[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024051808A1 - 链路配置方法、装置、拉远终端、网络设备及存储介质 - Google Patents

链路配置方法、装置、拉远终端、网络设备及存储介质 Download PDF

Info

Publication number
WO2024051808A1
WO2024051808A1 PCT/CN2023/117682 CN2023117682W WO2024051808A1 WO 2024051808 A1 WO2024051808 A1 WO 2024051808A1 CN 2023117682 W CN2023117682 W CN 2023117682W WO 2024051808 A1 WO2024051808 A1 WO 2024051808A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
remote terminal
srb
network device
relay
Prior art date
Application number
PCT/CN2023/117682
Other languages
English (en)
French (fr)
Inventor
黄学艳
徐晓东
刘亮
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2024051808A1 publication Critical patent/WO2024051808A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a link configuration method, device, remote terminal, network equipment and storage medium.
  • remote terminals User Equipment, UE
  • UE User Equipment
  • NR New Radio
  • embodiments of the present disclosure provide a link configuration method, device, remote terminal, network equipment and storage medium.
  • Embodiments of the present disclosure provide a link configuration method, which is applied to network equipment.
  • the method includes:
  • the remote terminal On the first link added by the remote terminal (Remote UE), configure the first Signaling Radio Bearer (SRB) and/or the second SRB; wherein the first link is characterized as NR direct connection link or trunk link.
  • SRB Signaling Radio Bearer
  • configuring the first SRB and/or the second SRB on the first link added by the remote terminal includes:
  • the first SRB and/or the second SRB are configured on the first link added by the remote terminal, including at least one of the following:
  • the method also includes:
  • SRB1 and/or SRB2 on the NR direct link are maintained in the active state.
  • the method also includes:
  • Radio Link Failure occurs on the NR direct link
  • the method also includes:
  • reconfigure Split SRB1 on the NR direct link to SRB1 When any of the following conditions are met, reconfigure Split SRB1 on the NR direct link to SRB1, and/or reconfigure Split SRB2 on the NR direct link to SRB2:
  • the method also includes:
  • reconfigure Split SRB1 on the NR direct link to SRB1 When any of the following conditions are met, reconfigure Split SRB1 on the NR direct link to SRB1, and/or reconfigure Split SRB2 on the NR direct link to SRB2:
  • RLF occurs when the air interface wireless link of the relay terminal fails
  • the method also includes:
  • RLF occurs on the NR direct link
  • the method also includes:
  • the NR direct link is configured as the primary path
  • the relay link is configured as the secondary path.
  • the method also includes:
  • the relay link is configured as the primary path
  • the NR direct link is configured as the secondary path.
  • the method also includes:
  • Embodiments of the present disclosure also provide a link configuration method, which is applied to remote terminals.
  • the method includes:
  • the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal; wherein the first link is characterized as an NR direct link or a relay link.
  • the method also includes:
  • An embodiment of the present disclosure also provides a link configuration device, including:
  • a first configuration unit configured to configure the first SRB and/or the second SRB on the first link added by the remote terminal; wherein the first link is characterized as an NR direct link or a relay link .
  • An embodiment of the present disclosure also provides a link configuration device, including:
  • An acquisition unit configured to acquire the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal; wherein the first link is characterized as an NR direct link or Relay link.
  • An embodiment of the present disclosure also provides a network device, which includes a first processor and a first communication interface, wherein,
  • the first processor is configured to configure a first SRB and/or a second SRB on the first link added by the remote terminal; wherein the first link is characterized as an NR direct link or a relay link.
  • An embodiment of the present disclosure also provides a remote terminal, including a second processor and a second communication interface, wherein,
  • the second processor is configured to obtain the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal; wherein the first link is characterized as NR direct connection link or trunk link.
  • An embodiment of the present disclosure also provides a network device, including a first processor and a first memory for storing a computer program capable of running on the first processor,
  • the first processor is configured to execute the steps of any method on the network device side when running the computer program.
  • An embodiment of the present disclosure also provides a remote terminal, including a second processor and a memory for storing a computer program capable of running on the second processor,
  • the second processor is configured to perform the steps of any of the methods on the remote terminal side when running the computer program.
  • Embodiments of the present disclosure also provide a storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any of the methods on the network device side are implemented, or the steps of any of the methods on the remote terminal side are implemented. step.
  • the network device configures the first SRB and/or the second SRB on the first link added by the remote terminal;
  • the first link is characterized as an NR direct link or a relay link;
  • the remote terminal obtains the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal.
  • SRB Since the first SRB and/or the second SRB are configured on the first link added by the remote terminal, rather than on the path initially established between the remote terminal and the network device, the first SRB and/or the second SRB are not The initially established path will become unavailable due to failure, thus improving network robustness and reliability.
  • Figure 1 is a schematic diagram of a communication system architecture in related technologies
  • Figure 2 is a schematic flow chart of a link configuration method according to an embodiment of the present disclosure
  • Figure 3 is an interactive schematic diagram of a link configuration method according to an embodiment of the present disclosure
  • Figure 4 is an interactive schematic diagram of a link configuration method according to an embodiment of the present disclosure
  • Figure 5 is a schematic flow chart of a link configuration method according to an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of a link configuration device according to an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a link configuration device according to an embodiment of the present disclosure.
  • Figure 8 is a schematic structural diagram of a remote terminal according to an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • Remote UE Remote UE
  • the remote terminal can choose an NR direct link or an indirect link to access network equipment, such as a base station. For example, the remote terminal selects the NR direct link through the set selection criteria or accesses the network equipment through the relay terminal (relay UE). In other words, the remote terminal can directly switch between the NR direct link and the indirect link. Among them, for the connected remote terminal, the remote terminal reports measurement information to the network device, and reselects the relay UE based on the configuration issued by the network device, or switches to the NR direct link.
  • option one has the problem of low network throughput.
  • the remote terminal is connected to the network device through the relay terminal and the NR direct link at the same time.
  • the Uu port is used for communication between the terminal and the network device, and the PC5 port is used for communication between terminals.
  • the remote terminal can first establish a connection with the network device through relay UE; the remote terminal reports measurement information to the network device, and based on the configuration delivered by the network device, establishes an NR direct connection, that is, adds an NR direct link.
  • the remote terminal can also establish an NR direct connection first; the remote terminal reports measurement information to the network device, and selects and adds a relay chain based on the configuration issued by the network device. road.
  • Radio Bearer Radio Bearer
  • the second option improves the throughput of the network
  • SRB1 and SRB2 are established on the initially established path.
  • the initially established path fails, both SRB1 and SRB2 are unavailable, which will cause the terminal to be far away from the network.
  • RRC Radio Resource Control
  • SRB1/SRB2 and the data radio bearer Data Radio Bearer, DRB
  • RRC Radio Resource Control
  • the network device configures the first SRB and/or the second SRB on the first link added by the remote terminal; wherein the first link is represented as an NR direct link or a relay link; the remote terminal obtains the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal. Since the first SRB and/or the second SRB are configured on the first link added by the remote terminal, rather than on the path initially established between the remote terminal and the network device, the first SRB and/or the second SRB are not The path originally established by the remote terminal will become unavailable due to failure, thus improving network robustness and reliability.
  • Embodiments of the present disclosure provide a link configuration method, which is applied to network equipment.
  • the network equipment includes a base station.
  • the method includes:
  • the first link is characterized as an NR direct link or an indirect link.
  • An NR direct link refers to a link through which a terminal (such as a remote terminal) directly connects to a network device; the indirect link can be a Relay link, sidelink link, or non-standard link. Trunk links are also called PC5 links.
  • the terminal may be a remote terminal (Remote UE).
  • Embodiments of the present disclosure also provide a link configuration method, which is applied to network equipment.
  • the network equipment includes a base station. Referring to Figure 2, the method includes:
  • Step 201 Configure the first SRB and/or the second SRB on the first link added by the remote terminal.
  • the first link is characterized as an NR direct link or a relay link.
  • the NR direct link refers to the link where the remote terminal directly connects to the network device; the relay link is also called the PC5 link.
  • the network device configures the first SRB and/or the first SRB on the NR direct link added by the remote terminal. 2 SRB.
  • the network device configures the first SRB and/or the second SRB on the NR direct link added by the remote terminal. SRB.
  • first SRB and the second SRB may be used to transmit RRC signaling and/or non-access stratum (Non-Access-Stratum, NAS) signaling.
  • the first SRB includes Split SRB1
  • the second SRB includes Split SRB2.
  • the link configuration method includes:
  • Step 1 The remote terminal performs measurements based on the measurement configuration delivered by the network device, and reports the measurement results to the network device.
  • Step 2 The network device sends an RRC Reconfiguration Message (RRC Reconfiguration Message) to the remote terminal.
  • RRC Reconfiguration Message RRC Reconfiguration Message
  • Step 3 The remote terminal sends a preamble to the network device.
  • Step 4 The network device sends a Random Access Response (RAR) to the remote terminal.
  • RAR Random Access Response
  • Step 5 The remote terminal sends an RRC Setup Request (RRC Setup Request) to the network device.
  • RRC Setup Request RRC Setup Request
  • Step 6 The network device sends an RRC Setup Message to the remote terminal.
  • the remote terminal and the network device complete random access through steps 3 to 6.
  • the RRC Setup Message is sent by the network device through SRB0, and the RRC Setup Message contains Contains the related configuration of the first SRB, that is, the network device configures the first SRB through the RRC Setup Message.
  • the first SRB is Split SRB1.
  • Step 7 The remote terminal sends an RRC Setup Complete Message to the network device.
  • Step 8 The network device sends an RRC Reconfiguration Message to the remote terminal.
  • the RRC Reconfiguration Message contains the relevant configuration of the second SRB, that is, the network device configures the second SRB through the RRC Reconfiguration Message.
  • the second SRB is Split SRB2.
  • Step 9 The network device sends an RRC Reconfiguration Complete Message to the remote terminal.
  • the remote terminal first accesses the network device through the relay terminal and then adds an NR direct link, in one embodiment, on the first link added by the remote terminal, configure the first SRB and /or second SRB, including:
  • the network device when the remote terminal first accesses the network device through a relay terminal and then adds an NR direct link, the network device adds Split SRB1 on the NR direct link added by the remote terminal and activates the added Split SRB1.
  • the network device when the remote terminal first accesses the network device through a relay terminal and then adds an NR direct link, the network device adds Split SRB2 on the NR direct link added by the remote terminal and activates it. Added Split SRB2.
  • the network device when the remote terminal first accesses the network device through the relay terminal and then adds an NR direct link, the network device adds and activates Split SRB1 on the NR direct link added by the remote terminal, and Add and activate Split SRB2.
  • the remote terminal first accesses the network device through the relay terminal and then adds the NR direct link, there are SRB1 and/or SRB1 on the relay link between the relay terminal and the network device. SRB2. Therefore, even if the relay link between the relay terminal and the network device fails, the remote terminal can still use Split SRB1 and/or Split SRB2 on the NR direct link to transmit relevant signaling. To maintain communication between remote terminals and network equipment, the reliability and stability of the network can be improved.
  • the remote terminal first accesses the network device through the relay terminal and then adds an NR direct link
  • SRB1 and/or SRB2 exist on the relay link between the relay terminal and the network device.
  • the remote terminal when the remote terminal first accesses the network device through the relay terminal and then adds an NR direct link, when SRB1 on the relay link is activated, the network device deactivates SRB1 on the relay link. ; When SRB2 on the relay link is activated, the network device deactivates SRB2 on the relay link; when SRB1 and SRB2 on the relay link are both activated, the network device deactivates SRB2 on the relay link SRB1 and SRB2.
  • the SRB in the activated state can transmit relevant signaling, and the SRB in the inactive state cannot transmit relevant signaling.
  • the network device can also keep SRB1 and/or SRB2 carried by the relay link active.
  • the network equipment and the remote terminal can use the activated SRB on the NR direct link and relay link to transmit relevant signaling.
  • the first SRB is configured on the first link added by the remote terminal. and/or a second SRB, including at least one of the following:
  • the network device when the remote terminal first accesses the network device through the NR direct link and then adds a relay link, the network device adds Split SRB1 and/or Split SRB2 on the relay link added by the remote terminal. ;
  • the network device can activate or deactivate the added Split SRB1 and/or Split SRB2. details as follows:
  • the network device can add Split SRB1 to the trunk link added by the remote terminal and configure the Split SRB1 to be inactive. At this time, the added Split SRB1 is inactive by default.
