[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024048094A1 - 複合材の成形方法及び成形装置 - Google Patents

複合材の成形方法及び成形装置 Download PDF

Info

Publication number
WO2024048094A1
WO2024048094A1 PCT/JP2023/026025 JP2023026025W WO2024048094A1 WO 2024048094 A1 WO2024048094 A1 WO 2024048094A1 JP 2023026025 W JP2023026025 W JP 2023026025W WO 2024048094 A1 WO2024048094 A1 WO 2024048094A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
laminate
molding
composite material
tension
Prior art date
Application number
PCT/JP2023/026025
Other languages
English (en)
French (fr)
Inventor
幹夫 村岡
清嘉 ▲高▼木
大樹 松山
Original Assignee
三菱重工業株式会社
国立大学法人秋田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 国立大学法人秋田大学 filed Critical 三菱重工業株式会社
Publication of WO2024048094A1 publication Critical patent/WO2024048094A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/04Bending or folding of plates or sheets
    • B29C53/06Forming folding lines by pressing or scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/56Tensioning reinforcements before or during shaping

Definitions

  • the present disclosure relates to a method and apparatus for molding a composite material.
  • a composite material forming method involves forming a prepreg material on the non-planar part of a layup mandrel, covering the prepreg material with a bag film, applying vacuum suction, and heating and curing the prepreg material to form a composite material. and a molding device are known (for example, see Patent Document 1).
  • a composite material for example, there is a girder member having a concave cross section that extends in the longitudinal direction and has a bent part that is bent in a cross section perpendicular to the longitudinal direction.
  • the thickness of a composite material having a bent portion changes during molding. When the thickness changes due to curing and shrinkage of the resin, the length of the radius at the bent portion changes, resulting in a difference in circumferential length at the bent portion before and after molding. Therefore, due to the circumferential length difference, wrinkles may occur around the bent portion, which may result in poor molding.
  • an object of the present disclosure is to provide a method and apparatus for molding a composite material that can suppress the occurrence of molding defects due to shaping of a laminate.
  • a method for forming a composite material according to the present disclosure includes forming a laminate in which a plurality of fiber sheets are laminated into a shape including a bent part using a mold, and impregnating the fiber sheet with resin.
  • the composite material includes the bent portion having a bent shape
  • the mold has a molding surface for molding the composite material, and a molding surface for molding the composite material; a depression formed in a portion other than the molding surface, and arranging the laminate on the molding surface of the mold; and a tension generating member that generates tension in the laminate during shaping.
  • the forming apparatus of the present disclosure shapes a laminate in which a plurality of fiber sheets are laminated into a bent shape including a bent part, and hardens the resin impregnated into the fiber sheet, thereby forming a composite material.
  • the composite material includes the bent portion that has a bent shape, and a molding surface that partially includes a bent molding surface for molding the composite material into the bent shape; a mold having a recess for drawing in a part of a tension generating member that generates tension in the laminate during shaping; the tension generating member covering the laminate; and a mold covered with the tension generating member.
  • the method includes a covering member that covers the laminate, and a suction device that sucks the atmosphere between the covering member and the mold in a state where the space between the covering member and the mold is airtightly sealed. .
  • FIG. 1 is an external perspective view of an example of a composite material molded by the composite material molding method and molding apparatus according to the first embodiment.
  • FIG. 2 is a diagram schematically showing a molding apparatus according to the first embodiment.
  • FIG. 3 is a diagram showing an example of fixing the laminate.
  • FIG. 4 is a diagram showing an example of fixing the laminate.
  • FIG. 5 is an explanatory diagram regarding the method for molding a composite material according to the first embodiment.
  • FIG. 6 is a diagram schematically showing a molding apparatus according to the second embodiment.
  • FIG. 7 is a diagram schematically showing a mold of a molding apparatus according to Embodiment 3.
  • FIG. 1 is an external perspective view of an example of a composite material molded by the composite material molding method and molding apparatus according to the first embodiment.
  • FIG. 2 is a diagram schematically showing a molding apparatus according to the first embodiment.
  • 3 and 4 are diagrams showing an example of fixing the laminate.
  • FIG. 5 is an explanatory diagram regarding the method for molding a composite material according to the first embodiment.
  • the composite material molding method and molding apparatus 1 according to Embodiment 1 is an apparatus for molding a composite material F having a bent portion K having a bent shape.
  • the composite material F to be molded is a girder member (spar) whose longitudinal direction is a predetermined direction.
  • the cross section is deformed to have a concave shape.
  • Embodiment 1 a plurality of fiber sheets are laminated on a mold 11 to form a laminate S in a shape having a bent portion K. Then, by curing the laminate S, a composite material F shown in FIG. 1 is formed. Note that the laminate S, which is formed by laminating a plurality of fiber sheets into a planar shape, may be shaped into a shape having a bent portion K using the mold 11. In the bent portion K, the thickness in the lamination direction changes during at least one of shaping and curing, and based on this change, the location where wrinkles will occur can be predicted in advance.
  • a sheet in which reinforcing fibers are impregnated with resin is used as the fiber sheet, and for example, prepreg is used.
  • a prepreg is used as the fiber sheet, but the structure is not particularly limited to this, and a dry reinforcing fiber sheet that does not contain resin may be used.
  • the molding device 1 includes a mold 11, a tension generating film (tension generating member) 12, a breather 14, a bag film (covering member) 15, and a suction device 16.
  • the molding device 1 may further include a pressing plate (pressing member) 13 in order to obtain the effects described later.
  • the mold 11 is a mold material for shaping the laminate S before molding.
  • the mold 11 is a mold that is long in the longitudinal direction.
  • the mold 11 has a molding surface and a depression 21 formed in a portion other than the molding surface.
  • the mold 11 has an upper surface 11a, a lower surface 11b facing the upper surface 11a, and a pair of side surfaces 11c provided on both sides of the upper surface 11a and the lower surface 11b in the width direction.
  • the molding surface includes an upper surface 11a and a portion of a pair of side surfaces 11c continuous with the upper surface 11a on the upper surface 11a side.
  • the connecting portion connecting the top surface 11a and the side surface 11c functions as a curved molding surface for molding the composite material F into a curved shape.
  • the depression 21 is provided in a region other than the molding surface, and in the first embodiment, it is provided in the lower surface 11b.
  • the depression 21 is formed, for example, by a curved surface having no bent corners.
  • the recess 21 is a hole or a recess formed by being immersed in the lower surface 11b in order to draw in a part of the tension-generating film 12 disposed opposite to the lower surface 11b in the process of sucking the internal atmosphere described later. There is.
  • the depression 21 is formed to extend along the longitudinal direction of the mold 11.
  • the laminate S is placed on the molding surface of the mold 11, as shown in FIG. ) will be placed.
  • the fiber sheet used in the laminate S is a unidirectional material in which the fiber directions are aligned in one predetermined direction.
  • the laminate S is made by laminating fiber sheets with different fiber directions.
  • a unidirectional material was applied as the fiber sheet, but it may be a woven fabric or a non-woven fabric, and is not particularly limited.
  • the tension-generating film 12 is placed to cover the outside of the laminate S placed in the mold 11.
  • the tension generating film 12 is a film that generates tension in the laminate S during shaping.
  • the tension-generating film 12 only needs to have flexibility, tensile strength to withstand the tensile load in the internal atmosphere suction process described later, and heat resistance to withstand the heating in the composite material forming process. Not needed. In order to effectively apply tension, it is preferable that the elasticity is small.
