WO2024048386A1 - Method for treating high-temperature gas - Google Patents
Method for treating high-temperature gas Download PDFInfo
- Publication number
- WO2024048386A1 WO2024048386A1 PCT/JP2023/030280 JP2023030280W WO2024048386A1 WO 2024048386 A1 WO2024048386 A1 WO 2024048386A1 JP 2023030280 W JP2023030280 W JP 2023030280W WO 2024048386 A1 WO2024048386 A1 WO 2024048386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature gas
- cement
- gas
- carbon dioxide
- nitrous oxide
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims abstract description 103
- 239000004568 cement Substances 0.000 claims abstract description 99
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 98
- 239000007789 gas Substances 0.000 claims abstract description 89
- 239000001272 nitrous oxide Substances 0.000 claims abstract description 51
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 49
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 49
- 239000000292 calcium oxide Substances 0.000 claims abstract description 21
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 239000003054 catalyst Substances 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims description 29
- 239000004567 concrete Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 17
- 239000002699 waste material Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000003672 processing method Methods 0.000 claims description 8
- 239000010801 sewage sludge Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-YPZZEJLDSA-N carbon-10 atom Chemical compound [10C] OKTJSMMVPCPJKN-YPZZEJLDSA-N 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 239000005431 greenhouse gas Substances 0.000 description 22
- 239000010802 sludge Substances 0.000 description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 7
- 239000000920 calcium hydroxide Substances 0.000 description 7
- 235000011116 calcium hydroxide Nutrition 0.000 description 7
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 238000010792 warming Methods 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 101100006960 Caenorhabditis elegans let-2 gene Proteins 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
- B01D53/82—Solid phase processes with stationary reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
Definitions
- the present invention relates to a high-temperature gas processing method for suitably reducing greenhouse gases nitrous oxide and carbon dioxide in the same process.
- nitrous oxide has about 300 times the greenhouse effect of carbon dioxide, and also decomposes in the stratosphere to produce nitric oxide, which affects the depletion of the ozone layer. Reduction of both levels of nitrous oxide is required from the perspective of global environmental conservation.
- the coefficient for carbon dioxide is set to 1
- the coefficient for nitrous oxide is set to 300, and each amount contained in the gas is multiplied by the coefficient, so that the total becomes smaller. Reducing emissions is an effective way to combat global warming.
- a known method for treating nitrous oxide is to bring a catalyst such as limestone or slaked lime powder into contact with nitrous oxide and decompose the nitrous oxide into nitrogen, thereby removing it (for example, (See Patent Document 1).
- the amount of concrete waste generated from demolition of buildings, etc. is approximately 35 million tons per year, and the amount of concrete that is returned to factories without being used at construction sites is approximately 1.6 million m 3 per year, i.e. the volume of ready-mixed concrete shipped.
- Approximately 2% of approximately 80 million cubic meters of cement is generated, and these are treated as industrial waste, and the reuse of hardened cement, including such concrete waste, has become a social issue.
- the present invention uses hardened cement to efficiently reduce nitrous oxide and carbon dioxide contained in high-temperature gas in the same process without using natural resources. This was developed for the purpose of providing a method for processing high-temperature gas.
- the feature of the invention according to claim 1 for solving the above-mentioned conventional problems is that, in a method for treating high-temperature gas containing nitrous oxide and carbon dioxide, the high-temperature gas of 50 to 900 °C and cement to decompose the cement hydrate contained in the hardened cement body to produce calcium oxide, and also bring the calcium oxide into contact with the gas, and use the calcium oxide as a catalyst to generate calcium oxide.
- the purpose is to decompose nitrogen oxide into nitrogen and oxygen, and to fix the carbon dioxide in the hardened cement body in the same process.
- the high temperature gas contains 50 ppm or more of nitrous oxide, 5% or more of carbon dioxide, and 10% or more of water content per reference volume. There is a particular thing.
- a feature of the invention according to claim 3, in addition to the configuration of claim 1 or 2, is that the high temperature gas is adjusted to 450°C to 700°C.
- a feature of the invention as set forth in claim 4 is that, in addition to the structure of claim 1 or 2, the cement hardened body is made of waste cement material.
- a feature of the invention set forth in claim 5 is that, in addition to the structure of claim 1 or 2, the cement hardened body is composed of a residue obtained by separating and removing aggregate from concrete material before solidification. be.
- the invention according to claim 6 is characterized in that the hardened cement body in which the carbon dioxide is fixed is recovered and reused as a cement material.
- a seventh aspect of the invention is characterized in that, in addition to the first or second aspect, the high-temperature gas is exhaust gas generated from a sewage sludge incinerator.
- the method for treating high-temperature gas according to the present invention includes the configuration set forth in claim 1, thereby eliminating nitrous oxide and slaked lime from exhaust gas in the same process without using limestone or slaked lime powder, which are natural resources.
- Nitrous oxide and carbon dioxide which are greenhouse gases in high-temperature gases containing carbon, can be decomposed and fixed.
- concrete waste material whose annual amount is about 35 million tons or more, can be suitably reused.
- the amount of nitrous oxide and carbon dioxide is increased, so greenhouse gases can be efficiently reduced, and waste can be reduced. It is possible to use more of a certain hardened cement. Further, it is possible to increase the amount of carbon dioxide fixed by the hardened cement body.
- the hardened cement body can be reused as a cement-based material and can be effectively utilized as a measure against global warming.
- nitrous oxide and carbon dioxide contained in exhaust gas generated from a sewage sludge incinerator can be decomposed and fixed.
- 1 is a schematic cross-sectional view showing an example of a processing apparatus used in the high-temperature gas processing method according to the present invention.
- 1 is a vertical cross-sectional view schematically showing an apparatus used in an effect confirmation test of a high-temperature gas processing method according to the present invention. It is a graph showing the relationship between the reduction rate of nitrous oxide and temperature in the same effect confirmation test as above. It is a graph which shows the relationship between the reduction rate of carbon dioxide and temperature same as the above. It is a graph showing the relationship between the overall reduction rate of greenhouse gases same as above and temperature. It is a graph which shows the relationship between the reduction rate of nitrous oxide and time at each temperature same as the above.
- sewage sludge, etc. is incinerated in an incinerator 4 at a sewage sludge incinerator, etc., and high-temperature gas (high-temperature exhaust gas) discharged from the incinerator 4 is installed downstream of the incinerator 4.
- high-temperature gas high-temperature exhaust gas
- the processing apparatus 1 includes, for example, an inclined tubular processing furnace body 3 and a gas supplying gas (high-temperature exhaust gas) 5 discharged from an incinerator 4 into the processing furnace body 3. and a cement hardening body supply means 6 for supplying the cement hardening body 2 into the processing furnace body 3, and cement hardening with the high temperature gas 5 containing nitrous oxide and carbon dioxide in the treatment furnace body 3.
- the treated gas is brought into contact with the body 2 and the treated gas is discharged from the exhaust pipe 7.
- the treated gas discharged from the processing device 1 is discharged into the atmosphere from a chimney through a cooling tower, a dust collector, a flue gas treatment tower, etc. (not shown in the figure). It looks like this.
- the processing furnace body 3 is formed in a closed cylindrical shape with a certain length, and the internal atmosphere can be adjusted to a predetermined temperature by a temperature control means 8 consisting of a heater etc. arranged on the outer periphery.
- the high-temperature gas 5 may be used as it is, or may be controlled to a temperature that allows greenhouse gases to be more efficiently reduced depending on the situation.
- the processing furnace body 3 may be configured to be rotatable in the circumferential direction around the tube axis by a rotating means.
- the gas supply means includes a gas supply pipe 9 connected to the incinerator 4, and is configured to supply high-temperature gas 5 exhausted from the incinerator 4 into the processing furnace body 3 through this gas supply pipe 9. .
- the treated gas discharged from the exhaust pipe 7 may be recovered and reheated by the reheating means 10, and then sent to the gas supply pipe 9 and supplied into the processing furnace body 3 again. .
- the hardened cement supply means 6 includes a supply belt conveyor 11 that communicates with the inside of the processing furnace 3 on the upstream side, and a hopper or the like into which the hardened cement 2 prepared in a separate plant is fed onto the supply belt conveyor 11.
