[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024045851A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2024045851A1
WO2024045851A1 PCT/CN2023/103879 CN2023103879W WO2024045851A1 WO 2024045851 A1 WO2024045851 A1 WO 2024045851A1 CN 2023103879 W CN2023103879 W CN 2023103879W WO 2024045851 A1 WO2024045851 A1 WO 2024045851A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signals
cell
equal
duration
Prior art date
Application number
PCT/CN2023/103879
Other languages
English (en)
French (fr)
Inventor
吴毅凌
鲁振伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045851A1 publication Critical patent/WO2024045851A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications, and, more specifically, to methods, devices and systems for determining operating frequency domain resources of terminal equipment.
  • the passive IoT communication system refers to a communication system in which terminal equipment does not rely on battery power.
  • radio frequency filtering and intermediate frequency filtering can be used Narrowband filtering is performed by other methods to suppress adjacent-channel broadband interference before envelope detection, thereby ensuring that the demodulation performance is basically unaffected.
  • narrowband filtering also means that the operating frequency domain resources of the terminal equipment need to be determined.
  • This application provides a communication method that can be used to determine the working frequency domain resources of a terminal device.
  • a communication method applied to a first network device, including: generating p first signals, the first signals being used by the first terminal device to determine working frequency domain resources, and the pth first signals
  • the duration of the q-th first signal in a signal is the duration of N first time units, N is less than or equal to 20 and N is greater than 1, p is greater than or equal to 1, q ⁇ [1, p], p, q and N are integers;
  • the p first signals are periodically sent to the first terminal device on p first carriers, and each of the first carriers carries one of the first signals.
  • the duration of each of the above p first signals can be expressed in the first time unit.
  • the granularity of duration indicates that the duration of each first signal among the p first signals satisfies the restriction and is independent of each other, that is, the duration of each first signal may be the same or different. For example, if three first signals are generated, the duration of the first first signal may be 5ms, the duration of the second first signal may be 10ms, and the duration of the third first signal may be 20ms or The duration of the three first signals is all 10ms.
  • the parameters of the first signal are determined by the first network device based on at least one of delay, time domain overhead, network coverage, processing capability of the first terminal device, and performance of the first terminal device,
  • the parameters of the first signal may include the duration of the first signal and/or the period of the first signal.
  • the parameters of the first signal are determined based on the time delay, which means that the first signal that meets the parameters can make the transmission delay of the first signal meet the preset requirements; the parameters of the first signal are determined based on the time domain overhead.
  • the first signal that meets this parameter can make the time domain overhead of the first signal transmission meet the preset requirements;
  • the parameters of the first signal are determined according to the network coverage, which means that the first signal that meets this parameter can make the network coverage meet Preset requirements;
  • the embodiment of the present application periodically sends a first signal so that the first terminal device can determine the working frequency domain resource.
  • the duration of the first signal is limited so that the first signal can meet the processing capability of the first terminal device, thereby improving the efficiency of the first terminal device in determining working frequency domain resources.
  • frequency domain resources in the embodiment of the present application can be described by frequency bands or carriers.
  • the first signal may be a Beacon signal
  • the embodiment of the present application may also enable the first terminal device to perform timing and frequency synchronization.
  • the duration of the first signal is longer, which can reduce the missed detection rate and false alarm rate of using the first signal for a single detection, thereby improving detection efficiency and reducing signal overhead.
  • the period duration of the q-th first signal among the p first signals is equal to the duration of 2m second time units, and the p The period duration of the q-th first signal in the first signal is less than or equal to the duration of one third time unit, and m is an integer greater than 1.
  • the period of the first signal is greater than the duration of the first signal, and the period of the first signal can match the duration of the first signal, thereby ensuring the integrity of the first signal in each period and improving the reliability of detection.
  • the cycle duration of the q-th first signal among the p first signals is greater than or equal to the length of the physical broadcast channel.
  • the cycle length of the first signal is limited so that the cycle of the first signal adapts to the requirements of resource efficiency and passive IoT service delay, thereby improving the efficiency of the working frequency domain resources determined by the first terminal device. reliability.
  • the first time unit may be a subframe in the wireless system
  • the second time unit may be a frame in the wireless system
  • the third time unit may be a superframe in the wireless system.
  • the third time unit is composed of 1024 second time units
  • the second time unit is composed of 10 first time units
  • the duration of the first time unit is equal to 1ms
  • the duration of the second time unit is Equal to 10ms
  • the duration of the third time unit is equal to 10240ms.
  • the period of the first signal in the embodiment of the present application can also match the frame structure and superframe structure of LTE or NR to improve resource utilization.
  • the starting position of the q-th first signal among the p first signals is k times away from the starting position of the third time unit.
  • the duration of the second time unit, k is greater than or equal to 0 and k is less than the number of the second time units in the third time unit, and k is an integer.
  • the starting positions of different first signals may be the same or different, and this application does not limit this. Furthermore, the starting position of the first signal may float within a certain range near the determined k value, that is, the first signal may have a time domain offset.
  • the first signal includes: a first identifier, the first identifier is used to represent a cell served by the first network device or the first Internet equipment.
  • the bandwidth of the i-th first carrier among the p first carriers is n*180kHz, n is greater than or equal to 1 and n is less than or equal to 4, i is greater than or equal to 1 and i is less than or equal to p, n and i are integers.
  • each of the p first carriers satisfies the above restrictions.
  • the value of n corresponding to each first carrier may be different. For example, there are three The first carrier has a bandwidth of 180kHz, the second first carrier has a bandwidth of 360kHz, and the third first carrier has a bandwidth of 720kHz.
  • the value of n corresponding to each first carrier may be the same.
  • the first identifiers carried by the p first signals are the same.
  • the first signal is sent on multiple first carriers, and the tags transmitted on each first carrier can complete synchronization calibration without switching frequencies.
  • the first signals carried by the multiple first carriers carry The same identifier can reduce the complexity of terminal device synchronization.
  • any two first signals among the p first signals have different time domain configurations.
  • the time domain configuration of the first signal may include at least one of the duration of the first signal, the duration of the cycle for sending the first signal, and the time domain offset of the first signal.
  • the time domains of the p first signals do not overlap.
  • the time domains of the first signals can not overlap by configuring different time domain offsets for the first signals on different first carriers.
  • the time domain configurations of the first signals of different carriers are different, which is beneficial to the first terminal in quickly detecting and reducing interference of the first signals on different first carriers.
  • the time domains of any two of the p first signals do not overlap.
  • the time domain positions of the first signals of different first carriers do not overlap, which is conducive to the first terminal device using envelope detection to complete initial signal detection and subsequent synchronization faster, and improve work efficiency.
  • different time domain offsets can be configured for the first signals on different first carriers so that the time domains of the first signals do not overlap.
  • the The second signal is used by the terminal device to determine the frequency domain resource for operation.
  • the second cell is a cell different from the first cell.
  • the first cell is the serving cell of the first terminal device. Then the first cell The time domain configuration of the signal is different from that of the second signal.
  • the The second signal is used by the terminal device to determine the frequency domain resource for operation.
  • the second cell is a cell different from the first cell.
  • the first cell is the serving cell of the first terminal device. Then the first cell The time domains of the signal and the second signal do not overlap.
  • the interference of signals from other cells can be reduced and the reliability of detection by the first terminal device can be improved.
  • the second cell may be a neighboring cell of the first cell, and the embodiment of the present application may facilitate the first terminal device to perform neighboring cell detection or measurement.
  • the second signal may be sent by the first network device or by the second network device.
  • the first network device is a network device in a passive IoT communication system.
  • the embodiments of the present application can enable the terminal equipment in the passive Internet of Things communication system to quickly and accurately determine the working frequency domain resources.
  • a communication method applied to a first terminal device, including receiving p first signals from a first network device on p first carriers, the p first signals being related to the p There is a one-to-one correspondence between the first carriers, each of the first carriers carries one of the first signals, and the duration of the q-th first signal among the p first signals is N first time units.
  • the duration, N is less than or equal to 20 and N is greater than 1, p is greater than or equal to 1, q ⁇ [1, p], p, q and N are integers; the operating frequency domain resources are determined according to the p first signals.
  • the p first signals are signals received or detected by the first terminal device, and the first terminal device can determine the operating frequency domain resource through the first signals.
  • the duration of the first signal is limited so that the first signal can meet the processing capability of the first terminal device, thereby improving the efficiency of the first terminal device in determining working frequency domain resources.
  • frequency domain resources in the embodiment of the present application can be described by frequency bands or carriers.
  • the first signal may be a Beacon signal
  • the embodiment of the present application may also enable the first terminal device to perform timing and frequency synchronization.
  • the p first signals are signals received or detected by the first terminal device.
  • the first terminal device can determine the operating frequency domain resources based on the p first signals. For example, if p is equal to 1, Then the frequency domain resource where the first terminal equipment works is the first carrier where the first signal is located; if p is greater than 1, then the frequency domain resource where the first terminal equipment works is the one with the best quality or the strongest signal among the p first signals.
