[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024042762A1 - ヘッドアップディスプレイ装置および映像データの処理方法 - Google Patents

ヘッドアップディスプレイ装置および映像データの処理方法 Download PDF

Info

Publication number
WO2024042762A1
WO2024042762A1 PCT/JP2023/013029 JP2023013029W WO2024042762A1 WO 2024042762 A1 WO2024042762 A1 WO 2024042762A1 JP 2023013029 W JP2023013029 W JP 2023013029W WO 2024042762 A1 WO2024042762 A1 WO 2024042762A1
Authority
WO
WIPO (PCT)
Prior art keywords
video data
display
video
head
display device
Prior art date
Application number
PCT/JP2023/013029
Other languages
English (en)
French (fr)
Inventor
望 下田
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022132215A external-priority patent/JP2024029820A/ja
Priority claimed from JP2022156842A external-priority patent/JP2024050167A/ja
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2024042762A1 publication Critical patent/WO2024042762A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a head-up display device and a video data processing method, and for example, to a technology for a head-up display device that utilizes AR (Augmented Reality).
  • AR Augmented Reality
  • Patent Document 1 discloses a display system that extracts an object to be displayed in AR based on imaging data, generates AR image data of the object, and sets the frame rate of the AR image data based on the importance of the object. is shown. For example, if the overall frame rate is 60 fps and three pieces of AR image data are displayed in a time-sharing manner, the frame rates of the three pieces of AR image data are set to 30 fps, 20 fps, and 10 fps in order according to their importance. Ru. Thereby, flicker can be suppressed for AR image data with a higher degree of importance.
  • a head-up display device prepares various video data based on information acquired from ADAS (Advanced Driver Assistance Systems), etc., and projects video light based on the video data onto a display area to make it visible as a virtual image.
  • the preparation time required to prepare the video data varies depending on the type and number of videos, the size of the video depending on the virtual image distance, the display format such as 2D/3D, and the presence or absence of graphics effects. Change.
  • the head-up display device is also referred to as a HUD device.
  • processing performance such as maximum frame rate is usually fixedly determined mainly based on hardware specifications.
  • the required display specifications of the HUD device often involve an increase in processing load.
  • the processing performance of the hardware is insufficient, and there is a risk that required display specifications may not be met, such as frame drops occurring during AR display, for example.
  • the present invention has been made in view of the above, and one of its purposes is to satisfy the required display specifications as much as possible within the processing performance of the hardware, and to be flexible to various display specifications.
  • An object of the present invention is to provide a head-up display device and a video data processing method that can handle this.
  • a typical head-up display device includes a video display section that displays an image and emits the image light of the displayed image, and a display area that projects the emitted image light onto a display area to create a virtual image using the projected image light.
  • a control unit that determines display content based on the image light projection unit for visual recognition, the acquired information about the vehicle, prepares video data based on the determined display content, and displays an image based on the prepared video data on the video display unit. It is equipped with a section and a section. The control unit performs control to reduce the processing load necessary for preparing the video data so that the preparation of the video data is completed within a predetermined processing cycle. Alternatively, if the preparation time required to prepare the video data of the tentatively determined display content before determining the display content is longer than the predetermined processing cycle, the control unit changes the tentatively determined display content.
  • FIG. 1 is a schematic diagram showing a configuration example of a vehicle equipped with a head-up display device according to a first embodiment
  • FIG. FIG. 2 is a schematic diagram showing a configuration example of main parts of the HUD device in FIG. 1.
  • FIG. 2A is a schematic diagram showing a configuration example of a main part of the HUD device in FIG. 1, which is different from that in FIG. 2A.
  • FIG. FIG. 2 is a block diagram showing a configuration example of a main part of a control system responsible for control in the HUD device shown in FIGS. 2A and 2B.
  • 3A is a block diagram showing a configuration example of a main part of a control system responsible for control in the HUD device shown in FIGS. 2A and 2B, which is different from that shown in FIG.
  • FIG. 3A is a diagram showing an example of an internal state of the control unit shown in FIG. 3A.
  • FIG. 3A and FIG. 3B are block diagrams showing an example of the configuration of parts related to the control unit.
  • 2 is a schematic diagram showing an example of display contents of the HUD device shown in FIG. 1.
  • FIG. 3A is a flow diagram showing an example of a processing procedure when displaying a video in the HUD device shown in FIG. 3A.
  • FIG. 7 is a timing chart schematically showing an example of a problem when displaying a video using the flow shown in FIG. 6.
  • FIG. FIG. 7 is a schematic diagram showing how display content changes when no frames are dropped.
  • FIG. 3 is a schematic diagram showing how display content changes when a frame is dropped.
  • 3A is a diagram showing an example of an internal state of the control unit shown in FIG. 3A.
  • FIG. 3A is a diagram showing an example of a result of monitoring preparation time by the control unit shown in FIG. 3A.
  • FIG. 10 is a schematic diagram showing an example of display contents of the HUD device in the normal state shown in FIG. 9.
  • FIG. 10 is a schematic diagram showing an example of display contents of the HUD device in the suppression transition state shown in FIG. 9.
  • FIG. 10 is a schematic diagram showing an example of display content of the HUD device in the suppressed state shown in FIG. 9.
  • FIG. 3B is a flow diagram showing an example of processing contents of the control unit shown in FIG. 3A.
  • FIG. 3 is a schematic diagram showing an example of the relationship between video data written to a frame buffer and display content displayed on a video display section in the HUD device shown in FIGS. 3A and 3B.
  • FIG. 13A is a schematic diagram showing an example of a relationship different from that in FIG. 13A.
  • FIG. 6 it is a diagram showing an example of items that affect the preparation time of video data.
  • FIG. 7 is a flow diagram illustrating an example of a processing procedure when displaying a video in the HUD device according to the second embodiment.
  • 16 is a flow diagram showing an example of detailed processing contents of display content adjustment processing in FIG. 15.
  • FIG. 17 is a diagram showing a specific example of the preparation time prediction method (step S412) in FIG. 16.
  • FIG. FIG. 17A is a diagram showing a specific example different from FIG. 17A. 17 is a diagram illustrating an example of a method of changing display content (step S414) in FIG. 16.
  • FIG. 19 is a schematic diagram showing an example of the display content of the HUD device obtained as a result of changing the display content in FIG. 18; 17 is a timing chart when displaying video using the flows shown in FIGS. 15 and 16.
  • FIG. FIG. 7 is a schematic diagram showing an example of main processing contents of a control unit in a HUD device according to a third embodiment.
  • FIG. 21A is a supplementary diagram of FIG. 21A.
  • FIG. 21A is a schematic diagram showing an example different from FIG. 21A.
  • FIG. 22A is a supplementary diagram of FIG. 22A.
  • FIG. 7 is a diagram illustrating a configuration example of a display setting table stored in a control unit in a HUD device according to a third embodiment.
  • FIG. 7 is a flow diagram showing an example of processing contents of a control unit in a HUD device according to a third embodiment.
  • FIG. 24A is a flow diagram illustrating an example of processing content different from that in FIG. 24A.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a vehicle equipped with a head-up display device according to a first embodiment.
  • a head-up display (HUD) device 1 shown in FIG. 1 is mounted on a vehicle 2, which is one of the vehicles.
  • the vehicle 2 is typically an automobile, but is not necessarily limited to this, and may be a railway vehicle or the like. Further, the vehicle is not limited to a vehicle, but may be an aircraft or the like.
  • the vehicle 2 is equipped with a control unit 21 called an ECU (Electronic Control Unit), for example.
  • ECU Electronic Control Unit
  • the control unit 21 acquires vehicle information 4 from, for example, various sensors installed in each part of the vehicle 2, as well as from a navigation device and the like.
  • the various sensors detect, for example, various events that occur in the vehicle 2, and also detect various parameter values related to the driving situation.
  • the HUD device 1 acquires vehicle information 4 acquired by the control unit 21 using, for example, CAN (Controller Area Network) communication.
  • Vehicle information 4 includes, for example, speed information and gear information of vehicle 2, steering angle information, lamp lighting information, outside light information, distance information, infrared information, engine ON/OFF information, camera image information inside and outside the vehicle, and acceleration. It includes gyro information, GPS (Global Positioning System) information, navigation information, vehicle-to-vehicle communication information, road-to-vehicle communication information, and the like. The GPS information also includes information such as the current time. The vehicle information 4 also includes various warning information.
  • the HUD device 1 projects image light onto a display area such as the windshield 3 based on such vehicle information 4. Thereby, the HUD device 1 allows a user such as a driver to visually recognize the image light projected onto the display area as a virtual image, specifically as a virtual image superimposed on the scenery in front of the vehicle 2.
  • FIG. 2A is a schematic diagram showing a configuration example of the main parts of the HUD device in FIG. 1.
  • the HUD device 1 shown in FIG. 2A includes, for example, a video display section 11 housed in a housing 12, mirrors M1 and M2, a mirror drive section 14, and the like.
  • the video display unit 11 is, for example, a display panel such as an LCD (Liquid Crystal Display), a projector, or the like, and displays a video based on input video data and emits video light of the displayed video.
  • LCD Liquid Crystal Display
  • Mirror M2 reflects the image light from image display section 11 toward mirror M1.
  • the mirror M2 is effective in saving space and ensuring a long optical path length. Depending on the space within the HUD housing and the value of the required optical path length, it is not necessary to arrange the mirror M2, or a plurality of mirrors M2 may be arranged.
  • Mirror M1 functions as an image light projection section.
  • the mirror M1 which is an image light projection section, projects the image light emitted from the image display section 11 and reflected by the mirror M2 onto the display area 5 of the windshield 3 through the opening 7 provided in the dashboard 10. . Thereby, the image light projection section allows the user 6 to visually recognize the projected image light as a virtual image.
  • the mirror M1 is, for example, a concave mirror (magnifying mirror), and reflects and magnifies the image light reflected by the mirror M2, and projects it onto the display area 5 through the opening 7.
  • the image light projected onto the display area 5 is reflected by the display area 5 and enters the user's 6 eyes.
  • the user 6 can view the image light projected onto the display area 5 as a virtual image 9 existing beyond the transparent windshield 3, which is superimposed on the scenery outside the vehicle (roads, buildings, people, etc.).
  • the information represented by the virtual image 9 includes various information such as road signs, the current speed of the vehicle, and various information added to objects on the landscape, that is, AR information.
  • the mirrors M1 and M2 may be, for example, free-form mirrors, mirrors having a shape asymmetrical to the optical axis, or the like.
  • the installation angle of the mirror M2 is fixed.
  • a mirror driving section 14 is installed on the mirror M1.
  • the mirror drive unit 14 variably adjusts the installation angle of the mirror M1.
  • the mirror drive section 14 includes, for example, a motor, and rotates the mirror M1 by the rotational operation of the motor.
  • the installation angle of the mirror M1 By variably adjusting the installation angle of the mirror M1, the position of the display area 5 on the windshield 3, that is, the vertical position of the virtual image visually recognized by the user 6 can be adjusted. Furthermore, by variably adjusting the installation angle of the mirror M1, it becomes possible to protect the video display section 11 from sunlight. Specifically, sunlight can travel in the opposite direction along the optical path of the image light and enter the image display section 11 . If there is a high possibility that the image display section 11 will be damaged due to the incidence of sunlight, the installation angle of the mirror M1 may be changed so that the sunlight does not reach the image display section 11.
  • FIG. 2B is a schematic diagram showing a configuration example of the main parts of the HUD device in FIG. 1, which is different from that in FIG. 2A.
  • the HUD device 1 shown in FIG. 2B differs from the configuration shown in FIG. 2A in that a lens LS is provided in the housing 12 instead of the mirror M2. Image light from the image display section 11 enters the mirror M1 via the lens LS. Mirror M1 projects the incident image light onto display area 5 through opening 7, as in the case of FIG. 2A.
  • a mirror drive unit may be installed on the mirror M1 as in the case of FIG. 2A.
  • the configuration shown in FIG. 2B can be applied, for example, when the windshield 3 is installed at a nearly vertical angle, such as in a one-box car or truck.
  • FIG. 3A is a block diagram illustrating a configuration example of a main part of a control system responsible for control in the HUD device shown in FIGS. 2A and 2B.
  • the HUD device 1 shown in FIG. 3A includes a mirror drive section 14, a display drive section 15, a communication section 16, a memory 17, a frame buffer 18, and a control section 20 that are connected to each other via a bus 13.
  • the communication unit 16 receives and transmits vehicle information, is realized by, for example, a communication interface circuit, and functions as an information acquisition unit.
  • the communication unit 16 acquires or receives information regarding the vehicle from the control unit 21 using CAN communication or the like, and transmits the received information regarding the vehicle to the control unit 20 .
  • the control section 20 controls the mirror drive section 14 and the display drive section 15 based on information from the communication section 16 .
  • the mirror drive unit 14 adjusts the installation angle of the mirror M1, for example, in response to a command from the control unit 20, as described in FIG. 2A.
  • the mirror drive unit 14 can be realized by a motor driver circuit that drives the motor.
  • the frame buffer 18 is composed of, for example, volatile memory and stores video data.
  • the display driving section 15 reads the video data stored in the frame buffer 18 via the bus 13, and drives the video display section 11 based on the video data.
  • the video display unit 11 is, for example, a liquid crystal display that includes a light source and a display panel.
  • the display panel displays images by modulating backlight emitted from a light source based on image data for each pixel.
  • the display driver 15 may be realized by an LCD driver circuit or the like.
  • the memory 17 is configured, for example, by a combination of volatile memory and nonvolatile memory, and stores programs, data, etc. used by the control unit 20.
  • the control unit 20 is realized by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and controls the entire HUD device 1 by executing a program stored in the memory 17.
  • the control unit 20 prepares video data including the creation of video data based on the information regarding the vehicle acquired by the communication unit 16, that is, the information acquisition unit, and creates a video based on the prepared video data. The image is displayed on the video display section 11.
  • the communication unit 16, memory 17, frame buffer 18, and control unit 20 shown in FIG. 3A may be installed in a microcontroller or the like.
  • the present invention is not limited to such an implementation, and may be an implementation in which FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. are appropriately combined.
  • FIG. 3B is a block diagram showing a configuration example of a main part of the control system responsible for control, which is different from that shown in FIG. 3A, in the HUD device shown in FIGS. 2A and 2B.
  • the HUD device 1 shown in FIG. 3B has a configuration in which the memory 17 and the control unit 20 are not provided.
  • the control unit 21 creates video data instead of the control section 20 shown in FIG. 3A, and writes the created video data into the frame buffer 18 via the communication processing section 16a.
  • control unit 20 described in FIG. 3A may function as the communication processing unit 16a.
  • some functions may be shared between the control unit 21 and the communication processing section 16a.
  • a mirror drive section 14, a display drive section 15, and a communication processing section 16a are provided.
  • the communication processing unit 16a receives information regarding the vehicle from the control unit 21 using CAN communication, etc., processes the received information, and uses the processing result to communicate with the mirror drive unit 14. Adjust the operation of the display driver 15.
  • FIG. 4 is a block diagram showing an example of the configuration of parts related to the control unit in FIGS. 3A and 3B.
  • the control unit 21 acquires the vehicle information 4 as described in FIG.
  • the vehicle information 4 is generated by information acquisition devices such as various sensors connected to the control unit 21, as shown in FIG. FIG. 4 shows an example of the information acquisition device.
  • the vehicle speed sensor 101 detects the speed of the vehicle 2 in FIG. 1, and generates speed information that is the detection result.
  • the shift position sensor 102 detects the current gear and generates gear information as a detection result.
  • the steering wheel steering angle sensor 103 detects the current steering angle of the steering wheel, and generates steering wheel angle information that is the detection result.
  • the headlight sensor 104 detects ON/OFF of the headlight and generates lamp lighting information as a detection result.
  • the illuminance sensor 105 and the chromaticity sensor 106 detect external light and generate external light information as a detection result.
  • the distance sensor 107 detects the distance between the vehicle 2 and an external object, and generates distance information that is the detection result.
  • the infrared sensor 108 detects the presence or absence of an object, the distance, etc. in a short distance from the vehicle 2, and generates infrared information that is the detection result.
  • the engine start sensor 109 detects ON/OFF of the engine and generates ON/OFF information as a detection result.
  • Acceleration sensor 110 and gyro sensor 111 detect acceleration and angular velocity of vehicle 2, respectively, and generate acceleration gyro information representing the attitude and behavior of vehicle 2 as a detection result.
  • the temperature sensor 112 detects the temperature inside and outside the vehicle, and generates temperature information that is the detection result.
  • the road-to-vehicle communication radio receiver 113 generates road-to-vehicle communication information through road-to-vehicle communication between the vehicle 2 and roads, signs, traffic lights, and the like.
  • the vehicle-to-vehicle communication radio receiver 114 generates vehicle-to-vehicle communication information through vehicle-to-vehicle communication between the vehicle 2 and other nearby vehicles.
  • the vehicle interior camera 115 and the vehicle exterior camera 116 generate camera video information inside the vehicle and camera video information outside the vehicle by photographing the interior and exterior of the vehicle, respectively.
  • the in-vehicle camera 115 is, for example, a DMS (Driver Monitoring System) camera that photographs the posture, eye position, movement, etc. of the user 6 shown in FIG. 2A and the like. In this case, by analyzing the captured video, it is possible to understand the state of fatigue of the user 6, the position of the user's line of sight, and the like.
  • DMS Driver Monitoring System
  • the vehicle exterior camera 116 photographs the surrounding situation, such as the front and rear of the vehicle 2, for example.
  • the vehicle exterior camera 116 may also include, for example, a drive recorder that records video of the driving situation.
  • the GPS receiver 117 generates GPS information obtained by receiving GPS signals. For example, it is possible to obtain the current time using the GPS receiver 117.
  • a VICS (Vehicle Information and Communication System, registered trademark) receiver 118 generates VICS information obtained by receiving a VICS signal.
  • the GPS receiver 117 and the VICS receiver 118 may be provided as part of the navigation device. Note that the various information acquisition devices shown in FIG. 4 can be deleted, added, or replaced with other types of devices as appropriate.
  • FIG. 5 is a schematic diagram showing an example of display contents of the HUD device shown in FIG.
  • the display content shows an example of AR display, and shows an example of the virtual image 9 shown in FIG. 2A and the like.
  • five videos VDa to VDe are displayed.
  • the plurality of videos VDa to VDe are collectively referred to as video VD, image VD, or video object VD.
  • the video VDa is one of the scenes, and is displayed so as to be superimposed on the object OB, which is the target of AR, here a person.
