WO2024046185A1 - 植入式探针装置及其制备方法、电极装置、电子设备 - Google Patents
植入式探针装置及其制备方法、电极装置、电子设备 Download PDFInfo
- Publication number
- WO2024046185A1 WO2024046185A1 PCT/CN2023/114450 CN2023114450W WO2024046185A1 WO 2024046185 A1 WO2024046185 A1 WO 2024046185A1 CN 2023114450 W CN2023114450 W CN 2023114450W WO 2024046185 A1 WO2024046185 A1 WO 2024046185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- level
- segment
- flexible base
- electrodes
- probe device
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 165
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 68
- 210000004556 brain Anatomy 0.000 claims description 49
- 230000011218 segmentation Effects 0.000 claims description 39
- 238000002513 implantation Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 25
- 238000005530 etching Methods 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 230000002787 reinforcement Effects 0.000 claims description 9
- 230000001054 cortical effect Effects 0.000 claims description 6
- 239000000560 biocompatible material Substances 0.000 claims description 5
- 210000003710 cerebral cortex Anatomy 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 12
- 239000011651 chromium Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 229920001721 polyimide Polymers 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 210000005013 brain tissue Anatomy 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 230000006378 damage Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 210000003625 skull Anatomy 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000008733 trauma Effects 0.000 description 4
- 108010022355 Fibroins Proteins 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 238000001883 metal evaporation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 210000004720 cerebrum Anatomy 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 210000003478 temporal lobe Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/291—Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
- A61B5/293—Invasive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/12—Manufacturing methods specially adapted for producing sensors for in-vivo measurements
- A61B2562/125—Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/16—Details of sensor housings or probes; Details of structural supports for sensors
- A61B2562/164—Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier
Definitions
- the present disclosure relates to the technical field of microelectronic packaging interconnection, and in particular to an implantable probe device and its preparation method, electrode device, and electronic equipment.
- Brain-computer interface sometimes called “brain port” or “brain-computer fusion perception” is a direct connection path established between the human or animal brain (or culture of brain cells) and external devices.
- brain-computer interface has attracted widespread attention from the scientific research community and industry around the world.
- the flexible probe device as a branch of brain-computer interface, is considered to be "the last form of brain-computer interface” because of its superior biocompatibility.
- an implantable probe device including: a flexible base including a first part and a plurality of second parts separated from each other, the first part being located at a first end of the implantable probe device, and a plurality of second parts separated from each other.
- a second part extends from the first part to a second end of the implantable probe device, the second end being opposite to the first end;
- the probe pad array includes a plurality of contact pads, the plurality of contact pads are formed on the first in one part; a plurality of electrodes formed in each end section of the plurality of second parts away from the first part, the end sections serving as probes for implantation into the brain of the organism; and a plurality of leads formed in the plurality of second parts.
- each second part of the plurality of second parts includes N-level segments
- the N-level segments are sequentially arranged along the direction from the first end to the second end, and the N-level segments of the plurality of second parts include each end section of the plurality of second parts, where N is greater than or equal to 2.
- a plurality of branches are branched from each segment in the n-th level segment as an n+1-th level segment, and are formed in each segment in the n+1-th level segment.
- the leads are a subset of the leads formed in the nth level segment, where n is an integer and 0 ⁇ n ⁇ N.
- an electrode device including an implantable probe device as described in any one of the above and a data adapter electrically connected to a plurality of contact pads in the probe pad array and configured to transmit signals to or receive signals from the plurality of contact pads.
- an electronic device including the above-mentioned electrode device.
- a method of preparing an implantable probe device includes: forming a first flexible base layer on a support substrate, the first flexible base layer including a first region and a plurality of second region, the first region is located at the first end of the implantable probe device, a plurality of second regions extend from the first region to the second end of the implantable probe device, and the second end is opposite to the first end; in the A metal pattern layer is formed on a flexible base layer.
- the metal pattern layer includes a probe pad array, a plurality of electrodes and a plurality of leads.
- the probe pad array includes a plurality of contact pads, and the plurality of contact pads are formed on the first On a region, a plurality of electrodes are formed in each end section of the plurality of second regions away from the first region, and a plurality of leads are formed on the plurality of second regions to electrically connect corresponding electrodes among the plurality of electrodes.
- Each second part includes N-level segments, the N-level segments are sequentially arranged along the direction from the first end to the second end, and the N-level segments of the plurality of second parts include N-level segments corresponding to the plurality of second regions.
- each end segment, the end segments of the plurality of second portions serve as probes for implantation into the brain of the organism, wherein N is an integer greater than or equal to 2, and wherein, from the nth fraction
- Each segment in the segment branches out a plurality of branches as the n+1th level segment, and the leads formed in each segment in the n+1th level segment are formed in the nth level segment a subset of leads, where n is an integer and 0 ⁇ n ⁇ N; and removing a portion of the support substrate except for a first support substrate portion, the first support substrate portion corresponding to the first portion.
- Figure 1 is a schematic structural diagram of a probe device provided by related technologies
- Figure 2 is a schematic structural diagram of an implantable probe device provided by some embodiments of the present disclosure.
- Figure 3 is a structure of an end section of the second part of the implantable probe device provided by some embodiments of the present disclosure.
- Figure 4 is a partial cross-sectional structural schematic diagram of the implantable probe device provided by some embodiments of the present disclosure along the extending direction from the first end to the second end;
- Figure 5 is a schematic diagram of the disassembled structure of the electrode device provided by some embodiments of the present disclosure.
- Figure 6 is a schematic flowchart of a method for preparing an implantable probe device according to some embodiments of the present disclosure.
- Figure 7 is a schematic diagram of a process of preparing an implantable probe device according to some embodiments of the present disclosure.
- brain electrodes are implanted into the brain of an organism using a probe device.
- the flexible probe device includes a contact pad and a plurality of probes extending from the contact pad, and the end of each probe is designed to be flexible for implantation into the brain of an organism.
- the probes are arranged at one-dimensional intervals, and the distance between the probes is fixed, so the range of brain areas they can cover is relatively limited. If you want to cover a larger brain area, multiple probe devices are often required, which will leave multiple back-end interfaces for the probe devices on the head.
- FIG. 1 is a schematic structural diagram of a probe device 100 provided by the related art.
- the probe device 100 includes a probe pad array 101 and a plurality of probes 102 .
- the front end of each probe 102 is connected to the probe pad array 101, and the end is designed to be flexible for implantation into the brain of an organism.
- the probes 102 are arranged at one-dimensional intervals, and the distance between the probes 102 is fixed, so that the probes 102 are often distributed in a one-dimensional linear fixed distribution during implantation, and the implantation of each probe 102 cannot be selected according to actual needs. into position.
- the range of the brain area that the existing probe device 100 can cover is relatively limited. If you want to cover a larger brain area, multiple probe devices 100 are often needed, which will leave multiple probe devices 100 on the head.
- the back-end interface causes greater damage to the skull and is not conducive to clinical application.
- the present disclosure proposes an implantable probe device and its preparation method, electrode device, and electronic equipment to increase the brain area that a single probe device can cover and reduce the number of back-end interfaces connected to the probe device. Reduce trauma to the implanted skull.
- Figure 2 is a schematic structural diagram of an implantable probe device 200 provided by some embodiments of the present disclosure.
- Figure 3 is a schematic structural diagram of an end section 2020 of the second part of the implantable probe device provided by some embodiments of the present disclosure.
- Figure 4 shows an implantable probe device 200 provided from a first end along a A partial cross-sectional structural diagram in the extending direction to the second end.
- FIG. 2 only schematically shows two second parts, two-level segments of each second part, and the leads and other structures therein, where the number of the second parts, the various levels of segmentation of the second part
- the number and number of leads do not represent the number of these structures in the actual product.
- the number of electrodes and leads in Figure 3 does not represent the number of these structures in the actual product, and is not intended to limit the disclosure.
- FIG. 4 only two electrodes and one contact pad are schematically taken in cross-section, and the cross-section of the lead is not shown (the lead is located in other cross-sections).
- the implantable probe device 200 includes a flexible substrate 20 and a probe pad array located in the flexible substrate 20.
- the flexible substrate 20 includes a first portion 201 and a plurality of second portions 202 separated from each other.
- the first part 201 is located at the first end of the implantable probe device 200, and the plurality of second parts 202 extend from the first part 201 to the second end of the implantable probe device 200, and the second end is opposite to the first end.
- the flexible substrate 20 is used to carry and protect the probe pad array, the plurality of electrodes 22 and the plurality of leads 23 .
- the flexible substrate 20 may include a first flexible substrate layer 2001 and a second flexible substrate layer 2002 arranged in a stack, and the probe pad array, the plurality of electrodes 22 and the plurality of leads 23 are located between the first flexible base layer and the second flexible base layer.
- the materials of the first flexible base layer 2001 and the second flexible base layer 2002 may be the same or different. Specifically, polyimide (PI) material may be used.
- the probe pad array includes a plurality of contact pads 21 formed in the first part 201 of the flexible substrate for electrical connection with external circuits.
- the second flexible base layer 2002 is provided with contact holes (contact holes) 20a for exposing a plurality of contact pads 21 so that the contact pads 21 can be electrically connected to external circuits.
- the plurality of electrodes 22 are formed in each end section 2020 of the plurality of second parts 202 away from the first part 201.
- the end section 2020 serves as a probe for implantation into the brain of the organism, wherein the plurality of electrodes 21 are Used to collect brain signals or output stimulation signals to brain tissue.
- the second flexible base layer 2002 is provided with connection holes 20b for exposing the plurality of electrodes 22 so that the plurality of electrodes 22 can be in contact with the brain tissue to collect brain signals or output stimulation to the brain tissue. Signal.