  • the first carrier where the first signal is located is the frequency domain resource where the first terminal equipment works.
  • the period duration of the q-th first signal among the p first signals is equal to the duration of 2m second time units, and the p The period duration of the q-th first signal in the first signal is less than or equal to the duration of one third time unit, and m is an integer greater than 1.
  • the cycle duration of the q-th first signal among the p first signals is greater than or equal to the length of the physical broadcast channel.
  • the starting position of the q-th first signal among the p first signals is k-th distance from the starting position of the third time unit.
  • the duration of the two time units, k is greater than or equal to 0 and k is less than the number of the second time units in the third time unit.
  • the first signal includes: a first identifier, the first identifier is used to represent a cell served by the first network device or the first Internet equipment.
  • the bandwidth of the i-th first carrier among the p first carriers is n*180kHz, n is greater than or equal to 1 and n is less than or equal to 4, i is greater than or equal to 1 and i is less than or equal to p, n and i are integers.
  • the first identifiers carried by the p first signals are the same.
  • any two first signals among the p first signals have different time domain configurations.
  • the time domains of any two of the p first signals do not overlap.
  • the The second signal is used by the terminal device to determine the frequency domain resource for operation.
  • the second cell is a cell different from the first cell.
  • the first cell is the serving cell of the first terminal device. Then the first cell The time domain configuration of the signal is different from that of the second signal.
  • the The second signal is used by the terminal device to determine the frequency domain resource for operation.
  • the second cell is a cell different from the first cell.
  • the first cell is the serving cell of the first terminal device. Then the first cell The time domains of the signal and the second signal do not overlap.
  • the first terminal device is a terminal device in a passive IoT communication system.
  • a communication device including: a processing unit configured to generate p first signals, the first signals being used for the first terminal device to determine working frequency domain resources, the p first signals
  • the duration of the q-th first signal in is the duration of N first time units, N is less than or equal to 20 and N is greater than 1, p is greater than or equal to 1, q ⁇ [1, p], p, q and N is an integer;
  • a transceiver unit configured to periodically send the p first signals to the first terminal device on p first carriers, each of the first carriers carrying one of the first signals.
  • the period duration of the q-th first signal among the p first signals is equal to the duration of 2m second time units, and the p The period duration of the q-th first signal in the first signal is less than or equal to the duration of one third time unit, and m is an integer greater than 1.
  • the cycle duration of the q-th first signal among the p first signals is greater than or equal to the length of the physical broadcast channel.
  • the starting position of the q-th first signal among the p first signals is k times away from the starting position of the third time unit.
  • the duration of the second time unit, k is greater than or equal to 0 and k is less than the number of the second time units in the third time unit, and k is an integer.
  • the first signal includes: a first identifier, the first identifier is used to represent a cell served by the first network device or the first Internet equipment.
  • the bandwidth of the i-th first carrier among the p first carriers is n*180kHz, n is greater than or equal to 1 and n is less than or equal to 4, i is greater than or equal to 1 and i is less than or equal to p, n and i are integers.
  • the first identifiers carried by the p first signals are the same.
  • any two first signals among the p first signals have different time domain configurations.
  • the time domains of any two of the p first signals do not overlap.
  • the The second signal is used by the terminal device to determine the frequency domain resource for operation.
  • the second cell is a cell different from the first cell.
  • the first cell is the serving cell of the first terminal device. Then the first cell The time domain configuration of the signal is different from that of the second signal.
  • the The second signal is used by the terminal device to determine the frequency domain resource for operation.
  • the second cell is a cell different from the first cell.
  • the first cell is the serving cell of the first terminal device. Then the first cell The time domains of the signal and the second signal do not overlap.
  • the communication device is a network device in a passive IoT communication system.
  • a communication device including: a transceiver unit configured to receive p first signals from a first network device on p first carriers, where the p first signals are related to the p There is a one-to-one correspondence between the first carriers, each of the first carriers carries one of the first signals, and the duration of the q-th first signal among the p first signals is N first time units. Duration, N is less than or equal to 20 and N is greater than 1, p is greater than or equal to 1, q ⁇ [1, p], p, q and N are integers; a processing unit, used to determine the frequency domain of operation according to the first signal resource.
  • the period duration of the q-th first signal among the p first signals is equal to the duration of 2m second time units, and the p The period duration of the q-th first signal in the first signal is less than or equal to the duration of one third time unit, and m is an integer greater than 1.
  • the cycle duration of the q-th first signal among the p first signals is greater than or equal to the length of the physical broadcast channel.
  • the sending starting position of the q-th first signal among the p first signals is distanced from the starting position k of the third time unit.
  • the duration of second time units, k is greater than or equal to 0 and k is less than the number of second time units in the third time unit, and k is an integer.
  • the first signal includes: a first identifier, the first identifier is used to represent a cell served by the first network device or the first Internet equipment.
  • the bandwidth of the i-th first carrier among the p first carriers is n*180kHz, n is greater than or equal to 1 and n is less than or equal to 4, i is greater than or equal to 1 and i is less than or equal to p, n and i are integers.
  • the first identifiers carried by the p first signals are the same.
  • any two first signals among the p first signals have different time domain configurations.
  • the fourth aspect if p is greater than 1, then the time domains of any two of the p first signals do not overlap.
  • the first carrier carries the first signal sent through the first cell and the second signal sent through the second cell
  • the first signal sent through the second cell is carried on the first carrier.
  • the second signal is used for the terminal equipment to determine the frequency domain resource for operation.
  • the second cell is a cell different from the first cell.
  • the first cell is the serving cell of the communication device, then the first signal and The time domain configuration of the second signal is different.
  • the first carrier carries the first signal sent through the first cell and the second signal sent through the second cell
  • the first signal sent through the second cell is carried on the first carrier.
  • the second signal is used for the terminal equipment to determine the frequency domain resource for operation.
  • the second cell is a cell different from the first cell.
  • the first cell is the serving cell of the communication device, then the first signal and The time domains of the second signals do not overlap.
  • the communication device is a terminal device in a passive IoT communication system.
  • a communication device including: a processor configured to execute a computer program stored in a memory, so that the communication device executes the communication method of the above-mentioned first or second aspect.
  • a chip including: a processor configured to call and run a computer program from a memory, so that a communication device installed with the chip system executes the communication method of the first aspect and/or the second aspect.
  • a seventh aspect provides a computer program that, when executed by a communication device, implements the communication method of the first aspect and/or the second aspect.
  • a computer-readable storage medium is provided.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program When the computer program is run on a computer, it causes the computer to execute the first aspect and/or the third aspect. Two communication methods.
  • a communication system including the communication device in the third aspect and/or the fourth aspect.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a method 200 according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication device 10 provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication device 20 provided by an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • the terminal equipment in the embodiment of this application can be any terminal, and can refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless Communication equipment, user agent or user device.
  • the terminal device may also be a machine type communications user equipment, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant) , PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or future evolved public land mobile communication networks (public land mobile network, terminal equipment in PLMN), etc.
  • the terminal device can also be a terminal device that supports reflective communication, such as a tag.
  • the terminal device may support a wake-up receiver or may not support a wake-up receiver, which is not limited in the embodiments of the present application.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device, and is an entity on the network side used to send or receive signals.
  • the network equipment can be a base transceiver station (BTS) in the global system of mobile communication (GSM) system or code division multiple access (CDMA), or it can be a broadband code division multiple access
  • the base station (NodeB, NB) in the (wideband code division multiple access, WCDMA) system can also be the evolutionary base station (evolutional NodeB, eNB or eNodeB) in the LTE system, or the next generation base station (the next generation NodeB, gNB or gNodeB), or a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, or in a 5G network network equipment or network equipment in the future evolved PLMN network, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the base station may be a macro base station, a micro base station, a small base station, or a pole station.
  • the base station may be a base station that supports receiving data transmitted through transmission communication, or a base station that supports sending a wake-up signal, which is not limited by the embodiments of this application.
  • Figure 1 is a schematic diagram of the application scenario of this application.
  • the embodiments of this application are mainly applied to LTE systems or advanced long-term evolution (LTE Advanced, LTE-A) systems or NR systems.
  • This application can also be applied to other communication systems, as long as there are entities in the communication system that can send information, and there are other entities in the communication system that can receive information.
  • base station 1, base station 2, and terminals 1 to 6 form a communication system.
  • base station 1 sends information to one or more terminal devices among terminals 1 to 4.
  • Base station 1 sends information to one or more terminal devices among terminal 5 and terminal 6 through base station 2.
  • the terminal device 3 and the terminal device 4 also form a communication system, in which the terminal device 3 can send information to the terminal device 4.
  • the base station 2, the terminal 5 and the terminal 6 also form a communication system.
  • the base station 2 can send information to one or more terminal devices among the terminal 5 and the terminal 6.
