[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024043248A1 - Method for forming multilayered coating film - Google Patents

Method for forming multilayered coating film Download PDF

Info

Publication number
WO2024043248A1
WO2024043248A1 PCT/JP2023/030220 JP2023030220W WO2024043248A1 WO 2024043248 A1 WO2024043248 A1 WO 2024043248A1 JP 2023030220 W JP2023030220 W JP 2023030220W WO 2024043248 A1 WO2024043248 A1 WO 2024043248A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
coating
hydroxyl group
resin
forming
Prior art date
Application number
PCT/JP2023/030220
Other languages
French (fr)
Japanese (ja)
Inventor
信彦 成田
健次 酒井
隆 小澤
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Publication of WO2024043248A1 publication Critical patent/WO2024043248A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to a method for forming a multilayer coating film.
  • paint The purpose of applying paint is mainly to protect the material and add beauty.
  • aesthetic appearance, especially ⁇ texture,'' is important in order to enhance their product appeal.
  • Metallic luster is a mirror-like surface with no graininess, and when viewed perpendicularly to the painted plate (highlight), it shines, and when viewed from diagonally above the painted plate (shade). ) is a texture characterized by a dark appearance, that is, a large difference in brightness between the highlight area and the shade area.
  • Patent Document 2 discloses that a metallic paint base containing a glittering material, a non-volatile solid content including a resin, and a solvent is diluted at a dilution rate of 150 to 500% using a diluent consisting of a high boiling point solvent and a low boiling point solvent. According to a metallic paint characterized by diluting and adding 5 to 10 parts by weight of a viscous resin to 100 parts by weight of the resin in the metallic paint base, a good metallic appearance can be achieved. is listed.
  • coatings are required to not only give an aesthetic appearance but also protect the material, which requires excellent coating performance such as high adhesion.
  • An object of the present invention is to provide a method for forming a multilayer coating film that can form a multilayer coating film that has excellent metallic luster and can exhibit high coating performance.
  • the present invention includes the subject matter described in the following sections.
  • Step (1) a step of coating a glittering paint composition (Y) containing indium particles (y1) on the object to be coated to form a glittering coating film;
  • Step (2) A clear coating composition (Z) containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied onto the glitter coating film obtained in step (1) to form a clear coating.
  • Step (3) of forming a film Curing the glitter coating formed in step (1) and the clear coating formed in step (2) by heating them separately or simultaneously.
  • a method for forming a multilayer coating film comprising the steps of: A method for forming a multilayer coating film, wherein the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 10 to 75 mgKOH/g.
  • Section 2. The method for forming a multilayer coating according to Item 1, wherein the glitter coating composition (Y) further contains a hydroxyl group-containing resin (y2).
  • Item 3 The method for forming a multilayer coating according to Item 1 or 2, wherein the glitter coating composition (Y) further contains a melamine resin (y3).
  • the equivalent ratio (NCO/OH) of the total mol of isocyanate groups of the polyisocyanate compound (z2) to the total mol of hydroxyl groups of the hydroxyl group-containing acrylic resin (z1) is 0.7 to The method for forming a multilayer coating film according to any one of Items 1 to 3, which is within the range of 1.5.
  • the method for forming a multilayer coating film of the present invention it is possible to form a multilayer coating film that has excellent metallic luster and exhibits excellent coating performance such as adhesion.
  • the multilayer coating film forming method of the present invention includes the following steps (1) to (3): Step (1): a step of coating a glittering paint composition (Y) containing indium particles (y1) on the object to be coated to form a glittering coating film; Step (2): A clear coating composition (Z) containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied onto the glitter coating film obtained in step (1) to form a clear coating.
  • Step (3) of forming a film Curing the glitter coating formed in step (1) and the clear coating formed in step (2) by heating them separately or simultaneously.
  • a method for forming a multilayer coating film comprising the steps of: In this method, the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 10 to 75 mgKOH/g.
  • a glitter coating composition (Y) containing indium particles (y1) is applied onto an object to be coated to form a glitter coating film.
  • the object to be coated with the glitter coating composition (Y) is not particularly limited.
  • Examples of the object to be coated include the outer panels of automobile bodies such as passenger cars, trucks, motorcycles, and buses; automobile parts such as bumpers; and the outer panels of household electrical appliances such as mobile phones and audio equipment. can. Among these, outer panels of automobile bodies and automobile parts are preferred.
  • the materials of these objects to be coated are not particularly limited.
  • metal materials such as iron, aluminum, brass, copper, tinplate, stainless steel, galvanized steel, zinc alloy (Zn-Al, Zn-Ni, Zn-Fe, etc.) plated steel; polyethylene resin, polypropylene resin, acrylonitrile- Resins such as butadiene-styrene (ABS) resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, and epoxy resin; plastic materials such as various FRP; inorganic materials such as glass, cement, and concrete; wood ; Examples include fibrous materials such as paper and cloth. Among these, metal materials and plastic materials are preferred.
  • Surfaces to which multi-layer coatings are applied include phosphate treatment, chromate treatment, The material may be subjected to surface treatment such as surface treatment or complex oxide treatment.
  • a coating film may be further formed on the object, which may or may not be surface-treated.
  • the base material to be coated may be optionally subjected to surface treatment, and an undercoat film and/or intermediate coat film may be formed thereon.
  • the undercoat film and/or intermediate coat film is, for example, when the object to be coated is an automobile body, a coating composition for undercoat and/or intermediate coat known per se that is commonly used in the painting of automobile bodies. It can be formed using objects.
  • the undercoat paint composition for forming the above-mentioned undercoat film for example, an electrodeposition paint, preferably a cationic electrodeposition paint can be used.
  • the intermediate coating composition for forming the intermediate coating film includes a base resin such as an acrylic resin, a polyester resin, an alkyd resin, a urethane resin, and an epoxy resin having a crosslinkable functional group such as a carboxyl group or a hydroxyl group; A coating made of an amino resin such as a melamine resin or a urea resin, or a crosslinking agent such as an optionally blocked polyisocyanate compound together with a pigment, a thickener, and other optional components can be used. .
  • the glitter paint composition (Y) is a glitter paint composition containing indium particles (y1).
  • the glitter coating composition (Y) preferably contains indium particles (y1), and further contains a surface conditioner, and water and/or an organic solvent.
  • the indium particles (y1) are flaky particles.
  • the flaky particles may also be referred to as scale particles, tabular particles, flake particles, or the like.
  • a flaky particle means a particle having a substantially flat surface and having a substantially uniform thickness in the direction perpendicular to the substantially flat surface.
  • the term "flake-like particles” refers to particles having a very thin thickness and a substantially flat surface having a very long length. Note that the length of the substantially flat surface is the diameter of a circle having the same projected area as the flaky particle.
  • the shape of the substantially flat surface is not particularly limited and can be selected as appropriate depending on the purpose, for example, substantially rectangular, substantially square, substantially circular, substantially oval, substantially triangular, substantially quadrilateral, substantially pentagonal, and substantially Examples include polygons such as hexagons, approximately heptagons, and approximately octagons, and random irregular shapes. Among these, a substantially circular shape is preferable.
  • the indium particles (y1) may have a single layer, or two or more layers may be laminated to form a primary particle. Moreover, the primary particles of the indium particles (y1) may aggregate to form secondary particles.
  • the indium particles (y1) are made of indium with a purity of 95% or more, and may contain trace amounts of impurities, but do not contain alloys with other metals.
  • the above indium particles (y1) can be manufactured by performing a peeling layer forming step, a vacuum evaporation step, a peeling step, and further other steps as necessary.
  • the release layer forming step is a step of providing a release layer on the base material.
  • the above-mentioned base material is not particularly limited as long as it has a smooth surface, and various materials can be used.
  • resin films, metal foils, and composite films of metal foils and resin films having flexibility, heat resistance, solvent resistance, and dimensional stability can be used as appropriate.
  • the resin film include polyester film, polyethylene film, polypropylene film, polystyrene film, and polyimide film.
  • the metal foil include copper foil, aluminum foil, nickel foil, iron foil, and alloy foil.
  • composite films of metal foil and resin film include those obtained by laminating the above resin film and metal foil.
  • the peeling layer various organic substances that can be dissolved in the subsequent peeling process can be used. It is preferable to appropriately select the organic material constituting the release layer, since the organic material attached and remaining on the adhesion surface of the island-like structure film can function as a protective layer for the indium particles (y1).
  • the protective layer has a function of suppressing agglomeration, oxidation, elution into a solvent, etc. of the indium particles (y1).
  • Examples of organic substances constituting the release layer that can be used as a protective layer include cellulose acetate butyrate (CAB), other cellulose derivatives, polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyacrylic acid, polyacrylamide, and acrylic acid copolymers.
  • Examples include polymerized nylon resins, modified nylon resins, polyvinylpyrrolidone, urethane resins, polyester resins, polyether resins, and alkyd resins. These may be used alone or in combination of two or more.
  • cellulose acetate butyrate (CAB) is preferred because of its high functionality as a protective layer.
  • the method for forming the release layer is not particularly limited and can be appropriately selected depending on the purpose, for example, an inkjet method, a blade coating method, a gravure coating method, a gravure offset coating method, a bar coating method, a roll coating method. , knife coating method, air knife coating method, comma coating method, U comma coating method, AKKU coating method, smoothing coating method, micro gravure coating method, reverse roll coating method, 4 roll coating method, 5 roll coating method, dip coating method, curtain coating method, slide coating method, die coating method, etc. These may be used alone or in combination of two or more.
  • the vacuum deposition step is a step of vacuum depositing a metal layer containing indium particles (y1) on the release layer.
  • the average deposition thickness of the metal layer containing indium particles (y1) is preferably 60 nm or less, more preferably 55 nm or less, even more preferably 50 nm or less, and particularly preferably 45 nm or less. Note that the average deposition thickness of the metal layer containing the indium particles (y1) is the same as the average thickness of the indium particles (y1).
  • the average deposition thickness of the metal layer is 60 nm or less, there is an advantage that the surface roughness Ra of the coating film is reduced and excellent metallic gloss can be expressed.
  • the average deposition thickness is the average value obtained by observing a cross section of the metal layer using, for example, a scanning electron microscope (SEM) and measuring the thickness of the metal layer at 5 to 10 locations.
  • the metal layer is an island-like structured film.
  • the island structure film can be formed by various methods such as vacuum evaporation, sputtering, and plating. Among these, the vacuum evaporation method is preferred.
  • the vacuum evaporation method is preferable to the plating method in that it can form a film even on resin substrates and does not produce waste liquid, and is preferable to the plating method in that it can achieve a higher degree of vacuum and has a faster film formation rate (evaporation rate). preferable to law.
  • the vapor deposition rate in the vacuum evaporation method is preferably 10 nm/sec or more, more preferably 10 nm/sec or more and 80 nm/sec or less.
  • the peeling process is a process of peeling the metal layer from the base material by dissolving the peeling layer.
  • the solvent that can dissolve the release layer is not particularly limited as long as it is a solvent that can dissolve the release layer, and can be appropriately selected depending on the purpose, but it may be used as it is as a solvent for the glitter coating composition (Y). Those that can be used are preferred.
  • solvents that can dissolve the release layer include alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol; ether solvents such as tetrahydrone; acetone, methyl ethyl ketone, Ketone solvents such as acetylacetone; ester solvents such as methyl acetate, ethyl acetate, butyl acetate, phenyl acetate; ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether,
  • Phenolic solvents aliphatic or aromatic such as pentane, hexane, heptane, octane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, octadecene, benzene, toluene, xylene, trimesine, nitrobenzene, aniline, methoxybenzene, trimesine, etc.
  • aliphatic or aromatic such as pentane, hexane, heptane, octane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, octadecene, benzene, toluene, xylene, trimesine, nitrobenzene, aniline, methoxybenzene
  • Hydrocarbon solvents aliphatic or aromatic chlorinated hydrocarbon solvents such as dichloromethane, chloroform, trichloroethane, chlorobenzene, dichlorobenzene; sulfur-containing compound solvents such as dimethyl sulfoxide; dimethylformamide, dimethylacetamide, acetonitrile, propionitrile, Examples include nitrogen-containing compound solvents such as benzonitrile. These may be used alone or in combination of two or more.
  • the island-like structure film is separated from the base material, the island-like structure is split, and the individual islands become indium particles (y1).
  • an indium particle (y1) dispersion can be obtained without any particular pulverization step, but the primary particles of indium particles (y1) may be pulverized and classified as necessary. Moreover, when the primary particles of the indium particles (y1) are aggregated, they may be crushed as necessary.
  • various treatments may be performed to recover the indium particles (y1) and adjust the physical properties.
  • the particle size of the indium particles (y1) may be adjusted by classification, the indium particles (y1) may be recovered by methods such as centrifugation or suction filtration, or the solid content concentration of the dispersion may be adjusted. good.
  • solvent substitution may be performed, and viscosity adjustment may be performed using additives.
  • ⁇ Other processes> Other steps include, for example, a step of taking out the peeled metal layer as a dispersion liquid, a step of recovering the island-shaped metal layer from the dispersion liquid as indium particles (y1), and the like.
  • the cumulative 50% volume particle diameter D50 of the indium particles (y1) obtained by performing the above-mentioned release layer forming step, vacuum evaporation step, peeling step, and other steps as necessary has an excellent metallic luster. From the viewpoint of forming a multilayer coating film having It is particularly preferable.
  • indium particles (y1) commercially available products can be used. Examples of such commercial products include “Leaf Powder 49CJ-1120”, “Leaf Powder 49CJ-1150”, “Leaf Powder 49BJ-1120”, and “Leaf Powder 49BJ-1150” (all manufactured by Oike Kogyo Co., Ltd.). Can be mentioned.
  • the content of indium particles (y1) in the glitter coating composition (Y) of the present invention is determined by adjusting the solid content of 100 parts by mass of the glitter coating composition (Y) from the viewpoint of obtaining a coating film with excellent metallic gloss.
  • it is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, even more preferably in the range of 80 to 99.9 parts by mass, and even more preferably in the range of 90 to 99.9 parts by mass.
  • the surface conditioning agents include surface conditioning agents such as silicone surface conditioning agents, acrylic surface conditioning agents, vinyl surface conditioning agents, fluorine surface conditioning agents, and acetylene diol surface conditioning agents. From the viewpoint of obtaining a coating film with excellent gloss control, it is preferable to include a fluorine-based surface conditioner.
  • the above-mentioned surface conditioners can be used alone or in an appropriate combination of two or more.
  • fluorine-based surface conditioner examples include fluorine-based polymers and fluorine-based oligomers having perfluoroalkyl groups and polyalkylene oxide groups, fluorine-based polymers and fluorine-based oligomers having perfluoroalkyl ether groups and polyalkylene oxide groups Oligomers can be mentioned.
  • the content is determined by the solid content of the glitter coating composition (Y) from the viewpoint of obtaining a coating film with excellent metallic gloss. Based on 100 parts by mass, it is preferably 0.01 to 2.0 parts by mass, more preferably 0.05 to 1.5 parts by mass, and 0.1 to 1.0 parts by mass. is even more preferable.
  • organic solvent those commonly used in paints can be used. Specifically, for example, alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol; ether solvents such as tetrahydrone; ketone solvents such as acetone, methyl ethyl ketone, and acetylacetone.
  • alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol
  • ether solvents such as tetrahydrone
  • ketone solvents such as acetone, methyl ethyl ketone, and acetylacetone.
  • Ester solvents such as methyl acetate, ethyl acetate, butyl acetate, phenyl acetate; Ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol Monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, Glycol ether solvents such as ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether
  • the organic solvent preferably contains at least one solvent selected from glycol ether-based organic solvents and alcohol-based organic solvents, from the viewpoint of obtaining a coating film with excellent metallic gloss. It is even more preferable.
  • the content should be determined based on the sum of all components of the glitter coating composition (Y) from the viewpoint of obtaining a coating film with excellent metallic gloss. It is preferably within the range of 85 to 99.9 parts by mass, more preferably within the range of 90 to 99.5 parts by mass, and preferably within the range of 95 to 99 parts by mass relative to 100 parts by mass. It is even more preferable.
  • the glitter coating composition (Y) may optionally include pigments other than indium particles (y1), viscosity modifiers, binder resins, crosslinking components, pigment dispersants, antisettling agents, and ultraviolet absorbers. A light stabilizer and the like may be added as appropriate.
  • pigments other than the indium particles (y1) include colored pigments, glitter pigments other than the indium particles (y1), extender pigments, and the like. These pigments can be used alone or in combination of two or more.
  • the color pigments include titanium oxide, zinc oxide, carbon black, molybdenum red, Prussian blue, cobalt blue, azo pigments, phthalocyanine pigments, quinacridone pigments, isoindoline pigments, threne pigments, and perylene pigments. , dioxazine pigments, diketopyrrolopyrrole pigments, and the like.
  • Examples of the glitter pigment other than the indium particles (y1) include vapor-deposited metal flake pigments other than the indium particles (y1), aluminum flake pigments, optical interference pigments, and the like.
  • Examples of the extender pigment include clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, talc, silica, and alumina white.
  • the content is determined from the viewpoint of obtaining a coating film with excellent metallic gloss. Based on 100 parts by mass of solid content of Y), it is preferably within the range of 0.01 to 30 parts by mass, more preferably within the range of 0.05 to 20 parts by mass, and 0.1 to 15 parts by mass. It is more preferably within the range of parts by mass.
  • viscosity modifier examples include silica-based fine powder, mineral-based viscosity modifier, barium sulfate atomized powder, polyamide-based viscosity modifier, organic resin fine particle viscosity modifier, diurea-based viscosity modifier, and urethane-based viscosity modifier. acrylic swelling type polyacrylic acid-based viscosity modifiers, cellulose-based viscosity modifiers, and the like.
  • binder resin examples include hydroxyl group-containing resin (y2).
  • the above hydroxyl group-containing resin (y2) is a resin having at least one hydroxyl group in one molecule.
  • the hydroxyl group-containing resin (y2) a wide variety of known resins can be used, such as acrylic resins having hydroxyl groups, polyester resins having hydroxyl groups, acrylic modified polyester resins having hydroxyl groups, polyether resins having hydroxyl groups, and polycarbonates having hydroxyl groups. Examples include resins such as polyurethane resins having hydroxyl groups, epoxy resins having hydroxyl groups, and alkyd resins having hydroxyl groups. These can be used alone or in combination of two or more. Among these, the hydroxyl group-containing resin (y2) preferably contains a hydroxyl group-containing acrylic resin (y2-1) from the viewpoint of adhesion of the formed coating film.
  • the hydroxyl group-containing acrylic resin (y2-1) can be produced, for example, by copolymerizing a hydroxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers (polymerizable unsaturated monomers other than the hydroxyl group-containing polymerizable unsaturated monomer). Obtainable.
  • the above-mentioned hydroxyl group-containing polymerizable unsaturated monomer is a compound having one or more hydroxyl groups and one or more polymerizable unsaturated bonds in one molecule.
  • Examples of the hydroxyl group-containing polymerizable unsaturated monomer include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
  • Monoesterified product of (meth)acrylic acid and dihydric alcohol having 2 to 8 carbon atoms ⁇ -caprolactone modified product of monoesterified product of (meth)acrylic acid and dihydric alcohol containing 2 to 8 carbon atoms
  • ( Adducts of meth)acrylic acid and epoxy group-containing compounds for example, "Cardura E10P” (trade name), manufactured by Momentive Specialty Chemicals, neodecanoic acid glycidyl ester); N-hydroxymethyl (meth)acrylamide; allyl alcohol; , (meth)acrylate having a polyoxyethylene chain whose molecular terminal is a hydroxyl group, and the like.
  • polymerizable unsaturated monomers that can be copolymerized with the above hydroxyl group-containing polymerizable unsaturated monomer, for example, the monomers shown in (1) to (6) below can be used. These polymerizable unsaturated monomers can be used alone or in combination of two or more.
  • Acid group-containing polymerizable unsaturated monomer is a compound having one or more acid groups and one or more polymerizable unsaturated bonds in one molecule.
  • the monomer include carboxyl group-containing monomers such as (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid and maleic anhydride; sulfonic acid group-containing monomers such as vinylsulfonic acid and 2-sulfoethyl (meth)acrylate.
  • Acidic acids such as 2-(meth)acryloyloxyethyl acid phosphate, 2-(meth)acryloyloxypropyl acid phosphate, 2-(meth)acryloyloxy-3-chloropropyl acid phosphate, 2-methacryloyloxyethyl phenyl phosphate, etc.
  • Examples include phosphoric acid ester monomers. These can be used alone or in combination of two or more.
  • Esterified products of acrylic acid or methacrylic acid and monohydric alcohol having 1 to 20 carbon atoms Specifically, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, ) acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, isomyristyl (meth)acrylate, stearyl (meth)acrylate, isostearyl acrylate, lauryl ( Examples include meth)acrylate, tridecyl(meth)acrylate, tetrahydrofurfuryl(meth)acrylate, cyclohexyl(meth)acrylate, isobornyl(meth)acrylate, and the like.
  • Aromatic vinyl monomer Specific examples include styrene, ⁇ -methylstyrene, vinyltoluene, and the like.
  • the glass transition temperature of the resulting resin increases, and a hydrophobic coating film with a high refractive index can be obtained, which improves the finished appearance by improving the gloss of the coating film. It is possible to obtain the improvement effect of
  • an aromatic vinyl monomer When used as a constituent component, its blending ratio is preferably 3 to 50% by mass, particularly preferably 5 to 40% by mass, based on the total amount of monomer components.
  • a glycidyl group-containing polymerizable unsaturated monomer is a compound having one or more glycidyl groups and one or more polymerizable unsaturated bonds in one molecule. Acrylate, glycidyl methacrylate, etc. can be mentioned.
  • Polymerizable unsaturated bond-containing nitrogen atom-containing compound for example, (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N-[3-(dimethylamino)propyl](meth)acrylamide, N-butoxymethyl
  • one or more of the monomers shown in (1) to (6) above can be used.
  • the polymerizable unsaturated monomer refers to a monomer having one or more (for example, 1 to 4) polymerizable unsaturated groups.
  • a polymerizable unsaturated group means an unsaturated group that can undergo radical polymerization. Examples of such polymerizable unsaturated groups include vinyl group, (meth)acryloyl group, (meth)acrylamide group, vinyl ether group, allyl group, propenyl group, isopropenyl group, and maleimide group.
  • (meth)acrylate means acrylate or methacrylate.
  • (Meth)acrylic acid means acrylic acid or methacrylic acid.
  • (Meth)acryloyl means acryloyl or methacryloyl.
  • (Meth)acrylamide means acrylamide or methacrylamide.
  • the hydroxyl value of the hydroxyl group-containing acrylic resin (y2-1) is preferably from 30 to 200 mgKOH/g, more preferably from 40 to 180 mgKOH/g, from the viewpoint of curability and water resistance, and more preferably from 50 to 180 mgKOH/g. Particularly preferred is a range of 150 mgKOH/g.
  • the acid value of the hydroxyl group-containing acrylic resin (y2-1) is preferably 0.5 to 15 mgKOH/g, more preferably 1 to 12 mgKOH/g, from the viewpoint of curability and water resistance, etc. Particularly preferred is a range of 2 to 10 mgKOH/g.
  • the weight average molecular weight of the hydroxyl group-containing acrylic resin (y2-1) is preferably within the range of 2,000 to 50,000, and 3,000 to 45, from the viewpoint of finished appearance and curability of the coating film. ,000, and even more preferably 5,000 to 40,000.
  • the average molecular weight is a value calculated from a chromatogram measured by gel permeation chromatography based on the molecular weight of standard polystyrene.
  • a gel permeation chromatograph "HLC8120GPC” (manufactured by Tosoh Corporation) was used. Four columns were used: “TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL”, and “TSKgel G-2000HXL” (all manufactured by Tosoh Corporation, product names), and the mobile phase
  • the measurement was carried out under the following conditions: tetrahydrofuran, measurement temperature: 40°C, flow rate: 1 cc/min, detector: RI.
  • the glass transition temperature of the hydroxyl group-containing acrylic resin (y2-1) is preferably -50 to 60°C, more preferably -20 to 50°C, from the viewpoint of the hardness of the coating film and the finished appearance, etc. Particularly preferred is a temperature range of 0 to 45°C.
  • the glass transition temperature (°C) of the acrylic resin was calculated using the following formula.
  • T1, T2, . . . are values according to Polymer Hand Book (Second Edition, edited by J. Brandup and E.H. Immergut) III-139 to 179.
  • the glass transition temperature (°C) is determined as the static glass transition temperature, and for example, using a differential scanning calorimeter "DSC-220U” (manufactured by Seiko Instruments Inc.), After placing the sample in a measuring cup and completely removing the solvent by vacuum suction, the change in calorific value was measured in the range of -20°C to +200°C at a heating rate of 3°C/min. The point of change was defined as the static glass transition temperature.
  • DSC-220U differential scanning calorimeter
  • the copolymerization method for copolymerizing the above monomer mixture to obtain the hydroxyl group-containing acrylic resin (y2-1) is not particularly limited, and any known copolymerization method can be used.
  • a solution polymerization method in which polymerization is carried out in an organic solvent in the presence of a polymerization initiator can be suitably used.
  • organic solvents used in the solution polymerization method include aromatic solvents such as toluene, xylene, and Swasol 1000 (manufactured by Cosmo Oil Co., Ltd., trade name, high-boiling petroleum solvent); ethyl acetate, butyl acetate, Ester solvents such as propylpropionate, butylpropionate, 1-methoxy-2-propyl acetate, 2-ethoxyethylpropionate, 3-methoxybutyl acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate;
  • Examples include ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and methyl amyl ketone, and alcohol solvents such as isopropanol, n-butanol, isobutanol, and 2-ethylhexanol.
  • organic solvents can be used alone or in combination of two or more, but from the viewpoint of solubility of the acrylic resin, it is preferable to use ester-based solvents and ketone-based solvents. Furthermore, aromatic solvents may be suitably combined with these organic solvents.
  • polymerization initiators examples include 2,2'-azobisisobutyronitrile, benzoyl peroxide, di-t-butyl peroxide, di-t- - Known radical polymerization initiators such as amyl peroxide, t-butyl peroctoate, 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), etc. can be mentioned.
  • the glitter coating composition (Y) of the present invention contains a hydroxyl group-containing acrylic resin (y2-1) as the hydroxyl group-containing resin (y2)
  • the content is such that it has excellent metallic gloss and From the viewpoint of forming a multilayer coating film exhibiting excellent coating film performance such as adhesion, it is preferably within the range of 50 to 100% by mass, based on the solid content of the hydroxyl group-containing resin (y2), and 55 It is more preferably within the range of ⁇ 100% by mass, and even more preferably within the range of 60 ⁇ 100% by mass.
  • the content is such that it has excellent metallic gloss and excellent coating film performance such as adhesion.
  • the amount is preferably within the range of 0.1 to 15 parts by mass, and 0.5 to 15 parts by mass, based on 100 parts by mass of the solid content of the glitter coating composition (Y). It is more preferably within the range of 12 parts by mass, and even more preferably within the range of 1 to 10 parts by mass.
  • crosslinkable component examples include melamine resin (y3), melamine resin derivatives, urea resins, (meth)acrylamide, polyaziridine, polycarbodiimide, and polyisocyanate compounds that may or may not be blocked.
  • melamine resin (y3) it is preferable to include melamine resin (y3) from the viewpoint of adhesion of the formed coating film.
  • melamine resin (y3) a partially methylolated melamine resin or a fully methylolated melamine resin obtained by a reaction between a melamine component and an aldehyde component can be used.
  • aldehyde component include formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde.
  • the melamine resin (y3) it is also possible to use one in which the methylol group of the above-mentioned methylolated melamine resin is partially or completely etherified with an appropriate alcohol.
  • the alcohol used for etherification include methyl alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, 2-ethyl-1-butanol, 2-ethyl-1 -Hexanol, etc.
  • the melamine resin (y3) is a methyl etherified melamine resin in which the methylol groups of a partially or completely methylolated melamine resin are partially or completely etherified with methyl alcohol, and a methyl etherified melamine resin in which the methylol groups of a partially or fully methylolated melamine resin are partially or completely etherified with butyl alcohol.
  • butyl etherified melamine resin partially or completely etherified with methyl alcohol and butyl alcohol
  • methyl-butyl mixed etherified melamine resin partially or completely etherified with methyl alcohol and butyl alcohol.
  • methyl-butyl mixed etherified melamine resin is more preferable.
  • the weight average molecular weight of the melamine resin (y3) is preferably 400 to 6,000, more preferably 500 to 4,000, and even more preferably 600 to 3,000.
  • the content is such that it has excellent metallic luster and exhibits excellent coating performance such as adhesion.
  • the content is preferably within the range of 0.1 to 10 parts by mass, and 0.3 to 8 parts by mass, based on 100 parts by mass of the solid content of the glitter coating composition (Y). It is more preferably within the range of 0.5 to 5 parts by mass, and even more preferably within the range of 0.5 to 5 parts by mass.
  • Coating with the glitter coating composition (Y) can be carried out according to a conventional method, and examples include methods such as air spray coating, airless spray coating, and rotary atomization coating.
  • electrostatic charge may be optionally applied.
  • electrostatic coating using a rotary atomization method and electrostatic coating using an air spray method are preferable. Particularly preferred is the electrostatic coating method.
  • the glitter coating composition (Y) may contain water and/or an organic solvent and optionally additives such as an antifoaming agent. It is preferable to adjust the solid content and viscosity to be suitable for coating.
  • the solid content of the glitter coating composition (Y) of the present invention is determined from the viewpoint of forming a multilayer coating film that has excellent metallic gloss and exhibits excellent coating film performance such as adhesion.
  • the content is preferably from 0.1 to 15% by weight, preferably from 0.5 to 10% by weight, and more preferably from 1 to 5% by weight.
  • the viscosity of the glitter coating composition (Y) is Ford Cup No. 1 from the viewpoint of forming a multilayer coating film that has excellent metallic gloss and exhibits excellent coating film performance such as adhesion.
  • the time at 20° C. is preferably about 8 to 30 seconds, particularly preferably about 10 to 25 seconds.
  • the cured film thickness of the bright coating film is preferably about 0.01 to 2 ⁇ m from the viewpoint of forming a multilayer coating film that has excellent metallic luster and exhibits excellent coating performance such as adhesion. , more preferably about 0.025 to 1 ⁇ m, still more preferably about 0.05 to 0.5 ⁇ m.
  • a clear coating composition containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied on the glitter coating film obtained in step (1).
  • the object (Z) is painted and a clear coating film is formed.
  • the hydroxyl group-containing acrylic resin (z1) is an acrylic resin having at least one hydroxyl group in one molecule, and has a hydroxyl value within the range of 10 to 75 mgKOH/g. If the content of the hydroxyl group-containing acrylic resin (z1) is less than 10 mgKOH/g, the adhesion of the multilayer coating film to be formed will be poor. If the amount of the hydroxyl group-containing acrylic resin (z1) exceeds 75 mgKOH/g, the adhesion of the multilayer coating film formed will deteriorate.
  • the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 12 to 70 mgKOH/g from the viewpoint of adhesion of the multilayer coating film to be formed and compatibility with the polyisocyanate compound (z2). It is preferably within the range of 15 to 65 mgKOH/g, and more preferably within the range of 15 to 65 mgKOH/g.
  • the hydroxyl group-containing acrylic resin (z1) can be obtained by, for example, using a hydroxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers (polymerizable unsaturated monomers other than the hydroxyl group-containing polymerizable unsaturated monomer) by a method known per se. For example, it can be produced by copolymerization using a solution polymerization method in an organic solvent, an emulsion polymerization method in water, or the like.
  • hydroxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers the compounds described in the description column of hydroxyl group-containing acrylic resin (y2-1) can be used.
  • the weight average molecular weight of the hydroxyl group-containing acrylic resin (z1) is preferably in the range of 2,000 to 50,000, preferably 3,000 to 45, from the viewpoint of adhesion of the multilayer coating film to be formed. ,000, and even more preferably 5,000 to 40,000.
  • the acid value of the hydroxyl group-containing acrylic resin (z1) is 30 mgKOH/g or less, especially 1 to 20 mgKOH, from the viewpoint of the finished appearance of the multilayer coating film to be formed, adhesion, and the pot life of the clear paint composition (Z). It is preferably within the range of /g.
  • the glass transition temperature of the hydroxyl group-containing acrylic resin (z1) is preferably -50 to 60°C, more preferably -30 to 50°C, from the viewpoint of adhesion, chipping resistance, finished appearance, etc. of the multilayer coating film to be formed. °C, particularly preferably within the range of -10 to 45 °C.
  • organic solvent used in the above solution polymerization method examples include alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol; ether solvents such as tetrahydrone; acetone; Ketone solvents such as methyl ethyl ketone and acetylacetone; ester solvents such as methyl acetate, ethyl acetate, butyl acetate, and phenyl acetate; ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, di
  • polymerization initiators examples include 2,2'-azobisisobutyronitrile, benzoyl peroxide, di-t-butyl peroxide, and di-t-amyl.
  • Known radical polymerization initiators such as peroxide, t-butyl peroctoate, 2,2'-azobis(2-methylbutyronitrile), and 2,2'-azobis(2,4-dimethylvaleronitrile) are listed. be able to.
  • the above hydroxyl group-containing acrylic resin (z1) can be used alone or in combination of two or more.
  • Polyisocyanate compound (z2) is a compound having at least two isocyanate groups in one molecule, and includes, for example, aliphatic polyisocyanate, alicyclic polyisocyanate, araliphatic polyisocyanate, aromatic polyisocyanate, etc. Examples include derivatives of polyisocyanate.
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3 - Aliphatic diisocyanates such as butylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, methyl 2,6-diisocyanatohexanoate (common name: lysine diisocyanate); 2 , 2-isocyanatoethyl 6-diisocyanatohexanoate, 1,6-diisocyanato-3-isocyanatomethylhexane, 1,4,8-triisocyanatooctane, 1,6,11-triisocyanatoundecane, 1
  • alicyclic polyisocyanate examples include 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (common name) : isophorone diisocyanate), 4-methyl-1,3-cyclohexylene diisocyanate (common name: hydrogenated TDI), 2-methyl-1,3-cyclohexylene diisocyanate, 1,3- or 1,4-bis(isocyanate) Alicyclic diisocyanates such as methyl)cyclohexane (common name: hydrogenated xylylene diisocyanate) or mixtures thereof, methylenebis(4,1-cyclohexanediyl) diisocyanate (common name: hydrogenated MDI), norbornane diisocyanate; 1,3,5 -triisocyanatocycl
  • araliphatic polyisocyanate examples include methylene bis(4,1-phenylene) diisocyanate (common name: MDI), 1,3- or 1,4-xylylene diisocyanate or a mixture thereof, ⁇ , ⁇ '-diisocyanato- Aroaliphatic diisocyanates such as 1,4-diethylbenzene, 1,3- or 1,4-bis(1-isocyanato-1-methylethyl)benzene (common name: tetramethylxylylene diisocyanate) or mixtures thereof; 1,3 , 5-triisocyanatomethylbenzene and other aromatic aliphatic triisocyanates.
  • MDI methylene bis(4,1-phenylene) diisocyanate
  • 1,3- or 1,4-xylylene diisocyanate or a mixture thereof ⁇ , ⁇ '-diisocyanato- Aroaliphatic diisocyanates
  • aromatic polyisocyanate examples include m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 2,4-tolylene diisocyanate (common name: 2,4- Aromatic diisocyanates such as 2,6-tolylene diisocyanate (common name: 2,6-TDI) or mixtures thereof, 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate; triphenylmethane-4 , 4',4''-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanatotoluene; 4,4'-diphenylmethane-2,2' , 5,5'-tetraisocyanate and other aromatic tetraisocyanates.
  • 2,4- Aromatic diisocyanates such as 2,6-
  • polyisocyanate derivatives examples include the above-mentioned polyisocyanate dimer, trimer, biuret, allophanate, uretdione, uretimine, isocyanurate, oxadiazinetrione, polymethylene polyphenyl polyisocyanate (crude MDI, polymeric MDI), crude Examples include TDI.
  • the above polyisocyanates and their derivatives may be used alone or in combination of two or more.
  • aliphatic diisocyanates hexamethylene diisocyanate-based compounds and among the alicyclic diisocyanates, 4,4'-methylenebis(cyclohexyl isocyanate) can be preferably used.
  • derivatives of hexamethylene diisocyanate are particularly suitable from the viewpoints of adhesion, compatibility, and the like.
  • the polyisocyanate compound (z2) As the polyisocyanate compound (z2), the polyisocyanate and its derivatives are reacted with a compound having an active hydrogen group such as a hydroxyl group or an amino group, which can react with the polyisocyanate, under conditions where there are an excess of isocyanate groups.
  • polyisocyanate compound (z2) it is also possible to use a blocked polyisocyanate compound, which is a compound in which the isocyanate groups in the above polyisocyanate and its derivatives are blocked with a blocking agent.
  • the blocking agent examples include phenols such as phenol, cresol, xylenol, nitrophenol, ethylphenol, hydroxydiphenyl, butylphenol, isopropylphenol, nonylphenol, octylphenol, and methyl hydroxybenzoate; ⁇ -caprolactam, ⁇ -valerolactam, Lactams such as ⁇ -butyrolactam and ⁇ -propiolactam; aliphatic alcohols such as methanol, ethanol, propyl alcohol, butyl alcohol, amyl alcohol, lauryl alcohol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono Ethers such as butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, methoxymethanol; benzyl alcohol, glycolic acid, methyl glycolate, ethyl glycolate, butyl glycolate
  • Oxime series active methylene series such as dimethyl malonate, diethyl malonate, ethyl acetoacetate, methyl acetoacetate, acetylacetone; butyl mercaptan, t-butyl mercaptan, hexyl mercaptan, t-dodecyl mercaptan, 2-mercaptobenzothiazole, thio Mercaptans such as phenol, methylthiophenol and ethylthiophenol; acidamides such as acetanilide, acetanisidide, acetotoluide, acrylamide, methacrylamide, acetamide, stearamide and benzamide; succinimide, phthalimide, maleimide, etc.
  • active methylene series such as dimethyl malonate, diethyl malonate, ethyl acetoacetate, methyl acetoacetate, acetylacetone
  • amine series such as diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine, butylphenylamine; imidazole series such as imidazole, 2-ethylimidazole; urea, thio Urea types such as urea, ethylene urea, ethylene thiourea, and diphenyl urea; Carbamate ester types such as phenyl N-phenylcarbamate; Imine types such as ethylene imine and propylene imine; Sulfite types such as sodium bisulfite and potassium bisulfite.
  • Examples include azole compounds.
  • Examples of the azole compounds include pyrazole, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-benzyl-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, 4-bromo-3, Pyrazole or pyrazole derivatives such as 5-dimethylpyrazole, 3-methyl-5-phenylpyrazole; imidazole or imidazole derivatives such as imidazole, benzimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole; 2-methylimidazoline and imidazoline derivatives such as 2-phenylimidazoline.
  • a solvent can be optionally added.
  • the polyisocyanate compounds (z2) can be used alone or in combination of two or more.
  • the equivalent ratio (NCO/OH) between the total mol of isocyanate groups of the polyisocyanate compound (z2) and the total mol of hydroxyl groups of the hydroxyl group-containing acrylic resin (z1) is determined by From the viewpoint of forming a multilayer coating film exhibiting excellent coating performance, it is preferably within the range of 0.70 to 1.50, more preferably within the range of 0.75 to 1.40, More preferably, it is within the range of 0.8 to 1.20.
  • the clear coating composition (Z) optionally contains a solvent such as water and an organic solvent, a resin other than the hydroxyl group-containing acrylic resin (z1), a curing agent other than the polyisocyanate compound (z2), a curing catalyst, and an antifoaming agent.
  • a solvent such as water and an organic solvent
  • a resin other than the hydroxyl group-containing acrylic resin (z1) a curing agent other than the polyisocyanate compound (z2)
  • a curing catalyst e.g., a curing catalyst
  • an antifoaming agent e.g., ultraviolet absorbers, rheology control agents, antisettling agents, and other paint additives may be appropriately blended.
  • color pigments can be used as appropriate within the range that does not impair the transparency of the coating film.
  • coloring pigment pigments known per se for use in inks or paints can be used alone or in combination of two or more.
  • the blending amount varies depending on the type of coloring pigment used, etc., but is usually 30% by mass or less, preferably 0.05 to 20% by mass, based on the total solid content of the resin component of the clear paint composition (Z). %, more preferably within the range of 0.1 to 10% by weight.
  • the clear coating composition (Z) can be applied by electrostatic coating, air spraying, airless spraying, etc., and the thickness of the clear coating film is preferably about 10 to 60 ⁇ m based on the cured coating film. The thickness is about 15 to 50 ⁇ m, more preferably about 20 to 40 ⁇ m.
  • the solid content of the clear coating composition (Z) is within the range of 10 to 65% by mass, preferably 15 to 55% by mass, and more preferably 20 to 50% by mass.
  • the viscosity of the clear paint composition (Z) is adjusted to a range suitable for painting, usually Ford Cup No. Using water and/or an organic solvent, adjust as appropriate so that the time is preferably within the range of about 15 to 60 seconds, particularly preferably about 20 to 50 seconds, at 20° C. using a viscometer.
  • Process (3) According to the method for forming a multilayer coating film of the present invention, next, the glitter coating film formed in the step (1) and the clear coating film formed in the step (2) are heated separately or simultaneously. to harden it.
  • the heating means can be, for example, hot air heating, infrared heating, high frequency heating, etc.
  • the heating temperature is preferably 80 to 160°C, more preferably 100 to 140°C.
  • the heating time is preferably 10 to 60 minutes, more preferably 15 to 40 minutes.
  • heating may be performed before performing the heat curing, directly or indirectly, for about 1 to 60 minutes, preferably at a temperature of about 50 to about 110 °C, more preferably about 60 to about 90 °C, by preheating, air blowing, etc. Heating may be performed.
  • the present invention also includes the following embodiments.
  • Item 1 The following steps (1) to (3): Step (1): a step of coating a glittering paint composition (Y) containing indium particles (y1) on the object to be coated to form a glittering coating film; Step (2): A clear coating composition (Z) containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied onto the glitter coating film obtained in step (1) to form a clear coating.
  • Step (3) of forming a film Curing the glitter coating formed in step (1) and the clear coating formed in step (2) by heating them separately or simultaneously.
  • a method for forming a multilayer coating film comprising the steps of: A method for forming a multilayer coating film, wherein the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 10 to 75 mgKOH/g.
  • Item 2. The method for forming a multilayer coating according to Item 1, wherein the glitter coating composition (Y) further contains a hydroxyl group-containing resin (y2).
  • Item 3. Item 3.
  • the method for forming a multilayer coating according to item 1 or 2 wherein the glitter coating composition (Y) further contains a melamine resin (y3).
  • the equivalent ratio (NCO/OH) of the total mol of isocyanate groups of the polyisocyanate compound (z2) to the total mol of hydroxyl groups of the hydroxyl group-containing acrylic resin (z1) is 0.7 to The method for forming a multilayer coating film according to any one of Items 1 to 3, which is within the range of 1.5.
  • Item 5 Any of Items 1 to 4, wherein the content of indium particles (y1) in the glitter paint composition (Y) is 50 parts by mass or more based on 100 parts by mass of solid content of the glitter paint composition (Y).
  • Item 10. 10 The method for forming a multilayer coating film according to item 9, wherein the surface conditioning agent contains a fluorine-based surface conditioning agent.
  • Item 11. Item 11. The multilayer coating according to Item 9 or 10, wherein the content of the surface conditioner is within the range of 0.01 to 0.2 parts by mass based on 100 parts by mass of the solid content of the glitter coating composition (Y). Film formation method.
  • a cationic electrodeposition paint "Electron GT-10" (trade name: Kansai Paint Co., Ltd., epoxy resin polyamine type) was applied to a degreased and zinc phosphate treated steel plate (JIS G3141, size 400 mm x 300 mm x 0.8 mm)
  • a cationic resin using a block polyisocyanate compound as a curing agent was electrodeposited to a film thickness of 20 ⁇ m based on the cured coating, heated at 170°C for 20 minutes to crosslink and cure, and then electrodeposited. A film was formed.
  • TP-65-2 (trade name, manufactured by Kansai Paint Co., Ltd., a polyester resin and amino resin-based organic solvent type intermediate coating composition) was applied to the electrodeposited surface of the obtained steel plate using a rotary atomization method. Using an electrostatic coating machine, electrostatic coating was applied so that the cured film thickness was 35 ⁇ m, and the coating was cured by heating at 140° C. for 30 minutes to form an intermediate coating film, thereby preparing a coated object.
  • a mixed solution consisting of 0.5 part of di-tert-amyl peroxide and 8 parts of "Swazol 1000" was added dropwise over 1 hour, and after the addition was completed, the solid content was maintained at 125°C for 1 hour.
  • a 60% hydroxyl group-containing acrylic resin solution (y2-1) was obtained.
  • the obtained hydroxyl group-containing acrylic resin (y2-1-1) had a hydroxyl value of 82 mgKOH/g, an acid value of 5 mgKOH/g, a weight average molecular weight of 28,000, and a glass transition temperature of 17°C.
  • Production examples 3 to 9 Glitter coating compositions (Y-2) to (Y-8) were obtained in the same manner as in Production Example 2 except that the formulation and solid content were as shown in Table 1.
  • Production example 10 of hydroxyl group-containing acrylic resin (z1) In a reaction vessel equipped with a thermometer, thermostat, stirring device, reflux condenser, nitrogen inlet tube, and dropping device, 27 parts of "Swazol 1000" (trade name, manufactured by Cosmo Oil Co., Ltd., aromatic organic solvent) and propylene glycol were added. 5 parts of monomethyl ether acetate were charged.
  • the charge solution was stirred at 150°C while blowing nitrogen gas into the reaction vessel, and 20 parts of styrene, 10.5 parts of n-butyl acrylate, 3.5 parts of 2-hydroxyethyl methacrylate, 50 parts of isobutyl methacrylate, and 2 -
  • a monomer mixture consisting of 15 parts of ethylhexyl acrylate, 1.0 part of acrylic acid, and 1.5 parts of ditertiary amyl peroxide (polymerization initiator) was added dropwise at a uniform rate over 4 hours. Thereafter, the mixture was aged at 150° C.
  • hydroxyl group-containing acrylic resin (z1-1) for 1 hour, cooled, and further diluted by adding 21 parts of isobutyl acetate to obtain a hydroxyl group-containing acrylic resin (z1-1) solution with a solid content concentration of 65% by mass.
  • the obtained hydroxyl group-containing acrylic resin (z1-1) had a hydroxyl value of 15 mgKOH/g, an acid value of 8 mgKOH/g, a weight average molecular weight of 30,000, and a glass transition temperature of 24°C.
  • Production examples 11 to 15 a solution of hydroxyl group-containing acrylic resins (z1-2) to (z1-6) with a solid content concentration of 65% by mass was prepared in the same manner as in Production Example 10, except that the composition was as shown in Table 2. Obtained. Table 2 also shows the acid value, hydroxyl value, weight average molecular weight, and glass transition temperature of each hydroxyl group-containing acrylic resin.
  • Production examples 17 to 23 Clear coating compositions (Z-2) to (Z-8) were obtained in the same manner as in Production Example 16 except for using the formulations shown in Table 3.
  • test board Creation of test board
  • Example 1 The bright paint composition (Y-1) produced in the above "2. Preparation of the paint” was applied onto the base material prepared in the above "1. Preparation of the base material” using a mini-bell type rotary electrostatic coating machine. , under the conditions of a booth temperature of 23°C and humidity of 63%, the cured coating was applied to a film thickness of 0.05 ⁇ m, left at room temperature for 15 minutes, and then heated at 140°C in a hot air circulation drying oven. The mixture was heated for 30 minutes to dry and cure to obtain a glitter coating film.
  • Example 1 A test plate was prepared.
  • Example 2-7, 9-13 and Comparative Examples 1-3 A test plate was obtained in the same manner as in Example 1 except that the coating material and film thickness were as shown in Table 4.
  • Example 8 The bright paint composition (Y-2) produced in "2. Preparation of paint” above was applied onto the base material prepared in "1. Preparation of base material” above using a mini-bell type rotary electrostatic coating machine. , under conditions of a booth temperature of 23°C and humidity of 63%, the cured coating was applied to a film thickness of 0.1 ⁇ m, left at room temperature for 15 minutes, and then heated to 80°C in a hot air circulation drying oven. Preheating was performed for 3 minutes to obtain an uncured glitter coating film.
  • the clear paint composition (Z-2) prepared in "2. Preparation of Paint” above was applied onto the uncured glitter coating film using a mini-bell rotary electrostatic coating machine at a booth temperature of 23. °C and 68% humidity to give a cured coating film of 35 ⁇ m. After leaving it at room temperature for 7 minutes, it was heated at 140°C for 30 minutes in a hot air circulation drying oven to form a bright coating film.
  • a test plate of Example 8 was prepared by drying and curing the clear coating film and the clear coating film at the same time.
  • Coating film evaluation The coating film of each test plate obtained as described above was evaluated by the following method, and the results are shown in Table 4.
  • test board was immersed in warm water at 40°C for 240 hours, pulled out, wiped with a cloth to remove water droplets and dirt, and within 10 minutes at a room temperature of 23°C, cut the multilayer coating on the test board to reach the substrate. Make 100 goblets of 2mm x 2mm in size by cutting in a grid pattern. Subsequently, an adhesive cellophane tape was attached to the surface, and after the tape was rapidly peeled off, the remaining state of the rough coating film was examined, and the water-resistant adhesion was evaluated according to the following criteria. A and B pass. A: 100 scratched coatings remain, and there are no small edge chips of the coating at the edges of the cutter's incisions.
  • B 100 coating films remain, but small edges of the coating film are chipped at the edges of the cuts of the cutter, and there are less than 10 remaining coating films with chipped edges.
  • C 100 coating films remain, but small edges of the coating film are chipped at the edges of the cuts of the cutter, and there are 10 or more remaining coating films with chipped edges.
  • D 90 to 99 rough coating films remain.
  • E The number of remaining rough coating films is 89 or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

