WO2023238251A1 - Co-contraction control device, co-contraction control method, server device, delivery method, and program - Google Patents
Co-contraction control device, co-contraction control method, server device, delivery method, and program Download PDFInfo
- Publication number
- WO2023238251A1 WO2023238251A1 PCT/JP2022/023005 JP2022023005W WO2023238251A1 WO 2023238251 A1 WO2023238251 A1 WO 2023238251A1 JP 2022023005 W JP2022023005 W JP 2022023005W WO 2023238251 A1 WO2023238251 A1 WO 2023238251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- muscle
- contraction
- main action
- control device
- series data
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
Definitions
- Embodiments of the present invention relate to a co-contraction control device, a co-contraction control method, a server device, a distribution method, and a program.
- agonist muscles and antagonist muscles are important for humans to perform smooth joint movements.
- Main action muscles are primarily responsible for contracting for purposeful movements.
- antagonist muscles are located on the opposite side of the main action muscles, and assist efficient movement by relaxing at the same time as the main action muscles contract.
- EMS Electrical Muscle Stimulation
- Non-Patent Document 1 by presenting (supplying) EMS to the tibialis anterior muscle (TA), which is the main action muscle of the subject, the triceps surae, which is its antagonist muscle, is stretched ( It is disclosed that the stretch effect, that is, the co-contraction inhibitory effect, was enhanced in a short period of time.
- TA tibialis anterior muscle
- Non-Patent Document 2 discloses that a spinal reflex mechanism that suppresses antagonistic muscles functions even in a state where subjects voluntarily co-contract.
- SHUNMEI TERUI et al. Simultaneous Execution of Neuromuscular Electrical Stimulation (NMES) and Muscle Stretching Increases Muscle Extensibility in a Short Time). Journal of Physical Therapy Science, 2016, 31.1: 87-91.
- HIRABAYASHI Ryo, et al. Effects of reciprocal Ia inhibition on contraction intensity of co-contraction. Frontiers in human neuroscience, 2019, 12: 527.
- Non-Patent Document 1 or 2 above targets simple joint movements in which the main action muscle and the antagonist muscle are known in advance, and the EMS presentation to the main action muscle is steady.
- problems (1) which are not taken into account by the above techniques, are required: (2) is possible.
- the present invention has been made in view of the above-mentioned circumstances, and its objectives are to provide a co-contraction control device, a co-contraction control method, and a co-contraction control method capable of suppressing co-contraction and realizing smooth operation.
- the purpose of the present invention is to provide a server device, a distribution method, and a program.
- a co-contraction control device includes: a main action muscle determination unit that determines a main action muscle of the test object based on time-series data of the body motion of the test object and a threshold; co-contraction for determining whether or not co-contraction occurs between the main action muscle determined by the main action muscle determination unit and the antagonist muscle of the test object, based on time series data of muscle activity of the object and a threshold value; a determination unit; and when the co-contraction determination unit determines that the co-contraction is occurring, electrical stimulation is applied to the main action muscle determined by the main action muscle determination unit to suppress the co-contraction. and an output section that outputs a control signal.
- a co-contraction control method is a method performed by a co-contraction control device, in which a main action muscle determination unit of the co-contraction control device uses time-series data of the body motion of a test subject and a threshold value.
- the co-contraction determination unit of the co-contraction control device determines the main action muscle of the test object based on the time-series data and threshold of the muscle activity of the test object.
- the output unit of the co-contraction control device determines whether or not co-contraction is occurring between the main action muscle determined by the unit and the antagonist muscle of the test object, and the output unit of the co-contraction control device determines that the co-contraction is occurring.
- a control signal for electrical stimulation of the main action muscle determined by the main action muscle determination section is output in order to suppress the co-contraction.
- FIG. 1 is a diagram showing an application example of a co-contraction control system according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing an example of the functional configuration of a co-contraction control system according to an embodiment of the present invention.
- FIG. 3 is a flowchart illustrating an example of a processing operation procedure of the co-contraction control system according to an embodiment of the present invention.
- FIG. 4 is a block diagram showing an example of the hardware configuration of a co-contraction control device according to an embodiment of the present invention.
- the technology described in one embodiment of the present invention is based on the joint motion of the test subject during exercise, and is based on the joint motion of the test subject during movement.