- a plurality of leads 23 are formed in the plurality of second parts 202 to electrically connect corresponding electrodes 22 of the plurality of electrodes 22 respectively. is connected to a corresponding contact pad 21 among the plurality of contact pads 21 .
- the plurality of electrodes 22 and the plurality of leads 23 correspond one to one, and each electrode 22 is connected to a contact pad 21 through a corresponding lead 23 and is further connected to an external circuit.
- the plurality of contact pads 21 are connected to the chip through a data adapter, thereby electrically connecting the plurality of electrodes 22 to circuits of the chip.
- each second portion 202 of the plurality of second portions 202 of the flexible substrate 20 includes N levels of segmentation.
- the N-level segments are sequentially arranged along the direction from the first end of the implantable probe device 200 to the second end of the implantable probe device 200, and the N-level segments of the plurality of second parts 202 include a plurality of Each end segment 2020 of the second portion 202, where N is an integer greater than or equal to 2.
- N is an integer greater than or equal to 2.
- the end of each segment in the last level segment of each second part 202 is each end section 2020 of the second part 202 .
- Each second portion 202 last stage segment may be referred to as a probe, and its end section 2020 may be referred to as a probe implant portion.
- each second portion 202 of the flexible substrate 20 a plurality of branches are branched from each of the n-th level segments as an n+1-th level segment.
- the multiple branches branching from each segment in the n-th level segmentation are the multiple segments in the n+1-th level segmentation. Therefore, the number of segments in the n+1th level of segments is greater than the number of segments in the nth level of segments, and the leads formed in each segment in the n+1th level of segments are A subset of leads in a stage segment, where n is an integer and 0 ⁇ n ⁇ N.
- each second portion 202 of the flexible substrate 20 includes two levels of segments, namely a first level segment 2021 and a second level segment 2022 , that is, N equals 2.
- the first-level segment 2021 of each second part 202 includes one segment, and a plurality of branches are branched from one segment in the first-level segment 2021 to form a plurality of second-level segments 2022 Segmentation.
- the end section 2020 of each segment in the second level section 2022 serves as a probe for implantation into the brain of an organism, and each end section 2020 is provided with a plurality of electrodes 21 for collecting brain signals. Or output stimulation signals to brain tissue.
- the plurality of leads 23 in the first-level segment 2021 are dispersed to each segment of the second-level segment 2022 , and are finally connected to the end of each segment of the second-level segment 2022 electrode 22. Conversely, the leads 23 in each segment of the second-level segment 2022 are aggregated in the first-level segment 2021 and finally connected to the contact pad 21 .
- the second part of the flexible substrate adopts a multi-level segmented design.
- the number of segments in each level segmentation gradually increases, and then the number of segments in each level segmentation gradually increases. So that the number of segments in the last level segmentation (Nth level segmentation) can be much larger than the number of segments in the first level segmentation (such as multiple expansion), and the number of segments in the last level segmentation is The end region is set as a probe.
- the number of probes of the implantable probe device It can cover a larger implantation range and increase the coverage area of a single implantable probe device.
- the number of implanted probe devices required for EEG signal detection can be reduced, and the number of back-end adapter interfaces connected to the implanted probe devices can be reduced, thereby reducing trauma to the skull of the implanted person.
- the number of segments in each level gradually decreases in the order from the N-th level segmentation to the first-level segmentation, which can also facilitate group management of probes and prevent multiple wires.
- the brain of an organism generally includes brain areas such as the hippocampus and the medial temporal lobe.
- the probes formed by the end segments of each second part of the flexible base are regarded as a large group, and the probes in each large group are The needle is used to implant in a corresponding area of the brain. In this way, entanglement between the probes of each second part can be avoided, and it is beneficial to classify and manage the collected EEG signals.
- each brain region can also be divided into N-level regions step by step to correspond to the N-level segments in the second part, and probes corresponding to each level of segmentation can be implanted into corresponding level regions in the brain region.
- probes corresponding to each segment of the first-level segmentation are implanted in each region of the first-level region of the brain region, and probes corresponding to each segment of the second-level segmentation are implanted in the first-level region of the brain region.
- Each area in the secondary area, and so on, achieve hierarchical management of probes and their detection signals.
- the plurality of second portions 202 of the flexible substrate 20 include a plurality of through holes 20c extending through the flexible substrate 20 .
- the through hole 20c can improve the stress of the second part 202 and increase the flexibility of the second part 202, thereby facilitating the bending and extension of the second part 202, thus conducive to improving the extension range and coverage of each second part 202 of the flexible base 20 area, and is conducive to improving the adhesion between the probe and the brain of the organism.
- the flexible substrate 20 includes a first flexible substrate layer 2001 and a second flexible substrate layer 2002 arranged in a stack.
- the through holes 20c avoid the plurality of electrodes 22 and the plurality of leads 23 between the first flexible base layer 2001 and the second flexible base layer 2002, and penetrate the first flexible base layer 2001 and the second flexible base layer 2002.
- the through holes 20c are evenly distributed among the various levels of segmentation of the second portion 202, but other embodiments are possible.
- the thickness of the 1st to N-1th level segments of the plurality of second portions 202 is greater than the thickness of the Nth level segment of the plurality of second portions 202 .
- the difference between the thickness of the 1st level to the N-1th level segments of the plurality of second parts 202 and the thickness of the Nth level segmentation of the plurality of second parts 202 may be 5 ⁇ m-50 ⁇ m, for example, It can be 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m.
- the second portion 202 of the flexible substrate 20 includes two levels of segments, namely a first level segment 2021 and a second level segment 2022 , that is, N equals 2.
- the thickness of the first-level segment 2021 is greater than the thickness of the second-level segment 2022.
- the second-level segment 2022 has one more reinforcement layer 2000 than the first-level segment 2021, and the thickness d of the reinforcement layer 2000 is 5 ⁇ m. -50 ⁇ m.
- the presence of reinforcement layer 2000 can be advantageous.
- the Nth level segment of the second part 202 is used to form the probe, which requires good flexibility to avoid damage to the brain, so its thickness should not be too large, while the first to N-1th level of the second part 202
- the first-level segment is used to connect the Nth-level segment to the first part. Thickening this segment can enhance the strength and hardness of this segment, avoid breakage and damage to this segment, and help prevent all levels of segmentation. Segments are entangled.
- the thickness of the n-th level segment of the plurality of second parts is greater than the thickness of the n+1-th level segment, 0 ⁇ n ⁇ N. That is, in the direction from the first end to the second end of the implantable probe device 200, the thickness of the plurality of second portions 202 gradually decreases. In this way, breakage and damage of the first to N-1th level segments of the second part 202 can also be avoided, and the segments at all levels can be prevented from being entangled. At the same time, the flexibility of the Nth level segment can be ensured to avoid brain damage.
- the lengths of the segments in the same level of segments of the second part are not exactly equal.
- the end probes of each segment in the same level of segmentation need to be implanted in different brain region locations and/or implantation depths, and thus the distances between these probes and the probe pad array may also be different.
- the length of each segment in the same level of segmentation can be determined according to the position of the probe pad array and each probe implantation area, and their lengths do not need to be consistent. This can satisfy the requirements of the probe pad array and the probe implantation area. Distance requirements between the implantation areas of each probe. For example, the length of each segment of the second-level segment 2022 in FIG. 2 is not exactly the same, and the length of each segment can make the distance between its corresponding end probe and the probe pad array meet the implantation requirements.
- each second segment has one first-level segment, and 5 branches branch off from the first-level segment to form the second-level segment, i.e., the number of segments of the second-level segment is 5.
- 20 branches branch from each segment in the second-level segment to form a third-level segment, that is, the number of segments of the third-level segment branched out by each second-level segment is 20, Then the number of third-level segments included in the entire second part is 100.
- the end of the second part has 100 probes. It can be seen from this that the number of n+1-th level segments branched from each segment in the n-th level segmentation is equal, which can double the number of segments at each level, which facilitates the analysis of the last level. Segmented probe management.
- the plurality of electrodes in the implantable probe device are deep electrodes for implantation in a deep brain region of the organism. Deep electrodes are used in deep brain areas and can be used to detect focal discharges in deep brain areas, record intracranial electroencephalograms, etc.
- the plurality of electrodes in the implantable probe device are cortical electrodes for implantation into the cerebral cortex of the organism.
- Cortical electrodes are used in superficial brain areas and are intracranial electrodes mainly used to record cortical potentials on the convexity, medial surface or base of the cerebral hemisphere.
- the plurality of electrodes in the implantable probe device include both deep electrodes for implanting into the deep brain region of the organism and cortical electrodes for implanting into the cerebral cortex of the organism.
- the electrodes provided in the end segments of some second parts are deep electrodes
- the electrodes provided in the end segments of other second parts are cortical electrodes.
- the implantable probe device 200 further includes a support substrate 24 on which the first portion 201 of the flexible substrate 20 is formed.
- support substrate 24 may be a silicon wafer.
- the first part 201 of the flexible substrate 20 has a probe pad array.
- the first part 201 is supported by the supporting substrate 24 to facilitate the connection operation between the contact pads 21 of the probe pad array and the external circuit, such as crimping or welding. operate.
- each end section 2020 of the second portion 202 is reinforced with a biocompatible material to facilitate implantation into the brain of an organism.
- Biocompatible materials refer to materials that can be removed, decomposed, and dissolved under the influence and action of biological tissues after being implanted in an organism.
- biocompatible materials include silk protein.
