[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024043586A1 - 전지 모듈 및 이를 포함하는 전지팩 - Google Patents

전지 모듈 및 이를 포함하는 전지팩 Download PDF

Info

Publication number
WO2024043586A1
WO2024043586A1 PCT/KR2023/011802 KR2023011802W WO2024043586A1 WO 2024043586 A1 WO2024043586 A1 WO 2024043586A1 KR 2023011802 W KR2023011802 W KR 2023011802W WO 2024043586 A1 WO2024043586 A1 WO 2024043586A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
metal layer
battery
battery module
sensing member
Prior art date
Application number
PCT/KR2023/011802
Other languages
English (en)
French (fr)
Inventor
엄재용
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380014880.5A priority Critical patent/CN118355556A/zh
Priority to EP23857620.1A priority patent/EP4435958A1/en
Publication of WO2024043586A1 publication Critical patent/WO2024043586A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/519Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more specifically, to a battery module and a battery pack including the same that improve manufacturing process and reduce costs.
  • secondary batteries that can be charged and discharged are a way to solve air pollution from existing gasoline vehicles that use fossil fuels, and are used in electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid electric vehicles ( As it is used as a power source for batteries such as P-HEV), the need for development of secondary batteries is increasing.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • P-HEV plug-in hybrid electric vehicles
  • lithium secondary batteries rarely have a memory effect compared to nickel-based secondary batteries, so they can be freely charged and discharged. , it is in the spotlight for its very low self-discharge rate and high energy density.
  • a lithium secondary battery mainly use lithium-based oxide and carbon material as positive and negative electrode active materials, respectively.
  • a lithium secondary battery includes an electrode assembly in which positive and negative electrode plates each coated with the positive and negative electrode active materials are disposed with a separator in between, and a battery case that seals and stores the electrode assembly together with an electrolyte.
  • lithium secondary batteries can be classified into can-type secondary batteries in which the electrode assembly is built into a metal can and pouch-type secondary batteries in which the electrode assembly is built in a pouch of an aluminum laminate sheet, depending on the shape of the exterior material.
  • a battery module is made by electrically connecting multiple battery cells. This is used.
  • These battery modules have improved capacity and output by connecting multiple battery cells in series or parallel to each other to form a battery cell stack.
  • One or more battery modules may be mounted with various control and protection systems such as a battery management system (BMS), battery disconnect unit (BDU), and cooling system to form a battery pack.
  • BMS battery management system
  • BDU battery disconnect unit
  • cooling system to form a battery pack.
  • FIG. 1 is a partial perspective view showing a conventional battery module.
  • FIG. 2 is an exploded perspective view showing a bus bar, bus bar frame, and sensing member included in the battery module of FIG. 1.
  • Figure 3 is a partial perspective view showing an enlarged portion of “A” in Figure 2.
  • a conventional battery module 10 includes a battery cell stack 12 including a plurality of battery cells 11.
  • the battery cell stack 12 may be stored inside a module frame, but for convenience of explanation, the module frame is not shown.
  • a plurality of battery cells 11 are stacked in one direction, and a bus bar 50 and a bus bar frame 40 are disposed on one side of the battery cell stack 12 to electrically connect the battery cells 11. do.
  • the bus bar frame 40 may be located in the direction in which the electrode leads 13 of the battery cells 11 are located in the battery cell stack 12.
  • a bus bar 50 including a metal material may be mounted on this bus bar frame 40.
  • the electrode leads 13 of the battery cells 11 may be welded and joined to the bus bar 50.
  • the electrode leads 13 of the battery cells 11 may be connected to the bus bar 50 and electrically connected to each other in series or parallel.
  • the battery module 10 may include a sensing member 60. Voltage information of the battery cells 11 within the battery module 10 may be transmitted to an external battery management system (BMS) through this sensing member 60.
  • BMS battery management system
  • the sensing member 60 includes a flat flexible cable (FFC), a printed circuit board (PCB), or a flexible printed circuit board (FPCB), and the module connector 61 may be connected to the sensing member 60.
  • a joining member 62 may be connected to one end of the sensing member 60.
  • the plate-shaped joining member 62 may be joined to the bus bar 50 to which the electrode lead 13 is joined by welding.
  • the voltage information of each battery cell 11 may be transmitted to an external battery management system through the bus bar 50, joining member 62, sensing member 60, and module connector 61.
  • the battery management system monitors and controls the status of each battery cell 11 based on this.
  • joining is performed using welding between the joining member 62 and the bus bar 50.
  • automation of the manufacturing process is difficult, reworking of the joining is difficult, and non-destructive testing is difficult. There are problems that make it impossible.
  • the problem to be solved by the present invention is to provide a battery module and a battery pack including the same that enable automation of the manufacturing process, rework of joints, and non-destructive testing in the connection between the sensing member and the bus bar.
  • a battery module includes a battery cell stack in which battery cells having electrode leads protruding in one or both directions are stacked; A bus bar frame located on one side of the battery cell stack; A bus bar and a sensing member mounted on the bus bar frame; and a metal wire connecting the bus bar and the sensing member.
  • the bus bar includes a first metal layer located on a side facing the bus bar frame and a second metal layer located on an opposite side of the side facing the bus bar frame.
  • the electrode lead passes through a slit formed in the bus bar frame and then is bent and bonded to the second metal layer. One region of the metal wire is bonded to the first metal layer, and another region of the metal wire is connected to the sensing member.
  • the metal wire and the bus bar may be joined by wire bonding.
  • the sensing member may include a flat flexible cable (FFC), a printed circuit board (PCB), or a flexible printed circuit board (FPCB).
  • FFC flat flexible cable
  • PCB printed circuit board
  • FPCB flexible printed circuit board
  • the first metal layer may include an aluminum material, and the second metal layer may include a copper material.
  • the metal wire may include an aluminum material.
  • a curved bending portion may be formed on one side of the bus bar.
  • the first metal layer may be exposed to a side opposite to the side facing the bus bar frame.
  • the metal wire may be bonded to a portion of the first metal layer exposed by the bending portion.
  • a through hole may be formed in the second metal layer, and the first metal layer may be exposed to a side opposite to the side facing the bus bar frame through the through hole.
  • the metal wire may be bonded to a portion of the first metal layer exposed through the through hole.
  • the bus bar may be in a plate shape, the first metal layer may have a thickness of 85% to 90% of the thickness of the bus bar, and the second metal layer may have a thickness of 10% to 15% of the thickness of the bus bar. It may have the following thickness.
  • the battery cell is a pouch-type battery cell, and the battery cells may be stacked in an upright position to form the battery cell stack.
  • a battery pack according to an embodiment of the present invention includes the battery module.
  • Figure 1 is a partial perspective view showing a conventional battery module.
  • FIG. 2 is an exploded perspective view showing a bus bar, bus bar frame, and sensing member included in the battery module of FIG. 1.
  • Figure 3 is a partial perspective view showing an enlarged portion of “A” in Figure 2.
  • Figure 4 is an exploded perspective view showing a battery module according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing one of the battery cells included in the battery module of FIG. 4.
  • Figure 6 is a perspective view showing the bus bar frame, bus bar, and sensing member included in the battery module of Figure 4.
  • Figure 7 is an exploded perspective view showing the bus bar frame, bus bar, and sensing member of Figure 6.
  • Figure 8 is a diagram showing a bus bar according to an embodiment of the present invention.
  • Figure 9 is a partial perspective view showing an enlarged portion of “B” in Figure 6.
  • FIG. 10 is an enlarged partial view showing the connection form between the bus bar and metal wire in FIG. 9.
  • Figure 11 is a perspective view showing a bus bar frame, bus bar, and sensing member according to another embodiment of the present invention.
  • FIG. 12 is a diagram showing the bus bar of FIG. 11.
  • FIG. 4 is an exploded perspective view showing a battery module according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing one of the battery cells included in the battery module of FIG. 4.
  • the battery module 100 includes a battery cell stack 120 in which battery cells 110 are stacked and one side of the battery cell stack 120. It includes a bus bar frame 400 located thereon.
  • the battery cell 110 is preferably a pouch-type battery cell, and may be formed in a rectangular sheet-like structure.
  • the battery cell 110 according to this embodiment has electrode leads 111 protruding in one or both directions.
  • Figure 5 shows a structure in which two electrode leads 111 face each other and protrude from one end 114a and the other end 114b of the cell body 113, respectively. More specifically, the electrode leads 111 are connected to an electrode assembly (not shown) and protrude from the electrode assembly (not shown) to the outside of the battery cell 110.
  • a battery cell in which two electrode leads 111 protrude in the same direction is also possible as an embodiment of the present invention.