A method for forming a multilayered coating film which comprises the following steps (1) to (3): step (1) in which a glitter coating composition (Y) containing indium particles (y1) is applied to an object to be coated, thereby forming a glitter coating film; step (2) in which a clear coating composition (Z) comprising a hydroxylated acrylic resin (z1) and a polyisocyanate compound (z2) is applied to the glitter coating film obtained in the step (1), thereby forming a clear coating film; and step (3) in which the glitter coating film formed in the step (1) and the clear coating film formed in the step (2) are heated separately or simultaneously to cure the coating films. The hydroxylated acrylic resin (z1) has a hydroxyl value in the range of 10-75 mgKOH/g.

Description

複層塗膜形成方法Multi-layer coating formation method
 本発明は複層塗膜形成方法に関するものである。 The present invention relates to a method for forming a multilayer coating film.
 塗料を塗装する目的は、主に素材の保護及び美観の付与である。工業製品においては、その商品力を高める点から、美観、なかでも特に「質感」が重要である。消費者が求める工業製品の質感は多様なものであるが、近年、自動車外板、自動車部品、家電製品などの分野において、金属のような光沢感が求められている(以下、「金属調光沢」と表記する)。 The purpose of applying paint is mainly to protect the material and add beauty. For industrial products, aesthetic appearance, especially ``texture,'' is important in order to enhance their product appeal. Consumers want a variety of textures in industrial products, but in recent years, there has been a demand for metal-like luster in fields such as automobile exterior panels, automobile parts, and home appliances (hereinafter referred to as "metallic luster"). ”).
 金属調光沢とは、鏡面のように表面に粒子感がなく、さらに、塗板に対して垂直に近い状態で見たとき(ハイライト)は光り輝き、塗板に対して斜め上から見たとき(シェード)は暗くみえる、すなわちハイライト領域とシェード領域との輝度差が大きいことを特徴とする質感である。 Metallic luster is a mirror-like surface with no graininess, and when viewed perpendicularly to the painted plate (highlight), it shines, and when viewed from diagonally above the painted plate (shade). ) is a texture characterized by a dark appearance, that is, a large difference in brightness between the highlight area and the shade area.
 かかる金属調光沢を工業製品の表面に付与する技術には、金属めっき処理及び金属蒸着処理など(例えば、特許文献1参照)があるが、塗装によって金属調光沢が付与できれば、簡便さ及びコストなどの観点から有利である。 Techniques for imparting such metallic luster to the surface of industrial products include metal plating treatment and metal vapor deposition treatment (for example, see Patent Document 1), but if metallic luster can be imparted by painting, it will be easier and cheaper. This is advantageous from the point of view.
 特許文献2には、光輝材、樹脂を含む不揮発固形分、及び溶剤を含有するメタリック塗料基剤を、高沸点溶剤と低沸点溶剤から成る希釈剤を用いて希釈率150~500%の割合で希釈し、上記メタリック塗料基剤中の樹脂分100重量部に対して5~10重量部の粘性樹脂を添加して成ることを特徴とするメタリック塗料によれば、良好な金属的外観を実現できることが記載されている。 Patent Document 2 discloses that a metallic paint base containing a glittering material, a non-volatile solid content including a resin, and a solvent is diluted at a dilution rate of 150 to 500% using a diluent consisting of a high boiling point solvent and a low boiling point solvent. According to a metallic paint characterized by diluting and adding 5 to 10 parts by weight of a viscous resin to 100 parts by weight of the resin in the metallic paint base, a good metallic appearance can be achieved. is listed.
 しかしながら、上記メタリック塗料により形成される外観は、金属調光沢が不十分であった。 However, the appearance formed by the above metallic paint had insufficient metallic luster.
 また、塗装には、美観の付与とともに素材の保護も求められており、高い付着性等の優れた塗膜性能が必要となる。 In addition, coatings are required to not only give an aesthetic appearance but also protect the material, which requires excellent coating performance such as high adhesion.
日本国特開昭63-272544号公報Japanese Patent Publication No. 63-272544 日本国特開2003-313500号公報Japanese Patent Application Publication No. 2003-313500
 本発明は、優れた金属調光沢を有し、かつ、高い塗膜性能を発揮できる複層塗膜を形成することができる複層塗膜形成方法を提供することを課題とする。 An object of the present invention is to provide a method for forming a multilayer coating film that can form a multilayer coating film that has excellent metallic luster and can exhibit high coating performance.
 本発明は以下の項に記載の主題を包含する。 The present invention includes the subject matter described in the following sections.
 項1.下記の工程(1)~(3):
 工程(1):被塗物上に、インジウム粒子(y1)を含有する光輝性塗料組成物(Y)を塗装して、光輝性塗膜を形成する工程、
 工程(2):工程(1)で得られる光輝性塗膜上に、水酸基含有アクリル樹脂(z1)及びポリイソシアネート化合物(z2)を含有するクリヤ塗料組成物(Z)を塗装して、クリヤ塗膜を形成する工程、及び
 工程(3):前記工程(1)で形成される光輝性塗膜及び前記工程(2)で形成されるクリヤ塗膜を別々に又は同時に加熱することによって、硬化させる工程、を含む複層塗膜形成方法であって、
 前記水酸基含有アクリル樹脂(z1)の水酸基価が10~75mgKOH/gの範囲内である、複層塗膜形成方法。
Item 1. The following steps (1) to (3):
Step (1): a step of coating a glittering paint composition (Y) containing indium particles (y1) on the object to be coated to form a glittering coating film;
Step (2): A clear coating composition (Z) containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied onto the glitter coating film obtained in step (1) to form a clear coating. Step (3) of forming a film: Curing the glitter coating formed in step (1) and the clear coating formed in step (2) by heating them separately or simultaneously. A method for forming a multilayer coating film, comprising the steps of:
A method for forming a multilayer coating film, wherein the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 10 to 75 mgKOH/g.
 項2.光輝性塗料組成物(Y)が、さらに水酸基含有樹脂(y2)を含有する、項1に記載の複層塗膜形成方法。 Section 2. Item 2. The method for forming a multilayer coating according to Item 1, wherein the glitter coating composition (Y) further contains a hydroxyl group-containing resin (y2).
 項3.光輝性塗料組成物(Y)が、さらにメラミン樹脂(y3)を含有する、項1又は2に記載の複層塗膜形成方法。 Section 3. Item 3. The method for forming a multilayer coating according to Item 1 or 2, wherein the glitter coating composition (Y) further contains a melamine resin (y3).
 項4.クリヤ塗料組成物(Z)において、ポリイソシアネート化合物(z2)のイソシアネート基の合計molと、水酸基含有アクリル樹脂(z1)の水酸基の合計molとの当量比(NCO/OH)が、0.7~1.5の範囲内である項1~3のいずれか1項に記載の複層塗膜形成方法。 Section 4. In the clear coating composition (Z), the equivalent ratio (NCO/OH) of the total mol of isocyanate groups of the polyisocyanate compound (z2) to the total mol of hydroxyl groups of the hydroxyl group-containing acrylic resin (z1) is 0.7 to The method for forming a multilayer coating film according to any one of Items 1 to 3, which is within the range of 1.5.
 本発明の複層塗膜形成方法によれば、優れた金属調光沢を有し、かつ、付着性等の優れた塗膜性能を示す複層塗膜を形成することができる。 According to the method for forming a multilayer coating film of the present invention, it is possible to form a multilayer coating film that has excellent metallic luster and exhibits excellent coating performance such as adhesion.
 本発明の複層塗膜形成方法は、下記の工程(1)~(3):
 工程(1):被塗物上に、インジウム粒子(y1)を含有する光輝性塗料組成物(Y)を塗装して、光輝性塗膜を形成する工程、
 工程(2):工程(1)で得られる光輝性塗膜上に、水酸基含有アクリル樹脂(z1)及びポリイソシアネート化合物(z2)を含有するクリヤ塗料組成物(Z)を塗装して、クリヤ塗膜を形成する工程、及び
 工程(3):前記工程(1)で形成される光輝性塗膜及び前記工程(2)で形成されるクリヤ塗膜を別々に又は同時に加熱することによって、硬化させる工程、を含む複層塗膜形成方法であって、
 前記水酸基含有アクリル樹脂(z1)の水酸基価が10~75mgKOH/gの範囲内である、複層塗膜形成方法である。
The multilayer coating film forming method of the present invention includes the following steps (1) to (3):
Step (1): a step of coating a glittering paint composition (Y) containing indium particles (y1) on the object to be coated to form a glittering coating film;
Step (2): A clear coating composition (Z) containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied onto the glitter coating film obtained in step (1) to form a clear coating. Step (3) of forming a film: Curing the glitter coating formed in step (1) and the clear coating formed in step (2) by heating them separately or simultaneously. A method for forming a multilayer coating film, comprising the steps of:
In this method, the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 10 to 75 mgKOH/g.
 工程(1)
 本発明の複層塗膜形成方法によれば、まず、被塗物上に、インジウム粒子(y1)を含有する光輝性塗料組成物(Y)が塗装され、光輝性塗膜が形成される。
Process (1)
According to the method for forming a multilayer coating film of the present invention, first, a glitter coating composition (Y) containing indium particles (y1) is applied onto an object to be coated to form a glitter coating film.
 被塗物
 光輝性塗料組成物(Y)を適用する被塗物は、特に限定されない。該被塗物としては、例えば、乗用車、トラック、オートバイ、バス等の自動車車体の外板部;バンパー等の自動車部品;携帯電話、オーディオ機器等の家庭電気製品の外板部等を挙げることができる。これらのうち、自動車車体の外板部及び自動車部品が好ましい。
Object to be coated The object to be coated with the glitter coating composition (Y) is not particularly limited. Examples of the object to be coated include the outer panels of automobile bodies such as passenger cars, trucks, motorcycles, and buses; automobile parts such as bumpers; and the outer panels of household electrical appliances such as mobile phones and audio equipment. can. Among these, outer panels of automobile bodies and automobile parts are preferred.
 これらの被塗物の材質としては、特に限定されるものではない。例えば、鉄、アルミニウム、真鍮、銅、ブリキ、ステンレス鋼、亜鉛メッキ鋼、亜鉛合金(Zn-Al、Zn-Ni、Zn-Feなど)メッキ鋼などの金属材料;ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂などの樹脂類、各種のFRPなどのプラスチック材料;ガラス、セメント、コンクリートなどの無機材料;木材;紙、布などの繊維材料などを挙げることができる。これらの内、金属材料及びプラスチック材料が好ましい。 The materials of these objects to be coated are not particularly limited. For example, metal materials such as iron, aluminum, brass, copper, tinplate, stainless steel, galvanized steel, zinc alloy (Zn-Al, Zn-Ni, Zn-Fe, etc.) plated steel; polyethylene resin, polypropylene resin, acrylonitrile- Resins such as butadiene-styrene (ABS) resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, and epoxy resin; plastic materials such as various FRP; inorganic materials such as glass, cement, and concrete; wood ; Examples include fibrous materials such as paper and cloth. Among these, metal materials and plastic materials are preferred.
 複層塗膜が適用される被塗物面としては、自動車車体外板部、自動車部品、家庭電気製品、これらを構成する鋼板などの金属基材などの金属表面に、リン酸塩処理、クロメート処理、複合酸化物処理などの表面処理が施されたものであってもよい。 Surfaces to which multi-layer coatings are applied include phosphate treatment, chromate treatment, The material may be subjected to surface treatment such as surface treatment or complex oxide treatment.
 表面処理が施されていても施されていなくてもよい対象物の上には、さらに塗膜を形成してもよい。例えば、基材である被塗物に任意選択で表面処理を施し、その上に下塗り塗膜及び/または中塗り塗膜を形成してもよい。該下塗り塗膜及び/または中塗り塗膜は、例えば被塗物が自動車車体である場合には、自動車車体の塗装において通常使用されるそれ自体既知の下塗り用及び/または中塗り用の塗料組成物を使用して形成することができる。 A coating film may be further formed on the object, which may or may not be surface-treated. For example, the base material to be coated may be optionally subjected to surface treatment, and an undercoat film and/or intermediate coat film may be formed thereon. The undercoat film and/or intermediate coat film is, for example, when the object to be coated is an automobile body, a coating composition for undercoat and/or intermediate coat known per se that is commonly used in the painting of automobile bodies. It can be formed using objects.
 上記下塗り塗膜を形成するための下塗り塗料組成物としては、例えば、電着塗料、好ましくはカチオン電着塗料を使用することができる。上記中塗り塗膜を形成するための中塗り塗料組成物としては、カルボキシル基、水酸基などの架橋性官能基を有するアクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、エポキシ樹脂などの基体樹脂と、メラミン樹脂、尿素樹脂などのアミノ樹脂、ブロックされていてもよいポリイソシアネート化合物などの架橋剤とを、顔料、増粘剤、及び任意選択のその他の成分と共に塗料化したものを使用することができる。 As the undercoat paint composition for forming the above-mentioned undercoat film, for example, an electrodeposition paint, preferably a cationic electrodeposition paint can be used. The intermediate coating composition for forming the intermediate coating film includes a base resin such as an acrylic resin, a polyester resin, an alkyd resin, a urethane resin, and an epoxy resin having a crosslinkable functional group such as a carboxyl group or a hydroxyl group; A coating made of an amino resin such as a melamine resin or a urea resin, or a crosslinking agent such as an optionally blocked polyisocyanate compound together with a pigment, a thickener, and other optional components can be used. .
 光輝性塗料組成物(Y)
 光輝性塗料組成物(Y)は、インジウム粒子(y1)を含有する光輝性塗料組成物である。
Glitter paint composition (Y)
The glitter paint composition (Y) is a glitter paint composition containing indium particles (y1).
 光輝性塗料組成物(Y)は、インジウム粒子(y1)を含有し、さらに表面調整剤、並びに、水及び/又は有機溶剤を含有する塗料組成物であることが好ましい。 The glitter coating composition (Y) preferably contains indium particles (y1), and further contains a surface conditioner, and water and/or an organic solvent.
 インジウム粒子(y1)
 インジウム粒子(y1)は、薄片状粒子である。前記薄片状粒子は、鱗片状粒子、平板状粒子、フレーク状粒子などと称されることもある。
Indium particles (y1)
The indium particles (y1) are flaky particles. The flaky particles may also be referred to as scale particles, tabular particles, flake particles, or the like.
 本発明において、薄片状粒子とは、略平坦な面を有し、かつ該略平坦な面に対して垂直方向の厚さが略均一である粒子を意味する。前記薄片状粒子とは、前記厚さが非常に薄く、略平坦な面の長さが非常に長い形状の粒子を意味する。なお、略平坦な面の長さは、前記薄片状粒子の投影面積と同じ投影面積を持つ円の直径である。 In the present invention, a flaky particle means a particle having a substantially flat surface and having a substantially uniform thickness in the direction perpendicular to the substantially flat surface. The term "flake-like particles" refers to particles having a very thin thickness and a substantially flat surface having a very long length. Note that the length of the substantially flat surface is the diameter of a circle having the same projected area as the flaky particle.
 略平坦な面の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、略長方形、略正方形、略円形、略楕円形、略三角形、略四角形、略五角形、略六角形、略七角形、略八角形等の多角形、ランダムな不定形などが挙げられる。これらの中でも、略円形であることが好ましい。 The shape of the substantially flat surface is not particularly limited and can be selected as appropriate depending on the purpose, for example, substantially rectangular, substantially square, substantially circular, substantially oval, substantially triangular, substantially quadrilateral, substantially pentagonal, and substantially Examples include polygons such as hexagons, approximately heptagons, and approximately octagons, and random irregular shapes. Among these, a substantially circular shape is preferable.
 インジウム粒子(y1)は、1層であってもよいし、2層以上が積層して一次粒子となっていてもよい。また、インジウム粒子(y1)の一次粒子が凝集し、二次粒子を形成していてもよい。 The indium particles (y1) may have a single layer, or two or more layers may be laminated to form a primary particle. Moreover, the primary particles of the indium particles (y1) may aggregate to form secondary particles.
 なお、インジウム粒子(y1)は純度95%以上のインジウムからなり、微量の不純物を含んでいてもよいが、他の金属との合金については含まない。 Note that the indium particles (y1) are made of indium with a purity of 95% or more, and may contain trace amounts of impurities, but do not contain alloys with other metals.
 上記インジウム粒子(y1)は、剥離層形成工程と、真空蒸着工程と、剥離工程と、更に必要に応じてその他の工程を行うことにより、製造することができる。 The above indium particles (y1) can be manufactured by performing a peeling layer forming step, a vacuum evaporation step, a peeling step, and further other steps as necessary.
 <剥離層形成工程>
 剥離層形成工程は、基材上に剥離層を設ける工程である。
<Peeling layer formation process>
The release layer forming step is a step of providing a release layer on the base material.
 上記基材としては、平滑な表面を有するものであれば特に制限はなく、各種のものを用いることができる。これらの中でも、可撓性、耐熱性、耐溶剤性、及び寸法安定性を有する樹脂フィルム、金属箔、金属箔と樹脂フィルムの複合フィルムを適宜使用できる。樹脂フィルムとしては、例えば、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリスチレンフィルム、ポリイミドフィルムなどが挙げられる。金属箔としては、銅箔、アルミニウム箔、ニッケル箔、鉄箔、合金箔などが挙げられる。金属箔と樹脂フィルムの複合フィルムとしては、上記樹脂フィルムと金属箔をラミネートしたものが挙げられる。 The above-mentioned base material is not particularly limited as long as it has a smooth surface, and various materials can be used. Among these, resin films, metal foils, and composite films of metal foils and resin films having flexibility, heat resistance, solvent resistance, and dimensional stability can be used as appropriate. Examples of the resin film include polyester film, polyethylene film, polypropylene film, polystyrene film, and polyimide film. Examples of the metal foil include copper foil, aluminum foil, nickel foil, iron foil, and alloy foil. Examples of composite films of metal foil and resin film include those obtained by laminating the above resin film and metal foil.
 前記剥離層としては、後の剥離工程で溶解可能な各種の有機物を用いることができる。剥離層を構成する有機物材料を適切に選択すれば、島状構造膜の付着面に付着・残留した有機物を、インジウム粒子(y1)の保護層として機能させることができるので、好適である。 As the peeling layer, various organic substances that can be dissolved in the subsequent peeling process can be used. It is preferable to appropriately select the organic material constituting the release layer, since the organic material attached and remaining on the adhesion surface of the island-like structure film can function as a protective layer for the indium particles (y1).
 保護層とは、インジウム粒子(y1)の凝集、酸化、溶媒への溶出等を抑制する機能を有する。特に、剥離層に用いた有機物を保護層として利用することにより、表面処理工程を別途設ける必要がなくなるので好ましい。 The protective layer has a function of suppressing agglomeration, oxidation, elution into a solvent, etc. of the indium particles (y1). In particular, it is preferable to use the organic substance used in the release layer as a protective layer, since it eliminates the need for a separate surface treatment step.
 保護層として利用可能な剥離層を構成する有機物としては、例えば、セルロースアセテートブチレート(CAB)、その他のセルロース誘導体、ポリビニルアルコール、ポリビニルブチラール、ポリエチレングリコール、ポリアクリル酸、ポリアクリルアミド、アクリル酸共重合体、変性ナイロン樹脂、ポリビニルピロリドン、ウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、アルキッド樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、保護層としての機能の高さから、セルロースアセテートブチレート(CAB)が好ましい。 Examples of organic substances constituting the release layer that can be used as a protective layer include cellulose acetate butyrate (CAB), other cellulose derivatives, polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyacrylic acid, polyacrylamide, and acrylic acid copolymers. Examples include polymerized nylon resins, modified nylon resins, polyvinylpyrrolidone, urethane resins, polyester resins, polyether resins, and alkyd resins. These may be used alone or in combination of two or more. Among these, cellulose acetate butyrate (CAB) is preferred because of its high functionality as a protective layer.
 前記剥離層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、インクジェット法、ブレードコート法、グラビアコート法、グラビアオフセットコート法、バーコート法、ロールコート法、ナイフコート法、エアナイフコート法、コンマコート法、Uコンマコート法、AKKUコート法、スムージングコート法、マイクログラビアコート法、リバースロールコート法、4本ロールコート法、5本ロールコート法、ディップコート法、カーテンコート法、スライドコート法、ダイコート法などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The method for forming the release layer is not particularly limited and can be appropriately selected depending on the purpose, for example, an inkjet method, a blade coating method, a gravure coating method, a gravure offset coating method, a bar coating method, a roll coating method. , knife coating method, air knife coating method, comma coating method, U comma coating method, AKKU coating method, smoothing coating method, micro gravure coating method, reverse roll coating method, 4 roll coating method, 5 roll coating method, dip coating method, curtain coating method, slide coating method, die coating method, etc. These may be used alone or in combination of two or more.
 <真空蒸着工程>
 真空蒸着工程は、前記剥離層上にインジウム粒子(y1)を含有する金属層を真空蒸着する工程である。
<Vacuum deposition process>
The vacuum deposition step is a step of vacuum depositing a metal layer containing indium particles (y1) on the release layer.
 インジウム粒子(y1)を含有する金属層の平均蒸着厚さは、60nm以下であることが好ましく、55nm以下がより好ましく、50nm以下がさらに好ましく、45nm以下が特に好ましい。なお、インジウム粒子(y1)を含有する金属層の平均蒸着厚さは、インジウム粒子(y1)の平均厚さと同じである。 The average deposition thickness of the metal layer containing indium particles (y1) is preferably 60 nm or less, more preferably 55 nm or less, even more preferably 50 nm or less, and particularly preferably 45 nm or less. Note that the average deposition thickness of the metal layer containing the indium particles (y1) is the same as the average thickness of the indium particles (y1).
 前記金属層の平均蒸着厚さが60nm以下であると、塗膜の表面粗度Raが下がり、優れた金属調光沢を発現できるという利点がある。平均蒸着厚さは、例えば、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて、金属層の断面観察を行い、5~10箇所の金属層の厚さ計測し、その平均値である。 When the average deposition thickness of the metal layer is 60 nm or less, there is an advantage that the surface roughness Ra of the coating film is reduced and excellent metallic gloss can be expressed. The average deposition thickness is the average value obtained by observing a cross section of the metal layer using, for example, a scanning electron microscope (SEM) and measuring the thickness of the metal layer at 5 to 10 locations.
 金属層は島状構造膜であることが好ましい。島状構造膜としては、例えば、真空蒸着法、スパッタリング法、めっき法などの各種の方法によって形成することができる。これらの中でも、真空蒸着法が好ましい。 It is preferable that the metal layer is an island-like structured film. The island structure film can be formed by various methods such as vacuum evaporation, sputtering, and plating. Among these, the vacuum evaporation method is preferred.
 真空蒸着法は、樹脂製基材にも成膜可能である点、廃液が出ない点等においてめっき法より好ましく、真空度を高くできる点、成膜速度(蒸着レート)が大きい点等においてスパッタリング法より好ましい。 The vacuum evaporation method is preferable to the plating method in that it can form a film even on resin substrates and does not produce waste liquid, and is preferable to the plating method in that it can achieve a higher degree of vacuum and has a faster film formation rate (evaporation rate). preferable to law.
 真空蒸着法における蒸着レートは、10nm/sec以上が好ましく、10nm/sec以上80nm/sec以下がより好ましい。 The vapor deposition rate in the vacuum evaporation method is preferably 10 nm/sec or more, more preferably 10 nm/sec or more and 80 nm/sec or less.
 <剥離工程>