  • the video VDa means that the object OB has been detected by the various information acquisition devices shown in FIG. That is, the HUD device 1 acquires information representing the detection result of the object OB from the control unit 21. Further, the video VDa represents warning information for prompting the user 6, for example, the driver, to draw attention to the object OB.
  • the video VDb is displayed on a road, which is one of the scenery, and represents the direction in which the vehicle 2 is traveling.
  • Video VDc represents navigation information.
  • the video VDd represents, for example, a road sign that is one type of road-to-vehicle communication information.
  • Video VDe represents speed information of vehicle 2. Note that the videos VDa and VDb are 3D graphics, and the videos VDc to VDe are 2D graphics.
  • FIG. 6 is a flow diagram showing an example of a processing procedure when displaying a video in the HUD device shown in FIG. 3A.
  • the communication unit 16 that is, the information acquisition unit acquires information regarding the vehicle from the control unit 21 (step S11).
  • the control unit 20 performs video data preparation processing including steps S121 to S124 (step S12).
  • the processor executes the video processing program in the memory 17 to execute the processes in steps S121 to S123.
  • step S121 the control unit 20 determines the display content based on the information regarding the vehicle acquired in step S11, for example, the vehicle information 4 shown in FIG. Specifically, the control unit 20 selects the vehicle information 4 that is compatible with display, and also determines in what position and in what size and layout the video VD representing the selected vehicle information 4 is to be displayed. Determine. In the example shown in FIG. 5, the control unit 20 determines to display five videos VDa to VDe as display contents. In step S122, the control unit 20 creates video data for each video VD based on the display content determined in step S121.
  • step S123 the control unit 20 writes each of the plurality of video data created in step S122 to the storage area in the frame buffer 18 corresponding to the position to be displayed.
  • step S124 the control unit 20 performs distortion correction on the entire video data in the frame buffer 18 in accordance with, for example, the curvature of the windshield 3.
  • distortion correction may be realized by, for example, a processor executing a distortion correction program in the memory 17, or may be realized by dedicated hardware.
  • step S13 video display processing is performed (step S13).
  • the display drive unit 15 reads the video data stored in the frame buffer 18 and drives the video display unit 11 based on the video data, thereby displaying the video VD on the video display unit 11.
  • the processing procedure shown in FIG. 6 is executed in synchronization with a processing cycle determined based on the frame rate. For example, when the frame rate is 60 fps, the processing cycle is 16.6 ms. Further, the processing procedure when displaying the video VD is not limited to the one shown in FIG. 6, and can be replaced with various generally known procedures.
  • FIG. 7 is a timing chart schematically showing an example of a problem when displaying a video using the flow shown in FIG. 6.
  • FIG. 7 shows operations executed in the first to fifth processing cycles or control cycles Tc[1] to Tc[5].
  • the processing cycles or control cycles Tc[1] to Tc[5] are collectively referred to as the processing cycle or control cycle Tc.
  • the control period Tc is, for example, 16.6 ms.
  • FIG. 7 shows the operation when the processing in steps S11 and S12 and the processing in step S13 in FIG. 6 are executed in a pipeline.
  • step S11 information regarding the vehicle is acquired (step S11), and video data is prepared based on the information (step S12).
  • the video data preparation time Tp[1] required for the processing of steps S11 and S12 is shorter than the control period Tc[1]. This is a case, for example, when the number of AR objects and, by extension, the number of videos VD to be displayed is small, and the preparation time Tp[1] falls within the control period Tc[1].
  • step S11 information regarding the vehicle is acquired (step S11), and video data is prepared based on the information (step S12).
  • step S13 display processing of the video VD is performed based on the video data prepared in the first control cycle Tc[1]
  • the video data preparation time Tp[2] required for the processing of steps S11 and S12 is longer than the control cycle Tc[2].
  • the preparation time Tp[2] may become longer due to, for example, an increase in the number of AR objects and the number of displayed videos VD. Therefore, the video data is not reflected in the display processing in the third control cycle Tc[3], but is reflected in the display processing in the fourth control cycle Tc[4]. As a result, frames are dropped in the third control period Tc[3].
  • the video data preparation time Tp[3] required for the processing of steps S11 and S12 is shorter than the control cycle Tc[4]. Therefore, the video data is reflected in the display processing in the fifth control cycle Tc[5].
  • the video data prepared at the preparation time Tp[3] may become the video data that should originally be prepared at the third control cycle Tc[3] due to frame drops. be.
  • the plurality of preparation times Tp[1] to Tp[3] are collectively referred to as preparation time Tp.
  • FIG. 8A is a schematic diagram showing how the display content changes when no frames are dropped.
  • FIG. 8B is a schematic diagram showing how the display contents change when dropped frames occur.
  • an object OB here a person
  • the object OB (t1) at time t1 is displayed with the video VDa (t1) superimposed at that position, and the object OB (t1) at time t2 is displayed superimposed at that position.
  • video VDa(t2) is displayed in a superimposed manner at that position.
  • the control unit 20 in order to be able to display a video VD with high real-time performance, the control unit 20 generally prepares the video data so that the preparation of the video data is completed within a predetermined processing cycle or control cycle Tc. control to reduce the processing load required for That is, the control unit 20 prepares video data based on the information regarding the vehicle received by the communication unit 16, and if the preparation conditions for the video data do not satisfy the predetermined conditions in a predetermined processing cycle, the control unit 20 Prepare by changing the contents of the section. More specifically, the control unit 20 monitors the preparation time Tp required to prepare the video data, and starts control to reduce the processing load when the preparation time Tp satisfies a predetermined condition. Further, the predetermined processing cycle or control cycle Tc is determined based on the frame rate.
  • the preparation time Tp is the time required for the processing of steps S11 and S12 shown in FIG. 6, assuming the operation method as described in FIG. 7.
  • the preparation time Tp may be the time required for the process of step S12.
  • the control unit 20 sequentially monitors the preparation time Tp.
  • the preparation time can be monitored in conjunction with the vehicle time or using a timer or the like.
  • the control unit 20 starts acquiring information about the vehicle using the communication unit 16, and then transfers the created video data to the frame buffer.
  • the preparation time Tp required to finish writing in step 18 is monitored using a timer or the like.
  • the communication processing unit 16a acquires information from the control unit 21, processes the acquired information, and writes the processed result to the frame buffer 18.
  • the preparation time Tp required for completion is monitored using a timer or the like.
  • FIG. 9 is a diagram showing an example of the internal state of the control section shown in FIG. 3A.
  • FIG. 10 is a diagram showing an example of the results of monitoring preparation time by the control unit shown in FIG. 3A.
  • the control unit 20 has, as internal states, a normal state ST0, a return transition state ST1, a suppression transition state ST2, and a suppression state ST3.
  • the control unit 20 has a normal mode ST0, a return transition mode ST1, a suppression transition mode ST2, and a suppression mode ST3 as operating modes.
  • the control unit 20 may have two states: a normal state ST0 and a suppressed state ST3.
  • the control unit 20 prepares video data as usual based on the information acquired using the communication unit 16, and causes the video display unit 11 to display a video VD based on the video data. Further, in the normal state ST0, if (A) the preparation time Tp that is the monitoring result is longer than the control cycle Tc, or (B) the preparation time Tp is set to the first threshold value several times in a row, If the time is longer than Tth1, the state transitions to the suppression transition state ST2. The number of consecutive times is set, for example, to a value of 2 times or more and 10 times or less.
  • the preparation time Tp4 obtained at the monitoring time tm4 is longer than the control period Tc. Furthermore, the preparation times Tp2 and Tp3 obtained at the consecutive monitoring times tm2 and tm3 are both shorter than the control cycle Tc, but longer than the first threshold time Tth1.
  • the first threshold time Tth1 is a time shorter than the control period Tc of 16.6 ms, and is, for example, 15.0 ms.
  • the control unit 20 performs the following operations when (A) a monitoring result such as the preparation time Tp4 is obtained, or (B) a monitoring result such as the preparation times Tp2 and Tp3 is obtained multiple times in a row, for example.
  • a monitoring result such as the preparation time Tp4
  • B a monitoring result such as the preparation times Tp2 and Tp3 is obtained multiple times in a row, for example.
  • Condition (A) is for quickly eliminating dropped frames.
  • condition (B) is for preventing in advance a situation in which the preparation time Tp becomes longer than the control cycle Tc, and a situation in which dropped frames occur in the near future.
  • the control unit 20 After starting control to reduce the processing load in the suppression transition state ST2, the control unit 20 gradually increases the amount of processing load reduction in each control period Tc within a predetermined suppression transition period.
  • the suppression transition period is set to, for example, 5 seconds.
  • the control unit 20 reduces the amount of video data to be prepared by, for example, not creating some video data or simplifying some video data, and reduces the processing load. Reduce. In this case, if the amount of video data is suddenly reduced, the displayed content will also change rapidly, which is not desirable from the user 6's point of view. Therefore, the control unit 20 gradually increases the amount of data to be reduced. Then, after a suppression transition period, for example, 5 seconds, the control unit 20 transitions to the suppression state ST3.
  • the control unit 20 prepares video data with the reduced processing load. Further, in the suppression state ST3, when the state in which the preparation time Tp is shorter than the second threshold time Tth2 continues for a predetermined threshold duration period TthD or more, the control unit 20 transitions to the return transition state ST1.
  • the second threshold time Tth2 is a time shorter than the control cycle Tc, and is set, for example, to be the same time as the first threshold time Tth1 or a time shorter than the first threshold time Tth1.
  • the threshold duration period TthD is a period that is multiple times the control period Tc or more, and is set to, for example, 5 seconds.
  • the second threshold time Tth2 is set to be shorter than the first threshold time Tth1.
  • the preparation times Tp5 and Tp6 obtained at the monitoring times tm5 and tm6 are both shorter than the second threshold time Tth2.
  • the control unit 20 transitions to the return transition state ST1 when monitoring results such as the preparation times Tp5 and Tp6 are obtained continuously for the threshold duration period TthD or more.
  • control unit 20 does not perform such condition determination, anticipating that the processing load will naturally be reduced after a predetermined period of time passes, and simply waits for a period of time, such as 5 seconds, to reduce the processing load. , it may transition to the return transition state ST1.
  • the control unit 20 gradually reduces the amount of processing load reduction at each control cycle Tc within a predetermined return transition period.
  • the return transition period is set to, for example, 5 seconds.
  • the control unit 20 transitions to the normal state ST0.
  • FIG. 11A is a schematic diagram showing an example of display content of the HUD device in the normal state shown in FIG. 9.
  • FIG. 11A In the normal state ST0, for example, as shown in FIG. 11A, seven videos VDa1 to VDa3 and VDb to VDe are displayed. Videos VDa1 and VDa2 are displayed superimposed on objects OB1 and OB2, here a person, respectively. Video VDa3 is displayed so as to be superimposed on object OB3, here the vehicle. As in the case of FIG. 5, the videos VDb to VDe each represent navigation information, direction of travel, road sign, and speed information.
  • FIG. 11B is a schematic diagram showing an example of the display content of the HUD device in the suppression transition state shown in FIG. 9.
  • the two videos VDa2 and VDd in FIG. 11A are deleted, as indicated by reference numerals 201 and 203 in FIG. 11B, based on the display content shown in FIG. 11A. That is, the video VDa2 superimposed on the object OB2, which is farther away than the object OB1, and the video VDd representing the road sign are deleted.
  • the video VDa3 in FIG. 11A is simplified by, for example, not being colored.
  • a video VDm1 for example, a mark
  • the control unit 20 writes the video data of the video VDm1 into a fixed storage area in the frame buffer 18 as a template.
  • the control unit 20 When performing the display shown in FIG. 11B, the control unit 20 sets the videos VDa2 and VDd to non-display in step S121 shown in FIG. 6, and prepares in step S12 by applying simplified display to the video VDa3. Reduce the amount of video data to be used. Thereby, the control unit 20 reduces the processing load necessary for preparing video data. That is, the control unit 20 shortens the time required for the process in step S122 and the time required for the process in step S123. Further, the control unit 20 proceeds with the reduction of such data amount in stages.
  • FIG. 11C is a schematic diagram showing an example of the display content of the HUD device in the suppressed state shown in FIG. 9.
  • the two videos VDa1 and VDb in FIG. 11B are further simplified, as indicated by reference numerals 301 and 302 in FIG. 11C, based on the display content shown in FIG. 11B. That is, the two videos VDa1 and VDb have been simplified such as not being colored or having their sizes reduced.
  • a video VDm2 for example, a mark, is displayed to notify the user 6 that the suppression state ST3 is in the suppression period.
  • the control unit 20 stores in the memory 17 in advance a suppression table that defines the correspondence between the type of vehicle information 4 and the priority. For example, in the suppression transition state ST2, the control unit 20 selects the vehicle information 4 in descending order of priority based on the suppression table, and increases the number of selections in stages. Then, the control unit 20 sets the video VD representing the selected vehicle information 4 to be hidden, or simplifies it using a predetermined method.
  • the priority in the suppression table is determined based on, for example, the following criteria.
  • vehicle information 4 having a higher degree of contribution to safe driving is given a higher priority.
  • the priority may be weighted according to the distance between the own vehicle and the object. For example, if the distance to a person is far and the distance to a vehicle is extremely short, priority may be given to the vehicle. Furthermore, a person approaching the vehicle may be given higher priority than a person moving away from the vehicle.
  • the priority is set low when a straight line continues, and the priority is set low when the timing of a right or left turn is near. You can make it higher.
  • video VDb based on past driving history, if you are driving on a road that is frequently used, it will be given a low priority, and if you are driving on a road that has not been used in the past, it will be given priority. The degree may be increased.
  • the priority may be changed based on the difference from the traveling speed of the own vehicle.
  • control unit 20 may reduce the processing load by, for example, displaying the video VD once every multiple control cycles Tc, without completely deleting the video VD. Furthermore, the control unit 20 is not limited to such a method of reducing the amount of video data; for example, the processing load can be reduced by simplifying the distortion correction process in step S124 in FIG. may be reduced.
  • FIG. 12 is a flow diagram illustrating an example of processing contents of the control unit illustrated in FIG. 3A.
  • the control unit 20 executes the flow shown in FIG. 12 when the adjustment of the installation angle of the mirror M1 shown in FIG. 2A is completed and an environment in which an image can be projected is prepared.
  • the control unit 20 starts monitoring the preparation time Tp using a timer or the like (step S20). Subsequently, the control unit 20 waits for a start trigger to occur (step S21). A start trigger is generated every control cycle Tc.
  • step S21 the control unit 20 uses the communication unit 16, that is, the information acquisition unit, to acquire information regarding the vehicle (step S22).
  • step S22 the control unit 20 checks the current internal state described in FIG. 9 (step S23).
  • step S24 the control unit 20 performs the video data preparation process as described in step S12 in FIG. 6 (step S24).
  • the control unit 20 performs control to reduce the processing load necessary for preparing the video data, as described in FIGS. 9, 11B, and 11C. conduct.
  • control unit 20 When the control unit 20 completes the video data preparation process in step S24, it generates a preparation completion signal (step S25). For example, the control unit 20 outputs a display start command to the display drive unit 15 in response to a start trigger after generating the preparation completion signal.
  • the display driving unit 15 performs the display processing of the video VD as described in step S13 in FIG. 6 and FIG. 7 in response to the display start command.
  • the control unit 20 evaluates the preparation time Tp, which is the monitoring result associated with step S21 (step S26).
  • control unit 20 determines whether the state transition described in FIG. 9 is necessary based on the preparation time Tp that is the monitoring result (step S27). If a state transition is necessary (step S27: Yes), the control unit 20 determines a transition destination (step S29), performs a state transition to the determined transition destination, and also updates the internal state (step S30). On the other hand, if the state transition is not required (step S27: No), the control unit 20 returns to step S21, waits for the next start trigger, and repeats the same process until a request to end the HUD display is issued (step S28). .
  • control is performed to reduce the processing load necessary for preparing video data so that the preparation of video data is completed within the control cycle Tc, thereby suppressing the occurrence of dropped frames, etc. , it becomes possible to ensure the minimum display quality.
  • the HUD device 1 is designed to prevent dropped frames, etc.
  • software updates that involve changes in display specifications may increase the processing load and cause dropped frames. be.
  • the method of the first embodiment even in such a case, it is possible to suppress the occurrence of dropped frames and the like. As a result, it becomes possible to satisfy required display specifications as much as possible within the range of hardware processing performance, and to flexibly respond to various display specifications.
  • the method of the first embodiment ensures that the preparation of the video data or image data is completed within the control cycle Tc, in other words, within the processing cycle, by actually monitoring the preparation time Tp required to prepare the video data or image data.
  • a method will be described in which the processing load is reduced by predicting the preparation time Tp so that the preparation of video data or image data is completed within the control cycle Tc, in other words, within the processing cycle. The following will be explained using video data.
  • FIG. 13A is a schematic diagram showing an example of the relationship between video data written to the frame buffer and display content displayed on the video display section in the HUD device shown in FIGS. 3A and 3B.
  • FIG. 13B is a schematic diagram showing an example of a relationship different from that in FIG. 13A.
  • step S12 video data preparation process
  • step S122, S123 video data based on the determined display content
  • FIG. 13A six videos VDa1 to VDa3, VDb, VDc, and VDe are each written as video data in the storage area in the frame buffer 18 corresponding to the position to be displayed.
  • the videos VDa1 to VDa3 are warning videos superimposed on the detected object.
  • the video VDb represents the traveling direction of the vehicle
  • the video VDc represents navigation information
  • the video VDe represents speed information of the vehicle.
  • the videos VDa1 to VDa3, VDb are 3D graphics
  • the videos VDc, VDe are 2D graphics.
  • the size of the frame buffer 18 and the size of the video display section 11 are equal.
  • each video VD written in the frame buffer 18, in other words, all of the video objects VD are displayed in the same position on the video display unit 11.
  • the size of the frame buffer 18 is larger than the size of the video display section 11. In this case, a portion of each video VD written to the frame buffer 18 is displayed on the video display section 11.
  • the video VD is also arranged in an area outside the display area of the video display unit 11 in the frame buffer 18 in order to cope with the case where the display moves up and down due to pitching correction, for example.
  • the amount of processing load required for the preparation process is determined by how many video VDs are arranged in the entire frame buffer 18, including the area outside the display area of the video display section 11.
  • FIG. 14 is a diagram showing an example of items that affect the preparation time of video data in FIG. 6.