  • the embodiments of the present application can be applied to the Internet of Things (IoT) system, and further, can be applied to the passive IoT communication system.
  • IoT Internet of Things
  • the terminal device does not rely on battery power supply.
  • terminal devices in passive IoT communication systems can be divided into three types: passive tags, semi-passive tags and active tags.
  • the passive tag itself does not generate a carrier signal.
  • the uplink transmits data by reflecting and modulating the external carrier.
  • the reflected signal power depends on the downlink received signal power (can be as low as -30dBm), and the reflected signal does not undergo power amplification.
  • Passive tag power consumption is typically around 1uW.
  • Semi-passive tags also do not generate carrier signals themselves. Uplink data is transmitted by reflecting and modulating external carrier waves, but the reflected signal The signal undergoes power amplification (for example, amplification gain 10dB ⁇ 15dB), and the reflected signal power depends on the downlink received signal power (can be as low as -50dBm) and the power amplification gain. Passive tag power consumption is typically around 100uW.
  • power amplification for example, amplification gain 10dB ⁇ 15dB
  • Passive tag power consumption is typically around 100uW.
  • the active tag itself can generate a carrier signal, and the uplink can modulate and transmit data based on its own carrier signal.
  • the uplink signal transmit power does not depend on the downlink received signal power. After power amplification, it can reach a larger power (for example, -20dBm ⁇ -10dBm).
  • the power consumption of active tags usually reaches 200 ⁇ 500uW.
  • tags can not only represent terminal equipment or terminals with the above characteristics in the passive Internet of Things communication system.
  • Parts of equipment may also represent terminal equipment or parts of terminal equipment having the above characteristics in other communication systems.
  • the other communication system may be a cellular mobile communication system.
  • passive tags are mainly suitable for short-range communications, such as densely deployed indoor small station head-end distances of 20 to 30 meters; semi-passive tags can usually reach a communication distance of 100 to 200 meters under the NLOS channel and are suitable for medium- and Short-distance communication, such as indoor small stations and outdoor (park) pole stations with a distance of 200 to 300 meters; active tag communication distance can usually reach 300 to 500 meters under the NLOS channel, indoor small stations, outdoor pole stations, and macro stations. Can be adopted.
  • the passive IoT communication system supports three modes: standalone, guard-band and in-band. Furthermore, the low-end IoT type narrowband communication system operates in guard-band or in-band mode, thereby making full use of the existing frequency domain. Resources and Equipment.
  • the downlink signal received by the terminal equipment in the passive IoT communication system contains signals with higher power (for example, the total power is more than 10dB higher than the passive IoT downlink signal).
  • Adjacent frequency different systems for example, LTE or NR
  • broadband for example, 10MHz, 20MHz or 100MHz
  • the signal-to-interference ratio of the baseband signal obtained after the tag's downlink reception envelope detection may be lower than 0dB, and the signal-to-interference-to-noise ratio required for the tag to achieve the peak rate is usually about 10dB. That is, the tag transmission reliability and efficiency are affected by interference from adjacent frequency and different systems. serious impact.
  • RF and IF filtering also mean that the tag needs to scan within the frequency band to detect the frequency band used by the passive IoT communication system.
  • the base station needs to send periodic Beacon so that the tag can lock the working frequency band more quickly and reliably.
  • passive IoT communication systems can increase capacity through multi-carrier concurrency.
  • Figure 2 is a schematic flowchart of a method 200 according to an embodiment of the present application.
  • the first terminal device may be a terminal device in a passive IoT communication system
  • the first network device may be a wireless device.
  • Source network equipment in the IoT communication system the first signal may be a Beacon signal
  • the first time unit may be a subframe in the wireless system
  • the second time unit may be a frame in the wireless system
  • the third time unit may be a wireless Superframes in the system.
  • the third time unit is composed of 1024 second time units, the second time unit is determined by 10 first time units, the duration of the first time unit is equal to 1ms, and the duration of the second time unit is Equal to 10ms, the duration of the third time unit is equal to 10240ms.
  • the first network device periodically sends p first signals on p first carriers.
  • the first signals can be used by the first terminal device to determine the frequency domain resources for work, and can also be used by the first terminal device to complete the work. Timing and frequency synchronization.
  • the first signal may carry a first identifier, and the first identifier is used to represent a cell served by the first network device or the corresponding first network device.
  • the first network device periodically broadcasts p first signals on p first carriers.
  • the duration of the first signal may be equal to the duration of N first time units, where N is an integer greater than 1 and less than or equal to 20.
  • the duration of the first signal is equal to the frame length (10ms) or half frame length (5ms) or twice the frame length (20ms) of LTE or NR.
  • each first signal in the embodiment of the present application is independent of each other, that is, the duration of each first signal may be the same or different.
  • the duration of the first first signal may be 5ms
  • the duration of the second first signal may be 10ms
  • the duration of the third first signal may be 20ms or The duration of the three first signals is all 10ms.
  • the duration of the first signal can also be expressed as the duration of the power of 2 first time units.
  • the duration of the first signal may be equal to 21, 22, 23 or 24 ms.
  • the cycle duration of the first signal may be equal to the duration of the second time unit raised to the power of 2, and shall not exceed the duration of one third time unit. It should be noted that in the embodiment of the present application, the third time unit The period of a signal refers to the period of sending the first signal.
  • the cycle duration of the first signal is equal to 2m*10ms, m is a positive integer, m is greater than or equal to 2 and m is less than or equal to 10.
  • the cycle duration of the first signal needs to be greater than or equal to the length of the physical broadcast channel PBCH to ensure that the number of first signals in one PBCH does not exceed one.
  • the cycle duration of the first signal must be configured to a value greater than or equal to 150 ms.
  • the period duration of each first signal in the embodiment of the present application is independent of each other, that is, the period duration of each first signal may be the same or different.
  • the length and cycle duration of the first signal in the embodiment of the present application are much larger than the synchronization signal with similar functions in the LTE/NR/NB-IoT system, adapting the passive IoT communication system to the low-complexity baseband of the first terminal device.
  • the processing requirements enable the first terminal device in the passive IoT communication system to determine the working frequency band and perform timing and frequency synchronization through the first signal.
  • the starting position of the first signal is k times the duration of the second time unit from the starting position of the third time unit, k is greater than or equal to 0 and k is less than the duration of the third time unit.
  • the number of second time units, k is an integer.
  • the starting position of the first signal refers to the starting position of the first network device sending the first signal.
  • the starting position of the first signal is 10*(a*2m+b) milliseconds from the starting position of the third time unit where the first signal is located, a and b are both integers, a is greater than or equal to 0 and a is less than 210-m, b is greater than or equal to 0 and b is less than 2m.
  • each first signal satisfies the above restriction conditions
  • the specific value of each first signal may be the same or different, which is not limited in this application.
  • the starting position of the first signal may float within a certain range, that is, the first signal may have a time domain offset.
  • the time domain offset of the first signal may be c*10ms, and the value of c may be -1, -2, -4, -8, 0, 1, 2, 4, or 8.
  • the value of c is -1, it means that the starting position of the first signal is 10ms ahead of 10*(a*2m+b) milliseconds; if the value of c is 1, it means that the starting position of the first signal is 10*(a*2m+b) milliseconds earlier. The starting position is delayed by 10ms on the basis of 10*(a*2m+b) milliseconds.
  • the other values are the same and will not be described here.
  • the bandwidth of the first carrier is n*180kHz, n is greater than or equal to 1 and n is less than or equal to 4, and n is an integer. It should be understood that each of the p first carriers satisfies the above restrictions, and the value of n corresponding to each first carrier can be different. For example, there are three first carriers, the first one is the first carrier. The bandwidth of the carrier is 180kHz, the bandwidth of the second first carrier is 360kHz, and the bandwidth of the third first carrier is 720kHz.
  • the first identifiers carried by the p first signals may be the same. Furthermore, the p first signals may be the same.
  • the first signal carries a cell ID and the cell IDs carried by different carriers may be the same.
  • the time domain configurations of the p first signals are different.
  • the time domain configuration of the first signal may include the duration of the first signal, the duration of the cycle for sending the first signal, and the time domain offset of the first signal. at least one of.
  • the time domains of the p first signals do not overlap.
  • the time domains of the first signals can not overlap by configuring different time domain offsets for the first signals on different first carriers.
  • the first signal can be sent on multiple first carriers, and the tags transmitted on each first carrier can complete synchronization calibration without switching frequencies.
  • Multiple first carriers use the same first identifier or first signal, which is conducive to reducing the synchronization complexity of the first terminal device; the time domain configuration of the first signals of different first carriers is different, which is conducive to rapid detection of the first terminal device and The first signal interference of different first carriers is reduced; the time domain positions of the first signals of different first carriers do not overlap, which helps tags using envelope detection to complete initial signal detection and subsequent synchronization faster, improving work efficiency.
