[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024045768A1 - 一种基于动力换挡变速器的叉车主动制动控制方法及系统 - Google Patents

一种基于动力换挡变速器的叉车主动制动控制方法及系统 Download PDF

Info

Publication number
WO2024045768A1
WO2024045768A1 PCT/CN2023/100342 CN2023100342W WO2024045768A1 WO 2024045768 A1 WO2024045768 A1 WO 2024045768A1 CN 2023100342 W CN2023100342 W CN 2023100342W WO 2024045768 A1 WO2024045768 A1 WO 2024045768A1
Authority
WO
WIPO (PCT)
Prior art keywords
forklift
braking
active braking
state
duty cycle
Prior art date
Application number
PCT/CN2023/100342
Other languages
English (en)
French (fr)
Inventor
毕胜
张冬林
白迎春
师学银
郑小东
夏光
Original Assignee
安徽合力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽合力股份有限公司 filed Critical 安徽合力股份有限公司
Priority to EP23858807.3A priority Critical patent/EP4393781A1/en
Publication of WO2024045768A1 publication Critical patent/WO2024045768A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07509Braking

Definitions

  • the invention relates to the field of forklift braking control, and specifically relates to a forklift active braking control method and system based on a power shift transmission.
  • the purpose of the present invention is to provide a forklift active braking control method and system based on a power shift transmission to solve the problems raised in the above background technology.
  • An active braking control method for forklifts based on power shift transmission including the following steps:
  • Step 1 Obtain the forklift status parameters, and determine the current status of the forklift based on the forklift status. If the current status of the forklift is active braking, perform step 2;
  • Step 2 Obtain the forklift speed-duty cycle relationship, input the current speed signal of the forklift, and obtain the duty cycle parameters corresponding to the current speed state without impact and capable of generating the maximum braking force according to the forklift speed-duty cycle relationship. According to the obtained The duty cycle parameter outputs the proportional solenoid valve control parameters of the transmission;
  • Step 3 Use the solenoid valve control parameters produced in step 2 to control the action of the proportional solenoid valve of the transmission, and control the forklift power system to output a driving force opposite to the current movement direction of the forklift to drive the forklift to actively brake;
  • Step 4 When the forklift speed is detected to be zero, the forklift exits active braking.
  • the forklift status parameters include brake pedal status, accelerator pedal switch status, forklift speed, and forklift gear.
  • the forklift state includes active braking state, combined braking state, emergency braking state, and normal driving state
  • the combined braking state is transmission active braking and forklift braking system combined braking .
  • the forklift status judgment in step 1 includes the following steps:.
  • Step 1.1 If the accelerator pedal switch is on, enter the normal driving state without any braking;
  • Step 1.3 If the accelerator pedal switch is in the off state and ⁇ ⁇ 0, it enters the combined braking state;
  • Step 1.4 If the accelerator pedal switch is in a closed state and ⁇ t 2 is less than the set threshold, the emergency braking state will be entered, and the clutch active braking system will perform emergency braking;
  • is the depression angle of the brake pedal
  • ⁇ t 2 is the emergency braking time of the brake pedal
  • ⁇ t 2 is the time when ⁇ 1 changes to ⁇ max
  • ⁇ 1 and ⁇ max respectively represent the angular position of the brake pedal at the previous moment and the angular position when the brake pedal is depressed to the bottom.
  • the vehicle speed-duty ratio in step 2 is obtained by the following method:
  • Step 2.2 Adjust the vehicle speed to v 1 , assign the duty cycle value to b%, and observe whether the braking deceleration a is within the preset interval;
  • Step 2.3 keep the other conditions unchanged, adjust the vehicle speed to v 2 , v 3 ... v y-2 , v y-1 , v y and repeat step 2.3 to get the vehicle speed as v 2 , v 3 ... v
  • the corresponding maximum duty cycle of the power shift transmission active braking can produce the maximum braking force without braking impact is b 2 %, b 3 %... b y-2 %, b y-1 %, b y %;
  • Step 2.4 After obtaining y different vehicle speeds corresponding to the maximum duty cycle that enables active braking of the power shift transmission to produce the maximum braking force without braking shock, use (v 1 , b 1 ), (v 2 ,b 2 ); (v 2 ,b 2 ), (v 3 ,b 3 )...(v y-2 ,b y-2 ), (v y-1 ,b y-1 ); (v y -1 , b y-1 ), (v y , b y )
  • This y-1 set of data determines y straight line segments, and connects the y straight line segments to obtain the vehicle speed-duty cycle relationship curve.
