシリル基及び(メタ)アクリロイル基を有する化合物であれば特に限定されないが、例えば、アクリル酸アリルエステルやメタクリル酸アリルエステルのアリル基にハイドロシリレーションによりアルコキシシリル基を導入した構造等が挙げられ、これに由来する構造としては、アクリル酸(3-トリメトキシシリルプロピル)、アクリル酸(3-トリエトキシシリルプロピル 、メタクリル酸(3-トリメトキシシリルプロピル)、メタクリル酸(3-トリエトキシシリルプロピル)等が挙げられる。市販品としては、商品名「KBM510」、「KBM5103」、「KBM503」、「KBM5803」(いずれも信越化学社製)等を用いることができる。これら化合物は、単独で用いることも2種以上を併用することもできる。
 中でも、基材密着性及び耐熱性向上の観点から、3-(メタ)アクリロキシプロピルトリメトキシシランが特に好ましい。これら化合物は、単独で用いることも2種以上を併用することもできる。
 本発明の組成物における(D)成分の好ましい含有量の下限値は、組成物に含まれるラジカル重合性化合物の総量に対して0.5%であり、1%であり、2%であり、3%であり、5%であり、7%であり、10%であり、15%である。好ましい含有量の上限値は、組成物に含まれるラジカル重合性化合物の総量に対して、30%であり、25%であり、20%であり、15%である。
 本発明の組成物は、後述するように、(A)成分および(D)成分以外のラジカル重合性化合物を含有しても良く、硬化塗膜の耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性などの求められる性能に応じて組み合わせて使用することができる。したがって、含有量の上限値及び下限値の最適な組み合わせは、(A)成分および(D)成分以外のラジカル重合性化合物の組み合わせ次第で異なるため、後述にて説明する。
[エチレンオキサイド変性されていない多官能(メタ)アクリレート(E)]
 エチレンオキサイド変性されていない多官能(メタ)アクリレート(E)は、基材密着性を向上させる成分である。ただし、(E)成分はカルボキシ基又は/及びアルコキシリル基を含有しない化合物である。
 エチレンオキサイド変性されていない多官能(メタ)アクリレート(E)としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシドにより変性されたグリセロールトリ(メタ)アクリレート、プロピレンオキシドにより変性されたグリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ヒドロキシピバリン酸変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、イソシアネート化合物とアルコール系化合物を反応させたウレタン(メタ)アクリレート化合物、多価アルコールと(メタ)アクリル酸及び多官能性カルボン酸との縮合反応により合成されるポリエステル(メタ)アクリレート化合物、ビスフェノール型エポキシ樹脂あるいはノボラック型エポキシ樹脂と(メタ)アクリル酸との付加反応により合成されるエポキシ(メタ)アクリレート化合物などが挙げられる。市販品としては、ジペンタエリスリトールペンタ(メタ)アクリレート(東亜合成社製の商品名「アロニックス(登録商標)」各種(M-400、M-403、M-404、M-405、M-406等)等)、ペンタエリスリトールトリ(メタ)アクリレート(東亜合成社製の商品名「アロニックス(登録商標)」各種(M-306、M-305、M-303、M-452、M-450等))等を使用することもできる。これら化合物は、単独で用いることも2種以上を併用することもできる。
 中でも、基材密着性、耐摩耗性、耐湿熱性向上の観点から、分子内に3つ以上の(メタ)アクリロイル基を有する化合物が好ましく、ジペンタエリスリトールヘキサ(メタ)アクリレートが特に好ましい。
 本発明の組成物における(E)成分の好ましい含有量の下限値は、組成物に含まれるラジカル重合性化合物の総量に対して7%であり、9%であり、10%であり、18%であり、27%であり、30%であり、50%である。好ましい含有量の上限値は、組成物に含まれるラジカル重合性化合物の総量に対して、95%であり、90%であり、70%であり、66.5%であり、63%であり、50%であり、49%であり、27%であり、25%であ
る。
 本発明の組成物は、後述するように、(A)成分および(E)成分以外のラジカル重合性化合物を含有しても良く、硬化塗膜の耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性などの求められる性能に応じて組み合わせて使用することができる。したがって、含有量の上限値及び下限値の最適な組み合わせは、(A)成分および(E)成分以外のラジカル重合性化合物の組み合わせ次第で異なるため、後述にて説明する。
[ポリエチレングリコール構造を有する多官能(メタ)アクリレート(F)]
 ポリエチレングリコール構造を有する多官能(メタ)アクリレート(F)は、親水性を付与し、硬化塗膜の剛直性を高められることから、防曇持続性、耐ブリードを向上させられる。ただし、(F)成分は(A)成分、(C)成分、及び(D)成分に該当しない化合物である。
 (F)成分は、各種公知のものを使用でき、原料や製造方法が限定されるものではないが、例えばポリエチレングリコール、イソシアネート化合物、及び水酸基を有する(メタ)アクリレート化合物を必須の反応原料とする生成物、ポリエチレングリコールとカルボン酸基を有する(メタ)アクリレート化合物を必須の反応原料とする生成物であってもよい。
 ポリエチレングリコールとしては、市販品を用いてもよく、三洋化成工業社製の商品名「PEG」シリーズ(PEG-200、PEG-400、PEG-600、PEG-1000、PEG-2000、PEG-4000等)等が挙げられる。
 イソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、トルエンジイソシアネート等の芳香族イソシアネート;1、6-ヘキサメチレンジイソシアネート、1、4-ブタンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等の脂肪族イソシアネート;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアナート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、ノルボルナンジイソシアネート、水添キシレンジイソシアネート、2-メチル-1,3-ジイソシアナトシクロヘキサン、2-メチル-1,5-ジイソシアナトシクロヘキサン等の脂環式イソシアネート化合物等が挙げられる。或いは、これらイソシアネート化合物の2量体や3量体(イソシアヌレート、ビウレット、アロファネート等)を使用しても構わない。中でも、防曇性の持続性、耐湿熱試験後の耐ブリード性の観点から、脂肪族イソシアネートがより好ましく、ヘキサメチレンジイソシアネート、又はそのイソシアヌレート体を用いることが特に好ましい。
 水酸基を有する(メタ)アクリレート化合物としては、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては、東亜合成社製の商品名「アロニックス(登録商標)」各種(M-400、M-403、M-404、M-405、M-406等)等)、ペンタエリスリトールトリ(メタ)アクリレート(市販品としては、東亜合成社製の商品名「アロニックス(登録商標)」各種(M-306、M-305、M-303、M-452、M-450等)等)、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性されたヒドロキシモノ(メタ)アクリレート(例えば、ダイセル社製の商品名「プラクセル(登録商標) FA-2D」等)、ポリカーボネート変性されたヒドロキシモノ(メタ)アクリレート(例えば、ダイセル社製の商品名「HEMAC」(登録商標)等)、ポリエチレングリコール又はポリプロピレングリコール変性されたヒドロキシモノ(メタ)アクリレート(例えば、日油社製の商品名「ブレンマー(登録商標)AE-200」、「ブレンマー(登録商標)AP-400」等)等が挙げられる。