  • Different cells in the passive IoT communication system may use the same or part of the same frequency domain resources, that is, multiple cells are networked on the same frequency based on all or part of the carriers. If the first carrier carries a first signal sent through the first cell and a second signal sent through the second cell, where the second signal is used for other terminal equipment to determine frequency domain resources for operation, the second cell is If the cell is different from the first cell, and the first cell is the serving cell of the first terminal device, the time domain configuration of the first signal and the second signal are different.
  • first signal and the second signal do not overlap in time domain.
  • the second cell is a cell adjacent to the first cell.
  • the same frequency carrier uses signals with different time domain configurations, which further prevents the time domains of the signals on the same frequency carrier from overlapping, which is conducive to reducing the interference of other signals and improving the reliability of terminal equipment detection. If the same frequency carrier If the signal on the carrier comes from an adjacent cell, it is also helpful for the terminal equipment to detect or measure the adjacent cell.
  • the first terminal device determines the operating frequency domain resource according to the first signal. Further, the first terminal device performs timing and frequency synchronization according to the first signal.
  • the first terminal device performs detection on one or more alternative frequency domain resources.
  • the working frequency domain resource can be determined, where the frequency domain resource is a frequency band or a carrier.
  • the frequency domain resource of the first terminal device is the first carrier; if the first terminal device detects multiple first carriers first signal on the first carrier, then select one from the plurality of first carriers as the operating frequency domain resource.
  • the first terminal device selects the first carrier carrying the first signal with the best quality or the strongest signal as the working frequency domain resource.
  • a method for frequency scanning and detecting the working frequency band and synchronization of the first terminal device suitable for the passive IoT communication system is defined.
  • the duration of the first signal corresponding to this method is adapted to the processing capability limit of the passive IoT terminal.
  • Periodic adaptation requires resource efficiency and passive IoT service delay, and time domain offset adapts to the interference coordination requirements of different carriers in the same cell or co-frequency carriers in different cells.
  • the first signal period can match the frame structure and superframe structure of LTE or NR.
  • Figure 3 is a schematic diagram of a communication device 10 provided by an embodiment of the present application.
  • the device 10 can be a network device, or a chip or circuit, such as a chip or circuit that can be provided in a network device.
  • the network device may correspond to the first network device in the above method.
  • the device 10 may include a processor 11 (ie, an example of a processing unit) and a memory 12 .
  • the memory 12 is used to store instructions, and the processor 11 is used to execute the instructions stored in the memory 12, so that the device 20 implements the steps performed by the first network device in the corresponding method in Figure 2.
  • the device 10 may also include an input port 13 (ie, an example of a communication unit) and an output port 14 (ie, another example of a communication unit).
  • the processor 11, the memory 12, the input port 13 and the output port 14 can communicate with each other through internal connection paths to transmit control and/or data signals.
  • the memory 12 is used to store computer programs, and the processor 11 can be used to call and run the computer program from the memory 12 to control the input port 13 to receive signals and the output port 14 to send signals to complete the first step in the above method. Network equipment steps.
  • the memory 12 may be integrated into the processor 11 or may be provided separately from the processor 11 .
  • the input port 13 is a receiver
  • the output port 14 is a transmitter.
  • the receiver and transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively called transceivers.
  • the input port 13 is an input interface
  • the output port 14 is an output interface
  • the functions of the input port 13 and the output port 14 can be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the processor 11 may be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be considered to implement the first network device provided in the embodiment of the present application.
  • the program code that implements the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
  • each module or unit in the communication device 10 listed above are only exemplary.
  • Each module or unit in the communication device 10 can be used to perform each action or process performed by the first network device in the above method 200. Process, here, in order to avoid redundancy, its detailed description is omitted.
  • Figure 4 is a schematic diagram of a communication device 20 provided by an embodiment of the present application.
  • the device 20 can be a terminal device, or a chip or circuit, such as a chip or circuit that can be disposed in the terminal device. circuit.
  • the terminal device corresponds to the first terminal device in the above method.
  • the device 20 may include a processor 21 (ie, an example of a processing unit) and a memory 22 .