- the end section of the second part is wrapped with a fibroin solution. After the fibroin solution is solidified, the hardness of the end section of the second part can be enhanced, thereby facilitating implantation into the brain of an organism. After the end section of the second part is implanted into the brain of an organism, the fibroin will dissolve and disappear when exposed to brain tissue fluid, allowing the end section to return to its original flexibility and avoid damaging the brain during later electrical signal collection.
- FIG. 5 is a schematic diagram of the disassembled structure of the electrode device 300 provided by some embodiments of the present disclosure.
- the electrode device 300 includes the implantable probe device 200 as described above, and a data adapter 30 .
- the data adapter 30 is electrically connected to the plurality of contact pads 21 in the probe pad array and is configured to transmit signals to or receive signals from the plurality of contact pads 21 .
- multiple electrodes at each end section of the implantable probe device 200 collect brain tissue signals, and transmit the collected signals to the data adapter 30 through the contact pad 21, and then through the data adapter
- the device 30 is connected to an external circuit, for example, to a brain signal acquisition chip.
- the external circuit transmits a signal to the implantable probe device 200 through the data adapter 30, and the signal acts on the brain tissue through the electrodes of the end section of the implantable probe device 200 to output to the brain tissue. stimulus signal.
- electrode device 300 includes implantable probe device 200.
- the implantable probe device 200 has a larger number of probes, and the probes can cover a larger implantation area, which can increase the coverage area of the implantable probe device 200 and reduce the number of implants required for EEG signal detection.
- the number of probe devices 200 is reduced, the number of required back-end data adapters 30 is reduced, and the trauma to the skull of the implanted person is reduced.
- the data adapter 30 includes a pad array board 31 and a data interface board 32, The pad array board 31 and the data interface board 32 are electrically connected.
- the pad array board 31 includes a plurality of pads 311, and the plurality of pads 311 are electrically connected to a plurality of contact pads 21 in the probe pad array to implement the data adapter 30 and the implantable probe device 200. electrical connection between them.
- pad array board 31 is a PCB board.
- the data interface board 32 includes a plurality of electrical contacts, and the plurality of electrical contacts are electrically connected to the plurality of pads 311 of the pad array board 31 respectively.
- the data interface board 32 is used as a chip interface end and has a specific number (eg, 4) of chip interfaces 320.
- Each chip interface 320 has multiple electrical contacts, which can connect the chip (eg, brain The signal acquisition chip) is inserted into the chip interface 320 to realize the communication connection between the chip and the electrode device 300 .
- data interface board 32 is a PCB board.
- the data adapter 30 further includes a flexible wiring board 33 .
- the flexible wiring board 33 includes a plurality of cables 330 that electrically connect corresponding electrical contacts among the plurality of electrical contacts to corresponding pads 311 among the plurality of pads.
- the electrical contacts, the pads 311 and the cables 330 are in one-to-one correspondence, and each cable 330 electrically connects the corresponding electrical contact to the corresponding pad 311 .
- the flexible wiring board 33 is a flexible PCB board.
- the flexible wiring board 33 is used to connect the pad array board 31 and the data interface board 32 to achieve a flexible transition between the pad array board 31 and the data interface board 32 . In this way, the position between the implantable probe device 200 and the chip can be conveniently set flexibly. For example, the chip can be placed vertically relative to the probe implantation direction of the implantable probe device 200 .
- the electronic device may include, but is not limited to, an implanted neurostimulator, an implanted neurorecorder, an implanted stimulation-recorder, etc.
- Figure 6 is a flow chart of a method 400 of preparing an implantable probe device according to some embodiments of the present disclosure.
- Figure 7 is a schematic diagram of a process for preparing an implantable probe device according to some embodiments of the present disclosure.
- the method 400 includes the following steps.
- Step 401 as shown in (b) of FIG. 7, form a first flexible base layer 52 on the support substrate 50.
- the first flexible base layer 52 includes a first region located at a first end of the implantable probe device and a plurality of second regions extending from the first region to a first end of the implantable probe device. The second end is opposite to the first end.
- Step 402 as shown in (c) and (d) in FIG. 7, form a metal pattern layer on the first flexible base layer 52.
- the metal pattern layer includes a probe pad array, a plurality of electrodes 501 and a plurality of leads, wherein the probe pad array includes a plurality of contact pads 502, the plurality of contact pads 502 are formed on the first area, and the plurality of electrodes 501 is formed in each end section of the plurality of second regions away from the first region, and a plurality of leads are formed on the plurality of second regions to electrically connect corresponding electrodes 501 of the plurality of electrodes 501 to a plurality of contact welds respectively. Corresponding contact pads 502 in pad 502 .
- Step 403 cover the second flexible base layer 53 on the first flexible base layer 52 on which the metal pattern layer has been formed.
- the first flexible base layer 52 and the second flexible base layer 53 together form a flexible base layer.
- Step 404 as shown in (f) to (i) in Figure 7, etching the second flexible base layer 53 and the first flexible base layer 52 to expose a plurality of contact pads 502 and a plurality of electrodes 501, and forming a first portion corresponding to the pattern of the first region and a plurality of second portions corresponding to the pattern of the plurality of second regions.
- step 404 is to etch the flexible base layer to form a pattern of the flexible base.
- the pattern of the flexible base includes a first part and a plurality of second parts. The first part is provided with a plurality of contact pads 502 exposed. In the contact hole 50a, a plurality of second portions are provided with connection holes 50b exposing a plurality of electrodes 501.
- each second part includes N-level segments, the N-level segments are sequentially arranged along the direction from the first end to the second end, and the N-th level segment of the plurality of second parts includes Corresponding to the end section of each end section of the plurality of second regions, the end sections of the plurality of second portions serve as probes for implantation into the brain of the organism, wherein N is an integer greater than or equal to 2, And wherein, a plurality of branches are branched from each segment in the n-th level segment as the n+1-th level segment, and the lead formed in each segment in the n+1-th level segment is The subset of leads formed in the nth level segmentation, where n is an integer and 0 ⁇ n ⁇ N.
- Step 405 as shown in (k) of FIG. 7, the portion of the support substrate 50 except the first support substrate portion 500 is removed.
- the first support substrate portion 500 corresponds to the first portion.
- the second part of the flexible substrate adopts a multi-level segmented design.
- the number of segments in each level segmentation gradually increases, and then the number of segments in each level segmentation gradually increases. So that the number of segments in the last level segmentation (Nth level segmentation) can be much larger than the number of segments in the first level segmentation (such as multiple expansion), and the number of segments in the last level segmentation is The end region is set as a probe.
- the implantable probe device has a larger number of probes, can cover a larger implantation range, and can increase the coverage area of a single implantable probe device.
- the number of implantable probe devices required for EEG signal detection can be reduced, and the number of back-end adapter interfaces connected to the implanted probe devices can be reduced, thereby reducing trauma to the skull of the implanted person.
- the number of segments in each level of segmentation gradually increases, which can also facilitate group management of probes and prevent multiple wires. entanglement between.
- forming the metal pattern layer on the first flexible base layer 52 includes the following steps.
- patterns of multiple electrodes 501 and multiple leads are prepared on the second area of the first flexible base layer 52 through an etching patterning process.
- the first area of the first flexible base layer 52 is formed through an etching patterning process. Prepare the pattern of the probe pad array.
- etching the second flexible base layer 53 and the first flexible base layer 52 further includes: as shown in (f) to (i) in Figure 7, etching in the plurality of second portions A plurality of through holes 50c penetrating the second flexible base layer 53 and the first flexible base layer 52 are etched in the second flexible base layer 53 .
- the pattern of the flexible substrate also includes through holes 50c in the plurality of second portions. The plurality of through holes 50c avoid the plurality of electrodes 501 and the plurality of leads between the first flexible base layer 52 and the second flexible base layer 53, and penetrate the first flexible base layer 52 and the second flexible base layer 53.
- the arrangement of the through holes 50c is conducive to improving the flexibility of each second part of the flexible base, which is conducive to improving the brain area coverage of the multiple second parts of the implantable probe device, and can improve the detection of the second part.
- removing the portion of the support substrate 50 except the first support substrate portion 500 includes the following steps.
- the sacrificial layer 51 is formed on the portion of the support substrate 50 except the first support substrate portion 500 .
- the sacrificial layer 51 is etched away, so that the portion of the support substrate 50 except the first support substrate portion 500 is separated from the first flexible base layer 52, The portion of the support substrate 50 except the first support substrate portion 500 is then removed, leaving only the first support substrate portion 500 of the support substrate 50 for supporting the first portion of the flexible substrate.
- the first part of the flexible substrate has an array of probe pads, and the first part 201 is supported by the first supporting substrate part 500 of the supporting substrate 50, which can facilitate the connection operation between the contact pads 21 of the probe pad array and the external circuit.
- Each second part of the flexible base is not supported by the support substrate 50 , and each second part can be bent and extended to different areas of the brain, so that probes segmented at the end of the second part can be implanted in different areas of the brain.
- the method 400 of preparing an implantable probe device further includes the following steps. As shown in (j) in FIG. 7 , before removing the portion of the support substrate 50 except the first support substrate portion 500 , the first to N-1th level segments of the plurality of second portions are A flexible base reinforcement layer 55 is formed on the base. In some examples, the thickness d of the reinforcement layer 55 is 5 ⁇ m-50 ⁇ m.
- the Nth level segment of the second part is used to form the probe, which requires good flexibility to avoid damage to the brain, so its thickness should not be too large, while the first to N-1th level segments of the second part
- the segment is used to connect the Nth level segment to the first part. Thickening this segment can enhance the strength and hardness of this segment, avoid breakage and damage to this segment, and help prevent the occurrence of segmentation at all levels. entangled.