 カルボン酸基を有する化合物としては、(メタ)アクリル酸や、クロトン酸、o-、m-、p-ビニル安息香酸、(メタ)アクリル酸のα位ハロアルキル、アルコキシル、ハロゲン、ニトロ、若しくはシアノ置換体、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルコハク酸、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート 、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート等の不飽和モノカルボン酸;フマル酸、マレイン酸、イタコン酸、シトラコン酸、アルケニルコハク酸、アルカジエニルコハク酸、エンディック酸等の不飽和ジカルボン酸;該不飽和ジカルボン酸とモノアルコールとから得られる、ハーフエステル化合物;(メタ)アクリロイル基を有するアルコールと、テトラヒドロ無水フタル酸、無水フタル酸、ヘキサヒドロ無水フタル酸、無水コハク酸、無水マレイン酸のような酸無水物との反応生成物等が挙げられる。
 (F)成分は、各化合物を単独で用いることも2種以上を併用することもできる。防曇性の持続性及び耐ブリード性の観点から、(F)成分は、分子内に(メタ)アクリロイル基を4つ以上含有する化合物であることが好ましく、6つ以上含有することがより好ましい。同様の観点から、(F)成分の原料として用いるポリエチレングリコールの数平均分子量が200~4000であることが好ましく、400~4000であることが好ましく、600~4000であることが特に好ましい。
 本発明の組成物における(F)成分の好ましい含有量の下限値は、組成物に含まれるラジカル重合性化合物の総量に対して10%であり、20%であり、30%であり、40%であり、50%である。好ましい含有量の上限値は、組成物に含まれるラジカル重合性化合物の総量に対して、90%であり、80%であり、70%であり、60%であり、50%である。
 本発明の組成物は、後述するように、(A)成分および(F)成分以外のラジカル重合性化合物を含有しても良く、硬化塗膜の耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性などの求められる性能に応じて組み合わせて使用することができる。したがって、含有量の上限値及び下限値の最適な組み合わせは、(A)成分および(F)成分以外のラジカル重合性化合物の組み合わせ次第で異なるため、後述にて説明する。
<ラジカル重合性化合物の組み合わせ>
 上述の通り、本発明の組成物はラジカル重合性化合物として(A)成分を必須成分とし、硬化塗膜の耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性などの求められる性能に応じて(C)~(F)成分のいずれか1つ又は複数を任意成分として併用することもでき、以下に各成分の組み合わせの例を示す。
[(A)成分を含有する例]
 ラジカル重合性化合物として(A)成分を含有し、(C)~(F)成分を含有しない場合においても、耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性を有する硬化塗膜を形成可能な組成物が得られる。
 (C)~(F)成分を含有しない場合、組成物に含まれるラジカル重合性化合物の総量に対する(A)成分の含有量は50~100質量%であることが好ましく、70~100質量%の範囲であることが特に好ましく、90~100質量%の範囲であることが特に好ましい。これら範囲とすることで、耐摩耗性、耐ブリード性、基材密着性、防曇性、及び防曇持続性に優れた硬化塗膜を形成可能な組成物となる。
 より優れた基材密着性が要求される場合には、(C)成分および(D)成分をさらに含有することが好ましい。特に(C)成分および(D)成分の添加によるガラス基材への基材密着性の向上が顕著である。
[(A)成分、(C)成分、及び(D)成分を含有する例]
 ラジカル重合性化合物として(A)成分、(C)成分および(D)成分を含有し、(E)成分および(F)成分を含有しない例について以下説明する。
 (A)成分に加えて(C)成分及び(D)成分を併用することで、耐熱試験前後における基材密着性が向上する。各種公知の基材全般への密着性が向上するが、特にガラス基材への密着性が向上する。
 (A)成分、(C)成分および(D)成分を含有する場合、(A)成分の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して50~99質量%の範囲であることが好ましく、60~95質量%の範囲であることがより好ましく、70~90質量%の範囲であることが特に好ましい。また(C)成分と(D)成分の合計の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して1~50質量%の範囲であることが好ましく、5~40質量%の範囲であることがより好ましく、10~30質量%の範囲であることが特に好ましい。
 (A)成分、(C)成分および(D)成分の合計の含有量をこれら範囲とすることで、防曇性、防曇持続性、耐ブリード性、耐摩耗性を向上させつつ、耐湿熱試験後の基材密着性がより向上する。
 また(C)成分に対する(D)成分の配合割合[(C)/(D)]は、90/10~10/90の範囲であることが好ましく、80/20~20/80の範囲であることがより好ましく、75/25~25/75の範囲であることが特に好ましい。これらの範囲とすることで、耐湿熱試験後の基材密着性が向上する。
 耐ブリード性及び耐摩耗性をさらなる向上が要求される場合には、(E)成分をさらに含有することが好ましい。
[(A)成分、(C)成分、(D)成分、及び(E)成分を含有する例]
 ラジカル重合性化合物として(A)成分、(C)成分、(D)成分、及び(E)成分を含有し、(F)成分を含有しない例について以下説明する。
 (C)成分、(D)成分に加えて(E)成分を含有することで、基材密着性を向上させつつ、耐ブリード性、耐摩耗性がより向上する。
 (C)~(E)成分全てを含有する場合、(A)成分の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して2~70質量%の範囲であることが好ましく、3.5~65質量%の範囲であることがより好ましく、5~50質量%の範囲であることが特に好ましい。また(C)~(E)成分の合計の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して30~98質量%の範囲であることが好ましく、35~97質量%の範囲であることがより好ましく、50~95質量%の範囲であることが特に好ましい。
 (A)成分、及び(C)~(E)成分の合計の含有量をこれらの範囲とすることで、優れた防曇性及び防曇持続性を有しつつ、耐湿熱試験後の基材密着性、耐ブリード性、及び耐摩耗性がより向上する。
 また(C)成分、(D)成分、(E)成分の配合割合[(C)/(D)/(E)]は、40/40/20~15/15/70の範囲であることが好ましく、30/30/40~16/16/68の範囲であることがより好ましく、25/25/50~20/20/80の範囲であることが特に好ましい。これらの範囲とすることで、耐湿熱試験後の基材密着性、耐ブリード性、及び耐摩耗性が向上する。
 防曇持続性のさらなる向上が要求される場合には、(F)成分をさらに含有することが好ましい。
[(A)成分、(C)成分、(D)成分、(E)成分、及び(F)成分を含有する例]
 ラジカル重合性化合物として(A)成分、(C)成分、(D)成分、(E)成分、及び(F)成分を含有する例について以下説明する。
 (C)~(E)成分に加えて(F)成分を含有することで、耐湿熱試験後の基材密着性、耐ブリード性、及び耐摩耗性を向上させつつ、防曇持続性がより向上する。
 (C)~(F)成分全てを含有する場合、(A)成分の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して1~56質量%の範囲であることが好ましく、2~49質量%の範囲であることがより好ましく、3~42質量%の範囲であることが特に好ましい。
 また(C)成分及び(D)成分の合計の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して5~35質量%の範囲であることが好ましく、8~32質量%の範囲であることがより好ましく、10~30質量%の範囲であることが特に好ましい。
 また、(E)成分及び(F)成分の合計の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して28~89質量%の範囲であることが好ましく、35~88質量%であることがより好ましく、42~87質量%の範囲であることが特に好ましい。