  • the network device can add Split SRB2 on the relay link added by the remote terminal and configure the Split SRB2 is inactive. At this time, the added Split SRB2 is inactive by default.
  • the network device can add and activate Split SRB1 on the relay link added by the remote terminal.
  • the network equipment and the remote terminal can use the activated Split SRB1 on the trunk link to transmit relevant signaling.
  • the network device can add and activate Split SRB2 on the relay link added by the remote terminal.
  • the network equipment and the remote terminal can use the activated Split SRB2 on the trunk link to transmit relevant signaling.
  • the remote terminal first accesses the network device through the NR direct link and then adds a relay link, there are SRB1 and SRB1 on the NR direct link between the remote terminal and the network device. /or SRB2. Therefore, even if the NR direct link between the remote terminal and the network device fails, the remote terminal can still use Split SRB1 and/or Split SRB2 on the relay link to transmit relevant signaling to maintain the remote terminal. Communication with network devices can improve the reliability and stability of the network.
  • the method further includes:
  • SRB1 and/or SRB2 on the NR direct link are maintained in the active state.
  • the network device maintains SRB1 and/or SRB2 on the NR direct link in an activated state.
  • network equipment and remote terminals can use the activated SRB on the NR direct link and relay link to transmit relevant signaling.
  • the method further includes:
  • RLF occurs on the NR direct link
  • SRB1 and/or SRB2 exist on the relay link between the relay terminal and the network device.
  • the network device activates SRB1 and/or SRB2 on the relay link, so that the network device and the remote terminal use the activated SRB1 and/or SRB2 on the relay link to transmit relevant information. command to enable normal communication between the network device and the remote terminal.
  • the network device when the network device deletes or deactivates the NR direct link, the NR direct link does not exist or is unavailable. At this time, the network device activates SRB1 and/or SRB2 on the relay link so that the network The device and the remote terminal use the activated SRB1 and/or SRB2 on the trunk link to transmit relevant signaling.
  • the network device activates SRB1 and/or SRB2 on the relay link so that the network device can communicate with the remote terminal.
  • the activated SRB1 and/or SRB2 on the trunk link transmit relevant signaling.
  • the network device when the network device reconfigures the relay link as the main path, the network device activates SRB1 and/or SRB2 on the relay link so that the network device and the remote terminal preferentially use the SRB transmission on the main path. related signaling.
  • the method further includes:
  • reconfigure Split SRB1 on the NR direct link to SRB1 When any of the following conditions are met, reconfigure Split SRB1 on the NR direct link to SRB1, and/or reconfigure Split SRB2 on the NR direct link to SRB2:
  • RLF occurs when the air interface wireless link of the relay terminal fails
  • the method further includes:
  • reconfigure Split SRB1 on the NR direct link to SRB1 When any of the following conditions are met, reconfigure Split SRB1 on the NR direct link to SRB1, and/or reconfigure Split SRB2 on the NR direct link to SRB2:
  • the network device reconfigures the Split SRB1 on the NR direct link to SRB1 , and/or, reconfigure Split SRB2 on the NR direct link to SRB2, so that the network equipment and the remote terminal use SRB1 and/or SRB2 on the NR direct link to transmit relevant signaling, so that the network equipment and the remote terminal
  • the remote terminal communicates normally.
  • the occurrence of RLF in the relay terminal includes failure of the relay terminal, and/or the occurrence of RLF in the NR link of the relay terminal.
  • the network device when the network device configures Split SRB1 on the NR direct link, the network device reconfigures Split SRB1 on the NR direct link as SRB1.
  • the network device configures Split SRB2 on the NR direct link, the network device reconfigures Split SRB2 on the NR direct link as SRB2.
  • the network device configures Split SRB1 and Split SRB2 on the NR direct link, the network device can reconfigure Split SRB1 on the NR direct link to SRB1, and/or, reconfigure Split on the NR direct link SRB2 is SRB2.
  • Step 1 When the relay terminal detects that its NR wireless link fails, that is, the relay terminal's Uu-RLF link fails, it sends a PC5-RRC message to the remote terminal.
  • Step 2 The remote terminal sends an RRC Reestablishment Request Message (RRC Reestablishment Request Message) or RLF report to the network device.
  • RRC Reestablishment Request Message RRC Reestablishment Request Message
  • RLF report RLF report
  • the remote terminal when the remote terminal receives the PC5-RRC message, the remote terminal initiates the RRC reestablishment process and uses the activated Split SRB1 and/or Split SRB2 on the NR direct link to directly Send an RRC Reestablishment Request Message to the network device.
  • the remote terminal when the remote terminal initiates the RRC reconstruction process, it does not need to initiate the reconstruction of SRB1 and/or SRB2.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control layer
  • the remote terminal when the remote terminal receives the PC5-RRC message, the remote terminal can also send RLF to the network device through the activated Split SRB1 and/or Split SRB2 on the NR direct link without initiating the RRC reconstruction process.
  • Report (RLF report can also be called relay UE RLF report).
  • the RLF report includes the relay UE ID and the RLF reason of the relay terminal.
  • the RLF reason includes at least one of the following:
  • RLF occurs on the relay terminal.
  • the specific reasons for RLF on the relay terminal may be included.
  • the occurrence of RLF in the relay terminal may include the occurrence of RLF in the NR link of the relay terminal.
  • Step 3 The network device sends an RRC Reconfiguration Message to the remote terminal.
  • the network device after receiving the RRC Reestablishment Request Message sent by the remote terminal, the network device sends an RRC Reconfiguration Message to the remote terminal based on the RRC Reestablishment Request Message to reconfigure the remote terminal, which specifically includes: reconfiguring NR direct Split SRB1 on the connected link is SRB1, and/or, reconfigure Split SRB2 on the NR direct link to SRB2.
  • the network device When the network device receives the RLF report sent by the remote terminal, based on the received RLF report, the network device sends an RRC Reconfiguration Message to the remote terminal to reconfigure the remote terminal, specifically including: reconfiguring the NR direct link Split SRB1 on the road is SRB1, and/or, split SRB2 on the NR direct link is reconfigured as SRB2.
  • the network device can also perform further processing based on the RLF cause of the relay terminal included in the RLF report.
  • the network device restores the NR link of the relay terminal;
  • the network device sends relevant information about the relay terminal, such as the mobility of the relay terminal, to the remote terminal connected to the relay terminal.
  • step 1 in Figure 4 can be deleted, that is, when RLF occurs on the PC5 link of the relay terminal, the relay terminal does not need to send a message to the remote terminal.
  • PC5-RRC message when the remote terminal detects RLF on the PC5 link, the remote terminal sends an RRC Reestablishment Request Message (RRC Reestablishment Request Message) or RLF report to the network device.
  • RRC Reestablishment Request Message RRC Reestablishment Request Message
  • the method further includes:
  • RLF occurs on the NR direct link
  • the remote terminal when the remote terminal first accesses the network device through the NR direct link and then adds a relay link, there is SRB1 and/or on the NR direct link between the remote terminal and the network device. SRB2.
  • the network device reconfigures Split SRB1 on the relay link as SRB1, and/or reconfigures Split SRB2 on the relay link as SRB2, thus eliminating the need for RRC reconstruction.
  • the network equipment and the remote terminal can use SRB1 and/or SRB2 on the relay link to transmit relevant signaling, so that the network equipment and the remote terminal can communicate normally.
  • the network device when the network device configures Split SRB1 on the relay link, the network device reconfigures Split SRB1 on the relay link to SRB1.
  • the network device configures Split SRB2 on the trunk link, the network device reconfigures Split SRB2 on the trunk link to SRB2.
  • the network device can reconfigure Split SRB1 on the trunk link as SRB1, and/or, reconfigure Split SRB2 on the trunk link. for SRB2.
  • the network device when Split SRB1 on the relay link is in an inactive state, the network device first activates Split SRB1 on the relay link, and then reconfigures Split SRB1 on the relay link to SRB1; when the relay link When Split SRB2 on the trunk link is inactive, the network device first activates Split SRB2 on the trunk link, and then reconfigures Split SRB2 on the trunk link as SRB2.
  • the method further includes:
  • the NR direct link is configured as the primary path
  • the relay link is configured as the secondary path.
  • the network device configures the NR direct link as the primary path and configures the relay link as the secondary path.
  • the network equipment and the remote terminal preferentially use the activated SRB on the NR direct link to transmit relevant signaling.
  • the method further includes:
  • the relay link is configured as the primary path
  • the NR direct link is configured as the secondary path.
  • the network device relay link is the primary path, and the NR direct link is configured as the secondary path.
  • the network equipment and the remote terminal preferentially use the activated SRB on the relay link to transmit relevant signaling.
  • the method further includes:
  • the network device can deactivate SRB1 and/or SRB2 on the relay link, so that the network device and the remote terminal only use the activated SRB on the NR direct link to transmit relevant signaling.
  • Network equipment can also maintain Split SRB1 and/or Split SRB2 on the NR direct link, and SRB1 and/or SRB2 on the relay link, so that the network equipment and remote terminals can use the NR direct link.
  • the activated SRB on the road and trunk links transmits related signaling.
  • the network device When the remote terminal first accesses the network device through the NR direct link and then adds a relay link, the network device configures the added relay link as the primary path and configures the NR direct link as the secondary path. path, therefore, the network device can deactivate SRB1 and/or SRB2 on the NR direct link, so that the network device and the remote terminal only use the activated SRB on the relay link to transmit relevant signaling.
  • Network equipment can also maintain Split SRB1 and/or Split SRB2 on trunk links, as well as NR direct SRB1 and/or SRB2 on the connected link are both in an activated state, so that the network device and the remote terminal use the activated SRB on the NR direct link and relay link to transmit relevant signaling.
  • embodiments of the present disclosure also provide a link configuration method, which is applied to remote terminals.
  • the method includes:
  • Step 501 Obtain the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal.
  • the first link is characterized as an NR direct link or a relay link.
  • the remote terminal when the first link is added, obtains the first SRB and/or the second SRB configured by the network device on the added first link.
  • the first SRB includes Split SRB1
  • the second SRB includes Split SRB2.
  • the remote terminal when the remote terminal first accesses the network device through a relay terminal and then adds an NR direct link, the remote terminal obtains the Split SRB1 and/or Split configured by the network device on the added NR direct link. SRB2.
  • the remote terminal when the remote terminal first accesses the network device through the NR direct link and then adds a relay link, the remote terminal obtains the Split SRB1 and/or configured by the network device on the added relay link. Split SRB2.
  • the method further includes:
  • the remote terminal preferentially uses the relevant SRB on the primary path to transmit relevant signaling, such as RRC signaling and NAS signaling.
  • the remote terminal in a scenario where the remote terminal first accesses the network device through a relay terminal and then adds an NR direct link, the network device configures the NR direct link as the primary path and the relay link as the secondary path. , therefore, the remote terminal preferentially uses the activated Split SRB1 and/or Split SRB2 on the NR direct link to transmit relevant signaling.
  • the remote terminal preferentially uses the activated Split SRB1 and/or Split SRB2 on the relay link to transmit relevant signaling.
  • the link configuration method is as follows:
  • Step 1 The network device configures the first SRB and/or the second SRB on the NR direct link added by the remote terminal.
  • the network device when the remote terminal first accesses the network device through the relay terminal and then adds the NR direct link, the network device adds and activates Split SRB1 on the NR direct link added by the remote terminal, and/ Or, add and activate Split SRB2.
  • the network device may also deactivate SRB1 and/or SRB2 on the relay link; or, maintain SRB1 and/or SRB2 on the relay link in an activated state.
  • the network device deactivates SRB1 and/or SRB2 on the relay link
  • the network device and the remote terminal only use the activated SRB on the NR direct link to transmit relevant signaling.
  • the network device and the remote terminal can use the activated SRB on the NR direct link and the relay link to transmit related signaling. .
  • the method further includes:
  • the network device activates SRB1 and/or SRB2 on the trunk link when any of the following is true:
  • RLF occurs on the NR direct link
  • the method further includes:
  • the network device reconfigures Split SRB1 on the NR direct link as SRB1, and/or, the network device reconfigures Split SRB2 on the NR direct link as SRB2:
  • the method further includes:
  • the network device When a remote terminal adds or activates an NR direct link, the network device configures the NR direct link path as the primary path, and configure the trunk link as the secondary path.
  • the method further includes:
  • the network device deactivates the relevant SRB on the secondary path; or
  • the network device maintains the relevant SRBs on both the primary path and the secondary path in the active state.
  • Step 2 The remote terminal obtains the first SRB and/or the second SRB configured by the network device on the added NR direct link.
  • the remote terminal preferentially uses the SRB on the primary path to transmit relevant signaling.
  • the link configuration method is as follows:
  • Step 1 The network device configures the first SRB and/or the second SRB on the relay link added by the remote terminal.
  • the network device configures the first SRB and/or the third SRB on the relay link added by the remote terminal.
  • SRB including at least one of the following:
  • the method further includes:
  • the network device During the activation of the NR direct link, the network device maintains SRB1 and/or SRB2 on the NR direct link in the active state.
  • the method further includes:
  • the network device reconfigures Split SRB1 on the relay link as SRB1, and/or reconfigures Split SRB2 on the relay link as SRB2:
  • RLF occurs on the NR direct link
  • the network device reconfigures Split SRB1 on the relay link to SRB1 , and/or, reconfigure Split SRB2 on the trunk link to SRB2.