  • Items that affect the preparation time include the number of video VDs and the display format for each video VD. Regarding the number of video VDs, the larger the number, the greater the processing load, and the longer the preparation time Tp.
  • the display format for each video VD includes items such as size, display position, design type, distortion correction, and the like.
  • the preparation time Tp becomes longer because the closer the display position is, or in other words, the closer the display position is, the larger the size becomes.
  • the design type includes, for example, a type such as 2D/3D graphics, a type such as presence/absence of gradation, and the like.
  • the preparation time Tp becomes longer when a more complex design is used, such as when using 3D graphics with a large number of polygons and gradation.
  • the preparation time Tp associated with distortion correction becomes shorter when distortion correction is performed using hardware, and becomes longer when distortion correction is performed using software.
  • FIG. 15 is a flow diagram illustrating an example of a processing procedure when displaying a video in the HUD device according to the second embodiment.
  • the HUD device 1 according to the second embodiment is realized by the configuration shown in FIG. 3A or FIG. 3B described above.
  • FIG. 15 shows a flow similar to that in FIG. 6. That is, as in the case of FIG. 6, the control unit 20 determines display content based on the information regarding the vehicle acquired by the communication unit 16, that is, the information acquisition unit, and prepares video data based on the determined display content. , causes the video display unit 11 to display a video based on the prepared video data.
  • step S12A the content of the video data preparation process
  • step S41A the control unit 20 first determines the display content by performing display content adjustment processing
  • step S42A the control unit 20 writes the created video data to the frame buffer 18 (step S123A) and performs distortion correction using hardware processing or software processing (step S124A), as in the case of FIG.
  • FIG. 16 is a flow diagram illustrating an example of detailed processing contents of the display content adjustment process (step S41A) in FIG. 15.
  • the control unit 20 preliminarily stores in the memory 17 etc. predicted time information that defines the relationship between display content, for example, differences in display content and predicted time required to prepare video data. There is.
  • the control unit 20 first tentatively determines the display content based on the information regarding the vehicle acquired in step S11 in FIG. 15 before determining the display content (step S411). Subsequently, the control unit 20 predicts the preparation time Tp required for preparing video data based on the temporarily determined display content, also referred to as provisional display content, based on the predicted time information (step S412).
  • the control unit 20 determines whether the preparation time Tp predicted in step S412 is shorter than the predetermined control cycle Tc, in other words, the processing cycle (step S413). If the preparation time Tp is longer than the control cycle Tc (step S413: No), the control unit 20 changes the temporarily determined display content, and then returns to step S412 to repeat the same process (step S414). Thereby, the control unit 20 changes the temporarily determined display content, that is, the temporary display content, so that the preparation time Tp becomes shorter than the control period Tc. On the other hand, if the preparation time Tp is shorter than the control cycle Tc (step S413: Yes), the control unit 20 determines the temporarily determined display content, that is, the current temporary display content, as the final display content. (Step S415).
  • FIG. 17A is a diagram showing a specific example of the preparation time prediction method (step S412) in FIG. 16.
  • FIG. 17B is a diagram showing a specific example different from FIG. 17A.
  • the control unit 20 stores in advance predicted time information 400 that defines the relationship between the difference in display content and the predicted time required to prepare video data.
  • the predicted time information 400 includes a basic time, 0.8 [msec] in this example, and coefficients corresponding to each item included in the display format for each video shown in FIG. 14.
  • the predicted time information 400 includes a size coefficient C1, a display position coefficient C2, and a design type coefficient C3.
  • the design type coefficient C3 includes a polygon count coefficient C31 and a gradation coefficient C32.
  • the size coefficient C1 is a coefficient proportional to the size of the video VD.
  • the size coefficient C1 is fixedly determined for each type of video VD, such as the video VDa1 representing a warning, the video VDb representing the traveling direction, and the video VDc representing navigation information shown in FIG. 13A, for example.
  • the display position coefficient C2 is determined to increase as the display position of the video VD approaches.
  • the display position is classified into three levels: near, intermediate, and far, and the display position coefficient C2 is set to 1.5 when the display position is close, 1.0 when the display position is intermediate, and 1.0 when the display position is close. is set to 0.5.
  • the polygon number coefficient C31 is determined to increase as the number of polygons increases when drawing the video VD.
  • the number of polygons is classified into two levels: greater than or equal to the reference value and less than the reference value, that is, large and standard. is set to 1.0.
  • the gradation coefficient C32 is a coefficient depending on the presence or absence of gradation.
  • the gradation coefficient C32 is set to 1.1 when there is a gradation, and to 1.0 when there is no gradation.
  • the basic time and the value of each coefficient are the time required for the video data creation process in step S42A shown in FIG. It is determined by taking into account all of the time required for distortion correction in step S124A. Specific methods of determining include, for example, a method based on simulation, a method based on actual measured values, and the like.
  • the control unit 20 uses such predicted time information 400 to predict the preparation time Tp by multiplying the basic time by each coefficient. Specifically, the control unit 20 calculates the predicted time Tr required for preparing video data for each video VD by "basic time x C1 x C2 x C31 x C32". Note that the method for calculating the predicted time Tr is not limited to this, and may be calculated by "basic time x C1 x C2 x C31" depending on the case. Furthermore, if there is another parameter that affects the predicted time Tr, the predicted time Tr may be calculated in consideration of that parameter.
  • the predicted time Tr instead of calculating it each time from the basic time and coefficients, for example, it is necessary to calculate which video should be displayed, in which size, in which position, with what design, and how much time it will take to prepare. Information indicating how long it will take may be stored in advance as predicted time information. In this case, although it is necessary to store the time required for preparation for each video VD, it is not necessary to calculate the predicted time Tr each time.
  • the control unit 20 predicts the preparation time Tp by summing the predicted time Tr for each video VD calculated by the method described above.
  • the display contents are provisionally determined to display three videos VD1 to VD3 as shown in FIG. 17A.
  • the video VD1 has a size coefficient C1 of 5, and is displayed at a nearby display position using 3D graphics with gradation.
  • the video VD2 has a size coefficient C1 of 2 and is displayed at an intermediate display position using 2D graphics.
  • the video VD3 has a size coefficient C1 of 10, and is displayed at a far display position using 2D graphics with gradation.
  • the display content is tentatively determined to display two videos VD4 and VD5 in addition to the three videos VD1 to VD3 shown in FIG. 17A.
  • the video VD4 has a size coefficient C1 of 8 and is displayed at an intermediate display position using 2D graphics.
  • the video VD5 has a size coefficient C1 of 2, and is displayed at a close display position using 3D graphics.
  • FIG. 18 is a diagram illustrating an example of a method for changing the display content (step S414) in FIG. 16.
  • the control unit 20 changes the number of video VDs so that the preparation time Tp becomes shorter than the control cycle Tc, or changes the display format of each video VD, that is, at least the size, display position, and design type. Change one thing.
  • the control unit 20 stores in advance, in the memory 17 or the like, priority information 410 that defines the priority of each item to be changed, as shown in FIG. 18, for example. Then, the control unit 20 changes the display content while increasing the number of items to be changed based on the priority information 410 until the preparation time Tp becomes shorter than the control cycle Tc.
  • the number of video VDs is set to a lower priority than the display format of each video VD.
  • the priorities when changing the display format for each video VD are design type, size, display position, and distortion correction in descending order.
  • the control unit 20 first changes the design type of each video VD based on the priority information 410. Specifically, the control unit 20 changes 3D graphics to 2D graphics, and changes the presence of gradation to no gradation, for example.
  • the control unit 20 determines the display content using the changed video VD (Ste S415).
  • the control unit 20 reduces the size of each video VD in addition to the design type of each video VD.
  • the control unit 20 for example, predetermines a lower limit value of the size for each type of video VD, and sequentially decreases the size of each video VD until the lower limit value is reached.
  • the control unit 20 first changes the size of the video VD3 to a size where the size coefficient C1 is 9, and if Tp>Tc still holds, changes the size of the video VD3 to a size where the size coefficient C1 is 8. . Note that at this time, depending on the type of video VD, there may be video VDs for which modification of the size coefficient C1 is not permitted, that is, no lower limit value is set.
  • the control unit 20 sequentially adds display position and distortion correction to the items to be changed based on the priority information 410 until Tp ⁇ Tc.
  • the control unit 20 reduces the size by moving the display position to the back.
  • the control unit 20 applies, for example, a predetermined simplified distortion correction, or does not perform the distortion correction itself.
  • the control unit 20 reduces the number of video VDs as a final measure. At this time, the control unit 20 determines which video VD to sequentially reduce based on, for example, the suppression table described in FIG. 11C. In the suppression table, as described above, priority is set so that the vehicle information 4 that contributes more to safe driving, in other words, the type of video VD, is less likely to be deleted.
  • FIG. 19 is a schematic diagram showing an example of the display content of the HUD device obtained as a result of changing the display content in FIG. 18.
  • the same display content as in FIG. 11A is shown as the display content before the change. That is, seven videos VDa1 to VDa3 and VDb to VDe are displayed here. Videos VDa1 and VDa2 are displayed superimposed on objects OB1 and OB2, here a person, respectively. Video VDa3 is displayed so as to be superimposed on object OB3, here the vehicle. Videos VDb, VDc, VDd, and VDe represent the traveling direction, navigation information, road sign, and speed information, respectively. It is assumed that 3D graphics and gradation are used for the videos VDa1 to VDa3.
  • the lower part of FIG. 19 shows the changed display content.
  • the videos VDa1 to VDa3 are replaced with the videos VDa1x to VDa3x, respectively.
  • 2D graphics and no gradation are used for the videos VDa1x to VDa3x.
  • the sizes of videos VDa1x to VDa3x are slightly smaller than those of videos VDa1 to VDa3.
  • the preparation time Tp is still longer than the control period Tc, so as shown at 405, the speed information is Video VDd has been deleted. That is, in this example, the video VDd representing speed information is deleted on the assumption that the video VDd has a smaller contribution to safe driving than other videos VD.
  • the display contents can be changed in a way that maintains the display contents before the change as much as possible, while also changing the display contents so that the driver and other users do not feel any discomfort. It becomes possible to do so.
  • FIG. 20 is a timing chart when displaying a video using the flows shown in FIGS. 15 and 16. Similar to the case of FIG. 7, FIG. 20 shows operations executed in the first to fourth processing cycles or control cycles Tc[1] to Tc[4].
  • the control period Tc is, for example, 16.6 ms.
  • the preparation time Tp[2a] in the control cycle Tc[2] may be longer than the control cycle Tc[2]. In this case, as described in FIG. 7, dropped frames will occur.
  • the preparation time Tp[2b] in the control cycle Tc[2] can be made shorter than the control cycle Tc[2].
  • the preparation time Tp also includes the time required for the display content adjustment process (step S41A) shown in FIGS. 15 and 16. Therefore, the time required for step S41A is an overhead time within the preparation time Tp, but it is usually sufficiently small compared to the time required for steps S42, S123, and S124, and is considered to be at a negligible level.
  • the actually generated preparation time Tp is monitored and control is performed based on the monitoring result, so to speak, because feedback control is performed, the preparation time shown in FIG. A situation like Tp[2a] may occur instantaneously.
  • control is performed by predicting the preparation time Tp, in other words, feedforward control is performed, so ideally, the preparation time Tp[2a] shown in FIG. No situation arises.
  • the method of Embodiment 1 is suitable for cases where there are many variable elements in display specifications, such as initial products, and it is difficult to create predicted time information 400 as shown in FIGS. 17A and 17B. Particularly useful.
  • the method of Embodiment 2 is particularly useful when there are few variables in the display specifications, such as for a somewhat mature product.
  • the method of the second embodiment requires the creation of predicted time information 400, the method of the first embodiment is better in terms of flexibility or versatility when dealing with display specifications that vary widely. Can be beneficial.
  • FIG. 21A is a schematic diagram showing an example of main processing contents of the control unit in the HUD device according to the third embodiment
  • FIG. 21B is a supplementary diagram of FIG. 21A
  • FIG. 22A is a schematic diagram showing an example different from FIG. 21A
  • FIG. 22B is a supplementary diagram of FIG. 22A.
  • the HUD device 1 according to the third embodiment is realized by the configuration shown in FIG. 3A or FIG. 3B described above.
  • the control unit 20 superimposes a warning image on the object OB3, here the vehicle, as shown in the image VDa3a in FIG. 21A and the image VDa3b in FIG. 22A.
  • the control unit 20 determines the color or shape of the images VDa3a and VDa3b, which are warning images, according to the distance from the object OB3.
  • the distance between the own vehicle 420 on which the HUD device 1 is mounted and the object OB3 existing in front of the own vehicle 420 is 50 m.
  • the control unit 20 sets the color of the video VDa3a to green, for example.
  • the distance between host vehicle 420 and object OB3 is 10 m.
  • the control unit 20 sets the color of the video VDa3b to red, for example.
  • FIG. 23 is a diagram illustrating a configuration example of a display setting table stored in the control unit in the HUD device according to the third embodiment.
  • the control unit 20 stores a display setting table 415 as shown in FIG. 23 in advance in the memory 17 or the like.
  • the display setting table 415 defines the correspondence between the distance to the object OB3 in front and the color or shape of the warning image, here the color.
  • the color of the warning image is set to red if the distance to the object OB3 is less than 12 m, green if the distance is 32 m or more, and yellow if the distance is between 17 m and 27 m.
  • the color in the range of 12 m to 17 m and the range of 27 m to 32 m, which are the distances between the two, is appropriately set to a neutral color.
  • the display setting table 415 is set, for example, so that the closer the distance to the object OB3, the more the color or shape draws the attention of the user, for example, the driver. This makes it possible to contribute to safe driving. However, how to perceive color or shape depends on the user's subjectivity. Therefore, the configuration may be such that the color or shape in the display setting table 415 can be arbitrarily selected from a plurality of options through initial settings by the user. Furthermore, the display setting table 415 may be configured such that the distance range can be set arbitrarily.
  • FIG. 24A is a flow diagram illustrating an example of the processing content of the control unit in the HUD device according to the third embodiment.
  • the control unit 20 executes the processes of steps S411 to S415 described in FIG. 16 in the second embodiment. Further, prior to the process, the communication unit 16, that is, the information acquisition unit, in step S11 shown in FIG. Get the distance.
  • the control unit 20 determines the display content so that the preparation time Tp is shorter than the control cycle Tc, or in other words, the processing cycle, by the processing of steps S411 to S415 shown in FIG. 24A. After that, the control unit 20 determines whether the display content determined in step S415 includes a warning image to be superimposed on the object OB3 (step S416A). If the determined display content includes a warning video (step S416A: Yes), the control unit 20 refers to the distance information to the object OB3 acquired by the communication unit 16 (step S417), and sets the display setting table. The color or shape of the warning image is updated based on step S415 (step S418A). Note that if a plurality of warning videos are included, the update process is performed for each warning video.
  • the control unit 20 performs the processing such as step S412 without estimating the preparation time Tp again.
  • the color or shape of the warning image is updated without any delay (step S418A). Therefore, it is desirable that the color or shape of the warning image for each distance is determined in advance so that even if the color or shape of the warning image is updated, the preparation time Tp is the same as before the update.
  • FIG. 24B is a flow diagram illustrating an example of processing content that is different from FIG. 24A.
  • step S416 described in FIG. 24A is performed not after the processing in steps S411 to S415 described in FIG. , S417, and S418A are incorporated.
  • the control unit 20 tentatively determines the display content (step S411), and then determines whether the temporarily determined display content includes a warning image to be superimposed on the object OB3 (step S416B). ). If a warning image is included in the tentatively determined display content (step S416B: Yes), the control unit 20 refers to the distance information to the object OB3 (step S417), and displays a warning based on the display setting table 415. The color or shape of the image is determined (step S418B).
  • control unit 20 predicts the preparation time Tp required to prepare the video data based on the tentatively determined display content (step S412). Note that if the warning video is not included in the temporarily determined display content (step S416B: No), the control unit 20 directly proceeds to step S412. After step S412, as in the case of FIG. 16, the control unit 20 changes the tentatively determined display content through the processes of steps S413 to S415 so that the preparation time Tp becomes shorter than the control cycle Tc.
  • control unit 20 changes the tentatively determined display content and then proceeds to step S416B (step S414).
  • step S416B step S414.
  • the preparation time Tp can be predicted after reflecting changes in the color or shape in the warning video, so the prediction accuracy is improved compared to the flow shown in FIG. 24A.
  • the processing overhead may increase because it is necessary to perform the processing in steps S416B, S417, and S418B each time a loop from step S414 to step S416B occurs. Therefore, from this point of view, it is beneficial to use the flow shown in FIG. 24A.
  • the processing based on the display setting table 415 as described in steps S416A, S417, and S418A in FIG. 24A may be applied not only to the method of the second embodiment but also to the method of the first embodiment. In this case, for example, when determining the display content based on the internal state in step S121 shown in FIG. do it.
  • the user 6 can display various information necessary for driving, such as alert information when an oncoming vehicle or pedestrian is detected, in addition to navigation information such as destination and speed.
  • the image can be viewed through the shield 3, and even if the display specifications change, the image can be viewed with the minimum display quality ensured.
  • the HUD device 1 that reduces the viewpoint movement of the user 6 and contributes to supporting safe driving. As a result, it becomes possible to prevent traffic accidents. Furthermore, it will be possible to contribute to "3. Good health and well-being for all" in the Sustainable Development Goals (SDGs) advocated by the United Nations.
  • SDGs Sustainable Development Goals
  • the present invention is not limited to the embodiments described above, and can be modified in various ways without departing from the gist thereof.
  • the embodiments described above have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • SYMBOLS 1...Head-up display (HUD) device 2...Vehicle, 4...Vehicle information, 5...Display area, 6...User, 11...Video display part, 16...Communication part (information acquisition part), 20...Control part, 400...Prediction time information, 410...Priority information, 415...Display setting table, C1 to C3, C31, C32...Coefficient, M1...Mirror (image light projection unit), ST0...Normal state, ST1...Return transition state, ST2 ...Suppression transition state, ST3...Suppression state, Tc...Control cycle, Tp...Preparation time, Tr...Prediction time, Tth1...First threshold time, Tth2...Second threshold time, TthD...Threshold duration period, VD...Video