 剥離工程は、前記剥離層を溶解することにより前記金属層を基材から剥離する工程である。前記剥離層を溶解可能な溶剤としては、剥離層を溶解可能な溶剤であれば特に制限はなく、目的に応じて適宜選択することができるが、光輝性塗料組成物(Y)の溶媒としてそのまま用いることができるものが好ましい。
<Peeling process>
The peeling process is a process of peeling the metal layer from the base material by dissolving the peeling layer. The solvent that can dissolve the release layer is not particularly limited as long as it is a solvent that can dissolve the release layer, and can be appropriately selected depending on the purpose, but it may be used as it is as a solvent for the glitter coating composition (Y). Those that can be used are preferred.
 上記剥離層を溶解可能な溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、オクタノール、ドデカノール、エチレングリコール、プロピレングリコール等のアルコール系溶剤;テトラヒドロン等のエーテル系溶剤;アセトン、メチルエチルケトン、アセチルアセトン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸フェニル等のエステル系溶剤;エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチエレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート等のグリコールエーテル系溶剤;フェノール、クレゾール等のフェノール系溶剤;ペンタン、ヘキサン、ヘプタン、オクタン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、オクタデセン、ベンゼン、トルエン、キシレン、トリメシン、ニトロベンゼン、アニリン、メトキシベンゼン、トリメシン等の脂肪族もしくは芳香族炭化水素系溶剤;ジクロロメタン、クロロホルム、トリクロロエタン、クロロベンゼン、ジクロロベンゼン等の脂肪族もしくは芳香族塩化炭化水素系溶剤;ジメチルスルホキシド等の含硫黄化合物系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、プロピオニトリル、ベンゾニトリル等の含窒素化合物系溶剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of solvents that can dissolve the release layer include alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol; ether solvents such as tetrahydrone; acetone, methyl ethyl ketone, Ketone solvents such as acetylacetone; ester solvents such as methyl acetate, ethyl acetate, butyl acetate, phenyl acetate; ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monomethyl ether, triethylene Glycol ether solvents such as glycol monoethyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate; phenol, cresol, etc. Phenolic solvents; aliphatic or aromatic such as pentane, hexane, heptane, octane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, octadecene, benzene, toluene, xylene, trimesine, nitrobenzene, aniline, methoxybenzene, trimesine, etc. Hydrocarbon solvents; aliphatic or aromatic chlorinated hydrocarbon solvents such as dichloromethane, chloroform, trichloroethane, chlorobenzene, dichlorobenzene; sulfur-containing compound solvents such as dimethyl sulfoxide; dimethylformamide, dimethylacetamide, acetonitrile, propionitrile, Examples include nitrogen-containing compound solvents such as benzonitrile. These may be used alone or in combination of two or more.
 剥離層を溶解することによって、基材から島状構造膜が剥離し、島状構造が分裂して個々の島がインジウム粒子(y1)となる。これにより、特に粉砕工程を経ることなくインジウム粒子(y1)分散液が得られるが、必要に応じてインジウム粒子(y1)の一次粒子を粉砕、分級を行ってもよい。また、インジウム粒子(y1)の一次粒子が凝集している場合には、必要に応じてこれを解砕してもよい。 By dissolving the release layer, the island-like structure film is separated from the base material, the island-like structure is split, and the individual islands become indium particles (y1). As a result, an indium particle (y1) dispersion can be obtained without any particular pulverization step, but the primary particles of indium particles (y1) may be pulverized and classified as necessary. Moreover, when the primary particles of the indium particles (y1) are aggregated, they may be crushed as necessary.
 更に必要に応じて、インジウム粒子(y1)の回収や物性の調整のために種々の処理を行ってもよい。例えば、分級によってインジウム粒子(y1)の粒度を調整してもよいし、遠心分離、吸引ろ過などの方法でインジウム粒子(y1)を回収することや、分散液の固形分濃度を調整してもよい。また、溶媒置換を行ってもよいし、添加剤を用いて粘度調整等を行ってもよい。 Further, as necessary, various treatments may be performed to recover the indium particles (y1) and adjust the physical properties. For example, the particle size of the indium particles (y1) may be adjusted by classification, the indium particles (y1) may be recovered by methods such as centrifugation or suction filtration, or the solid content concentration of the dispersion may be adjusted. good. Further, solvent substitution may be performed, and viscosity adjustment may be performed using additives.
 <その他の工程>
 その他の工程としては、例えば、剥離した金属層を分散液として取り出す工程、分散液から島状の金属層をインジウム粒子(y1)として回収する工程などが挙げられる。
<Other processes>
Other steps include, for example, a step of taking out the peeled metal layer as a dispersion liquid, a step of recovering the island-shaped metal layer from the dispersion liquid as indium particles (y1), and the like.
 上記剥離層形成工程と、真空蒸着工程と、剥離工程と、更に必要に応じてその他の工程を行うことにより得られるインジウム粒子(y1)の累積50%体積粒子径D50は、優れた金属調光沢を有する複層塗膜を形成する観点から、0.70μm以下であることが好ましく、0.60μm以下であることがより好ましく、0.50μm以下であることがさらに好ましく、0.40μm以下であることが特に好ましい。 The cumulative 50% volume particle diameter D50 of the indium particles (y1) obtained by performing the above-mentioned release layer forming step, vacuum evaporation step, peeling step, and other steps as necessary has an excellent metallic luster. From the viewpoint of forming a multilayer coating film having It is particularly preferable.
 上記インジウム粒子(y1)としては、市販品を使用することができる。該市販品としては例えば、「リーフパウダー 49CJ-1120」、「リーフパウダー 49CJ-1150」、「リーフパウダー 49BJ-1120」、「リーフパウダー 49BJ-1150」(以上、尾池工業株式会社製)などが挙げられる。 As the indium particles (y1), commercially available products can be used. Examples of such commercial products include "Leaf Powder 49CJ-1120", "Leaf Powder 49CJ-1150", "Leaf Powder 49BJ-1120", and "Leaf Powder 49BJ-1150" (all manufactured by Oike Kogyo Co., Ltd.). Can be mentioned.
 本発明の光輝性塗料組成物(Y)におけるインジウム粒子(y1)の含有量は、金属調光沢に優れた塗膜を得る観点から、光輝性塗料組成物(Y)の固形分100質量部を基準として、50質量部以上であることが好ましく、70質量部以上であることがより好ましく、80~99.9質量部の範囲内であることがさらに好ましく、90~99.9質量部の範囲内であることが特に好ましい。 The content of indium particles (y1) in the glitter coating composition (Y) of the present invention is determined by adjusting the solid content of 100 parts by mass of the glitter coating composition (Y) from the viewpoint of obtaining a coating film with excellent metallic gloss. As a standard, it is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, even more preferably in the range of 80 to 99.9 parts by mass, and even more preferably in the range of 90 to 99.9 parts by mass. Particularly preferably within
 前記表面調整剤としては、例えばシリコーン系表面調整剤、アクリル系表面調整剤、ビニル系表面調整剤、フッ素系表面調整剤、アセチレンジオール系表面調整剤などの表面調整剤が挙げられ、中でも、金属調光沢に優れた塗膜を得る観点から、フッ素系表面調整剤を含むことが好ましい。上記表面調整剤はそれぞれ単独で又は2種以上を適宜組み合わせて使用することができる。 Examples of the surface conditioning agents include surface conditioning agents such as silicone surface conditioning agents, acrylic surface conditioning agents, vinyl surface conditioning agents, fluorine surface conditioning agents, and acetylene diol surface conditioning agents. From the viewpoint of obtaining a coating film with excellent gloss control, it is preferable to include a fluorine-based surface conditioner. The above-mentioned surface conditioners can be used alone or in an appropriate combination of two or more.
 上記フッ素系表面調整剤としては、例えば、パーフルオロアルキル基とポリアルキレンオキサイド基とを有するフッ素系ポリマーおよびフッ素系オリゴマー、パーフルオロアルキルエーテル基とポリアルキレンオキサイド基とを有するフッ素系ポリマーおよびフッ素系オリゴマーを挙げることができる。 Examples of the fluorine-based surface conditioner include fluorine-based polymers and fluorine-based oligomers having perfluoroalkyl groups and polyalkylene oxide groups, fluorine-based polymers and fluorine-based oligomers having perfluoroalkyl ether groups and polyalkylene oxide groups Oligomers can be mentioned.
 上記フッ素系表面調整剤の市販品としては、例えば、「LE-604」、「LE-605」(以上、共栄社化学株式会社製)、「F-444」、「F-554」(以上、DIC株式会社製)等を挙げることができる。 Commercially available products of the above-mentioned fluorine-based surface conditioners include "LE-604", "LE-605" (all manufactured by Kyoeisha Chemical Co., Ltd.), "F-444", and "F-554" (all manufactured by DIC Co., Ltd.), etc.
 本発明の光輝性塗料組成物(Y)が、表面調整剤を含有する場合、その含有量は、金属調光沢に優れた塗膜を得る観点から、光輝性塗料組成物(Y)の固形分100質量部を基準として、0.01~2.0質量部であることが好ましく、0.05~1.5質量部であることがより好ましく、0.1~1.0質量部であることがさらに好ましい。 When the glitter coating composition (Y) of the present invention contains a surface conditioner, the content is determined by the solid content of the glitter coating composition (Y) from the viewpoint of obtaining a coating film with excellent metallic gloss. Based on 100 parts by mass, it is preferably 0.01 to 2.0 parts by mass, more preferably 0.05 to 1.5 parts by mass, and 0.1 to 1.0 parts by mass. is even more preferable.
 前記有機溶剤としては、通常塗料に用いられているものを使用することができる。具体的には、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、オクタノール、ドデカノール、エチレングリコール、プロピレングリコール等のアルコール系溶剤;テトラヒドロン等のエーテル系溶剤;アセトン、メチルエチルケトン、アセチルアセトン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸フェニル等のエステル系溶剤;エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチエレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート等のグリコールエーテル系溶剤;フェノール、クレゾール等のフェノール系溶剤;ペンタン、ヘキサン、ヘプタン、オクタン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、オクタデセン、ベンゼン、トルエン、キシレン、トリメシン、ニトロベンゼン、アニリン、メトキシベンゼン、トリメシン等の脂肪族もしくは芳香族炭化水素系溶剤;ジクロロメタン、クロロホルム、トリクロロエタン、クロロベンゼン、ジクロロベンゼン等の脂肪族もしくは芳香族塩化炭化水素系溶剤;ジメチルスルホキシド等の含硫黄化合物系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル、プロピオニトリル、ベンゾニトリル等の含窒素化合物系溶剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 As the organic solvent, those commonly used in paints can be used. Specifically, for example, alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol; ether solvents such as tetrahydrone; ketone solvents such as acetone, methyl ethyl ketone, and acetylacetone. Ester solvents such as methyl acetate, ethyl acetate, butyl acetate, phenyl acetate; Ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol Monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, Glycol ether solvents such as ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate; Phenol solvents such as phenol and cresol; Pentane , hexane, heptane, octane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, octadecane, octadecene, benzene, toluene, xylene, trimesine, nitrobenzene, aniline, methoxybenzene, aliphatic or aromatic hydrocarbon solvents such as trimesine; dichloromethane , aliphatic or aromatic chlorinated hydrocarbon solvents such as chloroform, trichloroethane, chlorobenzene, and dichlorobenzene; sulfur-containing compound solvents such as dimethyl sulfoxide; nitrogen-containing solvents such as dimethylformamide, dimethylacetamide, acetonitrile, propionitrile, and benzonitrile. Examples include compound solvents. These may be used alone or in combination of two or more.
 上記有機溶剤としては、金属調光沢に優れた塗膜を得る観点から、グリコールエーテル系有機溶剤及びアルコール系有機溶剤から選ばれる少なくとも1種の溶剤を含むことが好ましく、グリコールエーテル系有機溶剤を含むことがさらに好ましい。 The organic solvent preferably contains at least one solvent selected from glycol ether-based organic solvents and alcohol-based organic solvents, from the viewpoint of obtaining a coating film with excellent metallic gloss. It is even more preferable.
 本発明の光輝性塗料組成物(Y)が有機溶剤を含有する場合、その含有量は、金属調光沢に優れた塗膜を得る観点から、前記光輝性塗料組成物(Y)の全成分合計100質量部に対して、85~99.9質量部の範囲内であることが好ましく、90~99.5質量部の範囲内であることがより好ましく、95~99質量部の範囲内であることがさらに好ましい。 When the glitter coating composition (Y) of the present invention contains an organic solvent, the content should be determined based on the sum of all components of the glitter coating composition (Y) from the viewpoint of obtaining a coating film with excellent metallic gloss. It is preferably within the range of 85 to 99.9 parts by mass, more preferably within the range of 90 to 99.5 parts by mass, and preferably within the range of 95 to 99 parts by mass relative to 100 parts by mass. It is even more preferable.
 その他の成分
 光輝性塗料組成物(Y)には、さらに任意選択で、インジウム粒子(y1)以外の顔料、粘性調整剤、バインダー樹脂、架橋性成分、顔料分散剤、沈降防止剤、紫外線吸収剤及び光安定剤等を適宜配合しても良い。
Other Components The glitter coating composition (Y) may optionally include pigments other than indium particles (y1), viscosity modifiers, binder resins, crosslinking components, pigment dispersants, antisettling agents, and ultraviolet absorbers. A light stabilizer and the like may be added as appropriate.
 上記インジウム粒子(y1)以外の顔料としては、着色顔料、インジウム粒子(y1)以外の光輝性顔料、体質顔料等を挙げることができる。該顔料は単独で又は2種以上組み合わせて使用することができる。前記着色顔料としては、例えば、酸化チタン、酸化亜鉛、カーボンブラック、モリブデンレッド、プルシアンブルー、コバルトブルー、アゾ系顔料、フタロシアニン系顔料、キナクリドン系顔料、イソインドリン系顔料、スレン系顔料、ペリレン系顔料、ジオキサジン系顔料、ジケトピロロピロール系顔料などが挙げられる。前記インジウム粒子(y1)以外の光輝性顔料としては、例えば、インジウム粒子(y1)以外の蒸着金属フレーク顔料、アルミニウムフレーク顔料、光干渉性顔料等を挙げることができる。前記体質顔料としては、例えば、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、シリカ、アルミナホワイト等が挙げられる。 Examples of pigments other than the indium particles (y1) include colored pigments, glitter pigments other than the indium particles (y1), extender pigments, and the like. These pigments can be used alone or in combination of two or more. Examples of the color pigments include titanium oxide, zinc oxide, carbon black, molybdenum red, Prussian blue, cobalt blue, azo pigments, phthalocyanine pigments, quinacridone pigments, isoindoline pigments, threne pigments, and perylene pigments. , dioxazine pigments, diketopyrrolopyrrole pigments, and the like. Examples of the glitter pigment other than the indium particles (y1) include vapor-deposited metal flake pigments other than the indium particles (y1), aluminum flake pigments, optical interference pigments, and the like. Examples of the extender pigment include clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, talc, silica, and alumina white.
 本発明の光輝性塗料組成物(Y)が、インジウム粒子(y1)以外の顔料を含有する場合、その含有量は、金属調光沢に優れた塗膜を得る観点から、光輝性塗料組成物(Y)の固形分100質量部を基準として、0.01~30質量部の範囲内であることが好ましく、0.05~20質量部の範囲内であることがより好ましく、0.1~15質量部の範囲内であることがさらに好ましい。 When the glitter coating composition (Y) of the present invention contains a pigment other than the indium particles (y1), the content is determined from the viewpoint of obtaining a coating film with excellent metallic gloss. Based on 100 parts by mass of solid content of Y), it is preferably within the range of 0.01 to 30 parts by mass, more preferably within the range of 0.05 to 20 parts by mass, and 0.1 to 15 parts by mass. It is more preferably within the range of parts by mass.
 前記粘性調整剤としては、例えば、シリカ系微粉末、鉱物系粘性調整剤、硫酸バリウム微粒化粉末、ポリアミド系粘性調整剤、有機樹脂微粒子粘性調整剤、ジウレア系粘性調整剤、ウレタン会合型粘性調整剤、アクリル膨潤型であるポリアクリル酸系粘性調整剤、セルロース系粘性調整剤等が挙げられる。 Examples of the viscosity modifier include silica-based fine powder, mineral-based viscosity modifier, barium sulfate atomized powder, polyamide-based viscosity modifier, organic resin fine particle viscosity modifier, diurea-based viscosity modifier, and urethane-based viscosity modifier. acrylic swelling type polyacrylic acid-based viscosity modifiers, cellulose-based viscosity modifiers, and the like.
 前記バインダー樹脂としては、例えば、水酸基含有樹脂(y2)が挙げられる。 Examples of the binder resin include hydroxyl group-containing resin (y2).
 上記水酸基含有樹脂(y2)は、1分子中に少なくとも1個の水酸基を有する樹脂である。水酸基含有樹脂(y2)としては、公知の樹脂を広く使用でき、例えば、水酸基を有するアクリル樹脂、水酸基を有するポリエステル樹脂、水酸基を有するアクリル変性ポリエステル樹脂、水酸基を有するポリエーテル樹脂、水酸基を有するポリカーボネート樹脂、水酸基を有するポリウレタン樹脂、水酸基を有するエポキシ樹脂、水酸基を有するアルキド樹脂等の樹脂が挙げられる。これらはそれぞれ単独でもしくは2種以上組み合わせて使用することができる。なかでも、水酸基含有樹脂(y2)は、形成される塗膜の付着性等の観点から、水酸基含有アクリル樹脂(y2-1)を含むことが好ましい。 The above hydroxyl group-containing resin (y2) is a resin having at least one hydroxyl group in one molecule. As the hydroxyl group-containing resin (y2), a wide variety of known resins can be used, such as acrylic resins having hydroxyl groups, polyester resins having hydroxyl groups, acrylic modified polyester resins having hydroxyl groups, polyether resins having hydroxyl groups, and polycarbonates having hydroxyl groups. Examples include resins such as polyurethane resins having hydroxyl groups, epoxy resins having hydroxyl groups, and alkyd resins having hydroxyl groups. These can be used alone or in combination of two or more. Among these, the hydroxyl group-containing resin (y2) preferably contains a hydroxyl group-containing acrylic resin (y2-1) from the viewpoint of adhesion of the formed coating film.
 水酸基含有アクリル樹脂(y2-1)は、例えば、水酸基含有重合性不飽和モノマー及びその他の重合性不飽和モノマー(水酸基含有重合性不飽和モノマー以外の重合性不飽和モノマー)を共重合することにより得ることができる。 The hydroxyl group-containing acrylic resin (y2-1) can be produced, for example, by copolymerizing a hydroxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers (polymerizable unsaturated monomers other than the hydroxyl group-containing polymerizable unsaturated monomer). Obtainable.
 上記水酸基含有重合性不飽和モノマーは、1分子中に水酸基及び重合性不飽和結合をそれぞれ1個以上有する化合物である。該水酸基含有重合性不飽和モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物;該(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物のε-カプロラクトン変性体;(メタ)アクリル酸とエポキシ基含有化合物(例えば、「カージュラE10P」(商品名)、Momentive Specialty Chemicals社製、ネオデカン酸グリシジルエステル)との付加物;N-ヒドロキシメチル(メタ)アクリルアミド;アリルアルコール、さらに、分子末端が水酸基であるポリオキシエチレン鎖を有する(メタ)アクリレート等を挙げることができる。 The above-mentioned hydroxyl group-containing polymerizable unsaturated monomer is a compound having one or more hydroxyl groups and one or more polymerizable unsaturated bonds in one molecule. Examples of the hydroxyl group-containing polymerizable unsaturated monomer include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate. Monoesterified product of (meth)acrylic acid and dihydric alcohol having 2 to 8 carbon atoms; ε-caprolactone modified product of monoesterified product of (meth)acrylic acid and dihydric alcohol containing 2 to 8 carbon atoms; ( Adducts of meth)acrylic acid and epoxy group-containing compounds (for example, "Cardura E10P" (trade name), manufactured by Momentive Specialty Chemicals, neodecanoic acid glycidyl ester); N-hydroxymethyl (meth)acrylamide; allyl alcohol; , (meth)acrylate having a polyoxyethylene chain whose molecular terminal is a hydroxyl group, and the like.
 上記水酸基含有重合性不飽和モノマーと共重合可能な他の重合性不飽和モノマーとしては、例えば、下記(1)~(6)に示すモノマー等を使用することができる。これらの重合性不飽和モノマーは単独でもしくは2種以上で組み合わせて使用することができる。 As other polymerizable unsaturated monomers that can be copolymerized with the above hydroxyl group-containing polymerizable unsaturated monomer, for example, the monomers shown in (1) to (6) below can be used. These polymerizable unsaturated monomers can be used alone or in combination of two or more.
 (1)酸基含有重合性不飽和モノマー
 酸基含有重合性不飽和モノマーは、1分子中に酸基と重合性不飽和結合とをそれぞれ1個以上有する化合物である。該モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸及び無水マレイン酸などのカルボキシル基含有モノマー;ビニルスルホン酸、2-スルホエチル(メタ)アクリレートなどのスルホン酸基含有モノマー;2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシプロピルアシッドホスフェート、2-(メタ)アクリロイルオキシ-3-クロロプロピルアシッドホスフェート、2-メタクロイルオキシエチルフェニルリン酸などの酸性リン酸エステル系モノマーなどを挙げることができる。これらは1種で又は2種以上を使用することができる。
(1) Acid group-containing polymerizable unsaturated monomer An acid group-containing polymerizable unsaturated monomer is a compound having one or more acid groups and one or more polymerizable unsaturated bonds in one molecule. Examples of the monomer include carboxyl group-containing monomers such as (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid and maleic anhydride; sulfonic acid group-containing monomers such as vinylsulfonic acid and 2-sulfoethyl (meth)acrylate. Acidic acids such as 2-(meth)acryloyloxyethyl acid phosphate, 2-(meth)acryloyloxypropyl acid phosphate, 2-(meth)acryloyloxy-3-chloropropyl acid phosphate, 2-methacryloyloxyethyl phenyl phosphate, etc. Examples include phosphoric acid ester monomers. These can be used alone or in combination of two or more.
 (2)アクリル酸又はメタクリル酸と炭素数1~20の1価アルコールとのエステル化物
 具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート,tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリルアクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等を挙げることができる。
(2) Esterified products of acrylic acid or methacrylic acid and monohydric alcohol having 1 to 20 carbon atoms. Specifically, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, ) acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, isomyristyl (meth)acrylate, stearyl (meth)acrylate, isostearyl acrylate, lauryl ( Examples include meth)acrylate, tridecyl(meth)acrylate, tetrahydrofurfuryl(meth)acrylate, cyclohexyl(meth)acrylate, isobornyl(meth)acrylate, and the like.
 (3)芳香族系ビニルモノマー
 具体的には、スチレン、α-メチルスチレン、ビニルトルエン等を挙げることができる。
(3) Aromatic vinyl monomer Specific examples include styrene, α-methylstyrene, vinyltoluene, and the like.
 芳香族系ビニルモノマーを構成成分とすることにより、得られる樹脂のガラス転移温度が上昇し、また、高屈折率で疎水性の塗膜を得ることができることから、塗膜の光沢向上による仕上り外観の向上効果を得ることができる。 By using an aromatic vinyl monomer as a constituent component, the glass transition temperature of the resulting resin increases, and a hydrophobic coating film with a high refractive index can be obtained, which improves the finished appearance by improving the gloss of the coating film. It is possible to obtain the improvement effect of
 芳香族系ビニルモノマーを構成成分とする場合、その配合割合は、モノマー成分の総量に対して3~50質量%であることが好ましく、5~40質量%の範囲内であることが特に好ましい。 When an aromatic vinyl monomer is used as a constituent component, its blending ratio is preferably 3 to 50% by mass, particularly preferably 5 to 40% by mass, based on the total amount of monomer components.
 (4)グリシジル基含有重合性不飽和モノマー
 グリシジル基含有重合性不飽和モノマーは、1分子中にグリシジル基と重合性不飽和結合とをそれぞれ1個以上有する化合物であり、具体的には、グリシジルアクリレート、グリシジルメタクリレート等を挙げることができる。
(4) Glycidyl group-containing polymerizable unsaturated monomer A glycidyl group-containing polymerizable unsaturated monomer is a compound having one or more glycidyl groups and one or more polymerizable unsaturated bonds in one molecule. Acrylate, glycidyl methacrylate, etc. can be mentioned.