 (A)成分、(C)成分及び(D)成分の合計、(E)成分及び(F)成分の合計の含有量をこれら範囲とすることで、優れた防曇性、耐湿熱試験後の基材密着性、耐ブリード性、及び耐摩耗性を有しつつ、防曇持続性がより向上する。
 (C)~(F)成分全てを含有する場合、(E)成分に対する(F)成分の配合割合[(E)/(F)]は、10/90~75/25の範囲であることが好ましく、20/80~55/45の範囲であることがより好ましく、25/75~41/59の範囲であることが特に好ましい。これらの範囲とすることで、耐湿熱試験後の基材密着性、耐ブリード性、及び耐摩耗性が向上する。
 ガラス基材への密着性向上の観点から、(C)成分及び(D)成分を含有することが特に好ましいが、ガラス以外の例えば樹脂基材の場合には、(C)成分及び(D)成分を含まなくとも防曇性、防曇持続性、基材密着性、耐摩耗性、耐ブリード性に優れた硬化塗膜を形成できる。
[(A)成分、及び(E)成分を含有する例]
 ラジカル重合性化合物として(A)成分、(E)成分を含有し、(C)成分、(D)成分、及び(F)成分を含有しない例について以下説明する。
 (A)成分に加えて(E)成分を含有することで、防曇性、防曇持続性、基材密着性、耐摩耗性、及び耐ブリード性がより一層向上する。
 (E)成分を含有し、(C)成分、(D)成分、及び(F)成分を含有しない場合、(A)成分の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して、5~90質量%の範囲であることが好ましく、10~70質量%の範囲であることがより好ましく、30~50質量%の範囲であることが特に好ましい。また(E)成分の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して10~95質量%の範囲であることが好ましく、30~90質量%の範囲であることがより好ましく、50~70質量%の範囲であることが特に好ましい。
 (A)成分及び(E)成分の含有量をこれらの範囲とすることで、防曇性、防曇持続性、基材密着性、耐摩耗性、及び耐ブリード性がより一層向上する。
 より一層優れた耐ブリード性及び防曇持続性が要求される場合は、(F)成分をさらに含有することが好ましい。
[(A)成分、(E)成分、及び(F)成分を含有する例]
 ラジカル重合性化合物として(A)成分、(E)成分および(F)成分を含有し、(C)成分および(D)成分を含有しない例について以下説明する。
 (A)成分に加えて(E)成分および(F)成分を含有することで、耐ブリード性及び防曇持続性がより向上する。
 (E)成分および(F)成分を含有し、(C)成分及び(D)成分を含有しない場合、(A)成分の含有量は、1~63質量%の範囲であることが好ましく、2~56質量%の範囲であることがより好ましく、3~49質量%の範囲であることが特に好ましい。また(E)成分および(F)成分の合計の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して30~99質量%の範囲であることが好ましく、44~98質量%の範囲であることがより好ましく、50~97質量%の範囲であることが特に好ましい。
 (A)成分及び(E)成分及び(F)成分の合計の含有量をこれらの範囲とすることで、耐ブリード性、及び防曇続性がより一層向上する。
 (E)成分に対する(F)成分の配合割合[(E)/(F)]は、9/91~75/25の範囲であることが好ましく、18/82~55/45の範囲であることがより好ましく、25/75~38/72の範囲であることが特に好ましい。これらの範囲とすることで、耐ブリード性、及び防曇持続性が向上する。
 また、本発明の活性エネルギー線硬化型防曇塗料組成物は、光重合開始剤を含んでいてもよい。
[光重合開始剤]
 前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン等が挙げられる。
 上述の光重合開始剤は、単独で用いることも2種以上を併用することもできる。
 光重合開始剤の含有量は、組成物に含まれるラジカル重合性化合物の総量に対して0.01~20質量部が好ましく、0.1~10質量部であることがより好ましく、1~5質量部であることが特に好ましい。光重合開始剤の含有量が0.1質量部以上であると、硬化反応が好適に進行し、高い硬度を有する硬化塗膜が得られうることから好ましい。一方、光重合開始剤の含有量が10質量部以下であると、黄変等が生じにくく、高い透明性を有する硬化物が得られうることから好ましい。
 また、本発明の組成物は、溶剤を含んでいてもよい。溶剤を含むことで、前記組成物の粘度を調整することができる。
[溶剤]
 前記溶剤としては、例えば、メタノール、エタノール、1-プロパノール、t-ブタノール、ジアセトンアルコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、カルビトール、セロソルブ等のアルコールエーテル溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ジブチルヒドロキシトルエン等の芳香族溶剤などが挙げられる。
 上述の溶剤は単独で用いることも2種以上を併用することもできる。
 前記溶剤の含有量は、前記活性エネルギー線硬化型防曇塗料組成物の固形分100質量部に対して、0~300質量部であることが好ましく、0~100質量部であることがより好ましい。前記溶剤の含有量が300質量部以下であると、膜厚を制御しやすいことから好ましい。なお、溶剤の含有量が10質量部以上であると、スプレー塗装、フローコート等種々塗工方式が採用できることから好ましい。
 さらに、本発明の活性エネルギー線硬化型防曇塗料組成物は、必要に応じて他の添加物を含んでいてもよい。
[その他成分]
 その他成分の代表的なものとしては例えば、ラジカル重合性化合物、各種樹脂、フィラー、紫外線吸収剤、レベリング剤が挙げられる。また、さらに無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、触媒、(B)成分以外の界面活性剤、安定剤、流動調整剤、カップリング剤、染料、レオロジーコントロール剤、酸化防止剤、可塑剤等を含有していてもよい。
 ラジカル重合性化合物として、(A)、(C)~(F)成分以外の(メタ)アクリレート化合物やビニル基等の二重結合を有する化合物を配合しても構わない。具体的には、カルボキシ基及び/又はアルコキシリル基を有しない単官能(メタ)アクリレート化合物αや、分子内にアルコキシリル基、カルボキシ基及び(メタ)アクリロイル基を全て有する化合物β等が挙げられる。
 カルボキシ基及び/又はアルコキシリル基を有しない単官能(メタ)アクリレート化合物αとして、例えば、アクリロイルモルホリン、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート(例えば株式会社ダイセル製の商品名「プラクセル」)、無水フタル酸または無水コハク酸とヒドロキシアルキル(メタ)アクリレートの反応物、コハク酸とエチレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、コハク酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、アミノ(メタ)アクリレート、スルホン酸基や第4級アンモニウム塩等のイオン性基を含有する(メタ)アクリレート、各種エポキシエステルの(メタ)アクリル酸付加物等を挙げることができる。
 分子内にアルコキシリル基、カルボキシ基及び(メタ)アクリロイル基の全てを有する化合物βとして、トリアルコキシシリル基とコハク酸無水物を有する化合物(信越化学工業社製X12-967C等)とトリアルコキシシリル基と(メタ)アクリロイル基を有する化合物(信越化学工業社製KBM-503、KBM-5103等)との脱水縮合反応から得られた反応物、エポキシアクリレートの水酸基に酸無水物を変性した後に、グリシジル基を有する(メタ)アクリレートを部分的に反応性させた反応物等が挙げられる。
 また、粘度調整のために液状有機ポリマーを使用してもよい。液状有機ポリマーとは、硬化反応に直接寄与しない液状有機ポリマーであり、例えば、カルボキシル基含有ポリマー変性物(フローレンG-900、NC-500:共栄化学工業社)、アクリルポリマー(フローレンWK-20:共栄化学工業社製)、特殊変性燐酸エステルのアミン塩(HIPLAAD(登録商標) ED-251:楠本化成社製)、変性アクリル系ブロック共重合物(DISPERBYK(登録商標)2000;ビックケミー社製)などが挙げられる。