  • the forklift gear signal is first detected. If the forklift is in the forward gear state, the forward gear of the forklift clutch is controlled to be disconnected. When the forklift clutch is combined with reverse gear, the forklift transmission system is dragged in reverse to slow down the forklift; if the forklift is in reverse gear, the reverse gear of the forklift clutch is controlled to be disconnected, and the forklift clutch is controlled to be combined with forward gear, and the forklift transmission system is dragged in reverse to slow down the forklift. slow down.
  • control method of the transmission active braking system in the combined braking state is the same as that of the transmission active braking system in the active braking state.
  • a forklift active braking control system based on a power shift transmission including a vehicle speed sensor, a brake pedal signal sensor, an accelerator pedal switch signal sensor, a vehicle gear signal sensor, a transmission active braking system and a processor;
  • the transmission active braking system includes a forward proportional solenoid valve and a reverse proportional solenoid valve;
  • the input end of the processor is respectively connected to the vehicle speed sensor, the brake pedal signal sensor, and the accelerator pedal switch signal sensor, and the output end of the vehicle gear signal processor is connected to the power shift transmission.
  • Active braking systems and vehicle braking systems are respectively connected to the vehicle speed sensor, the brake pedal signal sensor, and the accelerator pedal switch signal sensor, and the output end of the vehicle gear signal processor is connected to the power shift transmission.
  • the vehicle speed sensor is installed at the forklift wheel for collecting vehicle speed information
  • the brake pedal signal sensor is installed on the brake pedal and is used to collect the driver's operation signal on the brake pedal;
  • the accelerator pedal switch signal sensor is installed on the accelerator pedal and is used to collect the driver's operation signal on the accelerator pedal;
  • the vehicle gear signal sensor is installed on the gear operating handle and is used to collect signals that the vehicle is currently in forward gear, reverse gear or neutral gear.
  • the present invention adds vehicle speed sensors, accelerator pedal switch signal sensors and brake pedal signal sensors to the original forklift structure, which can quickly, conveniently and economically realize the active safety braking function, which is realized through active braking of the clutch.
  • the active safety braking function can reduce the wear and tear of the vehicle's original braking system and extend its service life.
  • the vehicle clutch adopts a wet clutch, which has excellent heat dissipation effect and long service life. It is easy to replace;
  • the clutch active braking-vehicle braking system combined braking proposed by the present invention can provide greater braking force and ensure driving safety in emergencies.
  • the active safety braking control method proposed by the present invention can realize the driver's "electric forklift” driving experience, greatly reduce the driver's fatigue level during driving work, improve driving safety, and in unexpected situations When the situation occurs, it can independently judge and perform emergency braking, further avoiding the occurrence of safety accidents.
  • Figure 1 is a schematic structural diagram of the forklift control system of this application.
  • FIG. 2 is a schematic diagram of vehicle speed-duty cycle in Embodiment 1 of the present application.
  • a forklift active braking system based on a power shift transmission includes a vehicle speed sensor, a brake pedal signal sensor, an accelerator pedal switch signal sensor, a vehicle gear signal sensor, and a power shift transmission.
  • the vehicle speed sensor is installed on the forklift wheel and is used to collect vehicle speed information
  • the brake pedal signal sensor is installed on the brake pedal and is used to collect the driver's operation signal on the brake pedal;
  • the accelerator pedal switch signal sensor is installed on the accelerator pedal and is used to collect the driver's operation signal on the accelerator pedal;
  • the vehicle gear signal sensor is installed on the gear operating handle and is used to collect signals that the vehicle is currently in forward gear, reverse gear or neutral gear;
  • the power shift transmission active braking system consists of a forward proportional solenoid valve, a forward clutch, a reverse proportional solenoid valve, and a reverse clutch;
  • the input end of the processor is respectively connected to the vehicle speed sensor, brake pedal signal sensor, accelerator pedal switch signal sensor, and vehicle gear signal.
  • the outputs of the processor are respectively connected to the power shift transmission active braking system and the vehicle braking system.
  • a forklift active braking control method based on a power shift transmission is applied to a forklift equipped with a forklift active braking system.