  • the memory 22 is used to store instructions
  • the processor 21 is used to execute the instructions stored in the memory 22, so that the device 20 implements the aforementioned steps performed by the first terminal device in the corresponding method in Figure 2.
  • the device 20 may also include an input port 23 (ie, an example of a communication unit) and an output port 23 (ie, another example of a processing unit).
  • the processor 21, the memory 22, the input port 23 and the output port 24 can communicate with each other through internal connection paths to transmit control and/or data signals.
  • the memory 22 is used to store computer programs, and the processor 21 can be used to retrieve data from the stored computer program.
  • the calculation program is called and run in the device 22 to control the input port 23 to receive signals and the output port 24 to send signals, thereby completing the steps of the first terminal device in the above method 200.
  • the memory 22 may be integrated into the processor 21 or may be provided separately from the processor 21 .
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively called transceivers.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the device 20 may not include a memory 22, and the processor 21 may read the instructions (program or code) in the memory external to the chip to implement the above-mentioned steps as shown in the figure.
  • the functions of the input port 23 and the output port 24 can be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 21 may be implemented by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer may be considered to implement the first terminal device provided in the embodiment of the present application. That is, the program codes that implement the functions of the processor 21, the input port 23, and the output port 24 are stored in the memory, and the general-purpose processor implements the functions of the processor 21, the input port 23, and the output port 24 by executing the codes in the memory.
  • Each module or unit in the communication device 20 may be used to perform each action or process performed by the first terminal device in the above method 200.
  • its detailed description is omitted.
  • the embodiment of the present application also provides a communication system, which includes the aforementioned one or more network devices and one or more terminal devices.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了,一种通信方法、装置和系统,该方法包括:网络设备生成p个第一信号,第一信号用于第一终端设备确定工作的频域资源,p个第一信号中的第q个所述第一信号的时长为N个第一时间单元的时长,N小于或等于20且N大于1,p大于或者等于1,q∈[1,p],p、q和N为整数;网络设备在p个第一载波上周期性地发送所述p个第一信号,每个所述第一载波承载有一个所述第一信号;第一终端设备盲检到第一信号,则可以确定工作的频域资源。本申请实施例通过周期性发送第一信号使得第一终端设备可以确定工作的频域资源,特定时长的第一信号可以满足第一终端设备的处理需求。

Description

一种通信方法和装置
本申请要求于2022年8月30日提交中国专利局、申请号为202211045920.6、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及用于确定终端设备工作频域资源的方法、装置和系统。
背景技术
无源物联通信系统指的是一种终端设备不依赖电池供电的通信系统,在该系统中,对于主动标签型的终端设备,由于其自身可产生载波信号,故可采用射频滤波以及中频滤波等方法进行窄带滤波,在包络检波之前对邻频宽带干扰进行抑制,从而保障解调性能基本不受影响,然而,窄带滤波也意味着需要确定该终端设备的工作频域资源。
因此,如何确定无源物联通信系统中终端设备的工作频域资源成为业内亟待解决的问题。
发明内容
本申请提供一种通信方法,能够用于确定终端设备的工作频域资源。
第一方面,提供了一种通信方法,应用于第一网络设备,包括:生成p个第一信号,所述第一信号用于第一终端设备确定工作的频域资源,所述p个第一信号中的第q个所述第一信号的时长为N个第一时间单元的时长,N小于或等于20且N大于1,p大于或者等于1,q∈[1,p],p、q和N为整数;在p个第一载波上周期性地向所述第一终端设备发送所述p个第一信号,每个所述第一载波承载有一个所述第一信号。
需要说明的是,q∈[1,p]指的是q取[1,p]中的每个整数,上述p个第一信号中的每个第一信号的时长都可以以第一时间单元的时长的粒度表示,上述p个第一信号中的每个第一信号的时长都满足限制且相互独立即每个第一信号的时长可以相同也可以不相同。示例性地,若生成了三个第一信号,则第一个第一信号的时长可以是5ms,第二个第一信号的时长可以是10ms,第三个第一信号的时长可以是20ms或三个第一信号的时长都为10ms。
作为示例而非限定,第一信号的参数是第一网络设备根据时延、时域开销、网络覆盖范围、第一终端设备的处理能力和第一终端设备的性能中的至少一项确定的,第一信号的参数可以包括第一信号的时长和/或第一信号的周期。
示例性地,第一信号的参数根据时延确定指的是满足该参数的第一信号可以使得第一信号传输的时延满足预设的要求;第一信号的参数根据时域开销确定指的是满足该参数的第一信号可以使得第一信号传输的时域开销满足预设的要求;第一信号的参数根据网络覆盖范围确定指的是满足该参数的第一信号可以使得网络覆盖范围满足预设的要求;第一信号的参数根据第一终端设备的处理能力确定指的是对满足该参数的第一信号的处理在第一终端设备的处理能力范围内;第一信号的参数根据第一终端设备的性能确定指的是满足该参数的第一信号可以满足第一终端设备对于检测的准确率和效率的要求。
本申请实施例通过周期性发送第一信号使得第一终端设备可以确定工作的频域资源。本申请实施例中,限定了第一信号的时长,使得第一信号可以满足第一终端设备的处理能力,进而提高第一终端设备确定工作频域资源的效率。
应理解,本申请实施例中的频域资源可以通过频带或者载波进行描述。
示例性地,第一信号可以是Beacon信号,本申请实施例还可以使第一终端设备进行定时和频率同步。
上述方法中,第一信号的时长较长,可以降低使用第一信号进行单次检测的漏检率和虚警率,从而提高检测的效率,减少信号的开销。
结合第一方面,在第一方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的周期时长等于2m个第二时间单元的时长,所述p个第一信号中的第q个所述第一信号的周期时长小于或等于1个第三时间单元的时长,m是大于1的整数。
上述方法中,第一信号的周期大于第一信号的时长,第一信号的周期可以匹配第一信号的时长,从而保证了每个周期中第一信号的完整性,提高检测的可靠性。
结合第一方面,在第一方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的周期时长大于或等于物理广播信道的长度。
本申请实施例中,对第一信号的周期时长进行限定,使得第一信号的周期适配资源效率和无源物联业务时延的需求,进而提高第一终端设备确定的工作频域资源的可靠性。
应理解,本申请实施例中,第一时间单元可以是无线系统中的子帧,第二时间单元可以是无线系统中的帧,第三时间单元可以是无线系统中的超帧。
示例性地,在NR系统中,第三时间单元由1024个第二时间单元构成,第二时间单元由10个第一时间单元构成,第一时间单元的时长等于1ms,第二时间单元的时长等于10ms,第三时间单元的时长等于10240ms。
进一步地,本申请实施例中第一信号的周期还可以与LTE或NR的帧结构和超帧结构匹配,提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的起始位置距离所在的第三时间单元的起始位置k个第二时间单元的时长,k大于或等于0且k小于所述第三时间单元中所述第二时间单元的个数,k为整数。
本申请实施例中,不同第一信号的起始位置可以相同或者不同,本申请对此不做限定。进一步地,第一信号的起始位置可在确定的k值附近一定范围内浮动,即第一信号可以存在时域偏置。
结合第一方面,在第一方面的某些实现方式中,所述第一信号包括:第一标识,所述第一标识是用于表示所述第一网络设备服务的小区或所述第一网络设备。
结合第一方面,在第一方面的某些实现方式中,所述p个第一载波中第i个第一载波的带宽为n*180kHz,n大于或者等于1且n小于或者等于4,i大于或者等于1且i小于或者等于p,n、i为整数。
应理解,上述p个第一载波中的每个载波都满足上述限制条件,在一种可能的实现方式中,每个第一载波对应的n的取值可以不同,示例性地,存在三个第一载波,第一个第一载波的带宽为180kHz,第二个第一载波的带宽为360kHz,第三个第一载波的带宽为720kHz。
在一种可能的实现方式中,每个第一载波对应的n的取值可以相同,示例性地,存在三个第一载波,三个第一载波的带宽都为180kHz。
结合第一方面,在第一方面的某些实现方式中,若p大于1,则所述p个第一信号承载的所述第一标识相同。
本身实施例中,在多个第一载波上发送第一信号,在各第一载波进行传输的标签无需切换频率即可完成同步校准,多个第一载波上的第一信号承载的所述第一标识相同可以降低终端设备同步的复杂度。
结合第一方面,在第一方面的某些实现方式中,若p大于1,则所述p个第一信号中的任意两个第一信号的时域配置不同。
具体地,第一信号的时域配置可以包括第一信号的时长、发送第一信号的周期时长和第一信号的时域偏置中的至少一项。
进一步地,上述p个第一信号的时域不重叠,示例性地,可以通过给不同第一载波上的第一信号配置不同的时域偏置使得第一信号的时域不重叠。
本申请实施例中,不同载波的第一信号的时域配置不同,有利于第一终端快速检测以及减少不同第一载波上第一信号的干扰。
结合第一方面,在第一方面的某些实现方式中,若p大于1,则所述p个第一信号中的任意两个第一信号的时域不重叠。
本申请实施例中,不同第一载波的第一信号时域位置不重叠,有利于采用包络检波的第一终端设备更快完成初始信号检测及后续同步,提高工作效率。