- a specific example of the preparation method 400 of the implantable probe device is described in detail below with reference to FIG. 7 .
- a patterned sacrificial layer 51 is deposited on the support substrate 50 .
- This step can include the following processes:
- chromium (Cr) and nickel (Ni) Use metal evaporation method to deposit chromium (Cr) and nickel (Ni) on the sacrificial layer arrangement area to form a sacrificial layer.
- the first flexible base layer 52 is spin-coated on the patterned sacrificial layer, and the first flexible base layer 52 is cured by stepwise heating in a vacuum oven.
- the material of the first flexible base layer 52 is polyimide (PI)
- the thickness is 1 ⁇ m-10 ⁇ m
- the maximum curing temperature is 380°C.
- electrodes 501 and leads are prepared on the first flexible base layer 52 .
- This step can include the following processes:
- contact solder points 502 are prepared on the first flexible base layer 52 .
- the preparation process is the same as that of the electrodes 501 and leads.
- the difference is that the arrangement area of the contact solder points 502 is It is located on the first area of the first flexible base layer 52, and its metal evaporation layer includes three layers of chromium (Cr), nickel (Ni), and gold (Au).
- a second flexible base layer 53 (i.e., encapsulation layer) is prepared on the electrode 501 , the lead wire, and the contact solder joint 502 , and the second flexible base layer 53 is cured by stepwise heating in a vacuum oven.
- the material of the second flexible base layer 53 is polyimide (PI)
- the thickness is 2 ⁇ m-20 ⁇ m
- the maximum curing temperature is 380°C.
- a sputtering process is used to form an aluminum hardmask layer 54 on the second flexible base layer 53 with a thickness of 50 nm to 200 nm.
- the aluminum hard mask layer 54 is patterned. This step can include the following processes:
- the first flexible base layer 52 and the second flexible base layer 53 are etched using the patterned aluminum hard mask layer 54 as a mask.
- This step can include the following processes:
- the patterns of the first part and each second part can be formed, as well as the connection hole 50b exposing the electrode 501 and the contact hole 50a exposing the contact pad 502.
- a through hole 50c penetrating the PI layer can also be formed.
- the reinforcement layer 55 is polyimide (PI), and its thickness is 5 ⁇ m-50 ⁇ m.
- the photolithography patterning technical process of the reinforcement layer can refer to the photolithography process of the flexible base layer, which will not be described again here.
- the sacrificial layer 51 is etched with an etching solution, and the supporting substrate portion corresponding to the sacrificial layer 51 is removed, leaving only the first supporting substrate portion 500 for supporting the first portion of the flexible substrate.
- the structure after removing the supporting substrate portion corresponding to the sacrificial layer 51 is shown in (k) in Figure 7 .
- preparation steps are only examples of the preparation method 400.
- the preparation method 400 is not limited to the above embodiments and can be adjusted according to actual process requirements.
- the implantable probe device and its preparation method according to the embodiments of the present disclosure are based on the same inventive concept. Therefore, the preparation method according to the embodiment of the present disclosure also has the same or similar benefits as the implantable probe device described above. The effect will not be described here.
- first”, “second”, “third”, etc. are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include one or more of these features.
- “plurality” means two or more than two, unless otherwise expressly and specifically limited.
- connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two elements or an interaction between two elements .
- fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two elements or an interaction between two elements .
- the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
- a first feature "on” or “below” a second feature may include the first and second features in direct contact, or may include the first and second features. Not in direct contact but through additional characteristic contact between them.
- the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
- “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
一种植入式探针装置及其制备方法、电极装置、电子设备。植入式探针装置包括:柔性基底,包括第一部分和彼此分离的多个第二部分;探针焊盘阵列,包括多个接触焊盘,多个接触焊盘形成在第一部分中;多个电极,形成在多个第二部分的远离第一部分的各末端区段中;多条引线,形成在多个第二部分中,以将多个电极分别电连接至相应的接触焊盘;多个第二部分中的每个第二部分包括N级分段,多个第二部分的第N级分段包括多个第二部分的各末端区段,从第n级分段中的每个分段分支出多条支路作为第n+1级分段,并且形成在第n+1级分段中的每个分段中的引线为形成在第n级分段中的引线的子集,0<n<N。
Description
相关申请的交叉引用
本公开要求2022年08月31日提交的中国专利申请第2022110547813号的优先权,其内容通过引用的方式整体并入本文。
本公开涉及微电子封装互连技术领域,尤其涉及一种植入式探针装置及其制备方法、电极装置、电子设备。