 (5)重合性不飽和結合含有窒素原子含有化合物
 例えば、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-[3-(ジメチルアミノ)プロピル](メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、ビニルピリジン、ビニルイミダゾール、アクリロニトリル、メタクリロニトリル等を挙げることができる。
(5) Polymerizable unsaturated bond-containing nitrogen atom-containing compound For example, (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N-[3-(dimethylamino)propyl](meth)acrylamide, N-butoxymethyl Examples include (meth)acrylamide, diacetone (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, vinylpyridine, vinylimidazole, acrylonitrile, and methacrylonitrile.
 (6)その他のビニル化合物
 例えば、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、バーサティック酸ビニルエステル等を挙げることができる。バーサティック酸ビニルエステルとしては、市販品である「ベオバ9」、「ベオバ10」(以上、商品名、HEXION社製)等を挙げることができる。
(6) Other vinyl compounds Examples include vinyl acetate, vinyl propionate, vinyl chloride, vinyl versatate, and the like. Examples of versatile vinyl esters include commercially available products such as "Beova 9" and "Beova 10" (trade names, manufactured by HEXION).
 その他の重合性不飽和モノマーとしては、前記(1)~(6)に示すモノマーを1種で、又は2種以上を用いることができる。 As other polymerizable unsaturated monomers, one or more of the monomers shown in (1) to (6) above can be used.
 本発明において、重合性不飽和モノマーとは、1個以上(例えば、1~4個)の重合性不飽和基を有するモノマーを示す。重合性不飽和基とは、ラジカル重合しうる不飽和基を意味する。かかる重合性不飽和基としては、例えば、ビニル基、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニルエーテル基、アリル基、プロペニル基、イソプロペニル基、マレイミド基等が挙げられる。 In the present invention, the polymerizable unsaturated monomer refers to a monomer having one or more (for example, 1 to 4) polymerizable unsaturated groups. A polymerizable unsaturated group means an unsaturated group that can undergo radical polymerization. Examples of such polymerizable unsaturated groups include vinyl group, (meth)acryloyl group, (meth)acrylamide group, vinyl ether group, allyl group, propenyl group, isopropenyl group, and maleimide group.
 本明細書において、「(メタ)アクリレート」はアクリレート又はメタクリレートを意味する。「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸を意味する。「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味する。「(メタ)アクリルアミド」は、アクリルアミド又はメタクリルアミドを意味する。 As used herein, "(meth)acrylate" means acrylate or methacrylate. "(Meth)acrylic acid" means acrylic acid or methacrylic acid. "(Meth)acryloyl" means acryloyl or methacryloyl. "(Meth)acrylamide" means acrylamide or methacrylamide.
 上記水酸基含有アクリル樹脂(y2-1)の水酸基価は、硬化性及び耐水性等の観点から、30~200mgKOH/gであることが好ましく、40~180mgKOH/gであることがより好ましく、50~150mgKOH/gの範囲内であることが特に好ましい。 The hydroxyl value of the hydroxyl group-containing acrylic resin (y2-1) is preferably from 30 to 200 mgKOH/g, more preferably from 40 to 180 mgKOH/g, from the viewpoint of curability and water resistance, and more preferably from 50 to 180 mgKOH/g. Particularly preferred is a range of 150 mgKOH/g.
 上記水酸基含有アクリル樹脂(y2-1)の酸価は、硬化性及び耐水性等の観点から、0.5~15mgKOH/gであることが好ましく、1~12mgKOH/gであることがより好ましく、2~10mgKOH/gの範囲内であることが特に好ましい。 The acid value of the hydroxyl group-containing acrylic resin (y2-1) is preferably 0.5 to 15 mgKOH/g, more preferably 1 to 12 mgKOH/g, from the viewpoint of curability and water resistance, etc. Particularly preferred is a range of 2 to 10 mgKOH/g.
 上記水酸基含有アクリル樹脂(y2-1)の重量平均分子量は、塗膜の仕上り外観及び硬化性等の観点から、2,000~50,000の範囲内であることが好ましく、3,000~45,000の範囲内であることがより好ましく、5,000~40,000の範囲内であることがさらに好ましい。 The weight average molecular weight of the hydroxyl group-containing acrylic resin (y2-1) is preferably within the range of 2,000 to 50,000, and 3,000 to 45, from the viewpoint of finished appearance and curability of the coating film. ,000, and even more preferably 5,000 to 40,000.
 なお、本明細書において、平均分子量は、ゲルパーミエーションクロマトグラフで測定したクロマトグラムから標準ポリスチレンの分子量を基準にして算出した値である。ゲルパーミエーションクロマトグラフは、「HLC8120GPC」(東ソー株式会社製)を使用した。カラムとしては、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」、「TSKgel G-2000HXL」(いずれも東ソー株式会社製、商品名)の4本を用い、移動相;テトラヒドロフラン、測定温度;40℃、流速;1cc/分、検出器;RIの条件で行った。 Note that in this specification, the average molecular weight is a value calculated from a chromatogram measured by gel permeation chromatography based on the molecular weight of standard polystyrene. As a gel permeation chromatograph, "HLC8120GPC" (manufactured by Tosoh Corporation) was used. Four columns were used: "TSKgel G-4000HXL", "TSKgel G-3000HXL", "TSKgel G-2500HXL", and "TSKgel G-2000HXL" (all manufactured by Tosoh Corporation, product names), and the mobile phase The measurement was carried out under the following conditions: tetrahydrofuran, measurement temperature: 40°C, flow rate: 1 cc/min, detector: RI.
 水酸基含有アクリル樹脂(y2-1)のガラス転移温度は、塗膜の硬度及び仕上り外観等の観点から、-50~60℃であることが好ましく、-20~50℃であることがより好ましく、0~45℃の範囲内であることが特に好ましい。 The glass transition temperature of the hydroxyl group-containing acrylic resin (y2-1) is preferably -50 to 60°C, more preferably -20 to 50°C, from the viewpoint of the hardness of the coating film and the finished appearance, etc. Particularly preferred is a temperature range of 0 to 45°C.
 本明細書において、アクリル樹脂のガラス転移温度(℃)は、下記式によって算出した。 In this specification, the glass transition temperature (°C) of the acrylic resin was calculated using the following formula.
 1/Tg(K)=(W1/T1)+(W2/T2)+・・・・・ (1)
 Tg(℃)=Tg(K)-273               (2)
各式中、W1、W2、・・は共重合に使用されたモノマーのそれぞれの質量分率、T1、T2、・・はそれぞれの単量体のホモポリマ-のTg(K)を表わす。
なお、T1、T2、・・は、Polymer Hand Book(Second Edition,J.Brandup・E.H.Immergut編)III-139~179頁による値である。また、モノマーのホモポリマーのTgが明確でない場合のガラス転移温度(℃)は、静的ガラス転移温度とし、例えば示差走査熱量計「DSC-220U」(セイコーインスツル株式会社製)を用いて、試料を測定カップにとり、真空吸引して完全に溶剤を除去した後、3℃/分の昇温速度で-20℃~+200℃の範囲で熱量変化を測定し、低温側の最初のベースラインの変化点を静的ガラス転移温度とした。
1/Tg(K)=(W1/T1)+(W2/T2)+・・・(1)
Tg (℃) = Tg (K) - 273 (2)
In each formula, W1, W2, . . . represent the respective mass fractions of the monomers used in the copolymerization, and T1, T2, . . . represent the Tg (K) of the homopolymer of the respective monomers.
Note that T1, T2, . . . are values according to Polymer Hand Book (Second Edition, edited by J. Brandup and E.H. Immergut) III-139 to 179. In addition, when the Tg of the monomer homopolymer is not clear, the glass transition temperature (°C) is determined as the static glass transition temperature, and for example, using a differential scanning calorimeter "DSC-220U" (manufactured by Seiko Instruments Inc.), After placing the sample in a measuring cup and completely removing the solvent by vacuum suction, the change in calorific value was measured in the range of -20°C to +200°C at a heating rate of 3°C/min. The point of change was defined as the static glass transition temperature.
 上記モノマー混合物を共重合して水酸基含有アクリル樹脂(y2-1)を得るための共重合方法は、特に限定されるものではなく、それ自体既知の共重合方法を用いることができるが、なかでも有機溶剤中にて、重合開始剤の存在下で重合を行なう溶液重合法を好適に使用することができる。 The copolymerization method for copolymerizing the above monomer mixture to obtain the hydroxyl group-containing acrylic resin (y2-1) is not particularly limited, and any known copolymerization method can be used. A solution polymerization method in which polymerization is carried out in an organic solvent in the presence of a polymerization initiator can be suitably used.
 上記溶液重合法に際して使用される有機溶剤としては、例えば、トルエン、キシレン、スワゾール1000(コスモ石油株式会社製、商品名、高沸点石油系溶剤)等の芳香族系溶剤;酢酸エチル、酢酸ブチル、プロピルプロピオネート、ブチルプロピオネート、1-メトキシ-2-プロピルアセテート、2-エトキシエチルプロピオネート、3-メトキシブチルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン等のケトン系溶剤、イソプロパノール、n-ブタノール、イソブタノール、2-エチルヘキサノール等のアルコール系溶剤等を挙げることができる。 Examples of organic solvents used in the solution polymerization method include aromatic solvents such as toluene, xylene, and Swasol 1000 (manufactured by Cosmo Oil Co., Ltd., trade name, high-boiling petroleum solvent); ethyl acetate, butyl acetate, Ester solvents such as propylpropionate, butylpropionate, 1-methoxy-2-propyl acetate, 2-ethoxyethylpropionate, 3-methoxybutyl acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate; Examples include ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and methyl amyl ketone, and alcohol solvents such as isopropanol, n-butanol, isobutanol, and 2-ethylhexanol.
 これらの有機溶剤は、単独で又は2種以上を組合せて使用することができるが、アクリル樹脂の溶解性の点からエステル系溶剤、ケトン系溶剤を使用することが好ましい。また、これらの有機溶剤に、さらに芳香族系溶剤を好適に組合せて使用することもできる。 These organic solvents can be used alone or in combination of two or more, but from the viewpoint of solubility of the acrylic resin, it is preferable to use ester-based solvents and ketone-based solvents. Furthermore, aromatic solvents may be suitably combined with these organic solvents.
 水酸基含有アクリル樹脂(y2-1)の共重合に際して使用できる重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-t-アミルパーオキサイド、t-ブチルパーオクトエート、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等の公知のラジカル重合開始剤を挙げることができる。 Examples of polymerization initiators that can be used in the copolymerization of the hydroxyl group-containing acrylic resin (y2-1) include 2,2'-azobisisobutyronitrile, benzoyl peroxide, di-t-butyl peroxide, di-t- - Known radical polymerization initiators such as amyl peroxide, t-butyl peroctoate, 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), etc. can be mentioned.
 本発明の光輝性塗料組成物(Y)が、水酸基含有樹脂(y2)として、水酸基含有アクリル樹脂(y2-1)を含有する場合、その含有量は、優れた金属調光沢を有し、かつ、付着性等の優れた塗膜性能を示す複層塗膜を形成する観点から、水酸基含有樹脂(y2)の固形分量を基準として、50~100質量%の範囲内であることが好ましく、55~100質量%の範囲内であることがより好ましく、60~100質量%の範囲内であることがさらに好ましい。 When the glitter coating composition (Y) of the present invention contains a hydroxyl group-containing acrylic resin (y2-1) as the hydroxyl group-containing resin (y2), the content is such that it has excellent metallic gloss and From the viewpoint of forming a multilayer coating film exhibiting excellent coating film performance such as adhesion, it is preferably within the range of 50 to 100% by mass, based on the solid content of the hydroxyl group-containing resin (y2), and 55 It is more preferably within the range of ~100% by mass, and even more preferably within the range of 60~100% by mass.
 本発明の光輝性塗料組成物(Y)が、水酸基含有樹脂(y2)を含有する場合、その含有量は、優れた金属調光沢を有し、かつ、付着性等の優れた塗膜性能を示す複層塗膜を形成する観点から、前記光輝性塗料組成物(Y)の固形分100質量部を基準として、0.1~15質量部の範囲内であることが好ましく、0.5~12質量部の範囲内であることがより好ましく、1~10質量部の範囲内であることがさらに好ましい。 When the glitter coating composition (Y) of the present invention contains the hydroxyl group-containing resin (y2), the content is such that it has excellent metallic gloss and excellent coating film performance such as adhesion. From the viewpoint of forming a multilayer coating film shown in the figure, the amount is preferably within the range of 0.1 to 15 parts by mass, and 0.5 to 15 parts by mass, based on 100 parts by mass of the solid content of the glitter coating composition (Y). It is more preferably within the range of 12 parts by mass, and even more preferably within the range of 1 to 10 parts by mass.
 前記架橋性成分としては、メラミン樹脂(y3)、メラミン樹脂誘導体、尿素樹脂、(メタ)アクリルアミド、ポリアジリジン、ポリカルボジイミド、ブロック化されていてもされていなくてもよいポリイソシアネート化合物などが挙げられ、なかでも、形成される塗膜の付着性等の観点から、メラミン樹脂(y3)を含むことが好ましい。 Examples of the crosslinkable component include melamine resin (y3), melamine resin derivatives, urea resins, (meth)acrylamide, polyaziridine, polycarbodiimide, and polyisocyanate compounds that may or may not be blocked. Among them, it is preferable to include melamine resin (y3) from the viewpoint of adhesion of the formed coating film.
 上記メラミン樹脂(y3)としては、メラミン成分とアルデヒド成分との反応によって得られる部分メチロール化メラミン樹脂又は完全メチロール化メラミン樹脂を使用することができる。アルデヒド成分としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等を挙げることができる。 As the melamine resin (y3), a partially methylolated melamine resin or a fully methylolated melamine resin obtained by a reaction between a melamine component and an aldehyde component can be used. Examples of the aldehyde component include formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde.
 また、メラミン樹脂(y3)としては、上記メチロール化メラミン樹脂のメチロール基を、適当なアルコールによって、部分的に又は完全にエーテル化したものも使用することができる。エーテル化に用いられるアルコールとしては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、i-ブチルアルコール、2-エチル-1-ブタノール、2-エチル-1-ヘキサノール等を挙げることができる。 Furthermore, as the melamine resin (y3), it is also possible to use one in which the methylol group of the above-mentioned methylolated melamine resin is partially or completely etherified with an appropriate alcohol. Examples of the alcohol used for etherification include methyl alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, 2-ethyl-1-butanol, 2-ethyl-1 -Hexanol, etc.
 メラミン樹脂(y3)としては、部分又は完全メチロール化メラミン樹脂のメチロール基をメチルアルコールで部分的に又は完全にエーテル化したメチルエーテル化メラミン樹脂、部分又は完全メチロール化メラミン樹脂のメチロール基をブチルアルコールで部分的に又は完全にエーテル化したブチルエーテル化メラミン樹脂、部分又は完全メチロール化メラミン樹脂のメチロール基をメチルアルコール及びブチルアルコールで部分的に又は完全にエーテル化したメチル-ブチル混合エーテル化メラミン樹脂が好ましく、メチル-ブチル混合エーテル化メラミン樹脂がより好ましい。 The melamine resin (y3) is a methyl etherified melamine resin in which the methylol groups of a partially or completely methylolated melamine resin are partially or completely etherified with methyl alcohol, and a methyl etherified melamine resin in which the methylol groups of a partially or fully methylolated melamine resin are partially or completely etherified with butyl alcohol. butyl etherified melamine resin partially or completely etherified with methyl alcohol and butyl alcohol, and methyl-butyl mixed etherified melamine resin partially or completely etherified with methyl alcohol and butyl alcohol. Preferably, methyl-butyl mixed etherified melamine resin is more preferable.
 メラミン樹脂(y3)は、重量平均分子量が400~6,000であるのが好ましく、500~4,000であるのがより好ましく、600~3,000であるのがさらに好ましい。 The weight average molecular weight of the melamine resin (y3) is preferably 400 to 6,000, more preferably 500 to 4,000, and even more preferably 600 to 3,000.
 メラミン樹脂(y3)として、市販品を使用することができる。市販品の商品名としては、例えば、「サイメル202」、「サイメル203」、「サイメル204」、「サイメル211」、「サイメル212」、「サイメル238」、「サイメル251」、「サイメル253」、「サイメル254」、「サイメル303」、「サイメル323」、「サイメル324」、「サイメル325」、「サイメル327」、「サイメル350」、「サイメル370」、「サイメル380」、「サイメル385」、「サイメル1156」、「サイメル1158」、「サイメル1116」、「サイメル1130」(以上、オルネクスジャパン株式会社製);「レジミン735」、「レジミン740」、「レジミン741」、「レジミン745」、「レジミン746」、「レジミン747」(以上、モンサント社製);「ユーバン120」、「ユーバン20HS」、「ユーバン20SE」、「ユーバン2021」、「ユーバン2028」、「ユーバン28-60」(以上、三井化学株式会社製);「スミマールM55」、「スミマールM30W」、「スミマールM50W」(以上、住友化学株式会社製);等を挙げることができる。 Commercially available products can be used as the melamine resin (y3). Examples of commercially available product names include "Cymel 202", "Cymel 203", "Cymel 204", "Cymel 211", "Cymel 212", "Cymel 238", "Cymel 251", "Cymel 253", "Cymel 254", "Cymel 303", "Cymel 323", "Cymel 324", "Cymel 325", "Cymel 327", "Cymel 350", "Cymel 370", "Cymel 380", "Cymel 385", "Cymel 1156", "Cymel 1158", "Cymel 1116", "Cymel 1130" (manufactured by Allnex Japan Co., Ltd.); "Regimin 735", "Regimin 740", "Regimin 741", "Regimin 745", “Regimin 746”, “Regimin 747” (manufactured by Monsanto); “Yuban 120”, “Yuban 20HS”, “Yuban 20SE”, “Yuban 2021”, “Yuban 2028”, “Yuban 28-60” (and more) , manufactured by Mitsui Chemicals Co., Ltd.); "Sumimar M55", "Sumimar M30W", and "Sumimar M50W" (all manufactured by Sumitomo Chemical Co., Ltd.); and the like.
 本発明の光輝性塗料組成物(Y)が、メラミン樹脂(y3)を含有する場合、その含有量は、優れた金属調光沢を有し、かつ、付着性等の優れた塗膜性能を示す複層塗膜を形成する観点から、前記光輝性塗料組成物(Y)の固形分100質量部を基準として、0.1~10質量部の範囲内であることが好ましく、0.3~8質量部の範囲内であることがより好ましく、0.5~5質量部の範囲内であることがさらに好ましい。 When the glitter coating composition (Y) of the present invention contains the melamine resin (y3), the content is such that it has excellent metallic luster and exhibits excellent coating performance such as adhesion. From the viewpoint of forming a multilayer coating film, it is preferably within the range of 0.1 to 10 parts by mass, and 0.3 to 8 parts by mass, based on 100 parts by mass of the solid content of the glitter coating composition (Y). It is more preferably within the range of 0.5 to 5 parts by mass, and even more preferably within the range of 0.5 to 5 parts by mass.
 光輝性塗料組成物(Y)の塗装は、通常の方法に従って行なうことができ、例えば、エアスプレー塗装、エアレススプレー塗装、回転霧化塗装などの方法が挙げられる。光輝性塗料組成物(Y)の塗装の際は、任意選択で、静電印加されていてもよく、中でも、回転霧化方式の静電塗装及びエアスプレー方式の静電塗装が好ましく、回転霧化方式の静電塗装が特に好ましい。 Coating with the glitter coating composition (Y) can be carried out according to a conventional method, and examples include methods such as air spray coating, airless spray coating, and rotary atomization coating. When applying the bright paint composition (Y), electrostatic charge may be optionally applied. Among these, electrostatic coating using a rotary atomization method and electrostatic coating using an air spray method are preferable. Particularly preferred is the electrostatic coating method.
 エアスプレー塗装、エアレススプレー塗装又は回転霧化塗装をする場合には、光輝性塗料組成物(Y)は、適宜、水及び/又は有機溶剤ならびに任意選択で消泡剤などの添加剤を含有して塗装に適した固形分含有率及び粘度に調整されることが好ましい。 In the case of air spray coating, airless spray coating or rotary atomization coating, the glitter coating composition (Y) may contain water and/or an organic solvent and optionally additives such as an antifoaming agent. It is preferable to adjust the solid content and viscosity to be suitable for coating.
 本発明の光輝性塗料組成物(Y)の固形分含有率は、優れた金属調光沢を有し、かつ、付着性等の優れた塗膜性能を示す複層塗膜を形成する観点から、0.1~15質量%であることが好ましく、0.5~10質量%の範囲内であることが好ましく、1~5質量%の範囲内であることがさらに好ましい。 The solid content of the glitter coating composition (Y) of the present invention is determined from the viewpoint of forming a multilayer coating film that has excellent metallic gloss and exhibits excellent coating film performance such as adhesion. The content is preferably from 0.1 to 15% by weight, preferably from 0.5 to 10% by weight, and more preferably from 1 to 5% by weight.
 光輝性塗料組成物(Y)の粘度は、優れた金属調光沢を有し、かつ、付着性等の優れた塗膜性能を示す複層塗膜を形成する観点から、フォードカップNo.3粘度計において、20℃で好ましくは8~30秒程度、特に好ましくは10~25秒程度の範囲内である。 The viscosity of the glitter coating composition (Y) is Ford Cup No. 1 from the viewpoint of forming a multilayer coating film that has excellent metallic gloss and exhibits excellent coating film performance such as adhesion. 3 viscometer, the time at 20° C. is preferably about 8 to 30 seconds, particularly preferably about 10 to 25 seconds.
 光輝性塗膜の硬化膜厚は、優れた金属調光沢を有し、かつ、付着性等の優れた塗膜性能を示す複層塗膜を形成する観点から、好ましくは0.01~2μm程度、より好ましくは0.025~1μm、さらに好ましくは0.05~0.5μm程度である。 The cured film thickness of the bright coating film is preferably about 0.01 to 2 μm from the viewpoint of forming a multilayer coating film that has excellent metallic luster and exhibits excellent coating performance such as adhesion. , more preferably about 0.025 to 1 μm, still more preferably about 0.05 to 0.5 μm.
 工程(2)
 本発明の複層塗膜形成方法によれば、次に、工程(1)で得られる光輝性塗膜上に、水酸基含有アクリル樹脂(z1)及びポリイソシアネート化合物(z2)を含有するクリヤ塗料組成物(Z)が塗装され、クリヤ塗膜が形成される。
Process (2)
According to the multilayer coating film forming method of the present invention, next, a clear coating composition containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied on the glitter coating film obtained in step (1). The object (Z) is painted and a clear coating film is formed.
 水酸基含有アクリル樹脂(z1)
 水酸基含有アクリル樹脂(z1)は、1分子中に少なくとも1個の水酸基を有するアクリル樹脂であり、水酸基価は10~75mgKOH/gの範囲内である。水酸基含有アクリル樹脂(z1)が10mgKOH/g未満であると、形成される複層塗膜の付着性が悪くなる。水酸基含有アクリル樹脂(z1)が75mgKOH/gを超えると、形成される複層塗膜の付着性が悪くなる。なかでも、水酸基含有アクリル樹脂(z1)の水酸基価は、形成される複層塗膜の付着性及びポリイソシアネート化合物(z2)との相溶性等の観点から、12~70mgKOH/gの範囲内であることが好ましく、15~65mgKOH/gの範囲内であることがさらに好ましい。
Hydroxyl group-containing acrylic resin (z1)
The hydroxyl group-containing acrylic resin (z1) is an acrylic resin having at least one hydroxyl group in one molecule, and has a hydroxyl value within the range of 10 to 75 mgKOH/g. If the content of the hydroxyl group-containing acrylic resin (z1) is less than 10 mgKOH/g, the adhesion of the multilayer coating film to be formed will be poor. If the amount of the hydroxyl group-containing acrylic resin (z1) exceeds 75 mgKOH/g, the adhesion of the multilayer coating film formed will deteriorate. Among these, the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 12 to 70 mgKOH/g from the viewpoint of adhesion of the multilayer coating film to be formed and compatibility with the polyisocyanate compound (z2). It is preferably within the range of 15 to 65 mgKOH/g, and more preferably within the range of 15 to 65 mgKOH/g.
 水酸基含有アクリル樹脂(z1)は、例えば、水酸基含有重合性不飽和モノマー及びその他の重合性不飽和モノマー(水酸基含有重合性不飽和モノマー以外の重合性不飽和モノマー)を、それ自体既知の方法、例えば、有機溶媒中での溶液重合法、水中でのエマルション重合法等の方法により共重合せしめることによって製造することができる。 The hydroxyl group-containing acrylic resin (z1) can be obtained by, for example, using a hydroxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers (polymerizable unsaturated monomers other than the hydroxyl group-containing polymerizable unsaturated monomer) by a method known per se. For example, it can be produced by copolymerization using a solution polymerization method in an organic solvent, an emulsion polymerization method in water, or the like.
 上記水酸基含有重合性不飽和モノマー及びその他の重合性不飽和モノマーは、水酸基含有アクリル樹脂(y2-1)の説明欄に記載した化合物を使用することができる。 As the hydroxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers, the compounds described in the description column of hydroxyl group-containing acrylic resin (y2-1) can be used.
 上記水酸基含有アクリル樹脂(z1)の重量平均分子量は、形成される複層塗膜の付着性等の観点から、2,000~50,000の範囲内であることが好ましく、3,000~45,000の範囲内であることがより好ましく、5,000~40,000の範囲内であることがさらに好ましい。 The weight average molecular weight of the hydroxyl group-containing acrylic resin (z1) is preferably in the range of 2,000 to 50,000, preferably 3,000 to 45, from the viewpoint of adhesion of the multilayer coating film to be formed. ,000, and even more preferably 5,000 to 40,000.