  • the control method is carried out as follows:
  • Step 1 Obtain the forklift status parameters.
  • the forklift status parameters include brake pedal status, accelerator pedal switch status, forklift speed, and forklift gear.
  • the current status of the forklift is determined based on the forklift status.
  • the forklift status includes active braking status, combined braking status, Emergency braking state, normal driving state, and combined braking state are the transmission active braking and the forklift braking system combined braking.
  • the forklift state judgment includes the following steps:.
  • Step 1.1 If the accelerator pedal switch is on, enter the normal driving state without any braking;
  • Step 1.3 If the accelerator pedal switch is in the off state and ⁇ 0, it enters the combined braking state.
  • the control method of the transmission active braking system in the combined braking state is the same as that in the active braking state;
  • Step 1.4 If the accelerator pedal switch is in the off state and ⁇ t 2 is less than the set threshold, it will enter the emergency braking state, and the clutch active braking system will perform emergency braking. When the forklift is in the emergency braking state, the transmission active braking system will The solenoid valve duty cycle should respond immediately to 100%, and the clutch should engage and lock;
  • is the braking angle of the brake pedal
  • ⁇ t 2 is the emergency braking time of the brake pedal, ⁇ t 2 is the time when ⁇ 1 changes to ⁇ max , ⁇ 1 and ⁇ max respectively represent the angular position of the brake pedal at the previous moment and the angular position when the brake pedal is depressed to the bottom;
  • step 2 If the current status of the forklift is active braking, proceed to step 2;
  • Step 2 Obtain the forklift speed-duty cycle relationship.
  • the speed-duty cycle is obtained using the following method:
  • Step 2.2 Adjust the vehicle speed to v 1 , assign the duty cycle value to b%, and observe whether the braking deceleration a is within the preset interval;
  • Step 2.3 keep the other conditions unchanged, adjust the vehicle speed to v 2 , v 3 ... v y-2 , v y-1 , v y and repeat step 2.3 to get the vehicle speed as v 2 , v 3 ... v
  • the corresponding maximum duty cycle of the power shift transmission active braking can produce the maximum braking force without braking impact is b 2 %, b 3 %... b y-2 %, b y-1 %, b y %;
  • Step 2.4 After obtaining y different vehicle speeds corresponding to the maximum duty cycle that enables active braking of the power shift transmission to produce the maximum braking force without braking shock, use (v 1 , b 1 ), (v 2 ,b 2 ); (v 2 ,b 2 ), (v 3 ,b 3 )...(v y-2 ,b y-2 ), (v y-1 ,b y-1 ); (v y -1 , b y-1 ), (v y , b y )
  • This y-1 set of data determines y straight line segments, and connects the y straight line segments to obtain the vehicle speed-duty cycle relationship curve;
  • Step 3 Use the solenoid valve control parameters produced in step 2 to control the action of the proportional solenoid valve of the transmission, and control the forklift power system to output a driving force opposite to the current movement direction of the forklift to drive the forklift to actively brake.
  • first detect the forklift gear position. signal if the forklift is in the forward gear state, the forklift clutch is controlled to disconnect the forward gear, and the forklift clutch is controlled to be combined with the reverse gear, and the forklift transmission system is dragged in the reverse direction to slow down the forklift; if the forklift is in the reverse gear state, the forklift clutch is controlled to reverse gear. Disconnect, control the forklift clutch to combine with the forward gear, and drag the forklift transmission system in the reverse direction to slow down the forklift;
  • Step 4 When the forklift speed is detected to be zero, the forklift exits active braking.
  • This embodiment is used on a certain type of 3-ton counterbalanced forklift.
  • the maximum allowable speed of the forklift is about 30km/h.
  • the vehicle has begun to brake and the braking deceleration is within a reasonable range, and the vehicle can complete smooth active braking.
  • the vehicle braking system intervenes.
  • the power shift transmission active braking system and the vehicle braking system can work at the same time, and decelerate to 0 at the appropriate place according to the driver's intention.
  • the vehicle is allowed to travel at a speed of 15km/h.
  • the duty cycle of the solenoid valve of the active braking system of the power shift transmission should be 100%, the clutch is quickly combined and locked, and the vehicle is safely braked to a stop within a distance of 3m, effectively shortening the emergency braking distance and ensuring driving safety. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