  • the network device when Split SRB1 on the relay link is in an inactive state, the network device first activates Split SRB1 on the relay link, and then reconfigures Split SRB1 on the relay link to SRB1; when the relay link When Split SRB2 on the trunk link is inactive, the network device first activates Split SRB2 on the trunk link, and then reconfigures Split SRB2 on the trunk link as SRB2.
  • the method further includes:
  • the network device When a remote terminal adds or activates a relay link, the network device configures the relay link as the primary path and configures the NR direct link as the secondary path.
  • the method further includes:
  • the network device deactivates the relevant SRB on the secondary path; or
  • the network device maintains the relevant SRBs on both the primary path and the secondary path in the active state.
  • Step 2 The remote terminal obtains the first SRB and/or the second SRB configured by the network device on the added trunk link.
  • the remote terminal preferentially uses the SRB on the primary path to transmit relevant signaling.
  • the network device configures the first SRB and/or the second SRB on the first link added by the remote terminal;
  • the first link is characterized as an NR direct link or a relay link;
  • the remote terminal obtains the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal.
  • SRB Since the first SRB and/or the second SRB are configured on the first link added by the remote terminal, rather than on the path initially established between the remote terminal and the network device, the first SRB and/or the second SRB are not The initially established path will become unavailable due to failure, thus improving network robustness and reliability.
  • the embodiment of the present disclosure also provides a link configuration device, which is provided on the network device.
  • the device includes:
  • the first configuration unit 61 is configured to configure the first SRB and/or the second SRB on the first link added by the remote terminal; wherein the first link is characterized as an NR direct link or a relay link road.
  • the first configuration unit 61 is specifically configured to: add and activate Split SRB1, and/or add and activate Split SRB2 on the NR direct link added by the remote terminal.
  • the device further includes:
  • the second configuration unit is used to: deactivate SRB1 and/or SRB2 on the trunk link; or
  • the first configuration unit 61 is specifically used for at least one of the following:
  • the device further includes:
  • the third configuration unit is used to maintain SRB1 and/or SRB2 on the NR direct link in an activated state during the activation of the NR direct link.
  • the device further includes:
  • the fourth configuration unit is used to activate SRB1 and/or SRB2 on the trunk link when any of the following conditions are met:
  • RLF occurs on the NR direct link
  • the device further includes:
  • the fifth configuration unit is used for: reconfiguring Split SRB1 on the NR direct link to SRB1, and/or reconfiguring Split SRB2 on the NR direct link to SRB2 when any of the following conditions are met:
  • the device further includes:
  • the fifth configuration unit is used for: reconfiguring Split SRB1 on the NR direct link to SRB1, and/or reconfiguring Split SRB2 on the NR direct link to SRB2 when any of the following conditions are met:
  • RLF occurs when the air interface wireless link of the relay terminal fails
  • the device further includes:
  • the sixth configuration unit is used for: reconfiguring Split SRB1 on the relay link to SRB1, and/or reconfiguring Split SRB2 on the relay link to SRB2 when any of the following conditions are met:
  • RLF occurs on the NR direct link
  • the device further includes:
  • the seventh configuration unit is used to configure the NR direct link as the primary path and the relay link as the secondary path when the remote terminal adds or activates the NR direct link.
  • the device further includes:
  • the eighth configuration unit is used to configure the relay link as the primary path and the NR direct link as the secondary path when the remote terminal adds or activates the relay link.
  • the device further includes:
  • the ninth configuration unit is used to: deactivate the relevant SRB on the secondary path; or
  • the first configuration unit 61, the second configuration unit, the third configuration unit, the fourth configuration unit, the fifth configuration unit, the sixth configuration unit, the seventh configuration unit, the eighth configuration unit and the ninth configuration unit can be
  • the processor in the link configuration device is implemented in combination with the communication interface.
  • link configuration device when the link configuration device provided in the above embodiment performs link configuration, only the division of the above program modules is used as an example. In actual applications, the above processing can be allocated to different program modules as needed. Completion means dividing the internal structure of the device into different program modules to complete all or part of the processing described above.
  • link configuration apparatus provided by the above embodiments and the network device side link configuration method embodiments belong to the same concept. For details of the specific implementation process, please refer to the method embodiments, which will not be described again here.
  • the embodiment of the present disclosure also provides a link configuration device, which is provided on the remote terminal. As shown in Figure 7, the device includes:
  • the acquisition unit 71 is configured to acquire the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal; wherein the first link is characterized as an NR direct link or trunk link.
  • the device further includes:
  • the transmission unit is used to preferentially use the relevant SRB on the main path to transmit relevant signaling.
  • the acquisition unit 71 and the transmission unit can be implemented by a processor in the link configuration device combined with a communication interface.
  • the link configuration device provided in the above embodiment performs link configuration
  • only the division of the above program modules is used as an example.
  • the above processing can be allocated to different program modules as needed. Completion means dividing the internal structure of the device into different program modules to complete all or part of the processing described above.
  • the link configuration device provided in the above embodiments and the remote terminal side link configuration method embodiments belong to the same concept. Please refer to the method embodiments for the specific implementation process, which will not be described again here.
  • the embodiment of the disclosure also provides a network device.
  • the network device 8 includes:
  • the first communication interface 801 is capable of information exchange with other network nodes;
  • the first processor 802 is connected to the first communication interface 801 to implement information interaction with other network nodes, and is used to execute the method provided by one or more technical solutions on the network device side when running a computer program.
  • the computer program is stored on the first memory 803 .
  • the first processor 802 configures the first signaling radio bearer SRB and/or the second SRB on the first link added by the remote terminal; wherein the first link is characterized as a new air interface NR direct even link or trunk link.
  • the first processor 802 is specifically configured to: add and activate Split SRB1, and/or add and activate Split SRB2 on the NR direct link added by the remote terminal.
  • the first processor 802 is further configured to: deactivate SRB1 and/or SRB2 on the relay link; or maintain SRB1 and/or SRB2 on the relay link in an activated state.
  • the first processor 802 is specifically used for at least one of the following:
  • the first processor 802 is further configured to maintain SRB1 and/or SRB2 on the NR direct link in an activated state during the activation of the NR direct link.
  • the first processor 802 is also used to:
  • RLF occurs on the NR direct link
  • the first processor 802 is also used to:
  • reconfigure Split SRB1 on the NR direct link to SRB1 When any of the following conditions are met, reconfigure Split SRB1 on the NR direct link to SRB1, and/or reconfigure Split SRB2 on the NR direct link to SRB2:
  • the first processor 802 is also used to:
  • reconfigure Split SRB1 on the NR direct link as SRB1 If any of the following conditions are met, reconfigure Split SRB1 on the NR direct link as SRB1, and/or reconfigure Split SRB2 on the NR direct link as SRB2:
  • RLF occurs when the air interface wireless link of the relay terminal fails
  • the first processor 802 is also used to:
  • RLF occurs on the NR direct link
  • the first processor 802 is also configured to: when the remote terminal adds or activates an NR direct link, configure the NR direct link as the primary path, and configure the relay link as the secondary path. .
  • the first processor 802 is further configured to: when the remote terminal adds or activates a relay link, configure the relay link as the primary path, and configure the NR direct link as the secondary path.
  • the first processor 802 is further configured to: deactivate the relevant SRB on the secondary path; or, maintain the relevant SRB on the primary path and the secondary path in an activated state.
  • bus system 804 is used to implement connection communication between these components.
  • bus system 804 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled bus system 804 in FIG. 8 .
  • the first memory 803 in the embodiment of the present disclosure is used to store various types of data to support the operation of the network device 8 .
  • Examples of such data include: any computer program used to operate on the network device 8.
  • the methods disclosed in the above embodiments of the present disclosure can be applied in the first processor 802 or implemented by the first processor 802 .
  • the first processor 802 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method can be performed through the first processor 802 Integrated logic circuits of hardware or instructions in the form of software are completed.
  • the above-mentioned first processor 802 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the first processor 802 can implement or execute the disclosed methods, steps and logical block diagrams in the embodiments of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present disclosure can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the first memory 803.
  • the first processor 802 reads the information in the first memory 803, and completes the steps of the foregoing method in combination with its hardware.
  • the network device 8 may be configured by one or more application specific integrated circuits (Application Specific Integrated Circuit, ASIC), DSP, programmable logic device (Programmable Logic Device, PLD), complex programmable logic device (Complex Programmable Logic Device (CPLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller (Micro Controller Unit, MCU), microprocessor (Microprocessor), or other electronic Component implementation, used to execute the aforementioned methods.
  • ASIC Application Specific Integrated Circuit
  • DSP programmable logic device
  • PLD programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller controller
  • microcontroller Micro Controller Unit
  • MCU microprocessor
  • Microprocessor Microprocessor
  • the embodiment of the present disclosure also provides a remote terminal.
  • the remote terminal 9 includes:
  • the second communication interface 901 is capable of information exchange with other network nodes
  • the second processor 902 is connected to the second communication interface 901 to implement information interaction with other network nodes, and is used to execute the method provided by one or more technical solutions on the remote terminal side when running a computer program.
  • the computer program is stored on the second memory 903 .
  • the second processor 902 is configured to obtain the first SRB and/or the second SRB configured by the network device on the first link added by the remote terminal; wherein the first link is represented by NR Direct link or relay link.
  • the second processor 902 is further configured to: preferentially use the relevant SRB on the main path to transmit the relevant signaling.
  • bus system 904 is used to implement connection communication between these components.
  • bus system 904 also includes a power bus, a control bus and a status signal bus.
  • various buses are labeled as bus system 904 in FIG. 9 .
  • the second memory 903 in the embodiment of the present disclosure is used to store various types of data to support remote terminal 9 operation. Examples of such data include: any computer program for operation on the remote terminal 9.
  • the methods disclosed in the above embodiments of the present disclosure can be applied to the second processor 902 or implemented by the second processor 902 .
  • the second processor 902 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the second processor 902 .
  • the above-mentioned second processor 902 may be a general-purpose processor, a DSP, or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the second processor 902 can implement or execute the disclosed methods, steps and logical block diagrams in the embodiments of the present disclosure.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present disclosure can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the second memory 903.
  • the second processor 902 reads the information in the second memory 903, and completes the steps of the foregoing method in combination with its hardware.
  • the remote terminal 9 may be implemented by one or more ASICs, DSPs, PLDs, CPLDs, FPGAs, general-purpose processors, controllers, MCUs, Microprocessors, or other electronic components for performing the foregoing method.
  • the memory (first memory 803, second memory 903) in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read Only Memory, ROM), programmable read-only memory (Programmable Read-Only Memory, PROM), erasable programmable read-only memory (Erasable Programmable Read-Only Memory).
  • EPROM electrically erasable programmable read-only memory
  • EEPROM Electrically erasable programmable read-only memory
  • FRAM magnetic random access memory
  • flash memory flash memory
  • magnetic surface memory optical disk, or compact disc
  • CD-ROM Compact Disc Read-Only Memory
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM SyncLink Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the embodiment of the present disclosure also provides a storage medium, that is, a computer storage medium, specifically a computer-readable storage medium, for example, including a first memory 803 that stores a computer program.
  • the above computer program can be used by the network device 8
  • the first processor 802 executes to complete the steps described in the foregoing network device side method.
  • Another example includes a second memory 803 that stores a computer program.
  • the computer program can be executed by the second processor 802 of the remote terminal 9 to complete the steps described in the remote terminal side method.
  • the computer-readable storage medium can be FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM and other memories.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • at least one herein means any one of a plurality or any combination of at least two of a plurality, for example, including at least one of A, B, and C, It can represent any one or more elements selected from the set consisting of A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种链路配置方法、装置、拉远终端、网络设备及存储介质,其中,方法包括:网络设备在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。