  • the battery cell 110 is made by bonding both ends 114a and 114b of the cell case 114 and one side 114c connecting them with an electrode assembly (not shown) stored in the cell case 114. It can be manufactured by doing.
  • the battery cell 110 according to this embodiment has a total of three sealing parts 114sa, 114sb, and 114sc, and the sealing parts 114sa, 114sb, and 114sc have a structure that is sealed by a method such as heat fusion.
  • the other side may be formed as a folding portion 115.
  • the cell case 114 may form a folded structure in the folding unit 115.
  • the cell case 114 may be made of a laminate sheet including a resin layer and a metal layer.
  • the folding portion 115 may extend long along one edge of the battery cell 110, and a protrusion 110p of the battery cell 110 called a bat-ear is formed at an end of the folding portion 115. can be formed.
  • the protrusion 110p is an exemplary structure, and in another embodiment of the present invention, the battery cell 110 may not have a protrusion and the folding portion 115 may extend in a straight line.
  • a terrace portion 116 may be formed between the electrode lead 111 and the cell body 113. That is, the battery cell 110 includes a terrace portion 116 extending from the cell body 113 in the direction in which the electrode lead 111 protrudes.
  • the battery cells 110 are composed of a plurality of cells, and the plurality of battery cells 110 are stacked so that they can be electrically connected to each other to form the battery cell stack 120.
  • a plurality of battery cells 110 may be stacked in a direction parallel to the y-axis, with one side of the cell body 113 facing each other.
  • the electrode leads 111 may protrude in a direction perpendicular to the direction in which the battery cells 110 are stacked. That is, in the battery cell 110, one electrode lead 111 may protrude toward the x-axis direction, and the other electrode lead 111 may protrude toward the -x-axis direction. If the battery cell has electrode leads 111 protruding in only one direction, the electrode leads 111 protrude in the x-axis direction or the -x-axis direction.
  • the battery module 100 may include a module frame 200 and an end plate 300 that form an internal space in which the battery cell stack 120 is accommodated.
  • the module frame 200 may be a structure in which one side and the other side opposite the one side are open. More specifically, with respect to the battery cell stack 120, the module frame 200 may be opened in both directions where the electrode leads 111 protrude. As an embodiment of the present invention, the module frame 200 may be in the form of a mono frame integrated on the top, bottom, and both sides. In addition, as another embodiment of the present invention, the module frame 200 includes a U-shaped frame that covers the lower surface and both sides of the battery cell stack 120, and an upper cover that covers the upper surface of the battery cell stack 120. may include. The U-shaped frame and the upper cover may be joined with corresponding edges to form the module frame 200. There is no particular limitation to the joining method, and for example, welding joining may be performed.
  • the end plate 300 may be composed of a plurality of end plates and may cover the open one side and the other side of the module frame 200, respectively.
  • the battery cell stack 120 can be physically protected.
  • the module frame 200 and the end plate 300 may include a metal material with a predetermined strength. Meanwhile, the module frame 200 and the end plate 300 may be joined by a method such as welding, with corresponding edge portions in contact with each other.
  • bus bar frame the bus bar frame, bus bar, and sensing member according to this embodiment will be described in detail.
  • Figure 6 is a perspective view showing the bus bar frame, bus bar, and sensing member included in the battery module of Figure 4.
  • Figure 7 is an exploded perspective view showing the bus bar frame, bus bar, and sensing member of Figure 6.
  • the bus bar frame 400 is located on one side of the battery cell stack 120. Specifically, the bus bar frame 400 may be located on one side of the battery cell stack 120 in the direction in which the electrode lead 111 protrudes. In Figure 4, only one bus bar frame 400 is shown located on one side of the battery cell stack 120, but another bus bar frame is additionally located on the opposite side of the battery cell stack 120. can be located That is, a total of two bus bar frames 400 may be disposed on both sides of the battery cell stack 120, respectively.
  • the battery module 100 includes a bus bar 500 and a sensing member 600 mounted on the bus bar frame 400. Additionally, the battery module 100 includes a metal wire 700 connecting the bus bar 500 and the sensing member 600.
  • the bus bar 500 is used to electrically connect the battery cells 110 within the battery module 100, and preferably includes a metal material to enable electrical connection.
  • the bus bar 500 may be mounted on a side of the bus bar frame 400 opposite to the side facing the battery cell stack 120.
  • the electrode leads 111 protruding from the battery cells 110 may pass through the slit 400S formed in the bus bar frame 400 and then be bent and connected to the bus bar 500. More specifically, one electrode lead 111 may pass through the slit 400S of the bus bar frame 400 located on one side of the battery cell stack 120 and then be bent and connected to the bus bar 500, The other electrode lead 111 may pass through a slit in the bus bar frame (not shown) located on the other side of the battery cell stack 120 and then be connected to the bus bar 500.
  • There is no particular limitation on the connection method between the electrode lead 111 and the bus bar 500 but for example, welding may be performed. The connection between the electrode lead 111 and the bus bar 500 will be described again with reference to FIG. 9.
  • the bus bar frame 400 is made of an electrically insulating material to prevent short circuits from occurring when the bus bar 500 or other electrical components come in contact with parts other than the electrode lead 111 of the battery cell 110. It is desirable to include it.
  • the bus bar frame 400 may be an injection-molded plastic product.
  • the bus bar frame 400 may be equipped with a terminal bus bar 500T in addition to the bus bar 500.
  • the terminal bus bar 500T may be mounted on the opposite side of the bus bar frame 400 facing the battery cell stack 120, and the electrode leads 111 may be connected to the bus bar 500T. After passing through the slit 400S formed in the bar frame 400, it may be bent and connected to the terminal bus bar 500T.
  • the terminal bus bar 500T is generally similar to the bus bar 500, but unlike the bus bar 500, it has a part exposed to the outside.
  • a terminal opening hole (300H, see FIG. 4) may be formed in the end plate 300, and the upwardly extending portion of the terminal bus bar (500T) passes through the terminal opening hole (300H) to connect the battery module (100). ) may be exposed to the outside.
  • the terminal bus bar 500T functions as an input/output terminal of the battery module 100 for HV (High Voltage) connection.
  • HV connection refers to an electrical connection that requires relatively high voltage, such as the input/output terminal of a battery module.
  • the battery module 100 according to this embodiment can be connected to another battery module or a power disconnection unit (BDU) that controls the electrical connection of the battery module through the exposed portion of the terminal bus bar 500. .
  • BDU power disconnection unit
  • the sensing member 600 is a member for LV (Low Voltage) connection of the battery module 100.
  • LV connection refers to electrical connections that require relatively low voltage, such as battery electrical components.
  • the sensing member 600 senses voltage data or temperature data of the battery cells 110 included in the battery module 100, and a battery management system (BMS) located outside the battery module 100 Transmits the sensed voltage or temperature data.
  • BMS battery management system
  • the battery management system manages the voltage or temperature of the corresponding battery module 100 based on the transmitted voltage or temperature data.
  • the sensing member 600 is electrically connected to the bus bar 500 to which the electrode lead 111 is connected via a metal wire 700, which will be described later. You can.
  • the sensing member 600 may be mounted on the side of the bus bar frame 400 opposite to the side facing the battery cell stack 120, and may be mounted on the side of the bus bar frame 400. It can be mounted in the upper area.
  • This sensing member 600 may include a flat flexible cable (FFC), a printed circuit board (PCB), or a flexible printed circuit board (FPCB).
  • a module connector 610 may be connected to the sensing member 600.
  • the module connector 610 is a member exposed to the outside of the battery module 100, and is connected to a battery management system (BMS) located outside the battery module 100 to determine the voltage measured by the sensing member 600. Alternatively, temperature data may be transmitted to the battery management system.
  • BMS battery management system
  • the electrode lead 111 is bonded to the bus bar 500, and the metal wire 700 connects the bus bar 500 and the sensing member 600. Specifically, one region of the metal wire 700 is connected to the bus bar 500, and another region of the metal wire 700 is connected to the sensing member 600.
  • the wire bonding is a bonding method mainly used in the semiconductor manufacturing process and refers to a method of connecting an integrated circuit and a terminal with a thin wire made of metal.
  • wire bonding refers to a technology that uses metal wires and creates electrical interconnections using a combination of ultrasonic energy and pressure.
  • connection method between the metal wire 700 and the sensing member 600 is not particularly limited as long as electrical connection is possible therebetween.
  • the joining member 62 which is a plate-shaped metal member, is connected to the bus bar 50.
  • a welding joining method was used. In particular, resistance welding, ultrasonic welding, or laser welding were applied.
  • wire bonding using a metal wire 700 is applied to connect the sensing member 600 and the bus bar 500.