一种基于动力换挡变速器的叉车主动制动控制方法,包括以下步骤:步骤1、获取叉车状态参数,若叉车当前状态为主动制动状态,则执行步骤2;步骤2、输入叉车当前车速信号,获取当前车速状态下无冲击且能产生最大制动力对应的占空比参数,根据获得的占空比参数输出变速器的比例电磁阀控制参数;步骤3、使用比例电磁阀控制参数控制变速器的比例电磁阀动作,控制叉车动力系统输出与叉车当前运动方向相反的驱动力带动叉车主动制动;步骤4、当检测到叉车车速为零时,叉车退出主动制动,通过离合器主动制动实现主动安全制动功能的方式能减少车辆原有制动系统的磨损,延长其使用寿命,且车辆离合器选用湿式离合器,散热效果优异,使用周期长更换方便。

Description

一种基于动力换挡变速器的叉车主动制动控制方法及系统 技术领域
本发明涉及叉车制动控制领域,具体是一种基于动力换挡变速器的叉车主动制动控制方法及系统。
背景技术
随着电动叉车的应用,许多叉车驾驶员逐步适应电动叉车新的驾驶感受。而平衡重式叉车因为其传动系统特点,很难在其基础上改造主动安全制动系统,因此驾驶员只能通过频繁踩踏制动踏板的传统方式对平衡重式叉车进行制动,在高强度复杂的仓库等工作环境之下,时间长了便会引发疲劳出现安全事故。且传统平衡重式叉车尤其是运载货物时,因为其质量比较重,长期频繁使用车辆制动系统会导致制动系统磨损严重且制动力不足,同样会引发安全事故。
发明内容
本发明的目的在于提供一种基于动力换挡变速器的叉车主动制动控制方法及系统,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于动力换挡变速器的叉车主动制动控制方法,包括以下步骤:
步骤1、获取叉车状态参数,根据叉车状态产生判断叉车当前状态,若叉车当前状态为主动制动状态,则执行步骤2;
步骤2、获取叉车车速-占空比关系,输入叉车当前车速信号,并根据叉车车速-占空比关系获取当前车速状态下无冲击且能产生最大制动力对应的占空比参数,根据获得的占空比参数输出变速器的比例电磁阀控制参数;
步骤3、使用步骤2中生产的电磁阀控制参数控制变速器的比例电磁阀动作,控制叉车动力系统输出与叉车当前运动方向相反的驱动力带动叉车主动制动;
步骤4、当检测到叉车车速为零时,叉车退出主动制动。
作为本发明进一步的方案:所述叉车状态参数包括制动踏板状态、油门踏板开关状态、叉车车速、叉车档位。
作为本发明进一步的方案:所述叉车状态包括主动制动状态、联合制动状态、紧急制动状态、正常行驶状态,所述联合制动状态为变速器主动制动和叉车制动系统联合制动。
作为本发明进一步的方案:所述步骤1中叉车状态判断包括以下步骤:。
步骤1.1、若油门踏板开关处于开启状态,则进入正常行驶状态,不进行任何制动;
步骤1.2、若所述油门踏板开关处于关闭状态,θ=0,则进入离合器主动制动状态,主动制动状态下只有变速器通过换挡进行主动制动;
步骤1.3、若所述油门踏板开关处于关闭状态,θ≠0,则进入联合制动状态;
步骤1.4、若所述油门踏板开关处于关闭状态,Δt2小于设定阈值时,则进入紧急制动状态,离合器主动制动系统进行紧急制动;
其中:
θ为制动踏板的踩踏角度;
Δt2为制动踏板紧急制动时间,Δt2为θ1变化至θmax的时间,θ1、θmax分别表示上一个时刻制动踏板的角度位置以及制动踏板踩到底时的角度位置。
作为本发明进一步的方案:所述步骤2中所述车速-占空比采用如下方法获得:
步骤2.1、设定车速正常区间为v1~vy,将车速区间均匀分为y-1段共y个点,分别为v1,v2,v3...vy-2,vy-1,vy;占空比的值为b%,调节占空比的单位变化差值为1%,第m1次确定的占空比的实验值为(b-m1)%;车速-占空比图曲线确定实验测试次数为y×m1;占空比实验开始时,初始化b%=90%;
步骤2.2、将车速调至v1,赋值占空比的值为b%,观测制动减速度a是否在预设区间;
如果不在预设区间,则令(b-1)赋值给b,并且重复步骤2.2;
若观测到制动减速度在预设区间,则确定车速为v1的条件下使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比为当前的值b1%;
步骤2.3、其余条件保持不变,分别调节车速为v2,v3...vy-2,vy-1,vy并重复步骤2.3,得到车速为v2,v3...vy-2,vy-1,vy时对应的使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比分别为b2%,b3%...by-2%,by-1%,by%;
步骤2.4、得到y个不同的车速分别对应的使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比之后,用(v1,b1),(v2,b2);(v2,b2),(v3,b3)...(vy-2,by-2),(vy-1,by-1);(vy-1,by-1),(vy,by)这y-1组数据确定y条直线段,将y条直线段相连得到车速-占空比的关系曲线图。