脑机接口,有时也称作“大脑端口”或者“脑机融合感知”,它是在人或动物脑(或者脑细胞的培养物)与外部设备间建立的直接连接通路。脑机接口作为一项多学科交叉技术,已经受到了全世界科研界与工业界的广泛关注。其中柔性探针装置作为脑机接口的分支,因其优越的生物相容性被认为是“脑机接口最后的形态”。
发明内容
根据本公开的一个方面,提供了一种植入式探针装置,包括:柔性基底,包括第一部分和彼此分离的多个第二部分,第一部分位于植入式探针装置的第一端,多个第二部分从第一部分延伸至植入式探针装置的第二端,第二端与第一端相对;探针焊盘阵列,包括多个接触焊盘,多个接触焊盘形成在第一部分中;多个电极,形成在多个第二部分的远离第一部分的各末端区段中,末端区段充当探针以用于植入生物体的脑部;以及多条引线,形成在多个第二部分中,以将多个电极中的相应电极分别电连接至多个接触焊盘中的相应接触焊盘,其中,多个第二部分中的每个第二部分包括N级分段,N级分段沿着从第一端至第二端的方向依次布置,并且多个第二部分的第N级分段包括多个第二部分的各末端区段,其中N为大于或等于2的整数,并且其中,从第n级分段中的每个分段分支出多条支路作为第n+1级分段,并且形成在第n+1级分段中的每个分段中的引线为形成在第n级分段中的引线的子集,其中n为整数且0<n<N。
根据本公开的一个方面,提供了一种电极装置,包括如上述任一项的植入式探针装
置;以及数据转接器,电连接至探针焊盘阵列中的多个接触焊盘,被配置为向多个接触焊盘传输信号或从多个接触焊盘接收信号。
根据本公开的一个方面,提供了一种电子设备,包括如上述的电极装置。
根据本公开的一个方面,提供了一种制备植入式探针装置的方法,方法包括:在支撑衬底上形成第一柔性基底层,第一柔性基底层包括第一区域和多个第二区域,第一区域位于植入式探针装置的第一端,多个第二区域从第一区域延伸至植入式探针装置的第二端,第二端与第一端相对;在第一柔性基底层上形成金属图案层,金属图案层包括探针焊盘阵列、多个电极以及多条引线,其中,探针焊盘阵列包括多个接触焊盘,多个接触焊盘形成在第一区域上,多个电极形成在多个第二区域的远离第一区域的各末端区段中,多条引线形成在多个第二区域上,以将多个电极中的相应电极分别电连接至多个接触焊盘中的相应接触焊盘;在已形成有金属图案层的第一柔性基底层上覆盖第二柔性基底层;对第二柔性基底层和第一柔性基底层进行刻蚀,以暴露多个接触焊盘和多个电极,并形成对应于第一区域的图案的第一部分和对应于多个第二区域的图案的多个第二部分,其中,多个第二部分彼此分离,每个第二部分包括N级分段,N级分段沿着从第一端至第二端的方向依次布置,并且多个第二部分的第N级分段包括对应于多个第二区域的各末端区段的末端区段,多个第二部分的末端区段充当探针以用于植入生物体的脑部,其中N为大于或等于2的整数,并且其中,从第n级分段中的每个分段分支出多条支路作为第n+1级分段,并且形成在第n+1级分段中的每个分段中的引线为形成在第n级分段中的引线的子集,其中n为整数且0<n<N;以及去除支撑衬底的除第一支撑衬底部分之外的部分,第一支撑衬底部分对应于第一部分。
根据在下文中所描述的实施例,本公开的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
在下面结合附图对于示例性实施例的描述中,本公开的更多细节、特征和优点被公开,在附图中:
图1为相关技术提供的探针装置的结构示意图;
图2为本公开一些实施例提供的植入式探针装置的结构示意图;
图3为本公开一些实施例提供的植入式探针装置中第二部分的一个末端区段的结构
示意图;
图4为本公开一些实施例提供的植入式探针装置沿着从第一端至第二端的延伸方向上的部分截面结构示意图;
图5为本公开一些实施例提供的电极装置的拆解结构示意图;
图6为本公开一些实施例提供的制备植入式探针装置的方法的流程示意图;以及
图7为本公开一些实施例提供的制备植入式探针装置的过程的示意图。
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本公开的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
相关技术中,脑部电极采用探针装置植入生物体脑部。柔性探针装置包括接触焊盘以及从接触焊盘延伸出来的多个探针,每个探针的末端设计成柔性以用于植入生物体脑部。探针之间按一维间隔排列,探针相互之间的距离是固定的,能够覆盖的脑区范围比较有限。如果要覆盖更大的脑区面积往往需要多个探针装置,这样会在头上留下多个探针装置的后端接口。
图1为相关技术提供的探针装置100的结构示意图。如图1所示,探针装置100包括探针焊盘阵列101以及多个探针102。每个探针102的前端与探针焊盘阵列101相连,末端设计成柔性以用于植入生物体脑部。探针102之间按一维间隔排列,探针102相互之间的距离是固定的,使得在植入时探针102往往呈一维线性固定分布,无法根据实际需求选择各探针102的植入位置。此外,现有的探针装置100能够覆盖的脑区范围比较有限,如果要覆盖更大的脑区面积往往需要多个探针装置100,这样会在头上留下多个探针装置100的后端接口,对颅骨损伤较大,不利于临床应用。
鉴于此,本公开提出一种植入式探针装置及其制备方法、电极装置、电子设备,以提高单个探针装置能够覆盖的脑区面积,减少与探针装置相连的后端接口的数量,减小对被植入者颅骨的创伤。
请参照图2、图3和图4。图2为本公开一些实施例提供的植入式探针装置200的结构示意图。图3为本公开一些实施例提供的植入式探针装置中第二部分的一个末端区段2020的结构示意图。图4为本公开一些实施例提供的植入式探针装置200沿着从第一端
至第二端的延伸方向上的部分截面结构示意图。
需要说明的是,图2、图3和图4仅用于示意性地体现一些结构的特征,并不限定这些结构的实际数量和尺寸。例如,图2中仅示意性地示出两个第二部分、每个第二部分的两级分段、以及其中的引线等结构,其中第二部分的数量、第二部分的各级分段的数量以及引线的数量等并不代表在实际产品中这些结构的数量。同理,图3中的电极和引线的数量也不代表在实际产品中这些结构的数量,不作为对本公开的限定。图4中仅示意性地截取了两个电极和一个接触焊盘的截面,且没有示出引线的截面(引线位于其他截面中)。
本公开的一个方面提供了一种植入式探针装置,如图2和图3所示,该植入式探针装置200包括柔性基底20,以及位于柔性基底20中的探针焊盘阵列、多个电极22和多条引线23。
柔性基底20包括第一部分201和彼此分离的多个第二部分202。第一部分201位于植入式探针装置200的第一端,多个第二部分202从第一部分201延伸至植入式探针装置200的第二端,第二端与第一端相对。
柔性基底20用于承载和保护探针焊盘阵列、多个电极22和多条引线23。在一些实施例中,如图4所示,柔性基底20可以包括层叠设置的第一柔性基底层2001和第二柔性基底层2002,探针焊盘阵列、多个电极22和多条引线23位于第一柔性基底层和第二柔性基底层之间。在一些示例中,第一柔性基底层2001和第二柔性基底层2002的材料可以相同也可以不同,具体可以采用聚酰亚胺(PI)材料。
探针焊盘阵列包括多个接触焊盘(contact pad)21,多个接触焊盘21形成在柔性基底的第一部分201中,用于与外部电路电连接。在图4的示例中,第二柔性基底层2002上设有用于暴露出多个接触焊盘21的接触孔(contact hole)20a,以便于接触焊盘21能够电连接至外部电路。
多个电极22形成在多个第二部分202的远离第一部分201的各末端区段2020中,末端区段2020充当探针以用于植入生物体的脑部中,其中多个电极21用于采集脑信号或者向脑组织输出刺激信号。在图4的示例中,第二柔性基底层2002上设有用于暴露出多个电极22的连接孔20b,以便于多个电极22能够与脑组织接触以实现采集脑信号或者向脑组织输出刺激信号。
多条引线23形成在多个第二部分202中,以将多个电极22中的相应电极22分别电
连接至多个接触焊盘21中的相应接触焊盘21。
多个电极22和多条引线23一一对应,每一个电极22通过与其对应的一条引线23连接至一个接触焊盘21,进而连接至外部电路。在一些示例中,多个接触焊盘21通过数据转接器连接至芯片,进而将多个电极22与芯片的电路电连接。
根据一些实施例,柔性基底20的多个第二部分202中的每个第二部分202包括N级分段。N级分段沿着从植入式探针装置200的第一端至植入式探针装置200的第二端的方向依次布置,并且多个第二部分202的第N级分段包括多个第二部分202的各末端区段2020,其中N为大于或等于2的整数。换句话说,每个第二部分202最后一级分段中的各个分段的末端即第二部分202的各末端区段2020。每个第二部分202最后一级分段可以被称为探针,并且其末端区段2020可以被称为探针植入部分。
在柔性基底20的每个第二部分202中,从第n级分段中的每个分段分支出多条支路作为第n+1级分段。换句话说,从第n级分段中的各个分段分支出来的多条支路,即是第n+1级分段中的多个分段。因此,第n+1级分段中的分段数量大于第n级分段中的分段数量,并且形成在第n+1级分段中的每个分段中的引线为形成在第n级分段中的引线的子集,其中n为整数且0<n<N。
在图2的示例中,柔性基底20的每个第二部分202包括两级分段,分别为第一级分段2021和第二级分段2022,即N等于2。其中,每个第二部分202的第一级分段2021包括-一个分段,从第一级分段2021中的一个分段分支出多条支路以形成第二级分段2022的多个分段。第二级分段2022中的各个分段的末端区段2020充当探针以用于植入生物体的脑部中,每个末端区段2020设有多个电极21,以用于采集脑信号或者向脑组织输出刺激信号。
如图2和图3所示,第一级分段2021中的多条引线23分散至第二级分段2022的各个分段中,并最终连接至第二级分段2022的各个分段末端的电极22。反过来说,第二级分段2022的各个分段中的引线23在第一级分段2021中汇总,并最终连接至接触焊盘21。
根据本公开的实施例,柔性基底的第二部分采用多级分段式设计,按照从第一级分段至第N级分段的顺序,各级分段中的分段数量逐渐增多,进而使得最后一级分段(第N级分段)中的分段数量可以远大于第一级分段中的分段数量(例如成倍数扩增),将最后一级分段中各个分段的末端区域设置为探针。这样,该植入式探针装置的探针的数量
较多,能够覆盖较大的植入范围,可以提高单个植入式探针装置的覆盖面积。进而,可以减少脑电信号探测所需要的植入式探针装置的数量,减少与植入式探针装置相连的后端转接接口的数量,从而减小对被植入者颅骨的创伤。
另外,柔性基底的第二部分中,按照从第N级分段至第一级分段的顺序,各级分段中的分段数量逐渐减少,还能够便于探针的分组管理,防止多导线之间的缠绕。例如,生物体的大脑一般包括脑中海马体、内侧颞叶等脑区,将柔性基底的每个第二部分的末端分段所形成的探针作为一个大组,每个大组中的探针用于植入脑部对应的一个脑区。这样,可以避免各个第二部分的探针之间发生缠绕,并且,有利于对采集的脑电信号进行分类管理。以此类推,还可以将每个脑区逐级划分为N级区域以与第二部分的N级分段相对应,将各级分段所对应的探针植入脑区中相应级别的区域。例如,第一级分段的各个分段所对应的探针植入脑区的第一级区域中的各个区域,第二级分段的各个分段所对应的探针植入脑区的第二级区域中的各个区域,以此类推,从而实现探针及其检测信号的分级化管理。