 各種樹脂としては、熱硬化性樹脂や熱可塑性樹脂を用いることができる。
 熱硬化性樹脂とは、加熱又は放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。その具体例としては、熱硬化性樹脂とは、加熱又は放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。その具体例としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルテレフタレート樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂、ベンゾオキサジン樹脂、活性エステル樹脂、アニリン樹脂、シアネートエステル樹脂、スチレン・無水マレイン酸(SMA)樹脂、などが挙げられる。これらの熱硬化性樹脂は1種又は2種以上を併用して用いることができる。
 熱可塑性樹脂とは、加熱により溶融成形可能な樹脂を言う。その具体例としてはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ゴム変性ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリロニトリル-スチレン(AS)樹脂、ポリメチルメタクリレート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、エチレンビニルアルコール樹脂、酢酸セルロース樹脂、アイオノマー樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリケトン樹脂、液晶ポリエステル樹脂、フッ素樹脂、シンジオタクチックポリスチレン樹脂、環状ポリオレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は1種又は2種以上を併用して用いることができる。
 フィラーとしてはたとえば、ハードコート性の向上を目的として、シリカを配合することができる。
 シリカとしては、限定は無く、粉末状のシリカやコロイダルシリカなど公知のシリカ微粒子を使用することができる。市販の粉末状のシリカ微粒子としては、例えば、日本アエロジル社製の商品名「アエロジル(登録商標)」シリーズ(50、200等)、AGC社製の商品名「シルデックス」シリーズ(H31、H32、H51、H52、H121、H122等)、東ソー・シリカ社製の商品名「E220A」又は「E220」、富士シリシア化学社製の商品名「SYLYSIA(登録商標)470」、日本板硝子社製の商品名「SGフレ-ク」等を挙げることができる。
 また、市販のコロイダルシリカとしては、例えば、日産化学工業社製の商品名「メタノ-ルシリカゾル」、「IPA-ST」、「MEK-ST」、「PGM-ST」、「NBA-ST」、「XBA-ST」、「DMAC-ST」、「ST-UP」、「ST-OUP」、「ST-20」、「ST-40」、「ST-C」、「ST-N」、「ST-O」、「ST-50」、「ST-OL」等を挙げることができる。
 シリカは、反応性シリカを用いてもよい。反応性シリカとしては、例えば反応性化合物修飾シリカが挙げられる。反応性化合物としては、例えば疎水性基を有する反応性シランカップリング剤、(メタ)アクリロイル基を有する化合物、マレイミド基を有する化合物、グリシジル基を有する化合物が挙げられる。
 (メタ)アクリロイル基を有する化合物で修飾した市販の粉末状のシリカとしては、日本アエロジル社製の商品名「アエロジル(登録商標)RM50」、「アエロジル(登録商標)R711」等、(メタ)アクリロイル基を有する化合物で修飾した市販のコロイダルシリカとしては、日産化学工業社製の商品名「MIBK-SD」、「MIBK-SD-L」、「MIBK-AC-2140Z」、「MEK-AC-2140Z」等が挙げられる。また、3-グリシドキシプロピルトリメトキシシラン等のグリシジル基で修飾した後に、アクリル酸を付加反応させたシリカや、3-イソシアネートプロピルトリエトキシシランと水酸基と(メタ)アクリロイル基を有する化合物をウレタン化反応させたもので修飾したシリカも反応性シリカとして挙げられる。
 前記シリカ微粒子の形状は特に限定はなく、球状、中空状、多孔質状、棒状、板状、繊維状、又は不定形状のものを用いることができる。例えば、市販の中空状シリカ微粒子としては、日鉄鉱業社製の商品名「シリナックス(登録商標)」等を用いることができる。
 また一次粒子径は、5~200nmの範囲が好ましい。5nm以上であると、組成物中の無機微粒子の分散が十分となり、200nmを以下では、硬化物の十分な強度が保持できる。
 シリカの配合量は、組成物100質量%中、3~60質量%の配合量であることが好ましい。
 シリカ以外のフィラーとしては、無機フィラーと有機フィラーが挙げられる。フィラー形状に限定はなく、粒子状や板状、繊維状のフィラーが挙げられる。
 耐熱性に優れるフィラーとしては、アルミナ、マグネシア、チタニア、ジルコニア等;熱伝導に優れるものとしては、窒化ホウ素、窒化アルミ、酸化アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化ケイ素等;導電性に優れるものとしては、金属単体又は合金(例えば、鉄、銅、マグネシウム、アルミニウム、金、銀、白金、亜鉛、マンガン、ステンレスなど)を用いた金属フィラー及び/又は金属被覆フィラー、;バリア性に優れるものとしては、マイカ、クレイ、カオリン、タルク、ゼオライト、ウォラストナイト、スメクタイト等の鉱物等やチタン酸カリウム、硫酸マグネシウム、セピオライト、ゾノライト、ホウ酸アルミニウム、炭酸カルシウム、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化マグネシウム;屈折率が高いものとしては、チタン酸バリウム、酸化ジルコニア、酸化チタン等;光触媒性を示すものとしては、チタン、セリウム、亜鉛、銅、アルミニウム、錫、インジウム、リン、炭素、イオウ、テリウム、ニッケル、鉄、コバルト、銀、モリブデン、ストロンチウム、クロム、バリウム、鉛等の光触媒金属、前記金属の複合物、それらの酸化物等;耐摩耗性に優れるものとしては、アルミナ、ジルコニア、酸化マグネシウム等の金属、及びそれらの複合物及び酸化物等;導電性に優れるものとしては、銀、銅などの金属、酸化錫、酸化インジウム等;紫外線遮蔽に優れるものとしては、酸化チタン、酸化亜鉛等である。
 これらの無機微粒子は、用途によって適時選択すればよく、単独で使用しても、複数種組み合わせて使用してもかまわない。また、上記無機微粒子は、例に挙げた特性以外にも様々な特性を有することから、適時用途に合わせて選択すればよい。
 無機繊維としては、カーボン繊維、ガラス繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等の無機繊維のほか、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然繊維、玄武岩などの鉱物繊維、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、及び金属繊維等を挙げることができる。上記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。
 有機繊維としては、ポリベンザゾール、アラミド、PBO(ポリパラフェニレンベンズオキサゾール)、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる合成繊維や、セルロース、パルプ、綿、羊毛、絹といった天然繊維、タンパク質、ポリペプチド、アルギン酸等の再生繊維等を挙げる事ができる。
 フィラーの配合量は、組成物100質量%中、0~60質量%が好ましい。
 紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾトリアジン系、環状イミノエステル系、シアノアクリレート系、ポリマー型紫外線吸収剤等が挙げられる。
 本発明の組成物は耐光性の向上を目的として、光安定剤も併用することができる。光安定剤としてはヒンダートアミン系安定材(HALS)等が挙げられる。
 本発明の組成物には、塗布時のレベリング性を高める目的や、硬化膜の滑り性を高めて耐擦傷性を高める目的等のため、各種表面改質剤を添加してもよい。表面改質剤としては、表面調整剤、レベリング剤、スベリ性付与剤、防汚性付与剤等の名称で市販されている、表面物性を改質する各種添加剤を使用することができる。それらのうち、シリコーン系表面改質剤およびフッ素系表面改質剤が好適である。