作为本发明进一步的方案:所述步骤3中变速器主动制动系统动作前,先检测叉车档位信号,若叉车位于前进挡状态,则控制叉车离合器前进挡断开,在控制叉车离 合器倒挡结合,反向拖拽叉车传动系统使叉车减速;若叉车位于倒挡状态,则控制叉车离合器倒挡断开,在控制叉车离合器前进挡结合,反向拖拽叉车传动系统使叉车减速。
作为本发明进一步的方案:所述联合制动状态中变速器主动制动系统与主动制动状态下变速器主动制动系统的控制方法相同。
作为本发明进一步的方案:所述当叉车处于紧急制动状态时,变速器主动制动系统电磁阀占空比应立即响应为100%,离合器进行结合锁止。
一种基于动力换挡变速器的叉车主动制动控制系统,包括车速传感器、制动踏板信号传感器、油门踏板开关信号传感器、车辆挡位信号传感器、变速器主动制动系统和处理器;
所述变速器主动制动系统包括前进挡比例电磁阀以及倒挡比例电磁阀;
所述处理器的输入端分别连接所述车速传感器、所述制动踏板信号传感器、所述油门踏板开关信号传感器,车辆挡位信号所述处理器的输出端分别连接至所述动力换挡变速器主动制动系统和车辆制动系统。
作为本发明进一步的方案:所述车速传感器安装在叉车车轮处,用于采集车速信息;
所述制动踏板信号传感器安装在制动踏板,用于采集驾驶员对制动踏板的操作信号;
所述油门踏板开关信号传感器安装在油门踏板,用于采集驾驶员对油门踏板的操作信号;
所述车辆挡位信号传感器安装在挡位操作把,用于采集车辆当前处于前进挡、倒挡或是空挡的信号。
与现有技术相比,本发明的有益效果是:
1、本发明在原有叉车的结构之上加装车速等传感器、油门踏板开关信号传感器以及制动踏板信号传感器的方式,能快速便捷且经济的实现主动安全制动功能,通过离合器主动制动实现主动安全制动功能的方式能减少车辆原有制动系统的磨损,延长其使用寿命,且车辆离合器选用湿式离合器,散热效果优异,使用周期长更换方便;
2、本发明提出的离合器主动制动-车辆制动系统联合制动能提供更大的制动力,在突发情况更能保证行车安全。
3、本发明提出的主动安全制动的控制方法,可以实现驾驶员“电动叉车”的驾驶体验,大大降低驾驶员在驾驶工作时的疲劳程度,提高了驾驶安全性,且在突发情 况出现时能自主判断并进行紧急制动,更进一步的避免了安全事故的发生。
附图说明
图1为本申请叉车控制系统结构示意图;
图2为本申请实施例1车速-占空比示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明实施例中,一种基于动力换挡变速器的叉车主动制动系统,包括车速传感器、制动踏板信号传感器、油门踏板开关信号传感器、车辆挡位信号传感器、动力换挡变速器主动制动系统和处理器;
车速传感器安装在叉车车轮处,用于采集车速信息;
所制动踏板信号传感器安装在制动踏板,用于采集驾驶员对制动踏板的操作信号;
油门踏板开关信号传感器安装在油门踏板,用于采集驾驶员对油门踏板的操作信号;
车辆挡位信号传感器安装在挡位操作把,用于采集车辆当前处于前进挡、倒挡或是空挡的信号;
动力换挡变速器主动制动系统由前进挡比例电磁阀、前进挡离合器以及倒挡比例电磁阀、倒挡离合器组成;
处理器输入端分别连接车速传感器、制动踏板信号传感器、油门踏板开关信号传感器,车辆挡位信号。处理器的输出端分别连接至动力换挡变速器主动制动系统和车辆制动系统。
一种基于动力换挡变速器的叉车主动制动控制方法,是应用于设置有叉车主动制动系统的叉车上,该控制方法是按如下步骤进行:
步骤1、获取叉车状态参数,叉车状态参数包括制动踏板状态、油门踏板开关状态、叉车车速、叉车档位根据叉车状态产生判断叉车当前状态,叉车状态包括主动制动状态、联合制动状态、紧急制动状态、正常行驶状态,联合制动状态为变速器主动制动和叉车制动系统联合制动,叉车状态判断包括以下步骤:。
步骤1.1、若油门踏板开关处于开启状态,则进入正常行驶状态,不进行任何制动;
步骤1.2、若油门踏板开关处于关闭状态,θ=0,则进入离合器主动制动状态,主动制动状态下只有变速器通过换挡进行主动制动;
步骤1.3、若油门踏板开关处于关闭状态,θ≠0,则进入联合制动状态,联合制动状态中变速器主动制动系统与主动制动状态下变速器主动制动系统的控制方法相同;
步骤1.4、若油门踏板开关处于关闭状态,Δt2小于设定阈值时,则进入紧急制动状态,离合器主动制动系统进行紧急制动,当叉车处于紧急制动状态时,变速器主动制动系统电磁阀占空比应立即响应为100%,离合器进行结合锁止;
其中:θ为制动踏板的踩踏角度;
Δt2为制动踏板紧急制动时间,Δt2为θ1变化至θmax的时间,θ1、θmax分别表示上一个时刻制动踏板的角度位置以及制动踏板踩到底时的角度位置;
若叉车当前状态为主动制动状态,则执行步骤2;
步骤2、获取叉车车速-占空比关系,车速-占空比采用如下方法获得:
步骤2.1、设定车速正常区间为v1~vy,将车速区间均匀分为y-1段共y个点,分别为v1,v2,v3...vy-2,vy-1,vy;占空比的值为b%,调节占空比的单位变化差值为1%,第m1次确定的占空比的实验值为(b-m1)%;车速-占空比图曲线确定实验测试次数为y×m1;占空比实验开始时,初始化b%=90%;