Description

链路配置方法、装置、拉远终端、网络设备及存储介质
相关申请的交叉引用
本申请主张在2022年09月09日在中国提交的中国专利申请No.202211104951.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种链路配置方法、装置、拉远终端、网络设备及存储介质。
背景技术
相关技术中,拉远(Remote)终端(User Equipment,UE)可以通过中继终端和新空口(New Radio,NR)直连链路同时接入网络设备,但存在网络鲁棒性不足的问题。
发明内容
为解决相关技术问题,本公开实施例提供一种链路配置方法、装置、拉远终端、网络设备及存储介质。
本公开实施例的技术方案是这样实现的:
本公开实施例提供了一种链路配置方法,应用于网络设备,所述方法包括:
在拉远终端(Remote UE)添加的第一链路上,配置第一信令无线承载(Signaling Radio Bearer,SRB)和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
上述方案中,所述在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB,包括:
在拉远终端添加的NR直连链路上,添加并激活分离(Split)SRB1,和/或,添加并激活Split SRB2。
上述方案中,所述还包括:
去激活中继链路上的SRB1和/或SRB2;或者
维持中继链路上的SRB1和/或SRB2处于激活状态。
上述方案中,所述在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB,包括以下至少一项:
在拉远终端添加的中继链路上,添加Split SRB1,并配置所述Split SRB1为非激活状态;
在拉远终端添加的中继链路上,添加Split SRB2,并配置所述Split SRB2为非激活状态;
在拉远终端添加的中继链路上,添加并激活Split SRB1;
在拉远终端添加的中继链路上,添加并激活Split SRB2。
上述方案中,所述方法还包括:
在NR直连链路激活期间,维持NR直连链路上的SRB1和/或SRB2处于激活状态。
上述方案中,所述方法还包括:
在满足以下任一项的情况下,激活中继链路上的SRB1和/或SRB2:
删除或去激活NR直连链路;
NR直连链路出现无线链路失败(Radio Link Failure,RLF);
重配置中继链路为主路径。
上述方案中,所述方法还包括:
在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
删除或去激活中继链路;
中继终端出现RLF;
PC5链路出现RLF;
重配置NR直连链路为主路径。
上述方案中,所述方法还包括:
在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
拉远终端添加NR直连链路;
删除或去激活中继链路;
中继终端空口无线链路失败出现RLF;
中继终端和拉远终端之间SL失败;
重配置NR直连链路为主路径。
上述方案中,所述方法还包括:
在满足以下任一项的情况下,重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
上述方案中,所述方法还包括:
在拉远终端添加或激活NR直连链路时,配置所述NR直连链路为主路径,以及配置中继链路为辅路径。
上述方案中,所述方法还包括:
在拉远终端添加或激活中继链路时,配置所述中继链路为主路径,以及配置NR直连链路为辅路径。
上述方案中,所述方法还包括:
去激活辅路径上的相关SRB;或者
维持主路径和辅路径上的相关SRB均处于激活状态。
本公开实施例还提供了一种链路配置方法,应用于拉远终端,所述方法包括:
获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
上述方案中,所述方法还包括:
优先使用主路径上的相关SRB传输相关信令。
本公开实施例还提供了一种链路配置装置,包括:
第一配置单元,用于在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
本公开实施例还提供了一种链路配置装置,包括:
获取单元,用于获取网络设备在所述拉远终端添加的第一链路上,配置的第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
本公开实施例还提供了一种网络设备,其中,包括第一处理器和第一通信接口,其中,
所述第一处理器,用于在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
本公开实施例还提供了一种拉远终端,包括第二处理器和第二通信接口,其中,
所述第二处理器,用于获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
本公开实施例还提供了一种网络设备,包括第一处理器和用于存储能够在第一处理器上运行的计算机程序的第一存储器,
其中,所述第一处理器用于运行所述计算机程序时,执行上述网络设备侧任一方法的步骤。
本公开实施例还提供了一种拉远终端,包括第二处理器和用于存储能够在第二处理器上运行的计算机程序的存储器,
其中,所述第二处理器用于运行所述计算机程序时,执行上述拉远终端侧任一方法的步骤。
本公开实施例还提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述网络设备侧任一方法的步骤,或实现上述拉远终端侧任一方法的步骤。
在本公开实施例提供的链路配置方法、装置、拉远终端、网络设备及存储介质中,网络设备在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路;拉远终端获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB。由于第一SRB和/或第二SRB配置于拉远终端添加的第一链路上,而不是位于拉远终端与网络设备之间最初建立的路径上,第一SRB和/或第二SRB不 会因最初建立的路径发生故障而不可用,因此,提高了网络鲁棒性和可靠性。
附图说明
图1为相关技术中一种通信系统架构示意图;
图2为本公开实施例一种链路配置方法的流程示意图;
图3为本公开实施例一种链路配置方法的交互示意图;
图4为本公开实施例一种链路配置方法的交互示意图;
图5为本公开实施例一种链路配置方法的流程示意图;
图6为本公开实施例一种链路配置装置结构示意图;
图7为本公开实施例一种链路配置装置结构示意图;
图8为本公开实施例一种拉远终端结构示意图;
图9为本公开实施例一种网络设备结构示意图。
具体实施方式
相关技术中,针对拉远终端(Remote UE),提供了以下两种网络接入方案:
方案一:拉远终端可以选择NR直连链路或非直连链路接入网络设备,比如基站。例如,拉远终端通过设定的选择准则选择NR直连链路或者通过中继终端(relay UE)接入网络设备。也就是说,拉远终端可以在NR直连链路和非直连链路之间直接切换。其中,对于连接态的拉远终端,拉远终端向网络设备上报测量信息,并基于网络设备下发的配置进行relay UE的重选,或者切换到NR直连链路。但是,方案一存在网络吞吐量较低的问题。
方案二:如图1所示,拉远终端通过中继终端和NR直连链路同时接入网络设备,Uu口供终端与网络设备之间通信,PC5口供终端之间通信。其中,在一种情况下,
拉远终端可以先通过relay UE与网络设备建立连接;拉远终端向网络设备上报测量信息,基于网络设备下发的配置,建立NR直接连接,即添加NR直连链路。在另一种情况下,拉远终端也可以先建立NR直接连接;拉远终端向网络设备上报测量信息,基于网络设备下发的配置,选择并添加中继链 路。
在方案二中,拉远终端添加NR直连链路或中继链路后,处于多连接模式。对于添加的NR直连链路或中继链路,有可能存在一个或者多个无线承载(Radio Bearer,RB),用于提高系统传输可靠性或者提高吞吐量。
方案二虽然提高了网络的吞吐量,但是在方案二中,SRB1和SRB2建立在最初建立的路径上,当最初建立的路径发生故障时,SRB1和SRB2均不可用,将导致拉远终端与网络设备之间通信故障,存在因过于依赖最初建立的路径导致网络鲁棒性不足的问题。
比如,在拉远终端通过relay UE与网络设备建立无线资源控制(Radio Resource Control,RRC)连接的情况下,SRB1/SRB2和数据无线承载(Data Radio Bearer,DRB)是通过relay UE建立;当拉远终端与网络设备之间的中继链路发生故障时,SRB1和SRB2均不可用,导致网络鲁棒性不足。在拉远终端直接与网络设备建立RRC连接的情况下,SRB1/SRB2和DRB建立在拉远终端与网络设备之间,relay UE上只有Split DRB;当拉远终端与网络设备之间的NR直连链路发生故障时,SRB1和SRB2均不可用,导致网络鲁棒性不足。
基于此,本公开各实施例中,网络设备在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路;拉远终端获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB。由于第一SRB和/或第二SRB配置于拉远终端添加的第一链路上,而不是位于拉远终端与网络设备之间最初建立的路径上,第一SRB和/或第二SRB不会因拉远终端最初建立的路径发生故障而不可用,因此,提高了网络鲁棒性和可靠性。
下面结合附图及实施例对本公开再作进一步详细的描述。
本公开实施例提供了一种链路配置方法,应用于网络设备,网络设备包括基站,该方法包括:
在终端添加的第一链路上,配置第一SRB和/或第二SRB。
其中,所述第一链路表征为NR直连链路或非直连链路。NR直连链路是指终端(如拉远终端)直接连接网络设备的链路;所述非直连链路可以为中 继链路,sidelink链路,或者非标准链路。中继链路也称为PC5链路。
其中,所述终端可以为拉远终端(Remote UE)。
本公开实施例还提供了一种链路配置方法,应用于网络设备,网络设备包括基站,参照图2,该方法包括:
步骤201:在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB。
其中,所述第一链路表征为NR直连链路或中继链路。NR直连链路是指拉远终端直接连接网络设备的链路;中继链路也称为PC5链路。
这里,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,网络设备在拉远终端添加的NR直连链路上,配置第一SRB和/或第二SRB。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,网络设备在拉远终端添加的NR直连链路上,配置第一SRB和/或第二SRB。
需要说明的是,第一SRB以及第二SRB可用于传输RRC信令和/或非接入层(Non-Access-Stratum,NAS)信令。第一SRB包括Split SRB1,第二SRB包括Split SRB2。
以图3为例,对网络设备配置第一SRB和/或第二SRB的实现过程进行说明。如图3所示,链路配置方法,包括:
步骤1:拉远终端基于网络设备下发的测量配置进行测量,并向网络设备上报测量结果。
步骤2:网络设备向拉远终端发送RRC重配置消息(RRC Reconfiguration Message)。
步骤3:拉远终端向网络设备发送前导码(preamble)。
步骤4:网络设备向拉远终端发送随机接入响应(Random Access Response,RAR)。
步骤5:拉远终端向网络设备发送RRC建立请求(RRC Setup Request)。
步骤6:网络设备向拉远终端发送RRC建立消息(RRC Setup Message)。
需要说明的是,拉远终端与网络设备通过步骤3至步骤6完成随机接入。RRC Setup Message是网络设备通过SRB0发送的,RRC Setup Message中包 含第一SRB的相关配置,即网络设备通过RRC Setup Message配置第一SRB。第一SRB为Split SRB1。
步骤7:拉远终端向网络设备RRC建立完成消息(RRC Setup Complete Message)。
步骤8:网络设备向拉远终端发送RRC重配消息(RRC Reconfiguration Message)。
其中,RRC Reconfiguration Message中包含第二SRB的相关配置,即网络设备通过RRC Reconfiguration Message配置第二SRB。第二SRB为Split SRB2。
步骤9:网络设备向拉远终端发送RRC重配完成消息(RRC Reconfiguration Complete Message)。