- the hardened cement body 2 is fed into the processing furnace body 3 from the upstream side by the supply side belt conveyor 11, and passes through the treatment furnace body 3 along the slope at a predetermined speed. After that, it is discharged by a discharge side belt conveyor 13 that communicates with the inside of the processing furnace body 3 on the downstream side.
- the hardened cement body 2 may be supplied either batchwise or continuously.
- cement hardened body 2 discharged from the processing furnace body 3 may be recovered and put into the processing furnace body 3 again.
- Cement, returned mortar, and returned concrete (hereinafter collectively referred to as hardened cement 2) are prepared in a separate plant, and the hardened cement supply means 6 starts supplying them into the processing furnace 3.
- these hardened cement bodies 2 may be those mixed with cement, and the larger the amount of cement mixed in, the more preferable.
- waste concrete material is crushed and aggregate is removed, and returned concrete material is composed of the residue after separating and removing aggregate before solidification, which reduces nitrous oxide and carbon dioxide. preferred.
- exhaust gas generated at the sewage sludge incinerator that is, high-temperature gas containing nitrous oxide and carbon dioxide generated when sewage sludge and the like are incinerated in the incinerator 4 is transferred to the processing device 1 (processing furnace body 3).
- Nitrous oxide and carbon dioxide in the high-temperature gas and the cement hardening body 2 are fed through the supply pipe 9 into the processing furnace body 3 adjusted to a predetermined temperature of 50° C. to 900° C., preferably 450° C. to 700° C. bring into contact.
- the high temperature gas 5 contains 50 ppm or more of nitrous oxide, 5% or more of carbon dioxide, and 10% or more of moisture per standard volume, and is adjusted by adding moisture as necessary.
- calcium hydroxide in the hardened cement body 2 is decomposed into calcium oxide and water at 450 to 600°C (Ca(OH) 2 ⁇ CaO+H 2 O). , new calcium oxide is produced. This generated calcium oxide comes into contact with nitrous oxide in the gas, thereby promoting the decomposition of nitrous oxide. Further, carbon dioxide also reacts with newly generated calcium oxide and is fixed to the hardened cement body 2.
- Nitrous oxide in the gas is decomposed into oxygen and nitrogen when it comes into contact with calcium oxide at a temperature of 200°C or higher, further decomposed at 350°C or higher, and the decomposition is accelerated as the temperature increases.
- the amount of substances produced by chemical reactions at each of these temperatures varies depending on the chemical composition of the hardened cement body 2.
- the high-temperature gas comes into contact with the hardened cement body 2, it is also possible to recover it and return it to the processing device 1 again. Similarly, after contacting the cement hardened body 2 with the gas, it can be returned to the treatment device 1 again and the same treatment can be repeated multiple times.
- the hardened cement body 2 in which carbon dioxide is fixed by contact with the gas can be reused as a new cement material such as a cement raw material or a concrete material.
- the hardened cement body 2 is produced not only when the hardened cement body 2 is crushed and aggregate is removed at the stage before the main treatment (before fixation of carbon dioxide), but also when carbon dioxide is fixed in the hardened cement body 2. After that, it is pulverized and the aggregate is removed. In either case, it can be reused as a new cement raw material or cement material such as concrete material, and by fixing carbon dioxide, carbon dioxide emissions are reduced. can be effectively used as a countermeasure against global warming.
- the cement paste attached to its surroundings fixes carbon dioxide, so by reusing it as recycled aggregate in concrete materials (cement-based materials), it can be used effectively to counter global warming. can do.
- the waste heat of the treated exhaust gas, in which nitrous oxide has been decomposed into nitrogen and oxygen, is recovered by a heat exchanger and released into the atmosphere from a chimney or the like through a pipe.
- nitrous oxide is decomposed into nitrogen and oxygen by contacting with the hardened cement 2, without using limestone or slaked lime powder, which are natural resources.
- nitrous oxide is decomposed into nitrogen and oxygen.
- Carbon can be fixed in the hardened cement body 2, and emissions of nitrous oxide and carbon dioxide can be totally suppressed as greenhouse gases.
- the discarded cement hardened body 2 can be suitably reused.
- nitrous oxide is appropriately expressed as N 2 O
- carbon dioxide is expressed as CO 2 using chemical formulas.
- Example 2 Using ordinary cement, mix cement paste with a W/C of 0.6 in a Hobart mixer to make a total of 30L of cement paste, put it into multiple polyethylene bags (diameter 50mm, length 500mm), and mix the cement paste with a W/C of 0.6 using a Hobart mixer. After 3 weeks of age, sealed curing was performed in air at 20°C to prepare a hardened cement body 2. After that, the polyethylene bag was removed and the hardened cement body 2 was crushed to a particle size of 5 mm or less with a jaw crusher to obtain a hardened cement body. Take the sample No. 2 and put it in a polyethylene bag and seal it.
- a mixed gas containing 10% CO 2 , 1000 ppm N 2 O, and the rest atmospheric gas flows into the kiln at 1 L/min for 30 minutes. 4.
- the CO 2 concentration is monitored, and 18 L of gas is collected using a sampling bag (the remaining 12 L is branched for monitoring), and the gas concentrations of N 2 O and CO 2 are analyzed using a gas chromatograph.
- the total greenhouse gas concentration was calculated by multiplying the N 2 O concentration by 300 times and the CO 2 concentration by 1 time.
- the greenhouse gas reduction rate is calculated using the following formula for the inflow greenhouse gas concentration of 0.4 (N 2 O: 1000 ppm x 300, CO 2 : 10% x 1). We calculated the rate at which we were able to reduce this. (1-Greenhouse gas concentration/0.4) x 100 (%)
- Example 1 The above steps 1 to 4 were carried out at different temperatures from 50° C. to 850° C., and the gas concentrations of N 2 O and CO 2 at each temperature were analyzed. The results are shown in Table 1 and Figures 3 to 5.
- nitrous oxide and carbon dioxide are suitably removed in the temperature range of 450°C to 700°C, and that the greenhouse gases nitrous oxide and carbon dioxide can be efficiently reduced in total in the same process. Ta.
- Example 2 In this example, 20% of the sample was atomized with water in advance to make it hydrated, and the above steps 1 to 4 were carried out at a temperature of 600°C to remove N 2 O and CO 2 . The gas concentration was analyzed. The results are shown in Table 2.
- Example 3 In this example, the inflow gas (inflow rate 2 L/min) was adjusted by adding 10% CO 2 , 500 ppm N 2 O, and 40 vol% steam, and the above steps 1 to 4 were performed in a kiln. The analysis was carried out at different internal temperatures of 400° C. to 850° C., and the temperature at which the gas concentration of both N 2 O and CO 2 at each temperature had the highest reduction rate was analyzed.
- hardened cement 2 In addition to hardened cement 2, two types of hardened cement 2' were used as samples, which were carbonated in a tank at room temperature for 4 days to simulate fine cement powder from waste concrete.
- the hardened cement body 2 is assumed to be sludge such as returned concrete, and the hardened cement body 2' is assumed to be fine powder of waste concrete obtained by crushing concrete that has been used for many years and has become carbonated (hereinafter referred to as The hardened cement body 2 is referred to as an uncarbonated product, and the carbonated hardened cement body 2' is referred to as a carbonated product).
- Example 4 a dehydrated sludge product (hereinafter referred to as sludge), which is an actual waste concrete material, was used as a sample, and as in Example 3, CO 2 was added to the inflow gas (inflow rate 2 L/min). After adjusting by adding 10% of N 2 O, 500 ppm of N 2 O, and 40 vol% of water vapor, the above steps 1 to 4 were carried out at a kiln internal temperature of 600° C. in the same manner as in Example 3, and N 2 O and CO The reduction rate of gas concentration in both cases was verified.
- This sample was made by solidifying the sludge generated during the manufacture of ready-made piles outdoors and crushing it into particles with a particle size of 5 mm or less using a jaw crusher. The experiment was conducted by placing 100 g of each sample on four stainless steel buds, and placing a total of 400 g into the kiln.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
[Problem] To provide a method for treating a high-temperature gas, whereby nitrous oxide and carbon dioxide contained in the high-temperature gas can be efficiently reduced in the same step using a cured cement object without using natural resources. [Solution] This method for treating a high-temperature gas comprises: bringing a high-temperature gas 5 having a temperature of 50-900°C into contact with a cured cement object 2 to decompose a cement hydrate contained in the cured cement object 2 to yield calcium oxide; bringing the calcium oxide into contact with the gas to decompose the nitrous oxide into nitrogen and oxygen with the calcium oxide as a catalyst; and fixing the carbon dioxide to the cured cement object 2 in the same step.