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Instrument Panels (AREA)

Abstract

様々な表示仕様に柔軟に対応することが可能なヘッドアップディスプレイ装置および映像データの処理方法を提供する。また、持続可能な開発目標の「3.すべての人に健康と福祉を」に貢献する。映像を表示し、表示した映像の映像光を出射する映像表示部と、出射された映像光を表示領域に投射することで、投射された映像光を虚像として視認させる映像光投射部と、表示内容を決定し、映像データを準備し、当該データに基づく映像を映像表示部に表示させる制御部と、を備える。制御部は、所定の処理周期内に映像データの準備を完了するように、映像データの準備に必要な処理負荷を軽減する制御を行う。または、制御部は、表示内容を決定する前の仮決定した表示内容の映像データの準備に要する準備時間が所定の処理周期よりも長い場合、仮決定した表示内容を変更する。

Description

ヘッドアップディスプレイ装置および映像データの処理方法
 本発明は、ヘッドアップディスプレイ装置および映像データの処理方法に関し、例えば、AR(Augmented Reality)を利用したヘッドアップディスプレイ装置の技術に関する。
 特許文献1には、撮像データに基づきAR表示対象となる対象物を抽出し、対象物のAR画像データを生成し、当該AR画像データのフレームレートを対象物の重要度に基づき設定する表示システムが示される。例えば、全体のフレームレートを60fpsとして、3個のAR画像データを時分割で表示する場合、3個のAR画像データのフレームレートは、重要度に応じて、順に30fps、20fps、10fpsに設定される。これにより、重要度が高いAR画像データほど、ちらつきを抑制することができる。
特開2019-6164号公報
 ヘッドアップディスプレイ装置は、ADAS(Advanced Driver Assistance Systems)等から取得した情報に基づいて様々な映像データを準備し、当該映像データに基づく映像光を表示領域に投射することで虚像として視認させる。この際に、映像データの準備に要する準備時間は、映像の種類、個数や、虚像距離の遠近に応じた映像のサイズや、2D/3Dといった表示形式や、グラフィックス効果の有無等の違いにより変化する。なお、明細書では、ヘッドアップディスプレイ装置を、HUD装置とも呼ぶ。
 ここで、HUD装置では、通常、最大フレームレート等の処理性能は、主にハードウェアの仕様に基づいて固定的に定められる。一方、例えば、HUD装置のハードウェア自体を変更することなく、ソフトウェアの更新によって、HUD装置の表示仕様を変更したいといった要望が生じることがある。この際に、求められるHUD装置の表示仕様は、処理負荷の増大を伴うものになることが多い。その結果、ハードウェアの処理性能が不足し、例えば、AR表示の際にコマ落ちが生じる等、求められる表示仕様を満たせなくなるおそれがあった。
 本発明は、このようなことに鑑みてなされたものであり、その目的の一つは、ハードウェアの処理性能の範囲内において、求められる表示仕様をできるだけ満足するとともに、様々な表示仕様に柔軟に対応することが可能なヘッドアップディスプレイ装置および映像データの処理方法を提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
 代表的なヘッドアップディスプレイ装置は、映像を表示し、表示した映像の映像光を出射する映像表示部と、出射された映像光を表示領域に投射することで、投射された映像光を虚像として視認させる映像光投射部と、取得された乗り物に関する情報に基づいて表示内容を決定し、決定した表示内容に基づく映像データを準備し、準備した映像データに基づく映像を映像表示部に表示させる制御部と、を備える。制御部は、所定の処理周期内に映像データの準備を完了するように、映像データの準備に必要な処理負荷を軽減する制御を行う。または、制御部は、表示内容を決定する前の仮決定した表示内容の映像データの準備に要する準備時間が所定の処理周期よりも長い場合、仮決定した表示内容を変更する。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、ヘッドアップディスプレイ装置において、様々な表示仕様に柔軟に対応することが可能になる。
実施の形態1によるヘッドアップディスプレイ装置を搭載した車両の構成例を示す概略図である。 図1におけるHUD装置の主要部の構成例を示す概略図である。 図1におけるHUD装置の、図2Aとは異なる主要部の構成例を示す概略図である。 図2Aおよび図2Bに示されるHUD装置において、制御を担う制御系の主要部の構成例を示すブロック図である。 図2Aおよび図2Bに示されるHUD装置において、制御を担う制御系の図3Aとは異なる主要部の構成例を示すブロック図である。 図3Aおよび図3Bにおいて、制御ユニットに関わる箇所の構成例を示すブロック図である。 図1に示されるHUD装置の表示内容の一例を示す概略図である。 図3Aに示されるHUD装置において、映像を表示する際の処理手順の一例を示すフロー図である。 図6に示されるフローを用いて映像を表示する際の問題点の一例を模式的に示すタイミングチャートである。 コマ落ちが生じていない場合での表示内容の変化の様子を示す模式図である。 コマ落ちが生じた場合での表示内容の変化の様子を示す模式図である。 図3Aに示される制御部が有する内部状態の一例を示す図である。 図3Aに示される制御部による、準備時間の監視結果の一例を示す図である。 図9に示される通常状態における、HUD装置の表示内容の一例を示す概略図である。 図9に示される抑制移行状態における、HUD装置の表示内容の一例を示す概略図である。 図9に示される抑制状態における、HUD装置の表示内容の一例を示す概略図である。 図3Aに示される制御部の処理内容の一例を示すフロー図である。 図3Aおよび図3Bに示されるHUD装置において、フレームバッファに書き込まれる映像データと、映像表示部に表示される表示内容との関係の一例を示す模式図である。 図13Aとは異なる関係の一例を示す模式図である。 図6において、映像データの準備時間に影響する項目の一例を示す図である。 実施の形態2によるHUD装置において、映像を表示する際の処理手順の一例を示すフロー図である。 図15における表示内容の調整処理の詳細な処理内容の一例を示すフロー図である。 図16における準備時間の予測方法(ステップS412)の具体例を示す図である。 図17Aとは異なる具体例を示す図である。 図16における表示内容の変更方法(ステップS414)の一例を説明する図である。 図18において、表示内容の変更を行った結果として得られるHUD装置の表示内容の一例を示す概略図である。 図15および図16に示されるフローを用いて映像を表示する際のタイミングチャートである。 実施の形態3によるHUD装置において、制御部の主要な処理内容の一例を示す模式図である。 図21Aの補足図である。 図21Aとは異なる一例を示す模式図である。 図22Aの補足図である。 実施の形態3によるHUD装置において、制御部が記憶している表示設定テーブルの構成例を示す図である。 実施の形態3によるHUD装置において、制御部の処理内容の一例を示すフロー図である。 図24Aとは異なる処理内容の一例を示すフロー図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 <HUD装置の概要>
 図1は、実施の形態1によるヘッドアップディスプレイ装置を搭載した車両の構成例を示す概略図である。図1に示されるヘッドアップディスプレイ(HUD)装置1は、乗り物の一つである車両2に搭載される。車両2は、代表的には、自動車であるが、必ずしもこれに限定されず、鉄道車両等であってもよい。また、乗り物は、車両に限らず、航空機等であってもよい。また、車両2には、例えば、ECU(Electronic Control Unit)と呼ばれる制御ユニット21が搭載される。
 制御ユニット21は、例えば、車両2の各部に設置された各種センサや、加えて、ナビゲーション装置等から車両情報4を取得する。各種センサは、例えば、車両2で生じた各種イベントを検知し、また、走行状況に関する各種パラメータ値を検知する。HUD装置1は、制御ユニット21によって取得された車両情報4を、例えばCAN(Controller Area Network)通信等を用いて取得する。
 車両情報4には、例えば、車両2の速度情報やギア情報、ハンドル操舵角情報、ランプ点灯情報、外光情報、距離情報、赤外線情報、エンジンON/OFF情報、車内外のカメラ映像情報、加速度ジャイロ情報、GPS(Global Positioning System)情報、ナビゲーション情報、車車間通信情報、および路車間通信情報等が含まれる。GPS情報の中には、現在時刻等の情報も含まれる。また、車両情報4には、各種警告情報も含まれる。HUD装置1は、このような車両情報4に基づいて、ウィンドシールド3などの表示領域に映像光を投射する。これにより、HUD装置1は、運転者等の利用者に、表示領域に投射された映像光を虚像として、詳細には車両2の前方の風景に重畳された虚像として視認させる。
 図2Aは、図1におけるHUD装置の主要部の構成例を示す概略図である。図2Aに示されるHUD装置1は、例えば、筐体12内に収容された映像表示部11、ミラーM1,M2、およびミラー駆動部14等を備える。映像表示部11は、例えば、LCD(Liquid Crystal Display)等の表示パネルや、プロジェクタ等であり、入力された映像データに基づいて映像を表示し、表示した映像の映像光を出射する。
 ミラーM2は、映像表示部11からの映像光を、ミラーM1に向けて反射する。ミラーM2は、省スペースで光路長を長く確保するために効果を発揮するものである。HUD筐体内のスペースと、必要な光路長の値によっては、ミラーM2を配置しなくてもよいし、複数配置してもよい。ミラーM1は、映像光投射部として機能する。映像光投射部であるミラーM1は、映像表示部11から出射され、ミラーM2によって反射された映像光を、ダッシュボード10に設けた開口部7を介してウィンドシールド3の表示領域5に投射する。これにより、映像光投射部は、投射された映像光を、虚像として利用者6に視認させる。
 詳細には、ミラーM1は、例えば、凹面鏡(拡大鏡)であり、ミラーM2で反射された映像光を反射および拡大し、開口部7を介して表示領域5に投射する。表示領域5に投射された映像光は、表示領域5で反射され、利用者6の眼に入射する。その結果、利用者6は、表示領域5に投射された映像光を、透明のウィンドシールド3の先に存在する虚像9として、車外の風景(道路や建物、人など)に重畳される形で視認する。虚像9が表す情報の中には、例えば、道路標識や、自車の現速度や、風景上の物体に付加される各種情報、すなわちAR情報等、様々なものが含まれる。
 また、ミラーM1,M2は、例えば、自由曲面ミラーや光軸非対称の形状を有するミラー等であってよい。ここで、ミラーM2は、設置角度が固定される。一方、ミラーM1には、ミラー駆動部14が設置される。ミラー駆動部14は、ミラーM1の設置角度を可変調整する。詳細には、ミラー駆動部14は、例えば、モータを含み、モータの回転動作によってミラーM1を回転させる。
 ミラーM1の設置角度を可変調整することで、ウィンドシールド3上の表示領域5の位置、すなわち、利用者6が視認する虚像の上下方向の位置を調整できる。さらに、ミラーM1の設置角度を可変調整することで、映像表示部11を太陽光から保護することが可能になる。具体的には、太陽光は、映像光の光路を逆方向に進んで映像表示部11に入射し得る。当該太陽光の入射によって、映像表示部11の破損が生じる可能性が高くなった場合には、太陽光が映像表示部11に到達しないように、ミラーM1の設置角度を変更すればよい。
 図2Bは、図1におけるHUD装置の、図2Aとは異なる主要部の構成例を示す概略図である。図2Bに示されるHUD装置1は、図2Aに示した構成と異なり、筐体12内に、ミラーM2の代わりにレンズLSが設けられる。映像表示部11からの映像光は、レンズLSを介してミラーM1に入射する。ミラーM1は、図2Aの場合と同様に、入射した映像光を、開口部7を介して表示領域5に投射する。ミラーM1には、図2Aの場合と同様に、ミラー駆動部が設置されてもよい。図2Bに示される構成は、例えば、ワンボックスカーやトラック等のように、ウィンドシールド3が垂直に近い角度で設置される場合に適用され得る。
 図3Aは、図2Aおよび図2Bに示されるHUD装置において、制御を担う制御系の主要部の構成例を示すブロック図である。図3Aに示されるHUD装置1は、互いにバス13で接続されるミラー駆動部14、表示駆動部15、通信部16、メモリ17、フレームバッファ18および制御部20を備える。
 通信部16は、車両情報を受信および送信するものであり、例えば、通信インタフェース回路等によって実現され、情報取得部として機能する。通信部16は、制御ユニット21から、CAN通信等を用いて乗り物に関する情報を取得または受信し、受信した乗り物に関する情報を制御部20に送信する。制御部20は、通信部16からの情報によりミラー駆動部14と表示駆動部15とを制御する。ミラー駆動部14は、例えば、制御部20からの命令に応じて、図2Aで述べたように、ミラーM1の設置角度を調整する。ミラー駆動部14は、図2Aで述べたようなモータに加えて、当該モータを駆動するモータドライバ回路等によって実現され得る。
 フレームバッファ18は、例えば、揮発性メモリによって構成され、映像データを記憶する。表示駆動部15は、フレームバッファ18が記憶している映像データを、バス13を介して読み出し、当該映像データに基づいて映像表示部11を駆動する。映像表示部11は、例えば、光源と、表示パネルとを備えた液晶ディスプレイ等である。表示パネルは、光源から照射されたバックライトを、画素毎に映像データに基づいて変調することで映像を表示する。この場合、表示駆動部15は、LCDドライバ回路等によって実現され得る。
 メモリ17は、例えば、揮発性メモリおよび不揮発性メモリの組み合わせで構成され、制御部20で用いられるプログラムやデータ等を記憶する。制御部20は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって実現され、メモリ17が記憶しているプログラムを実行することで、HUD装置1全体を制御する。その一つとして、制御部20は、通信部16、すなわち情報取得部によって取得された乗り物に関する情報に基づいて、映像データの作成を含めて映像データを準備し、準備した映像データに基づく映像を映像表示部11に表示させる。
 なお、図3Aに示される通信部16、メモリ17、フレームバッファ18および制御部20は、マイクロコントローラ等に搭載され得る。ただし、このような実装形態に限らず、例えば、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)等を適宜組み合わせた実装形態であってもよい。
 図3Bは、図2Aおよび図2Bに示されるHUD装置において、制御を担う制御系の図3Aとは異なる主要部の構成例を示すブロック図である。図3Bに示されるHUD装置1は、図3Aに示した構成例と異なり、メモリ17および制御部20が設けられない構成となっている。この場合、制御ユニット21は、図3Aに示した制御部20に代わって映像データを作成し、作成した映像データを、通信処理部16aを介してフレームバッファ18に書き込む。
 なお、図3Bに示した構成例の場合、図3Aで述べた制御部20は、通信処理部16aとして機能することになってもよい。または、制御ユニット21と通信処理部16aにそれぞれ一部機能を分担することになってもよい。図3Bの構成例では、ミラー駆動部14、表示駆動部15、通信処理部16aが設けられる。通信処理部16aは、図3Aの通信部16と異なり、制御ユニット21から、CAN通信等を用いて乗り物に関する情報を受信し、受信した情報を処理し、処理した結果により、ミラー駆動部14と表示駆動部15の動作を調整する。
 図4は、図3Aおよび図3Bにおいて、制御ユニットに関わる箇所の構成例を示すブロック図である。制御ユニット21は、図1で述べたように車両情報4を取得する。車両情報4は、図4に示されるように、制御ユニット21に接続される各種センサ等の情報取得デバイスによって生成される。図4には、当該情報取得デバイスの一例が示される。
 図4において、例えば、車速センサ101は、図1の車両2の速度を検知し、検知結果となる速度情報を生成する。シフトポジションセンサ102は、現在のギアを検知し、検知結果となるギア情報を生成する。ハンドル操舵角センサ103は、現在のハンドル操舵角を検知し、検知結果となるハンドル操舵角情報を生成する。ヘッドライトセンサ104は、ヘッドライトのON/OFFを検知し、検知結果となるランプ点灯情報を生成する。照度センサ105および色度センサ106は、外光を検知し、検知結果となる外光情報を生成する。