在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的场景下,在一实施例中,所述在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB,包括:
在拉远终端添加的NR直连链路上,添加并激活Split SRB1,和/或,添加并激活Split SRB2。
例如,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,网络设备在拉远终端添加的NR直连链路上,添加Split SRB1,并激活已添加的Split SRB1。
再例如,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,网络设备在拉远终端添加的NR直连链路上,添加Split SRB2,并激活已添加的Split SRB2。
再例如,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,网络设备在拉远终端添加的NR直连链路上,添加并激活Split SRB1,以及添加并激活Split SRB2。
需要说明的是,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的场景下,在中继终端与网络设备之间的中继链路上存在SRB1和/或SRB2。由此,即使中继终端与网络设备之间的中继链路出现故障,拉远终端也可以使用NR直连链路上的Split SRB1和/或Split SRB2传输相关信令, 以维持拉远终端与网络设备之间的通信,可以提高网络的可靠性与稳定性。
在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的场景下,在中继终端与网络设备之间的中继链路上存在SRB1和/或SRB2,基于此,在一实施例中,所述还包括:
去激活中继链路上的SRB1和/或SRB2;或者
维持中继链路上的SRB1和/或SRB2处于激活状态。
这里,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,当中继链路上的SRB1处于激活状态时,网络设备去激活中继链路上的SRB1;当中继链路上的SRB2处于激活状态时,网络设备去激活中继链路上的SRB2;当中继链路上的SRB1和SRB2均处于激活状态时,网络设备去激活中继链路上的SRB1和SRB2。其中,处于激活状态的SRB可传输相关信令,处于非激活状态的SRB不能传输相关信令。
当然,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,网络设备也可以维持中继链路承载的SRB1和/或SRB2处于激活状态。此时,网络设备与拉远终端可以使用NR直连链路和中继链路上已激活的SRB传输相关信令。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的场景下,在一实施例中,所述在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB,包括以下至少一项:
在拉远终端添加的中继链路上,添加Split SRB1,并配置所述Split SRB1为非激活状态;
在拉远终端添加的中继链路上,添加Split SRB2,并配置所述Split SRB2为非激活状态;
在拉远终端添加的中继链路上,添加并激活Split SRB1;
在拉远终端添加的中继链路上,添加并激活Split SRB2。
这里,在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,网络设备在拉远终端添加的中继链路上,添加Split SRB1和/或Split SRB2;网络设备可以激活或不激活已添加的Split SRB1和/或Split SRB2。具体如下:
网络设备可以在拉远终端添加的中继链路上,添加Split SRB1,并配置该Split SRB1为非激活状态。此时,添加的Split SRB1默认处于非激活状态。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,网络设备可以在拉远终端添加的中继链路上,添加Split SRB2,并配置该Split SRB2为非激活状态。此时,添加的Split SRB2默认处于非激活状态。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,网络设备可以在拉远终端添加的中继链路上,添加并激活Split SRB1。此时,网络设备与拉远终端可以使用中继链路上已激活的Split SRB1传输相关信令。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,网络设备可以在拉远终端添加的中继链路上,添加并激活Split SRB2。此时,网络设备与拉远终端可以使用中继链路上已激活的Split SRB2传输相关信令。
需要说明的是,在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的场景下,在拉远终端与网络设备之间的NR直连链路上存在SRB1和/或SRB2。由此,即使拉远终端与网络设备之间的NR直连链路出现故障,拉远终端也可以使用中继链路上的Split SRB1和/或Split SRB2传输相关信令,以维持拉远终端与网络设备之间的通信,可以提高网络的可靠性与稳定性。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的场景下,在拉远终端与网络设备之间的NR直连链路上存在SRB1和/或SRB2,基于此,在一实施例中,所述方法还包括:
在NR直连链路激活期间,维持NR直连链路上的SRB1和/或SRB2处于激活状态。
这里,在NR直连链路激活期间,网络设备维持NR直连链路上的SRB1和/或SRB2处于激活状态。由此,网络设备与拉远终端可以使用NR直连链路和中继链路上已激活的SRB传输相关信令。
在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的场景下,当添加的NR直连链路不可用或出现故障时,为了快速恢复无线链路,提高无线链路的鲁棒性,避免网络设备与拉远终端进行RRC连接重建以重配 SRB,在一实施例中,所述方法还包括:
在满足以下任一项的情况下,激活中继链路上的SRB1和/或SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
这里,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的场景下,在中继终端与网络设备之间的中继链路上存在SRB1和/或SRB2。在满足上述任一项的情况下,网络设备激活中继链路上的SRB1和/或SRB2,以使网络设备与拉远终端使用中继链路上已激活的SRB1和/或SRB2传输相关信令,使网络设备与拉远终端正常通信。
例如,在网络设备删除或去激活NR直连链路的情况下,NR直连链路不存在或不可用,此时,网络设备激活中继链路上的SRB1和/或SRB2,以使网络设备与拉远终端使用中继链路上已激活的SRB1和/或SRB2传输相关信令。
再例如,在NR直连链路出现RLF的情况下,NR直连链路不可用,此时,网络设备激活中继链路上的SRB1和/或SRB2,以使网络设备与拉远终端使用中继链路上已激活的SRB1和/或SRB2传输相关信令。
再例如,在网络设备重配置中继链路为主路径的情况下,网络设备激活中继链路上的SRB1和/或SRB2,以使网络设备与拉远终端优先使用主路径上的SRB传输相关信令。
在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,当中继链路不可用或出现故障时,为了快速恢复无线链路,提高无线链路的鲁棒性,避免网络设备与拉远终端进行RRC连接重建以重配SRB1和/或SRB2,在一实施例中,所述方法还包括:
在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
拉远终端添加NR直连链路;
删除或去激活中继链路;
中继终端空口无线链路失败出现RLF;
中继终端和拉远终端之间SL失败;
重配置NR直连链路为主路径。
在一实施例中,所述方法还包括:
在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
删除或去激活中继链路;
中继终端出现RLF;
PC5链路出现RLF;
重配置NR直连链路为主路径。
这里,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路之后,在满足上述任一项的情况下,网络设备重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2,以使网络设备与拉远终端使用NR直连链路上的SRB1和/或SRB2传输相关信令,使网络设备与拉远终端正常通信。中继终端出现RLF包括中继终端故障,和/或,中继终端的NR链路出现RLF。
其中,当网络设备在NR直连链路上配置了Split SRB1时,网络设备重配置NR直连链路上的Split SRB1为SRB1。当网络设备在NR直连链路上配置了Split SRB2时,网络设备重配置NR直连链路上的Split SRB2为SRB2。当网络设备在NR直连链路上配置了Split SRB1和Split SRB2时,网络设备可以重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2。
以图4为例说明中继链路不可用或出现故障时,网络设备重配置NR直连链路上的Split SRB为对应的SRB的实现过程:
步骤1:中继终端在检测到自己的NR无线链路失败的情况下,即中继终端的Uu-RLF链路失败,向拉远终端发送PC5-RRC message。
步骤2:拉远终端向网络设备发送RRC重建请求消息(RRC Reestablishment Request Message)或RLF报告。
这里,拉远终端在接收到PC5-RRC message的情况下,拉远终端发起RRC重建流程,使用NR直连链路上已激活的Split SRB1和/或Split SRB2,直接 向网络设备发送RRC Reestablishment Request Message。区别于相关技术,拉远终端在发起RRC重建流程时,不需要发起重建SRB1和/或SRB2,各自对应的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)和无线链路控制层(Radio Link Control,RLC),可以降低处理时延。
或者,拉远终端在接收到PC5-RRC message的情况下,拉远终端也可以不发起RRC重建流程,通过NR直连链路上已激活的Split SRB1和/或Split SRB2,向网络设备发送RLF报告(RLF报告也可称为relay UE RLF report)。其中,RLF报告包括relay UE ID和中继终端的RLF原因,RLF原因包括以下至少一项:
PC5链路出现RLF;
中继终端出现RLF,具体可以包括中继终端的RLF原因。
其中,中继终端出现RLF可以包括中继终端的NR链路出现RLF。
步骤3:网络设备向拉远终端发送RRC重配消息(RRC Reconfiguration Message)。
这里,网络设备在接收到拉远终端发送的RRC Reestablishment Request Message的情况下,基于RRC Reestablishment Request Message向拉远终端发送RRC Reconfiguration Message,以对拉远终端进行重配置,具体包括:重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2。
网络设备在接收到拉远终端发送的RLF报告的情况下,基于接收到的RLF报告,向拉远终端发送RRC Reconfiguration Message,以对拉远终端进行重配置,具体包括:重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2。网络设备还可以基于RLF报告包含的中继终端的RLF原因做进一步处理,例如,在RLF报告中包含中继终端的NR链路出现RLF的情况下,网络设备恢复中继终端的NR链路;在RLF报告中包含PC5链路出现RLF的情况下,网络设备向与该中继终端相连的拉远终端,发送该中继终端的相关信息,比如,该中继终端的移动性。
需要说明的是,在一实施例中,可以删去图4中的步骤1,即,在中继终端的PC5链路出现RLF的情况下,中继终端不需要向拉远终端发送 PC5-RRC message;拉远终端在检测到PC5链路出现RLF的情况下,拉远终端向网络设备发送RRC重建请求消息(RRC Reestablishment Request Message)或RLF报告。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,当NR直连链路不可用或出现故障时,为了快速恢复无线链路,提高无线链路的鲁棒性,避免网络设备与拉远终端进行RRC连接重建以重配SRB1和/或SRB2,在一实施例中,所述方法还包括:
在满足以下任一项的情况下,重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
这里,在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,在拉远终端与网络设备之间的NR直连链路上,存在SRB1和/或SRB2。在满足上述任一项的情况下,网络设备重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2,由此不需要通过RRC重建来重配重配SRB1和/或SRB2。网络设备与拉远终端可使用中继链路上的SRB1和/或SRB2传输相关信令,使网络设备与拉远终端正常通信。
其中,网络设备在中继链路上配置了Split SRB1的情况下,网络设备重配置中继链路上的Split SRB1为SRB1。在网络设备在中继链路上配置了Split SRB2的情况下,网络设备重配置中继链路上的Split SRB2为SRB2。在网络设备在中继链路上配置了Split SRB1和Split SRB2的情况下,网络设备可以重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2。
需要说明的是,当中继链路上的Split SRB1处于非激活状态时,网络设备先激活中继链路上的Split SRB1,再重配中继链路上的Split SRB1为SRB1;当中继链路上的Split SRB2处于非激活状态时,网络设备先激活中继链路上的Split SRB2,再重配置中继链路上的Split SRB2为SRB2。
在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的场景 下,为了合理利用SRB,在一实施例中,所述方法还包括:
在拉远终端添加或激活NR直连链路时,配置所述NR直连链路为主路径,以及配置中继链路为辅路径。
这里,在拉远终端添加或激活NR直连链路时,网络设备配置NR直连链路为主路径,配置中继链路为辅路径。此时,网络设备与拉远终端优先使用NR直连链路上已激活的SRB传输相关信令。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的场景下,为了合理利用SRB,在一实施例中,所述方法还包括:
在拉远终端添加或激活中继链路时,配置所述中继链路为主路径,以及配置NR直连链路为辅路径。
这里,在拉远终端添加或激活中继链路时,网络设备中继链路为主路径,以及配置NR直连链路为辅路径。此时,网络设备与拉远终端优先使用中继链路上已激活的SRB传输相关信令。
在网络设备配置了主路径和辅路径的基础上,在一实施例中,所述方法还包括:
去激活辅路径上的相关SRB;或者
维持主路径和辅路径上的相关SRB均处于激活状态。
这里,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,由于网络设备将添加的NR直连链路配置为主路径,将中继链路配置为辅路径,因此,网络设备可以去激活中继链路上的SRB1和/或SRB2,以使得网络设备与拉远终端仅使用NR直连链路上已激活的SRB传输相关信令。网络设备也可以维持NR直连链路上的Split SRB1和/或Split SRB2,以及中继链路上的SRB1和/或SRB2均处于激活状态,以使得网络设备与拉远终端使用NR直连链路和中继链路上已激活的SRB传输相关信令。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,由于网络设备将添加的中继链路配置为主路径,将NR直连链路配置为辅路径,因此,因此,网络设备可以去激活NR直连链路上的SRB1和/或SRB2,以使得网络设备与拉远终端仅使用中继链路上已激活的SRB传输相关信令。网络设备也可以维持中继链路上的Split SRB1和/或Split SRB2,以及NR直 连链路上的SRB1和/或SRB2均处于激活状态,以使得网络设备与拉远终端使用NR直连链路和中继链路上已激活的SRB传输相关信令。
对应地,本公开实施例还提供了一种链路配置方法,应用于拉远终端,参照图5,该方法包括:
步骤501:获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB。
其中,所述第一链路表征为NR直连链路或中继链路。
这里,拉远终端在添加了第一链路的情况下,获取网络设备在添加的第一链路上配置的第一SRB和/或第二SRB。其中,第一SRB包括Split SRB1,第二SRB包括Split SRB2。
例如,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,拉远终端获取网络设备在添加的NR直连链路上配置的Split SRB1和/或Split SRB2。
再例如,在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,拉远终端获取网络设备在添加的中继链路上配置的Split SRB1和/或Split SRB2。
在一实施例中,所述方法还包括:
优先使用主路径上的相关SRB传输相关信令。
这里,在网络设备配置了主路径和辅路径的情况下,拉远终端优先使用主路径上的相关SRB传输相关信令,比如,RRC信令、NAS信令。
例如,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的场景下,由于网络设备将NR直连链路配置为主路径,将中继链路配置为辅路径,因此,拉远终端优先使用NR直连链路上已激活的Split SRB1和/或Split SRB2,传输相关信令。
再例如,在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的场景下,由于网络设备将中继链路配置为主路径,将NR直连链路配置为辅路径,因此,拉远终端优先使用中继链路上已激活的Split SRB1和/或Split SRB2,传输相关信令。
下面进一步结合具体的应用场景,对本公开实施例方案进行说明。
在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的应用场景下,链路配置方法如下:
步骤1:网络设备在拉远终端添加的NR直连链路上,配置第一SRB和/或第二SRB。
这里,在拉远终端先通过中继终端接入网络设备,再添加NR直连链路的情况下,网络设备在拉远终端添加的NR直连链路上,添加并激活Split SRB1,和/或,添加并激活Split SRB2。
在一实施例中,网络设备还可以去激活中继链路上的SRB1和/或SRB2;或者,维持中继链路上的SRB1和/或SRB2处于激活状态。
这里,在网络设备去激活中继链路上的SRB1和/或SRB2的情况下,网络设备与拉远终端仅使用NR直连链路上已激活的SRB传输相关信令。
在网络设备维持中继链路上的SRB1和/或SRB2处于激活状态的情况下,网络设备与拉远终端可以使用NR直连链路上和中继链路上已激活的SRB传输相关信令。
在一实施例中,所述方法还包括:
在满足以下任一项的情况下,网络设备激活中继链路上的SRB1和/或SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
在一实施例中,所述方法还包括:
在满足以下任一项的情况下,网络设备重配置NR直连链路上的Split SRB1为SRB1,和/或,网络设备重配置NR直连链路上的Split SRB2为SRB2:
删除或去激活中继链路;
中继终端出现RLF;
PC5链路出现RLF;
重配置NR直连链路为主路径。
在一实施例中,所述方法还包括:
在拉远终端添加或激活NR直连链路时,网络设备配置所述NR直连链 路为主路径,以及配置中继链路为辅路径。
在网络设备配置了主路径和辅路径的基础上,在一实施例中,所述方法还包括:
网络设备去激活辅路径上的相关SRB;或者
网络设备维持主路径和辅路径上的相关SRB均处于激活状态。
步骤2:拉远终端获取网络设备在添加的NR直连链路上配置的第一SRB和/或第二SRB。
其中,在网络设备配置了主路径和辅路径的基础上,拉远终端优先使用主路径上的SRB传输相关信令。
在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的应用场景下,链路配置方法如下:
步骤1:网络设备在拉远终端添加的中继链路上,配置第一SRB和/或第二SRB。
这里,在拉远终端先通过NR直连链路接入网络设备,再添加中继链路的情况下,网络设备在拉远终端添加的中继链路上,配置第一SRB和/或第二SRB,包括以下至少一项:
在拉远终端添加的中继链路上,添加Split SRB1,并配置所述Split SRB1为非激活状态;
在拉远终端添加的中继链路上,添加Split SRB2,并配置所述Split SRB2为非激活状态;
在拉远终端添加的中继链路上,添加并激活Split SRB1;
在拉远终端添加的中继链路上,添加并激活Split SRB2。
在一实施例中,所述方法还包括:
在NR直连链路激活期间,网络设备维持NR直连链路上的SRB1和/或SRB2处于激活状态。
在一实施例中,所述方法还包括:
在满足以下任一项的情况下,网络设备重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
这里,在拉远终端先通过NR直连链路接入网络设备,再添加中继链路之后,在满足上述任一项的情况下,网络设备重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2。
需要说明的是,当中继链路上的Split SRB1处于非激活状态时,网络设备先激活中继链路上的Split SRB1,再重配置中继链路上的Split SRB1为SRB1;当中继链路上的Split SRB2处于非激活状态时,网络设备先激活中继链路上的Split SRB2,再重配置中继链路上的Split SRB2为SRB2。
在一实施例中,所述方法还包括:
在拉远终端添加或激活中继链路时,网络设备配置所述中继链路为主路径,以及配置NR直连链路为辅路径。
在网络设备配置了主路径和辅路径的基础上,在一实施例中,所述方法还包括:
网络设备去激活辅路径上的相关SRB;或者
网络设备维持主路径和辅路径上的相关SRB均处于激活状态。
步骤2:拉远终端获取网络设备在添加的中继链路上配置的第一SRB和/或第二SRB。
其中,在网络设备配置了主路径和辅路径的基础上,拉远终端优先使用主路径上的SRB传输相关信令。
在本公开实施例提供的链路配置方法、装置、拉远终端、网络设备及存储介质中,网络设备在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路;拉远终端获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB。由于第一SRB和/或第二SRB配置于拉远终端添加的第一链路上,而不是位于拉远终端与网络设备之间最初建立的路径上,第一SRB和/或第二SRB不会因最初建立的路径发生故障而不可用,因此,提高了网络鲁棒性和可靠性。
为了实现本公开实施例的链路配置方法,本公开实施例还提供了一种链路配置装置,设置在网络设备上,如图6所示,该装置包括:
第一配置单元61,用于在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
在一实施例中,第一配置单元61具体用于:在拉远终端添加的NR直连链路上,添加并激活Split SRB1,和/或,添加并激活Split SRB2。
在一实施例中,该装置还包括:
第二配置单元,用于:去激活中继链路上的SRB1和/或SRB2;或者
维持中继链路上的SRB1和/或SRB2处于激活状态。
在一实施例中,第一配置单元61具体用于以下至少一项:
在拉远终端添加的中继链路上,添加Split SRB1,并配置所述Split SRB1为非激活状态;
在拉远终端添加的中继链路上,添加Split SRB2,并配置所述Split SRB2为非激活状态;
在拉远终端添加的中继链路上,添加并激活Split SRB1;
在拉远终端添加的中继链路上,添加并激活Split SRB2。
在一实施例中,该装置还包括:
第三配置单元,用于在NR直连链路激活期间,维持NR直连链路上的SRB1和/或SRB2处于激活状态。
在一实施例中,该装置还包括:
第四配置单元,用于:在满足以下任一项的情况下,激活中继链路上的SRB1和/或SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