Description
本発明は、温室効果ガスである亜酸化窒素と二酸化炭素とを同じ工程で好適に削減するための高温ガスの処理方法に関する。
The present invention relates to a high-temperature gas processing method for suitably reducing greenhouse gases nitrous oxide and carbon dioxide in the same process.
ボイラーや各種プラントの炉から排出される排ガスには、化学的に安定した亜酸化窒素(N2O)や二酸化炭素(CO2)が含有されていることが知られている。
It is known that exhaust gas discharged from boilers and furnaces of various plants contains chemically stable nitrous oxide (N 2 O) and carbon dioxide (CO 2 ).
特に亜酸化窒素は、二酸化炭素の約300倍の温室効果があり、また、成層圏で分解して一酸化窒素を生成しオゾン層の破壊に影響を与えることから、二酸化炭素だけでなく二酸化炭素と亜酸化窒素の両方の削減が地球環境保全の観点から求められている。
In particular, nitrous oxide has about 300 times the greenhouse effect of carbon dioxide, and also decomposes in the stratosphere to produce nitric oxide, which affects the depletion of the ozone layer. Reduction of both levels of nitrous oxide is required from the perspective of global environmental conservation.
2種類の温室効果については、二酸化炭素の係数を1、亜酸化窒素の係数を300とし、ガス中に含まれるそれぞれの量に対してそれぞれ係数を乗じて、その合計が小さくなるよう効率的に削減することが地球温暖化対策において有効である。
Regarding the two types of greenhouse effects, the coefficient for carbon dioxide is set to 1, and the coefficient for nitrous oxide is set to 300, and each amount contained in the gas is multiplied by the coefficient, so that the total becomes smaller. Reducing emissions is an effective way to combat global warming.
従来、亜酸化窒素を処理する方法としては、石灰石や消石灰粉粒体等の触媒を亜酸化窒素と接触させ、亜酸化窒素を窒素に分解することによって除去する方法が知られている(例えば、特許文献1を参照)。
Conventionally, a known method for treating nitrous oxide is to bring a catalyst such as limestone or slaked lime powder into contact with nitrous oxide and decompose the nitrous oxide into nitrogen, thereby removing it (for example, (See Patent Document 1).
しかしながら、上述の如き従来の技術では、石灰石や消石灰粉粒体が有限な天然資源であることから、亜酸化窒素の処理に潤沢に使用すると資源枯渇につながるおそれがあった。
However, in the conventional techniques as described above, since limestone and slaked lime powder are finite natural resources, there is a risk that if they are used in abundance for the treatment of nitrous oxide, it will lead to resource depletion.
一方、現在では、建造物の解体等によって生じたコンクリート廃材は年間約3500万t、工事現場で使われずに工場に戻されたりしたコンクリートは年間で約160万m3、即ち、生コンクリート出荷量約8000万m3の2%程度発生し、これらが産業廃棄物として処理されており、このようなコンクリート廃材等を含むセメント硬化体の再利用が社会的課題となっている。
On the other hand, currently, the amount of concrete waste generated from demolition of buildings, etc. is approximately 35 million tons per year, and the amount of concrete that is returned to factories without being used at construction sites is approximately 1.6 million m 3 per year, i.e. the volume of ready-mixed concrete shipped. Approximately 2% of approximately 80 million cubic meters of cement is generated, and these are treated as industrial waste, and the reuse of hardened cement, including such concrete waste, has become a social issue.
そこで、本発明は、このような従来の問題に鑑み、セメント硬化体を使用し、天然資源を用いずに高温ガス中に含まれる亜酸化窒素と二酸化炭素とを同工程で効率的に削減できる高温ガスの処理方法の提供を目的としてなされたものである。
In view of these conventional problems, the present invention uses hardened cement to efficiently reduce nitrous oxide and carbon dioxide contained in high-temperature gas in the same process without using natural resources. This was developed for the purpose of providing a method for processing high-temperature gas.
上述の如き従来の問題を解決するための請求項1に記載の発明の特徴は、亜酸化窒素及び二酸化炭素を含有する高温ガスの処理方法において、50℃~900℃の前記高温ガスと、セメントを含むセメント硬化体とを接触させ、前記セメント硬化体に含まれるセメント水和物を分解して酸化カルシウムを生成するとともに、該酸化カルシウムを前記ガスと接触させ、前記酸化カルシウムを触媒として前記亜酸化窒素を窒素と酸素に分解し、且つ、同工程で前記二酸化炭素を前記セメント硬化体に固定化することにある。
The feature of the invention according to claim 1 for solving the above-mentioned conventional problems is that, in a method for treating high-temperature gas containing nitrous oxide and carbon dioxide, the high-temperature gas of 50 to 900 °C and cement to decompose the cement hydrate contained in the hardened cement body to produce calcium oxide, and also bring the calcium oxide into contact with the gas, and use the calcium oxide as a catalyst to generate calcium oxide. The purpose is to decompose nitrogen oxide into nitrogen and oxygen, and to fix the carbon dioxide in the hardened cement body in the same process.
請求項2の記載の発明の特徴は、請求項1の構成に加え、前記高温ガスは、基準容積当りに亜酸化窒素を50ppm以上、二酸化炭素を5%以上、水分量を10%以上含有することにある。
The feature of the invention described in claim 2 is that in addition to the configuration of claim 1, the high temperature gas contains 50 ppm or more of nitrous oxide, 5% or more of carbon dioxide, and 10% or more of water content per reference volume. There is a particular thing.
請求項3に記載の発明の特徴は、請求項1又は2の構成に加え、前記高温ガスを450℃~700℃に調整することにある。
A feature of the invention according to claim 3, in addition to the configuration of claim 1 or 2, is that the high temperature gas is adjusted to 450°C to 700°C.
請求項4に記載の発明の特徴は、請求項1又は2の構成に加え、前記セメント硬化体は、廃セメント材によって構成されていることにある。
A feature of the invention as set forth in claim 4 is that, in addition to the structure of claim 1 or 2, the cement hardened body is made of waste cement material.
請求項5に記載の発明の特徴は、請求項1又は2の構成に加え、前記セメント硬化体は、コンクリート材から固化前に骨材を分離して除去した残分により構成されていることにある。
A feature of the invention set forth in claim 5 is that, in addition to the structure of claim 1 or 2, the cement hardened body is composed of a residue obtained by separating and removing aggregate from concrete material before solidification. be.
請求項6に記載の発明の特徴は、請求項1又は2の構成に加え、前記二酸化炭素を固定したセメント硬化体を回収してセメント系材料として再利用することにある。
In addition to the structure of claim 1 or 2, the invention according to claim 6 is characterized in that the hardened cement body in which the carbon dioxide is fixed is recovered and reused as a cement material.
請求項7に記載の発明の特徴は、請求項1又は2の構成に加え、前記高温ガスは、下水汚泥焼却場から発生する排ガスであることにある。
A seventh aspect of the invention is characterized in that, in addition to the first or second aspect, the high-temperature gas is exhaust gas generated from a sewage sludge incinerator.
本発明に係る高温ガスの処理方法は、請求項1に記載の構成を具備することによって、天然資源である石灰石や消石灰粉粒体を用いずに、同一工程で排ガス等の亜酸化窒素及び二酸化炭素を含有する高温ガス中の温室効果ガスである亜酸化窒素及び二酸化炭素を分解し、固定することができる。また、年間排出量が約3500万トン以上にも及ぶコンクリート廃材を好適に再利用することができる。
The method for treating high-temperature gas according to the present invention includes the configuration set forth in claim 1, thereby eliminating nitrous oxide and slaked lime from exhaust gas in the same process without using limestone or slaked lime powder, which are natural resources. Nitrous oxide and carbon dioxide, which are greenhouse gases in high-temperature gases containing carbon, can be decomposed and fixed. In addition, concrete waste material, whose annual amount is about 35 million tons or more, can be suitably reused.