 測距センサ107は、車両2と外部の物体との間の距離を検知し、検知結果となる距離情報を生成する。赤外線センサ108は、車両2の近距離における物体の有無や距離等を検知し、検知結果となる赤外線情報を生成する。エンジン始動センサ109は、エンジンのON/OFFを検知し、検知結果となるON/OFF情報を生成する。加速度センサ110およびジャイロセンサ111は、車両2の加速度および角速度をそれぞれ検知し、検知結果として、車両2の姿勢や挙動を表す加速度ジャイロ情報を生成する。温度センサ112は、車内外の温度を検知し、検知結果となる温度情報を生成する。
 路車間通信用無線受信機113は、車両2と、道路、標識、信号機等との間の路車間通信によって路車間通信情報を生成する。車車間通信用無線受信機114は、車両2と周辺の他の車両との間の車車間通信によって車車間通信情報を生成する。車内用カメラ115および車外用カメラ116は、それぞれ、車内および車外を撮影することで車内のカメラ映像情報および車外のカメラ映像情報を生成する。車内用カメラ115は、例えば、図2A等に示した利用者6の姿勢や、眼の位置、動き等を撮影するDMS(Driver Monitoring System)用のカメラ等である。この場合、撮像された映像を解析することで、利用者6の疲労状況や視線の位置等が把握できる。
 一方、車外用カメラ116は、例えば、車両2の前方や後方といった周囲の状況を撮影する。この場合、撮像された映像を解析することで、周辺に存在する他の車両や人などの障害物の有無、建物や地形、雨や積雪、凍結、凹凸等といった路面状況、および道路標識等を把握することが可能になる。また、車外用カメラ116には、例えば、走行中の状況を映像で記録するドライブレコーダ等も含まれ得る。
 GPS受信機117は、GPS信号を受信することで得られるGPS情報を生成する。例えば、GPS受信機117によって、現在時刻を取得することが可能である。VICS(Vehicle Information and Communication System、登録商標)受信機118は、VICS信号を受信することで得られるVICS情報を生成する。GPS受信機117やVICS受信機118は、ナビゲーション装置の一部として設けられてもよい。なお、図4に示される各種情報取得デバイスに関しては、適宜、削除することや、他の種類のデバイスを追加することや、他の種類のデバイスに置き換えることが可能である。
 <HUD装置の表示について>
 図5は、図1に示されるHUD装置の表示内容の一例を示す概略図である。当該表示内容は、AR表示の一例を示すものであり、図2A等に示した虚像9の一例を示すものである。図5に示される例では、5個の映像VDa~VDeが表示されている。明細書では、複数の映像VDa~VDeを総称して映像VD、または画像VD、または映像オブジェクトVDと呼ぶ。
 映像VDaは、風景の一つであり、ARの対象物である物体OB、ここでは人に重畳するように表示される。映像VDaは、図4に示した各種情報取得デバイスによって物体OBを検知済みであることを意味する。すなわち、HUD装置1は、制御ユニット21から物体OBの検知結果を表す情報を取得する。また、映像VDaは、物体OBへの注意喚起を利用者6、例えば運転者に促すための警告情報を表す。
 映像VDbは、風景の一つである道路上に表示され、車両2の進行方向を表す。映像VDcは、ナビゲーション情報を表す。映像VDdは、例えば、路車間通信情報の一つである道路標識を表す。映像VDeは、車両2の速度情報を表す。なお、映像VDa,VDbは、3Dグラフィックスであり、映像VDc~VDeは、2Dグラフィックスである。
 図6は、図3Aに示されるHUD装置において、映像を表示する際の処理手順の一例を示すフロー図である。図6において、まず、通信部16、すなわち情報取得部は、制御ユニット21から乗り物に関する情報を取得する(ステップS11)。続いて、制御部20は、ステップS121~S124を含む映像データの準備処理を行う(ステップS12)。例えば、プロセッサは、メモリ17内の映像処理プログラムを実行することで、ステップS121~S123の処理を実行する。
 ステップS121において、制御部20は、ステップS11で取得した乗り物に関する情報、例えば、図1に示した車両情報4に基づいて、表示内容を決定する。具体的には、制御部20は、表示に対応している車両情報4を選定すると共に、当該選定した車両情報4を表す映像VDを、どの位置にどのようなサイズおよびレイアウトで表示するか等を決定する。図5に示される例では、制御部20は、表示内容として、5個の映像VDa~VDeを表示することを決定する。ステップS122において、制御部20は、ステップS121で決定した表示内容に基づいて、映像VD毎の映像データを作成する。
 ステップS123において、制御部20は、ステップS122で作成した複数の映像データを、それぞれ、表示すべき位置に対応するフレームバッファ18内の記憶領域に書き込む。ステップS124において、制御部20は、フレームバッファ18内の映像データ全体に対して、例えば、ウィンドシールド3の曲率等に応じた歪補正を行う。なお、歪補正に関しては、例えば、プロセッサが、メモリ17内の歪補正プログラムを実行することで実現されるか、または、専用のハードウェアによって実現されてもよい。
 このような映像データの準備処理(ステップS12)を終えたのち、映像の表示処理が行われる(ステップS13)。ステップS13において、表示駆動部15は、フレームバッファ18が記憶している映像データを読み出し、当該映像データに基づいて映像表示部11を駆動することで、映像表示部11に映像VDを表示させる。なお、図6に示した処理手順は、フレームレートに基づいて定められる処理周期に同期して実行される。例えば、フレームレートが60fpsの場合、処理周期は、16.6msである。また、映像VDを表示する際の処理手順は、特に、図6に示したものに限らず、一般的に知られている様々な手順に置き換え可能である。
 図7は、図6に示されるフローを用いて映像を表示する際の問題点の一例を模式的に示すタイミングチャートである。図7には、1番目~5番目の処理周期または制御周期Tc[1]~Tc[5]で実行される動作が示される。明細書では、処理周期または制御周期Tc[1]~Tc[5]を総称して処理周期または制御周期Tcと呼ぶ。制御周期Tcは、例えば、16.6msである。また、図7には、図6におけるステップS11,S12の処理と、ステップS13の処理とをパイプラインで実行する場合の動作が示される。
 図7において、1番目の制御周期Tc[1]では、乗り物に関する情報が取得され(ステップS11)、当該情報に基づいて映像データが準備される(ステップS12)。当該ステップS11,S12の処理に要する映像データの準備時間Tp[1]は、制御周期Tc[1]よりも短くなっている。これは、例えばARの対象物、ひいては表示する映像VDの数が少なく、準備時間Tp[1]が制御周期Tc[1]内に収まるケースである。同様に、2番目の制御周期Tc[2]でも、乗り物に関する情報が取得され(ステップS11)、当該情報に基づいて映像データが準備される(ステップS12)。また、これと並行して、2番目の制御周期Tc[2]では、1番目の制御周期Tc[1]で準備された映像データに基づいて、映像VDの表示処理が行われる(ステップS13)。
 ここで、2番目の制御周期Tc[2]において、ステップS11,S12の処理に要する映像データの準備時間Tp[2]は、制御周期Tc[2]よりも長くなっている。準備時間Tp[2]は、例えば、ARの対象物、ひいては表示する映像VDが増加すること等により、長期化し得る。このため、当該映像データは、3番目の制御周期Tc[3]での表示処理に反映されずに、4番目の制御周期Tc[4]での表示処理に反映されることになる。その結果、3番目の制御周期Tc[3]において、コマ落ちが生じることになる。
 また、4番目の制御周期Tc[4]において、ステップS11,S12の処理に要する映像データの準備時間Tp[3]は、制御周期Tc[4]よりも短くなっている。このため、当該映像データは、5番目の制御周期Tc[5]での表示処理に反映される。ただし、方式によっては、コマ落ちが生じたことにより、準備時間Tp[3]で準備される映像データは、本来、3番目の制御周期Tc[3]で準備されるべき映像データとなる場合がある。なお、明細書では、複数の準備時間Tp[1]~Tp[3]を総称して準備時間Tpと呼ぶ。
 図8Aは、コマ落ちが生じていない場合での表示内容の変化の様子を示す模式図である。図8Bは、コマ落ちが生じた場合での表示内容の変化の様子を示す模式図である。例えば、図8Aおよび図8Bに示されるように、物体OB、ここでは人が、時刻t1から時刻t2にかけて移動した場合を想定する。コマ落ちが生じていない場合、図8Aに示されるように、時刻t1での物体OB(t1)には、その位置に映像VDa(t1)が重畳して表示され、時刻t2での物体OB(t2)には、その位置に映像VDa(t2)が重畳して表示される。
 このように、コマ落ちが生じない場合には、ARの対象物に追従するリアルタイム性が高い映像VDを表示することができる。一方、コマ落ちが生じた場合、特に、連続する制御周期Tcで連続してコマ落ちが生じた場合、図8Bに示されるように、時刻t2での物体OB(t2)には、その位置から物体OB(t1)側にズレた位置に映像VDa(t2)が表示される。この場合、映像VDa(t2)は、物体OB(t2)に完全には重畳されない。このように、コマ落ちが生じた場合には、ARの対象物に追従しないリアルタイム性が低い映像VDを表示されることになり得る。
 <制御部の概略動作>
 そこで、制御部20は、リアルタイム性が高い映像VDを表示できるようにするため、概略的には、所定の処理周期または制御周期Tc内に映像データの準備を完了するように、映像データの準備に必要な処理負荷を軽減する制御を行う。つまり、制御部20は、通信部16によって受信された乗り物に関する情報に基づいて映像データを準備し、映像データの準備条件が所定の処理周期に所定条件を満たさない場合、準備する映像データの一部内容を変更して準備する。より詳細には、制御部20は、映像データの準備に要する準備時間Tpを監視し、準備時間Tpが予め定めた条件を満たした場合に、処理負荷を軽減する制御を開始する。また、所定の処理周期または制御周期Tcは、フレームレートに基づいて定められるものである。
 準備時間Tpは、図7で述べたような動作方式を前提とすると、図6に示したステップS11,S12の処理に要する時間である。一方、例えば、ステップS11の処理と、ステップS12の処理とをパイプラインで実行するような動作方式を前提とすると、準備時間Tpは、ステップS12の処理に要する時間であってよい。ただし、リアルタイム性を高めるためには、図7で述べたような動作方式を用いる方が望ましい。
 制御部20は、準備時間Tpを逐次監視する。例えば、車両の時間と連動し、または、タイマ等を用いて準備時間を監視することができる。図7で述べたような動作方式を前提とすると、図3Aに示すように、制御部20は、通信部16を用いて乗り物に関する情報の取得を開始してから、作成した映像データをフレームバッファ18に書き終えるまでに要する準備時間Tpを、タイマ等を用いて監視する。図3Bに示した構成を用いる場合、図3Aの場合と異なり、通信処理部16aは、制御ユニット21からの情報を取得して、取得した情報を処理し、処理した結果をフレームバッファ18に書き終えるまでに要する準備時間Tpを、タイマ等を用いて監視する。
 図9は、図3Aに示される制御部が有する内部状態の一例を示す図である。図10は、図3Aに示される制御部による、準備時間の監視結果の一例を示す図である。制御部20は、図9に示されるように、内部状態として、通常状態ST0と、復帰移行状態ST1と、抑制移行状態ST2と、抑制状態ST3とを有する。言い換えれば、制御部20は、動作モードとして、通常モードST0と、復帰移行モードST1と、抑制移行モードST2と、抑制モードST3とを有する。4つの状態を有するのは一例であり、別の例では、制御部20は、通常状態ST0と、抑制状態ST3の2つの状態を有してもよい。
 制御部20は、通常状態ST0では、通信部16を用いて取得した情報に基づいて、通常通りに映像データを準備し、それに基づく映像VDを映像表示部11に表示させる。また、制御部20は、通常状態ST0において、(A)監視結果となる準備時間Tpが制御周期Tcよりも長かった場合、または、(B)準備時間Tpが複数回連続して第1の閾値時間Tth1よりも長かった場合に、抑制移行状態ST2に遷移する。連続回数は、例えば、2回以上10回以下の値に定められる。
 具体例として、図10では、監視時刻tm4で得られた準備時間Tp4は、制御周期Tcよりも長くなっている。また、連続する監視時刻tm2,tm3で得られた準備時間Tp2,Tp3は、共に、制御周期Tcよりも短いが、第1の閾値時間Tth1よりも長くなっている。第1の閾値時間Tth1は、制御周期Tcである16.6msよりも短い時間であり、例えば、15.0ms等である。
 制御部20は、通常状態ST0において、(A)準備時間Tp4のような監視結果が得られた場合、または、(B)準備時間Tp2,Tp3のような監視結果が複数回連続して、例えば2連続で得られた場合に、抑制移行状態ST2に遷移する。条件(A)は、コマ落ちを迅速に解消するためのものである。一方、条件(B)は、近い将来に、準備時間Tpが制御周期Tcよりも長くなる状況、ひいてはコマ落ちが生じる状況を、事前に予防するためのものである。
 制御部20は、抑制移行状態ST2において、処理負荷を軽減する制御を開始したのち、予め定めた抑制移行期間内で、処理負荷の軽減量を制御周期Tc毎に段階的に増やしていく。抑制移行期間は、例えば、5秒等に定められる。詳細は後述するが、制御部20は、例えば、一部の映像データを作成しない、または、一部の映像データを簡略化すること等で、準備する映像データのデータ量を削減し、処理負荷を軽減する。この場合、仮に、映像データのデータ量が急減に削減されると、表示内容も急減に変化するため、利用者6の視点で好ましくない。そこで、制御部20は、削減するデータ量を段階的に増やしていく。そして、制御部20は、抑制移行期間、例えば5秒を経たのち、抑制状態ST3に遷移する。
 制御部20は、抑制状態ST3において、軽減後の処理負荷で映像データを準備する。また、制御部20は、抑制状態ST3において、準備時間Tpが第2の閾値時間Tth2よりも短かった状態が予め定めた閾値継続期間TthD以上継続した場合に、復帰移行状態ST1に遷移する。第2の閾値時間Tth2は、制御周期Tcよりも短い時間であり、例えば、第1の閾値時間Tth1と同じ時間、または、第1の閾値時間Tth1よりも短い時間に定められる。閾値継続期間TthDは、制御周期Tcの複数倍以上の期間であり、例えば、5秒等に定められる。
 具体例として、図10では、第2の閾値時間Tth2は、第1の閾値時間Tth1よりも短い時間に定められる。監視時刻tm5,tm6で得られた準備時間Tp5,Tp6は、共に、第2の閾値時間Tth2よりも短くなっている。制御部20は、準備時間Tp5,Tp6のような監視結果が閾値継続期間TthD以上継続して得られた場合に、復帰移行状態ST1に遷移する。
 このように、“準備時間Tp<第2の閾値時間Tth2”の状態が安定的に生じている場合、通常状態ST0に復帰しても、前述した条件(A)および条件(B)に該当しなくなることが見込まれる。なお、制御部20は、場合によっては、所定の期間を経ることで処理負荷が自ずと軽減されることを見込んで、このような条件判定を行うことがなく、単に、5秒等の時間を経て、復帰移行状態ST1に遷移してもよい。
 制御部20は、復帰移行状態ST1において、予め定めた復帰移行期間内で、処理負荷の軽減量を制御周期Tc毎に段階的に減らしていく。復帰移行期間は、例えば、5秒等に定められる。そして、制御部20は、当該復帰移行期間、例えば5秒を経たのち、通常状態ST0に遷移する。復帰移行状態ST1を設けることで、抑制移行状態ST2の場合と同様に、利用者6の視点で好ましくない状況を回避することができる。
 <処理負荷の軽減方法>
 図11Aは、図9に示される通常状態における、HUD装置の表示内容の一例を示す概略図である。通常状態ST0では、例えば、図11Aに示されるように、7個の映像VDa1~VDa3,VDb~VDeが表示される。映像VDa1,VDa2は、それぞれ、物体OB1,OB2、ここでは人に重畳するように表示される。映像VDa3は、物体OB3、ここでは車両に重畳するように表示される。映像VDb~VDeは、図5の場合と同様に、それぞれ、ナビゲーション情報、進行方向、道路標識、速度情報を表す。
 図11Bは、図9に示される抑制移行状態における、HUD装置の表示内容の一例を示す概略図である。抑制移行状態ST2では、図11Aに示した表示内容を基準として、図11Bでの符号201,203で示されるように、図11Aでの2個の映像VDa2,VDdが削除されている。すなわち、物体OB1よりも遠い物体OB2に重畳される映像VDa2と、道路標識を表す映像VDdとが削除されている。また、図11Bでの符号202で示されるように、図11Aでの映像VDa3を無着色にすること等で、映像VDa3が簡略化されている。
 さらに、図11Bでは、抑制移行状態ST2、言い換えれば抑制移行期間であることを利用者6に通知するための映像VDm1、例えばマークが表示されている。制御部20は、抑制移行状態ST2では、当該映像VDm1の映像データを、テンプレートとして、フレームバッファ18内の固定の記憶領域に書き込む。このようなマークを表示することで、利用者6は、故障による表示内容の変化ではなく、表示抑制機能が作動したことによる表示内容の変化であることを認識することができる。