 具体的には、シリコーン鎖とポリアルキレンオキサイド鎖を有するシリコーン系ポリマーおよびオリゴマー、シリコーン鎖とポリエステル鎖を有するシリコーン系ポリマーおよびオリゴマー、パーフルオロアルキル基とポリアルキレンオキサイド鎖を有するフッ素系ポリマーおよびオリゴマー、パーフルオロアルキルエーテル鎖とポリアルキレンオキサイド鎖を有するフッ素系ポリマーおよびオリゴマー、等が挙げられる。これらのうちの一種以上を使用すればよい。滑り性の持続力を高めるなどの目的で、分子中に(メタ)アクリロイル基を含有するものを使用してもよい。具体的な表面改質剤としては、EBECRYL(登録商標)350(ダイセル・オルネクス社製)、BYK-333(ビックケミー・ジャパン社製)、BYK-377(ビックケミー・ジャパン社製)、BYK-378(ビックケミー・ジャパン社製)、BYK-UV3500(ビックケミー・ジャパン社製)、BYK-UV3505(ビックケミー・ジャパン社製)、BYK-UV3576(ビックケミー・ジャパン社製)、メガファック(登録商標)RS-75(DIC社製)、メガファック(登録商標)RS-76-E(DIC社製)、メガファック(登録商標)RS-72-K(DIC社製)、メガファック(登録商標)RS-76-NS(DIC社製)、メガファック(登録商標)RS-90(DIC社製)、メガファック(登録商標)RS-91(DIC社製)、メガファック(登録商標)RS-55(DIC社製)、オプツール(登録商標)DAC-HP(ダイキン社製)、ZX-058-A(T&K TOKA製)、ZX-201(T&K TOKA製)、ZX-202(T&K TOKA製)、ZX-212(T&K TOKA製)、ZX-214-A(T&K TOKA製)、X-22-164AS(信越化学工業社製)、X-22-164A(信越化学工業社製)、X-22-164B(信越化学工業社製)、X-22-164C(信越化学工業社製)、X-22-164E(信越化学工業社製)、X-22-174DX(信越化学工業社製)、等を挙げることができる。
 本発明の組成物は、各種材料からなる基材の少なくとも1面に塗工した後に活性エネルギー線を照射することにより、基材に防曇性を付与する硬化塗膜として好適に使用することができる。本発明の組成物からなる硬化塗膜は、長期持続可能な防曇性を有し、耐摩耗性、耐ブリード性、密着性、及び耐湿熱性に優れる硬化塗膜及び硬化物を形成できる。この硬化塗膜は、高温多湿環境下や、人や物との接触機会の多い状況にも耐え、優れた防曇性を発揮することから、自動車用途、ディスプレイ用途、及び住宅の内装等への防曇塗膜として好適に使用することができる。
<硬化物・積層体>
(構成・材料)
 本発明の硬化物は、本発明の活性エネルギー線硬化型防曇塗料組成物に活性エネルギー線を照射することにより得られる。硬化物が膜状である場合、硬化塗膜とする。
 本発明の積層体は、基材と硬化塗膜とを少なくとも有する。
 基材に特に限定はなく、用途に応じて適宜選択すればよく、例えばプラスチック、ガラス、木材、金属、金属酸化物、紙、シリコン又は変性シリコン等が挙げられ、異なる素材を接合して得られた基材であってもよい。
 基材の形状も特に制限はなく、平板、シート状、又は3次元形状全面に、若しくは一部に、曲率を有するもの等、目的に応じた任意の形状であってよい。また、基材の硬度、厚み等にも制限はない。
 プラスチック基材としては、樹脂からなるものであれば特に限定なく、例えば前述した熱硬化性樹脂や熱可塑性樹脂を用いればよい。機材としては、樹脂が単独でも複数種を配合した基材であってもよく、単層又は2層以上の積層構造を有するものであってもよい。また、これらのプラスチック基材は繊維強化(FRP)されていてもよい。
 また、基材は、本発明の効果を阻害しない範囲で、公知の帯電防止剤、防曇剤、アンチブロッキング剤、紫外線吸収剤、酸化防止剤、顔料、有機フィラー、無機フィラー、光安定剤、結晶核剤、滑剤等の公知の添加剤を含んでいてもよい。
 本発明の積層体は、基材及び硬化塗膜の上に、さらに第二基材を有していても良い。第二基材としては材質に特に限定は無く、ガラス、木材、金属、金属酸化物、プラスチック、紙、シリコン又は変性シリコン等が挙げられ、異なる素材を接合して得られた基材であってもよい。基材の形状は特に制限はなく、平板、シート状、又は3次元形状全面に、若しくは一部に、曲率を有するもの等目的に応じた任意の形状であってよい。また、基材の硬度、厚み等にも制限はない。
 本発明の組成物からなる硬化塗膜は、プラスチックに対しても無機物に対しても密着性が高いため、異種材料の層間材としても好ましく利用可能である。特に好ましくは、基材がプラスチックであり、第二基材が無機層の場合である。無機層としては、例えば、石英、サファイア、ガラス、光学フィルム、セラミック材料、無機酸化物、蒸着膜(CVD、PVD、スパッタ)、磁性膜、反射膜、Ni,Cu,Cr,Fe,ステンレス等の金属、紙、SOG(Spin On Glass)、SOC(Spin On Carbon)、ポリエステル・ポリカーボネート・ポリイミド等のプラスチック層、TFTアレイ基板、PDPの電極板、ITOや金属等の導電性基材、絶縁性基材、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどのシリコン系基板等が挙げられる。
(製造方法)
 本発明の積層体は、本発明の活性エネルギー線硬化型防曇塗料組成物を各種材料からなる基材の少なくとも1面へ塗工した後に活性エネルギー線を照射することにより得られる。
 基材への塗工は、基材に対し組成物を直接塗工又は直接成形して硬化させる方法により行うことができる。
 直接塗工する場合、塗工方法としては特に限定はなく、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。
 又は、本発明の組成物の硬化塗膜を直接成形し、各種材料からなる基材上に積層しても構わない。半硬化の硬化物を基材上に積層してから完全硬化させてもよく、完全硬化済の硬化物を基材上に積層してもよい。硬化塗膜を直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。
 本発明の組成物は、重合性不飽和基を有する化合物が含まれていることから、活性エネルギー線を照射することにより硬化させることができる。
 活性エネルギー線とは、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。これらのなかでも特に、硬化性および利便性の点から紫外線(UV)が好ましい。
 ここで、活性エネルギー線として紫外線を用いる場合、その紫外線を照射する装置としては、例えば、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、無電極ランプ(フュージョンランプ)、ケミカルランプ、ブラックライトランプ、水銀-キセノンランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、太陽光、LEDランプ等が挙げられる。これらを用いて、約180~400nmの波長の紫外線を、塗工又は成形された組成物に照射することによって、硬化塗膜や硬化物を得ることが可能である。紫外線の照射量としては、使用される光重合開始剤の種類及び量によって適宜選択される。
 本発明の組成物は、活性エネルギー線による硬化前に加熱工程があってもよい。加熱工程を導入することで、組成物に含まれる溶剤の乾燥、基材密着性の向上を図ることができる。
 加熱を実施する装置としては、熱風乾燥機、IR加熱型乾燥機、加熱式ホットプレート等が挙げられる。基材がプラスチックの場合、50℃~110℃で加熱することで基材密着性を向上でき、70℃~100℃が好ましい。また、基材がガラスや鋼板のような無機基材である場合は80℃~140℃で加熱することで基材密着性を向上でき、90~130℃が好ましく、100~120℃がより好ましい。
(用途)
 本発明の活性エネルギー線硬化型防曇塗料組成物は、長期持続可能な防曇性を有し、耐摩耗性、耐ブリード性、密着性、及び耐湿熱性に優れる硬化塗膜及び硬化物を形成できることから、自動車用ガラス飛散防止フィルム、ショーケース用の防曇フィルム、窓ガラス用防曇フィルム、自動車用ヘッドランプ、バーチャルリアリティ(VR)のディスプレイ、監視カメラ、洗面化粧台の鏡、シンク、浴室の浴槽、浴室の壁、浴室の鏡等に好適に使用されうる。また、眼鏡、ゴーグル、フェイスシールド、種々鏡、種々窓、感染症対策のパーテーション、モニターカバー、センサーカバー等の用途にも好適に使用することができる。