また、本発明において、請求項2に記載の構成を具備することによって、亜酸化窒素や二酸化炭素の量が多くなるので、温室効果ガスを効率的に削減することができ、且つ、廃棄物であるセメント硬化体をより多く使用することができる。また、セメント硬化体による二酸化炭素の固定量の増加を図ることができる。
Further, in the present invention, by providing the structure according to claim 2, the amount of nitrous oxide and carbon dioxide is increased, so greenhouse gases can be efficiently reduced, and waste can be reduced. It is possible to use more of a certain hardened cement. Further, it is possible to increase the amount of carbon dioxide fixed by the hardened cement body.
また、本発明において、請求項3に記載の構成を具備することによって、亜酸化窒素の分解及びセメント硬化体への二酸化炭素の固定を促進することができる。
Further, in the present invention, by providing the structure according to claim 3, decomposition of nitrous oxide and fixation of carbon dioxide to the hardened cement body can be promoted.
また、本発明において、請求項4乃至5に記載の構成を具備することによって、不要となったコンクリート廃材や戻りコンクリート等を効率的に再利用することができる。
Further, in the present invention, by providing the configurations according to claims 4 and 5, it is possible to efficiently reuse unnecessary concrete waste materials, returned concrete, and the like.
また、本発明において、請求項6に記載の構成を具備することによって、セメント硬化体をセメント系材料として再利用することができるとともに、地球温暖化対策として有効活用することができる。
Moreover, in the present invention, by providing the structure according to claim 6, the hardened cement body can be reused as a cement-based material and can be effectively utilized as a measure against global warming.
さらに、本発明において、請求項7に記載の構成を具備することによって、下水汚泥焼却場から発生する排ガスに含有される亜酸化窒素及び二酸化炭素を分解し、固定することができる。
Furthermore, in the present invention, by providing the configuration according to claim 7, nitrous oxide and carbon dioxide contained in exhaust gas generated from a sewage sludge incinerator can be decomposed and fixed.
次に、本発明に係る高温ガスの処理方法の実施態様を図1に示した実施例に基づいて説明する。
Next, an embodiment of the high temperature gas processing method according to the present invention will be described based on the embodiment shown in FIG.
本実施例では、特に図示しないが、下水汚泥焼却場等において下水汚泥等が焼却炉4で焼却され、焼却炉4より排出された高温ガス(高温排ガス)が焼却炉4の下流側に設置された処理装置1に送られ、処理装置1において亜酸化窒素を分解、二酸化炭素をセメント硬化体2に固定して処理するようになっている。
In this embodiment, although not particularly shown, sewage sludge, etc. is incinerated in an incinerator 4 at a sewage sludge incinerator, etc., and high-temperature gas (high-temperature exhaust gas) discharged from the incinerator 4 is installed downstream of the incinerator 4. In the processing device 1, the nitrous oxide is decomposed and the carbon dioxide is fixed in the hardened cement body 2 for processing.
処理装置1は、例えば、図1に示すように、傾斜した管状の処理用炉体3と、処理用炉体3内に焼却炉4から排出された高温ガス(高温排ガス)5を供給するガス供給手段と、処理用炉体3内にセメント硬化体2を供給するセメント硬化体供給手段6とを備え、処理用炉体3内で亜酸化窒素及び二酸化炭素を含有する高温ガス5とセメント硬化体2とを接触させ、処理済みガスを排気管7から排出するようになっている。
As shown in FIG. 1, the processing apparatus 1 includes, for example, an inclined tubular processing furnace body 3 and a gas supplying gas (high-temperature exhaust gas) 5 discharged from an incinerator 4 into the processing furnace body 3. and a cement hardening body supply means 6 for supplying the cement hardening body 2 into the processing furnace body 3, and cement hardening with the high temperature gas 5 containing nitrous oxide and carbon dioxide in the treatment furnace body 3. The treated gas is brought into contact with the body 2 and the treated gas is discharged from the exhaust pipe 7.
尚、処理装置1から排出された処理済みガスは、亜酸化窒素及び二酸化炭素の濃度を計測した後、特に図示しないが、冷却塔、集塵機、排煙処理塔等を経て煙突より大気に排出するようになっている。
After measuring the concentration of nitrous oxide and carbon dioxide, the treated gas discharged from the processing device 1 is discharged into the atmosphere from a chimney through a cooling tower, a dust collector, a flue gas treatment tower, etc. (not shown in the figure). It looks like this.
処理用炉体3は、一定の長さを有する閉鎖された円筒形状に形成され、外周部に配置されたヒーター等からなる温度調節手段8により内部雰囲気を所定の温度に調節でき、供給された高温ガス5をそのままの温度で利用してもよく、状況に応じて温室効果ガスをより効率よく削減できる温度に制御してもよい。
The processing furnace body 3 is formed in a closed cylindrical shape with a certain length, and the internal atmosphere can be adjusted to a predetermined temperature by a temperature control means 8 consisting of a heater etc. arranged on the outer periphery. The high-temperature gas 5 may be used as it is, or may be controlled to a temperature that allows greenhouse gases to be more efficiently reduced depending on the situation.
また、処理用炉体3は、特に図示しないが、回転手段によって管軸を中心に円周方向に回転できるようにしてもよい。
Further, although not particularly shown, the processing furnace body 3 may be configured to be rotatable in the circumferential direction around the tube axis by a rotating means.
ガス供給手段は、焼却炉4に接続されたガス供給管9を備え、このガス供給管9を通して焼却炉4より排気された高温ガス5を処理用炉体3内に供給するようになっている。
The gas supply means includes a gas supply pipe 9 connected to the incinerator 4, and is configured to supply high-temperature gas 5 exhausted from the incinerator 4 into the processing furnace body 3 through this gas supply pipe 9. .
尚、排気管7から排出された処理済みガスは、回収して再加熱手段10によって再加熱した後、ガス供給管9に送込み、再度処理用炉体3内に供給するようにしてもよい。
Note that the treated gas discharged from the exhaust pipe 7 may be recovered and reheated by the reheating means 10, and then sent to the gas supply pipe 9 and supplied into the processing furnace body 3 again. .
セメント硬化体供給手段6は、処理用炉体3内と上流側で連通する供給側ベルトコンベア11と、供給側ベルトコンベア11上に別プラントで調整されたセメント硬化体2を投入するホッパ等のセメント硬化体供給源12とを備え、供給側ベルトコンベア11によりセメント硬化体2が上流側から処理用炉体3内に送り込まれ、処理用炉体3内を傾斜に沿って所定の速度で通過した後、処理用炉体3内と下流側で連通する排出側ベルトコンベア13によって排出されるようになっている。
The hardened cement supply means 6 includes a supply belt conveyor 11 that communicates with the inside of the processing furnace 3 on the upstream side, and a hopper or the like into which the hardened cement 2 prepared in a separate plant is fed onto the supply belt conveyor 11. The hardened cement body 2 is fed into the processing furnace body 3 from the upstream side by the supply side belt conveyor 11, and passes through the treatment furnace body 3 along the slope at a predetermined speed. After that, it is discharged by a discharge side belt conveyor 13 that communicates with the inside of the processing furnace body 3 on the downstream side.
尚、セメント硬化体2の供給は、バッチ式であってもよく、連続的に投入されるようにしてもよい。
The hardened cement body 2 may be supplied either batchwise or continuously.
また、処理用炉体3から排出されたセメント硬化体2は、回収され、再度処理用炉体3内に投入されるようにしてもよい。
Moreover, the cement hardened body 2 discharged from the processing furnace body 3 may be recovered and put into the processing furnace body 3 again.
次に、上述の処理装置1を使用した高温ガスの処理方法の具体的手順を示す。
Next, a specific procedure of a high temperature gas processing method using the above-mentioned processing apparatus 1 will be described.
先ず、建造物の解体等に生じたセメント廃材、モルタル廃材、コンクリート廃材や、工事現場において使用されず残存した残セメント、残モルタル、残コンクリートや、工事現場において使用されず工場に戻された戻りセメント、戻りモルタル、戻りコンクリート(以下、総称してセメント硬化体2という)を別プラントにおいて調整し、セメント硬化体供給手段6により処理用炉体3内への供給を開始する。
First, waste cement, mortar, and concrete generated during the demolition of buildings, residual cement, mortar, and concrete left unused at the construction site, and waste returned to the factory without being used at the construction site. Cement, returned mortar, and returned concrete (hereinafter collectively referred to as hardened cement 2) are prepared in a separate plant, and the hardened cement supply means 6 starts supplying them into the processing furnace 3.