  • the strength of the welded portion must be evaluated through destructive testing.
  • the bonding strength can be evaluated in a non-destructive state by applying a predetermined force to the metal wire 700 at the same time the wire bonding is performed. Even if only a small force is applied to the metal wire 700 compared to the strength at which the metal wire 700 breaks, strength evaluation can be performed. This non-destructive testing makes it possible to monitor all joints in real time during the process.
  • FIG. 8 is a diagram showing a bus bar according to an embodiment of the present invention.
  • Figure 9 is a partial perspective view showing an enlarged portion of “B” in Figure 6.
  • FIG. 10 is an enlarged partial view showing the connection form between the bus bar and metal wire in FIG. 9. However, for convenience of explanation, FIG. 9 shows the bent electrode lead 111 after passing through the slit 400S of the bus bar frame 400.
  • the bus bar 500 includes a first metal layer 510 and a bus bar frame ( It includes a second metal layer 520 located on the opposite side of the side facing 400).
  • the second metal layer 520 is shaded to facilitate distinction.
  • the electrode lead 111 of the battery cell 110 passes through the slit 400S formed in the bus bar frame 400 and is then bent and bonded to the second metal layer 520.
  • the metal wire 700 is bonded to the first metal layer 510. That is, one region of the metal wire 700 is bonded to the first metal layer 510, and another region of the metal wire 700 is connected to the sensing member 600.
  • the first metal layer 510 may include an aluminum material
  • the second metal layer 520 may include a copper material
  • the bus bar 500 according to this embodiment may be a clad member in which the first metal layer 510 and the second metal layer 520 are joined by rolling.
  • the first metal layer 510 containing an aluminum material and the second metal layer 520 containing a copper material, that is, the first and second metal layers 510 and 520 made of different materials are bonded to each other by rolling.
  • a bus bar 500 according to the embodiment may be provided.
  • clad joining for manufacturing a clad member refers to a technique of using a metal or non-metal as a base layer and joining another metal to one surface of the base layer by rolling.
  • the first metal layer 510 and the second metal layer 520 can be bonded to each other using a clad bonding technology to form the bus bar 500 according to this embodiment.
  • the bus bar 500 is mounted on the bus bar frame 400 so that the first metal layer 510 faces the bus bar frame 400 and the second metal layer 520 does not face the bus bar frame 400. do.
  • the second metal layer 520 is an area where the electrode lead 111 that has passed through the slit 400S is bent and then joined. As the capacity of battery cells gradually increases and charging time shortens, controlling the heat generation of battery cells is an important issue.
  • copper since it has excellent thermal and electrical conductivity, when applied to the bus bar 500, the degree of heat dissipation is excellent, improving the cooling performance of the battery module 100, and reducing resistance in the electrical connection with the electrode lead 111. It can be lowered. That is, in order to increase the degree of heat dissipation of the bus bar 500 and lower the resistance, a copper material may be included in the second metal layer 520 of the bus bar 500.
  • the conventional bus bar 50 may be composed of a single layer of copper material. Copper has excellent thermal and electrical conductivity, but has the disadvantage of being somewhat expensive. Accordingly, in this embodiment, the bus bar 500 is not composed of a single layer of copper material, but is configured to include a first metal layer 510 and a second metal layer 520. Since the aluminum material included in the first metal layer 510 is about 3 to 4 times cheaper than the copper material included in the second metal layer 520, material costs can be reduced. In summary, in order to simultaneously improve cooling performance, reduce resistance, and reduce cost, the bus bar 500 according to this embodiment includes a first metal layer 510 containing an aluminum material and a second metal layer containing a copper material ( 520).
  • the first metal layer 510 containing an aluminum material may have a thickness of 85% to 90% of the thickness of the bus bar 500, and may be made of a copper material.
  • the second metal layer 520 may have a thickness of 10% or more and 15% or less of the thickness of the bus bar 500.
  • the thickness of the first metal layer 510 is less than 85% and the thickness of the second metal layer 520 is more than 15% compared to the thickness of the bus bar 500, compared to the desired degree of heat dissipation of the bus bar 500
  • the manufacturing cost of the busbar 500 may become excessively high.
  • the thickness of the first metal layer 510 is more than 90% and the thickness of the second metal layer 520 is less than 10% compared to the thickness of the bus bar 500, the degree of heat dissipation of the bus bar 500 is insufficient and the battery The module 100 may not meet cooling performance standards.
  • the metal wire 700 may include an aluminum material. That is, the metal wire 700 may include the same material as the material of the first metal layer 510 to which the metal wire 700 is joined.
  • Aluminum material is widely used in the process of manufacturing battery modules and has the advantage of low material cost. Therefore, aluminum can be used as a material for the metal wire 700 for wire bonding.
  • the second metal layer 520 is located on the opposite side of the side facing the bus bar frame 400.
  • the first metal layer 510 is located on the side facing the bus bar frame 400. In this case, it may be difficult to join the first metal layer 510 and the metal wire 700 due to locational limitations.
  • a curved bending portion 500B was formed on one side of the bus bar 500.
  • the first metal layer 510 may be exposed to the opposite side of the side facing the bus bar frame 400.
  • the bending portion 500B may be a portion where both the first metal layer 510 and the second metal layer 520 of the bus bar 500 are bent and extended.
  • the metal wire 700 may be bonded to a portion of the first metal layer 510 exposed by the bending portion 500B.
  • material costs are reduced by including the first metal layer 510 in the bus bar 500, and at the same time, by forming the bending portion 500B, the metal wire 700 is easily connected to the first metal layer 510.
  • the aim was to ensure manufacturing fairness by ensuring proper bonding.
  • a bending portion 500B may be formed on the top of the bus bar 500.
  • a bending portion 500B may be formed not only on the bus bar 500 but also on the terminal bus bar 500T, and the bending portion 500B of the terminal bus bar 500T may be formed.
  • a metal wire 700 may be bonded to the first metal layer 510 .
  • bus bar according to another embodiment of the present invention will be described. However, descriptions of parts that overlap with what was explained previously will be omitted.
  • FIG. 11 is a perspective view showing a bus bar frame, bus bar, and sensing member according to another embodiment of the present invention.
  • FIG. 12 is a diagram showing the bus bar of FIG. 11.
  • the second metal layer 520 is shaded to facilitate distinction.
  • the bus bar 500 and the sensing member 600 may be mounted on the bus bar frame 400 according to another embodiment of the present invention.
  • a metal wire 700 may connect the bus bar 500 and the sensing member 600.
  • a terminal bus bar 500T may be mounted on the bus bar frame 400, and the sensing member 600 may be connected to the module connector 610.
  • the bus bar 500 includes a first metal layer 510 located on the side facing the bus bar frame 400 and a second metal layer 520 located on the opposite side of the side facing the bus bar frame 400. do.
  • the electrode lead 111 of the battery cell 110 passes through a slit formed in the bus bar frame 400 and is then bent and bonded to the second metal layer 520.
  • the bus bar 500 differs in that a through hole 520H is formed in the second metal layer 520 instead of the bending part.
  • a through hole 520H may be formed in the second metal layer 520, and the first metal layer 510 may be formed on the opposite side of the side facing the bus bar frame 400 through this through hole 520H. may be exposed.
  • the metal wire 700 may be bonded to a portion of the first metal layer 510 exposed through the through hole 520H.
  • material costs are reduced by including the first metal layer 510 in the bus bar 500, and at the same time, by forming a through hole 520H in the second metal layer 520, the metal wire 700 is 1
  • a through hole 520H may be formed in the upper area of the bus bar 500.
  • a through hole 520H may be formed not only in the bus bar 500 but also in the terminal bus bar 500T, and a through hole 520H exposed through the through hole 520H of the terminal bus bar 500T.
  • a metal wire 700 may be bonded to the first metal layer 510 .
  • One or more battery modules according to the present embodiment described above are equipped with various control and protection systems such as a battery management system (BMS), a battery disconnect unit (BDU), and a cooling system.
  • BMS battery management system
  • BDU battery disconnect unit
  • a battery pack can be formed.
  • the battery module or battery pack can be applied to various devices. Specifically, it can be applied to transportation means such as electric bicycles, electric vehicles, and hybrids, or ESS (Energy Storage System), but is not limited to this and can be applied to various devices that can use secondary batteries.
  • transportation means such as electric bicycles, electric vehicles, and hybrids, or ESS (Energy Storage System), but is not limited to this and can be applied to various devices that can use secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 모듈은, 일 방향 또는 양 방향으로 돌출되는 전극 리드들을 갖는 전지셀들이 적층된 전지셀 적층체; 상기 전지셀 적층체의 일측에 위치하는 버스바 프레임; 상기 버스바 프레임에 장착되는 버스바 및 센싱 부재; 및 상기 버스바와 상기 센싱 부재를 연결하는 금속 와이어;를 포함한다. 상기 버스바는, 상기 버스바 프레임과 마주하는 면에 위치한 제1 금속층 및 상기 버스바 프레임과 마주하는 면의 반대면에 위치한 제2 금속층을 포함한다. 상기 전극 리드는, 상기 버스바 프레임에 형성된 슬릿을 통과한 뒤 구부러져 상기 제2 금속층에 접합된다. 상기 금속 와이어의 일 영역이 상기 제1 금속층에 접합되고, 상기 금속 와이어의 다른 일 영역이 상기 센싱 부재와 연결된다.