 以下、実施例、比較例を用いて本発明をより具体的に説明するが、本発明は以下の態様に限定されるものではない。また、本実施例において「部」及び「%」は特に断わりのない限り質量基準である。
(合成例1:ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-1)の合成)
 撹拌機、ガス導入管、コンデンサー、及び温度計を備えた3リットルのフラスコに、ヘキサメチレンジイソシアネート(コベストロ社製「デスモジュールH」)168.2質量部、酢酸イソブチル256質量部、2,6-ジ-tert-ブチル-4-メチルフェノール2.0質量部、メトキシハイドロキノン0.2質量部、ジブチル錫ジアセテート0.2質量部を加え、70℃に昇温し、ペンタエリスリトールトリアクリレート(東亜合成社製の商品名「アロニックスM-306」、ペンタエリスリトールテトラアクリレートを約30質量%含有する)(356.9質量部)とポリエチレングリコール(三洋化成工業社製「PEG-1000」、数平均分子量約1000)(496.5質量部)を1時間にわたって分割仕込みした。仕込み後、イソシアネート基を示す2250cm-1の赤外吸収スペクトルが消失するまで80℃で反応を行い、固形分80wt%のポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-1)(ペンタエリスリトールテトラアクリレートを固形分中に約10.5質量%含有する)を得た。
(合成例2:ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-2)の合成)
 ヘキサメチレンジイソシアネート168.2質量部をイソホロンジイソシアネート(商品名「IPDI」、コベストロ社製)222.3質量部に変更した以外は合成例1と同様にして、ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-2)(固形分中にペンタエリスリトールテトラアクリレートを約10質量%含有する)を得た。
(合成例3:ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-3)の合成)
 撹拌機、ガス導入管、コンデンサー、及び温度計を備えた1リットルのフラスコに、イソシアヌレート型ヘキサメチレンジイソシアネート(旭化成社製「デュラネートN3300」)193.8質量部、酢酸イソブチル109.4質量部、2,6-ジ-tert-ブチル-4-メチルフェノール0.9質量部、メトキシハイドロキノン0.09質量部、ジブチル錫ジアセテート0.09質量部を加え、70℃に昇温し、2-ヒドロキシエチルモノアクリレート(大阪有機化学社製の商品名「HEA」)77.4質量部とポリエチレングリコール(三洋化成工業社製「PEG-1000」、数平均分子量約1000)165.5質量部を1時間にわたって分割仕込みした。仕込み後、イソシアネート基を示す2250cm-1の赤外吸収スペクトルが消失するまで80℃で反応を行い、固形分80wt%のポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-3)を得た。
(合成例4:ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-4)の合成)
 2-ヒドロキシエチルモノアクリレートをペンタエリスリトールトリアクリレート(東亜合成社製の商品名「アロニックスM-306」、ペンタエリスリトールテトラアクリレートを約30質量%含有する)237.9質量部に変更した以外は合成例3と同様にして、固形分80wt%のポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-4)(固形分中にペンタエリスリトールテトラアクリレートを約12.0質量%含有する)を得た。
(合成例5:ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-5)の合成)
 ポリエチレングリコールを三洋化成工業社製「PEG-1000」(数平均分子量約1000)165.5質量部から三洋化成工業社製「PEG-200」(数平均分子量約200)32.9質量部に変更した以外は合成例3と同様にして、固形分80wt%のポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-5)を得た。
(合成例6:ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-6)の合成)
 ポリエチレングリコールを三洋化成工業社製「PEG-1000」(数平均分子量約1000)165.5質量部から三洋化成工業社製「PEG-600」(数平均分子量約600)97.4質量部に変更した以外は合成例3と同様にして、固形分80wt%のポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-6)を得た。
(合成例7:ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-7)の合成)
 ポリエチレングリコールを三洋化成工業社製「PEG-1000」(数平均分子量約1000)165.5質量部から三洋化成工業社製「PEG-2000」(数平均分子量約2000)333.2質量部に変更した以外は合成例3と同様にして、固形分80wt%のポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-7)を得た。
(合成例8:ポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-8)の合成)
  ポリエチレングリコールを三洋化成工業社製「PEG-1000」(数平均分子量約1000)165.5質量部から三洋化成工業社製「PEG-4000」(数平均分子量約4000)663.1質量部に変更した以外は合成例3と同様にして、固形分80wt%のポリエチレングリコール構造を有する多官能(メタ)アクリレート化合物(F-8)を得た。
(実施例1)
 固形分として、トリメチロールプロパンEO変性トリアクリレート(変性数3、EO平均変性数1、MIWON社製「Miramer M3130」)100質量部、アルキルベンゼンスルホン酸ナトリウム(ライオン・スペシャリティ・ケミカルズ社製、商品名「ライポンLH-200」)0.5質量部、光重合開始剤3質量部(Omnirad2959(IGM社製)1.5質量部、Omnirad819(IGM社製)1.5質量部))を配合し、プロピレングリコールモノメチルエーテルにて固形分が40wt%になるように均一に混合して、活性エネルギー線硬化型防曇塗料組成物(1)を調製した。
(実施例2~83、比較例1~2)
 表2~13に示した固形分の組成に変更した以外は実施例1と同様にして、各例の活性エネルギー線硬化型防曇塗料組成物(2)~(83)、(R1)~(R2)を得た。
[評価サンプル(PET基材)の作製]
 各例の活性エネルギー線硬化型防曇塗料組成物(1)~(22)、(62)~(81)、(R1)~(R2)を、ポリエチレンテレフタレート(PET)基材(東レ社製の商品名「ルミラーUH-13」 厚さ:50μm、面積:30cm×15cm)に、膜厚が5μmとなるように塗布し、80℃で1分乾燥し、高圧水銀ランプにて180mW/cm、250mJ/cmの条件で紫外線照射をし、得られるPET基材と硬化塗膜との積層体を評価サンプル(PET基材)とした。
[評価サンプル(ガラス基材)の作製]
 各例の活性エネルギー線硬化型防曇塗料組成物(23)~(61)を、ガラス基材(パルテック社製のフロートガラス 厚さ:3mm、面積:15cm×7cm)に、膜厚が5μmとなるように塗布し、100℃で10分乾燥し、高圧水銀ランプにて200mW/cm、1000mJ/cmの条件で紫外線照射をし、得られるガラス基材と硬化塗膜との積層体を評価サンプル(ガラス基材)とした。
[初期防曇性の評価]
 50℃に保った温水浴の水面から2cmの高さの位置に、上記で得られた評価サンプル(PET基材)及び評価サンプル(ガラス基材)の硬化塗膜面が下になるように設置し、温水浴からのスチームを塗膜に連続で60秒間照射した際の、曇りの有無を目視にて次の3段階で評価した。
◎:スチーム照射直後に水膜が形成され、曇らない。