尚、これらのセメント硬化体2については、セメントが混入したものであればよく、セメント混入量が多いほど好ましい。また、廃コンクリート材については、粉砕し、骨材を除去し、戻りコンクリート材については、固化前に骨材を分離して除去した残分により構成することが、亜酸化窒素及び二酸化炭素の削減には好ましい。
It should be noted that these hardened cement bodies 2 may be those mixed with cement, and the larger the amount of cement mixed in, the more preferable. In addition, waste concrete material is crushed and aggregate is removed, and returned concrete material is composed of the residue after separating and removing aggregate before solidification, which reduces nitrous oxide and carbon dioxide. preferred.
一方、下水汚泥焼却場で発生した排ガス、即ち、下水汚泥等を焼却炉4で焼却した際に生じた亜酸化窒素及び二酸化炭素を含む高温ガスを処理装置1(処理用炉体3)にガス供給管9を通して送り込み、50℃~900℃、好ましくは450℃~700℃の所定の温度に調整した処理用炉体3内において高温ガス中の亜酸化窒素及び二酸化炭素とセメント硬化体2とを接触させる。
On the other hand, exhaust gas generated at the sewage sludge incinerator, that is, high-temperature gas containing nitrous oxide and carbon dioxide generated when sewage sludge and the like are incinerated in the incinerator 4, is transferred to the processing device 1 (processing furnace body 3). Nitrous oxide and carbon dioxide in the high-temperature gas and the cement hardening body 2 are fed through the supply pipe 9 into the processing furnace body 3 adjusted to a predetermined temperature of 50° C. to 900° C., preferably 450° C. to 700° C. bring into contact.
高温ガス5は、基準容積当りに亜酸化窒素を50ppm以上、二酸化炭素を5%以上、水分量を10%以上含有するものとし、必要に応じて水分を追加して調整する。
The high temperature gas 5 contains 50 ppm or more of nitrous oxide, 5% or more of carbon dioxide, and 10% or more of moisture per standard volume, and is adjusted by adding moisture as necessary.
高温ガス中の二酸化炭素は、以下の式(1)(2)に示すように、セメント硬化体2中に含まれる酸化カルシウム、水酸化カルシウムと反応し、常温でも炭酸カルシウムを生成し、高温ほど反応が促進され、効率よくセメント硬化体2に固定される。 CaO+CO2→CaCO3 …(1) Ca(OH)2+CO2→CaCO3+H2O …(2)尚、(1)式の反応では、水が無いと反応し難いため、高温ガス5中に水分が多いことが好ましい。
As shown in equations (1) and (2) below, carbon dioxide in the high-temperature gas reacts with calcium oxide and calcium hydroxide contained in the hardened cement 2, producing calcium carbonate even at room temperature, and as the temperature increases The reaction is promoted and the cement is efficiently fixed to the hardened cement body 2. CaO+CO 2 →CaCO 3 …(1) Ca(OH) 2 +CO 2 →CaCO 3 +H 2 O …(2) In addition, in the reaction of formula (1), it is difficult to react without water, so in the high temperature gas 5 Preferably, the water content is high.
一方、セメント硬化体2中の水酸化カルシウムは、450~600℃で酸化カルシウムと水に分解され(Ca(OH)2→CaO+H2O)
、新たに酸化カルシウムが生成される。この生成された酸化カルシウムは、ガス中の亜酸化窒素と接触することで、亜酸化窒素の分解を促進する。また、二酸化炭素が新たに生成された酸化カルシウムとも反応し、セメント硬化体2に固定される。 On the other hand, calcium hydroxide in thehardened cement body 2 is decomposed into calcium oxide and water at 450 to 600°C (Ca(OH) 2 →CaO+H 2 O).
, new calcium oxide is produced. This generated calcium oxide comes into contact with nitrous oxide in the gas, thereby promoting the decomposition of nitrous oxide. Further, carbon dioxide also reacts with newly generated calcium oxide and is fixed to thehardened cement body 2.
、新たに酸化カルシウムが生成される。この生成された酸化カルシウムは、ガス中の亜酸化窒素と接触することで、亜酸化窒素の分解を促進する。また、二酸化炭素が新たに生成された酸化カルシウムとも反応し、セメント硬化体2に固定される。 On the other hand, calcium hydroxide in the
, new calcium oxide is produced. This generated calcium oxide comes into contact with nitrous oxide in the gas, thereby promoting the decomposition of nitrous oxide. Further, carbon dioxide also reacts with newly generated calcium oxide and is fixed to the
ガス中の亜酸化窒素は、200℃以上の温度で酸化カルシウムと接触すると酸素と窒素に分解され、350℃以上では更に分解が進み、高温になるほど分解が促進される。
Nitrous oxide in the gas is decomposed into oxygen and nitrogen when it comes into contact with calcium oxide at a temperature of 200°C or higher, further decomposed at 350°C or higher, and the decomposition is accelerated as the temperature increases.
特に、450~700℃の温度域では、セメント硬化体2から新たに酸化カルシウムが生成されるとともに雰囲気が高温になるので、亜酸化窒素の分解がより促進される。
In particular, in the temperature range of 450 to 700° C., calcium oxide is newly generated from the hardened cement body 2 and the atmosphere becomes high temperature, so that the decomposition of nitrous oxide is further promoted.
一方、700℃程度より上の温度では、CaCO3→CaO+CO2の脱炭酸反応によりCO2が新たに発生する。
On the other hand, at temperatures above about 700° C., CO 2 is newly generated due to the decarboxylation reaction of CaCO 3 →CaO+CO 2 .
これら各温度における化学反応で生成される物質の量は、セメント硬化体2の化学成分で変わる。
The amount of substances produced by chemical reactions at each of these temperatures varies depending on the chemical composition of the hardened cement body 2.
尚、処理用炉体3を回転させて内部のセメント硬化体2を攪拌しながら排ガスと接触させることで、効率よくガス中の亜酸化窒素及び二酸化炭素を削減することができる。
Note that by rotating the processing furnace body 3 and bringing the hardened cement body 2 inside into contact with the exhaust gas while stirring, it is possible to efficiently reduce nitrous oxide and carbon dioxide in the gas.
高温ガスは、セメント硬化体2と接触した後、回収して、再度処理装置1に戻すことも可能である。セメント硬化体2も同様に、ガスと接触後、再度処理装置1に戻して同じ処理を複数繰り返すこともできる。
After the high-temperature gas comes into contact with the hardened cement body 2, it is also possible to recover it and return it to the processing device 1 again. Similarly, after contacting the cement hardened body 2 with the gas, it can be returned to the treatment device 1 again and the same treatment can be repeated multiple times.
一方、ガスと接触して二酸化炭素が固定されたセメント硬化体2は、新たにセメント原料やコンクリート材料等のセメント系材として再利用することができる。
On the other hand, the hardened cement body 2 in which carbon dioxide is fixed by contact with the gas can be reused as a new cement material such as a cement raw material or a concrete material.
尚、セメント硬化体2は、本処理前(二酸化炭素の固定前)の段階でセメント硬化体2を粉砕し、骨材を除去している場合のみならず、セメント硬化体2に二酸化炭素を固定した後、粉砕し、骨材を除去した場合のいずれの場合であっても新たにセメント原料やコンクリート材料等のセメント系材として再利用することができ、二酸化炭素を固定したことで二酸化炭素排出を抑制し、地球温暖化対策として有効に活用することができる。また、骨材については、周囲に付着しているセメントペースト分が二酸化炭素を固定するため、再生骨材としてコンクリート材料(セメント系材)に再利用することで、地球温暖化対策に有効に活用することができる。
In addition, the hardened cement body 2 is produced not only when the hardened cement body 2 is crushed and aggregate is removed at the stage before the main treatment (before fixation of carbon dioxide), but also when carbon dioxide is fixed in the hardened cement body 2. After that, it is pulverized and the aggregate is removed. In either case, it can be reused as a new cement raw material or cement material such as concrete material, and by fixing carbon dioxide, carbon dioxide emissions are reduced. can be effectively used as a countermeasure against global warming. In addition, as for aggregate, the cement paste attached to its surroundings fixes carbon dioxide, so by reusing it as recycled aggregate in concrete materials (cement-based materials), it can be used effectively to counter global warming. can do.