示例性地,可以通过给不同第一载波上的第一信号配置不同的时域偏置使得第一信号的时域不重叠。
结合第一方面,在第一方面的某些实现方式中,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区,则所述第一信号与所述第二信号的时域配置不同。
结合第一方面,在第一方面的某些实现方式中,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区,则所述第一信号与所述第二信号的时域不重叠。
本申请实施例中,通过使得不同小区的信号时域配置不同或时域不重叠可以降低其他小区信号的干扰,提高第一终端设备检测的可靠性。
进一步地,第二小区可以是第一小区的邻近小区,本申请实施例可以有利于第一终端设备进行邻区检测或测量。
应理解,本申请实施例中,第二信号可以是由第一网络设备发送的,也可以是由第二网络设备发送的。
结合第一方面,在第一方面的某些实现方式中,所述第一网络设备是无源物联通信系统中的网络设备。
本申请实施例可以使得无源物联通信系统中的终端设备又快又准地确定工作的频域资源。
第二方面,提供了一种通信方法,应用于第一终端设备,包括在p个第一载波上接收来自第一网络设备的p个第一信号,所述p个第一信号与所述p个第一载波一一对应,每个所述第一载波承载有一个所述第一信号,所述p个第一信号中的第q个所述第一信号的时长为N个第一时间单元的时长,N小于或等于20且N大于1,p大于或者等于1,q∈[1,p],p、q和N为整数;根据所述p个第一信号确定工作的频域资源。
本申请实施例中,p个第一信号是第一终端设备接收或检测的信号,第一终端设备通过第一信号可以确定工作的频域资源。本申请实施例中,限定了第一信号的时长,使得第一信号可以满足第一终端设备的处理能力,进而提高第一终端设备确定工作频域资源的效率。
应理解,本申请实施例中的频域资源可以通过频带或者载波进行描述。
示例性地,第一信号可以是Beacon信号,本申请实施例还可以使第一终端设备进行定时和频率同步。
本申请实施例中,p个第一信号是第一终端设备接收或检测到的信号,第一终端设备可以根据p个第一信号确定工作的频域资源,示例性地,若p等于1,则第一终端设备工作的频域资源是第一信号所在的第一载波;若p大于1,则第一终端设备工作的频域资源是p个第一信号中质量最好或信号最强的第一信号所在的第一载波。
结合第二方面,在第二方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的周期时长等于2m个第二时间单元的时长,所述p个第一信号中的第q个所述第一信号的周期时长小于或等于1个第三时间单元的时长,m是大于1的整数。
结合第二方面,在第二方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的周期时长大于或等于物理广播信道的长度。
结合第二方面,在第二方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的起始位置距离所在第三时间单元的起始位置k个第二时间单元的时长,k大于或等于0且k小于所述第三时间单元中所述第二时间单元的个数。
结合第二方面,在第二方面的某些实现方式中,所述第一信号包括:第一标识,所述第一标识是用于表示所述第一网络设备服务的小区或所述第一网络设备。
结合第二方面,在第二方面的某些实现方式中,所述p个第一载波中第i个第一载波的带宽为 n*180kHz,n大于或者等于1且n小于或者等于4,i大于或者等于1且i小于或者等于p,n、i为整数。
结合第二方面,在第二方面的某些实现方式中,若p大于1,则所述p个第一信号承载的所述第一标识相同。
结合第二方面,在第二方面的某些实现方式中,若p大于1,则所述p个第一信号中的任意两个第一信号的时域配置不同。
结合第二方面,在第二方面的某些实现方式中,若p大于1,则所述p个第一信号中的任意两个第一信号的时域不重叠。
结合第二方面,在第二方面的某些实现方式中,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区,则所述第一信号与所述第二信号的时域配置不同。
结合第二方面,在第二方面的某些实现方式中,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区,则所述第一信号与所述第二信号的时域不重叠。
结合第二方面,在第二方面的某些实现方式中,所述第一终端设备是无源物联通信系统中的终端设备。
第三方面,提供了一种通信装置,包括:处理单元,用于生成p个第一信号,所述第一信号用于第一终端设备确定工作的频域资源,所述p个第一信号中的第q个所述第一信号的时长为N个第一时间单元的时长,N小于或等于20且N大于1,p大于或者等于1,q∈[1,p],p、q和N为整数;收发单元,用于在p个第一载波上周期性地向所述第一终端设备发送所述p个第一信号,每个所述第一载波承载有一个所述第一信号。
结合第三方面,在第三方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的周期时长等于2m个第二时间单元的时长,所述p个第一信号中的第q个所述第一信号的周期时长小于或等于1个第三时间单元的时长,m是大于1的整数。
结合第三方面,在第三方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的周期时长大于或等于物理广播信道的长度。
结合第三方面,在第三方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的起始位置距离所在的第三时间单元的起始位置k个第二时间单元的时长,k大于或等于0且k小于所述第三时间单元中所述第二时间单元的个数,k为整数。
结合第三方面,在第三方面的某些实现方式中,所述第一信号包括:第一标识,所述第一标识是用于表示所述第一网络设备服务的小区或所述第一网络设备。
结合第三方面,在第三方面的某些实现方式中,所述p个第一载波中第i个第一载波的带宽为n*180kHz,n大于或者等于1且n小于或者等于4,i大于或者等于1且i小于或者等于p,n、i为整数。
结合第三方面,在第三方面的某些实现方式中,若p大于1,则所述p个第一信号承载的所述第一标识相同。
结合第三方面,在第三方面的某些实现方式中,若p大于1,则所述p个第一信号中的任意两个第一信号的时域配置不同。
结合第三方面,在第三方面的某些实现方式中,若p大于1,则所述p个第一信号中的任意两个第一信号的时域不重叠。
结合第三方面,在第三方面的某些实现方式中,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区,则所述第一信号与所述第二信号的时域配置不同。
结合第三方面,在第三方面的某些实现方式中,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区,则所述第一 信号与所述第二信号的时域不重叠。
结合第三方面,在第三方面的某些实现方式中,所述通信装置是无源物联通信系统中的网络设备。
第四方面,提供了一种通信装置,包括:收发单元,用于在p个第一载波上接收来自第一网络设备的p个第一信号,所述p个第一信号与所述p个第一载波一一对应,每个所述第一载波承载有一个所述第一信号,所述p个第一信号中的第q个所述第一信号的时长为N个第一时间单元的时长,N小于或等于20且N大于1,p大于或者等于1,q∈[1,p],p、q和N为整数;处理单元,用于根据所述第一信号确定工作的频域资源。
结合第四方面,在第四方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的周期时长等于2m个第二时间单元的时长,所述p个第一信号中的第q个所述第一信号的周期时长小于或等于1个第三时间单元的时长,m是大于1的整数。
结合第四方面,在第四方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的周期时长大于或等于物理广播信道的长度。
结合第四方面,在第四方面的某些实现方式中,所述p个第一信号中的第q个所述第一信号的发送起始位置距离所在的第三时间单元的起始位置k个第二时间单元的时长,k大于或等于0且k小于所述第三时间单元中所述第二时间单元的个数,k为整数。
结合第四方面,在第四方面的某些实现方式中,所述第一信号包括:第一标识,所述第一标识是用于表示所述第一网络设备服务的小区或所述第一网络设备。
结合第四方面,在第四方面的某些实现方式中,所述p个第一载波中第i个第一载波的带宽为n*180kHz,n大于或者等于1且n小于或者等于4,i大于或者等于1且i小于或者等于p,n、i为整数。
结合第四方面,在第四方面的某些实现方式中,若p大于1,则所述p个第一信号承载的所述第一标识相同。
结合第四方面,在第四方面的某些实现方式中,若p大于1,则所述p个第一信号中的任意两个第一信号的时域配置不同。
结合第四方面,在第四方面的某些实现方式中,若p大于1,则所述p个第一信号中的任意两个第一信号的时域不重叠。
结合第四方面,在第四方面的某些实现方式中,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述通信装置的服务小区,则所述第一信号与所述第二信号的时域配置不同。
结合第四方面,在第四方面的某些实现方式中,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述通信装置的服务小区,则所述第一信号与所述第二信号的时域不重叠。
结合第四方面,在第四方面的某些实现方式中,所述通信装置是无源物联通信系统中的终端设备。
第五方面,提供了一种通信装置,包括:处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行上述第一方面或第二方面的通信方法。
第六方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行第一方面和/或第二方面的通信方法。
第七方面,提供了一种计算机程序,所述计算机程序被通信装置执行时,实现第一方面和/或第二方面的通信方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行第一方面和/或第二方面的通信方法。
第九方面,提供了一种通信系统,包括第三方面和/或第四方面中的通信装置。
附图说明
图1是本申请实施例的应用场景示意图。
图2是本申请一实施例方法200的流程示意图。
图3是本申请实施例提供的通信装置10的示意图。
图4是本申请实施例提供的通信装置20的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、新无线(new radio,NR)、固移融合网络系统或未来的第六代(6th generation,6G)等。
本申请实施例中的终端设备可以是任意的终端,可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是机器类通信的用户设备、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备还可以是支持反射通信的终端设备,比如标签。终端设备可以支持唤醒接收机,也可以不支持唤醒接收机,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,是网络侧的一种用来发送或接收信号的实体。该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional NodeB,eNB或eNodeB),还可以是下一代基站(the next generation NodeB,gNB或gNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。本申请实施例中,基站可以是宏基站,也可以微基站,小基站,或者杆站。基站可以是支持接收通过发射通信传输的数据的基站,也可以是支持发送唤醒信号的基站,本申请实施例并不限定。
图1是本申请的应用场景示意图,本申请实施例主要应用于LTE系统或高级的长期演进(LTE Advanced,LTE-A)系统或NR系统。本申请也可以应用于其它的通信系统,只要该通信系统中存在实体可以发送信息,该通信系统也存在其它实体可以接收信息即可。
如图1所示,基站1,基站2,终端1~终端6组成一个通信系统,在该通信系统中,基站1发送信息给终端1~终端4中的一个或多个终端设备。基站1通过基站2发送信息给终端5和终端6中的一个或多个终端设备。此外,终端设备3和终端设备4也组成一个通信系统,在该通信系统中,终端设备3可以发送信息给终端设备4。基站2,终端5和终端6也组成一个通信系统,该通信系统中,基站2可以发送信息给终端5和终端6中的一个或多个终端设备。
本申请实施例可以应用在物联网(internet of things,IoT)系统中,进一步地,可以应用在无源物联通信系统,在该通信系统中,终端设备不依赖电池供电。
从实现角度,无源物联通信系统中的终端设备可分为三种类型:被动(passive)标签、半被动(semi-passive)标签以及主动(active)标签。
三种类型终端设备的差别在于:
被动标签自身不产生载波信号,上行通过反射并调制外部载波的方式传输数据,反射信号功率取决于下行接收信号功率(可低至-30dBm),且反射信号不经过功率放大。被动标签功耗通常约1uW。
半被动标签同样自身不产生载波信号,上行通过反射并调制外部载波的方式传输数据,但反射信 号经过功率放大(例如,放大增益10dB~15dB),反射信号功率取决于下行接收信号功率(可低至-50dBm)和功率放大增益。被动标签功耗通常约100uW。
主动标签自身可产生载波信号,上行可基于自身载波信号调制并传输数据,且上行信号发射功率不取决于下行接收信号功率,经过功率放大可达到较大功率(例如,-20dBm~-10dBm)。主动标签功耗通常达200~500uW。
需要说明的是,在本申请实施例中,具备上述特征终端设备或者终端设备的部分都可以被称为标签(tag)即标签不仅可以表示无源物联通信系统中具备上述特征终端设备或者终端设备的部分,也可以表示在其他通信系统中具备上述特征终端设备或者终端设备的部分,示例性地,其他通信系统可以是蜂窝移动通信系统。
三种标签中,被动标签主要适用于短距通信,例如室内小站头端间距20~30米的较密集部署场景;半被动标签通信距离通常可达NLOS信道下100~200米,适用于中短距通信,例如室内小站以及室外(园区)杆站站间距200~300米的场景;主动标签通信距离通常可达NLOS信道下300~500米,室内小站以及室外杆站和宏站场景均可采用。
无源物联通信系统支持standalone、guard-band以及in-band三种模式,进一步地,低端物联类型的窄带通信系统采用guard-band或in-band模式工作,从而充分利用现有频域资源和设备。
当采用guard-band或in-band模式工作时,无源物联通信系统中的终端设备接收到的下行信号中包含功率较高(例如,总功率比无源物联下行信号高10dB以上)的邻频异系统(例如,LTE或NR)宽带(例如,10MHz、20MHz或100MHz)干扰信号。此时,标签下行接收包络检波后得到的基带信号信干比可能低于0dB,而标签达成峰值速率所需信干噪比通常约10dB,即标签传输可靠性和效率受到邻频异系统干扰的严重影响。
对于主动标签,由于其本身功耗较高,且自身可产生载波信号,故可采用射频滤波以及中频滤波等方法进行窄带滤波,在包络检波之前对邻频宽带干扰进行抑制,从而保障解调性能基本不受影响。然而,射频及中频滤波也意味着标签需在频段内进行扫频,以检测无源物联通信系统所采用的频带。为便于标签扫频检测,基站需发送周期性Beacon,使标签能够更快速可靠地锁定工作频带。此外,无源物联通信系统可以通过多载波并发的方式提升容量。
图2是本申请一实施例方法200的流程示意图,如图2所示,本申请实施例中,第一终端设备可以是无源物联通信系统中的终端设备,第一网络设备可以是无源物联通信系统中的网络设备,第一信号可以是Beacon信号,第一时间单元可以是无线系统中的子帧,第二时间单元可以是无线系统中的帧,第三时间单元可以是无线系统中的超帧。
示例性地,在NR系统中,第三时间单元由1024个第二时间单元构成,第二时间单元由10个第一时间单元确定,第一时间单元的时长等于1ms,第二时间单元的时长等于10ms,第三时间单元的时长等于10240ms。
S210,第一网络设备在p个第一载波上周期性地发送p个第一信号,该第一信号可以用于第一终端设备确定工作的频域资源,还可以用于第一终端设备完成定时和频率同步。该第一信号可以承载有第一标识,该第一标识用于表示第一网络设备服务的小区或对应的第一网络设备。
在一种可能的实现方式中,第一网络设备在p个第一载波上周期性地广播p个第一信号。
具体地,第一信号的时长可以等于N个第一时间单元的时长,N为大于1且小于等于20的整数。
示例性地,在LTE或NR中,第一信号的时长等于LTE或NR的帧长(10ms)或半帧长(5ms)或两倍帧长(20ms)。
需要说明的是,本申请实施例中的每个第一信号的时长相互独立即每个第一信号的时长可以相同也可以不相同。示例性地,若生成了三个第一信号,则第一个第一信号的时长可以是5ms,第二个第一信号的时长可以是10ms,第三个第一信号的时长可以是20ms或三个第一信号的时长都为10ms。
在一种可能的实现方式中,第一信号的时长也可以表示为2的幂次方个第一时间单元的时长。
示例性地,在LTE或NR中,第一信号的时长可以等于21、22、23或24ms。
本申请实施例中,第一信号的周期时长可以等于2的幂次方个第二时间单元的时长,且不超过一个第三时间单元的时长,需要说明的是,本申请实施例中,第一信号的周期指的是发送第一信号的周期。
示例性地,在LTE或NR中,第一信号的周期时长等于2m*10ms,m为正整数,m大于或等于2且m小于或等于10。
此外,第一信号的周期时长还需要大于或者等于物理广播信道PBCH的长度,确保在一个PBCH中的第一信号的个数不超过一个。
示例性地,若PBCH时长150ms,则第一信号的周期时长须配置为大于或者等于150ms的值。
需要说明的是,与第一信号的时长类似,本申请实施例中的每个第一信号的周期时长相互独立即每个第一信号的周期时长可以相同也可以不相同。
本申请实施例中的第一信号的长度及周期时长均远大于LTE/NR/NB-IoT系统中具有类似功能的同步信号,适配无源物联通信系统对第一终端设备低复杂度基带处理的要求,使得无源物联通信系统中的第一终端设备可以通过第一信号确定工作频带并进行定时和频率同步。
本申请实施例中,第一信号的起始位置距离所在的第三时间单元的起始位置k个第二时间单元的时长,k大于或等于0且k小于所述第三时间单元中所述第二时间单元的个数,k为整数。本申请实施例中,第一信号的起始位置指的是第一网络设备发送第一信号的起始位置。
示例性地,第一信号的起始位置距离该第一信号所在第三时间单元的的起始位置10*(a*2m+b)毫秒,a和b均为整数,a大于或等于0且a小于210-m,b大于或等于0且b小于2m。
需要说明的是,本申请实施例中,每个第一信号的起始位置都满足上述限制条件,并且每个第一信号的具体取值可以相同也可以不同,本申请对此不做限定。
进一步地,第一信号的起始位置可在一定范围内浮动,即第一信号可以存在时域偏置。
示例性地,第一信号的时域偏置可以是c*10ms,c的取值可以是-1、-2、-4、-8、0、1、2、4、8。其中,若c的取值为-1,则表示第一信号的起始位置在10*(a*2m+b)毫秒的基础上提前10ms;若c的取值为1,则表示第一信号的起始位置在10*(a*2m+b)毫秒的基础上延迟10ms,其他取值同理,在此不做赘述。
本申请实施例中,第一载波的带宽为n*180kHz,n大于或者等于1且n小于或者等于4,n为整数。应理解,上述p个第一载波中的每个载波都满足上述限制条件,每个第一载波对应的n的取值可以不同,示例性地,存在三个第一载波,第一个第一载波的带宽为180kHz,第二个第一载波的带宽为360kHz,第三个第一载波的带宽为720kHz。
若p大于1时,则上述p个第一信号承载的第一标识可以相同,进一步地,上述p个第一信号可以相同。
在一种可能的实现方式中,第一信号承载有小区ID并且不同载波承载的小区ID可以相同。
进一步地,上述p个第一信号的时域配置不同,具体地,第一信号的时域配置可以包括第一信号的时长、发送第一信号的周期时长和第一信号的时域偏置中的至少一项。
进一步地,上述p个第一信号的时域不重叠,示例性地,可以通过给不同第一载波上的第一信号配置不同的时域偏置使得第一信号的时域不重叠。
本申请提出在无源物联通信系统多载波并发场景下,可以在多个第一载波发送第一信号,在各第一载波进行传输的标签无需切换频率即可完成同步校准。多个第一载波采用相同的第一标识或第一信号,有利于降低第一终端设备同步复杂度;不同第一载波的第一信号的时域配置不同,有利于第一终端设备快速检测以及减少不同第一载波的第一信号干扰;不同第一载波的第一信号时域位置不重叠,有利于采用包络检波的标签更快完成初始信号检测及后续同步,提高工作效率。
无源物联通信系统不同小区可能采用相同或部分相同的频域资源,即多小区基于全部或部分载波同频组网。若第一载波上承载有通过第一小区发送的第一信号和通过第二小区发送的第二信号,其中,所述第二信号用于其他终端设备确定工作的频域资源,第二小区是与第一小区不同的小区,第一小区是第一终端设备的服务小区,则第一信号与第二信号的时域配置不同。
进一步地,第一信号与第二信号均时域不重叠。
在一种可能的实现方式中,上述第二小区是与第一小区相邻的小区。
本申请实施例中,同频载波采用不同时域配置的信号,进一步使同频载波上的信号的时域不重叠,有利于降低其他信号的干扰,提高终端设备检测的可靠性,若同频载波上的信号来自相邻小区,则也有利于终端设备进行邻区检测或测量。
S220,第一终端设备根据第一信号确定工作的频域资源,进一步地,第一终端设备根据第一信号进行定时和频率同步。
具体地,第一终端设备在一个或多个备选的频域资源上进行检测,当检测到第一信号时,可以确定工作的频域资源,其中,频域资源为频带或者载波。
进一步地,若第一终端设备只检测到一个第一载波上的第一信号,则第一终端设备的工作的频域资源为该第一载波;若第一终端设备检测到多个第一载波上的第一信号,则从该多个第一载波中选择一个作为工作的频域资源。
示例性地,第一终端设备选择承载有质量最好或信号最强的第一信号的第一载波作为工作的频域资源。
本申请实施例中,定义了适合无源物联通信系统的第一终端设备扫频检测工作频带及同步的方法,该方法对应的第一信号的时长适配无源物联终端处理能力限制,周期适配资源效率及无源物联业务时延的需求,时域偏置适配同小区不同载波或不同小区同频载波的干扰协调需求。
而且,在guard-band和in-band模式下,第一信号周期可以与LTE或NR的帧结构和超帧结构匹配。
根据前述方法,图3是本申请实施例提供的通信装置10的示意图,如图3所示,该装置10可以为网络设备,也可以为芯片或电路,比如可设置于网络设备的芯片或电路。其中,该网络设备可以对应上述方法中的第一网络设备。
该装置10可以包括处理器11(即,处理单元的一例)和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图2中对应的方法中第一网络设备执行的步骤。
进一步的,该装置10还可以包括输入口13(即,通信单元的一例)和输出口14(即,通信单元的另一例)。进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序,该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中第一网络设备的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该装置10为网络设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的第一网络设备。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中,通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
其中,以上列举的通信装置10中各模块或单元的功能和动作仅为示例性说明,通信装置10中各模块或单元可以用于执行上述方法200中第一网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图4是本申请实施例提供的通信装置20的示意图,如图4所示,该装置20可以为终端设备,也可以为芯片或电路,如可设置于终端设备内的芯片或电路。其中,该终端设备对应上述方法中的第一终端设备。
该装置20可以包括处理器21(即,处理单元的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现前述如图2中对应的方法中第一终端设备执行的步骤。
进一步的,该装置20还可以包括输入口23(即,通信单元的一例)和输出口23(即,处理单元的另一例)。再进一步的,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储 器22中调用并运行该计算计程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述方法200中第一终端设备的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该装置20为网络设备,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
可选的,若该装置20为芯片或电路,所述装置20也可以不包括存储器22,所述处理器21可以读取该芯片外部的存储器中的指令(程序或代码)以实现前述如图2中对应的方法中第一终端设备的功能。
作为一种实现方式,输入口23和输出口24的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的第一终端设备。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器21、输入口23和输出口24的功能。
其中,通信装置20中各模块或单元可以用于执行上述方法200中第一终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的一个或多于一个网络设备和一个或多于一个终端设备。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,应用于第一网络设备,包括:
    生成p个第一信号,所述第一信号用于第一终端设备确定工作的频域资源,所述p个第一信号中的第q个所述第一信号的时长为N个第一时间单元的时长,N小于或等于20且N大于1,p大于或者等于1,q∈[1,p],p、q和N为整数;
    在p个第一载波上周期性地发送所述p个第一信号,每个所述第一载波承载有一个所述第一信号,所述p个第一信号与所述p个第一载波一一对应。
  2. 根据权利要求1所述的方法,其特征在于,所述p个第一信号中的第q个所述第一信号的周期时长等于2m个第二时间单元的时长,所述p个第一信号中的第q个所述第一信号的周期时长小于或等于1个第三时间单元的时长,m是大于1的整数。
  3. 根据权利要求1所述的方法,其特征在于,所述p个第一信号中的第q个所述第一信号的周期时长大于或等于物理广播信道的时长。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述p个第一信号中的第q个所述第一信号的起始位置距离所在的第三时间单元的起始位置k个第二时间单元的时长,k大于或等于0且k小于所述第三时间单元中所述第二时间单元的个数,k为整数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一信号包括:
    第一标识,所述第一标识是用于表示所述第一网络设备服务的小区或所述第一网络设备。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述p个第一载波中第i个第一载波的带宽为n*180kHz,n大于或者等于1且n小于或者等于4,i大于或者等于1且i小于或者等于p,n、i为整数。
  7. 根据权利要求5所述的方法,其特征在于,若p大于1,则所述p个第一信号承载的所述第一标识相同。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,若p大于1,则所述p个第一信号中的任意两个第一信号的时域配置不同。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,若p大于1,则所述p个第一信号中的任意两个第一信号的时域不重叠。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,则所述第一信号与所述第二信号的时域配置不同,其中,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,则所述第一信号与所述第二信号的时域不重叠,其中,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一网络设备是无源物联通信系统中的网络设备。
  13. 一种通信方法,应用于第一终端设备,包括:
    在p个第一载波上接收来自第一网络设备的p个第一信号,所述p个第一信号与所述p个第一载波一一对应,每个所述第一载波承载有一个所述第一信号,所述p个第一信号中的第q个所述第一信号的时长为N个第一时间单元的时长,N小于或等于20且N大于1,p大于或者等于1,q∈[1,p],p、q和N为整数;
    根据所述p个第一信号确定工作的频域资源。
  14. 根据权利要求13所述的方法,其特征在于,所述p个第一信号中的第q个所述第一信号的周期时长等于2m个第二时间单元的时长,所述p个第一信号中的第q个所述第一信号的周期时长小于或等于1个第三时间单元的时长,m是大于1的整数。
  15. 根据权利要求13或14所述的方法,其特征在于,所述p个第一信号中的第q个所述第一信号的周期时长大于或等于物理广播信道的长度。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述p个第一信号中的第q个所述第一信号的起始位置距离所在第三时间单元的起始位置k个第二时间单元的时长,k大于或等于0且k小于所述第三时间单元中所述第二时间单元的个数,k为整数。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述第一信号包括:
    第一标识,所述第一标识是用于表示所述第一网络设备服务的小区或所述第一网络设备。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,所述p个第一载波中第i个第一载波的带宽为n*180kHz,n大于或者等于1且n小于或者等于4,i大于或者等于1且i小于或者等于p,n、i为整数。
  19. 根据权利要求17所述的方法,其特征在于,若p大于1,则所述p个第一信号承载的所述第一标识相同。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,若p大于1,则所述p个第一信号中的任意两个第一信号的时域配置不同。
  21. 根据权利要求13至20中任一项所述的方法,其特征在于,若p大于1,则所述p个第一信号中的任意两个第一信号的时域不重叠。
  22. 根据权利要求13至21中任一项所述的方法,其特征在于,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区,则所述第一信号与所述第二信号的时域配置不同。
  23. 根据权利要求13至22中任一项所述的方法,其特征在于,若所述第一载波上承载有通过第一小区发送的所述第一信号和通过第二小区发送的第二信号,所述第二信号用于终端设备确定工作的频域资源,所述第二小区是与所述第一小区不同的小区,所述第一小区是所述第一终端设备的服务小区,则所述第一信号与所述第二信号的时域不重叠。
  24. 根据权利要求13至23中任一项所述的方法,其特征在于,所述第一终端设备是无源物联通信系统中的终端设备。
  25. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器用于实现如权利要求1至24中任一项所述的方法。
  26. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的终端设备执行如权利要求1至24中任意一项所述的方法。
  27. 一种计算机程序,其特征在于,所述计算机程序被通信装置执行时,实现如权利要求1至24中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质上存储有计算机程序,当所述计算机程序运行时,使得所述计算机执行如权利要求1至24中任一项所述的方法。
  29. 一种通信系统,其特征在于,包括网络设备和终端设备,
    其中,所述网络设备用于执行如权利要求1至12中任一项所述的方法,所述终端设备用于执行如权利要求13至24中任一项所述的方法。
PCT/CN2023/103879 2022-08-30 2023-06-29 一种通信方法和装置 WO2024045851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211045920.6 2022-08-30
CN202211045920 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024045851A1 true WO2024045851A1 (zh) 2024-03-07

Family

ID=90022369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103879 WO2024045851A1 (zh) 2022-08-30 2023-06-29 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN117641319A (zh)
WO (1) WO2024045851A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028802A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 一种信号发送、接收方法及装置
CN111181668A (zh) * 2019-04-24 2020-05-19 新华三技术有限公司 信息获取方法及装置
WO2021097597A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 信号传输的方法和装置、反射器以及接收器
CN113261320A (zh) * 2019-03-08 2021-08-13 华为技术有限公司 通信方法、装置及系统
US20210364625A1 (en) * 2018-03-24 2021-11-25 Brandon Li RFID Tag Location and Association of RFID Tags
WO2022027521A1 (zh) * 2020-08-06 2022-02-10 富士通株式会社 上行信号的发送和接收方法以及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028802A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 一种信号发送、接收方法及装置
US20210364625A1 (en) * 2018-03-24 2021-11-25 Brandon Li RFID Tag Location and Association of RFID Tags
CN113261320A (zh) * 2019-03-08 2021-08-13 华为技术有限公司 通信方法、装置及系统
CN111181668A (zh) * 2019-04-24 2020-05-19 新华三技术有限公司 信息获取方法及装置
WO2021097597A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 信号传输的方法和装置、反射器以及接收器
WO2022027521A1 (zh) * 2020-08-06 2022-02-10 富士通株式会社 上行信号的发送和接收方法以及装置

Also Published As

Publication number Publication date
CN117641319A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
JP7293252B2 (ja) Wusとrrm測定との間の相互作用
CN114339868B (zh) Rrm测量方法及用户设备
CN107113116B (zh) 用于共享频谱中的不连续发送(dtx)的小区切换的方法、装置和计算机可读介质
US11006435B2 (en) Communication device and method for receiving signals in a frequency range
WO2020147615A1 (zh) 波束失败恢复方法、终端及基站
CN113924819B (zh) 具有快速波束管理的不连续接收唤醒过程
WO2020029849A1 (zh) 随机接入方法、通信装置、芯片及存储介质
WO2021018066A1 (zh) 信息上报方法及装置
WO2020029890A1 (zh) 接收参考信号的方法和通信设备
CN112771959B (zh) 资源集合监听方法、设备及存储介质
WO2018205975A1 (zh) 一种信号的传输方法和装置
US11064490B2 (en) Method and device for transmitting and receiving information
US11134514B2 (en) Random access method, network device, and terminal device
CN111630886A (zh) 异频测量时延确定方法、装置及存储介质
WO2019011248A1 (zh) 一种上报及确定波束信息的方法和装置
US20240147424A1 (en) Communication method and apparatus
CN112771991B (zh) 使用节能参考信号降低功耗的系统及方法
WO2019238007A1 (zh) 检测波束的方法和装置
WO2021227985A1 (zh) 同步信号块的处理方法及装置、通信设备和可读存储介质
WO2018176415A1 (zh) 一种协作小区确定方法及网络设备
CN114762394B (zh) 功率模式适配的应用延迟
US20240204908A1 (en) Wireless communication method and communication apparatus
CN109644403A (zh) 无线通信的方法和设备
US20230318784A1 (en) Wireless communication method and device
WO2024045851A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858889

Country of ref document: EP

Kind code of ref document: A1