在一实施例中,该装置还包括:
第五配置单元,用于:在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
删除或去激活中继链路;
中继终端出现RLF;
PC5链路出现RLF;
重配置NR直连链路为主路径。
在一实施例中,该装置还包括:
第五配置单元,用于:在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
拉远终端添加NR直连链路;
删除或去激活中继链路;
中继终端空口无线链路失败出现RLF;
中继终端和拉远终端之间SL失败;
重配置NR直连链路为主路径。
在一实施例中,该装置还包括:
第六配置单元,用于:在满足以下任一项的情况下,重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
在一实施例中,该装置还包括:
第七配置单元,用于在拉远终端添加或激活NR直连链路时,配置所述NR直连链路为主路径,以及配置中继链路为辅路径。
在一实施例中,该装置还包括:
第八配置单元,用于在拉远终端添加或激活中继链路时,配置所述中继链路为主路径,以及配置NR直连链路为辅路径。
在一实施例中,该装置还包括:
第九配置单元,用于:去激活辅路径上的相关SRB;或者
维持主路径和辅路径上的相关SRB均处于激活状态。
实际应用时,第一配置单元61、第二配置单元、第三配置单元、第四配置单元、第五配置单元、第六配置单元、第七配置单元、第八配置单元和第九配置单元可由链路配置装置中的处理器结合通信接口实现。
需要说明的是:上述实施例提供的链路配置装置在进行链路配置时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的链路配置装置与网络设备侧链路配置方法实施例属于同一构思,具体实现过程详见方法实施例,这里不再赘述。
为了实现本公开实施例的链路配置方法,本公开实施例还提供了一种链路配置装置,设置在拉远终端上,如图7所示,该装置包括:
获取单元71,用于获取网络设备在所述拉远终端添加的第一链路上,配置的第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
在一实施例中,该装置还包括:
传输单元,用于优先使用主路径上的相关SRB传输相关信令。
实际应用时,获取单元71和传输单元可由链路配置装置中的处理器结合通信接口实现。
需要说明的是:上述实施例提供的链路配置装置在进行链路配置时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的链路配置装置与拉远终端侧链路配置方法实施例属于同一构思,具体实现过程详见方法实施例,这里不再赘述。
基于上述程序模块的硬件实现,且为了实现本公开实施例网络设备侧的方法,本公开实施例还提供了一种网络设备,如图8所示,网络设备8包括:
第一通信接口801,能够与其他网络节点进行信息交互;
第一处理器802,与8第一通信接口801连接,以实现与其他网络节点进行信息交互,用于运行计算机程序时,执行上述网络设备侧一个或多个技术方案提供的方法。而所述计算机程序存储在第一存储器803上。
具体地,第一处理器802,在拉远终端添加的第一链路上,配置第一信令无线承载SRB和/或第二SRB;其中,所述第一链路表征为新空口NR直连 链路或中继链路。
在一实施例中,第一处理器802具体用于:在拉远终端添加的NR直连链路上,添加并激活Split SRB1,和/或,添加并激活Split SRB2。
在一实施例中,第一处理器802还用于:去激活中继链路上的SRB1和/或SRB2;或者,维持中继链路上的SRB1和/或SRB2处于激活状态。
在一实施例中,第一处理器802具体用于以下至少一项:
在拉远终端添加的中继链路上,添加Split SRB1,并配置所述Split SRB1为非激活状态;
在拉远终端添加的中继链路上,添加Split SRB2,并配置所述Split SRB2为非激活状态;
在拉远终端添加的中继链路上,添加并激活Split SRB1;
在拉远终端添加的中继链路上,添加并激活Split SRB2。
在一实施例中,第一处理器802还用于:在NR直连链路激活期间,维持NR直连链路上的SRB1和/或SRB2处于激活状态。
在一实施例中,第一处理器802还用于:
在满足以下任一项的情况下,激活中继链路上的SRB1和/或SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
在一实施例中,第一处理器802还用于:
在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
删除或去激活中继链路;
中继终端出现RLF;
PC5链路出现RLF;
重配置NR直连链路为主路径。
在一实施例中,第一处理器802还用于:
在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
拉远终端添加NR直连链路;
删除或去激活中继链路;
中继终端空口无线链路失败出现RLF;
中继终端和拉远终端之间SL失败;
重配置NR直连链路为主路径。
在一实施例中,第一处理器802还用于:
在满足以下任一项的情况下,重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2:
删除或去激活NR直连链路;
NR直连链路出现RLF;
重配置中继链路为主路径。
在一实施例中,第一处理器802还用于:在拉远终端添加或激活NR直连链路时,配置所述NR直连链路为主路径,以及配置中继链路为辅路径。
在一实施例中,第一处理器802还用于:在拉远终端添加或激活中继链路时,配置所述中继链路为主路径,以及配置NR直连链路为辅路径。
在一实施例中,第一处理器802还用于:去激活辅路径上的相关SRB;或者,维持主路径和辅路径上的相关SRB均处于激活状态。
需要说明的是:第一处理器802和第一通信接口801的具体处理过程可参照上述方法理解。
当然,实际应用时,网络设备8中的各个组件通过总线系统804耦合在一起。可理解,总线系统804用于实现这些组件之间的连接通信。总线系统804除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统804。
本公开实施例中的第一存储器803用于存储各种类型的数据以支持网络设备8的操作。这些数据的示例包括:用于在网络设备8上操作的任何计算机程序。
上述本公开实施例揭示的方法可以应用于第一处理器802中,或者由第一处理器802实现。第一处理器802可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过第一处理器802中的 硬件的集成逻辑电路或者软件形式的指令完成。上述的第一处理器802可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。第一处理器802可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第一存储器803,第一处理器802读取第一存储器803中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,网络设备8可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、DSP、可编程逻辑器件(Programmable Logic Device,PLD)、复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器(Micro Controller Unit,MCU)、微处理器(Microprocessor)、或者其他电子元件实现,用于执行前述方法。
基于上述程序模块的硬件实现,且为了实现本公开实施例拉远终端侧的方法,本公开实施例还提供了一种拉远终端,如图9所示,该拉远终端9包括:
第二通信接口901,能够与其他网络节点进行信息交互;
第二处理器902,与第二通信接口901连接,以实现与其他网络节点进行信息交互,用于运行计算机程序时,执行上述拉远终端侧一个或多个技术方案提供的方法。而所述计算机程序存储在第二存储器903上。
具体地,第二处理器902,用于获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
在一实施例中,第二处理器902还用于:优先使用主路径上的相关SRB传输相关信令。
需要说明的是:第二处理器902和第二通信接口901的具体处理过程可 参照上述方法理解。
当然,实际应用时,拉远终端9中的各个组件通过总线系统904耦合在一起。可理解,总线系统904用于实现这些组件之间的连接通信。总线系统904除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统904。
本公开实施例中的第二存储器903用于存储各种类型的数据以支持拉远终端9操作。这些数据的示例包括:用于在拉远终端9上操作的任何计算机程序。
上述本公开实施例揭示的方法可以应用于第二处理器902中,或者由第二处理器902实现。第二处理器902可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过第二处理器902中的硬件的集成逻辑电路或者软件形式的指令完成。上述的第二处理器902可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。第二处理器902可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于第二存储器903,第二处理器902读取第二存储器903中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,拉远终端9可以被一个或多个ASIC、DSP、PLD、CPLD、FPGA、通用处理器、控制器、MCU、Microprocessor、或其他电子元件实现,用于执行前述方法。
可以理解,本公开实施例的存储器(第一存储器803、第二存储器903)可以是易失性存储器或者非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(ferromagnetic random access  memory,FRAM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static Random Access Memory,SRAM)、同步静态随机存取存储器(Synchronous Static Random Access Memory,SSRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)、同步动态随机存取存储器(Synchronous Dynamic Random Access Memory,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate Synchronous Dynamic Random Access Memory,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced Synchronous Dynamic Random Access Memory,ESDRAM)、同步连接动态随机存取存储器(SyncLink Dynamic Random Access Memory,SLDRAM)、直接内存总线随机存取存储器(Direct Rambus Random Access Memory,DRRAM)。本公开实施例描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在示例性实施例中,本公开实施例还提供了一种存储介质,即计算机存储介质,具体为计算机可读存储介质,例如包括存储计算机程序的第一存储器803,上述计算机程序可由网络设备8的第一处理器802执行,以完成前述网络设备侧方法所述步骤。再比如包括存储计算机程序的第二存储器803,上述计算机程序可由拉远终端9的第二处理器802执行,以完成前述拉远终端侧方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
需要说明的是:“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多个中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种, 可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,本公开实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。