亜酸化窒素が窒素と酸素に分解された処理済み排ガスは、熱交換器によって廃熱が回収され、管路を経て煙突等から大気中に放出される。
The waste heat of the treated exhaust gas, in which nitrous oxide has been decomposed into nitrogen and oxygen, is recovered by a heat exchanger and released into the atmosphere from a chimney or the like through a pipe.
このように構成された処理方法では、天然資源である石灰石や消石灰粉粒体を用いずに、セメント硬化体2と接触させて亜酸化窒素を窒素と酸素とに分解するとともに、同じ工程において二酸化炭素をセメント硬化体2に固定することができ、亜酸化窒素及び二酸化炭素の排出を温室効果ガスとしてトータル的に抑制することができる。さらに廃棄されているセメント硬化体2を好適に再利用することができる。
In the treatment method configured in this way, nitrous oxide is decomposed into nitrogen and oxygen by contacting with the hardened cement 2, without using limestone or slaked lime powder, which are natural resources.In the same process, nitrous oxide is decomposed into nitrogen and oxygen. Carbon can be fixed in the hardened cement body 2, and emissions of nitrous oxide and carbon dioxide can be totally suppressed as greenhouse gases. Furthermore, the discarded cement hardened body 2 can be suitably reused.
次に、本発明に係る高温ガスの処理方法の効果を確認した実験結果について説明する。尚、以下においては、亜酸化窒素をN2Oと、二酸化炭素をCO2とそれぞれ化学式で適宜表記する。
Next, experimental results confirming the effects of the high-temperature gas processing method according to the present invention will be explained. In the following, nitrous oxide is appropriately expressed as N 2 O, and carbon dioxide is expressed as CO 2 using chemical formulas.
(試料) 普通セメントを用い、W/C0.6のセメントペーストをホバートミキサで練り混ぜ、計30Lのセメントペーストを作製し、それを複数のポリエチレン袋(直径50mm、長さ500mm)に入れ、材齢3週間、20℃の気中で封緘養生を行ってセメント硬化体2を作製し、その後、ポリエチレン袋を除去し、セメント硬化体2をジョークラッシャーで粒径5mm以下に粉砕してセメント硬化体2の試料とし、ポリエチレン袋に入れて密閉する。 そして、試験の前日にセメント硬化体2を105℃で5時間乾燥し、試験に供した。(実験方法) 1.図2に示すように、処理用炉体3として外熱キルン(内径15cm、長さ70cm)を使用し、外熱キルンの内部の雰囲気温度が設定温度になるまでヒーターで加熱し、温度を安定させる。 2.次に、ステンレスバット(126×155×27mm)にセメント硬化体2の試料100gを入れたものを4つ準備し、素早く外熱キルン内に入れる。 3.試料投入後、速やかにCO2を10%、N2Oを1000ppm、それ以外を大気ガスとした混合ガスを1L/minでキルン内に30分間流入する。 4.キルンの排出側ではCO2濃度をモニタリングするとともに、サンプリングバッグでガスを18L(残りの12Lはモニタリング用に分岐)採取し、N2OおよびCO2のガス濃度をガスクロマトグラフで分析する。 尚、温室効果ガス濃度については、N2O濃度を300倍、CO2濃度を1倍として合計の温室効果ガス濃度を算出した。また、温室効果ガス削減率は、流入した温室効果ガス濃度0.4(N2O:1000ppm×300、CO2:10%×1)に対して、以下の計算式により本処理によって温室効果ガスを削減できた割合を算出した。(1-温室効果ガス濃度/0.4)×100(%)
(Sample) Using ordinary cement, mix cement paste with a W/C of 0.6 in a Hobart mixer to make a total of 30L of cement paste, put it into multiple polyethylene bags (diameter 50mm, length 500mm), and mix the cement paste with a W/C of 0.6 using a Hobart mixer. After 3 weeks of age, sealed curing was performed in air at 20°C to prepare a hardened cement body 2. After that, the polyethylene bag was removed and the hardened cement body 2 was crushed to a particle size of 5 mm or less with a jaw crusher to obtain a hardened cement body. Take the sample No. 2 and put it in a polyethylene bag and seal it. Then, on the day before the test, the hardened cement body 2 was dried at 105° C. for 5 hours and used for the test. (Experimental method) 1. As shown in Figure 2, an external heat kiln (inner diameter 15 cm, length 70 cm) is used as the processing furnace body 3, and the temperature is stabilized by heating with a heater until the ambient temperature inside the external heat kiln reaches the set temperature. let 2. Next, prepare four stainless steel vats (126 x 155 x 27 mm) containing 100 g of samples of hardened cement 2, and quickly put them into an external heating kiln. 3. Immediately after the sample is introduced, a mixed gas containing 10% CO 2 , 1000 ppm N 2 O, and the rest atmospheric gas flows into the kiln at 1 L/min for 30 minutes. 4. On the discharge side of the kiln, the CO 2 concentration is monitored, and 18 L of gas is collected using a sampling bag (the remaining 12 L is branched for monitoring), and the gas concentrations of N 2 O and CO 2 are analyzed using a gas chromatograph. Regarding the greenhouse gas concentration, the total greenhouse gas concentration was calculated by multiplying the N 2 O concentration by 300 times and the CO 2 concentration by 1 time. In addition, the greenhouse gas reduction rate is calculated using the following formula for the inflow greenhouse gas concentration of 0.4 (N 2 O: 1000 ppm x 300, CO 2 : 10% x 1). We calculated the rate at which we were able to reduce this. (1-Greenhouse gas concentration/0.4) x 100 (%)
(実施例1) 上記1~4の工程を50℃~850℃の異なる温度において実施し、各温度におけるN2OおよびCO2のガス濃度について分析した。その結果を表1及び図3~図5に示す。
(Example 1) The above steps 1 to 4 were carried out at different temperatures from 50° C. to 850° C., and the gas concentrations of N 2 O and CO 2 at each temperature were analyzed. The results are shown in Table 1 and Figures 3 to 5.
以上の結果から、50℃~900℃の温度域で温室効果ガスである亜酸化窒素及び二酸化炭素の削減が確認された。一方、亜酸化窒素は、セメント硬化体2から酸化カルシウムが生成される温度450℃以上の温度域で大幅に窒素と酸素への分解が促進され、二酸化炭素は、常温(50℃)~700℃当りまでの温度域で最も効率よく削減されることが確認された。
From the above results, it was confirmed that greenhouse gases nitrous oxide and carbon dioxide were reduced in the temperature range of 50°C to 900°C. On the other hand, the decomposition of nitrous oxide into nitrogen and oxygen is greatly accelerated in the temperature range of 450°C or higher, the temperature at which calcium oxide is generated from the hardened cement body 2, and the decomposition of carbon dioxide is accelerated at temperatures between room temperature (50°C) and 700°C. It was confirmed that the most efficient reduction occurred in the temperature range up to
即ち、450℃~700℃の温度域において、亜酸化窒素と二酸化炭素とがそれぞれ好適に削除され、温室ガスである亜酸化窒素と二酸化炭素とを同一工程においてトータルで効率よく削減できることが確認された。
In other words, it has been confirmed that nitrous oxide and carbon dioxide are suitably removed in the temperature range of 450°C to 700°C, and that the greenhouse gases nitrous oxide and carbon dioxide can be efficiently reduced in total in the same process. Ta.
(実施例2) 本実施例では、事前に試料の20%となる水を霧状に噴霧して含水させ、上記1~4の工程を温度600℃において実施し、N2OおよびCO2のガス濃度について分析した。その結果を表2に示す。
(Example 2) In this example, 20% of the sample was atomized with water in advance to make it hydrated, and the above steps 1 to 4 were carried out at a temperature of 600°C to remove N 2 O and CO 2 . The gas concentration was analyzed. The results are shown in Table 2.
以上の結果から、高温ガス5中に水分量が多く含まれることにより、効率よく温室効果ガスである亜酸化窒素及び二酸化炭素が削減されることが確認された。
From the above results, it was confirmed that by containing a large amount of water in the high temperature gas 5, greenhouse gases such as nitrous oxide and carbon dioxide can be efficiently reduced.