  • Suitable materials include, for example, polytetrafluoroethylene (PTFE, eg, Teflon®), polyimide (eg, Kapton®). As shown in FIG.
  • the tension-generating film 12 is wound in the circumferential direction of the mold 11 with the longitudinal direction of the mold 11 being the axial direction of the central axis. Thereby, the tension-generating film 12 is arranged so as to integrally cover the outside of the mold 11 and the laminate S placed on the mold 11 in the circumferential direction, with a part of the film facing the depression 21. .
  • the tension-generating film 12 may have releasability with respect to the laminate S.
  • the tension generating film 12 may be coated with a release agent on the surface facing the laminate S, or may be subjected to a mold release treatment on the surface facing the laminate S.
  • the tension generating film 12 may be a peel ply that can be peeled off from the laminate S.
  • a release film 12a having release properties may be inserted between the tension generating film 12 and the laminate S.
  • both ends in the circumferential direction of the tension-generating film 12 wound around the circumferential direction of the mold 11 are each fixed in order to ensure a reaction force against a tensile load in the step of sucking the internal atmosphere, which will be described later.
  • the tension-generating film 12 is fixed to the mold 11 by being arranged in a loop shape.
  • the tension-generating film 12 is wound around the mold 11 in a loop shape, and both ends of the tension-generating film 12 in the circumferential direction are overlapped, and the overlapping region where both ends overlap is covered with tape. It is fixed with a fixing member 25 such as. At this time, the overlapping portion where both ends of the tension generating film 12 overlap is formed so as not to face the depression 21 . Note that the overlapping portion may be formed to face the depression 21.
  • the tension-generating film 12 is wound around the mold 11 in a loop shape, and is butted against each other so that both ends of the tension-generating film 12 in the circumferential direction are opposed to each other, and the butted portion where the both ends are butted is is fixed with a fixing member 25 such as tape.
  • the abutting portion where both ends of the tension-generating film 12 are abutted is formed so as not to face the depression 21 .
  • the abutting portion may be formed to face the depression 21.
  • the molding apparatus 1 of Embodiment 1 may further include a press plate 13.
  • the laminate S may be pressed by additionally using the pressing plate 13.
  • the pressing plate 13 is placed outside the tension-generating film 12 and placed at a predetermined location on the laminate S where pressing is required.
  • the press plate 13 is arranged to face the upper surface 11a and the pair of side surfaces 11c of the mold 11.
  • the pressing plate 13 is formed into a plate shape, and suppresses changes in shape on the outside of the laminate S.
  • the breather 14 is arranged to cover the outside of the tension generating film 12 and the pressing plate 13.
  • the breather 14 forms a degassing circuit that becomes a flow path through which the internal atmosphere of the bag film 15 flows during vacuum suction, which will be described later.
  • the bag film 15 is a bag-shaped film that accommodates the laminate S together with the mold 11.
  • the bag film 15 hermetically seals the inside thereof. Therefore, the inside of the bag film 15 and the mold 11 are hermetically sealed from the outside.
  • the bag film 15 is provided with a suction hole 15a connected to a suction device 16.
  • the bag film 15 applies a pressing force to the laminate S due to the difference in internal and external pressure (for example, atmospheric pressure) by vacuum suctioning the internal atmosphere.
  • the bag film 15 is not particularly limited to atmospheric pressure, and a pressing force of atmospheric pressure or higher may be applied to the laminate S by pressurizing with an autoclave or the like.
  • the suction device 16 is connected to the suction hole 15a of the bag film 15 and evacuates the inside of the bag film 15.
  • step S1 a mold 11 in which a depression 21 is formed is prepared.
  • step S2 a laminate S is formed by laminating a plurality of fiber sheets along the molding surface of the mold 11.
  • step S2 in order to remove air remaining between the layers of the fiber sheet (debulk), vacuum may be drawn using the bag film 15 every time several layers are laminated.
  • step S3 the tension generating film 12, the pressure plate 13, and the breather 14 are sequentially placed on the outside of the laminate S placed in the mold 11 (step S3).
  • step S3 the tension-generating film 12 is wound around the mold 11 in the circumferential direction, and a part of the tension-generating film 12 is placed so as to face the depression 21.
  • the tension generating film 12 may be fixed by any of the fixing methods shown in FIGS. 2 to 4.
  • the laminate S placed in the mold 11 is housed inside the bag film 15 together with the tension generating film 12, the pressing plate 13, and the breather 14 (step S4).
  • the laminate S is covered with the bag film 15, and the inside of the bag film 15 in which the mold 11 is accommodated is hermetically sealed.
  • the inside of the bag film 15 is evacuated by the suction device 16, and the internal atmosphere of the bag film 15 is sucked through the degassing circuit formed by the breather 14 ( Step S5).
  • step S5 when the inside of the bag film 15 is evacuated, a pressing force is applied to the tension generating film 12 through the bag film 15 due to the pressure difference between the inside and outside. 12 is partially drawn in, a tensile load in the circumferential direction is applied to the laminate S via the tension generating film 12.
  • the laminate S can be stretched to eliminate the slack of the fibers caused by the difference in circumference. This suppresses the generation of wrinkles around the bent portion K.
  • step S5 the laminate S is shaped following the molding surface of the mold 11. Note that when the fiber sheet of the laminate S is a reinforcing fiber sheet in a dry state, a step of impregnating the fiber sheet with a resin is performed after or simultaneously with step S5.
  • the shaped laminate S is placed in the heating furnace 27 together with the bag film 15 and heated, thereby hardening the resin impregnated into the laminate S (step S6 ).
  • the shaped laminate S is thermally cured to form a composite material F including the bent portions K.
  • the resin impregnated into the fiber sheet of the laminate S may be a thermoplastic resin.
  • the laminate S is heated with a tensile load applied in the circumferential direction and then cooled to release the resin.
  • a composite material F including a bent portion K is formed.
  • the heating furnace 27 may be an oven that does not apply pressure, or may be an autoclave that applies pressure. That is, when curing the laminate S by heating, the laminate S may be heated under pressure, or the laminate S may be heated under atmospheric pressure.
  • the molded composite material F is released from the mold 11 (step S7), thereby obtaining the composite material F in which the bent portions K shown in FIG. 1 are formed. After step S7 is executed, the method for forming the composite material F is completed.
  • FIG. 6 is a diagram schematically showing a molding apparatus according to the second embodiment.
  • the molding apparatus 31 of the second embodiment differs from the first embodiment in the position of the depression 33 formed in the mold 11, and has an apparatus configuration in which the mold 11 is placed on the bottom plate 35.
  • the molding device 31 includes a mold 11, a tension-generating film 12, a press plate 13, a breather 14, a bag film 15, and a suction device (not shown). Furthermore, the molding device 31 further includes a bottom plate 35 on which the mold 11 is placed. Note that the tension-generating film 12 and the pressing plate 13 are the same as those in Embodiment 1, and therefore their description will be omitted.
  • a recess 33 formed in the mold 11 is provided on the lower surface 11b side of one side surface 11c.
  • the recesses 33 may be provided not only on the lower surface 11b side of one side surface 11c but also on the lower surface 11b side of the other side surface 11c, or the two recesses 33 may be arranged so as to face each other.
  • the number of depressions 33 may be one, two, or one or more.
  • the tension-generating film 12 is wrapped around the mold 11 in the circumferential direction of the mold 11, as in the first embodiment. That is, the tension-generating film 12 is placed in the mold 11 with a portion thereof facing the recess 33 .
  • the bottom plate 35 is a flat plate-shaped base, and is provided with a suction hole 15a connected to a suction device.