Claims (20)

  1. 一种链路配置方法,应用于网络设备,所述方法包括:
    在拉远终端添加的第一链路上,配置第一信令无线承载SRB和/或第二SRB;其中,所述第一链路表征为新空口NR直连链路或中继链路。
  2. 根据权利要求1所述的方法,其中,所述在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB,包括:
    在拉远终端添加的NR直连链路上,添加并激活Split SRB1,和/或,添加并激活Split SRB2。
  3. 根据权利要求2所述的方法,所述方法还包括:
    去激活中继链路上的SRB1和/或SRB2;或者
    维持中继链路上的SRB1和/或SRB2处于激活状态。
  4. 根据权利要求1所述的方法,其中,所述在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB,包括以下至少一项:
    在拉远终端添加的中继链路上,添加Split SRB1,并配置所述Split SRB1为非激活状态;
    在拉远终端添加的中继链路上,添加Split SRB2,并配置所述Split SRB2为非激活状态;
    在拉远终端添加的中继链路上,添加并激活Split SRB1;
    在拉远终端添加的中继链路上,添加并激活Split SRB2。
  5. 根据权利要求4所述的方法,所述方法还包括:
    在NR直连链路激活期间,维持NR直连链路上的SRB1和/或SRB2处于激活状态。
  6. 根据权利要求1至3任一项所述的方法,所述方法还包括:
    在满足以下任一项的情况下,激活中继链路上的SRB1和/或SRB2:
    删除或去激活NR直连链路;
    NR直连链路出现无线链路失败RLF;
    重配置中继链路为主路径。
  7. 根据权利要求1至3任一项所述的方法,所述方法还包括:
    在满足以下任一项的情况下,重配置NR直连链路上的Split SRB1为SRB1,和/或,重配置NR直连链路上的Split SRB2为SRB2:
    拉远终端添加NR直连链路;
    删除或去激活中继链路;
    中继终端空口无线链路失败出现RLF;
    中继终端和拉远终端之间SL失败;
    重配置NR直连链路为主路径。
  8. 根据权利要求1、4或5所述的方法,所述方法还包括:
    在满足以下任一项的情况下,重配置中继链路上的Split SRB1为SRB1,和/或,重配置中继链路上的Split SRB2为SRB2:
    删除或去激活NR直连链路;
    NR直连链路出现RLF;
    重配置中继链路为主路径。
  9. 根据权利要求1所述的方法,所述方法还包括:
    在拉远终端添加或激活NR直连链路时,配置所述NR直连链路为主路径,以及配置中继链路为辅路径。
  10. 根据权利要求1所述的方法,所述方法还包括:
    在拉远终端添加或激活中继链路时,配置所述中继链路为主路径,以及配置NR直连链路为辅路径。
  11. 根据权利要求9或10所述的方法,所述方法还包括:
    去激活辅路径上的相关SRB;或者
    维持主路径和辅路径上的相关SRB均处于激活状态。
  12. 一种链路配置方法,应用于拉远终端,所述方法包括:
    获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
  13. 根据权利要求12所述的方法,所述方法还包括:
    优先使用主路径上的相关SRB传输相关信令。
  14. 一种链路配置装置,包括:
    第一配置单元,用于在拉远终端添加的第一链路上,配置第一SRB和/ 或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
  15. 一种链路配置装置,包括:
    获取单元,用于获取网络设备在所述拉远终端添加的第一链路上,配置的第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
  16. 一种网络设备,包括第一处理器和第一通信接口,其中,
    所述第一处理器,用于在拉远终端添加的第一链路上,配置第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
  17. 一种拉远终端,包括第二处理器和第二通信接口,其中,
    所述第二处理器,用于获取网络设备在所述拉远终端添加的第一链路上配置的第一SRB和/或第二SRB;其中,所述第一链路表征为NR直连链路或中继链路。
  18. 一种网络设备,包括第一处理器和用于存储能够在第一处理器上运行的计算机程序的第一存储器,
    其中,所述第一处理器用于运行所述计算机程序时,执行权利要求1至11任一项所述的方法的步骤。
  19. 一种拉远终端,包括第二处理器和用于存储能够在第二处理器上运行的计算机程序的存储器,
    其中,所述第二处理器用于运行所述计算机程序时,执行权利要求12或13所述的方法的步骤。
  20. 一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至11任一项所述的方法的步骤,或实现权利要求12或13所述的方法的步骤。
PCT/CN2023/117682 2022-09-09 2023-09-08 链路配置方法、装置、拉远终端、网络设备及存储介质 WO2024051808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211104951.4 2022-09-09
CN202211104951.4A CN117693067A (zh) 2022-09-09 2022-09-09 链路配置方法、装置、拉远终端、网络设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024051808A1 true WO2024051808A1 (zh) 2024-03-14

Family

ID=90132555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117682 WO2024051808A1 (zh) 2022-09-09 2023-09-08 链路配置方法、装置、拉远终端、网络设备及存储介质

Country Status (2)

Country Link
CN (1) CN117693067A (zh)
WO (1) WO2024051808A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328483A (zh) * 2016-07-04 2019-02-12 华为技术有限公司 一种无线链路失败处理方法、相关设备及通信系统
CN110839301A (zh) * 2018-08-16 2020-02-25 维沃移动通信有限公司 一种无线链路失败的信息处理方法、终端及网络设备
CN113973284A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 侧行链路信令无线承载配置的方法和通信装置
WO2022067861A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Direct link and sidelink-relayed dual connectivity for sidelink service continuity in mode 1 sidelink networks
US20220159753A1 (en) * 2020-11-16 2022-05-19 Asustek Computer Inc. Method and apparatus for uu radio bearer to pc5 radio link control (rlc) bearer mapping in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328483A (zh) * 2016-07-04 2019-02-12 华为技术有限公司 一种无线链路失败处理方法、相关设备及通信系统
CN110839301A (zh) * 2018-08-16 2020-02-25 维沃移动通信有限公司 一种无线链路失败的信息处理方法、终端及网络设备
CN113973284A (zh) * 2020-07-24 2022-01-25 华为技术有限公司 侧行链路信令无线承载配置的方法和通信装置
WO2022067861A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Direct link and sidelink-relayed dual connectivity for sidelink service continuity in mode 1 sidelink networks
US20220159753A1 (en) * 2020-11-16 2022-05-19 Asustek Computer Inc. Method and apparatus for uu radio bearer to pc5 radio link control (rlc) bearer mapping in a wireless communication system

Also Published As

Publication number Publication date
CN117693067A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
EP3911019B1 (en) Communication method and apparatus
WO2018006253A1 (zh) 一种无线链路失败处理方法、相关设备及通信系统
WO2019029661A1 (zh) 一种传输方法和网络设备
KR20200133017A (ko) 라디오 베어러의 재개 방법과 이와 관련된 무선 단말 및 네트워크 노드
JP7210563B2 (ja) 複製送信の方法および装置
US11218915B2 (en) Switching method and device and computer storage medium
EP3735092A1 (en) Method and device for transmission
WO2022002017A1 (zh) 一种通信方法及装置
WO2022052798A1 (zh) QoS控制方法、装置及处理器可读存储介质
EP3691301B1 (en) Control method for duplicate data transmission function, terminal, and computer storage medium
KR102478900B1 (ko) 자원 스케줄링 방법, 단말 기기 및 네트워크 기기
WO2024051808A1 (zh) 链路配置方法、装置、拉远终端、网络设备及存储介质
US20220201791A1 (en) Wireless communication method and apparatus, and system
US11438952B2 (en) Information processing method, high-layer functional entity and computer storage medium
WO2022141480A1 (zh) 通信方法、装置和系统
WO2022105785A1 (zh) 无线连接建立方法及通信装置
WO2020198961A1 (zh) 链路失败的恢复方法和设备
US20230337304A1 (en) Resuming multi-radio dual connectivity
CN109587824A (zh) 一种建立承载的方法及设备
WO2021227861A1 (zh) 一种nsa切换方法、装置和存储介质
US12096304B2 (en) Controlling mobility between base stations of different types
WO2022206485A1 (zh) 网关故障恢复方法、系统及装置
WO2022067578A1 (zh) 一种状态转换的方法及通信装置
CN118804199A (zh) 通信方法、装置、相关设备、存储介质及计算机程序产品
WO2024011462A1 (zh) 一种通信方法及装置、通信设备、接入网架构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862502

Country of ref document: EP

Kind code of ref document: A1