(実施例3) 本実施例では、流入ガス(流入量2L/min)にCO2を10%、N2Oを500ppm、40vol%の水蒸気を加えて調整し、上記1~4の工程をキルン内温度400℃~850℃の異なる温度において実施し、各温度におけるN2OおよびCO2の両者のガス濃度が最も削減率の高い温度について分析した。
(Example 3) In this example, the inflow gas (inflow rate 2 L/min) was adjusted by adding 10% CO 2 , 500 ppm N 2 O, and 40 vol% steam, and the above steps 1 to 4 were performed in a kiln. The analysis was carried out at different internal temperatures of 400° C. to 850° C., and the temperature at which the gas concentration of both N 2 O and CO 2 at each temperature had the highest reduction rate was analyzed.
また、試料には、セメント硬化体2に加え、さらに槽内において4日間常温で炭酸化させ、廃コンクリートのセメント微粉末を模擬したセメント硬化体2′の2種類を使用した。
In addition to hardened cement 2, two types of hardened cement 2' were used as samples, which were carbonated in a tank at room temperature for 4 days to simulate fine cement powder from waste concrete.
尚、セメント硬化体2は、戻りコンクリートなどのスラッジを想定したもので、セメント硬化体2′は、長年供用され炭酸化したコンクリートを破砕した廃コンクリートの微粉末を想定したものである(以後、セメント硬化体2を未炭酸化品、炭酸化させたセメント硬化体2´を炭酸化品と称する)。
The hardened cement body 2 is assumed to be sludge such as returned concrete, and the hardened cement body 2' is assumed to be fine powder of waste concrete obtained by crushing concrete that has been used for many years and has become carbonated (hereinafter referred to as The hardened cement body 2 is referred to as an uncarbonated product, and the carbonated hardened cement body 2' is referred to as a carbonated product).
以下に、未炭酸化品と炭酸化品の示差熱分析結果を示す。
The results of differential thermal analysis of the uncarbonated product and the carbonated product are shown below.
さらに、本実施例では、未炭酸化品または炭酸化品を4つのステンレスバッドに100gずつ置き、計400gをキルンに入れる場合に加え、セメント硬化体2000gを回転するキルン内に直接入れる場合とを実施し、両場合の反応を比較した。尚、セメント硬化体をキルンに直接投入する場合のガスのモニタリング方法は、キルンから流出させたガスをガス分析計に直接接続し、常時計測とした。
Furthermore, in this example, in addition to the case where 100 g of uncarbonated or carbonated product is placed on each of four stainless steel buds and a total of 400 g is put into the kiln, there is also a case where 2000 g of hardened cement is directly put into the rotating kiln. The reactions in both cases were compared. In addition, when the cement hardened body was directly put into the kiln, the gas was monitored by connecting the gas flowing out from the kiln directly to a gas analyzer and constantly measuring it.
結果を図6~図8に示す。なお、キルン炉内のガスの入れ替わりに時間を要するとともに、初期の反応で生じる脱水が多い場合に分析計を一時的に外している時間があることから、その時間を考慮して実験開始から5~10分以降の傾向に着目した。
The results are shown in FIGS. 6 to 8. It should be noted that it takes time for the gas in the kiln to be replaced, and there is also a time when the analyzer is temporarily removed when there is a lot of dehydration caused by the initial reaction. We focused on trends after ~10 minutes.
以上の結果から、400℃~700℃の各温度において、温室効果ガスである亜酸化窒素及び二酸化炭素の削減効果が確認された。特に、600℃において温室効果ガスである亜酸化窒素および二酸化炭素の削減率が最も高いことが確認された。また、600℃では炭酸化の影響をうけた炭酸化品の場合であっても最も安定して温室効果ガスの削減率が高いことが確認された。
From the above results, the effect of reducing greenhouse gases nitrous oxide and carbon dioxide was confirmed at each temperature from 400°C to 700°C. In particular, it was confirmed that the reduction rate of greenhouse gases nitrous oxide and carbon dioxide was highest at 600°C. Furthermore, it was confirmed that at 600°C, the greenhouse gas reduction rate was the most stable and the highest even in the case of carbonated products that were affected by carbonation.
次に、実施例3で温室効果ガスに透過させた後の未炭酸化品および炭酸化品について、モルタルに再利用した際の各種物性について実験した結果について説明する。
Next, the results of experiments on various physical properties when reusing the uncarbonated product and the carbonated product after being permeated with greenhouse gas in Example 3 as mortar will be explained.
(実験方法) 実験は、JIS R 5201:セメントの物理試験に準拠し、配合、フロー試験、曲げ試験および圧縮試験を実施した。
(Experimental Method) The experiment was carried out in accordance with JIS R 5201: Physical Test of Cement, including blending, flow test, bending test, and compression test.
温室効果ガスの削減率が最も高く安定していた600℃に使用した未炭酸化品および炭酸化品を、標準砂に置換率5%または10%で絶乾状態のまま使用し、水中養生の後に材齢28日強度を確認した。ブランクとして、試料を置換しない条件も作成した。実験結果を表4に示す。
The uncarbonated and carbonated products used at 600℃, which had the highest and most stable greenhouse gas reduction rate, were used in an absolutely dry state at a replacement rate of 5% or 10% with standard sand, and were cured in water. Afterwards, the strength was confirmed after 28 days of age. As a blank, conditions were also created in which the sample was not replaced. The experimental results are shown in Table 4.
以上の結果から、温室効果ガスに透過させた後の未炭酸化品および炭酸化品を、モルタルの細骨材に5~10%置換した場合の強度は、ブランクの場合と概ね同等でありセメント系材料として利用できることが確認された。
From the above results, the strength when replacing 5 to 10% of the uncarbonated and carbonated products after permeation with greenhouse gases with fine aggregate in mortar is approximately the same as that of blank, and the strength of cement It was confirmed that it can be used as a system material.
(実施例4) 本実施例では、実際の廃コンクリート材であるスラッジ脱水品(以下、スラッジという)を試料に使用し、実施例3と同様に流入ガス(流入量2L/min)にCO2を10%、N2Oを500ppm、40vol%の水蒸気を加えて調整したうえで、実施例3と同様に上記1~4工程をキルン内温度600℃の温度において実施し、N2O及びCO2の両者のガス濃度の削減率について検証した。
(Example 4) In this example, a dehydrated sludge product (hereinafter referred to as sludge), which is an actual waste concrete material, was used as a sample, and as in Example 3, CO 2 was added to the inflow gas (inflow rate 2 L/min). After adjusting by adding 10% of N 2 O, 500 ppm of N 2 O, and 40 vol% of water vapor, the above steps 1 to 4 were carried out at a kiln internal temperature of 600° C. in the same manner as in Example 3, and N 2 O and CO The reduction rate of gas concentration in both cases was verified.
この試料は、既製杭の製造時に発生するスラッジを屋外にて固化させ、ジョーククラッシャーで粒径5mm以下に破砕したものである。試料は、4つのステンレスバッドに100gずつ置き、計400gをキルンに入れて実験を行った。
This sample was made by solidifying the sludge generated during the manufacture of ready-made piles outdoors and crushing it into particles with a particle size of 5 mm or less using a jaw crusher. The experiment was conducted by placing 100 g of each sample on four stainless steel buds, and placing a total of 400 g into the kiln.
結果を図9~図11に示す。尚、キルン炉内のガスの入
れ替わりに時間を要するため、その時間を考慮して実験開始から5~10分以降の傾向に着目した。 The results are shown in FIGS. 9 to 11. Note that it takes time for the gas in the kiln to be replaced, so we took this time into consideration and focused on trends after 5 to 10 minutes from the start of the experiment.
れ替わりに時間を要するため、その時間を考慮して実験開始から5~10分以降の傾向に着目した。 The results are shown in FIGS. 9 to 11. Note that it takes time for the gas in the kiln to be replaced, so we took this time into consideration and focused on trends after 5 to 10 minutes from the start of the experiment.
以上の結果から、600℃においてスラッジを用いたとき、亜酸化窒素および二酸化炭素の高い削減効果が確認され、セメント硬化体2としてのスラッジの有用性を確認した。
From the above results, when the sludge was used at 600° C., a high reduction effect on nitrous oxide and carbon dioxide was confirmed, and the usefulness of the sludge as the hardened cement body 2 was confirmed.