  • the breather 14 is arranged to cover the outside of the mold 11, the tension generating film 12, and the pressure plate 13 installed on the bottom plate 35, and its periphery is placed on the bottom plate 35, and the breather 14 is arranged so as to face the suction hole 15a. Placed.
  • the bag film 15 is arranged to cover the outside of the mold 11, the tension generating film 12, the pressure plate 13, and the breather 14 placed on the bottom plate 35, and is fixed on the bottom plate 35 via a sealing material 36. . Therefore, the space between the bag film 15 and the bottom plate 35 is airtightly sealed.
  • the tension generating film 12 and the pressure plate 13 are placed on the laminate S placed in the mold 11, and placed on the bottom plate 35.
  • the breather 14 and the bag film 15 are covered with respect to the laminate S including the mold 11 set on the bottom plate 35, and the inside between the bag film 15 and the bottom plate 35 is covered. absorb the atmosphere.
  • a part of the tension-generating film 12 is drawn into the recess 33 of the mold 11, and a circumferential tensile load is applied to the laminate S.
  • a tensile load is applied to the laminate S, thereby suppressing the generation of wrinkles around the bent portion K.
  • FIG. 7 is a diagram schematically showing a mold of a molding apparatus according to Embodiment 3.
  • the mold 11 of the molding device 41 of Embodiment 3 includes a mold main body 45 and an attachment part 46 that is attached to and detached from the mold main body 45.
  • the lower surface 11b of the mold body 45 is formed with a fitting groove into which the attachment part 46 is fitted.
  • the recess 21 is formed in the attachment portion 46.
  • the recess 21 is formed, for example, in the longitudinal direction of the mold 11, and the attachment part 46 is removably provided in a fitting groove formed on the lower surface 11b of the mold main body 45, and is attached along the recess 21. It is provided in the longitudinal direction.
  • a plurality of attachment parts 46 may be prepared depending on the shape of the depression 21. For example, when determining appropriate molding conditions according to the conditions of the laminate S, it is possible to aim at molding in which attachment parts 46 having different shapes of recesses 21 are sequentially replaced.
  • the shape of the cross section perpendicular to the longitudinal direction of the depression 21 may be changed depending on the shape of the composite material F to be molded.
  • the composite material F is a girder member whose cross-sectional size decreases from one side in the longitudinal direction to the other side
  • the depressions 21 are formed from one side in the longitudinal direction to the other side.
  • the cross-sectional shape within the cross section may be changed to become smaller.
  • the shape of the depression 21 may be changed by replacing the attachment part 46 with respect to the mold body 45.
  • the attachment portion 46 and the mating groove are provided on the lower surface 11b of the mold body 45, but they may be provided on the side surface 11c instead of the lower surface 11b.
  • the composite material molding method and molding apparatus 1 described in Embodiments 1 to 3 can be understood, for example, as follows.
  • the method for forming a composite material according to the first aspect is to form a composite material F by shaping and curing a laminate S in which a plurality of fiber sheets are laminated using a mold 11.
  • the composite material F includes a bent part K having a bent shape
  • the mold 11 has a molding surface for molding the composite material F, and a depression 21 formed at a portion other than the molding surface.
  • the method includes a step S5 in which the laminate S is shaped by drawing in the laminate S, and a step S6 in which the composite material F is formed by curing the laminate S after being shaped.
  • the laminate S can be shaped while a tensile load is applied to the laminate S. Therefore, occurrence of molding defects due to shaping of the laminate S can be suppressed.
  • the pressing force due to the difference in internal and external pressure applied during the molding process acts in the normal direction of the molding surface, and the fibers generated due to the change in circumferential length I could't resolve the remainder.
  • a tensile load can be applied to the laminate S during the shaping process or the molding process, thereby suppressing the occurrence of molding defects.
  • the covering member is a bag film that accommodates the laminate S together with the mold 11.
  • the laminate S can be stored in the bag film 15 together with the mold 11 and the laminate S can be shaped, so the device configuration of the molding device 1 can be made compact. .
  • the mold 11 is long in the longitudinal direction, and the tension generating member is stacked in the laminated material.
  • Step S3 of covering the body the tension generating member is wrapped around the mold 11 in the circumferential direction with the longitudinal direction being the axial direction of the central axis, and the tension generating member is covered with the laminate S.
  • the tension generating member can be easily arranged along the molding surface of the mold 11 by simply wrapping it around the mold 11 in the circumferential direction.
  • step S3 of covering the tension generating member on the laminate in step S3 of covering the tension generating member on the laminate, the circumference of the tension generating member wound in the circumferential direction of the mold 11 is Overlap both ends of the direction.
  • the laminate S can be easily covered by simply wrapping the tension generating member around the mold 11 in the circumferential direction.
  • step S3 of covering the tension generating member on the laminate in step S3 of covering the tension generating member on the laminate, the periphery of the tension generating member wound in the circumferential direction of the mold 11 is Join by butting both ends of the direction.
  • step S4 of airtightly sealing between the covering member and the mold 11 the lamination A pressing member (pressing plate 13) for pressing the body S to follow the mold 11 is arranged on the laminate S.
  • the laminate S when a tensile load is applied to the laminate S, the laminate S tends to become circular due to the principle of minimum free energy (principle of minimum potential energy).
  • the pressing member prevents the laminate S from becoming circular due to its rigidity in the pressing direction, and causes the laminate S to follow the mold 11. It can be made into a shape.
  • the end of the pressing member is desirably chamfered because the ground pressure on the laminate S is locally high and the footprint is transferred to the laminate S, but chamfering is not necessary. .
  • a molding apparatus is a molding apparatus 1 for molding a composite material by shaping and curing a laminate S obtained by laminating a plurality of fiber sheets, in which the composite material F has a bent shape.
  • a mold having a molding surface for molding the composite material F, including a bent part K, and a recess 21 for drawing in a part of the tension generating member that generates tension in the laminate S during shaping. 11, the tension generating member (tension generating film 12) covering the laminate S, the covering member (bag film 15) covering the laminate S covered with the tension generating member, the covering member and the molding.
  • a suction device 16 is provided that sucks the atmosphere between the covering member and the mold 11 in a state where the space between the mold 11 and the mold 11 is airtightly sealed.
  • the laminate S can be shaped while a tensile load is applied to the laminate S. Therefore, occurrence of molding defects due to shaping of the laminate S can be suppressed.
  • the composite material F is a girder member that is long in the longitudinal direction and deformed in an orthogonal plane perpendicular to the longitudinal direction, and The cross-sectional shape in the orthogonal plane changes from one side to the other, and the cross-sectional shape of the depression changes in the orthogonal plane from one side to the other in the longitudinal direction.
  • the magnitude of the tensile load can be appropriately changed by changing the cross-sectional shape of the depression 21 according to the change in the cross-sectional shape within the orthogonal plane (cross-section) of the composite material F.
  • the mold 11 includes a mold body 45 and an attachment part that is attached to and detached from the mold body 45 and in which the recess 21 is formed. 46.
  • the shape of the depression 21 can be easily changed by replacing the attachment part 46 with the mold body 45.
  • Molding device 11 Molding mold 12 Tension generating film (tension generating member) 12a Release film 13 Pressing plate (pressing member) 14 Breather 15 Bag film (covering member) 16 Suction device 21 Hollow 31 Molding device (Embodiment 2) 33 Hollow 41 Molding device (Embodiment 3) 45 Molding mold body 46 Attachment part K Bent part F Composite material S Laminated body