 図11Bに示した表示を行う場合、制御部20は、図6に示したステップS121において、映像VDa2,VDdを非表示に定め、映像VDa3に簡略化表示を適用することで、ステップS12で準備する映像データのデータ量を削減する。これによって、制御部20は、映像データの準備に必要な処理負荷を軽減する。すなわち、制御部20は、ステップS122での処理に要する時間や、ステップS123での処理に要する時間を短縮する。また、制御部20は、このようなデータ量の削減を段階的に進めていく。
 図11Cは、図9に示される抑制状態における、HUD装置の表示内容の一例を示す概略図である。抑制状態ST3では、図11Bに示した表示内容を基準として、図11Cでの符号301,302で示されるように、さらに、図11Bでの2個の映像VDa1,VDbが簡略化されている。すなわち、2個の映像VDa1,VDbにおいて、無着色やサイズの縮小といった簡略化が行われている。さらに、図11Cでは、抑制状態ST3、言い換えれば抑制期間であることを利用者6に通知するための映像VDm2、例えばマークが表示されている。
 具体的な処理の一例として、制御部20は、車両情報4の種別と優先度との対応関係等を定めた抑制テーブルを、メモリ17に予め記憶しておく。制御部20は、例えば、抑制移行状態ST2において、当該抑制テーブルに基づいて、優先度が低い順に車両情報4を選択すると共に、当該選択数を段階的に増やしていく。そして、制御部20は、選択した車両情報4を表す映像VDを非表示に定める、または、予め定められた方法で簡略化する。
 ここで、抑制テーブルにおける優先度は、例えば、次のような基準で定められる。まず、安全運転への寄与度が高い車両情報4ほど、優先度を高くする。また、車両情報4が警告を表す場合で、警告の対象物が人と車両の場合には、人の方の優先度を高くする。ただし、この際には、自車と対象物との距離に応じて優先度に重み付けを持たせてもよい。例えば、人との距離が遠く、車両との距離が極端に近い場合は車両を優先してもよい。また、自車から遠ざかって行く人よりも近づいてくる人の優先度を高くしてもよい。
 また、図11Bおよび図11Cに示した進行方向を表す映像VDbに関し、例えば、ナビゲーション情報に基づいて、直線が続く場合には優先度は低くし、右左折のタイミングが近い場合には優先度を高くしてもよい。また、映像VDbに関し、過去の走行履歴に基づいて、利用頻度が高い道を走行している場合には優先度を低くし、過去に利用したことがない道を走行している場合には優先度を高くしてもよい。さらに、図11Aおよび図11Bに示した道路標識、すなわち制限速度を表す映像VDdに関し、自車の走行速度との差分に基づいて、優先度を変えてもよい。
 なお、制御部20は、映像VDを完全に削除せずに、例えば、映像VDを複数の制御周期Tc毎に1回表示すること等で、処理負荷を軽減してもよい。さらに、制御部20は、このような映像データのデータ量を削減する方法に限らず、例えば、図6におけるステップS124での歪補正の処理を簡略化する、ひいては精度を落とすことで、処理負荷を軽減してもよい。
 <制御部の詳細動作>
 図12は、図3Aに示される制御部の処理内容の一例を示すフロー図である。制御部20は、例えば、図2Aに示したミラーM1の設置角度の調整等が完了し、映像を投射できる環境が整った時点で図12に示されるフローを実行する。図12において、制御部20は、タイマ等を用いて準備時間Tpの監視を開始する(ステップS20)。続いて、制御部20は、開始トリガが生じるのを待つ(ステップS21)。開始トリガは、制御周期Tc毎に生成される。
 ステップS21で開始トリガが生じると、制御部20は、通信部16、すなわち情報取得部を用いて、乗り物に関する情報を取得する(ステップS22)。次いで、制御部20は、図9で述べた現在の内部状態を確認する(ステップS23)。そして、制御部20は、図6でのステップS12で述べたような、映像データの準備処理を行う(ステップS24)。この際に、制御部20は、通常状態ST0を除く内部状態である場合には、図9、図11Bおよび図11Cで述べたように、映像データの準備に必要な処理負荷を軽減する制御を行う。
 制御部20は、ステップS24における映像データの準備処理を完了すると、準備完了信号を生成する(ステップS25)。制御部20は、例えば、準備完了信号を生成した後の開始トリガに応じて、表示駆動部15に表示開始命令を出力する。表示駆動部15は、表示開始命令に応じて、図6におけるステップS13および図7で述べたような、映像VDの表示処理を行う。また、制御部20は、映像データの準備処理を完了した段階で、ステップS21に伴う監視結果である準備時間Tpを評価する(ステップS26)。
 そして、制御部20は、監視結果である準備時間Tpに基づいて、図9で述べた状態遷移が必要か否かを判定する(ステップS27)。状態遷移が必要な場合(ステップS27:Yes)、制御部20は、遷移先を決定し(ステップS29)、定めた遷移先へ状態遷移し、併せて内部状態を更新する(ステップS30)。一方、状態遷移が不要な場合(ステップS27:No)、制御部20は、HUD表示の終了要求が生じるまで、ステップS21に戻って次の開始トリガを待ち、同様の処理を繰り返す(ステップS28)。
 <実施の形態1の主要な効果>
 以上、実施の形態1の方式では、制御周期Tc内に映像データの準備を完了するように、映像データの準備に必要な処理負荷を軽減する制御を行うで、コマ落ち等の発生を抑制し、最低限の表示品質を確保することが可能になる。詳細には、コマ落ち等が生じないようにHUD装置1を設計した場合であっても、表示仕様の変更を伴うソフトウェアのアップデート等によって、処理負荷が増大し、コマ落ち等が生じる可能性がある。実施の形態1の方式を用いると、このような場合であっても、コマ落ち等の発生を抑制することができる。その結果、ハードウェアの処理性能の範囲内において、求められる表示仕様をできるだけ満足するとともに、様々な表示仕様に柔軟に対応することが可能になる。
 (実施の形態2)
 実施の形態1の方式は、映像データまたは画像データの準備に要した準備時間Tpを実際に監視することで、制御周期Tc、言い換えれば処理周期内に映像データまたは画像データの準備を完了するように、処理負荷を軽減する方式であった。実施の形態2では、当該準備時間Tpを予測することで、制御周期Tc、言い換えれば処理周期内に映像データまたは画像データの準備を完了するように、処理負荷を軽減する方式について説明する。以下は映像データを用いて説明する。
 <映像データの準備処理について>
 図13Aは、図3Aおよび図3Bに示されるHUD装置において、フレームバッファに書き込まれる映像データと、映像表示部に表示される表示内容との関係の一例を示す模式図である。図13Bは、図13Aとは異なる関係の一例を示す模式図である。例えば、図6で述べたように、映像データの準備処理(ステップS12)では、フレームバッファ18に、決定した表示内容に基づく映像データが書き込まれる(ステップS122,S123)。
 図13Aにおいて、6個の映像VDa1~VDa3,VDb,VDc,VDeは、表示すべき位置に対応するフレームバッファ18内の記憶領域に、それぞれ映像データとして書き込まれている。図5で述べたように、映像VDa1~VDa3は、検知した物体に重畳される警告映像である。映像VDbは、車両の進行方向を表し、映像VDcは、ナビゲーション情報を表し、映像VDeは、車両の速度情報を表す。また、例えば、映像VDa1~VDa3,VDbは、3Dグラフィックスであり、映像VDc,VDeは、2Dグラフィックスである。
 ここで、図13Aに示される例では、フレームバッファ18のサイズと、映像表示部11のサイズとが等しくなっている。この場合、映像表示部11には、フレームバッファ18に書き込まれる各映像VD、言い換えれば各映像オブジェクトVDの全てがそのままの位置に表示される。一方、図13Bに示される例では、フレームバッファ18のサイズは、映像表示部11のサイズよりも大きくなっている。この場合、映像表示部11には、フレームバッファ18に書き込まれる各映像VDの一部が表示される。
 図13Bでは、例えば、ピッチング補正によって表示が上下に動いた場合にも対応するため、フレームバッファ18における、映像表示部11の表示領域外の領域にも、映像VDが配置されている。この場合、準備処理に必要とされる処理負荷の大きさは、映像表示部11の表示領域外の領域を含めて、フレームバッファ18全体に、どれだけの映像VDを配置したかによって定められる。
 図14は、図6において、映像データの準備時間に影響する項目の一例を示す図である。準備時間に影響する項目として、映像VDの数と、映像VD毎の表示形式とが挙げられる。映像VDの数に関しては、数が多いほど処理負荷が大きくなり、ひいては、準備時間Tpは長くなる。映像VD毎の表示形式には、項目として、例えば、サイズ、表示位置、デザイン種別、歪補正等が含まれる。
 サイズに関しては、サイズが大きいほど準備時間Tpは長くなる。表示位置に関しては、通常、表示位置が手前になる、言い換えれば近くなるほどサイズが大きくなるため、準備時間Tpは長くなる。デザイン種別には、例えば、2D/3Dグラフィックスといった種別や、グラデーションの有/無といった種別等が含まれる。例えば、ポリゴン数が多い3Dグラフィックスを用い、かつグラデーション有りを用いる場合のように、複雑なデザインを用いる場合ほど、準備時間Tpは長くなる。また、歪補正に伴う準備時間Tpは、図6でも述べたように、ハードウェアで歪補正を行う場合には短くなり、ソフトウェアで歪補正を行う場合には長くなる。
 図15は、実施の形態2によるHUD装置において、映像を表示する際の処理手順の一例を示すフロー図である。実施の形態2によるHUD装置1は、前述した図3Aまたは図3Bに示した構成で実現される。図15には、図6の場合と同様のフローが示される。すなわち、図6の場合と同様に、制御部20は、通信部16、すなわち情報取得部によって取得された乗り物に関する情報に基づいて表示内容を決定し、決定した表示内容に基づく映像データを準備し、準備した映像データに基づく映像を映像表示部11に表示させる。
 ただし、図15では、図6の場合と異なり、制御部20は、表示内容を適宜調整したのちに表示内容を決定する。このため、図15では、図6の場合とは、映像データの準備処理(ステップS12A)の内容が若干異なっている。すなわち、図15に示されるステップS12Aでは、制御部20は、まず、表示内容の調整処理(ステップS41A)を行うことで表示内容を決定し、続いて、調整後の表示内容に基づいて映像データを作成する(ステップS42A)。その後、制御部20は、図6の場合と同様に、作成した映像データをフレームバッファ18に書き込み(ステップS123A)、ハードウェア処理またはソフトウェア処理を用いて歪補正を行う(ステップS124A)。
 図16は、図15における表示内容の調整処理(ステップS41A)の詳細な処理内容の一例を示すフロー図である。詳細は後述するが、制御部20は、前提として、表示内容、例えば表示内容の違いと、映像データの準備に要する予測時間との関係を定めた予測時間情報を予めメモリ17等に記憶している。この前提で、制御部20は、まず、図15におけるステップS11で取得した乗り物に関する情報に基づいて、表示内容を決定する前に、表示内容を仮決定する(ステップS411)。続いて、制御部20は、仮決定した表示内容、仮表示内容とも呼ぶ、に基づく映像データの準備に要する準備時間Tpを、予測時間情報に基づいて予測する(ステップS412)。
 次いで、制御部20は、ステップS412で予測した準備時間Tpが所定の制御周期Tc、言い換えれば処理周期よりも短いか否かを判定する(ステップS413)。準備時間Tpが制御周期Tcよりも長い場合(ステップS413:Noの場合)、制御部20は、仮決定した表示内容を変更したのち、ステップS412に戻って同様の処理を繰り返す(ステップS414)。これにより、制御部20は、準備時間Tpが制御周期Tcよりも短くなるように、仮決定した表示内容、すなわち仮表示内容を変更する。一方、準備時間Tpが制御周期Tcよりも短い場合(ステップS413:Yesの場合)、制御部20は、仮決定している表示内容、すなわち現在の仮表示内容を最終的な表示内容として決定する(ステップS415)。
 <準備時間の予測方法>
 図17Aは、図16における準備時間の予測方法(ステップS412)の具体例を示す図である。図17Bは、図17Aとは異なる具体例を示す図である。図17Aおよび図17Bに示されるように、制御部20は、表示内容の違いと、映像データの準備に要する予測時間との関係を定めた予測時間情報400を予め記憶している。具体的には、予測時間情報400は、基本時間、この例では0.8[msec]と、図14に示した映像毎の表示形式に含まれる各項目に応じた係数とを含んでいる。
 すなわち、予測時間情報400は、サイズ係数C1と、表示位置係数C2と、デザイン種別係数C3とを含んでいる。デザイン種別係数C3には、ポリゴン数係数C31と、グラデーション係数C32とが含まれる。サイズ係数C1は、映像VDのサイズに比例する係数である。サイズ係数C1は、例えば、図13Aに示した警告を表す映像VDa1、進行方向を表す映像VDb、ナビゲーション情報を表す映像VDcといったような映像VDの種類毎に固定的に定められる。
 表示位置係数C2は、映像VDの表示位置が近くなるほど大きくなるように定められる。この例では、表示位置は、近い、中間、遠いの3段階に区別され、表示位置係数C2は、表示位置が近い場合には1.5に、中間の場合には1.0に、近い場合には0.5に定められる。ポリゴン数係数C31は、映像VDを描画する際のポリゴン数が多いほど大きくなるように定められる。この例では、ポリゴン数は、基準値以上、基準値未満、すなわち、多い、標準の2段階に区別され、ポリゴン数係数C31は、ポリゴン数が多い場合には1.2に、標準の場合には1.0に定められる。
 グラデーション係数C32は、グラデーションの有無に応じた係数である。この例では、グラデーション係数C32は、グラデーションが有りの場合には1.1に、無しの場合には1.0に定められる。なお、基本時間や、各係数の値は、図15に示したステップS42Aでの映像データの作成処理、言い換えれば描画処理に要する時間や、ステップS123Aでのフレームバッファ18への書き込み処理に要する時間や、ステップS124Aでの歪補正に要する時間を全て勘案して定められる。具体的な定め方としては、例えば、シミュレーションに基づく方法や、実測値に基づく方法等が挙げられる。
 制御部20は、このような予測時間情報400を用いて、基本時間に各係数を乗算することで、準備時間Tpを予測する。具体的には、制御部20は、映像VD毎に、映像データの準備に要する予測時間Trを、“基本時間×C1×C2×C31×C32”によって算出する。なお、予測時間Trの算出方法は、これに限定されず、場合によっては、“基本時間×C1×C2×C31”によって算出しても構わない。また、予測時間Trに影響する別のパラメータがある場合には、そのパラメータを考慮して予測時間Trを算出してもよい。
 さらに、予測時間Trを算出する際には、基本時間と係数から都度算出するのではなく、例えば、どの映像を、どのサイズで、どの位置に、どのようなデザインで表示すると、準備にどれだけの時間を要するかを表す情報を、予測時間情報として予め記憶しておいてもよい。この場合、準備に要する時間を映像VD毎に記憶しておく必要があるが、予測時間Trを都度算出しなくて済む。制御部20は、以上のような方法によって算出した映像VD毎の予測時間Trを合計することで、準備時間Tpを予測する。
 具体例として、図16に示したステップS411において、図17Aに示されるような3個の映像VD1~VD3を表示するように表示内容が仮決定された場合を想定する。映像VD1は、サイズ係数C1が5であり、近い表示位置に、3Dグラフィックスかつグラデーション有りを用いて表示されるものとなっている。映像VD2は、サイズ係数C1が2であり、中間の表示位置に、2Dグラフィックスを用いて表示されるものとなっている。映像VD3は、サイズ係数C1が10であり、遠い表示位置に、2Dグラフィックスかつグラデーション有りを用いて表示されるものとなっている。
 この場合、制御部20は、映像VD1の映像データの準備に要する予測時間Trを、7.9[msec]=0.8×C1(=5)×C2(=1.5)×C31(=1.2)×C32(=1.1)と算出する。同様にして、制御部20は、映像VD2の映像データの準備に要する予測時間Trを1.6[msec]と算出し、映像VD3の映像データの準備に要する予測時間Trを4.4[msec]と算出する。
 そして、制御部20は、算出した映像VD1~VD3毎の予測時間Trを合計することで、準備時間Tpを13.9[msec]=7.9+1.6+4.4と予測する。例えば、制御周期Tcが16.6msの場合、予測される準備時間Tpは、制御周期Tcよりも短くなる。このため、制御部20は、図16に示したステップS415において、そのままの表示形式を有する3個の映像VD1~VD3を、表示内容として決定する。