如图4所示,根据一些实施例,柔性基底20的多个第二部分202包括贯穿柔性基底20的多个通孔20c。该通孔20c可以改善第二部分202的应力,提高第二部分202的柔韧性,进而便于第二部分202的弯曲延伸,从而有利于提高柔性基底20的各个第二部分202的延展范围和覆盖面积,并且有利于改善探针与生物体脑部的贴服性。
在图4的示例中,柔性基底20包括层叠设置的第一柔性基底层2001和第二柔性基底层2002。通孔20c避开第一柔性基底层2001和第二柔性基底层2002之间的多个电极22和多条引线23,并贯穿第一柔性基底层2001和第二柔性基底层2002。在一些实施例中,通孔20c在第二部分202的各级分段中均匀分布,但是其他实施例是可能的。
根据一些实施例,多个第二部分202的第1级至第N-1级分段的厚度大于多个第二部分202的第N级分段的厚度。在一些示例中,多个第二部分202的第1级至第N-1级分段的厚度与多个第二部分202的第N级分段的厚度之差可以为5μm-50μm,例如,可以为5μm、10μm、20μm、30μm、40μm、50μm。
在图4的示例中,柔性基底20的第二部分202包括两级分段,分别为第一级分段2021和第二级分段2022,即N等于2。第一级分段2021的厚度大于第二级分段2022的厚度,例如,第二级分段2022相对于第一级分段2021多出一个加固层2000,该加固层2000的厚度d为5μm-50μm。
加固层2000的存在可以是有利的。第二部分202的第N级分段用于形成探针,其要求柔韧性较好,以避免损伤脑部,因此其厚度不宜过大,而第二部分202的第1级至第N-1级分段用于连接第N级分段和第一部分,将这部分分段加厚,可以加强此部分分段的强度和硬度,避免这部分分段发生断裂损坏,并有利于防止各级分段发生缠绕。
在另一些实施例中,多个第二部分的第n级分段的厚度大于第n+1级分段的厚度,0<n<N。即从植入式探针装置200第一端至第二端的方向上,多个第二部分202的厚度逐级减小。这样,也可以避免第二部分202的第1级至第N-1级分段发生断裂损坏,并防止各级分段发生缠绕,同时保证第N级分段的柔韧性,避免损伤脑部。
根据一些实施例,第二部分的同一级分段中的各分段的长度不完全相等。同一级分段中的各分段的末端探针需要植入的大脑区域位置和/或植入深度不同,进而这些探针距离探针焊盘阵列的距离也可能不同。在一些实施例中,同一级分段中的各分段的长度可以根据探针焊盘阵列与各探针植入区域的位置确定,其长度不需要一致,这样可以满足探针焊盘阵列与各探针的植入区域之间的距离要求。例如,图2中第二级分段2022的各个分段的长度不完全相同,该各个分段的长度可以使得其对应的末端探针至探针焊盘阵列的距离满足植入要求。
根据一些实施例,柔性基底的第二部分中,从第n级分段中的每个分段分支出的第n+1级分段的数量相等。这样,可以便于探针的管理。在一些示例中,每个第二部分具有一个第一级分段,从该第一级分段中分支出的5个分支以形成第二级分段,即第二级分段的分段数量为5。从第二级分段中的每个分段分支出的20个分支以形成第三级分段,即每个第二级分段所分支出的第三级分段的分段数量为20,则整个第二部分包括的第三级分段的分段数量为100。若第三级分段为最后一级分段,其末端用于形成探针,则该第二部分的末端具有100个探针。由此可知,从第n级分段中的每个分段分支出的第n+1级分段的数量相等,可以使得各级分段的分段数量成倍增长,这样便于对最后一级分段的探针管理。
根据一些实施例,植入式探针装置中的多个电极为用于植入生物体的深部脑区的深部电极。深部电极应用于深脑区,可以用于探测深脑区的病灶放电,记录颅内脑电图等。
根据一些实施例,植入式探针装置中的多个电极为用于植入生物体的脑皮层的皮层电极。皮层电极应用在浅脑区,是一种主要用于记录大脑半球凸面、内侧面或基底部皮质电位的颅内电极。
根据一些实施例,植入式探针装置中的多个电极中既包括用于植入生物体的深部脑区的深部电极,也包括用于植入生物体的脑皮层的皮层电极。例如,柔性基底的多个第二部分中,一些第二部分的末端分段中设置的电极为深部电极,另一些第二部分的末端分段中设置的电极为皮层电极。
如图2和图4所示,根据一些实施例,植入式探针装置200还包括支撑衬底24,该支撑衬底24上形成有柔性基底20的第一部分201。在一些示例中,支撑衬底24可以为硅片。柔性基底20的第一部分201中具有探针焊盘阵列,通过支撑衬底24支撑该第一部分201,可以便于探针焊盘阵列的接触焊盘21与外部电路的连接操作,例如压接或者焊接操作。
如图2所示,根据一些实施例,第二部分202的各末端区段2020通过生物相容性材料加固,以便于植入生物体的脑部。生物相容性材料是指植入生物体后在生物组织的影响和作用下能够被去除、分解、溶解的材料。作为示例而非限制,生物相容性材料包括蚕丝蛋白。将第二部分的末端区段包裹上蚕丝蛋白溶液,待蚕丝蛋白溶液固化后可以使得第二部分的末端区段的硬度加强,从而便于植入生物体的脑部。待将第二部分的末端区段植入生物体脑部后,蚕丝蛋白遇脑组织液会溶解消失,使得末端区段恢复原来的柔性,可以避免在后期电信号采集的过程中损伤脑部。
请参照图5,图5为本公开一些实施例提供的电极装置300的拆解结构示意图。如图5所示,该电极装置300包括如上述任一项的植入式探针装置200,以及数据转接器30。
数据转接器30电连接至探针焊盘阵列中的多个接触焊盘21,被配置为向多个接触焊盘21传输信号或从多个接触焊盘21接收信号。在一些示例中,植入式探针装置200的每个末端区段的多个电极采集脑组织信号,并通过接触焊盘21将采集的信号传输至数据转接器30,然后通过数据转接器30转接至外部电路,例如转接至脑信号采集芯片。在一些示例中,外部电路通过数据转接器30向植入式探针装置200传输信号,该信号通过植入式探针装置200的末端区段的电极作用于脑组织,以向脑组织输出刺激信号。
根据本公开的实施例,电极装置300包括植入式探针装置200。植入式探针装置200具有数量较多的探针,其探针能够覆盖较大的植入区域,可以提高植入式探针装置200的覆盖面积,减少脑电信号探测所需要的植入式探针装置200的数量,减少所需的后端数据转接器30的数量,减小对被植入者颅骨的创伤。
如图5所示,根据一些实施例,数据转接器30包括焊盘阵列板31和数据接口板32,
焊盘阵列板31和数据接口板32电连接。
焊盘阵列板31包括多个焊盘311,多个焊盘311分别电连接至探针焊盘阵列中的多个接触焊盘21,以实现数据转接器30与植入式探针装置200之间的电连接。在一些实施例中,焊盘阵列板31为PCB板。
数据接口板32包括多个电触点,多个电触点分别电连接至焊盘阵列板31的多个焊盘311。在一些实施例中,数据接口板32用作芯片接口端,其具有特定数量(例如4个)的芯片接口320,每个芯片接口320内具有多个电触点,可以将芯片(例如,脑信号采集芯片)插入至该芯片接口320内,以实现芯片与电极装置300的通信连接。在一些实施例中,数据接口板32为PCB板。
如图5所示,根据一些实施例,数据转接器30还包括柔性布线板33。柔性布线板33包括多个线缆330,多个线缆330将多个电触点中的相应电触点分别电连接至多个焊盘中的相应焊盘311。在一些实施例中,电触点、焊盘311以及线缆330一一对应,每个线缆330将对应的电触点电连接至对应的焊盘311。在一些实施例中,柔性布线板33为柔性PCB板。柔性布线板33用于连接焊盘阵列板31与数据接口板32,以实现焊盘阵列板31与数据接口板32的柔性过渡。这样,可以便于植入式探针装置200与芯片之间位置的灵活设置,例如芯片可以相对于植入式探针装置200的探针植入方向垂直放置。
本公开另一方面提供了一种电子设备,该电子设备包括如上述的电极装置300。该电子设备可包括但不限于为植入式神经刺激器、植入式神经记录器、植入式刺激-记录器等。
请参照图6和图7。图6为本公开一些实施例提供的制备植入式探针装置的方法400流程图。图7为本公开一些实施例提供的制备植入式探针装置的过程示意图。
如图6所示,该方法400包括以下步骤。
步骤401,如图7中的(b)所示,在支撑衬底50上形成第一柔性基底层52。第一柔性基底层52包括第一区域和多个第二区域,第一区域位于植入式探针装置的第一端,多个第二区域从第一区域延伸至植入式探针装置的第二端,第二端与第一端相对。
步骤402,如图7中的(c)和(d)所示,在第一柔性基底层52上形成金属图案层。金属图案层包括探针焊盘阵列、多个电极501以及多条引线,其中,探针焊盘阵列包括多个接触焊盘502,多个接触焊盘502形成在第一区域上,多个电极501形成在多个第二区域的远离第一区域的各末端区段中,多条引线形成在多个第二区域上,以将多个电极501中的相应电极501分别电连接至多个接触焊盘502中的相应接触焊盘502。
步骤403,如图7中的(e)所示,在已形成有金属图案层的第一柔性基底层52上覆盖第二柔性基底层53。第一柔性基底层52和第二柔性基底层53共同组成柔性基底层。
步骤404,如图7中的(f)至(i)所示,对第二柔性基底层53和第一柔性基底层52进行刻蚀,以暴露多个接触焊盘502和多个电极501,并形成对应于第一区域的图案的第一部分和对应于多个第二区域的图案的多个第二部分。换句话说,步骤404,即是对柔性基底层进行刻蚀以形成柔性基底的图案,柔性基底的图案包括第一部分和多个第二部分,第一部分上设有暴露多个接触焊盘502的接触孔50a,多个第二部分上设有暴露多个电极501的连接孔50b。多个第二部分彼此分离,每个第二部分包括N级分段,N级分段沿着从第一端至第二端的方向依次布置,并且多个第二部分的第N级分段包括对应于多个第二区域的各末端区段的末端区段,多个第二部分的末端区段充当探针以用于植入生物体的脑部,其中N为大于或等于2的整数,并且其中,从第n级分段中的每个分段分支出多条支路作为第n+1级分段,并且形成在第n+1级分段中的每个分段中的引线为形成在第n级分段中的引线的子集,其中n为整数且0<n<N。
步骤405,如图7中的(k)所示,去除支撑衬底50的除第一支撑衬底部分500之外的部分。第一支撑衬底部分500对应于第一部分。
根据本公开的实施例,柔性基底的第二部分采用多级分段式设计,按照从第一级分段至第N级分段的顺序,各级分段中的分段数量逐渐增多,进而使得最后一级分段(第N级分段)中的分段数量可以远大于第一级分段中的分段数量(例如成倍数扩增),将最后一级分段中各个分段的末端区域设置为探针。这样,该植入式探针装置的探针的数量较多,能够覆盖较大的植入范围,可以提高单个植入式探针装置的覆盖面积。进而,可以减少脑电信号探测所需要的植入式探针装置的数量,减少与植入式探针装置相连的后端转接接口的数量,从而减小对被植入者颅骨的创伤。
另外,柔性基底的第二部分中,按照从第N级分段至第一级分段的顺序,各级分段中的分段数量逐渐增多,还能够便于探针的分组管理,防止多导线之间的缠绕。
根据一些实施例,在第一柔性基底层52上形成金属图案层(步骤402)包括以下步骤。
首先,如图7中的(c)所示,通过刻蚀构图工艺在第一柔性基底层52的第二区域上制备多个电极501以及多条引线的图形。
其次,如图7中的(d)所示,通过刻蚀构图工艺在第一柔性基底层52的第一区域
上制备探针焊盘阵列的图形。