〇:スチーム照射直後に一瞬の曇りが確認された後に、水膜が形成され曇らない。
×:スチーム照射後にきれいな水膜が形成されず、曇りが確認される。
[防曇持続性の評価]
 上記の[初期防曇性の評価]を実施したあと、水膜をウェスで拭き取り、再度[初期防曇性の評価]を実施した。水膜が形成しなくなるまでの回数を計測した。例えば、[初期防曇性の評価]を合計3回実施完了したところで水膜が形成されないのであれば、2となる。2以上を合格とした。
[耐湿熱試験後の耐ブリード性の評価]
 上記で得られた評価サンプル(PET基材)及び評価サンプル(ガラス基材)を50℃、95%RHの条件下で静置し、25時間毎にブリードの有無を確認し、ブリードの発生を確認するまでにかかる時間を計測した。25時間時点でブリードがないものを合格とした。
[耐摩耗性の評価]
 各例の評価サンプル表面の硬化塗膜表面を、600g/cm荷重、30rpmにてクリーンウェスでラビングすることにより、磨耗試験を実施した。目視にて傷が発生した往復回数を記載した。100回時点で傷が発生していないものを合格とした。
[基材密着性の評価]
 評価サンプル(PET基材)及び評価サンプル(ガラス基材)の硬化塗膜側に1mm幅で10×10の碁盤目状にカッターで切れ目を入れた。碁盤目状の部分にセロハンテープ(ニチバン社製「CT-24」)を貼り付け、剥がす操作を実施し、剥離の有無を観察した。
[耐湿熱試験後の基材密着性の評価]
 試験片を50℃、95%RHの条件下で25時間静置し、JIS K 5600-5-6に準拠して硬化塗膜の剥離に対する耐久性を試験した。剥離が生じた場合はそこで試験を終了し、剥離が生じなかった場合は同条件下で25時間静置したのち同じ試験を行った。剥離が生じるまでこの作業を繰り返し、剥離が生じるまでにかかった時間を測定した。
 実施例1~83で得られた活性エネルギー線硬化型防曇塗料組成物、及び比較例1~2で得られた活性エネルギー線硬化型防曇塗料組成物(1)~(83)、(R1)~(R2)の組成及び評価結果を表1~13に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表1~13に示す略語は下記の化合物を示す。
[(A)成分]
・M3130:トリメチロールプロパンEO変性トリアクリレート(変性数3、EO平均変性数1)、商品名「Miramer M3130」、MIWON社製
・M3160:トリメチロールプロパンEO変性トリアクリレート(変性数6、EO平均変性数2)、商品名「Miramer M3160」、MIWON社製
・M3190:トリメチロールプロパンEO変性トリアクリレート(変性数9、EO平均変性数3)、商品名「Miramer M3190」、MIWON社製
・M3150:トリメチロールプロパンEO変性トリアクリレート(変性数15、EO平均変性数5)、商品名「Miramer M3150」、MIWON社製
・SR415:
・A-DPH-6E:エトキシ化ジペンタエリスリトールポリアクリレート(EO平均変性数1)、商品名「NKエステル A-DPH-6E」、新中村化学工業社製
・A-DPH-12E:エトキシ化ジペンタエリスリトールポリアクリレート(EO平均変性数2)、商品名「NKエステル A-DPH-12E」、新中村化学工業社製
・A-DPH-24E:エトキシ化ジペンタエリスリトールポリアクリレート(EO平均変性数4)、商品名「NKエステル A-DPH-24E」、新中村化学工業社製
・DPEA42:
[(B)成分]
・アルキルベンゼンスルホン酸塩:アルキルベンゼンスルホン酸ナトリウム、商品名「ライポンLH-200、ライオン・スペシャリティ・ケミカルズ社製
・OT-100:ジオクチルスルホコハク酸ナトリウム、商品名「エアロゾルOT-100」、ソルベイ社製
・12W-37:塩ドデシルトリメチルアンモニウム、商品名「リポカード12-37W」、固形分37質量部、ライオン・スペシャリティ・ケミカルズ社製
・TM-16:セチルトリメチルアンモニウムクロリド、商品名「レボンTM-16」、固形分30質量部、三洋化成工業社製
・TM-18:ステアリルトリメチルアンモニウムクロリド、商品名「レボンTM-18」、固形分70質量部、三洋化成工業社製
・2C-75:塩化ジココイルジメチルアンモニウム、商品名「リポカード2C-75」、固形分75質量部、ライオン・スペシャリティ・ケミカルズ社製
・DSV:ジステアリルジメチルアンモニウムクロリド、商品名「カチオンDSV」、三洋化成工業社製
・NL110:ポリオキシエチレンアルキルエーテル(HLB:14.4)、商品名「NL-110」、三洋化成工業社製
[(C)成分]
・AA:アクリル酸
・HOA-MS:2-アクリロイロキシエチルーコハク酸、商品名「HOA-MS」、共栄社化学製
・ACB-3:2-アクリロイルオキシエチルヘキサフドロフタル酸、商品名「NKエステルACB-3」、新中村化学工業社製
[(D)成分]
・KBM-503:3-メタクリロキシプロピルトリメトキシシラン、商品名「KBM-503」、信越化学社製
・KBM-5103:3-アクリロキシプロピルトリメトキシシラン、商品名「KBM-5103」、信越化学社製
・KBM-5803:8-メタクリロキシオクチルトリメトキシシラン、商品名「KBM-5803」、信越化学社製
[(E)成分]
・TEMPTA:トリメチロールプロパントリアクリレート、商品名「TEMPTA」、ダイセル・オルネクス社製
・PETA:ペンタエリスリトールテトラアクリレート、商品名「アロニックスM-450」、東亜合成社製
・DPHA:ジペンタエリスリトールヘキサアクリレート、商品名「KAYARAD DPHA」、日本化薬社製
[(F)成分]
合成例1~8で合成した(F-1)~(F-8)を使用した。
[光重合開始剤]
1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名「Omnirad2959」、IGM社製)及びビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(商品名「Omnirad819」、IGM社製)をそれぞれ50%ずつ含有した混合物
[溶剤]
プロピレングリコールモノメチルエーテル
 本発明の活性エネルギー線硬化型防曇塗料組成物の硬化塗膜は、長期持続可能な防曇性を有し、耐摩耗性、耐ブリード性、密着性、及び耐湿熱性に優れる硬化塗膜を形成できることを確認した。
 一方、(A)成分としてEO平均変性数が5を超える化合物を使用した比較例1では耐ブリード性及び耐摩耗性が著しく低下した。さらに、(A)成分を含有しない比較例2では、防曇性、防曇持続性、耐ブリード性、及び基材密着性に劣ることを確認した。

Claims (8)

  1.  下記式(1)~(3)のいずれかの構造を有するラジカル重合性化合物(A)、及び水溶性界面活性剤(B)を含む活性エネルギー線硬化型防曇塗料組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、nは0~10の整数であり、(2+n)個のXはそれぞれ独立にエチレンオキサイドにより変性された(メタ)アクリロイル基[CH=CR-CO(OC)y-;Rは水素原子又はメチル基、yはエチレンオキサイドによる変性数を示す。]、(メタ)アクリロイル基[CH=CR-CO-;Rは水素原子又はメチル基を示す。]又は水素原子であり、複数のXのうち少なくとも1つはエチレンオキサイドにより変性された(メタ)アクリロイル基を示す。なお、この化合物の(メタ)アクリロイル基1個あたりのエチレンオキサイドの平均変性数は1~5個である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、nは0~4の整数であり、(4+2n)個のXはそれぞれ独立にエチレンオキサイドにより変性された(メタ)アクリロイル基[CH=CR-CO(OC)y-;Rは水素原子又はメチル基、yはエチレンオキサイドによる変性数を示す。]、(メタ)アクリロイル基[CH=CR-CO-;Rは水素原子又はメチル基を示す。]又は水素原子であり、複数のXのうち少なくとも1つはエチレンオキサイドにより変性された(メタ)アクリロイル基を示す。なお、この化合物の(メタ)アクリロイル基1個あたりのエチレンオキサイドの平均変性数は1~5個である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、nは0~3の整数であり、(3+n)個のXはそれぞれ独立にエチレンオキサイドにより変性された(メタ)アクリロイル基[CH=CR-CO(OC)y-;Rは水素原子又はメチル基、yはエチレンオキサイドによる変性数を示す。]、(メタ)アクリロイル基[CH=CR-CO-;Rは水素原子又はメチル基を示す。]又は水素原子であり、複数のXのうち少なくとも1つはエチレンオキサイドにより変性された(メタ)アクリロイル基を示す。なお、この化合物の(メタ)アクリロイル基1個あたりのエチレンオキサイドの平均変性数は1~5個である。)