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

繊維シートを複数積層した積層体を、成形型を用いて賦形して硬化させることで、複合材を成形する複合材の成形方法において、複合材は、屈曲した形状となる屈曲部を含み、成形型は、複合材を成形する成形面と、成形面以外の部位に形成される窪みと、を有し、成形型の成形面に積層体を配置するステップと、賦形時において積層体に張力を発生させる張力発生部材を積層体に覆うと共に、張力発生部材の一部を窪みに対向させて配置するステップと、張力発生部材で覆われた積層体を、被覆部材により覆って、被覆部材と成形型との間を気密に封止するステップと、被覆部材と成形型との間の雰囲気を吸引し、窪みに張力発生部材の一部を引き込ませて、積層体を賦形するステップと、賦形後の積層体を硬化させることで、複合材を成形するステップと、を備える。

Description

複合材の成形方法及び成形装置
 本開示は、複合材の成形方法及び成形装置に関するものである。
 従来、レイアップ心棒の非平面の部分にプリプレグ材料を形成し、プリプレグ材料上にバッグフィルムを被覆して真空吸引し、プリプレグ材料を加熱硬化させることで、複合材を成形する複合材の成形方法及び成形装置が知られている(例えば、特許文献1参照)。
特開2012-187925号公報
 ところで、複合材としては、例えば、長手方向に延在すると共に、長手方向に直交する断面において屈曲する屈曲部を有する断面凹形状の桁部材がある。屈曲部を有する複合材は、成形時において、厚みが変化する。樹脂の硬化収縮などにより厚みが変化すると、屈曲部における半径の長さが変化することにより成形前後において屈曲部に周長差が発生する。このため、周長差が発生することにより、屈曲部周りにリンクル(しわ)が発生し、成形不良となる可能性がある。
 そこで、本開示は、積層体の賦形による成形不良の発生を抑制することができる複合材の成形方法及び成形装置を提供することを課題とする。
 本開示の複合材の成形方法は、繊維シートを複数積層した積層体を、成形型を用いて屈曲した形状となる屈曲部を含む形状に賦形して、前記繊維シートに含侵させた樹脂を硬化させることで、複合材を成形する複合材の成形方法において、前記複合材は、屈曲した形状となる前記屈曲部を含み、前記成形型は、前記複合材を成形する成形面と、前記成形面以外の部位に形成される窪みと、を有し、前記成形型の前記成形面に前記積層体を配置するステップと、賦形時において前記積層体に張力を発生させる張力発生部材を前記積層体に覆うと共に、前記張力発生部材の一部を前記窪みに対向させて配置するステップと、前記張力発生部材で覆われた前記積層体を、被覆部材により覆って、前記被覆部材と前記成形型との間を気密に封止するステップと、前記被覆部材と前記成形型との間の雰囲気を吸引し、前記窪みに前記張力発生部材の一部を引き込ませて、前記積層体を賦形するステップと、賦形後の前記積層体を硬化させることで、前記複合材を成形するステップと、を備える。
 本開示の成形装置は、繊維シートを複数積層した積層体を、屈曲した形状となる屈曲部を含む形状に賦形して、前記繊維シートに含侵させた樹脂を硬化させることで、複合材を成形するための成形装置において、前記複合材は、屈曲した形状となる前記屈曲部を含み、前記複合材を屈曲した形状に成形するための屈曲した成形面を一部に備える成形面と、賦形時において前記積層体に張力を発生させる張力発生部材の一部を引き込むための窪みと、を有する成形型と、前記積層体を覆う前記張力発生部材と、前記張力発生部材で覆われた前記積層体を覆う被覆部材と、前記被覆部材と前記成形型との間が気密に封止された状態で、前記被覆部材と前記成形型との間の雰囲気を吸引する吸引装置と、を備える。
 本開示によれば、積層体の賦形による成形不良の発生を抑制することができる。
図1は、実施形態1に係る複合材の成形方法及び成形装置により成形される一例の複合材の外観斜視図である。 図2は、実施形態1に係る成形装置を模式的に示した図である。 図3は、積層体の固定の一例を示す図である。 図4は、積層体の固定の一例を示す図である。 図5は、実施形態1に係る複合材の成形方法に関する説明図である。 図6は、実施形態2に係る成形装置を模式的に示した図である。 図7は、実施形態3に係る成形装置の成形型を模式的に示した図である。
 以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの開示が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態1]
 図1は、実施形態1に係る複合材の成形方法及び成形装置により成形される一例の複合材の外観斜視図である。図2は、実施形態1に係る成形装置を模式的に示した図である。図3及び図4は、積層体の固定の一例を示す図である。図5は、実施形態1に係る複合材の成形方法に関する説明図である。
 実施形態1に係る複合材の成形方法及び成形装置1は、屈曲した形状となる屈曲部Kを有する複合材Fを成形するための装置である。図1に示すように、実施形態1において、成形される複合材Fは、所定方向を長手方向とする桁部材(スパー)であり、長手方向に直交する直交面内において、内側に屈曲する2つの屈曲部Kが形成されることで、断面凹形状となるように変形させたものとなっている。
 実施形態1では、繊維シートを成形型11に複数積層して、屈曲部Kを有する形状に積層体Sを形成している。そして、積層体Sを硬化させることで、図1に示す複合材Fを成形している。なお、繊維シートを複数積層して平面形状に形成した積層体Sを、成形型11を用いて、屈曲部Kを有する形状に賦形してもよい。屈曲部Kでは、賦形時および硬化時の少なくとも一方において積層方向における厚さが変化しており、この変化に基づいて、リンクルの発生個所が事前に予測される。なお、実施形態1では、繊維シートとして、強化繊維に樹脂を含侵させたシートを適用しており、例えば、プリプレグを適用している。実施形態1では、繊維シートとしてプリプレグを適用したが、この構成に特に限定されず、樹脂を含まないドライ状態の強化繊維シートを適用してもよい。
(成形装置)
 図2を参照して、成形装置1について説明する。図2に示すように、成形装置1は、成形型11と、張力発生フィルム(張力発生部材)12と、ブリーザー14と、バッグフィルム(被覆部材)15と、吸引装置16とを備えている。成形装置1は、後述する効果を得るため、さらに押圧プレート(押圧部材)13を備えてもよい。
 成形型11は、成形前の積層体Sを賦形させるための型材となっている。成形型11は、長手方向に長い成形型となっている。成形型11は、成形面と、成形面以外の部位に形成される窪み21と、を有する。具体的に、成形型11は、上面11aと、上面11aに対向する下面11bと、上面11a及び下面11bの幅方向両側に設けられる一対の側面11cと、を有している。成形面は、上面11aと、上面11aに連なる一対の側面11cの上面11a側の一部とからなっている。上面11aと側面11cとを接続する接続部は、複合材Fを屈曲した形状に成形するための屈曲した成形面として働いている。