根据一些实施例,对第二柔性基底层53和第一柔性基底层52进行刻蚀(步骤404)还包括:如图7中的(f)至(i)所示,在多个第二部分中刻蚀出贯穿第二柔性基底层53和第一柔性基底层52的多个通孔50c。换句话说,柔性基底的图案还包括在多个第二部分中的通孔50c。多个通孔50c避开第一柔性基底层52和第二柔性基底层53之间的多个电极501和多条引线,并贯穿第一柔性基底层52和第二柔性基底层53。通孔50c的设置,有利于提高柔性基底的各个第二部分的柔韧性,进而有利于提升植入式探针装置的多个第二部分的脑区覆盖范围,并可以改善第二部分的探针与生物体脑部的贴服性。
根据一些实施例,去除支撑衬底50的除第一支撑衬底部分500之外的部分(步骤405)包括以下步骤。
首先,如图7中的(a)所示,在形成第一柔性基底层52之前,在支撑衬底50的除第一支撑衬底部分500之外的部分上形成牺牲层51。
其次,如图7中的(j)和(k)所示,腐蚀掉牺牲层51,使得支撑衬底50的除第一支撑衬底部分500之外的部分与第一柔性基底层52分离,然后去除支撑衬底50的除第一支撑衬底部分500之外的部分,仅保留支撑衬底50的第一支撑衬底部分500,以用于支撑柔性基底的第一部分。
柔性基底的第一部分中具有探针焊盘阵列,通过支撑衬底50的第一支撑衬底部分500支撑该第一部分201,可以便于探针焊盘阵列的接触焊盘21与外部电路的连接操作。柔性基底的各个第二部分下方没有支撑衬底50支撑,该各个第二部分可以弯曲延展至脑部不同的区域,以便于第二部分末端分段的探针能够植入脑部的不同区域。
根据一些实施例,制备植入式探针装置的方法400还包括以下步骤。如图7中的(j)所示,在去除支撑衬底50的除第一支撑衬底部分500之外的部分之前,在多个第二部分的第1级至第N-1级分段上形成柔性基底加固层55。在一些示例中,该加固层55的厚度d为5μm-50μm。
第二部分的第N级分段用于形成探针,其要求柔韧性较好,以避免损伤脑部,因此其厚度不宜过大,而第二部分的第1级至第N-1级分段用于连接第N级分段和第一部分,将这部分分段加厚,可以加强此部分分段的强度和硬度,避免这部分分段发生断裂损坏,并有利于防止各级分段发生缠绕。
下面结合图7详细描述植入式探针装置的制备方法400的特定示例。
如图7中的(a)所示,在支撑衬底50上沉积图形化的牺牲层51。该步骤可以包括以下流程:
1)涂光刻胶,对光刻胶进行图形化处理,以形成牺牲层布置区域;
2)利用金属蒸镀的方法,在牺牲层布置区域上沉积铬(Cr)和镍(Ni)以形成牺牲层,铬(Cr)和镍(Ni)的厚度分别为为长度单位,1埃=0.1纳米。
3)用丙酮把光刻胶剥离,光刻胶上的金属层会被一同去除,剥离后仅留下牺牲层布置区域内的牺牲层。
如图7中的(b)所示,在图形化后的牺牲层上旋涂第一柔性基底层52,并利用真空烘箱阶梯式升温固化第一柔性基底层52。例如,第一柔性基底层52的材料为聚酰亚胺(PI),厚度为1μm-10μm,最高固化温度为380℃。
如图7中的(c)所示,在第一柔性基底层52上制备电极501及引线。该步骤可以包括以下流程:
1)涂光刻胶,对光刻胶进行图形化处理,以形成电极及引线的布置区域,该布置区域位于第一柔性基底层52的第二区域上;
2)利用金属蒸镀的方法,在电极及引线的布置区域上沉积铬(Cr)、金(Au)以形成电极和引线;铬(Cr)、金(Au)的厚度分别为Cr=5nm-50nm、Au=50nm-500nm;
3)用丙酮把光刻胶剥离,光刻胶上的金属层会被一同去除,剥离后仅留下布置区域内的电极和引线。
如图7中的(d)所示,在第一柔性基底层52上制备接触焊点502,其制备流程与电极501及引线的制备流程相同,所不同的是,接触焊点502的布置区域位于第一柔性基底层52的第一区域上,且其金属蒸镀层包括铬(Cr)、镍(Ni)、金(Au)三层,该三层的厚度分别为Cr=5nm-50nm、Ni=100nm-1500nm、Au=50nm-500nm;
如图7中的(e)所示,在电极501、引线和接触焊点502上制备第二柔性基底层53(即封装层),并利用真空烘箱阶梯式升温固化第二柔性基底层53。例如,第二柔性基底层53的材料为聚酰亚胺(PI),厚度为2μm-20μm,最高固化温度为380℃。此时,电极、引线、接触焊点都被封装在柔性基底层内。
如图7中的(f)所示,利用溅射工艺在第二柔性基底层53上形成铝硬掩模(hardmask)层54,其厚度为50nm-200nm。
如图7中的(g)所示,对铝硬掩模层54实施图形化处理。该步骤可以包括以下流程:
1)在金属铝层上涂光刻胶,对光刻胶进行图形化处理,形成待腐蚀区域;
2)用铝腐蚀液,对待腐蚀区域内的铝层进行腐蚀,被光刻胶遮盖部分的铝层未被腐蚀;
3)去除残余光刻胶,留下图形化的铝层,用于作为对第一柔性基底层和第二柔性基底层刻蚀的掩膜层。
如图7中的(h)所示,以图形化的铝硬掩模层54作为掩膜,对第一柔性基底层52和第二柔性基底层53进行蚀刻。该步骤可以包括以下流程:
使用深硅蚀刻技术,对待腐蚀区域(铝硬掩模层54未遮盖的区域)内的PI层(第一柔性基底层52和第二柔性基底层53)进行蚀刻,其中PI层刻蚀的侧向侵蚀单边为±0.5um;
PI层被蚀刻后,可以形成第一部分和各个第二部分的图形,以及暴露电极501的连接孔50b、暴露接触焊点502的接触孔50a,此外,还可以形成贯穿PI层的通孔50c。
用铝腐蚀液,去除图形化的铝硬掩模层54,去除铝硬掩模层54后的结构如图7中的(i)所示;
如图7中的(j)所示,再次使用旋涂以及光刻图形化技术,在柔性基底的各个第二部分的第1级至第N-1级分段上形成加固层55,加固层55的材料为聚酰亚胺(PI),其厚度为5μm-50μm。加固层的光刻图形化技术流程可以参考柔性基底层的光刻过程,此处不再赘述。
如图7中的(j)所示,用腐蚀液腐蚀牺牲层51,并去除牺牲层51对应的支撑衬底部分,仅留下第一支撑衬底部分500以用于支撑柔性基底的第一部分,去除牺牲层51对应的支撑衬底部分后的结构如图7中的(k)所示。
需要说明的是,上述制备步骤仅是对于制备方法400的举例说明,制备方法400不限于上述实施例,具体可根据实际工艺需求进行调整。
根据本公开实施例的植入式探针装置及其制备方法是基于相同的发明构思,因此根据本公开实施例的制备方法也具有与上文描述的植入式探针装置相同或相似的有益效果,此处不再赘述。
在本说明书中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、
“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系或尺寸为基于附图所示的方位或位置关系或尺寸,使用这些术语仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,并且因此不能理解为对本公开的保护范围的限制。
此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本说明书提供了能够用于实现本公开的许多不同的实施方式或例子。应当理解的是,这些不同的实施方式或例子完全是示例性的,并且不用于以任何方式限制本公开的保护范围。本领域技术人员在本公开的说明书的公开内容的基础上,能够想到各种变化或替换,这些都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所附权利要求所限定的保护范围为准。
Claims (15)
- 一种植入式探针装置,包括:柔性基底,包括第一部分和彼此分离的多个第二部分,所述第一部分位于所述植入式探针装置的第一端,所述多个第二部分从所述第一部分延伸至所述植入式探针装置的第二端,所述第二端与所述第一端相对;探针焊盘阵列,包括多个接触焊盘,所述多个接触焊盘形成在所述第一部分中;多个电极,形成在所述多个第二部分的远离所述第一部分的各末端区段中,所述末端区段充当探针以用于植入生物体的脑部;以及多条引线,形成在所述多个第二部分中,以将所述多个电极中的相应电极分别电连接至所述多个接触焊盘中的相应接触焊盘,其中,所述多个第二部分中的每个第二部分包括N级分段,所述N级分段沿着从所述第一端至所述第二端的方向依次布置,并且所述多个第二部分的第N级分段包括所述多个第二部分的所述各末端区段,其中N为大于或等于2的整数,并且其中,从第n级分段中的每个分段分支出多条支路作为第n+1级分段,并且形成在所述第n+1级分段中的每个分段中的引线为形成在所述第n级分段中的引线的子集,其中n为整数且0<n<N。
- 根据权利要求1所述的植入式探针装置,其中,所述多个第二部分包括贯穿所述柔性基底的多个通孔。
- 根据权利要求1所述的植入式探针装置,其中,所述多个第二部分的第1级至第N-1级分段的厚度大于所述多个第二部分的第N级分段的厚度;或者所述多个第二部分的第n级分段的厚度大于所述多个第二部分的第n+1级分段的厚度。
- 根据权利要求1所述的植入式探针装置,其中,同一级分段中的各分段的长度不完全相等。
- 根据权利要求1所述的植入式探针装置,其中,从第n级分段中的每个分段分支出的第n+1级分段的数量相等。
- 根据权利要求1所述的植入式探针装置,其中,所述多个电极为用于植入生物体的深部脑区的深部电极。
- 根据权利要求1所述的植入式探针装置,其中,所述多个电极为用于植入生物体的脑皮层的皮层电极。
- 根据权利要求1所述的植入式探针装置,还包括:支撑衬底,其上形成所述柔性基底的所述第一部分。
- 根据权利要求1至8中任一项所述的植入式探针装置,其中,所述末端区段通过生物相容性材料加固,以便于植入生物体的脑部。
- 根据权利要求9所述的植入式探针装置,其中,所述生物相容性材料包括蚕丝蛋白。
- 一种电极装置,包括:如权利要求1至10中任一项所述的植入式探针装置;以及数据转接器,电连接至所述探针焊盘阵列中的所述多个接触焊盘,被配置为向所述多个接触焊盘传输信号或从所述多个接触焊盘接收信号。
- 一种电子设备,包括如权利要求11所述的电极装置。
- 一种制备植入式探针装置的方法,所述方法包括:在支撑衬底上形成第一柔性基底层,所述第一柔性基底层包括第一区域和多个第二区域,所述第一区域位于所述植入式探针装置的第一端,所述多个第二区域从所述第一区域延伸至所述植入式探针装置的第二端,所述第二端与所述第一端相对;在所述第一柔性基底层上形成金属图案层,所述金属图案层包括探针焊盘阵列、多个电极以及多条引线,其中,所述探针焊盘阵列包括多个接触焊盘,所述多个接触焊盘形成在所述第一区域上,所述多个电极形成在所述多个第二区域的远离所述第一区域的各末端区段中,所述多条引线形成在所述多个第二区域上,以将所述多个电极中的相应电极分别电连接至所述多个接触焊盘中的相应接触焊盘;在已形成有所述金属图案层的所述第一柔性基底层上覆盖第二柔性基底层;对所述第二柔性基底层和所述第一柔性基底层进行刻蚀,以暴露所述多个接触焊盘和所述多个电极,并形成对应于所述第一区域的图案的第一部分和对应于所述多个第二区域的图案的多个第二部分,其中,所述多个第二部分彼此分离,每个第二部分包括N级分段,所述N级分段沿着从所述第一端至所述第二端的方向依次布置,并且所述多个第二部分的第N级分段包括对应于所述多个第二区域的所述各末端区段的末端区段,所述多个第二部分的所述末端区段充当探针以用于植入生物体的脑部,其中N为大于或等于2的整数,并且其中,从第n级分段中的每个分段分支出多条支路作为第n+1级分段,并且形成在所述第n+1级分段中的每个分段中的引线为形成在所述第n级分段中的引线的子集,其中n为整数且0<n<N;以及去除所述支撑衬底的除第一支撑衬底部分之外的部分,所述第一支撑衬底部分对应于所述第一部分。