Description

전지 모듈 및 이를 포함하는 전지팩
관련 출원(들)과의 상호 인용
본 출원은 2022년 8월 26일자 한국 특허 출원 제10-2022-0107418호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지팩에 관한 것으로서, 보다 구체적으로는 제조 공정성이 향상되고 비용 절감이 가능한 전지 모듈 및 이를 포함하는 전지팩에 관한 것이다.
현대 사회에서는 휴대폰, 노트북, 캠코더, 디지털 카메라 등의 휴대형 기기의 사용이 일상화되면서, 상기와 같은 모바일 기기와 관련된 분야의 기술에 대한 개발이 활발해지고 있다. 또한, 충방전이 가능한 이차 전지는 화석 연료를 사용하는 기존의 가솔린 차량 등의 대기 오염 등을 해결하기 위한 방안으로, 전기 자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(P-HEV) 등의 동력원으로 이용되고 있는바, 이차 전지에 대한 개발의 필요성이 높아지고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충, 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체 및 전극 조립체를 전해액과 함께 밀봉 수납하는 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
소형 기기들에 이용되는 이차 전지의 경우, 2-3개의 전지셀들이 배치되나, 자동차 등과 같은 중대형 디바이스에 이용되는 이차 전지의 경우는, 다수의 전지셀을 전기적으로 연결한 전지 모듈(Battery module)이 이용된다. 이러한 전지 모듈은 다수의 전지셀이 서로 직렬 또는 병렬로 연결되어 전지셀 적층체를 형성함으로써 용량 및 출력이 향상된다. 하나 이상의 전지 모듈은 전지 관리 시스템(Battery Management System, BMS), 전원 차단 유닛(Battery Disconnect Unit, BDU), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지팩을 형성할 수 있다.
도 1은 종래의 전지 모듈을 나타낸 부분 사시도이다. 도 2는 도 1의 전지 모듈에 포함된 버스바, 버스바 프레임 및 센싱 부재를 나타낸 분해 사시도이다. 도 3은 도 2의 “A”부분을 확대하여 나타낸 부분 사시도이다.
도 1 내지 도 3을 참고하면, 종래의 전지 모듈(10)은, 복수의 전지셀(11)들이 포함된 전지셀 적층체(12)를 포함한다. 전지셀 적층체(12)는 모듈 프레임의 내부에 수납될 수 있는데, 설명의 편의를 위해 모듈 프레임은 도시를 생략하였다. 복수의 전지셀(11)들이 일 방향을 따라 적층되는데, 전지셀(11)들의 전기적 연결을 위해 버스바(50)와 버스바 프레임(40)이 전지셀 적층체(12)의 일 측에 배치된다.
구체적으로, 전지셀 적층체(12)에서 전지셀(11)의 전극 리드(13)들이 위치한 방향에 버스바 프레임(40)이 위치할 수 있다. 이러한 버스바 프레임(40) 상에 금속 소재를 포함하는 버스바(50)가 장착될 수 있다. 전지셀(11)들의 전극 리드(13)들은 버스바(50)에 용접 접합될 수 있다. 전지셀(11)들의 전극 리드(13)들은 버스바(50)에 접합되면서, 서로 전기적 직렬 또는 병렬로 연결될 수 있다.
전지 모듈(10)은 센싱 부재(60)를 포함할 수 있다. 전지 모듈(10) 내의 전지셀(11)들의 전압 정보는 이러한 센싱 부재(60)를 통해 외부의 전지 관리 시스템(Battery Management System, BMS)에 전달될 수 있다.
구체적으로, 센싱 부재(60)는, FFC(Flat Flexible Cable), PCB(printed circuit board) 또는 FPCB(Flexible Printed Circuit Board)를 포함하는데, 센싱 부재(60)에 모듈 커넥터(61)가 연결될 수 있고, 센싱 부재(60)의 일 단부에는 접합 부재(62)가 연결될 수 있다. 전극 리드(13)가 접합된 버스바(50)에 판 형상의 접합 부재(62)가 용접의 방법으로 접합될 수 있다. 각 전지셀(11)의 전압 정보는 버스바(50), 접합 부재(62), 센싱 부재(60) 및 모듈 커넥터(61)를 거쳐 외부의 전지 관리 시스템에 전달될 수 있다. 전지 관리 시스템은 이를 기초로 각 전지셀(11)의 상태를 모니터하고 제어한다.
이때, 종래의 전지 모듈(10)에서, 접합 부재(62)와 버스바(50) 간의 용접을 이용한 접합이 이루어지는데, 이 경우, 제조 공정의 자동화가 어렵고, 접합의 재작업이 어려우며, 비파괴 검사가 불가능하다는 문제점들이 있다.
본 발명이 해결하고자 하는 과제는, 센싱 부재와 버스바 간의 연결에 있어서, 제조 공정의 자동화, 접합의 재작업 및 비파괴 검사가 모두 가능한 전지 모듈 및 이를 포함하는 전지팩을 제공하는 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 전지 모듈은, 일 방향 또는 양 방향으로 돌출되는 전극 리드들을 갖는 전지셀들이 적층된 전지셀 적층체; 상기 전지셀 적층체의 일측에 위치하는 버스바 프레임; 상기 버스바 프레임에 장착되는 버스바 및 센싱 부재; 및 상기 버스바와 상기 센싱 부재를 연결하는 금속 와이어;를 포함한다. 상기 버스바는, 상기 버스바 프레임과 마주하는 면에 위치한 제1 금속층 및 상기 버스바 프레임과 마주하는 면의 반대면에 위치한 제2 금속층을 포함한다. 상기 전극 리드는, 상기 버스바 프레임에 형성된 슬릿을 통과한 뒤 구부러져 상기 제2 금속층에 접합된다. 상기 금속 와이어의 일 영역이 상기 제1 금속층에 접합되고, 상기 금속 와이어의 다른 일 영역이 상기 센싱 부재와 연결된다.
상기 금속 와이어와 상기 버스바는 와이어 본딩(wire bonding)에 의해 접합된 형태일 수 있다.
상기 센싱 부재는 FFC(Flat Flexible Cable), PCB(printed circuit board) 또는 FPCB(Flexible Printed Circuit Board)를 포함할 수 있다.
상기 제1 금속층은 알루미늄 소재를 포함할 수 있고, 상기 제2 금속층은 구리 소재를 포함할 수 있다.
상기 금속 와이어는 알루미늄 소재를 포함할 수 있다.
상기 버스바의 일 측에 구부러진 벤딩부가 형성될 수 있다. 상기 벤딩부에서 상기 제1 금속층이 상기 버스바 프레임과 마주하는 면의 반대면으로 노출될 수 있다.
상기 금속 와이어는 상기 제1 금속층 중에서 상기 벤딩부에 의해 노출된 부분에 접합될 수 있다.
상기 제2 금속층에 관통구가 형성되어, 상기 관통구를 통해 상기 제1 금속층이 상기 버스바 프레임과 마주하는 면의 반대면으로 노출될 수 있다.
상기 금속 와이어는, 제1 금속층 중에서 상기 관통구를 통해 노출된 부분에 접합될 수 있다.
상기 버스바는 판상 형태일 수 있고, 상기 제1 금속층은 상기 버스바의 두께 대비 85% 이상 90% 이하의 두께를 가질 수 있으며, 상기 제2 금속층은 상기 버스바의 두께 대비 10% 이상 15% 이하의 두께를 가질 수 있다.
상기 전지셀은 파우치형 전지셀이고, 상기 전지셀들이 직립한 채 적층되어 상기 전지셀 적층체를 형성할 수 있다.
본 발명의 일 실시예에 따른 전지팩은, 상기 전지 모듈을 포함한다.
본 발명의 실시예들에 따르면, 센싱 부재와 버스바 간의 연결에 있어서, 금속 와이어를 이용한 접합 방식을 적용함으로써, 제조 공정의 자동화, 접합의 재작업 및 비파괴 검사가 모두 가능하다.
또한, 버스바에 구리 소재와 알루미늄 소재를 모두 포함시켜, 재료비 절감 가능하다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 전지 모듈을 나타낸 부분 사시도이다.
도 2는 도 1의 전지 모듈에 포함된 버스바, 버스바 프레임 및 센싱 부재를 나타낸 분해 사시도이다.
도 3은 도 2의 “A”부분을 확대하여 나타낸 부분 사시도이다.
도 4는 본 발명의 일 실시예에 따른 전지 모듈을 나타낸 분해 사시도이다.
도 5는, 도 4의 전지 모듈에 포함된 전지셀들 중 하나를 나타낸 도면이다.
도 6은 도 4의 전지 모듈에 포함된 버스바 프레임, 버스바 및 센싱 부재 등을 나타낸 사시도이다.
도 7은 도 6의 버스바 프레임, 버스바 및 센싱 부재 등을 나타낸 분해 사시도이다.
도 8은 본 발명의 일 실시예에 따른 버스바를 나타낸 도면이다.
도 9는 도 6의 “B”부분을 확대하여 나타낸 부분 사시도이다.
도 10은 도 9에서의 버스바와 금속 와이어 간의 연결 형태를 확대하여 나타낸 부분 도면이다.
도 11은 본 발명의 다른 일 실시예에 따른 버스바 프레임, 버스바 및 센싱 부재 등을 나타낸 사시도이다.