 窪み21は、成形面以外の部位に設けられ、実施形態1では、下面11bに設けられている。窪み21は、例えば、屈曲する角部を有さない曲面により形成されている。窪み21は、後述する内部雰囲気を吸引する工程において、下面11bに対向して配置される張力発生フィルム12の一部を引き込むために、下面11bに没入して形成される穴もしくは凹部となっている。窪み21は、成形型11の長手方向に沿って延在して形成されている。
 このような成形型11に対して、積層体Sは、図2に示すように、成形型11の成形面上に配置されると共に、窪み21と対向しないように(窪み21を開放させた状態で)配置される。
 ここで、成形型11に配置される積層体Sについて説明する。積層体Sに用いられる繊維シートは、繊維方向が所定の一方向に引き揃えられた一方向材となっている。積層体Sは、繊維シートの繊維方向を異ならせて積層したものとなっている。なお、実施形態1では、繊維シートとして、一方向材を適用したが、織布であってもよいし、不織布であってもよく、特に限定されない。
 張力発生フィルム12は、成形型11に配置された積層体Sの外側を覆って配置される。張力発生フィルム12は、賦形時において積層体Sに張力を発生させるフィルムとなっている。張力発生フィルム12は、可撓性と、後述する内部雰囲気を吸引する工程での引張荷重に耐える引張強度と、複合材成形工程での加熱に耐える耐熱性を備えていればよく、伸縮性を要しない。張力を効果的に印加するうえでは伸縮性が小さい方が好ましい。好適な材料として、例えば、ポリテトラフロオロエチレン(PTFE、例えば、テフロン(登録商標))、ポリイミド(例えば、カプトン(登録商標))が挙げられる。張力発生フィルム12は、図2に示すように、成形型11の長手方向を中心軸の軸方向として、成形型11の周方向に巻き付けられる。これにより、張力発生フィルム12は、その一部が窪み21に対向した状態で、成形型11および成形型11上に配置された積層体Sの外側を周方向に一体に覆うように配置される。
 また、張力発生フィルム12は、積層体Sに対する離型性を有していてもよい。例えば、張力発生フィルム12は、積層体S側の面に離型剤を塗布してもよいし、積層体S側の面が離型処理されたものであってもよい。なお、張力発生フィルム12は、積層体Sから引き剥がし可能なピールプライであってもよい。また、張力発生フィルム12と積層体Sの間に離型性をもつ離型フィルム12aを挿入してもよい。
 ここで、図2から図4を参照して、成形型11に巻き付けられる張力発生フィルム12の固定について説明する。成形型11の周方向に巻き付けられる張力発生フィルム12の周方向における両端部は、後述する内部雰囲気を吸引する工程において引張荷重に対する反力を確保するためにそれぞれ固定される。図2に示す一例では、張力発生フィルム12は、成形型11にループ状に配置されることで固定されている。
 図3に示す一例では、張力発生フィルム12は、成形型11にループ状に巻き付けられ、張力発生フィルム12の周方向の両端部が重ね合わせられており、両端部が重複する重複部位が、テープ等の固定部材25で固定されている。このとき、張力発生フィルム12の両端部が重複する重複部位は、窪み21と対向しないように形成される。なお、重複部位は、窪み21と対向するように形成されていてもよい。
 図4に示す一例では、張力発生フィルム12は、成形型11にループ状に巻き付けられ、張力発生フィルム12の周方向の両端部が対向するように突き合わせられており、両端部を突き合わせた突き合わせ部位が、テープ等の固定部材25で固定されている。このとき、張力発生フィルム12の両端部を突き合わせた突き合わせ部位は、窪み21と対向しないように形成される。なお、突き合わせ部位は、窪み21と対向するように形成されていてもよい。
 実施形態1の成形装置1においては、さらに押圧プレート13を備えていてもよい。押圧プレート13を付加的に用いることで、積層体Sの押圧を行うこととしてもよい。押圧プレート13は、張力発生フィルム12の外側に配置され、積層体Sの押圧を要する所定の箇所に配置される。実施形態1において、押圧プレート13は、成形型11の上面11a及び一対の側面11cに対向して配置される。押圧プレート13は、板状に形成されており、積層体Sの外側における形状の変化を抑制する。
 ブリーザー14は、張力発生フィルム12及び押圧プレート13の外側を覆って配置される。ブリーザー14は、後述する真空吸引時において、バッグフィルム15の内部雰囲気が流通する流路となる脱気回路を形成している。
 バッグフィルム15は、成形型11と共に積層体Sを収容する袋状のフィルムである。バッグフィルム15は、その内部を気密に封止する。このため、バッグフィルム15の内部と成形型11とは、外部に対して気密に封止される。バッグフィルム15には、吸引装置16に接続される吸引穴15aが設けられている。バッグフィルム15は、内部雰囲気が真空吸引されることで、内外気圧差(例えば、大気圧)による押圧力を積層体Sに付与する。なお、バッグフィルム15は、大気圧に特に限定されず、オートクレーブ等で加圧することで、大気圧以上の押圧力を積層体Sに付与してもよい。
 吸引装置16は、バッグフィルム15の吸引穴15aに接続され、バッグフィルム15の内部を真空引きする。
(複合材の成形方法)
 次に、図5を参照して、成形装置1を用いた複合材Fの成形方法について説明する。図5に示すように、複合材Fの成形方法では、先ず、窪み21が形成された成形型11を用意する(ステップS1)。続いて、複合材Fの成形方法では、成形型11に積層体Sを配置する(ステップS2)。ステップS2では、繊維シートを成形型11の成形面に倣って複数積層することで、積層体Sを形成する。なお、ステップS2では、繊維シートの層間に残存する空気を抜くために(デバルクするために)、数層積層するごとに、バッグフィルム15を用いて真空引きしてもよい。
 次に、複合材Fの成形方法では、成形型11に配置した積層体Sの外側に、張力発生フィルム12、押圧プレート13及びブリーザー14を順に配置する(ステップS3)。ステップS3では、張力発生フィルム12を、成形型11の周方向に巻き付けて、その一部を窪み21に対向するように配置する。なお、ステップS3において、張力発生フィルム12の固定は、図2から図4に示す何れの固定であってもよい。