1 処理装置 2 セメント硬化体 3 処理用炉体 4 焼却炉 5 高温ガス 6 セメント硬化体供給手段 7 排気管 8 温度調節手段 9 ガス供給管10 再加熱手段11 供給側ベルトコンベア12 セメント硬化体供給源13 排出側ベルトコンベア
1. Processing equipment 2. Hardened cement 3. Furnace for processing 4. Incinerator 5. High temperature gas 6. Hardened cement supply means 7. Exhaust pipe 8. Temperature adjustment means 9. Gas supply pipe 10. Reheating means 11. Supply side belt conveyor 12. Hardened cement supply source 13 Discharge side belt conveyor
Claims (7)
- 亜酸化窒素及び二酸化炭素を含有する高温ガスの処理方法において、 50℃~900℃の前記高温ガスと、セメントを含むセメント硬化体とを接触させ、前記セメント硬化体に含まれるセメント水和物を分解して酸化カルシウムを生成するとともに、該酸化カルシウムを前記ガスと接触させ、前記酸化カルシウムを触媒として前記亜酸化窒素を窒素と酸素に分解し、且つ、同工程で前記二酸化炭素を前記セメント硬化体に固定化することを特徴とする高温ガスの処理方法。 In a method for treating high-temperature gas containing nitrous oxide and carbon dioxide, the high-temperature gas at 50°C to 900°C is brought into contact with a hardened cement body containing cement, and the cement hydrate contained in the hardened cement body is removed. Decomposing the nitrous oxide to produce calcium oxide, contacting the calcium oxide with the gas, using the calcium oxide as a catalyst to decompose the nitrous oxide into nitrogen and oxygen, and in the same step, converting the carbon dioxide into hardening the cement. A method for processing high-temperature gas characterized by immobilization in the body.
- 前記高温ガスは、基準容積当りに亜酸化窒素を50ppm以上、二酸化炭素を5%以上、水分量を10%以上含有する請求項1に記載の高温ガスの処理方法。 2. The method for treating high-temperature gas according to claim 1, wherein the high-temperature gas contains 50 ppm or more of nitrous oxide, 5% or more of carbon dioxide, and 10% or more of water per reference volume.
- 前記高温ガスを450℃~700℃に調整する請求項1又は2に記載の高温ガスの処理方法。 The method for treating high temperature gas according to claim 1 or 2, wherein the high temperature gas is adjusted to a temperature of 450°C to 700°C.
- 前記セメント硬化体は、廃セメント材によって構成されている請求項1又は2に記載の高温ガスの処理方法。 3. The method for treating high-temperature gas according to claim 1, wherein the hardened cement body is made of waste cement material.
- 前記セメント硬化体は、コンクリート材から固化前に骨材を分離して除去した残分により構成されている請求項1又は2に記載の高温ガスの処理方法。 3. The method for treating high-temperature gas according to claim 1, wherein the hardened cement is composed of a residue obtained by separating and removing aggregate from concrete material before solidification.
- 前記二酸化炭素を固定したセメント硬化体を回収してセメント系材料として再利用する請求項1又は2に記載の高温ガスの処理方法。 3. The high-temperature gas processing method according to claim 1, wherein the hardened cement body in which the carbon dioxide is fixed is recovered and reused as a cement material.
- 前記高温ガスは、下水汚泥焼却場から発生する排ガスである請求項1又は2に記載の高温ガスの処理方法。 The high temperature gas processing method according to claim 1 or 2, wherein the high temperature gas is exhaust gas generated from a sewage sludge incinerator.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022136170 | 2022-08-29 | ||
JP2022-136170 | 2022-08-29 | ||
JP2023124315A JP2024032662A (en) | 2022-08-29 | 2023-07-31 | Method for treating high-temperature gas |
JP2023-124315 | 2023-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024048386A1 true WO2024048386A1 (en) | 2024-03-07 |
Family
ID=90099587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/030280 WO2024048386A1 (en) | 2022-08-29 | 2023-08-23 | Method for treating high-temperature gas |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024048386A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04197423A (en) * | 1990-11-29 | 1992-07-17 | Mitsui Eng & Shipbuild Co Ltd | Method for removing nitrous oxide in flue gas |
JPH07171346A (en) * | 1993-12-22 | 1995-07-11 | Yuichi Murakami | Removal of nitrous oxide |
JP2001317725A (en) * | 2000-05-10 | 2001-11-16 | Ngk Insulators Ltd | Method for reducing discharge of global warming material from incinerator |
JP2009529408A (en) * | 2006-03-10 | 2009-08-20 | シー. コンリー,ダグラス | Carbon dioxide sequestrants and processes |
JP2010227728A (en) * | 2007-06-26 | 2010-10-14 | Metawater Co Ltd | Method for removing n2o contained in exhaust gas from sewage sludge incinerator |
JP2021138574A (en) * | 2020-03-05 | 2021-09-16 | 太平洋セメント株式会社 | Producing method of cement mixture, mixed cement and carbon dioxide adsorbent |
-
2023
- 2023-08-23 WO PCT/JP2023/030280 patent/WO2024048386A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04197423A (en) * | 1990-11-29 | 1992-07-17 | Mitsui Eng & Shipbuild Co Ltd | Method for removing nitrous oxide in flue gas |
JPH07171346A (en) * | 1993-12-22 | 1995-07-11 | Yuichi Murakami | Removal of nitrous oxide |
JP2001317725A (en) * | 2000-05-10 | 2001-11-16 | Ngk Insulators Ltd | Method for reducing discharge of global warming material from incinerator |
JP2009529408A (en) * | 2006-03-10 | 2009-08-20 | シー. コンリー,ダグラス | Carbon dioxide sequestrants and processes |
JP2010227728A (en) * | 2007-06-26 | 2010-10-14 | Metawater Co Ltd | Method for removing n2o contained in exhaust gas from sewage sludge incinerator |
JP2021138574A (en) * | 2020-03-05 | 2021-09-16 | 太平洋セメント株式会社 | Producing method of cement mixture, mixed cement and carbon dioxide adsorbent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009195791A (en) | Treatment method of incineration ash | |
CN112222149A (en) | Thermal desorption waste incineration fly ash treatment system and process | |
CN107485999A (en) | The processing method of flue gas of refuse burning | |
JPH0398700A (en) | System for using sewage sludge as resources | |
WO2024048386A1 (en) | Method for treating high-temperature gas | |
JP2022539963A (en) | Method and apparatus for processing water treatment residue | |
JP2024032662A (en) | Method for treating high-temperature gas | |
JP2020131074A (en) | Immobilization method of carbon dioxide | |
JP2008264627A (en) | Waste treatment material and treatment method for detoxifying fly ash (soot and dust) and burned ash or the like | |
JP5895035B2 (en) | Highly reactive slaked lime, method for producing the same, and exhaust gas treating agent | |
GB2056422A (en) | Processing of Spent Cell Lining Materials from Electrolytic Reduction Cells for Production of Aluminium | |
JPH09248600A (en) | Method of utilizing sewage sludge as cement making material and fuel | |
AU2022242073A1 (en) | Process for ash remediation | |
EP4438159A1 (en) | A method for producing a composition containing calcium with fixed co2 and an apparatus therefor | |
JP4681259B2 (en) | Sludge treatment method and sludge treatment system | |
CN114508937B (en) | Method for treating calcium sulfate-containing solid waste in variable atmosphere | |
JP2000350976A (en) | Method for solidifying granular steel-making slag | |
TW201742663A (en) | A method of simultaneously removing multiple air pollutants using alkaline wastes | |
CN214108258U (en) | Thermal desorption waste incineration fly ash treatment system | |
JP3294404B2 (en) | How to treat incinerator dust | |
JP2024145831A (en) | Method for fixing carbon dioxide and method for producing cement mixture | |
EP4108316A1 (en) | Method for performing desulfurization and decarbonization of a flue gas | |
JP2024145833A (en) | Method for fixing carbon dioxide and method for producing cement mixture | |
JPS5914076B2 (en) | Acid tar neutralization and combustion method and apparatus | |
WO2002032811A1 (en) | Preparation of calcium silicate and sulfur dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23860149 Country of ref document: EP Kind code of ref document: A1 |