도 12는 도 11의 버스바를 나타낸 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에” 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는 “상에” 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 4는 본 발명의 일 실시예에 따른 전지 모듈을 나타낸 분해 사시도이다. 도 5는, 도 4의 전지 모듈에 포함된 전지셀들 중 하나를 나타낸 도면이다.
도 4 및 도 5를 참고하면, 본 발명의 일 실시예에 따른 전지 모듈(100)은, 전지셀(110)들이 적층된 전지셀 적층체(120) 및 전지셀 적층체(120)의 일측에 위치한 버스바 프레임(400)을 포함한다.
우선, 전지셀(110)은 파우치형 전지셀인 것이 바람직하며, 장방형의 시트형 구조로 형성될 수 있다. 본 실시예에 따른 전지셀(110)은 일 방향 또는 양 방향으로 돌출되는 전극 리드(111)들을 갖는다. 일례로, 도 5에는 두 개의 전극 리드(111)들이 서로 대향하여 셀 본체(113)의 일단부(114a)와 다른 일단부(114b)로부터 각각 돌출되어 있는 구조가 도시되어 있다. 보다 상세하게는 전극 리드(111)들은 전극 조립체(미도시)와 연결되고, 전극 조립체(미도시)로부터 전지셀(110)의 외부로 돌출된다. 구체적으로 도시하지 않았으나 2개의 전극 리드(111)가 같은 방향으로 돌출되는 형태의 전지셀도 본 발명의 실시예로써 가능하다.
한편, 전지셀(110)은, 셀 케이스(114)에 전극 조립체(미도시)를 수납한 상태로 셀 케이스(114)의 양 단부(114a, 114b)와 이들을 연결하는 일측부(114c)를 접착함으로써 제조될 수 있다. 다시 말해, 본 실시예에 따른 전지셀(110)은 총 3군데의 실링부(114sa, 114sb, 114sc)를 갖고, 실링부(114sa, 114sb, 114sc)는 열융착 등의 방법으로 실링되는 구조이며, 나머지 다른 일측부는 폴딩부(115)로 이루어질 수 있다. 폴딩부(115)에서 셀 케이스(114)가 접히는 구조를 형성할 수 있다. 셀 케이스(114)는 수지층과 금속층을 포함하는 라미네이트 시트로 이루어질 수 있다.
또한, 폴딩부(115)는 전지셀(110)의 일 테두리를 따라 길게 뻗을 수 있고, 폴딩부(115)의 단부에는 배트 이어(bat-ear)라 불리우는 전지셀(110)의 돌출부(110p)가 형성될 수 있다. 다만, 돌출부(110p)는 하나의 예시적 구조이며, 본 발명의 다른 일 실시예에 다른 전지셀(110)은 돌출부가 형성되지 않고, 폴딩부(115)가 일직선으로 뻗는 형태를 가질 수 있다.
또한, 돌출된 전극 리드(111)를 사이에 두고 셀 케이스(114)가 밀봉되면서, 전극 리드(111)와 셀 본체(113) 사이에 테라스(Terrace)부(116)가 형성될 수 있다. 즉, 전지셀(110)은, 전극 리드(111)가 돌출된 방향으로 셀 본체(113)로부터 연장 형성된 테라스부(116)를 포함한다.
전지셀(110)은 복수개로 구성되며, 복수의 전지셀(110)들은 상호 전기적으로 연결될 수 있도록 적층되어 전지셀 적층체(120)를 형성한다. 특히, 도 4에 도시된 바와 같이 y축과 평행한 방향을 따라 복수의 전지셀(110)들이, 셀 본체(113)의 일면끼리 마주하도록 직립한 채, 적층될 수 있다. 이에 따라, 전극 리드(111)들은 전지셀(110)들이 적층되는 방향과 수직한 방향으로 돌출될 수 있다. 즉, 전지셀(110)에서 하나의 전극 리드(111)는 x축 방향을 향해 돌출될 수 있고, 다른 전극 리드(111)는 -x축 방향을 향해 돌출될 수 있다. 만일 전극 리드(111)들이 일 방향으로만 돌출된 전지셀이라면, 전극 리드(111)들은 x축 방향 또는 -x축 방향으로 돌출된다.
한편, 본 실시예에 따른 전지 모듈(100)은, 전지셀 적층체(120)가 수납되는 내부 공간을 형성하는 모듈 프레임(200)과 엔드 플레이트(300)를 포함할 수 있다.
모듈 프레임(200)은 일면 및 상기 일면과 대향하는 타면이 개방된 구조물일 수 있다. 보다 구체적으로, 전지셀 적층체(120)를 기준으로, 전극 리드(111)들이 돌출되는 양 방향에서 모듈 프레임(200)이 개방될 수 있다. 본 발명의 일 실시예로써, 모듈 프레임(200)은, 상면, 하면 및 양 측면에 일체화된 모노 프레임 형태일 수 있다. 또한, 본 발명의 다른 일 실시예로써, 모듈 프레임(200)은 전지셀 적층체(120)의 하면과 양 측면을 커버하는 U자형 프레임 및 전지셀 적층체(120)의 상면을 커버하는 상부 커버를 포함할 수 있다. U자형 프레임과 상부 커버가 서로 대응하는 모서리끼리 접합되어 모듈 프레임(200)을 형성할 수 있다. 상기 접합 방식에 특별한 제한은 없으며, 일례로 용접 접합이 이루어질 수 있다.
엔드 플레이트(300)는 복수로 구성되어, 모듈 프레임(200)의 개방된 상기 일면 및 상기 타면을 각각 덮을 수 있다. 이러한 모듈 프레임(200)과 엔드 플레이트(300)이 형성하는 내부 공간에 전지셀 적층체(120)가 수납됨으로써, 전지셀 적층체(120)를 물리적으로 보호할 수 있다. 이를 위해 모듈 프레임(200)과 엔드 플레이트(300)는 소정의 강도를 갖는 금속 재질을 포함할 수 있다. 한편, 모듈 프레임(200)과 엔드 플레이트(300)는 서로 대응하는 모서리 부위들이 접촉된 상태에서, 용접 등의 방법으로 접합될 수 있다.
이하에서는, 본 실시예에 따른 버스바 프레임, 버스바 및 센싱 부재에 대해 자세히 설명하도록 한다.
도 6은 도 4의 전지 모듈에 포함된 버스바 프레임, 버스바 및 센싱 부재 등을 나타낸 사시도이다. 도 7은 도 6의 버스바 프레임, 버스바 및 센싱 부재 등을 나타낸 분해 사시도이다.
도 4 내지 도 7을 함께 참고하면, 본 실시예에 따른 버스바 프레임(400)은 전지셀 적층체(120)의 일 측에 위치한다. 구체적으로, 버스바 프레임(400)은, 전지셀 적층체(120)에서 전극 리드(111)가 돌출되는 방향의 일 측에 위치할 수 있다. 도 4에서는 하나의 버스바 프레임(400)이 전지셀 적층체(120)의 일 측에 위치한 것만 도시되어 있으나, 다른 하나의 버스바 프레임이 전지셀 적층체(120)를 기준으로 반대편에 추가로 위치할 수 있다. 즉, 총 2개의 버스바 프레임(400)이 전지셀 적층체(120)의 양 측에 각각 배치될 수 있다.
본 실시예에 따른 전지 모듈(100)은, 버스바 프레임(400)에 장착되는 버스바(500)와 센싱 부재(600)를 포함한다. 또한, 전지 모듈(100)은, 버스바(500)와 센싱 부재(600)를 연결하는 금속 와이어(700)를 포함한다.
버스바(500)는, 전지 모듈(100) 내부에서의 전지셀(110)들의 전기적 연결을 위한 것으로, 전기적 연결이 가능하도록 금속 소재를 포함하는 것이 바람직하다. 버스바(500)는 버스바 프레임(400) 중 전지셀 적층체(120)와 마주하는 면의 반대면에 장착될 수 있다. 전지셀(110)들로부터 돌출된 전극 리드(111)들이 버스바 프레임(400)에 형성된 슬릿(400S)을 통과한 뒤 구부러져 버스바(500)에 연결될 수 있다. 보다 구체적으로, 어느 한 전극 리드(111)가 전지셀 적층체(120)의 일측에 위치하는 버스바 프레임(400)의 슬릿(400S)을 통과한 뒤 구부러져 버스바(500)에 연결될 수 있고, 다른 전극 리드(111)는 전지셀 적층체(120)의 타측에 위치하는 버스바 프레임(미도시)의 슬릿을 통과한 뒤 버스바(500)에 연결될 수 있다. 전극 리드(111)와 버스바(500) 간의 연결 방식에 특별한 제한은 없으나, 일례로 용접 접합이 이루어질 수 있다. 전극 리드(111)와 버스바(500) 간의 연결에 대해서는 도 9와 함께 다시 설명하도록 한다.
상기와 같이 전지셀(110)들의 전극 리드(111)들이 버스바(500)에 연결됨으로써, 전지셀(110)들 간의 전기적 직렬 또는 병렬 연결이 구현될 수 있다.
한편, 버스바 프레임(400)은, 버스바(500)나 다른 전장품이 전지셀(110)의 전극 리드(111)를 제외한 다른 부분과 접촉하여 쇼트가 발생하는 것을 방지하기 위해 전기적 절연성인 소재를 포함하는 것이 바람직하다. 일례로, 버스바 프레임(400)은 플라스틱 사출물일 수 있다.