 そして、複合材Fの成形方法では、成形型11に配置した積層体Sを、張力発生フィルム12、押圧プレート13及びブリーザー14と共に、バッグフィルム15の内部に収容する(ステップS4)。これにより、ステップS4では、積層体Sをバッグフィルム15により覆って、成形型11が収容されたバッグフィルム15の内部を気密に封止する。続いて、複合材Fの成形方法では、吸引装置16によりバッグフィルム15の内部を真空引きすることで、ブリーザー14によって形成された脱気回路を介して、バッグフィルム15の内部雰囲気を吸引する(ステップS5)。ステップS5において、バッグフィルム15の内部が真空引きされると、内外圧力差によりバッグフィルム15を介して張力発生フィルム12への押圧力が加わり、これにより、成形型11の窪み21に張力発生フィルム12の一部が引き込まれることで、張力発生フィルム12を介して積層体Sに周方向の引張荷重が付与される。これにより、積層体Sに引張荷重が付与されることで、屈曲部Kに周長差が発生する場合であっても、周長差により生ずる繊維のたるみを解消するように積層体Sを引き延ばすことで、屈曲部K周りにおけるリンクルの発生が抑制される。そして、ステップS5では、成形型11の成形面に倣って、積層体Sが賦形される。なお、積層体Sの繊維シートが、ドライ状態の強化繊維シートである場合、ステップS5の後、またはステップS5と同時に、繊維シートに樹脂を含侵させる工程が実行される。
 この後、複合材Fの成形方法では、賦形後の積層体Sをバッグフィルム15と共に、加熱炉27内に入れて加熱することで、積層体Sに含侵される樹脂を硬化させる(ステップS6)。ステップS6では、賦形後の積層体Sを熱硬化させることで、屈曲部Kを含む複合材Fを成形する。なお、ステップS6においても、張力発生フィルム12を介して積層体Sに周方向の引張荷重を付与することで硬化に伴う周長差によるリンクルの発生が抑制される。また、積層体Sの繊維シートに含侵される樹脂は、熱可塑性樹脂であってもよく、この場合、積層体Sに周方向の引張荷重を付与した状態で加熱したのちに冷却して樹脂を硬化させることで、屈曲部Kを含む複合材Fを成形する。なお、加熱炉27は、加圧を行わないオーブンであってもよいし、加圧を行うオートクレーブであってもよい。つまり、積層体Sの加熱硬化時において、積層体Sを加圧して加熱してもよいし、大気圧下において積層体Sを加熱してもよい。そして、複合材Fの成形方法では、成形型11から成形後の複合材Fを離型する(ステップS7)ことで、図1に示す屈曲部Kが形成された複合材Fを取得する。ステップS7の実行後、複合材Fの成形方法が終了となる。
[実施形態2]
 次に、図6を参照して、実施形態2について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図6は、実施形態2に係る成形装置を模式的に示した図である。
 実施形態2の成形装置31は、成形型11に形成される窪み33の位置が、実施形態1と異なっており、成形型11を敷板35上に配置した装置構成となっている。成形装置31は、実施形態1と同様に、成形型11と、張力発生フィルム12と、押圧プレート13と、ブリーザー14と、バッグフィルム15と、吸引装置(図示省略)とを備える。また、成形装置31は、成形型11を配置する敷板35を、さらに備える。なお、張力発生フィルム12及び押圧プレート13は、実施形態1と同様であるため、説明を省略する。
 成形型11は、成形型11に形成される窪み33が、一方の側面11cの下面11b側に設けられている。なお、窪み33は、一方の側面11cの下面11b側だけでなく、他方の側面11cの下面11b側に設けてもよく、2個の窪み33が対向するように配置してもよい。つまり、窪み33は、1個であってもよいし、2個であってもよく、1個以上あればよい。
 このような成形型11に対して、張力発生フィルム12は、図6に示すように、実施形態1と同様に、成形型11の周方向に巻き付けられる。つまり、張力発生フィルム12は、その一部が窪み33に対向した状態で、成形型11に配置される。
 敷板35は、平板形状の台となっており、吸引装置に接続される吸引穴15aが設けられている。ブリーザー14は、敷板35上に設置された成形型11、張力発生フィルム12及び押圧プレート13の外側を覆って配置され、その周縁が敷板35上に配置されると共に、吸引穴15aに対向して配置される。バッグフィルム15は、敷板35上に設置された成形型11、張力発生フィルム12、押圧プレート13及びブリーザー14の外側を覆って配置され、シール材36を介して、敷板35上に固定されている。このため、バッグフィルム15と敷板35との間は気密に封止される。
 このような成形型11を用いた複合材Fの成形方法では、成形型11に配置した積層体Sに対して、張力発生フィルム12及び押圧プレート13を配置して、敷板35上に設置する。この後、複合材Fの成形方法では、敷板35上に設置された成形型11を含む積層体Sに対して、ブリーザー14及びバッグフィルム15を覆い、バッグフィルム15と敷板35との間の内部雰囲気を吸引する。すると、成形型11の窪み33に張力発生フィルム12の一部が引き込まれることで、積層体Sに周方向の引張荷重が付与される。これにより、積層体Sに引張荷重が付与されることで、屈曲部K周りにおけるリンクルの発生が抑制される。
[実施形態3]
 次に、図7を参照して、実施形態3について説明する。なお、実施形態3でも、重複した記載を避けるべく、実施形態1及び2と異なる部分について説明し、実施形態1及び2と同様の構成である部分については、同じ符号を付して説明する。図7は、実施形態3に係る成形装置の成形型を模式的に示した図である。
 実施形態3の成形装置41の成形型11は、成形型本体45と、成形型本体45に着脱されるアタッチメント部46と、を有している。成形型本体45の下面11bには、アタッチメント部46を装着するために嵌め合わされる篏合溝が形成されている。窪み21は、アタッチメント部46に形成されている。窪み21は、例えば、成形型11の長手方向に亘って形成されており、アタッチメント部46は、成形型本体45の下面11bに形成された篏合溝に着脱自在に設けられ、窪み21に沿って、長手方向に亘って設けられている。アタッチメント部46は、窪み21の形状に応じて、複数用意してもよい。例えば、積層体Sの条件に応じて適正な成形条件を追い込む際には、窪み21の形状の異なるアタッチメント部46を順次付け替える成形を志向することができる。
 窪み21は、長手方向に直交する断面の形状が、成形される複合材Fの形状に応じて変化させてもよい。複合材Fは、例えば、長手方向の一方側から他方側へ向かって、断面内における大きさが小さくなっていく桁部材である場合、窪み21は、長手方向一方側から他方側へ向かって、断面内における断面形状が小さくなるように変化してもよい。実施形態3では、成形型本体45に対してアタッチメント部46を付け替えることで、窪み21の形状を変化させてもよい。なお、実施形態3では、成形型本体45の下面11bにアタッチメント部46及び篏合溝を設けたが、下面11bに代えて、側面11cに設けてもよい。