 水酸基含有アクリル樹脂(z1)の酸価は、形成される複層塗膜の仕上がり外観、付着性及びクリヤ塗料組成物(Z)のポットライフ等の観点から、30mgKOH/g以下、特に1~20mgKOH/gの範囲内であることが好ましい。 The acid value of the hydroxyl group-containing acrylic resin (z1) is 30 mgKOH/g or less, especially 1 to 20 mgKOH, from the viewpoint of the finished appearance of the multilayer coating film to be formed, adhesion, and the pot life of the clear paint composition (Z). It is preferably within the range of /g.
 水酸基含有アクリル樹脂(z1)のガラス転移温度は、形成される複層塗膜の付着性、耐チッピング性、仕上り外観等の観点から、好ましくは-50~60℃、より好ましくは-30~50℃、特に好ましくは-10~45℃の範囲内である。 The glass transition temperature of the hydroxyl group-containing acrylic resin (z1) is preferably -50 to 60°C, more preferably -30 to 50°C, from the viewpoint of adhesion, chipping resistance, finished appearance, etc. of the multilayer coating film to be formed. °C, particularly preferably within the range of -10 to 45 °C.
 上記重合性不飽和モノマー混合物を共重合して水酸基含有アクリル樹脂(z1)を得るための共重合方法としては、なかでも有機溶剤中にて、重合開始剤の存在下で重合を行なう溶液重合法を好適に使用することができる。 Among the copolymerization methods for copolymerizing the above polymerizable unsaturated monomer mixture to obtain the hydroxyl group-containing acrylic resin (z1), there is a solution polymerization method in which polymerization is carried out in an organic solvent in the presence of a polymerization initiator. can be suitably used.
 上記溶液重合法に際して使用される有機溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、オクタノール、ドデカノール、エチレングリコール、プロピレングリコール等のアルコール系溶剤;テトラヒドロン等のエーテル系溶剤;アセトン、メチルエチルケトン、アセチルアセトン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸フェニル等のエステル系溶剤;エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチエレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート等のグリコールエーテル系溶剤;フェノール、クレゾール等のフェノール系溶剤;ペンタン、ヘキサン、ヘプタン、オクタン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、オクタデカン、オクタデセン、ベンゼン、トルエン、キシレン、トリメシン、ニトロベンゼン、アニリン、メトキシベンゼン、トリメシン等の脂肪族もしくは芳香族炭化水素系溶剤;ジクロロメタン、クロロホルム、トリクロロエタン、クロロベンゼン、ジクロロベンゼン等の脂肪族もしくは芳香族塩化炭化水素系溶剤などを挙げることができる。 Examples of the organic solvent used in the above solution polymerization method include alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol, octanol, dodecanol, ethylene glycol, and propylene glycol; ether solvents such as tetrahydrone; acetone; Ketone solvents such as methyl ethyl ketone and acetylacetone; ester solvents such as methyl acetate, ethyl acetate, butyl acetate, and phenyl acetate; ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monomethyl ether, Glycol ether solvents such as triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate; phenol; Phenolic solvents such as cresol; aliphatic or Aromatic hydrocarbon solvents include aliphatic or aromatic chlorinated hydrocarbon solvents such as dichloromethane, chloroform, trichloroethane, chlorobenzene, and dichlorobenzene.
 水酸基含有アクリル樹脂(z1)の共重合に際して使用できる重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-t-アミルパーオキサイド、t-ブチルパーオクトエート、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等の公知のラジカル重合開始剤を挙げることができる。 Examples of polymerization initiators that can be used in the copolymerization of the hydroxyl group-containing acrylic resin (z1) include 2,2'-azobisisobutyronitrile, benzoyl peroxide, di-t-butyl peroxide, and di-t-amyl. Known radical polymerization initiators such as peroxide, t-butyl peroctoate, 2,2'-azobis(2-methylbutyronitrile), and 2,2'-azobis(2,4-dimethylvaleronitrile) are listed. be able to.
 上記水酸基含有アクリル樹脂(z1)は単独で又は2種以上を併用して使用することができる。 The above hydroxyl group-containing acrylic resin (z1) can be used alone or in combination of two or more.
 ポリイソシアネート化合物(z2)
 ポリイソシアネート化合物(z2)は、1分子中に少なくとも2個のイソシアネート基を有する化合物であって、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香脂肪族ポリイソシアネート、芳香族ポリイソシアネート、該ポリイソシアネートの誘導体などを挙げることができる。
Polyisocyanate compound (z2)
The polyisocyanate compound (z2) is a compound having at least two isocyanate groups in one molecule, and includes, for example, aliphatic polyisocyanate, alicyclic polyisocyanate, araliphatic polyisocyanate, aromatic polyisocyanate, etc. Examples include derivatives of polyisocyanate.
 上記脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、2,4,4-又は2,2,4-トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、2,6-ジイソシアナトヘキサン酸メチル(慣用名:リジンジイソシアネート)などの脂肪族ジイソシアネート;2,6-ジイソシアナトヘキサン酸2-イソシアナトエチル、1,6-ジイソシアナト-3-イソシアナトメチルヘキサン、1,4,8-トリイソシアナトオクタン、1,6,11-トリイソシアナトウンデカン、1,8-ジイソシアナト-4-イソシアナトメチルオクタン、1,3,6-トリイソシアナトヘキサン、2,5,7-トリメチル-1,8-ジイソシアナト-5-イソシアナトメチルオクタンなどの脂肪族トリイソシアネートなどを挙げることができる。 Examples of the aliphatic polyisocyanate include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3 - Aliphatic diisocyanates such as butylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, methyl 2,6-diisocyanatohexanoate (common name: lysine diisocyanate); 2 , 2-isocyanatoethyl 6-diisocyanatohexanoate, 1,6-diisocyanato-3-isocyanatomethylhexane, 1,4,8-triisocyanatooctane, 1,6,11-triisocyanatoundecane, 1 , 8-diisocyanato-4-isocyanatomethyloctane, 1,3,6-triisocyanatohexane, 2,5,7-trimethyl-1,8-diisocyanato-5-isocyanatomethyloctane, and other aliphatic triisocyanates. can be mentioned.
 前記脂環族ポリイソシアネートとしては、例えば、1,3-シクロペンテンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(慣用名:イソホロンジイソシアネート)、4-メチル-1,3-シクロヘキシレンジイソシアネート(慣用名:水添TDI)、2-メチル-1,3-シクロヘキシレンジイソシアネート、1,3-もしくは1,4-ビス(イソシアナトメチル)シクロヘキサン(慣用名:水添キシリレンジイソシアネート)もしくはその混合物、メチレンビス(4,1-シクロヘキサンジイル)ジイソシアネート(慣用名:水添MDI)、ノルボルナンジイソシアネートなどの脂環族ジイソシアネート;1,3,5-トリイソシアナトシクロヘキサン、1,3,5-トリメチルイソシアナトシクロヘキサン、2-(3-イソシアナトプロピル)-2,5-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、2-(3-イソシアナトプロピル)-2,6-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、3-(3-イソシアナトプロピル)-2,5-ジ(イソシアナトメチル)-ビシクロ(2.2.1)ヘプタン、5-(2-イソシアナトエチル)-2-イソシアナトメチル-3-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタン、6-(2-イソシアナトエチル)-2-イソシアナトメチル-3-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタン、5-(2-イソシアナトエチル)-2-イソシアナトメチル-2-(3-イソシアナトプロピル)-ビシクロ(2.2.1)-ヘプタン、6-(2-イソシアナトエチル)-2-イソシアナトメチル-2-(3-イソシアナトプロピル)-ビシクロ(2.2.1)ヘプタンなどの脂環族トリイソシアネートなどを挙げることができる。 Examples of the alicyclic polyisocyanate include 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (common name) : isophorone diisocyanate), 4-methyl-1,3-cyclohexylene diisocyanate (common name: hydrogenated TDI), 2-methyl-1,3-cyclohexylene diisocyanate, 1,3- or 1,4-bis(isocyanate) Alicyclic diisocyanates such as methyl)cyclohexane (common name: hydrogenated xylylene diisocyanate) or mixtures thereof, methylenebis(4,1-cyclohexanediyl) diisocyanate (common name: hydrogenated MDI), norbornane diisocyanate; 1,3,5 -triisocyanatocyclohexane, 1,3,5-trimethylisocyanatocyclohexane, 2-(3-isocyanatopropyl)-2,5-di(isocyanatomethyl)-bicyclo(2.2.1)heptane, 2- (3-isocyanatopropyl)-2,6-di(isocyanatomethyl)-bicyclo(2.2.1)heptane, 3-(3-isocyanatopropyl)-2,5-di(isocyanatomethyl)- Bicyclo(2.2.1)heptane, 5-(2-isocyanatoethyl)-2-isocyanatomethyl-3-(3-isocyanatopropyl)-bicyclo(2.2.1)heptane, 6-(2 -isocyanatoethyl)-2-isocyanatomethyl-3-(3-isocyanatopropyl)-bicyclo(2.2.1)heptane, 5-(2-isocyanatoethyl)-2-isocyanatomethyl-2- (3-isocyanatopropyl)-bicyclo(2.2.1)-heptane, 6-(2-isocyanatoethyl)-2-isocyanatomethyl-2-(3-isocyanatopropyl)-bicyclo(2.2 .1) Alicyclic triisocyanates such as heptane can be mentioned.
 前記芳香脂肪族ポリイソシアネートとしては、例えば、メチレンビス(4,1-フェニレン)ジイソシアネート(慣用名:MDI)、1,3-もしくは1,4-キシリレンジイソシアネート又はその混合物、ω,ω'-ジイソシアナト-1,4-ジエチルベンゼン、1,3-又は1,4-ビス(1-イソシアナト-1-メチルエチル)ベンゼン(慣用名:テトラメチルキシリレンジイソシアネート)もしくはその混合物などの芳香脂肪族ジイソシアネート;1,3,5-トリイソシアナトメチルベンゼンなどの芳香脂肪族トリイソシアネートなどを挙げることができる。 Examples of the araliphatic polyisocyanate include methylene bis(4,1-phenylene) diisocyanate (common name: MDI), 1,3- or 1,4-xylylene diisocyanate or a mixture thereof, ω,ω'-diisocyanato- Aroaliphatic diisocyanates such as 1,4-diethylbenzene, 1,3- or 1,4-bis(1-isocyanato-1-methylethyl)benzene (common name: tetramethylxylylene diisocyanate) or mixtures thereof; 1,3 , 5-triisocyanatomethylbenzene and other aromatic aliphatic triisocyanates.
 前記芳香族ポリイソシアネートとしては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4'-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、2,4-トリレンジイソシアネート(慣用名:2,4-TDI)もしくは2,6-トリレンジイソシアネート(慣用名:2,6-TDI)もしくはその混合物、4,4'-トルイジンジイソシアネート、4,4'-ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネート;トリフェニルメタン-4,4',4''-トリイソシアネート、1,3,5-トリイソシアナトベンゼン、2,4,6-トリイソシアナトトルエンなどの芳香族トリイソシアネート;4,4'-ジフェニルメタン-2,2',5,5'-テトライソシアネートなどの芳香族テトライソシアネートなどを挙げることができる。 Examples of the aromatic polyisocyanate include m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 2,4-tolylene diisocyanate (common name: 2,4- Aromatic diisocyanates such as 2,6-tolylene diisocyanate (common name: 2,6-TDI) or mixtures thereof, 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate; triphenylmethane-4 , 4',4''-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanatotoluene; 4,4'-diphenylmethane-2,2' , 5,5'-tetraisocyanate and other aromatic tetraisocyanates.
 前記ポリイソシアネートの誘導体としては、例えば、上記したポリイソシアネートのダイマー、トリマー、ビウレット、アロファネート、ウレトジオン、ウレトイミン、イソシアヌレート、オキサジアジントリオン、ポリメチレンポリフェニルポリイソシアネート(クルードMDI、ポリメリックMDI)、クルードTDIなどを挙げることができる。 Examples of the polyisocyanate derivatives include the above-mentioned polyisocyanate dimer, trimer, biuret, allophanate, uretdione, uretimine, isocyanurate, oxadiazinetrione, polymethylene polyphenyl polyisocyanate (crude MDI, polymeric MDI), crude Examples include TDI.
 上記ポリイソシアネート及びその誘導体は、それぞれ単独で用いてもよく又は2種以上併用してもよい。 The above polyisocyanates and their derivatives may be used alone or in combination of two or more.
 脂肪族ジイソシアネートのなかでもヘキサメチレンジイソシアネート系化合物、脂環族ジイソシアネートのなかでも4,4’-メチレンビス(シクロヘキシルイソシアネート)を好適に使用することができる。その中でも特に、付着性、相溶性等の観点から、ヘキサメチレンジイソシアネートの誘導体が最適である。 Among the aliphatic diisocyanates, hexamethylene diisocyanate-based compounds and among the alicyclic diisocyanates, 4,4'-methylenebis(cyclohexyl isocyanate) can be preferably used. Among these, derivatives of hexamethylene diisocyanate are particularly suitable from the viewpoints of adhesion, compatibility, and the like.
 前記ポリイソシアネート化合物(z2)として、上記ポリイソシアネート及びその誘導体と、該ポリイソシアネートと反応し得る、例えば、水酸基、アミノ基などの活性水素基を有する化合物とを、イソシアネート基過剰の条件で反応させてなるプレポリマーを使用してもよい。該ポリイソシアネートと反応し得る化合物としては、例えば、多価アルコール、低分子量ポリエステル樹脂、アミン、水等が挙げられる。 As the polyisocyanate compound (z2), the polyisocyanate and its derivatives are reacted with a compound having an active hydrogen group such as a hydroxyl group or an amino group, which can react with the polyisocyanate, under conditions where there are an excess of isocyanate groups. A prepolymer consisting of: Examples of compounds that can react with the polyisocyanate include polyhydric alcohols, low molecular weight polyester resins, amines, and water.
 また、ポリイソシアネート化合物(z2)として、上記ポリイソシアネート及びその誘導体中のイソシアネート基をブロック剤でブロックした化合物であるブロック化ポリイソシアネート化合物を使用することもできる。 Further, as the polyisocyanate compound (z2), it is also possible to use a blocked polyisocyanate compound, which is a compound in which the isocyanate groups in the above polyisocyanate and its derivatives are blocked with a blocking agent.
 上記ブロック剤としては、例えば、フェノール、クレゾール、キシレノール、ニトロフェノール、エチルフェノール、ヒドロキシジフェニル、ブチルフェノール、イソプロピルフェノール、ノニルフェノール、オクチルフェノール、ヒドロキシ安息香酸メチル等のフェノール系;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピオラクタム等のラクタム系;メタノール、エタノール、プロピルアルコール、ブチルアルコール、アミルアルコール、ラウリルアルコール等の脂肪族アルコール系;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、メトキシメタノール等のエーテル系;ベンジルアルコール、グリコール酸、グリコール酸メチル、グリコール酸エチル、グリコール酸ブチル、乳酸、乳酸メチル、乳酸エチル、乳酸ブチル、メチロール尿素、メチロールメラミン、ジアセトンアルコール、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート等のアルコール系;ホルムアミドオキシム、アセトアミドオキシム、アセトオキシム、メチルエチルケトオキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサンオキシムなどのオキシム系;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセト酢酸メチル、アセチルアセトン等の活性メチレン系;ブチルメルカプタン、t-ブチルメルカプタン、ヘキシルメルカプタン、t-ドデシルメルカプタン、2-メルカプトベンゾチアゾール、チオフェノール、メチルチオフェノール、エチルチオフェノール等のメルカプタン系;アセトアニリド、アセトアニシジド、アセトトルイド、アクリルアミド、メタクリルアミド、酢酸アミド、ステアリン酸アミド、ベンズアミド等の酸アミド系;コハク酸イミド、フタル酸イミド、マレイン酸イミド等のイミド系;ジフェニルアミン、フェニルナフチルアミン、キシリジン、N-フェニルキシリジン、カルバゾール、アニリン、ナフチルアミン、ブチルアミン、ジブチルアミン、ブチルフェニルアミン等のアミン系;イミダゾール、2-エチルイミダゾール等のイミダゾール系;尿素、チオ尿素、エチレン尿素、エチレンチオ尿素、ジフェニル尿素等の尿素系;N-フェニルカルバミン酸フェニル等のカルバミン酸エステル系;エチレンイミン、プロピレンイミン等のイミン系;重亜硫酸ソーダ、重亜硫酸カリ等の亜硫酸塩系;アゾール系の化合物等が挙げられる。上記アゾール系の化合物としては、ピラゾール、3,5-ジメチルピラゾール、3-メチルピラゾール、4-ベンジル-3,5-ジメチルピラゾール、4-ニトロ-3,5-ジメチルピラゾール、4-ブロモ-3,5-ジメチルピラゾール、3-メチル-5-フェニルピラゾール等のピラゾール又はピラゾール誘導体;イミダゾール、ベンズイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール等のイミダゾールまたはイミダゾール誘導体;2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾリン誘導体等が挙げられる。 Examples of the blocking agent include phenols such as phenol, cresol, xylenol, nitrophenol, ethylphenol, hydroxydiphenyl, butylphenol, isopropylphenol, nonylphenol, octylphenol, and methyl hydroxybenzoate; ε-caprolactam, δ-valerolactam, Lactams such as γ-butyrolactam and β-propiolactam; aliphatic alcohols such as methanol, ethanol, propyl alcohol, butyl alcohol, amyl alcohol, lauryl alcohol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono Ethers such as butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, methoxymethanol; benzyl alcohol, glycolic acid, methyl glycolate, ethyl glycolate, butyl glycolate, lactic acid, methyl lactate, ethyl lactate, lactic acid Alcohols such as butyl, methylol urea, methylol melamine, diacetone alcohol, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate; formamide oxime, acetamid oxime, acetoxime, methyl ethyl ketoxime, diacetyl monoxime, benzophenone oxime, cyclohexane oxime, etc. Oxime series; active methylene series such as dimethyl malonate, diethyl malonate, ethyl acetoacetate, methyl acetoacetate, acetylacetone; butyl mercaptan, t-butyl mercaptan, hexyl mercaptan, t-dodecyl mercaptan, 2-mercaptobenzothiazole, thio Mercaptans such as phenol, methylthiophenol and ethylthiophenol; acidamides such as acetanilide, acetanisidide, acetotoluide, acrylamide, methacrylamide, acetamide, stearamide and benzamide; succinimide, phthalimide, maleimide, etc. imide series; amine series such as diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine, butylphenylamine; imidazole series such as imidazole, 2-ethylimidazole; urea, thio Urea types such as urea, ethylene urea, ethylene thiourea, and diphenyl urea; Carbamate ester types such as phenyl N-phenylcarbamate; Imine types such as ethylene imine and propylene imine; Sulfite types such as sodium bisulfite and potassium bisulfite. ; Examples include azole compounds. Examples of the azole compounds include pyrazole, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-benzyl-3,5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, 4-bromo-3, Pyrazole or pyrazole derivatives such as 5-dimethylpyrazole, 3-methyl-5-phenylpyrazole; imidazole or imidazole derivatives such as imidazole, benzimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole; 2-methylimidazoline and imidazoline derivatives such as 2-phenylimidazoline.
 ブロック化を行なう(ブロック剤を反応させる)にあたっては、任意選択で溶剤を添加して行なうことができる。 When blocking (reacting the blocking agent), a solvent can be optionally added.
 ポリイソシアネート化合物(z2)は、それぞれ単独で又は2種以上を組み合わせて使用することができる。 The polyisocyanate compounds (z2) can be used alone or in combination of two or more.
 クリヤ塗料組成物(Z)において、ポリイソシアネート化合物(z2)のイソシアネート基の合計molと、水酸基含有アクリル樹脂(z1)の水酸基の合計molとの当量比(NCO/OH)は、付着性等の優れた塗膜性能を示す複層塗膜を形成する観点から、0.70~1.50の範囲内であることが好ましく、0.75~1.40の範囲内であることがより好ましく、0.8~1.20の範囲内であることがさらに好ましい。 In the clear coating composition (Z), the equivalent ratio (NCO/OH) between the total mol of isocyanate groups of the polyisocyanate compound (z2) and the total mol of hydroxyl groups of the hydroxyl group-containing acrylic resin (z1) is determined by From the viewpoint of forming a multilayer coating film exhibiting excellent coating performance, it is preferably within the range of 0.70 to 1.50, more preferably within the range of 0.75 to 1.40, More preferably, it is within the range of 0.8 to 1.20.
 クリヤ塗料組成物(Z)には、任意選択で、水、有機溶剤等の溶媒、水酸基含有アクリル樹脂(z1)以外の樹脂、ポリイソシアネート化合物(z2)以外の硬化剤、硬化触媒、消泡剤、紫外線吸収剤、レオロジーコントロール剤、沈降防止剤等の塗料用添加剤を適宜配合することができる。 The clear coating composition (Z) optionally contains a solvent such as water and an organic solvent, a resin other than the hydroxyl group-containing acrylic resin (z1), a curing agent other than the polyisocyanate compound (z2), a curing catalyst, and an antifoaming agent. , ultraviolet absorbers, rheology control agents, antisettling agents, and other paint additives may be appropriately blended.
 クリヤ塗料組成物(Z)には、塗膜の透明性を損なわない範囲内において、着色顔料を適宜使用することができる。着色顔料としては、インク用又は塗料用としてそれ自体既知の顔料を単独で又は2種以上を組合せて使用することができる。その配合量は、使用される着色顔料の種類等により異なるが、クリヤ塗料組成物(Z)の樹脂成分の固形分総量に対して、通常、30質量%以下、好ましくは0.05~20質量%、より好ましくは0.1~10質量%の範囲内とすることができる。 In the clear coating composition (Z), color pigments can be used as appropriate within the range that does not impair the transparency of the coating film. As the coloring pigment, pigments known per se for use in inks or paints can be used alone or in combination of two or more. The blending amount varies depending on the type of coloring pigment used, etc., but is usually 30% by mass or less, preferably 0.05 to 20% by mass, based on the total solid content of the resin component of the clear paint composition (Z). %, more preferably within the range of 0.1 to 10% by weight.
 クリヤ塗料組成物(Z)は、静電塗装、エアスプレー、エアレススプレー等の方法により塗装することができ、クリヤ塗膜の膜厚は、硬化塗膜に基づいて10~60μm程度、より好ましくは15~50μm、さらに好ましくは20~40μm程度である。 The clear coating composition (Z) can be applied by electrostatic coating, air spraying, airless spraying, etc., and the thickness of the clear coating film is preferably about 10 to 60 μm based on the cured coating film. The thickness is about 15 to 50 μm, more preferably about 20 to 40 μm.
 クリヤ塗料組成物(Z)の固形分含有率は10~65質量%、好ましくは15~55質量%、さらに好ましくは20~50質量%の範囲内である。クリヤ塗料組成物(Z)の粘度を、塗装に適した範囲、通常、フォードカップNo.4粘度計において、20℃で好ましくは15~60秒程度、特に好ましくは20~50秒程度の範囲内となるように、水及び/又は有機溶剤を用いて、適宜、調整しておく。 The solid content of the clear coating composition (Z) is within the range of 10 to 65% by mass, preferably 15 to 55% by mass, and more preferably 20 to 50% by mass. The viscosity of the clear paint composition (Z) is adjusted to a range suitable for painting, usually Ford Cup No. Using water and/or an organic solvent, adjust as appropriate so that the time is preferably within the range of about 15 to 60 seconds, particularly preferably about 20 to 50 seconds, at 20° C. using a viscometer.
 工程(3)
 本発明の複層塗膜形成方法によれば、次に、前記工程(1)で形成される光輝性塗膜及び前記工程(2)で形成されるクリヤ塗膜を別々に又は同時に加熱することによって、硬化させる。
Process (3)
According to the method for forming a multilayer coating film of the present invention, next, the glitter coating film formed in the step (1) and the clear coating film formed in the step (2) are heated separately or simultaneously. to harden it.
 加熱手段は、例えば、熱風加熱、赤外線加熱、高周波加熱等により行うことができる。加熱温度は、80~160℃が好ましく、100~140℃がより好ましい。加熱時間は、10~60分間が好ましく、15~40分間がより好ましい。任意選択で、前記加熱硬化を行う前に、プレヒート、エアブロー等により、好ましくは約50~約110℃、より好ましくは約60~約90℃の温度で1~60分間程度、直接的又は間接的に加熱を行ってもよい。 The heating means can be, for example, hot air heating, infrared heating, high frequency heating, etc. The heating temperature is preferably 80 to 160°C, more preferably 100 to 140°C. The heating time is preferably 10 to 60 minutes, more preferably 15 to 40 minutes. Optionally, before performing the heat curing, directly or indirectly, for about 1 to 60 minutes, preferably at a temperature of about 50 to about 110 °C, more preferably about 60 to about 90 °C, by preheating, air blowing, etc. Heating may be performed.
 本発明は以下の実施形態も包含する。
項1. 
 下記の工程(1)~(3):
 工程(1):被塗物上に、インジウム粒子(y1)を含有する光輝性塗料組成物(Y)を塗装して、光輝性塗膜を形成する工程、
 工程(2):工程(1)で得られる光輝性塗膜上に、水酸基含有アクリル樹脂(z1)及びポリイソシアネート化合物(z2)を含有するクリヤ塗料組成物(Z)を塗装して、クリヤ塗膜を形成する工程、及び
 工程(3):前記工程(1)で形成される光輝性塗膜及び前記工程(2)で形成されるクリヤ塗膜を別々に又は同時に加熱することによって、硬化させる工程、を含む複層塗膜形成方法であって、
 前記水酸基含有アクリル樹脂(z1)の水酸基価が10~75mgKOH/gの範囲内である、複層塗膜形成方法。
項2.
 光輝性塗料組成物(Y)が、さらに水酸基含有樹脂(y2)を含有する、項1に記載の複層塗膜形成方法。
項3.
 光輝性塗料組成物(Y)が、さらにメラミン樹脂(y3)を含有する、項1又は2記載の複層塗膜形成方法。
項4.
 クリヤ塗料組成物(Z)において、ポリイソシアネート化合物(z2)のイソシアネート基の合計molと、水酸基含有アクリル樹脂(z1)の水酸基の合計molとの当量比(NCO/OH)が、0.7~1.5の範囲内である項1~3のいずれか1項に記載の複層塗膜形成方法。
項5.
 光輝性塗料組成物(Y)におけるインジウム粒子(y1)の含有量は、光輝性塗料組成物(Y)の固形分100質量部を基準として、50質量部以上である項1~4のいずれか1項に記載の複層塗膜形成方法。
項6.
 水酸基含有樹脂(y2)の含有量が、光輝性塗料組成物(Y)の固形分100質量部を基準として、0.1~15質量部の範囲内である項1~5のいずれか1項に記載の複層塗膜形成方法。
項7.
 水酸基含有樹脂(y2)が、水酸基含有アクリル樹脂(y2-1)を含有する、項6に記載の複層塗膜形成方法。
項8.
 メラミン樹脂(y3)の含有量が、光輝性塗料組成物(Y)の固形分100質量部を基準として、0.1~10質量部の範囲内である項3に記載の複層塗膜形成方法。
項9.
 光輝性塗料組成物(Y)が、さらに表面調整剤を含有する項1~8のいずれか1項記載の複層塗膜形成方法。
項10.
 表面調整剤がフッ素系表面調整剤を含む項9に記載の複層塗膜形成方法。
項11.
 表面調整剤の含有量が、光輝性塗料組成物(Y)の固形分100質量部を基準として、0.01~0.2質量部の範囲内である項9又は10に記載の複層塗膜形成方法。
項12.
 光輝性塗料組成物(Y)が、さらに有機溶剤を含有する項1~11のいずれか1項に記載の複層塗膜形成方法。
項13.
 有機溶剤の含有量が、光輝性塗料組成物(Y)の固形分100質量部を基準として、85~99.9質量部の範囲内である項12に記載の複層塗膜形成方法。
項14.
 光輝性塗膜の固形分含有率は、0.1~15質量%である項1~13のいずれか1項に記載の複層塗膜形成方法。
項15.
 光輝性塗膜の硬化膜厚が0.01~2μmである項1~14のいずれか1項に記載の複層塗膜形成方法。
項16.
 前記被塗物が、自動車車体の外板部及び自動車部品を含む項1~15のいずれか1項に記載の複層塗膜形成方法。