한편, 버스바 프레임(400)에는 버스바(500) 외에 터미널 버스바(500T)가 장착될 수 있다. 버스바(500)와 마찬가지로, 터미널 버스바(500T)는, 버스바 프레임(400) 중 전지셀 적층체(120)와 마주하는 면의 반대면에 장착될 수 있고, 전극 리드(111)들이 버스바 프레임(400)에 형성된 슬릿(400S)을 통과한 뒤 구부러져 터미널 버스바(500T)와 연결될 수 있다. 터미널 버스바(500T)는 대체로 버스바(500)와 유사하나, 버스바(500)와 달리 외부로 노출되는 부분을 갖는다. 일례로, 엔드 플레이트(300)에는 터미널 개구홀(300H, 도 4 참조)이 형성될 수 있고, 터미널 버스바(500T)의 상향 연장된 부분이 터미널 개구홀(300H)을 통과해 전지 모듈(100)의 외부로 노출될 수 있다.
터미널 버스바(500T)는, HV(High Voltage) 연결을 위한 전지 모듈(100)의 입출력 단자로써 기능한다. HV 연결은, 전지 모듈의 입출력 단자와 같이 상대적으로 고전압이 요구되는 전기적 연결을 지칭한다. 본 실시예에 따른 전지 모듈(100)은, 터미널 버스바(500)의 노출된 부분을 통해 다른 전지 모듈이나 전지 모듈의 전기적 연결을 제어하는 전원 차단 유닛(BDU, Battery Disconnection Unit)과 연결될 수 있다.
센싱 부재(600)는 전지 모듈(100)의 LV(Low Voltage) 연결을 위한 부재이다. LV 연결은 배터리 전장 부품과 같이 상대적으로 저전압이 요구되는 전기적 연결을 지칭한다. 일례로, 센싱 부재(600)가 전지 모듈(100)에 포함된 전지셀(110)들의 전압 데이터나 온도 데이터를 센싱하고, 전지 모듈(100) 외부에 위치한 전지 관리 시스템(Battery Management System, BMS)에 센싱된 전압이나 온도 데이터를 송출한다. 상기 전지 관리 시스템은 전달된 전압이나 온도 데이터를 바탕으로 해당 전지 모듈(100)의 전압이나 온도를 관리한다.
전지셀(110)의 전압 데이터의 센싱을 위해, 센싱 부재(600)는, 후술하는 금속 와이어(700)를 매개로 하여, 전극 리드(111)가 접합되어 있는 버스바(500)와 전기적으로 연결될 수 있다. 버스바(500)와 마찬가지로, 센싱 부재(600)는 버스바 프레임(400) 중 전지셀 적층체(120)와 마주하는 면의 반대면에 장착될 수 있고, 또한, 버스바 프레임(400)의 상부 영역에 장착될 수 있다. 이러한 센싱 부재(600)는 FFC(Flat Flexible Cable), PCB(printed circuit board) 또는 FPCB(Flexible Printed Circuit Board)를 포함할 수 있다.
센싱 부재(600)에는 모듈 커넥터(610)가 연결될 수 있다. 모듈 커넥터(610)는 전지 모듈(100)의 외부로 노출되는 부재이고, 전지 모듈(100) 외부에 위치한 전지 관리 시스템(Battery Management System, BMS)과 연결되어, 센싱 부재(600)가 측정한 전압이나 온도 데이터를 상기 전지 관리 시스템에 전달할 수 있다.
상술한 바 대로, 버스바(500)에 전극 리드(111)가 접합되고, 금속 와이어(700)가 이러한 버스바(500)와 센싱 부재(600)를 연결한다. 구체적으로, 금속 와이어(700)의 일 영역이 버스바(500)에 접합되고, 금속 와이어(700)의 다른 일 영역이 센싱 부재(600)와 연결된다.
이 때, 금속 와이어(700)와 버스바(500)는 와이어 본딩(wire bonding)에 의해 접합된 형태일 수 있다. 상기 와이어 본딩은 반도체 제조 공정에 주로 사용되는 접합 방식으로써, 집적 회로와 단자 사이를 금속 소재의 가느다란 와이어로 접속하는 방법을 의미한다. 다시 말해 와이어 본딩은, 금속 와이어를 사용하고 초음파 에너지와 압력의 조합으로 전기적인 상호 연결을 만드는 기술을 의미한다.
한편, 금속 와이어(700)와 센싱 부재(600)의 연결 방식은, 그 사이에 전기적 연결이 가능하다면 특별한 제한은 없다.
도 2 및 도 3에서와 같이, 종래의 전지 모듈(10)에서 센싱 부재(60)와 버스바(50)를 연결함에 있어, 판 형상의 금속 부재인 접합 부재(62)를 버스바(50)에 용접 접합하는 방식을 이용하였다. 특히, 저항 용접, 초음파 용접 또는 레이저 용접 등이 적용되었다. 반면, 본 실시예에 따른 전지 모듈(100)에서는 센싱 부재(600)와 버스바(500)를 연결함에 있어, 금속 와이어(700)를 이용한 와이어 본딩을 적용한다. 이하에서는, 종래의 전지 모듈(10) 대비 본 발명의 전지 모듈(100)이 갖는 장점을 제조 공정의 자동화, 접합의 재작업 및 비파괴 검사 각각의 관점에서 설명하도록 한다.
먼저, 종래 전지 모듈(10)의 접합 부재(62)와 버스바(50) 간의 접합 과정에서, 접합 부재(62)와 버스바(50) 사이의 간격이 없어야 용접 접합의 강도를 확보할 수 있다. 간격을 없애기 위해 센싱 부재(60)에 대한 클램핑 작업이 선행되는데, 센싱 부재(60)의 유연한(flexible) 특성 때문에 클램핑 작업 동안 센싱 부재(60)를 고정하기가 어렵다. 따라서, 클램핑 작업은 자동화가 어렵고 수작업으로 진행될 수밖에 없다. 반면, 본 실시예에서와 같이 금속 와이어(700)를 이용할 경우, 두 연결 대상이 다른 길이, 다른 방향, 다른 높이에 있어도 접합이 가능하기 때문에 종래에서의 간격 문제를 해결할 수 있고, 제조 공정의 자동화가 가능하다.
다음, 접합 부재(62)와 버스바(50) 사이에 레이저 용접과 같은 용접 접합이 적용될 경우, 두 금속 재료에 화학적 변형이 일어난다. 때문에 재작업이 진행될 경우, 접합 부재(62) 중 용접이 되지 않은 다른 영역에서 용접이 이루어져야 하는데, 그 면적이 넓지 않아 재작업이 용이하지 않다. 반면, 금속 와이어(700)를 이용한 와이어 본딩의 경우, 금속 재료 표면에 화학적 반응이 일어나지 않기 때문에 재작업이 용이하다. 또한, 와이어 본딩의 경우 매우 협소한 영역만 확보할 수 있다면 재작업이 가능한 장점이 있다.
마지막으로, 접합 부재(62)와 버스바(50) 사이에 레이저 용접과 같은 용접 접합이 적용될 경우, 용접 부분에 대한 강도 평가는 파괴 검사를 통해 이루어져야 한다. 반면, 금속 와이어(700)를 이용한 와이어 본딩의 경우, 와이어 본딩이 이루어짐과 동시에 금속 와이어(700)에 소정의 힘을 가함으로써, 접합 강도를 비파괴 상태로 평가할 수 있다. 금속 와이어(700)가 파단되는 강도 대비 작은 강도의 힘만 금속 와이어(700)에 인가되어도, 강도 평가가 이루어질 수 있다. 이러한 비파괴 검사를 통해 공정 중에 실시간으로 접합에 대한 전수 모니터링이 가능해진다.
이하에서는, 본 실시예에 따른 버스바의 구체적 형태에 대해 자세히 설명하도록 한다.
도 8은 본 발명의 일 실시예에 따른 버스바를 나타낸 도면이다. 도 9는 도 6의 “B”부분을 확대하여 나타낸 부분 사시도이다. 도 10은 도 9에서의 버스바와 금속 와이어 간의 연결 형태를 확대하여 나타낸 부분 도면이다. 다만, 설명의 편의를 위해 도 9에는 버스바 프레임(400)의 슬릿(400S)을 통과한 뒤 구부러진 전극 리드(111)의 모습을 도시하였다.
도 8 내지 도 10을 도 4 및 도 6과 함께 참고하면, 본 실시예에 따른 버스바(500)는 버스바 프레임(400)과 마주하는 면에 위치한 제1 금속층(510) 및 버스바 프레임(400)과 마주하는 면의 반대면에 위치한 제2 금속층(520)을 포함한다. 도 8에서 구별을 쉽게 하기 위해 제2 금속층(520)을 음영으로 표시하였다.
전지셀(110)의 전극 리드(111)는, 버스바 프레임(400)에 형성된 슬릿(400S)을 통과한 뒤 구부러져 제2 금속층(520)에 접합된다. 금속 와이어(700)는 제1 금속층(510)에 접합된다. 즉, 금속 와이어(700)의 일 영역이 제1 금속층(510)에 접합되고, 금속 와이어(700)의 다른 일 영역은 센싱 부재(600)와 연결된다.
제1 금속층(510)은 알루미늄 소재를 포함할 수 있고, 제2 금속층(520)은 구리 소재를 포함할 수 있다. 구체적으로, 본 실시예에 따른 버스바(500)는, 제1 금속층(510)과 제2 금속층(520)이 압연으로 접합된 클래드(Clad) 부재일 수 있다. 일례로, 알루미늄 소재를 포함한 제1 금속층(510)과 구리 소재를 포함한 제2 금속층(520), 즉 서로 다른 소재의 제1 및 제2 금속층(510, 520)이 압연의 방식으로 서로 접합되어 본 실시예에 따른 버스바(500)가 마련될 수 있다. 여기서 클래드 부재의 제조를 위한 클래드 접합은, 금속 또는 비금속을 모층으로 하고, 그 일면에 다른 금속을 압연의 방식으로 접합하는 기술을 의미한다. 각각의 소재가 갖는 특징이 동시에 나타나도록 접합되는 기술이다. 즉 제1 금속층(510)과 제2 금속층(520)이 클래드 접합 기술에 의해 서로 접합되어 본 실시예에 따른 버스바(500)를 형성할 수 있다. 이러한 제1 금속층(510)이 버스바 프레임(400)과 마주하고, 제2 금속층(520)이 버스바 프레임(400)을 마주하지 않도록, 버스바(500)가 버스바 프레임(400)에 장착된다.