- 根据权利要求13所述的方法,其中,对所述第二柔性基底层和所述第一柔性基底层进行刻蚀包括:在所述多个第二部分中刻蚀出贯穿所述第二柔性基底层和所述第一柔性基底层的多个通孔。
- 根据权利要求13或14所述的方法,还包括:在去除所述支撑衬底的除第一支撑衬底部分之外的部分之前,在所述多个第二部分的第1级至第N-1级分段上形成柔性基底加固层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211054781.3 | 2022-08-31 | ||
CN202211054781.3A CN115363592B (zh) | 2022-08-31 | 2022-08-31 | 植入式探针装置及其制备方法、电极装置、电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024046185A1 true WO2024046185A1 (zh) | 2024-03-07 |
Family
ID=84068780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/114450 WO2024046185A1 (zh) | 2022-08-31 | 2023-08-23 | 植入式探针装置及其制备方法、电极装置、电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115363592B (zh) |
WO (1) | WO2024046185A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115363592B (zh) * | 2022-08-31 | 2023-12-12 | 上海脑虎科技有限公司 | 植入式探针装置及其制备方法、电极装置、电子设备 |
CN116058853B (zh) * | 2023-01-09 | 2023-08-25 | 华中科技大学 | 一种灵活电刺激并记录多脑区多深度阵列电极 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113057640A (zh) * | 2021-03-15 | 2021-07-02 | 四川省人民医院 | 植入式微针电极、制备方法及功能仪芯片系统 |
CN113616211A (zh) * | 2021-08-30 | 2021-11-09 | 江西脑虎科技有限公司 | 一种柔性神经电极结构及其制备方法 |
CN114145747A (zh) * | 2021-12-16 | 2022-03-08 | 深圳市擎源医疗器械有限公司 | 颅内电极模组以及颅内电极植入装置 |
CN114631822A (zh) * | 2022-02-17 | 2022-06-17 | 上海脑虎科技有限公司 | 一种柔性神经电极、制备方法及设备 |
CN115363592A (zh) * | 2022-08-31 | 2022-11-22 | 上海脑虎科技有限公司 | 植入式探针装置及其制备方法、电极装置、电子设备 |
CN115381458A (zh) * | 2022-08-31 | 2022-11-25 | 上海脑虎科技有限公司 | 脑部电极装置及其制备方法、电极装置、电子设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8738110B2 (en) * | 2009-05-01 | 2014-05-27 | Livermore National Security, Llc | Rigid spine reinforced polymer microelectrode array probe and method of fabrication |
WO2013131261A1 (zh) * | 2012-03-08 | 2013-09-12 | 中国科学院深圳先进技术研究院 | 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构 |
CN106178259B (zh) * | 2016-08-04 | 2020-05-08 | 上海交通大学 | 大鼠腿部肌肉电刺激和肌电信号采集柔性器件及制备方法 |
CN209645649U (zh) * | 2018-11-29 | 2019-11-19 | 深圳先进技术研究院 | 一种功能化宽幅植入式微电极阵列 |
CN109350846A (zh) * | 2018-11-29 | 2019-02-19 | 深圳先进技术研究院 | 一种功能化宽幅植入式微电极阵列及其制备方法与应用 |
CN112587156A (zh) * | 2020-11-24 | 2021-04-02 | 北京大学 | 生物电信号采集与电刺激装置 |
CN112641448B (zh) * | 2020-12-18 | 2023-02-24 | 浙江大学 | 一种柔性磁兼容的植入式脑电电极阵列及其制备方法 |
CN113786198B (zh) * | 2021-09-10 | 2023-12-05 | 中国科学院空天信息创新研究院 | 一种休眠检测调控集成化植入式柔性神经电极及测试系统 |
-
2022
- 2022-08-31 CN CN202211054781.3A patent/CN115363592B/zh active Active
-
2023
- 2023-08-23 WO PCT/CN2023/114450 patent/WO2024046185A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113057640A (zh) * | 2021-03-15 | 2021-07-02 | 四川省人民医院 | 植入式微针电极、制备方法及功能仪芯片系统 |
CN113616211A (zh) * | 2021-08-30 | 2021-11-09 | 江西脑虎科技有限公司 | 一种柔性神经电极结构及其制备方法 |
CN114145747A (zh) * | 2021-12-16 | 2022-03-08 | 深圳市擎源医疗器械有限公司 | 颅内电极模组以及颅内电极植入装置 |
CN114631822A (zh) * | 2022-02-17 | 2022-06-17 | 上海脑虎科技有限公司 | 一种柔性神经电极、制备方法及设备 |
CN115363592A (zh) * | 2022-08-31 | 2022-11-22 | 上海脑虎科技有限公司 | 植入式探针装置及其制备方法、电极装置、电子设备 |
CN115381458A (zh) * | 2022-08-31 | 2022-11-25 | 上海脑虎科技有限公司 | 脑部电极装置及其制备方法、电极装置、电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN115363592A (zh) | 2022-11-22 |
CN115363592B (zh) | 2023-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024046185A1 (zh) | 植入式探针装置及其制备方法、电极装置、电子设备 | |
WO2024046186A1 (zh) | 脑部电极装置及其制备方法、电极装置、电子设备 | |
US8170638B2 (en) | MEMS flexible substrate neural probe and method of fabricating same | |
JP6925467B2 (ja) | 深部脳刺激リード | |
US10426362B2 (en) | Deep-brain probe and method for recording and stimulating brain activity | |
US20200085375A1 (en) | Electrode fabrication and design | |
CN108751116B (zh) | 用于生物电记录或电刺激的翘曲型柔性电极及其制备方法 | |
US6624510B1 (en) | Electrode array having a thin, flexible substrate | |
CN112244850B (zh) | 一种颅内深部电极记录器件及其制备方法、系统 | |
JP2019063546A (ja) | 高密度電極マッピングカテーテル | |
CN102544052A (zh) | 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构 | |
CN114631822A (zh) | 一种柔性神经电极、制备方法及设备 | |
CN106646048A (zh) | 一种微电极阵列的制备方法 | |
US10856764B2 (en) | Method for forming a multielectrode conformal penetrating array | |
CN112717273B (zh) | 一种微柱状结构神经电刺激电极及其制备方法 | |
Steins et al. | A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine | |
EP2497419A1 (en) | Multi-electrode leads for brain implantation | |
CN114795230A (zh) | 一种用于记录脑电信号的植入式无线神经传感器 | |
CN111743537B (zh) | 一种基于酢浆草仿生结构的柔性神经微电极及制备方法 | |
CN112869747B (zh) | 微电极及其制作和使用方法、塞类装置和微电极系统 | |
CN113616211A (zh) | 一种柔性神经电极结构及其制备方法 | |
US20220273220A1 (en) | Implant, ensemble comprising such an implant and method for fabricating such an implant | |
CN115054265A (zh) | 用于与seeg电极结合的柔性电极装置及其制造方法 | |
Guo et al. | Flexible, Multi-Shank Stacked Array for High-Density Omini-Directional Intracortical Recording | |
Guo et al. | Implementation of integratable PDMS-based conformable microelectrode arrays using a multilayer wiring interconnect technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23859218 Country of ref document: EP Kind code of ref document: A1 |