 また、別の具体例として、図17Bに示されるように、図17Aに示した3個の映像VD1~VD3に加えて2個の映像VD4,VD5を表示するように表示内容が仮決定された場合を想定する。映像VD4は、サイズ係数C1が8であり、中間の表示位置に、2Dグラフィックスを用いて表示されるものとなっている。映像VD5は、サイズ係数C1が2であり、近い表示位置に、3Dグラフィックスを用いて表示されるものとなっている。
 この場合、制御部20は、映像VD4の映像データの準備に要する予測時間Trを、6.4[msec]=0.8×C1(=8)×C2(=1.0)×C31(=1.0)×C32(=1.0)と算出する。同様にして、制御部20は、映像VD5の映像データの準備に要する予測時間Trを2.9[msec]と算出する。そして、制御部20は、算出した映像VD1~VD5毎の予測時間Trを合計することで、準備時間Tpを23.2[msec]と予測する。予測される準備時間Tpは、制御周期Tcよりも長くなる。このため、制御部20は、図16に示したステップS414において、表示内容、すなわち仮決定した表示内容を変更する。
 <表示内容の変更方法>
 図18は、図16における表示内容の変更方法(ステップS414)の一例を説明する図である。制御部20は、準備時間Tpが制御周期Tcよりも短くなるように、映像VDの数を変更するか、または、映像VD毎の表示形式、すなわち、サイズ、表示位置、デザイン種別の中の少なくとも一つを変更する。この際に、制御部20は、例えば、図18に示されるように、変更対象となる項目毎の優先度を定めた優先度情報410を、予めメモリ17等に記憶している。そして、制御部20は、準備時間Tpが制御周期Tcよりも短くなるまで、当該優先度情報410に基づいて変更対象とする項目を増やしながら、表示内容を変更する。
 図18に示される優先度情報410では、映像VDの数は、映像VD毎の表示形式よりも低い優先度に設定されている。映像VD毎の表示形式を変更する際の優先度は、図18に示される例では、高い方から順に、デザイン種別、サイズ、表示位置、歪補正となっている。制御部20は、優先度情報410に基づいて、まず、各映像VDのデザイン種別を変更する。具体的には、制御部20は、例えば、3Dグラフィックスを2Dグラフィックスに変更し、グラデーション有りをグラデーション無しに変更する。
 これにより、図16において、再度予測した準備時間Tpが制御周期Tcよりも短くなった場合(ステップS412,S413)、制御部20は、変更後の映像VDを用いて、表示内容を決定する(ステップS415)。一方、再度予測した準備時間Tpが依然として制御周期Tcよりも長かった場合(ステップS412,S413)、制御部20は、各映像VDのデザイン種別に加えて、各映像VDのサイズを小さくする。具体的には、制御部20は、例えば、予め映像VDの種類毎にサイズの下限値を定めておき、下限値に到達するまで、各映像VDのサイズを順に小さくしていく。
 具体例として、図17Bにおいて、映像VD3に対するサイズの下限値、詳細には、サイズ係数C1の下限値が8に設定されている場合を想定する。この場合、制御部20は、まず、映像VD3のサイズを、サイズ係数C1が9となる大きさに変更し、それでもTp>Tcであった場合、サイズ係数C1が8となる大きさに変更する。なお、この際には、映像VDの種類に応じて、サイズ係数C1の変更が許可されない、すなわち下限値が設定されない映像VDも設定され得る。
 以降同様にして、制御部20は、優先度情報410に基づいて、Tp<Tcとなるまで、変更対象の項目に、表示位置と、歪補正とを順に加えていく。制御部20は、表示位置を変更する際には、表示位置を奥に移動させることでサイズを小さくする。この際には、映像VDの種類に応じて、表示位置の変更が許可されない映像VDも設定され得る。また、制御部20は、歪補正の項目を変更する際には、例えば、予め定められた簡略化された歪補正を適用したり、あるいは、歪補正自体を行わないようにする。
 このようにして映像VD毎の表示形式を変更しても、依然としてTp>Tcであった場合、制御部20は、最終手段として、映像VDの数を減らす。この際に、制御部20は、どの映像VDから順に削減するかを、例えば、図11Cで述べた抑制テーブル等に基づいて定める。抑制テーブルでは、前述したように、安全運転への寄与が大きい車両情報4、言い換えれば映像VDの種類ほど、削除対象とならないように優先度が設定される。
 図19は、図18において、表示内容の変更を行った結果として得られるHUD装置の表示内容の一例を示す概略図である。図19における上段には、変更前の表示内容として、図11Aの場合と同様の表示内容が示される。すなわち、ここでは、7個の映像VDa1~VDa3,VDb~VDeが表示される。映像VDa1,VDa2は、それぞれ、物体OB1,OB2、ここでは人に重畳するように表示される。映像VDa3は、物体OB3、ここでは車両に重畳するように表示される。映像VDb,VDc,VDd,VDeは、それぞれ、進行方向、ナビゲーション情報、道路標識、速度情報を表す。映像VDa1~VDa3には、3Dグラフィックス、かつ、グラデーション有りが用いられるものとする。
 図19における下段には、変更後の表示内容が示される。変更後の表示内容では、変更前の表示内容と比較して、映像VDa1~VDa3がそれぞれ映像VDa1x~VDa3xに置き換わっている。映像VDa1x~VDa3xには、2Dグラフィックス、かつ、グラデーション無しが用いられる。さらに、映像VDa1x~VDa3xのサイズは、映像VDa1~VDa3と比較して、若干小さくなっている。
 さらに、図19に示される例では、映像VDa1x~VDa3xを用いた場合であっても、準備時間Tpが依然として制御周期Tcよりも長かったため、符号405の箇所に示されるように、速度情報を表す映像VDdが削除されている。すなわち、この例では、速度情報を表す映像VDdは、他の映像VDに比べて、安全運転への寄与が小さいものと仮定して、映像VDdが削除されている。このような変更方法を用いることで、安全運転の観点で、変更前の表示内容を可能な限り維持しつつ、運転者等の利用者に、大きな違和感を抱かせないように、表示内容を変更することが可能になる。
 図20は、図15および図16に示されるフローを用いて映像を表示する際のタイミングチャートである。図20には、図7の場合と同様に、1番目~4番目の処理周期または制御周期Tc[1]~Tc[4]で実行される動作が示される。制御周期Tcは、例えば、16.6msである。図20に示されるように、仮に表示内容を変更しない場合、例えば、制御周期Tc[2]での準備時間Tp[2a]は、制御周期Tc[2]よりも長くなり得る。この場合、図7で述べたように、コマ落ちが生じることになる。
 一方、表示内容を変更すると、例えば、制御周期Tc[2]での準備時間Tp[2b]を、制御周期Tc[2]よりも短くすることができる。その結果、コマ落ちを防止することが可能になる。なお、準備時間Tpには、図15および図16に示した表示内容の調整処理(ステップS41A)に要する時間も含まれる。このため、当該ステップS41Aに要する時間は、準備時間Tp内のオーバヘッド時間となるが、通常、ステップS42,S123,S124に要する時間と比較して十分に小さく、無視できるレベルと考えられる。
 また、前述した実施の形態1の方式では、実際に発生した準備時間Tpを監視し、その監視結果に基づいて制御を行う、言うなればフィードバック制御を行う関係上、図20に示した準備時間Tp[2a]のような状況が瞬間的に生じる可能性がある。一方、実施の形態2の方式では、準備時間Tpを予測して制御を行う、言うなればフィードフォワード制御を行うため、理想的には、図20に示した準備時間Tp[2a]のような状況は生じない。
 <実施の形態2の主要な効果>
 以上、実施の形態2の方式を用いることでも、実施の形態1で述べた各種効果と同様の効果が得られる。すなわち、コマ落ち等の発生を抑制または防止し、最低限の表示品質を確保することができる。そして、ハードウェアの処理性能の範囲内において、求められる表示仕様をできるだけ満足するとともに、様々な表示仕様に柔軟に対応することが可能になる。さらに、準備時間Tpを予測することにより、実施の形態1の方式と比較して、表示内容を過剰に変更する、または抑制する事態が生じ難いため、表示品質をより高めることが可能になる。
 なお、実施の形態1の方式は、例えば、初期製品等にように表示仕様に多くの変動要素があり、図17Aおよび図17Bに示したような予測時間情報400を作成し難いような場合に特に有益となる。一方、実施の形態2の方式は、例えば、ある程度成熟した製品等のように、表示仕様における変動要素が少ない場合に特に有益となる。また、実施の形態2の方式では、予測時間情報400を作成する必要があるため、変動が大きい表示仕様に対応する際の柔軟性、または汎用性の観点では、実施の形態1の方式がより有益となり得る。
 (実施の形態3)
 <制御部の詳細>
 図21Aは、実施の形態3によるHUD装置において、制御部の主要な処理内容の一例を示す模式図であり、図21Bは、図21Aの補足図である。図22Aは、図21Aとは異なる一例を示す模式図であり、図22Bは、図22Aの補足図である。実施の形態3によるHUD装置1は、前述した図3Aまたは図3Bに示した構成で実現される。制御部20は、図21Aでの映像VDa3aおよび図22Aでの映像VDa3bに示されるように、物体OB3、ここでは車両に警告映像を重畳させる。
 この際に、制御部20は、警告映像である映像VDa3a,VDa3bの色または形状を、物体OB3との距離に応じて定める。図21Aおよび図21Bの例では、HUD装置1を搭載した自車420と、自車420の前方に存在する物体OB3との距離は、50mとなっている。この場合、制御部20は、映像VDa3aの色を、例えば緑色に定める。一方、図22Aおよび図22Bの例では、自車420と物体OB3との距離は、10mとなっている。この場合、制御部20は、映像VDa3bの色を、例えば赤色に定める。
 図23は、実施の形態3によるHUD装置において、制御部が記憶している表示設定テーブルの構成例を示す図である。制御部20は、例えば図23に示されるような表示設定テーブル415を、予めメモリ17等に記憶している。表示設定テーブル415は、前方の物体OB3との距離と、警告映像の色または形状、ここでは色との対応関係を定める。この例では、警告映像の色は、物体OB3との距離が12m未満の場合には赤色に、32m以上の場合には緑色に、17m~27mの範囲の場合には黄色にそれぞれ定められる。また、合間の距離となる12m~17mの範囲や27m~32mの範囲での色は、適宜、中間色に定められる。
 表示設定テーブル415は、例えば、物体OB3との距離が近くなるほど、利用者、例えば運転者の注意をより喚起するような色または形状となるように設定される。これにより、安全運転に寄与することが可能となる。ただし、色または形状の捉え方は、利用者の主観に依存する。このため、利用者による初期設定によって、表示設定テーブル415における色または形状を複数の選択肢の中から任意に選択できるように構成されてもよい。さらに、表示設定テーブル415において、距離の範囲を任意に設定できるように構成されてもよい。
 図24Aは、実施の形態3によるHUD装置において、制御部の処理内容の一例を示すフロー図である。図24Aにおいて、制御部20は、実施の形態2における図16で述べたステップS411~S415の処理を実行する。また、当該処理に先立って、通信部16、すなわち情報取得部は、図15に示したステップS11において、乗り物に関する情報の一つとして、自車420と、自車420の前方に存在する物体OB3との距離を取得する。
 制御部20は、図24Aに示したステップS411~S415の処理によって、準備時間Tpが制御周期Tc、言い換えれば処理周期よりも短くなるように、表示内容を決定する。その後、制御部20は、ステップS415で決定した表示内容の中に、物体OB3に重畳される警告映像が含まれるか否かを判定する(ステップS416A)。決定した表示内容の中に警告映像が含まれる場合(ステップS416A:Yesの場合)、制御部20は、通信部16で取得した物体OB3との距離情報を参照し(ステップS417)、表示設定テーブル415に基づいて警告映像の色または形状を更新する(ステップS418A)。なお、警告映像が複数含まれる場合には、警告映像毎に当該更新処理が行われる。
 このように、図24Aに示されるフローでは、制御部20は、決定した表示内容の中に警告映像が含まれる場合には、準備時間Tpを再度予測することなく、すなわちステップS412等の処理を経ることなく、警告映像の色または形状を更新する(ステップS418A)。このため、距離毎の警告映像の色または形状は、警告映像の色または形状を更新した場合であっても、準備時間Tpが更新前と同等となるように、予め定められることが望ましい。
 図24Bは、図24Aとは異なる処理内容の一例を示すフロー図である。図24Bに示されるフローでは、図24Aに示したフローと異なり、図16で述べたステップS411~S415の処理の後ではなく、ステップS411~S415の処理の中に、図24Aで述べたステップS416A,S417,S418Aと同様の処理が組み込まれている。
 図24Bにおいて、制御部20は、表示内容を仮決定したのち(ステップS411)、仮決定した表示内容の中に、物体OB3に重畳される警告映像が含まれるか否かを判定する(ステップS416B)。仮決定した表示内容の中に警告映像が含まれる場合(ステップS416B:Yesの場合)、制御部20は、物体OB3との距離情報を参照し(ステップS417)、表示設定テーブル415に基づいて警告映像の色または形状を決定する(ステップS418B)。
 そして、その後に、制御部20は、仮決定した表示内容に基づく映像データの準備に要する準備時間Tpを予測する(ステップS412)。なお、仮決定した表示内容の中に警告映像が含まれない場合(ステップS416B:Noの場合)、制御部20は、そのままステップS412へ移行する。ステップS412の後、制御部20は、図16の場合と同様に、ステップS413~S415の処理によって、準備時間Tpが制御周期Tcよりも短くなるように、仮決定した表示内容を変更する。
 ただし、図16の場合と異なり、制御部20は、仮決定した表示内容を変更したのち、ステップS416Bへ移行する(ステップS414)。これにより、ステップS414の処理によって警告映像の色または形状が変更されたとしても、それを、ステップS417,S418Bの処理によって正しく戻した上で、準備時間Tpを予測することができる(ステップS412)。
 図24Bに示したフローを用いると、警告映像における色または形状の変更を反映させた上で準備時間Tpを予測できるため、図24Aに示したフローを用いる場合と比較して、予測精度を高められる場合がある。ただし、図24Bに示したフローを用いると、ステップS414からステップS416Bへのループが生じる度に、ステップS416B,S417,S418Bの処理を行う必要があるため、処理のオーバヘッドが増大し得る。したがって、この観点では、図24Aに示したフローを用いることが有益となる。
 また、例えば、図24AにおけるステップS416A,S417,S418Aで述べたような表示設定テーブル415に基づく処理は、実施の形態2の方式に限らず、実施の形態1の方式に適用されてもよい。この場合、制御部20は、例えば、図6に示したステップS121において内部状態を踏まえて表示内容を決定する際に、その最終段階で、ステップS416A,S417,S418Aで述べたような処理を実行すればよい。
 <実施の形態3の主要な効果>
 以上、実施の形態3の方式を用いると、実施の形態1および実施の形態2で述べた各種効果に加えて、警告映像の色または形状を物体との距離に応じて変更することで、より安全運転に寄与することが可能になる。
 また、各実施の形態の方式を用いると、利用者6は、行き先や速度などのナビゲーション情報の他に、対向車や歩行者を検知した際のアラート情報など、走行に必要な各種情報をウィンドシールド3越しの映像として視認でき、表示仕様が変わっても、最低限の表示品質が確保された映像を視認できる。これにより、利用者6の視点移動を軽減して安全運転の支援に寄与するHUD装置1を提供できる。その結果、交通事故を防止することが可能となる。さらに、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3.すべての人に健康と福祉を」に貢献することが可能になる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、前述した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…ヘッドアップディスプレイ(HUD)装置、2…車両、4…車両情報、5…表示領域、6…利用者、11…映像表示部、16…通信部(情報取得部)、20…制御部、400…予測時間情報、410…優先度情報、415…表示設定テーブル、C1~C3,C31,C32…係数、M1…ミラー(映像光投射部)、ST0…通常状態、ST1…復帰移行状態、ST2…抑制移行状態、ST3…抑制状態、Tc…制御周期、Tp…準備時間、Tr…予測時間、Tth1…第1の閾値時間、Tth2…第2の閾値時間、TthD…閾値継続期間、VD…映像