步骤2.2、将车速调至v1,赋值占空比的值为b%,观测制动减速度a是否在预设区间;
如果不在预设区间,则令(b-1)赋值给b,并且重复步骤2.2;
若观测到制动减速度在预设区间,则确定车速为v1的条件下使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比为当前的值b1%;
步骤2.3、其余条件保持不变,分别调节车速为v2,v3...vy-2,vy-1,vy并重复步骤2.3,得到车速为v2,v3...vy-2,vy-1,vy时对应的使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比分别为b2%,b3%...by-2%,by-1%,by%;
步骤2.4、得到y个不同的车速分别对应的使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比之后,用(v1,b1),(v2,b2);(v2,b2),(v3,b3)...(vy-2,by-2),(vy-1,by-1);(vy-1,by-1),(vy,by)这y-1组数据确定y条直线段,将y条直线段相连得到车速-占空比的关系曲线图;
输入叉车当前车速信号,并根据叉车车速-占空比关系获取当前车速状态下无冲 击且能产生最大制动力对应的占空比参数,根据获得的占空比参数输出变速器的比例电磁阀控制参数;
步骤3、将步骤2中生产的电磁阀控制参数控制变速器的比例电磁阀动作,控制叉车动力系统输出与叉车当前运动方向相反的驱动力带动叉车主动制动,系统动作前,先检测叉车档位信号,若叉车位于前进挡状态,则控制叉车离合器前进挡断开,在控制叉车离合器倒挡结合,反向拖拽叉车传动系统使叉车减速;若叉车位于倒挡状态,则控制叉车离合器倒挡断开,在控制叉车离合器前进挡结合,反向拖拽叉车传动系统使叉车减速;
步骤4、当检测到叉车车速为零时,叉车退出主动制动。
实施例1
本实施例用于某型3吨平衡重式叉车上,该叉车最高允许车速约为30km/h,设置车速区间为6,紧急制动时间Δt2=0.2s;
假设装备有该主动制动系统的动力换挡叉车,正在以20km/h的速度行驶,本实验车速-占空比图如图2所示。此时驾驶员松开了油门踏板,检测到油门踏板开关信号传感器检测到油门踏板处于未踩踏状态,且并未踩下制动踏板,因此θ=0,进入离合器主动制动状态。控制器通过程序里写入的车速-占空比图曲线得到20km/h车速时对应的使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比为45%;调节电磁阀占空比为45%,此时车辆已经开始有了制动并且制动减速度在合理区间,车辆能够完成平顺的主动制动;此时驾驶员踩下制动踏板,θ=20,车辆制动系统介入,动力换挡变速器主动制动系统以及车辆制动系统能同时进行工作,并按照驾驶员的意图在合适的地点减速为0。最后让车辆以15km/h的速度行驶,驾驶员快速踩下制动踏板模拟紧急驾驶工况,检测Δt2=0.1s<0.2s,因此进入紧急制动状态,离合器主动制动系统进行紧急制动。动力换挡变速器主动制动系统电磁阀占空比应响应为100%,离合器快速进行结合锁止,车辆在3m的距离内安全制动停止,有效的缩短了紧急制动距离,保证了行车安全。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种基于动力换挡变速器的叉车主动制动控制方法,其特征在于,包括以下步骤:
    步骤1、获取叉车状态参数,根据叉车状态产生判断叉车当前状态,若叉车当前状态为主动制动状态,则执行步骤2;
    步骤2、获取叉车车速-占空比关系,输入叉车当前车速信号,并根据叉车车速-占空比关系获取当前车速状态下无冲击且能产生最大制动力对应的占空比参数,根据获得的占空比参数输出变速器的比例电磁阀控制参数;
    步骤3、使用步骤2中产生的比例电磁阀控制参数控制变速器的比例电磁阀动作,控制叉车动力系统输出与叉车当前运动方向相反的驱动力带动叉车主动制动;
    步骤4、当检测到叉车车速为零时,叉车退出主动制动。
  2. 根据权利要求1所述的一种基于动力换挡变速器的叉车主动制动控制方法,其特征在于,所述叉车状态参数包括制动踏板状态、油门踏板开关状态、叉车车速、叉车档位。
  3. 根据权利要求2所述的一种基于动力换挡变速器的叉车主动制动控制方法,其特征在于,所述叉车状态包括主动制动状态、联合制动状态、紧急制动状态、正常行驶状态,所述联合制动状态为变速器主动制动和叉车制动系统联合制动。
  4. 根据权利要求3所述的一种基于动力换挡变速器的叉车主动制动控制方法,其特征在于,所述步骤1中叉车状态判断包括以下步骤:。
    步骤1.1、若油门踏板开关处于开启状态,则进入正常行驶状态,不进行任何制动;
    步骤1.2、若所述油门踏板开关处于关闭状态,θ=0,则进入离合器主动制动状态,主动制动状态下只有变速器通过换挡进行主动制动;