 以上のように、実施形態1から3に記載の複合材の成形方法及び成形装置1は、例えば、以下のように把握される。
 第1の態様に係る複合材の成形方法は、繊維シートを複数積層した積層体Sを、成形型11を用いて賦形して硬化させることで、複合材Fを成形する複合材Fの成形方法において、前記複合材Fは、屈曲した形状となる屈曲部Kを含み、前記成形型11は、前記複合材Fを成形する成形面と、前記成形面以外の部位に形成される窪み21と、を有し、前記成形型11の前記成形面に前記積層体Sを配置するステップS2と、賦形時において前記積層体Sに張力を発生させる張力発生部材(張力発生フィルム12)を前記積層体Sに覆うと共に、前記張力発生部材の一部を前記窪み21に対向させて配置するステップS3と、前記張力発生部材で覆われた前記積層体Sを、被覆部材(バッグフィルム15)により覆って、前記被覆部材と前記成形型11との間を気密に封止するステップS4と、前記被覆部材と前記成形型11との間の雰囲気を吸引し、前記窪み21に前記張力発生部材の一部を引き込ませて、前記積層体Sを賦形するステップS5と、賦形後の前記積層体Sを硬化させることで、前記複合材Fを成形するステップS6と、を備える。
 この構成によれば、窪み21に、張力発生部材の一部を引き込ませることで、積層体Sに引張荷重を付与した状態で、積層体Sを賦形することができる。このため、積層体Sの賦形による成形不良の発生を抑制することができる。これに対して、成形型全体をバッグフィルムのみで覆う従来の成形方法では、成形過程において付与される内外圧差による押圧力は、成形面の法線方向に働き、周長差の変化により生ずる繊維余りを解消できなかった。本開示の構成では、張力発生部材の一部を引き込ませることで、積層体Sに賦形過程あるいは成形過程において引張荷重を付与し、成形不良の発生を抑制することができる。
 第2の態様として、第1の態様に係る複合材Fの成形方法において、前記被覆部材は、前記成形型11と共に前記積層体Sを収容するバッグフィルムである。
 この構成によれば、バッグフィルム15に、積層体Sを成形型11と共に収容して、積層体Sを賦形することができるため、成形装置1の装置構成をコンパクトなものとすることができる。
 第3の態様として、第1または第2のいずれか1つの態様に係る複合材Fの成形方法において、前記成形型11は、長手方向に長いものとなっており、前記張力発生部材を前記積層体に覆うステップS3では、前記長手方向を中心軸の軸方向として、前記成形型11の周方向に前記張力発生部材を巻き付けて、前記張力発生部材を前記積層体Sに覆う。
 この構成によれば、成形型11の周方向に巻き付けるだけで、成形型11の成形面に倣って張力発生部材を簡単に配置することができる。
 第4の態様として、第3の態様に係る複合材Fの成形方法において、前記張力発生部材を前記積層体に覆うステップS3では、前記成形型11の周方向に巻き付けられる前記張力発生部材の周方向の両端部を重ね合わせる。
 この構成によれば、張力発生部材を成形型11の周方向に巻き付けるだけで、積層体Sを簡単に覆うことができる。
 第5の態様として、第3の態様に係る複合材Fの成形方法において、前記張力発生部材を前記積層体に覆うステップS3では、前記成形型11の周方向に巻き付けられる前記張力発生部材の周方向の両端部を突き合わせて接合する。
 この構成によれば、張力発生部材の両端部を突き合わせて接合することで、張力発生部材の両端部に相互に反力を付与することができるため、窪み21に張力発生部材の一部が引き込まれる場合であっても、積層体Sに対して引張荷重を好適に付与することができる。
 第6の態様として、第1から第5のいずれか1つの態様に係る複合材Fの成形方法において、前記被覆部材と前記成形型11との間を気密に封止するステップS4では、前記積層体Sが前記成形型11に倣うように押圧するための押圧部材(押圧プレート13)を、前記積層体S上に配置する。
 この構成によれば、積層体Sに引張荷重が付与されると、自由エネルギー最小の原理(最小ポテンシャルエネルギーの原理)により、積層体Sは円形になろうとする。このとき、押圧部材により積層体Sを成形型11へ向かって押圧することで、押圧部材は押圧方向の剛性により積層体Sが円形になることを抑止し、積層体Sを成形型11に倣った形状とすることができる。なお、押圧部材の端部は、積層体Sへの接地圧が局所的に高くなり、フットプリントが積層体Sに転写されるため、チャンファ加工することが望ましいが、チャンファ加工はなくてもよい。
 第7の態様に係る成形装置は、繊維シートを複数積層した積層体Sを賦形して硬化させることで、複合材を成形するための成形装置1において、前記複合材Fは、屈曲した形状となる屈曲部Kを含み、前記複合材Fを成形する成形面と、賦形時において前記積層体Sに張力を発生させる張力発生部材の一部を引き込むための窪み21と、を有する成形型11と、前記積層体Sを覆う前記張力発生部材(張力発生フィルム12)と、前記張力発生部材で覆われた前記積層体Sを覆う被覆部材(バッグフィルム15)と、前記被覆部材と前記成形型11との間が気密に封止された状態で、前記被覆部材と前記成形型11との間の雰囲気を吸引する吸引装置16と、を備える。
 この構成によれば、窪み21に、張力発生部材の一部を引き込ませることで、積層体Sに引張荷重を付与した状態で、積層体Sを賦形することができる。このため、積層体Sの賦形による成形不良の発生を抑制することができる。
 第8の態様として、第7の態様に係る成形装置において、前記複合材Fは、長手方向に長く、前記長手方向に直交する直交面内において変形させた桁部材であり、前記長手方向の一方側から他方側へ向かって、前記直交面内における断面形状が変化しており、前記窪みは、前記長手方向の一方側から他方側へ向かって、前記直交面内における断面形状が変化する。
 この構成によれば、複合材Fの直交面(断面)内における断面形状の変化に応じて、窪み21の断面形状を変化させることで、引張荷重の大きさを適切に変化させることができる。
 第9の態様として、第7または第8の態様に係る成形装置において、前記成形型11は、成形型本体45と、前記成形型本体45に着脱される共に前記窪み21が形成されたアタッチメント部46と、を有する。
 この構成によれば、アタッチメント部46を成形型本体45に付け替えることで、窪み21の形状を簡単に変化させることができる。
 1 成形装置
 11 成形型
 12 張力発生フィルム(張力発生部材)
 12a 離型フィルム
 13 押圧プレート(押圧部材)
 14 ブリーザー
 15 バッグフィルム(被覆部材)
 16 吸引装置
 21 窪み
 31 成形装置(実施形態2)
 33 窪み
 41 成形装置(実施形態3)
 45 成形型本体
 46 アタッチメント部
 K 屈曲部
 F 複合材
 S 積層体