  2.  カルボキシ基及び(メタ)アクリロイル基を有する化合物(C)と、アルコキシリル基及び(メタ)アクリロイル基を有する化合物(D)をさらに含有する請求項1記載の活性エネルギー線硬化型防曇塗料組成物。
  3.  エチレンオキサイド変性されていない多官能(メタ)アクリレート(E)をさらに含有する請求項1記載の活性エネルギー線硬化型防曇塗料組成物。
  4.  ポリエチレングリコール構造を有する多官能(メタ)アクリレート(F)を含有する請求項1記載の活性エネルギー線硬化型防曇塗料組成物。
  5.  請求項1記載の活性エネルギー線硬化性樹脂組成物の硬化物。
  6.  請求項5記載の硬化物からなる硬化塗膜を、プラスチック基材の少なくとも一面に有する積層体。
  7.  請求項2記載の活性エネルギー線硬化性樹脂組成物の硬化物。
  8.  請求項7記載の硬化物からなる硬化塗膜を、ガラス基材の少なくとも一面に有する積層体。
PCT/JP2023/028358 2022-09-06 2023-08-03 活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体 WO2024053298A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023573419A JP7533803B2 (ja) 2022-09-06 2023-08-03 活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022141292 2022-09-06
JP2022-141292 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024053298A1 true WO2024053298A1 (ja) 2024-03-14

Family

ID=90190920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028358 WO2024053298A1 (ja) 2022-09-06 2023-08-03 活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体

Country Status (3)

Country Link
JP (1) JP7533803B2 (ja)
TW (1) TW202419586A (ja)
WO (1) WO2024053298A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059167A (ja) * 2013-09-18 2015-03-30 三菱化学株式会社 硬化性樹脂組成物、硬化物及び積層体
JP2016186034A (ja) * 2015-03-27 2016-10-27 株式会社ネオス 親水性活性エネルギー線硬化型コーティング樹脂組成物
JP2017165962A (ja) * 2016-03-14 2017-09-21 中国塗料株式会社 光硬化性樹脂組成物、硬化被膜、被膜付き基材およびその製造方法、ならびに基材に対する防曇処理方法
WO2019107350A1 (ja) * 2017-12-01 2019-06-06 パナソニックIpマネジメント株式会社 塗料組成物及び親水性部材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442734B2 (en) 2002-12-05 2008-10-28 Tokuyama Corporation Coating composition and optical article
JP2022022166A (ja) 2020-07-22 2022-02-03 日本ペイント・オートモーティブコーティングス株式会社 透明紫外線硬化型樹脂組成物およびそれから得られた透明硬化樹脂層
CN112194775A (zh) 2020-09-29 2021-01-08 深圳市科汇泰科技有限公司 一种水性紫外光固化聚氨酯低聚体及其制备方法和紫外光固化长效防雾涂料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059167A (ja) * 2013-09-18 2015-03-30 三菱化学株式会社 硬化性樹脂組成物、硬化物及び積層体
JP2016186034A (ja) * 2015-03-27 2016-10-27 株式会社ネオス 親水性活性エネルギー線硬化型コーティング樹脂組成物
JP2017165962A (ja) * 2016-03-14 2017-09-21 中国塗料株式会社 光硬化性樹脂組成物、硬化被膜、被膜付き基材およびその製造方法、ならびに基材に対する防曇処理方法
WO2019107350A1 (ja) * 2017-12-01 2019-06-06 パナソニックIpマネジメント株式会社 塗料組成物及び親水性部材

Also Published As

Publication number Publication date
JPWO2024053298A1 (ja) 2024-03-14
TW202419586A (zh) 2024-05-16
JP7533803B2 (ja) 2024-08-14

Similar Documents

Publication Publication Date Title
JP7135321B2 (ja) 活性エネルギー線硬化性樹脂組成物、樹脂成形品および樹脂成形品の製造方法
JP6836732B2 (ja) 樹脂組成物、硬化物及び積層体
JP2023106324A (ja) 活性エネルギー線硬化型樹脂及び活性エネルギー線硬化型防曇性樹脂組成物、並びにその硬化物及び物品
JP4899545B2 (ja) 硬化性樹脂組成物及びそれからなる硬化膜
CN114316332B (zh) 成型体的制造方法
JP2009285963A (ja) 積層フィルムおよびその製造方法
US20070219314A1 (en) Curable composition, cured product, and laminate
JP7176574B2 (ja) コーティング剤、コーティング膜及び積層体
JP5011663B2 (ja) 硬化性樹脂組成物、それからなる硬化膜及び積層体
JP7533803B2 (ja) 活性エネルギー線硬化型防曇塗料組成物、硬化物、及び積層体
JP2007022071A (ja) 帯電防止用積層体
JP4982982B2 (ja) 硬化性樹脂組成物、それからなる硬化膜及び積層体
KR101220567B1 (ko) 경화성 수지 조성물 및 이를 포함하는 경화막 및 적층체
JP7435914B2 (ja) 活性エネルギー線硬化型防曇性組成物、硬化物、及び物品
JP7035506B2 (ja) 積層フィルム、加飾フィルム及び物品
JP7380961B2 (ja) 活性エネルギー線硬化型被覆組成物及び成形品
JP2023106325A (ja) 活性エネルギー線硬化性組成物、硬化物、及び物品
JP2023131972A (ja) 活性エネルギー線硬化性組成物、及びフィルム
TW202402970A (zh) 活性能量線硬化型被覆組成物及成形品
JP4618018B2 (ja) 帯電防止用積層体
WO2024185433A1 (ja) 活性エネルギー線硬化型組成物、積層体及び積層体の製造方法
KR101273731B1 (ko) 경화성 조성물, 경화물 및 적층체
CN112142926A (zh) 固化性组合物、层积体和汽车前照灯配光镜
JP2016121206A (ja) 活性エネルギー線硬化性樹脂組成物、これを含有する塗料、その塗膜、及び該塗膜を有する積層フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023573419

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862841

Country of ref document: EP

Kind code of ref document: A1