The present invention also includes the following embodiments.
Item 1.
The following steps (1) to (3):
Step (1): a step of coating a glittering paint composition (Y) containing indium particles (y1) on the object to be coated to form a glittering coating film;
Step (2): A clear coating composition (Z) containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied onto the glitter coating film obtained in step (1) to form a clear coating. Step (3) of forming a film: Curing the glitter coating formed in step (1) and the clear coating formed in step (2) by heating them separately or simultaneously. A method for forming a multilayer coating film, comprising the steps of:
A method for forming a multilayer coating film, wherein the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 10 to 75 mgKOH/g.
Item 2.
Item 2. The method for forming a multilayer coating according to Item 1, wherein the glitter coating composition (Y) further contains a hydroxyl group-containing resin (y2).
Item 3.
Item 3. The method for forming a multilayer coating according to item 1 or 2, wherein the glitter coating composition (Y) further contains a melamine resin (y3).
Item 4.
In the clear coating composition (Z), the equivalent ratio (NCO/OH) of the total mol of isocyanate groups of the polyisocyanate compound (z2) to the total mol of hydroxyl groups of the hydroxyl group-containing acrylic resin (z1) is 0.7 to The method for forming a multilayer coating film according to any one of Items 1 to 3, which is within the range of 1.5.
Item 5.
Any of Items 1 to 4, wherein the content of indium particles (y1) in the glitter paint composition (Y) is 50 parts by mass or more based on 100 parts by mass of solid content of the glitter paint composition (Y). The method for forming a multilayer coating film according to item 1.
Item 6.
Any one of items 1 to 5, wherein the content of the hydroxyl group-containing resin (y2) is within the range of 0.1 to 15 parts by mass based on 100 parts by mass of the solid content of the glitter coating composition (Y). The method for forming a multilayer coating film described in .
Section 7.
Item 7. The multilayer coating film forming method according to item 6, wherein the hydroxyl group-containing resin (y2) contains a hydroxyl group-containing acrylic resin (y2-1).
Section 8.
Forming a multilayer coating according to Item 3, wherein the content of the melamine resin (y3) is within the range of 0.1 to 10 parts by mass based on 100 parts by mass of the solid content of the glitter coating composition (Y). Method.
Item 9.
Item 9. The method for forming a multilayer coating film according to any one of Items 1 to 8, wherein the glitter coating composition (Y) further contains a surface conditioner.
Item 10.
10. The method for forming a multilayer coating film according to item 9, wherein the surface conditioning agent contains a fluorine-based surface conditioning agent.
Item 11.
Item 11. The multilayer coating according to Item 9 or 10, wherein the content of the surface conditioner is within the range of 0.01 to 0.2 parts by mass based on 100 parts by mass of the solid content of the glitter coating composition (Y). Film formation method.
Item 12.
Item 12. The method for forming a multilayer coating film according to any one of Items 1 to 11, wherein the glitter coating composition (Y) further contains an organic solvent.
Item 13.
Item 13. The method for forming a multilayer coating film according to item 12, wherein the content of the organic solvent is within the range of 85 to 99.9 parts by mass based on 100 parts by mass of solid content of the glitter coating composition (Y).
Section 14.
Item 14. The method for forming a multilayer coating film according to any one of Items 1 to 13, wherein the bright coating film has a solid content of 0.1 to 15% by mass.
Item 15.
Item 15. The method for forming a multilayer coating film according to any one of Items 1 to 14, wherein the cured film thickness of the glitter coating film is 0.01 to 2 μm.
Section 16.
Item 16. The method for forming a multilayer coating film according to any one of Items 1 to 15, wherein the object to be coated includes an outer panel of an automobile body and an automobile part.
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、「部」及び「%」はいずれも質量基準によるものである。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited only to these examples. Note that both "parts" and "%" are based on mass.
1.基材の作製
 脱脂及びりん酸亜鉛処理した鋼板(JISG3141、大きさ400mm×300mm×0.8mm)にカチオン電着塗料「エレクロンGT-10」(商品名:関西ペイント株式会社製、エポキシ樹脂ポリアミン系カチオン樹脂に硬化剤としてブロックポリイソシアネート化合物を使用したもの)を硬化塗膜に基づいて膜厚が20μmになるように電着塗装し、170℃で20分間加熱して架橋硬化させ、電着塗膜を形成せしめた。
1. Preparation of base material A cationic electrodeposition paint "Electron GT-10" (trade name: Kansai Paint Co., Ltd., epoxy resin polyamine type) was applied to a degreased and zinc phosphate treated steel plate (JIS G3141, size 400 mm x 300 mm x 0.8 mm) A cationic resin using a block polyisocyanate compound as a curing agent) was electrodeposited to a film thickness of 20 μm based on the cured coating, heated at 170°C for 20 minutes to crosslink and cure, and then electrodeposited. A film was formed.
 得られた上記鋼板の電着塗面に、「TP-65-2」(商品名、関西ペイント株式会社製、ポリエステル樹脂及びアミノ樹脂系有機溶剤型中塗り塗料組成物)を、回転霧化型の静電塗装機を用いて、硬化膜厚35μmとなるように静電塗装し、140℃で30分間加熱して硬化させ、中塗り塗膜を形成せしめることにより、被塗物とした。 "TP-65-2" (trade name, manufactured by Kansai Paint Co., Ltd., a polyester resin and amino resin-based organic solvent type intermediate coating composition) was applied to the electrodeposited surface of the obtained steel plate using a rotary atomization method. Using an electrostatic coating machine, electrostatic coating was applied so that the cured film thickness was 35 μm, and the coating was cured by heating at 140° C. for 30 minutes to form an intermediate coating film, thereby preparing a coated object.
2.塗料の作製
 水酸基含有アクリル樹脂(y2-1)の製造
 製造例1
 温度計、サーモスタット、撹拌装置、還流冷却器、窒素導入管及び滴下装置を備えた反応容器に「スワゾール1000」(商品名、丸善石油化学株式会社製、芳香族石油系溶剤)22部及び酢酸ブチル10部を仕込み、125℃に昇温後、同温度にて、2-ヒドロキシエチルアクリレート17部、スチレン25部、n―ブチルアクリレート8部、イソブチルメタクリレート34.35部、2-エチルヘキシルアクリレート15部、アクリル酸0.65部及びジ-tert-アミルパーオキサイド(重合開始剤)1部及び「スワゾール1000」20部からなるモノマー混合物を3時間かけて滴下し、滴下終了後2時間熟成した。次いで、追加触媒として、ジ-tert-アミルパーオキサイド0.5部及び「スワゾール1000」8部からなる混合溶液を1時間かけて滴下し、滴下終了後、125℃で1時間保持して固形分60%の水酸基含有アクリル樹脂溶液(y2-1)を得た。得られた水酸基含有アクリル樹脂(y2-1-1)は水酸基価が82mgKOH/g、酸価が5mgKOH/g、重量平均分子量が28,000、ガラス転移温度17℃であった。
2. Preparation of paint Production of hydroxyl group-containing acrylic resin (y2-1) Production example 1
In a reaction vessel equipped with a thermometer, a thermostat, a stirring device, a reflux condenser, a nitrogen inlet tube, and a dropping device, 22 parts of "Swazol 1000" (trade name, manufactured by Maruzen Petrochemical Co., Ltd., aromatic petroleum solvent) and butyl acetate were added. After charging 10 parts and raising the temperature to 125°C, at the same temperature, 17 parts of 2-hydroxyethyl acrylate, 25 parts of styrene, 8 parts of n-butyl acrylate, 34.35 parts of isobutyl methacrylate, 15 parts of 2-ethylhexyl acrylate, A monomer mixture consisting of 0.65 parts of acrylic acid, 1 part of di-tert-amyl peroxide (polymerization initiator), and 20 parts of "Swazol 1000" was added dropwise over 3 hours, and the mixture was aged for 2 hours after the addition was completed. Next, as an additional catalyst, a mixed solution consisting of 0.5 part of di-tert-amyl peroxide and 8 parts of "Swazol 1000" was added dropwise over 1 hour, and after the addition was completed, the solid content was maintained at 125°C for 1 hour. A 60% hydroxyl group-containing acrylic resin solution (y2-1) was obtained. The obtained hydroxyl group-containing acrylic resin (y2-1-1) had a hydroxyl value of 82 mgKOH/g, an acid value of 5 mgKOH/g, a weight average molecular weight of 28,000, and a glass transition temperature of 17°C.
 光輝性塗料組成物(Y)の製造
 製造例2
 攪拌混合容器に、「リーフパウダー 49CJ-1120」(商品名、尾池工業株式会社製、インジウム粒子、固形分20%、プロピレングリコールモノメチルエーテルに分散)100部(固形分20部)、「LE-605」(商品名、共栄社化学株式会社製、フッ素系表面調整剤、固形分30%)0.27部(固形分0.08部)、水酸基含有アクリル樹脂(y2-1-1)2.3部(固形分1.4部)、「サイメル327」(商品名、Allnex社製、イミノ基含有メラミン樹脂、固形部90%)0.66部(固形分0.59)及びプロピレングリコールモノメチルエーテル1701部を添加して攪拌混合し、固形分含有率が1.2質量%の光輝性塗料組成物(Y-1)を製造した。
Production example 2 of glittering paint composition (Y)
In a stirring mixing container, 100 parts of "Leaf Powder 49CJ-1120" (trade name, manufactured by Oike Kogyo Co., Ltd., indium particles, solid content 20%, dispersed in propylene glycol monomethyl ether) (solid content 20 parts), "LE- 605" (trade name, manufactured by Kyoeisha Chemical Co., Ltd., fluorine-based surface conditioner, solid content 30%) 0.27 parts (solid content 0.08 parts), hydroxyl group-containing acrylic resin (y2-1-1) 2.3 (solid content 1.4 parts), "Cymel 327" (trade name, manufactured by Allnex, imino group-containing melamine resin, solid content 90%) 0.66 parts (solid content 0.59), and propylene glycol monomethyl ether 1701 1.0 parts were added and mixed with stirring to produce a glitter coating composition (Y-1) with a solids content of 1.2% by mass.
 製造例3~9
 表1に記載の配合及び固形分含有率とする以外は全て製造例2と同様にして光輝性塗料組成物(Y-2)~(Y-8)を得た。
Production examples 3 to 9
Glitter coating compositions (Y-2) to (Y-8) were obtained in the same manner as in Production Example 2 except that the formulation and solid content were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(*1)「METALURE L-71011AE」:商品名、エカルト社製、蒸着アルミニウムフレーク顔料、固形分10%、酢酸エチルに分散。 (*1) "METALURE L-71011AE": Trade name, manufactured by Ecart, vapor-deposited aluminum flake pigment, solid content 10%, dispersed in ethyl acetate.
 水酸基含有アクリル樹脂(z1)の製造
 製造例10
 温度計、サーモスタット、撹拌装置、還流冷却器、窒素導入管及び滴下装置を備えた反応容器に、「スワゾール1000」(商品名、コスモ石油株式会社製、芳香族系有機溶剤)27部及びプロピレングリコールモノメチルエーテルアセテート5部を仕込んだ。反応容器に、窒素ガスを吹き込みながら150℃で仕込み液を攪拌し、この中にスチレン20部、n―ブチルアクリレート10.5部、2-ヒドロキシエチルメタクリレート3.5部、イソブチルメタクリレート50部、2-エチルヘキシルアクリレート15部、アクリル酸1.0部及びジターシャリアミルパーオキサイド(重合開始剤)1.5部からなるモノマー混合物を4時間かけて均一速度で滴下した。その後、150℃で1時間熟成させた後冷却し、さらに酢酸イソブチルを21部加えて希釈し、固形分濃度65質量%の水酸基含有アクリル樹脂(z1-1)溶液を得た。得られた水酸基含有アクリル樹脂(z1-1)は水酸基価が15mgKOH/g、酸価が8mgKOH/g、重量平均分子量が30,000、ガラス転移温度24℃であった。
Production example 10 of hydroxyl group-containing acrylic resin (z1)
In a reaction vessel equipped with a thermometer, thermostat, stirring device, reflux condenser, nitrogen inlet tube, and dropping device, 27 parts of "Swazol 1000" (trade name, manufactured by Cosmo Oil Co., Ltd., aromatic organic solvent) and propylene glycol were added. 5 parts of monomethyl ether acetate were charged. The charge solution was stirred at 150°C while blowing nitrogen gas into the reaction vessel, and 20 parts of styrene, 10.5 parts of n-butyl acrylate, 3.5 parts of 2-hydroxyethyl methacrylate, 50 parts of isobutyl methacrylate, and 2 - A monomer mixture consisting of 15 parts of ethylhexyl acrylate, 1.0 part of acrylic acid, and 1.5 parts of ditertiary amyl peroxide (polymerization initiator) was added dropwise at a uniform rate over 4 hours. Thereafter, the mixture was aged at 150° C. for 1 hour, cooled, and further diluted by adding 21 parts of isobutyl acetate to obtain a hydroxyl group-containing acrylic resin (z1-1) solution with a solid content concentration of 65% by mass. The obtained hydroxyl group-containing acrylic resin (z1-1) had a hydroxyl value of 15 mgKOH/g, an acid value of 8 mgKOH/g, a weight average molecular weight of 30,000, and a glass transition temperature of 24°C.
 製造例11~15
 製造例10において、配合組成を表2に示すものとする以外は、製造例10と同様にして、固形分濃度65質量%の水酸基含有アクリル樹脂(z1-2)~(z1-6)溶液を得た。各水酸基含有アクリル樹脂の酸価、水酸基価、重量平均分子量及びガラス転移温度を表2にあわせて示す。
Production examples 11 to 15
In Production Example 10, a solution of hydroxyl group-containing acrylic resins (z1-2) to (z1-6) with a solid content concentration of 65% by mass was prepared in the same manner as in Production Example 10, except that the composition was as shown in Table 2. Obtained. Table 2 also shows the acid value, hydroxyl value, weight average molecular weight, and glass transition temperature of each hydroxyl group-containing acrylic resin.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 クリヤ塗料組成物(Z-1)の製造
 製造例16
 製造例10で得た水酸基含有アクリル樹脂(z1-1)溶液144.9部(固形分94.2部)、「BYK-300」(商品名、ビックケミー社製、表面調整剤、有効成分52%)0.4部(固形分0.2部)を均一に混合した主剤と、
 硬化剤として、「スミジュールN3300」(商品名、住化コベストロウレタン株式会社製、ヘキサメチレンジイソシアネートのイソシアヌレート体、固形分含有率100%)5.8部(固形分5.8部)とを塗装直前に均一に混合し、さらに、酢酸ブチルを加えて、20℃におけるフォードカップNo.4による粘度が30秒となるように調整してクリヤ塗料組成物(Z-1)を得た。
Manufacturing example 16 of clear paint composition (Z-1)
144.9 parts of the hydroxyl group-containing acrylic resin (z1-1) solution obtained in Production Example 10 (solid content 94.2 parts), "BYK-300" (trade name, manufactured by BYK Chemie Co., Ltd., surface conditioner, active ingredient 52%) ) 0.4 part (solid content 0.2 part) of the base agent uniformly mixed,
As a curing agent, 5.8 parts of "Sumidur N3300" (trade name, manufactured by Sumika Covestro Urethane Co., Ltd., isocyanurate of hexamethylene diisocyanate, solid content 100%) (solid content 5.8 parts) was uniformly mixed immediately before coating, and further, butyl acetate was added, and Ford Cup No. 1 was heated at 20°C. A clear paint composition (Z-1) was obtained by adjusting the viscosity according to No. 4 to 30 seconds.
 製造例17~23
 表3に記載の配合とする以外は全て製造例16と同様にしてクリヤ塗料組成物(Z-2)~(Z-8)を得た。
Production examples 17 to 23
Clear coating compositions (Z-2) to (Z-8) were obtained in the same manner as in Production Example 16 except for using the formulations shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 3.試験板の作成
 試験板の作成
 実施例1
 上記「1.基材の作製」で作製した基材上に、上記「2.塗料の作製」で製造した光輝性塗料組成物(Y-1)をミニベル型回転式静電塗装機を用いて、ブース温度23℃、湿度63%の条件で、硬化塗膜として0.05μmの膜厚となるように塗装し、室温にて15分間放置した後、熱風循環式乾燥炉内にて140℃で30分間加熱し、乾燥硬化せしめて光輝性塗膜を得た。
3. Creation of test board Creation of test board Example 1
The bright paint composition (Y-1) produced in the above "2. Preparation of the paint" was applied onto the base material prepared in the above "1. Preparation of the base material" using a mini-bell type rotary electrostatic coating machine. , under the conditions of a booth temperature of 23°C and humidity of 63%, the cured coating was applied to a film thickness of 0.05 μm, left at room temperature for 15 minutes, and then heated at 140°C in a hot air circulation drying oven. The mixture was heated for 30 minutes to dry and cure to obtain a glitter coating film.
 次いで、上記光輝性塗膜上に、上記「2.塗料の作製」で調整したクリヤ塗料組成物(Z-2)を、ミニベル型回転式静電塗装機を用いて、ブース温度23℃、湿度68%の条件で、硬化塗膜として35μmとなるように塗装し、室温にて7分間放置した後、熱風循環式乾燥炉内にて140℃で30分間加熱し、乾燥硬化せしめて実施例1の試験板を作製した。 Next, the clear paint composition (Z-2) prepared in "2. Preparation of paint" above was applied onto the bright coating film using a mini-bell rotary electrostatic coating machine at a booth temperature of 23°C and humidity. Example 1 A test plate was prepared.
 ここで、光輝性塗膜の乾燥塗膜の膜厚は、下記式から算出した。以下の実施例についても同様である。
x=sc/sg/S*10000
x:膜厚[μm]
sc:塗着固形分[g]
sg:塗膜比重[g/cm
S:塗着固形分の評価面積[cm
Here, the film thickness of the dry coating film of the glitter coating film was calculated from the following formula. The same applies to the following examples.
x=sc/sg/S*10000
x: Film thickness [μm]
sc: Coating solid content [g]
sg: Paint film specific gravity [g/cm 3 ]
S: Evaluation area of coated solid content [cm 2 ]
 実施例2~7、9~13及び比較例1~3
 表4に記載の塗料、膜厚とする以外は全て実施例1と同様にして試験板を得た。
Examples 2-7, 9-13 and Comparative Examples 1-3
A test plate was obtained in the same manner as in Example 1 except that the coating material and film thickness were as shown in Table 4.
 実施例8
 上記「1.基材の作製」で作製した基材上に、上記「2.塗料の作製」で製造した光輝性塗料組成物(Y-2)をミニベル型回転式静電塗装機を用いて、ブース温度23℃、湿度63%の条件で、硬化塗膜として0.1μmの膜厚となるように塗装し、室温にて15分間放置した後、熱風循環式乾燥炉内にて80℃で3分間プレヒートを行い、未硬化の光輝性塗膜を得た。
Example 8
The bright paint composition (Y-2) produced in "2. Preparation of paint" above was applied onto the base material prepared in "1. Preparation of base material" above using a mini-bell type rotary electrostatic coating machine. , under conditions of a booth temperature of 23°C and humidity of 63%, the cured coating was applied to a film thickness of 0.1 μm, left at room temperature for 15 minutes, and then heated to 80°C in a hot air circulation drying oven. Preheating was performed for 3 minutes to obtain an uncured glitter coating film.
 次いで、上記未硬化の光輝性塗膜上に、上記「2.塗料の作製」で調整したクリヤ塗料組成物(Z-2)を、ミニベル型回転式静電塗装機を用いて、ブース温度23℃、湿度68%の条件で、硬化塗膜として35μmとなるように塗装し、室温にて7分間放置した後、熱風循環式乾燥炉内にて140℃で30分間加熱し、光輝性塗膜及びクリヤ塗膜を同時に乾燥硬化せしめて実施例8の試験板を作製した。 Next, the clear paint composition (Z-2) prepared in "2. Preparation of Paint" above was applied onto the uncured glitter coating film using a mini-bell rotary electrostatic coating machine at a booth temperature of 23. ℃ and 68% humidity to give a cured coating film of 35 μm. After leaving it at room temperature for 7 minutes, it was heated at 140℃ for 30 minutes in a hot air circulation drying oven to form a bright coating film. A test plate of Example 8 was prepared by drying and curing the clear coating film and the clear coating film at the same time.
 塗膜評価
 上記のようにして得られた各試験板について、以下の方法で塗膜を評価し、表4にその結果を示した。
Coating film evaluation The coating film of each test plate obtained as described above was evaluated by the following method, and the results are shown in Table 4.
 初期耐水付着性
 試験板を40℃の温水に240時間浸漬し、引き上げ、布で水滴・汚れをふきとり、室温23℃で10分以内に、試験板の複層塗膜を素地に達するようにカッターで格子状に切り込み、大きさ2mm×2mmのゴバン目を100個作る。続いて、その表面に粘着セロハンテープを貼着し、そのテープを急激に剥離した後のゴバン目塗膜の残存状態を調べ、下記基準で耐水付着性を評価した。A及びBが合格である。
A:ゴバン目塗膜が100個残存し、カッターの切り込みの縁において塗膜の小さな縁欠けが生じていない、
B:ゴバン目塗膜が100個残存するが、カッターの切り込みの縁において塗膜の小さな縁欠けが生じており、縁欠けした残存塗膜が10個未満である、
C:ゴバン目塗膜が100個残存するが、カッターの切り込みの縁において塗膜の小さな縁欠けが生じており、縁欠けした残存塗膜が10個以上である、
D:ゴバン目塗膜が90~99個残存する、
E:ゴバン目塗膜の残存数が89個以下である。
Initial water resistance adhesion The test board was immersed in warm water at 40°C for 240 hours, pulled out, wiped with a cloth to remove water droplets and dirt, and within 10 minutes at a room temperature of 23°C, cut the multilayer coating on the test board to reach the substrate. Make 100 goblets of 2mm x 2mm in size by cutting in a grid pattern. Subsequently, an adhesive cellophane tape was attached to the surface, and after the tape was rapidly peeled off, the remaining state of the rough coating film was examined, and the water-resistant adhesion was evaluated according to the following criteria. A and B pass.
A: 100 scratched coatings remain, and there are no small edge chips of the coating at the edges of the cutter's incisions.
B: 100 coating films remain, but small edges of the coating film are chipped at the edges of the cuts of the cutter, and there are less than 10 remaining coating films with chipped edges.
C: 100 coating films remain, but small edges of the coating film are chipped at the edges of the cuts of the cutter, and there are 10 or more remaining coating films with chipped edges.
D: 90 to 99 rough coating films remain.
E: The number of remaining rough coating films is 89 or less.
 促進耐候性試験後の耐水付着性
 促進耐候性試験には、JIS B 7754に規定されたスーパーキセノンウェザオメーター(商品名、スガ試験機株式会社製)を使用し、1時間42分間のキセノンアークランプの照射と18分間の降雨条件における同ランプの照射による2時間を1サイクルとして、2000時間経過後に、上記耐水付着性試験と同様の操作を行った。A、B及びCが合格である。
Water resistance adhesion after accelerated weathering test For the accelerated weathering test, a super xenon weatherometer (trade name, manufactured by Suga Test Instruments Co., Ltd.) specified in JIS B 7754 was used, and a xenon arc was applied for 1 hour and 42 minutes. One cycle consisted of lamp irradiation and 2 hours of irradiation with the same lamp under rain conditions for 18 minutes, and after 2000 hours, the same operation as the above water resistant adhesion test was performed. A, B and C are passed.
 鏡面光沢度(60°グロス)
 光沢計(micro-TRI-gloss、BYK-Gardner社製)を用いて60°グロス値を測定した。値が大きいほうが、金属調光沢に優れていることを表す。280以上を合格とする。
Specular gloss (60° gloss)
The 60° gloss value was measured using a gloss meter (micro-TRI-gloss, manufactured by BYK-Gardner). The larger the value, the better the metallic luster. A score of 280 or higher is considered passing.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上、本発明の実施形態及び実施例について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。 Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention.
 例えば、上述の実施形態及び実施例において挙げた構成、方法、工程、形状、材料及び数値などはあくまでも例に過ぎず、これと異なる構成、方法、工程、形状、材料及び数値などを用いてもよい。 For example, the configurations, methods, processes, shapes, materials, numerical values, etc. mentioned in the above embodiments and examples are merely examples, and different configurations, methods, processes, shapes, materials, numerical values, etc. may be used. good.
 また、上述の実施形態の構成、方法、工程、形状、材料及び数値などは、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。 Further, the configurations, methods, processes, shapes, materials, numerical values, etc. of the above-described embodiments can be combined with each other without departing from the gist of the present invention.