제2 금속층(520)은, 슬릿(400S)을 통과한 전극 리드(111)가 구부러진 뒤 접합되는 영역이다. 전지셀의 용량은 점차 증대되고 충전 시간은 단축되기 때문에 전지셀의 발열을 제어하는 것은 중요한 이슈이다. 구리의 경우, 열 전도도 및 전기 전도도가 우수하기 때문에 버스바(500)에 적용 시 열 발산 정도가 뛰어나 전지 모듈(100)의 냉각 성능을 높일 수 있으며, 전극 리드(111)와 전기적 연결에서 저항을 낮출 수 있다. 즉, 버스바(500)의 열 발산 정도를 높이고 저항을 낮추기 위해 버스바(500)의 제2 금속층(520)에 구리 소재를 포함시킬 수 있다.
한편, 종래의 버스바(50)는 구리 소재의 단일 층으로 구성될 수 있는데, 구리는 열 전도도 및 전기 전도도가 우수하지만 비용이 다소 비싸다는 단점이 있다. 이에 본 실시예에서는, 버스바(500)를 구리 소재의 단일 층으로 구성하는 것이 아니라, 제1 금속층(510)과 제2 금속층(520)을 포함하도록 구성하였다. 제1 금속층(510)에 포함되는 알루미늄 소재는 제2 금속층(520)에 포함되는 구리 소재에 비해 약 3~4배 정도 저렴하기 때문에 재료비를 절감할 수 있다. 종합하면, 냉각 성능 향상, 저항 감소 및 비용 절감을 동시에 만족시키기 위해서 본 실시예에 따른 버스바(500)는, 알루미늄 소재를 포함하는 제1 금속층(510)과 구리 소재를 포함하는 제2 금속층(520)을 포함하도록 설계되었다.
이 때, 판상 형태인 버스바(500)에 있어서, 알루미늄 소재를 포함하는 제1 금속층(510)은 버스바(500)의 두께 대비 85% 이상 90% 이하의 두께를 가질 수 있고, 구리 소재를 포함하는 제2 금속층(520)은 버스바(500)의 두께 대비 10% 이상 15% 이하의 두께를 가질 수 있다.
버스바(500)의 두께 대비, 제1 금속층(510)의 두께가 85% 미만이고 제2 금속층(520)의 두께가 15% 초과일 경우, 목적하는 버스바(500)의 열 발산 정도에 비해 버스바(500)의 제조 비용이 지나치게 높아질 수 있다.
또한, 버스바(500)의 두께 대비 제1 금속층(510)의 두께가 90% 초과이고 제2 금속층(520)의 두께가 10% 미만일 경우, 버스바(500)의 열 발산 정도가 미비하여 전지 모듈(100)이 냉각 성능의 기준을 만족하지 못하게 될 수 있다.
한편, 본 실시예에 따른 금속 와이어(700)는, 알루미늄 소재를 포함할 수 있다. 즉, 금속 와이어(700)는, 금속 와이어(700)가 접합되는 제1 금속층(510)의 소재와 동일한 소재를 포함할 수 있다. 알루미늄 소재는 전지 모듈을 제조하는 공정에 많이 사용되며, 재료비가 저렴하다는 장점을 갖는다. 때문에 와이어 본딩을 위한 금속 와이어(700)의 소재로 알루미늄이 적용될 수 있다.
금속 와이어(700)와 버스바(500) 간의 와이어 본딩에 있어서, 동일한 소재끼리 접합되면, 접합 성능이 향상되기 때문에 알루미늄 소재를 포함하는 금속 와이어(700)를 알루미늄 소재를 포함하는 제1 금속층(510)에 접합되도록 설계하였다.
다만, 제2 금속층(520)이 전극 리드(111)와 접합되어야 하기 때문에 제2 금속층(520)은 버스바 프레임(400)과 마주하는 면의 반대면에 위치한다. 제1 금속층(510)은 버스바 프레임(400)과 마주하는 면에 위치하게 되는데, 이 경우 위치적 제한으로 인해 제1 금속층(510)과 금속 와이어(700)를 접합하기 어려울 수 있다.
이에 본 실시예에서는, 버스바(500)의 일 측에 구부러진 벤딩부(500B)를 형성하였다. 이러한 벤딩부(500B)에서 제1 금속층(510)이 버스바 프레임(400)과 마주하는 면의 반대면으로 노출될 수 있다. 벤딩부(500B)는 버스바(500)의 제1 금속층(510)과 제2 금속층(520) 모두가 휘어지면서 연장되는 부분일 수 있다.
도 9 및 도 10에 도시된 것처럼, 금속 와이어(700)는, 제1 금속층(510) 중에서 벤딩부(500B)에 의해 노출된 부분에 접합될 수 있다. 본 실시예에서는, 버스바(500)에 제1 금속층(510)을 포함시켜 재료비를 절감함과 동시에, 벤딩부(500B)를 형성함으로써, 금속 와이어(700)가 제1 금속층(510)에 용이하게 접합되도록 하여 제조 공정성을 확보하고자 하였다.
이러한, 벤딩부(500B)의 위치에 특별한 제한은 없으나, 센싱 부재(600)와 가깝게 위치하는 것이 바람직하다. 일례로, 버스바(500)의 상부에 벤딩부(500B)가 형성될 수 있다. 또한, 도 6 및 도 7에 도시된 것처럼, 버스바(500) 뿐만 아니라 터미널 버스바(500T)에도 벤딩부(500B)가 형성될 수 있고, 터미널 버스바(500T)의 벤딩부(500B)의 제1 금속층(510)에 금속 와이어(700)가 접합될 수 있다.
이하에서는, 본 발명의 다른 일 실시예에 따른 버스바에 대해 설명하도록 한다. 다만, 앞서 설명한 내용과 중복되는 부분에 대해서는 설명을 생략한다.
도 11은 본 발명의 다른 일 실시예에 따른 버스바 프레임, 버스바 및 센싱 부재 등을 나타낸 사시도이다. 도 12는 도 11의 버스바를 나타낸 도면이다. 도 12에서 구별을 쉽게 하기 위해 제2 금속층(520)을 음영으로 표시하였다.
도 11 및 도 12를 참고하면, 본 발명의 다른 일 실시예에 따른 버스바 프레임(400)에 버스바(500) 및 센싱 부재(600)가 장착될 수 있다. 이러한 버스바(500)와 센싱 부재(600)를 금속 와이어(700)가 연결할 수 있다. 버스바 프레임(400)에 터미널 버스바(500T)가 장착될 수 있고, 센싱 부재(600)는 모듈 커넥터(610)와 연결될 수 있다.
또한, 버스바(500)는 버스바 프레임(400)과 마주하는 면에 위치한 제1 금속층(510) 및 버스바 프레임(400)과 마주하는 면의 반대면에 위치한 제2 금속층(520)을 포함한다. 전지셀(110)의 전극 리드(111)는, 버스바 프레임(400)에 형성된 슬릿을 통과한 뒤 구부러져 제2 금속층(520)에 접합된다
여기까지는, 앞서 도 8 내지 도 10에서 설명한 버스바의 구조와 유사하다. 그러나, 본 실시예에 따른 버스바(500)는, 벤딩부를 대신하여, 제2 금속층(520)에 관통구(520H)가 형성되는 것에 차이가 있다.
구체적으로, 제2 금속층(520)에 관통구(520H)가 형성될 수 있고, 이러한 관통구(520H)를 통해 제1 금속층(510)이 버스바 프레임(400)과 마주하는 면의 반대면으로 노출될 수 있다. 금속 와이어(700)는, 제1 금속층(510) 중에서 관통구(520H)를 통해 노출된 부분에 접합될 수 있다. 본 실시예에서는, 버스바(500)에 제1 금속층(510)을 포함시켜 재료비를 절감함과 동시에, 제2 금속층(520)에 관통구(520H)를 형성함으로써, 금속 와이어(700)가 제1 금속층(510)에 용이하게 접합되도록 하여 제조 공정성을 확보하고자 하였다.
이러한, 관통구(520H)의 위치에 특별한 제한은 없으나, 센싱 부재(600)와 가깝게 위치하는 것이 바람직하다. 일례로, 버스바(500)의 상부 영역에 관통구(520H)가 형성될 수 있다. 또한, 도 11에 도시된 것처럼, 버스바(500) 뿐만 아니라 터미널 버스바(500T)에도 관통구(520H)가 형성될 수 있고, 터미널 버스바(500T)의 관통구(520H)를 통해 노출된 제1 금속층(510)에 금속 와이어(700)가 접합될 수 있다.
본 실시예에서 전, 후, 좌, 우, 상, 하와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있다.
앞에서 설명한 본 실시예에 따른 하나 또는 그 이상의 전지 모듈은, 전지 관리 시스템(Battery Management System, BMS), 전원 차단 유닛(Battery Disconnect Unit, BDU), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지팩을 형성할 수 있다.
상기 전지 모듈이나 전지팩은 다양한 디바이스에 적용될 수 있다. 구체적으로는, 전기 자전거, 전기 자동차, 하이브리드 등의 운송 수단이나 ESS(Energy Storage System)에 적용될 수 있으나 이에 제한되지 않고 이차 전지를 사용할 수 있는 다양한 디바이스에 적용 가능하다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
부호의 설명
100: 전지 모듈
110: 전지셀
120: 전지셀 적층체
400: 버스바 프레임
500: 버스바
500B: 벤딩부
510: 제1 금속층
520: 제2 금속층
520H: 관통구
600: 센싱 부재
700: 금속 와이어