Claims (33)

  1.  乗り物に搭載されるヘッドアップディスプレイ装置であって、
     前記乗り物に関する情報を取得する情報取得部と、
     映像を表示し、表示した映像の映像光を出射する映像表示部と、
     前記映像表示部から出射された前記映像光を表示領域に投射することで、投射された前記映像光を虚像として視認させる映像光投射部と、
     前記情報取得部によって取得された前記乗り物に関する情報に基づいて映像データを準備し、準備した前記映像データに基づく映像を前記映像表示部に表示させる制御部と、
    を備え、
     前記制御部は、所定の処理周期内に前記映像データの準備を完了するように、前記映像データの準備に必要な処理負荷を軽減する制御を行う、
     ヘッドアップディスプレイ装置。
  2.  請求項1記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記映像データの準備に要する準備時間を監視し、前記準備時間が予め定めた条件を満たした場合に、前記処理負荷を軽減する制御を開始する、
     ヘッドアップディスプレイ装置。
  3.  請求項2記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記準備時間が前記処理周期よりも長かった場合に、前記処理負荷を軽減する制御を開始する、
     ヘッドアップディスプレイ装置。
  4.  請求項2記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記処理周期よりも短い第1の閾値時間を用いて、前記準備時間が複数回連続して前記第1の閾値時間よりも長かった場合に、前記処理負荷を軽減する制御を開始する、
     ヘッドアップディスプレイ装置。
  5.  請求項2記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記処理負荷を軽減する制御を開始したのち、抑制移行期間内で、前記処理負荷の軽減量を前記処理周期毎に段階的に増やしていく、
     ヘッドアップディスプレイ装置。
  6.  請求項5記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記抑制移行期間を経たのち、復帰移行期間内で、前記処理負荷の軽減量を前記処理周期毎に段階的に減らしていく、
     ヘッドアップディスプレイ装置。
  7.  請求項6記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記抑制移行期間を経たのち、軽減後の前記処理負荷で前記映像データを準備する抑制期間を経て、前記復帰移行期間内での制御を行う、
     ヘッドアップディスプレイ装置。
  8.  請求項7記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記抑制期間では、前記処理周期よりも短い第2の閾値時間と、前記処理周期の複数倍以上の期間である閾値継続期間とを用いて、前記準備時間が前記第2の閾値時間よりも短かった状態が前記閾値継続期間以上継続した場合に、前記復帰移行期間での制御を開始する、
     ヘッドアップディスプレイ装置。
  9.  請求項5記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記抑制移行期間では、前記抑制移行期間であることを利用者に通知するための前記映像データを生成する、
     ヘッドアップディスプレイ装置。
  10.  請求項1記載のヘッドアップディスプレイ装置において、
     前記制御部は、準備する前記映像データのデータ量を削減することで前記処理負荷を軽減する、
     ヘッドアップディスプレイ装置。
  11.  乗り物に搭載されるヘッドアップディスプレイ装置であって、
     前記乗り物に関する情報を取得する情報取得部と、
     映像を表示し、表示した映像の映像光を出射する映像表示部と、
     前記映像表示部から出射された前記映像光を表示領域に投射することで、投射された前記映像光を虚像として視認させる映像光投射部と、
     を備え、
     前記情報取得部によって取得された前記乗り物に関する情報に基づいて映像データを準備し、前記映像データの準備条件が所定の処理周期に所定条件を満たさない場合、準備する前記映像データの一部内容を変更する、
     ヘッドアップディスプレイ装置。
  12.  乗り物に搭載されるヘッドアップディスプレイ装置への映像データの処理方法であって、
     前記乗り物に関する情報を取得し、
     取得された前記乗り物に関する情報に基づいて映像データを準備し、準備した前記映像データに基づく映像を前記ヘッドアップディスプレイ装置の映像表示部に表示させ、
     前記映像データを準備する際に、所定の処理周期内に前記映像データの準備を完了するように、前記映像データの準備に必要な処理負荷を軽減する制御を行う、
     映像データの処理方法。
  13.  請求項12記載の映像データの処理方法において、
     前記映像データの準備に要する準備時間を監視し、前記準備時間が予め定めた条件を満たした場合に、前記処理負荷を軽減する制御を開始する、
     映像データの処理方法。
  14.  請求項13記載の映像データの処理方法において、
     前記準備時間が前記処理周期よりも長かった場合に、前記処理負荷を軽減する制御を開始する、
     映像データの処理方法。
  15.  請求項13記載の映像データの処理方法において、
     前記処理周期よりも短い第1の閾値時間を用いて、前記準備時間が複数回連続して前記第1の閾値時間よりも長かった場合に、前記処理負荷を軽減する制御を開始する、
     映像データの処理方法。
  16.  請求項13記載の映像データの処理方法において、
     前記処理負荷を軽減する制御を開始したのち、抑制移行期間内で、前記処理負荷の軽減量を前記処理周期毎に段階的に増やしていく、
     映像データの処理方法。
  17.  請求項16記載の映像データの処理方法において、
     前記抑制移行期間を経たのち、復帰移行期間内で、前記処理負荷の軽減量を前記処理周期毎に段階的に減らしていく、
     映像データの処理方法。
  18.  乗り物に搭載されるヘッドアップディスプレイ装置であって、
     前記乗り物に関する情報を取得する情報取得部と、
     映像を表示し、表示した映像の映像光を出射する映像表示部と、
     前記映像表示部から出射された前記映像光を表示領域に投射することで、投射された前記映像光を虚像として視認させる映像光投射部と、
     前記情報取得部によって取得された前記乗り物に関する情報に基づいて表示内容を決定し、決定した前記表示内容に基づく映像データを準備し、準備した前記映像データに基づく映像を前記映像表示部に表示させる制御部と、
     を備え、
     前記制御部は、前記表示内容を決定する前の仮決定した表示内容の前記映像データの準備に要する準備時間が所定の処理周期よりも長い場合、前記仮決定した表示内容を変更する、
     ヘッドアップディスプレイ装置。
  19.  請求項18に記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記表示内容を決定する前に、前記仮決定した表示内容に基づく前記映像データの準備に要する準備時間を、前記表示内容と前記映像データの準備に要する予測時間との関係を定めた予測時間情報に基づいて予測し、前記準備時間が前記処理周期よりも長い場合、前記処理周期よりも短くなるように前記仮決定した表示内容を変更する、
     ヘッドアップディスプレイ装置。
  20.  請求項19に記載のヘッドアップディスプレイ装置において、
     前記仮決定した表示内容を変更する際の項目は、映像の数、または、映像毎の表示形式を含み、
     前記映像毎の表示形式を変更する際の項目は、サイズ、表示位置、デザイン種別の中の少なくとも一つを含む、
     ヘッドアップディスプレイ装置。
  21.  請求項20に記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記項目毎の優先度を定めた優先度情報を予め記憶し、前記準備時間が前記処理周期よりも短くなるまで、前記優先度情報に基づいて変更対象とする前記項目を増やしながら、前記仮決定した表示内容を変更する、
     ヘッドアップディスプレイ装置。
  22.  請求項21に記載のヘッドアップディスプレイ装置において、
     前記仮決定した表示内容を変更する際の前記項目は、前記映像の数と前記映像毎の表示形式とを含み、
     前記優先度情報において、前記映像の数は、前記映像毎の表示形式よりも低い優先度に設定されている、
     ヘッドアップディスプレイ装置。
  23.  請求項20に記載のヘッドアップディスプレイ装置において、
     前記予測時間情報は、基本時間と、前記映像毎の表示形式に含まれる前記項目に応じた係数とを含み、
     前記制御部は、前記基本時間に前記係数を乗算することで、前記準備時間を予測する、
     ヘッドアップディスプレイ装置。
  24.  請求項18に記載のヘッドアップディスプレイ装置において、
     前記情報取得部は、前記ヘッドアップディスプレイ装置を搭載した前記乗り物と、前記乗り物の前方に存在する物体との距離を取得し、
     前記制御部は、前記物体に警告映像を重畳させる場合、前記警告映像の色または形状を前記物体との距離に応じて定める、
     ヘッドアップディスプレイ装置。
  25.  請求項24に記載のヘッドアップディスプレイ装置において、
     前記制御部は、前記準備時間が前記処理周期よりも短くなるように、前記表示内容を決定したのち、決定した前記表示内容の中に前記警告映像が含まれる場合には、前記準備時間を再度予測することなく前記警告映像の色または形状を更新する、
     ヘッドアップディスプレイ装置。
  26.  乗り物に搭載されるヘッドアップディスプレイ装置への映像データの処理方法であって、
     前記乗り物に関する情報を取得し、
     取得された前記乗り物に関する情報に基づいて表示内容を決定し、決定した前記表示内容に基づく映像データを準備し、準備した前記映像データに基づく映像を前記ヘッドアップディスプレイ装置の映像表示部に表示させ、
     前記表示内容を決定する前の仮決定した表示内容の前記映像データの準備に要する準備時間が所定の処理周期よりも長い場合、前記仮決定した表示内容を変更する、
     映像データの処理方法。
  27.  請求項26に記載の映像データの処理方法において、
     前記表示内容を決定する前に、前記仮決定した表示内容に基づく前記映像データの準備に要する準備時間を、前記表示内容と前記映像データの準備に要する予測時間との関係を定めた予測時間情報に基づいて予測し、前記準備時間が所定の処理周期よりも長い場合、前記処理周期よりも短くなるように前記仮決定した表示内容を変更する、
     映像データの処理方法。
  28.  請求項27に記載の映像データの処理方法において、
     前記仮決定した表示内容を変更する際の項目は、映像の数、または、映像毎の表示形式を含み、
     前記映像毎の表示形式を変更する際の項目は、サイズ、表示位置、デザイン種別の中の少なくとも一つを含む、
     映像データの処理方法。
  29.  請求項28に記載の映像データの処理方法において、
     前記項目毎の優先度を定めた優先度情報を予め記憶し、前記準備時間が前記処理周期よりも短くなるまで、前記優先度情報に基づいて変更対象とする前記項目を増やしながら、前記仮決定した表示内容を変更する、
     映像データの処理方法。
  30.  請求項29に記載の映像データの処理方法において、
     前記仮決定した表示内容を変更する際の前記項目は、前記映像の数と前記映像毎の表示形式とを含み、
     前記優先度情報において、前記映像の数は、前記映像毎の表示形式よりも低い優先度に設定されている、
     映像データの処理方法。
  31.  請求項28に記載の映像データの処理方法において、
     前記予測時間情報は、基本時間と、前記映像毎の表示形式に含まれる前記項目に応じた係数とを含み、
     前記基本時間に前記係数を乗算することで、前記準備時間を予測する、
     映像データの処理方法。
  32.  請求項26に記載の映像データの処理方法において、
     前記ヘッドアップディスプレイ装置を搭載した前記乗り物と、前記乗り物の前方に存在する物体との距離を取得し、
     前記物体に警告映像を重畳させる場合、前記警告映像の色または形状を前記物体との距離に応じて定める、
     映像データの処理方法。
  33.  請求項32に記載の映像データの処理方法において、
     前記準備時間が前記処理周期よりも短くなるように、前記表示内容を決定したのち、決定した前記表示内容の中に前記警告映像が含まれる場合には、前記準備時間を再度予測することなく前記警告映像の色または形状を更新する、
     映像データの処理方法。
PCT/JP2023/013029 2022-08-23 2023-03-29 ヘッドアップディスプレイ装置および映像データの処理方法 WO2024042762A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-132215 2022-08-23
JP2022132215A JP2024029820A (ja) 2022-08-23 2022-08-23 ヘッドアップディスプレイ装置および映像データの処理方法
JP2022156842A JP2024050167A (ja) 2022-09-29 2022-09-29 ヘッドアップディスプレイ装置および映像データの処理方法
JP2022-156842 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024042762A1 true WO2024042762A1 (ja) 2024-02-29

Family

ID=90012968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013029 WO2024042762A1 (ja) 2022-08-23 2023-03-29 ヘッドアップディスプレイ装置および映像データの処理方法

Country Status (1)

Country Link
WO (1) WO2024042762A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022111A (ja) * 2009-07-21 2011-02-03 Sanyo Electric Co Ltd ナビゲーション装置
WO2011108198A1 (ja) * 2010-03-03 2011-09-09 本田技研工業株式会社 車両の周辺監視装置
JP2011186834A (ja) * 2010-03-09 2011-09-22 Copcom Co Ltd ゲームプログラム、記録媒体、及びコンピュータ装置
JP2015046145A (ja) * 2014-01-24 2015-03-12 株式会社 ディー・エヌ・エー 画像処理装置及び画像処理プログラム
JP2015192430A (ja) * 2014-03-28 2015-11-02 富士重工業株式会社 車外環境認識装置
WO2021039762A1 (ja) * 2019-08-30 2021-03-04 日本精機株式会社 表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022111A (ja) * 2009-07-21 2011-02-03 Sanyo Electric Co Ltd ナビゲーション装置
WO2011108198A1 (ja) * 2010-03-03 2011-09-09 本田技研工業株式会社 車両の周辺監視装置
JP2011186834A (ja) * 2010-03-09 2011-09-22 Copcom Co Ltd ゲームプログラム、記録媒体、及びコンピュータ装置
JP2015046145A (ja) * 2014-01-24 2015-03-12 株式会社 ディー・エヌ・エー 画像処理装置及び画像処理プログラム
JP2015192430A (ja) * 2014-03-28 2015-11-02 富士重工業株式会社 車外環境認識装置
WO2021039762A1 (ja) * 2019-08-30 2021-03-04 日本精機株式会社 表示装置

Similar Documents

Publication Publication Date Title
JP6707666B2 (ja) ヘッドアップディスプレイ装置
JP6629889B2 (ja) ヘッドアップディスプレイ装置
US11022795B2 (en) Vehicle display control device
US11345364B2 (en) Attention calling device and attention calling method
WO2015079654A1 (ja) ヘッドアップディスプレイ装置
JP2008001182A (ja) 車両用視覚情報呈示装置及び車両用視覚情報呈示方法
KR102593383B1 (ko) 운송 수단을 위한 증강 현실 헤드 업 디스플레이 장치의 디스플레이 제어
US20200105231A1 (en) Display device, display control method, and storage medium
JP2022155283A (ja) 車両用表示制御装置及び車両用表示制御方法
JP6838626B2 (ja) 表示制御装置、及び表示制御プログラム
JP7255608B2 (ja) 表示制御装置、方法、及びコンピュータ・プログラム
US10928632B2 (en) Display device, display control method, and storage medium
JP6872441B2 (ja) ヘッドアップディスプレイ装置
WO2024042762A1 (ja) ヘッドアップディスプレイ装置および映像データの処理方法
WO2021186807A1 (ja) 情報処理装置、車両及び情報処理方法
US20210043164A1 (en) Display control device, display control method, and storage medium
US20200050002A1 (en) Display device and display control method
JP7053857B2 (ja) ヘッドアップディスプレイ装置
KR101610169B1 (ko) 헤드업 디스플레이 및 헤드업 디스플레이의 제어방법
JP2024050167A (ja) ヘッドアップディスプレイ装置および映像データの処理方法
JP2024029820A (ja) ヘッドアップディスプレイ装置および映像データの処理方法
JP6658483B2 (ja) 車両用表示制御装置及び車両用表示システム
JP7509077B2 (ja) 車両用表示システム、車両用表示方法、及び車両用表示プログラム
WO2021131529A1 (ja) ヘッドアップディスプレイ装置
WO2020039855A1 (ja) 表示制御装置、表示制御プログラム、およびその持続的有形コンピュータ読み取り媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856882

Country of ref document: EP

Kind code of ref document: A1