Claims (4)

  1.  下記の工程(1)~(3):
     工程(1):被塗物上に、インジウム粒子(y1)を含有する光輝性塗料組成物(Y)を塗装して、光輝性塗膜を形成する工程、
     工程(2):工程(1)で得られる光輝性塗膜上に、水酸基含有アクリル樹脂(z1)及びポリイソシアネート化合物(z2)を含有するクリヤ塗料組成物(Z)を塗装して、クリヤ塗膜を形成する工程、及び
     工程(3):前記工程(1)で形成される光輝性塗膜及び前記工程(2)で形成されるクリヤ塗膜を別々に又は同時に加熱することによって、硬化させる工程、を含む複層塗膜形成方法であって、
     前記水酸基含有アクリル樹脂(z1)の水酸基価が10~75mgKOH/gの範囲内である、複層塗膜形成方法。
    The following steps (1) to (3):
    Step (1): a step of coating a glittering paint composition (Y) containing indium particles (y1) on the object to be coated to form a glittering coating film;
    Step (2): A clear coating composition (Z) containing a hydroxyl group-containing acrylic resin (z1) and a polyisocyanate compound (z2) is applied onto the glitter coating film obtained in step (1) to form a clear coating. Step (3) of forming a film: Curing the glitter coating formed in step (1) and the clear coating formed in step (2) by heating them separately or simultaneously. A method for forming a multilayer coating film, comprising the steps of:
    A method for forming a multilayer coating film, wherein the hydroxyl value of the hydroxyl group-containing acrylic resin (z1) is within the range of 10 to 75 mgKOH/g.
  2.  光輝性塗料組成物(Y)が、さらに水酸基含有樹脂(y2)を含有する、請求項1に記載の複層塗膜形成方法。 The method for forming a multilayer coating film according to claim 1, wherein the glitter coating composition (Y) further contains a hydroxyl group-containing resin (y2).
  3.  光輝性塗料組成物(Y)が、さらにメラミン樹脂(y3)を含有する、請求項1又は2に記載の複層塗膜形成方法。 The method for forming a multilayer coating film according to claim 1 or 2, wherein the glitter coating composition (Y) further contains a melamine resin (y3).
  4.  クリヤ塗料組成物(Z)において、ポリイソシアネート化合物(z2)のイソシアネート基の合計molと、水酸基含有アクリル樹脂(z1)の水酸基の合計molとの当量比(NCO/OH)が、0.7~1.5の範囲内である請求項1~3のいずれか1項に記載の複層塗膜形成方法。 In the clear coating composition (Z), the equivalent ratio (NCO/OH) of the total mol of isocyanate groups of the polyisocyanate compound (z2) to the total mol of hydroxyl groups of the hydroxyl group-containing acrylic resin (z1) is 0.7 to The method for forming a multilayer coating film according to any one of claims 1 to 3, which is within the range of 1.5.
PCT/JP2023/030220 2022-08-24 2023-08-23 Method for forming multilayered coating film WO2024043248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022132870 2022-08-24
JP2022-132870 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024043248A1 true WO2024043248A1 (en) 2024-02-29