Claims (9)

  1.  繊維シートを複数積層した積層体を、成形型を用いて屈曲した形状となる屈曲部を含む形状に賦形して、前記繊維シートに含侵させた樹脂を硬化させることで、複合材を成形する複合材の成形方法において、
     前記複合材は、屈曲した形状となる前記屈曲部を含み、
     前記成形型は、前記複合材を成形する成形面と、前記成形面以外の部位に形成される窪みと、を有し、
     前記成形型の前記成形面に前記積層体を配置するステップと、
     賦形時において前記積層体に張力を発生させる張力発生部材を前記積層体に覆うと共に、前記張力発生部材の一部を前記窪みに対向させて配置するステップと、
     前記張力発生部材で覆われた前記積層体を、被覆部材により覆って、前記被覆部材と前記成形型との間を気密に封止するステップと、
     前記被覆部材と前記成形型との間の雰囲気を吸引し、前記窪みに前記張力発生部材の一部を引き込ませて、前記積層体を賦形するステップと、
     賦形後の前記積層体を硬化させることで、前記複合材を成形するステップと、を備える複合材の成形方法。
  2.  前記被覆部材は、前記成形型と共に前記積層体を収容するバッグフィルムである請求項1に記載の複合材の成形方法。
  3.  前記成形型は、長手方向に長いものとなっており、
     前記張力発生部材を前記積層体に覆うステップでは、前記長手方向を中心軸の軸方向として、前記成形型の周方向に前記張力発生部材を巻き付けて、前記張力発生部材を前記積層体に覆う請求項1に記載の複合材の成形方法。
  4.  前記張力発生部材を前記積層体に覆うステップでは、前記成形型の周方向に巻き付けられる前記張力発生部材の周方向の両端部を重ね合わせる請求項3に記載の複合材の成形方法。
  5.  前記張力発生部材を前記積層体に覆うステップでは、前記成形型の周方向に巻き付けられる前記張力発生部材の周方向の両端部を突き合わせて接合する請求項3に記載の複合材の成形方法。
  6.  前記被覆部材と前記成形型との間を気密に封止するステップでは、前記積層体が前記成形型に倣うように押圧するための押圧部材を、前記積層体上に配置する請求項1に記載の複合材の成形方法。
  7.  繊維シートを複数積層した積層体を、屈曲した形状となる屈曲部を含む形状に賦形して、前記繊維シートに含侵させた樹脂を硬化させることで、複合材を成形するための成形装置において、
     前記複合材は、屈曲した形状となる前記屈曲部を含み、
     前記複合材を屈曲した形状に成形するための屈曲した成形面を一部に備える成形面と、賦形時において前記積層体に張力を発生させる張力発生部材の一部を引き込むための窪みと、を有する成形型と、
     前記積層体を覆う前記張力発生部材と、
     前記張力発生部材で覆われた前記積層体を覆う被覆部材と、
     前記被覆部材と前記成形型との間が気密に封止された状態で、前記被覆部材と前記成形型との間の雰囲気を吸引する吸引装置と、を備える成形装置。
  8.  前記複合材は、長手方向に長く、前記長手方向に直交する直交面内において変形させた桁部材であり、前記長手方向の一方側から他方側へ向かって、前記直交面内における断面形状が変化しており、
     前記窪みは、前記長手方向の一方側から他方側へ向かって、前記直交面内における断面形状が変化する請求項7に記載の成形装置。
  9.  前記成形型は、成形型本体と、前記成形型本体に着脱される共に前記窪みが形成されたアタッチメント部と、を有する請求項7に記載の成形装置。
PCT/JP2023/026025 2022-08-29 2023-07-14 複合材の成形方法及び成形装置 WO2024048094A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022136039A JP2024032403A (ja) 2022-08-29 2022-08-29 複合材の成形方法及び成形装置
JP2022-136039 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048094A1 true WO2024048094A1 (ja) 2024-03-07

Family

ID=90099538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026025 WO2024048094A1 (ja) 2022-08-29 2023-07-14 複合材の成形方法及び成形装置

Country Status (2)

Country Link
JP (1) JP2024032403A (ja)
WO (1) WO2024048094A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176998A (ja) * 1998-12-16 2000-06-27 Fuji Heavy Ind Ltd 複合材の成形方法および成形治具
JP2018122523A (ja) * 2017-02-01 2018-08-09 東レ株式会社 バギングシート
JP2019511390A (ja) * 2016-01-21 2019-04-25 サイテック インダストリーズ インコーポレイテッド 複雑な形状の複合材構造体の製造
JP2020093416A (ja) * 2018-12-10 2020-06-18 三菱重工業株式会社 積層体の成形方法及び成形治具
JP2022113386A (ja) * 2021-01-25 2022-08-04 三菱重工業株式会社 成形装置及び成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176998A (ja) * 1998-12-16 2000-06-27 Fuji Heavy Ind Ltd 複合材の成形方法および成形治具
JP2019511390A (ja) * 2016-01-21 2019-04-25 サイテック インダストリーズ インコーポレイテッド 複雑な形状の複合材構造体の製造
JP2018122523A (ja) * 2017-02-01 2018-08-09 東レ株式会社 バギングシート
JP2020093416A (ja) * 2018-12-10 2020-06-18 三菱重工業株式会社 積層体の成形方法及び成形治具
JP2022113386A (ja) * 2021-01-25 2022-08-04 三菱重工業株式会社 成形装置及び成形方法

Also Published As

Publication number Publication date
JP2024032403A (ja) 2024-03-12

Similar Documents

Publication Publication Date Title
JP6093765B2 (ja) 複合材スティフナを搬送し、配置し、そして圧密化する方法及び器具
JP6262842B2 (ja) 成形中の複合積層体における層のしわを低減するための方法及び装置
JP5476916B2 (ja) 繊維強化プラスチックの製造方法
US20080210372A1 (en) Composite article debulking process
JP2007118598A (ja) プリフォームの製造方法および製造装置
US10456961B2 (en) Bonding apparatus and bonding method
JPH10146898A (ja) 繊維強化複合材の成形方法
JP2014522764A5 (ja)
JP5891244B2 (ja) 複合材半径部を圧縮する方法および装置
US20060170127A1 (en) Pressing bag and its production method, and method for producing composite body using such pressing bag
JP6785866B2 (ja) 複合材の成形方法及び複合材の成形用治具
US20220134687A1 (en) Mold for manufacturing composite material molded product, and method for manufacturing composite material molded product
JP2020093416A (ja) 積層体の成形方法及び成形治具
CN108290322B (zh) 复合材料的成型方法、复合材料的成型用夹具及复合材料
JP5665630B2 (ja) 複合材中空部品の成形方法及び成形装置
WO2024048094A1 (ja) 複合材の成形方法及び成形装置
WO2022190282A1 (ja) 複合材成形方法
JP3815848B2 (ja) 複合材の成形装置および成形方法
JP2001038752A (ja) 複合材曲面パネルの成形装置及び成形方法
WO2024048125A1 (ja) 複合材の成形方法及び成形装置
KR102354945B1 (ko) 가요성 튜브와 프리프레그를 이용한 복합재 다관절 중공 구조물을 성형하는 방법
JP7116805B2 (ja) 複合材料構造物製造用治具およびその製造方法、並びに複合材料構造物の製造方法
JP5638492B2 (ja) 繊維強化プラスチック構造体およびその製造方法
JP2023042641A (ja) 繊維強化樹脂を含む接合部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859864

Country of ref document: EP

Kind code of ref document: A1