    步骤1.3、若所述油门踏板开关处于关闭状态,θ≠0,则进入联合制动状态;
    步骤1.4、若所述油门踏板开关处于关闭状态,Δt2小于设定阈值时,则进入紧急制动状态,离合器主动制动系统进行紧急制动;
    其中:θ为制动踏板的踩踏角度;
    Δt2为制动踏板紧急制动时间,Δt2为θ1变化至θmax的时间,θ1、θmax分别表示上一个时刻制动踏板的角度位置以及制动踏板踩到底时的角度位置。
  5. 根据权利要求1所述的一种基于动力换挡变速器的叉车主动制动控制方法,其特征在于,所述步骤2中所述车速-占空比采用如下方法获得:
    步骤2.1、设定车速正常区间为v1~vy,将车速区间均匀分为y-1段共y个点,分别为v1,v2,v3…vy-2,vy-1,vy;占空比的值为b%,调节占空比的单位变化差值为1%,第m1次确定的占空比的实验值为(b-m1)%;车速-占空比图曲线确定实验测试次数为y×m1;占空比实验开始时,初始化b%=90%;
    步骤2.2、将车速调至v1,赋值占空比的值为b%,观测制动减速度a是否在预设区间;
    如果不在预设区间,则令(b-1)赋值给b,并且重复步骤2.2;
    若观测到制动减速度在预设区间,则确定车速为v1的条件下使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比为当前的值b1%;
    步骤2.3、其余条件保持不变,分别调节车速为v2,v3...vy-2,vy-1,vy并重复步骤2.3,得到车速为v2,v3...vy-2,vy-1,vy时对应的使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比分别为b2%,b3%...by-2%,by-1%,by%;
    步骤2.4、得到y个不同的车速分别对应的使动力换挡变速器主动制动能产生最大制动力且不会发生制动冲击最大占空比之后,用(v1,b1),(v2,b2);(v2,b2),(v3,b3)...(vy-2,by-2),(vy-1,by-1);(vy-1,by-1),(vy,by)这y-1组数据确定y条直线段,将y条直线段相连得到车速-占空比的关系曲线图。
  6. 根据权利要求1所述的一种基于动力换挡变速器的叉车主动制动控制方法,其特征在于,所述步骤3中变速器主动制动系统动作前,先检测叉车档位信号,若叉车位于前进挡状态,则控制叉车离合器前进挡断开,在控制叉车离合器倒挡结合,反向拖拽叉车传动系统使叉车减速;若叉车位于倒挡状态,则控制叉车离合器倒挡断开,在控制叉车离合器前进挡结合,反向拖拽叉车传动系统使叉车减速。
  7. 根据权利要求3所述的一种基于动力换挡变速器的叉车主动制动控制方法,其特征在于,所述联合制动状态中变速器主动制动系统与主动制动状态下变速器主动制动系统的控制方法相同。
  8. 根据权利要求3所述的一种基于动力换挡变速器的叉车主动制动控制方法,其特征在于,当叉车处于紧急制动状态时,变速器主动制动系统电磁阀占空比应立即响应为100%,离合器进行结合锁止。
  9. 使用权利要求1-8任意一项所述一种基于动力换挡变速器的叉车主动制动控制方法的控制系统,其特征在于,包括车速传感器、制动踏板信号传感器、油门踏板开关信号传感器、车辆挡位信号传感器、变速器主动制动系统和处理器;
    所述动力换挡变速器主动制动系统包括前进挡比例电磁阀以及倒挡比例电磁阀;
    所述处理器的输入端分别连接所述车速传感器、所述制动踏板信号传感器、所述油门踏板开关信号传感器,车辆挡位信号所述处理器的输出端分别连接至所述动力换挡变速器主动制动系统和车辆制动系统。
  10. 根据权利要求9所述的控制系统,其特征在于,所述车速传感器安装在叉车车轮处,用于采集车速信息;
    所述制动踏板信号传感器安装在制动踏板,用于采集驾驶员对制动踏板的操作信号;
    所述油门踏板开关信号传感器安装在油门踏板,用于采集驾驶员对油门踏板的操作信号;
    所述车辆挡位信号传感器安装在挡位操作把,用于采集车辆当前处于前进挡、倒挡或是空挡的信号。
PCT/CN2023/100342 2022-08-31 2023-06-15 一种基于动力换挡变速器的叉车主动制动控制方法及系统 WO2024045768A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23858807.3A EP4393781A1 (en) 2022-08-31 2023-06-15 Power shift transmission-based forklift active braking control method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211062030.6 2022-08-31
CN202211062030.6A CN115231477B (zh) 2022-08-31 2022-08-31 一种基于动力换挡变速器的叉车主动制动控制方法及系统