Family

ID=90013418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030220 WO2024043248A1 (en) 2022-08-24 2023-08-23 Method for forming multilayered coating film

Country Status (1)

Country Link
WO (1) WO2024043248A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159217A (en) * 2016-03-08 2017-09-14 関西ペイント株式会社 Multi-layered coating film formation method
JP2018061939A (en) * 2016-10-13 2018-04-19 関西ペイント株式会社 Bilayer film formation method
JP2018126711A (en) * 2017-02-10 2018-08-16 東ソー株式会社 Multilayer coating film forming method
JP2020132998A (en) * 2019-02-21 2020-08-31 尾池工業株式会社 Flaky indium particle, method of manufacturing the same, luminous pigment, aqueous coating material, aqueous ink, and coated film
WO2022244483A1 (en) * 2021-05-18 2022-11-24 関西ペイント株式会社 Multilayer coating film-forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159217A (en) * 2016-03-08 2017-09-14 関西ペイント株式会社 Multi-layered coating film formation method
JP2018061939A (en) * 2016-10-13 2018-04-19 関西ペイント株式会社 Bilayer film formation method
JP2018126711A (en) * 2017-02-10 2018-08-16 東ソー株式会社 Multilayer coating film forming method
JP2020132998A (en) * 2019-02-21 2020-08-31 尾池工業株式会社 Flaky indium particle, method of manufacturing the same, luminous pigment, aqueous coating material, aqueous ink, and coated film
WO2022244483A1 (en) * 2021-05-18 2022-11-24 関西ペイント株式会社 Multilayer coating film-forming method

Similar Documents

Publication Publication Date Title
EP3330009B1 (en) Multi-layer coating film formation method
JP6180497B2 (en) Copolymer, aqueous coating composition containing the copolymer, and method for forming a multilayer coating film
US10208148B2 (en) Adhesion promoters for aqueous coating compositions
JP5491865B2 (en) Water-based coating composition and multilayer coating film forming method
JP5583031B2 (en) Multi-layer coating formation method
JP6392801B2 (en) Multi-layer coating formation method
WO2017135426A1 (en) Multi-layered coating film and multi-layered coating film formation method
JP7213085B2 (en) Multilayer coating film forming method
WO2013176266A1 (en) Water-based coating composition, method for forming multi-layer coating film, and article having multi-layer coating film
JP6851329B2 (en) A water-based base coat coating containing a bright pigment and a method for forming a multi-layer coating film using the same.
WO2017111112A1 (en) Multilayer coating film forming method
WO2010119969A1 (en) Base coat paint composition
JP2019198861A (en) Multi-layer coating film forming method
WO2021095760A1 (en) Aqueous coating composition, coated article, and method for forming multilayer coating film
JP2019195791A (en) Forming method of multilayer coating film
JP7263629B1 (en) Multilayer coating film forming method
WO2019181990A1 (en) Multi-layer coating film formation method
WO2012033079A1 (en) Copolymer, water-based coating composition containing same, and method for forming multilayered coating film
JP6654331B2 (en) Multilayer coating method
JP5603177B2 (en) Copolymer, aqueous coating composition containing the copolymer, and method for forming a multilayer coating film
WO2022107847A1 (en) Coating composition having high solid content and method for forming multilayer coating film
WO2024043248A1 (en) Method for forming multilayered coating film
JP6957783B1 (en) Multi-layer coating film forming method
JP2023163198A (en) Multitiered paint film forming method
WO2016121239A1 (en) Method for forming multilayer coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024542832

Country of ref document: JP

Kind code of ref document: A