Claims (12)

  1. 일 방향 또는 양 방향으로 돌출되는 전극 리드들을 갖는 전지셀들이 적층된 전지셀 적층체;
    상기 전지셀 적층체의 일측에 위치하는 버스바 프레임;
    상기 버스바 프레임에 장착되는 버스바 및 센싱 부재; 및
    상기 버스바와 상기 센싱 부재를 연결하는 금속 와이어;를 포함하고,
    상기 버스바는, 상기 버스바 프레임과 마주하는 면에 위치한 제1 금속층 및 상기 버스바 프레임과 마주하는 면의 반대면에 위치한 제2 금속층을 포함하고,
    상기 전극 리드는, 상기 버스바 프레임에 형성된 슬릿을 통과한 뒤 구부러져 상기 제2 금속층에 접합되며,
    상기 금속 와이어의 일 영역이 상기 제1 금속층에 접합되고, 상기 금속 와이어의 다른 일 영역이 상기 센싱 부재와 연결되는 전지 모듈.
  2. 제1항에서,
    상기 금속 와이어와 상기 버스바는 와이어 본딩(wire bonding)에 의해 접합된 형태인 전지 모듈.
  3. 제1항에서,
    상기 센싱 부재는 FFC(Flat Flexible Cable), PCB(printed circuit board) 또는 FPCB(Flexible Printed Circuit Board)를 포함하는 전지 모듈.
  4. 제1항에서,
    상기 제1 금속층은 알루미늄 소재를 포함하고, 상기 제2 금속층은 구리 소재를 포함하는 전지 모듈.
  5. 제4항에서,
    상기 금속 와이어는 알루미늄 소재를 포함하는 전지 모듈.
  6. 제1항에서,
    상기 버스바의 일 측에 구부러진 벤딩부가 형성되고,
    상기 벤딩부에서 상기 제1 금속층이 상기 버스바 프레임과 마주하는 면의 반대면으로 노출되는 전지 모듈.
  7. 제6항에서,
    상기 금속 와이어는 상기 제1 금속층 중에서 상기 벤딩부에 의해 노출된 부분에 접합되는 전지 모듈.
  8. 제1항에서,
    상기 제2 금속층에 관통구가 형성되어, 상기 관통구를 통해 상기 제1 금속층이 상기 버스바 프레임과 마주하는 면의 반대면으로 노출되는 전지 모듈.
  9. 제8항에서,
    상기 금속 와이어는, 제1 금속층 중에서 상기 관통구를 통해 노출된 부분에 접합되는 전지 모듈.
  10. 제1항에서,
    상기 버스바는 판상 형태이고,
    상기 제1 금속층은 상기 버스바의 두께 대비 85% 이상 90% 이하의 두께를 가지며,
    상기 제2 금속층은 상기 버스바의 두께 대비 10% 이상 15% 이하의 두께를 갖는 전지 모듈.
  11. 제1항에서,
    상기 전지셀은 파우치형 전지셀이고,
    상기 전지셀들이 직립한 채 적층되어 상기 전지셀 적층체를 형성하는 전지 모듈.
  12. 제1항에 따른 전지 모듈을 포함하는 전지팩.
PCT/KR2023/011802 2022-08-26 2023-08-10 전지 모듈 및 이를 포함하는 전지팩 WO2024043586A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380014880.5A CN118355556A (zh) 2022-08-26 2023-08-10 电池模块和包括该电池模块的电池组
EP23857620.1A EP4435958A1 (en) 2022-08-26 2023-08-10 Battery module and battery pack including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220107418A KR20240029225A (ko) 2022-08-26 2022-08-26 전지 모듈 및 이를 포함하는 전지팩
KR10-2022-0107418 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024043586A1 true WO2024043586A1 (ko) 2024-02-29

Family

ID=90013490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011802 WO2024043586A1 (ko) 2022-08-26 2023-08-10 전지 모듈 및 이를 포함하는 전지팩

Country Status (4)

Country Link
EP (1) EP4435958A1 (ko)
KR (1) KR20240029225A (ko)
CN (1) CN118355556A (ko)
WO (1) WO2024043586A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114389A (ja) * 2017-12-22 2019-07-11 ダイムラー・アクチェンゲゼルシャフトDaimler AG バッテリモジュール
KR20210080256A (ko) * 2019-12-20 2021-06-30 주식회사 엘지에너지솔루션 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩
KR20220040199A (ko) * 2020-09-23 2022-03-30 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20220041429A (ko) * 2020-09-25 2022-04-01 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20220107418A (ko) 2021-01-25 2022-08-02 김예련 안개 분사형 미스트 오일 조성물 제조방법
KR20220115393A (ko) * 2021-02-10 2022-08-17 삼성에스디아이 주식회사 배터리 팩

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114389A (ja) * 2017-12-22 2019-07-11 ダイムラー・アクチェンゲゼルシャフトDaimler AG バッテリモジュール
KR20210080256A (ko) * 2019-12-20 2021-06-30 주식회사 엘지에너지솔루션 복수의 단위 모듈과 bms 어셈블리를 포함하는 서브 팩 및 이를 포함하는 배터리 팩
KR20220040199A (ko) * 2020-09-23 2022-03-30 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20220041429A (ko) * 2020-09-25 2022-04-01 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR20220107418A (ko) 2021-01-25 2022-08-02 김예련 안개 분사형 미스트 오일 조성물 제조방법
KR20220115393A (ko) * 2021-02-10 2022-08-17 삼성에스디아이 주식회사 배터리 팩

Also Published As

Publication number Publication date
CN118355556A (zh) 2024-07-16
KR20240029225A (ko) 2024-03-05
EP4435958A1 (en) 2024-09-25

Similar Documents

Publication Publication Date Title
WO2019245214A1 (ko) 이차 전지 및 버스바를 포함한 배터리 모듈
WO2018225920A1 (ko) 배터리 모듈
WO2015152527A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2022108145A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2018186659A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2020009483A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2021221340A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022149896A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149900A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021145626A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022149897A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022005233A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022250287A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149884A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2024043586A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022005234A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022211250A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022173200A2 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2022203232A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022158792A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022075584A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2024122795A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2024136426A1 (ko) 전지셀 및 이를 포함하는 전지 모듈
WO2022182136A1 (ko) 전지 모듈 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024529742

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202380014880.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023857620

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023857620

Country of ref document: EP

Effective date: 20240618