Publications (1)

Publication Number Publication Date
WO2024045768A1 true WO2024045768A1 (zh) 2024-03-07

Family

ID=83680794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100342 WO2024045768A1 (zh) 2022-08-31 2023-06-15 一种基于动力换挡变速器的叉车主动制动控制方法及系统

Country Status (3)

Country Link
EP (1) EP4393781A1 (zh)
CN (1) CN115231477B (zh)
WO (1) WO2024045768A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231477B (zh) * 2022-08-31 2024-05-14 安徽合力股份有限公司 一种基于动力换挡变速器的叉车主动制动控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011779A (ja) * 2002-06-07 2004-01-15 Komatsu Forklift Co Ltd 産業車両の走行制御装置
CN101832387A (zh) * 2010-06-12 2010-09-15 镇江恒驰科技有限公司 一种机械自动变速器amt档位切换控制方法
CN102233818A (zh) * 2010-04-23 2011-11-09 岳建强 一种与刹车踏板连锁的电子油门踏板传感器
CN112124268A (zh) * 2020-09-21 2020-12-25 雷沃重工股份有限公司 一种拖车制动控制方法、系统、存储介质及电子设备
CN113022303A (zh) * 2019-12-25 2021-06-25 丰田自动车株式会社 驾驶支援装置
CN113320393A (zh) * 2021-06-11 2021-08-31 广东嘉腾机器人自动化有限公司 用于增进电动汽车刹车安全的控制装置的控制方法
CN115231477A (zh) * 2022-08-31 2022-10-25 安徽合力股份有限公司 一种基于动力换挡变速器的叉车主动制动控制方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844647B2 (ja) * 1989-03-25 1999-01-06 アイシン精機株式会社 ロツクアツプクラツチを用いたエンジンブレーキ制御装置
JPH0564304A (ja) * 1991-09-03 1993-03-12 Honda Motor Co Ltd 電動車両の回生制動装置
JP3158970B2 (ja) * 1995-07-10 2001-04-23 三菱自動車工業株式会社 自動変速機の変速制御方法
KR100481446B1 (ko) * 1997-07-28 2005-08-01 대우종합기계 주식회사 전동지게차의 주차브레이크 밀림 방지장치
CN105966380A (zh) * 2016-07-20 2016-09-28 安徽合力股份有限公司 电动叉车制动系统及制动方法
KR102197835B1 (ko) * 2016-12-20 2021-01-04 현대건설기계 주식회사 지게차에서의 경사로 주행속도 제어 시스템 및 방법
CN214734194U (zh) * 2020-09-30 2021-11-16 安徽合力股份有限公司 一种叉车行走系统
CN114017498B (zh) * 2021-12-10 2023-03-31 合肥工业大学 一种离合器结合平顺性的控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011779A (ja) * 2002-06-07 2004-01-15 Komatsu Forklift Co Ltd 産業車両の走行制御装置
CN102233818A (zh) * 2010-04-23 2011-11-09 岳建强 一种与刹车踏板连锁的电子油门踏板传感器
CN101832387A (zh) * 2010-06-12 2010-09-15 镇江恒驰科技有限公司 一种机械自动变速器amt档位切换控制方法
CN113022303A (zh) * 2019-12-25 2021-06-25 丰田自动车株式会社 驾驶支援装置
CN112124268A (zh) * 2020-09-21 2020-12-25 雷沃重工股份有限公司 一种拖车制动控制方法、系统、存储介质及电子设备
CN113320393A (zh) * 2021-06-11 2021-08-31 广东嘉腾机器人自动化有限公司 用于增进电动汽车刹车安全的控制装置的控制方法
CN115231477A (zh) * 2022-08-31 2022-10-25 安徽合力股份有限公司 一种基于动力换挡变速器的叉车主动制动控制方法及系统

Also Published As

Publication number Publication date
EP4393781A1 (en) 2024-07-03
CN115231477A (zh) 2022-10-25
CN115231477B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US6076899A (en) Method and apparatus for controlling the brake system of electric drive vehicles
JP4838820B2 (ja) 車両制御ユニット及び該ユニットを搭載した車両
US10576950B2 (en) Method and a system for controlling vehicle speed
US8862303B2 (en) Industrial vehicle
JP6898843B2 (ja) 電動車両の制御装置、制御方法および制御システム
JP2012055113A (ja) 電気駆動車両
CN107161128A (zh) 一种汽车陡坡缓降系统的控制方法
US10544013B2 (en) Power transmission control method and device for crane and crane
JP6583620B2 (ja) 電動車両の制御装置
CN101985300A (zh) 一种防止驱动轮打滑的扭矩控制方法
WO2024045768A1 (zh) 一种基于动力换挡变速器的叉车主动制动控制方法及系统
US11001261B2 (en) Method and a system for controlling a vehicle during a downhill start
JP2012162146A (ja) 自動車
US10207688B2 (en) Brake control
JP2016111759A (ja) 制駆動力制御装置及び制駆動力制御方法
CN115140001B (zh) 一种重装电动叉车电液复合制动系统及控制方法
CN105246757A (zh) 根据车辆速度和制动来控制车辆的蠕行模式的方法和装置
KR20130124459A (ko) 액셀러레이터와 브레이크의 동작구간에 감응하는 클러치를 구비한 관성주행을 이용한 자동차의 연비 개선 장치 및 연비 개선 방법
JP6782608B2 (ja) パーキングブレーキ制御装置
JP2014207839A (ja) 車両の挙動制御装置
JP7310775B2 (ja) 車両の制御装置
CN106132789B (zh) 车辆驾驶辅助装置
JPH1178818A (ja) 車両のブレーキ制御装置
JP3935035B2 (ja) 電動車両のモータ制御方法
JP3906431B2 (ja) 産業車両の走行制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023858807

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023858807

Country of ref document: EP

Effective date: 20240328

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18708601

Country of ref document: US