- This is a technology that suppresses co-contraction and has two functions: the ability to present an EMS.
- ankle joint control during a standing balance task is taken as an example of an actual exercise.
- This task requires complex control of the ankle joints in order to stabilize posture, that is, to suppress postural sway of the body's center of gravity, and co-contraction of the ankle joints is the main cause of increased postural sway. It is said that Here, we will focus on a task of standing on one right leg on a balance board that tilts only in the front-back direction.
- FIG. 1 is a diagram showing an example of application of a co-contraction control system according to an embodiment of the present invention.
- the co-contraction control system 100 includes a motion capture system 10, an electromyograph 20, a co-contraction control device 30, a microcomputer 40, and an electrical stimulation device. (muscle electrical stimulation device) 50, and a distribution server (server) 60.
- a motion capture measurement marker (not shown) (sometimes simply referred to as a marker) is affixed to the front end of a balance board (not shown) included in the motion capture system 10. It is assumed that this balance board is connected to the co-contraction control device 30.
- the motion capture system 10 measures the three-dimensional position coordinates of the marker.
- an electromyograph 20 is attached to the tibialis anterior and soleus (SO) muscles of the subject's ankle joint, and that this electromyograph 20 is connected to the co-contraction control device 30. .
- the electromyograph 20 measures the muscle activity of each muscle of the subject using electromyography (EMG). Further, an electrical stimulation electrode (not shown) is attached to the same muscle of the subject and connected to the muscle electrical stimulation device 50. This electrical muscle stimulation device 50 is connected to the co-contraction control device 30 via the microcomputer 40.
- EMG electromyography
- the electrical muscle stimulation device 50 can present EMS to each muscle of the subject to cause the muscle to contract. Furthermore, the motion capture system 10 and the electromyograph 20 operate synchronously. In the co-contraction control system 100, EMS is presented to the subject's tibialis anterior or soleus muscle according to the center of gravity sway parameter and the EMG measurement results. Here, the fluctuation of the height (h) of the front end of the balance board is used as the center of gravity fluctuation parameter.
- FIG. 2 is a block diagram showing an example of the functional configuration of a co-contraction control system according to an embodiment of the present invention.
- the co-contraction control system 100 includes a body movement evaluation section 11 in the motion capture system 10, a myoelectric evaluation section 21 in the electromyograph 20, and a time-series data storage in the co-contraction control device 30. 31, main action muscle threshold determination section 32, main action muscle determination section 33, co-contraction threshold determination section 34, co-contraction determination section 35, and various functions including the electrical stimulation presentation section 51 in the electrical stimulation device 50. can be done.
- FIG. 3 is a flowchart illustrating an example of a processing operation procedure of the co-contraction control system according to an embodiment of the present invention.
- ⁇ Body movement evaluation section 11 The body motion evaluation unit 11 measures the position of the target body part of the subject at time t, and transmits the measurement result to the co-contraction control device 30 as time series data of the subject's current body motion.
- the height h of the front end of the balance board due to the current body movement of the subject using the balance board is measured by the motion capture system 10, and the position of the target body part is measured based on this measurement result.
- Ru is a flowchart illustrating an example of a processing operation procedure of the co-contraction control system according to an embodiment of the present invention.
- the myoelectric evaluation unit 21 measures the muscle activity of each muscle of the subject at time t using EMG, and transmits the measurement results to the co-contraction control device 30 as time series data of the subject's current muscle activity.
- ⁇ Time series data storage unit 31 The subject himself performed a movement task similar to the current one in advance, and the time series data of the body movement in the pre-experiment (pre-task) and the time-series data of the muscle activity of the target muscle by EMG in the pre-experiment were collected. are collected and stored in the time series data storage section 31 (S1, S2).
- the subject performs a balance task similar to the current one in advance, and obtains (1) time-series data of body movements, that is, time-series data ht of the height h of the front end of the balance board, and (2) Time series data Et of muscle activity of each muscle based on EMG can be collected.
- the main action muscle threshold determination unit 32 receives the input of time-series data of body movements in the preliminary task, and uses a predetermined formula depending on the type of task to stabilize the appropriate main action muscle, that is, the posture of the subject.
- a threshold value for determining the main action muscle to be operated and to which the EMS should be presented when co-contraction occurs is output to the main action muscle determination unit 33.
- the main action muscle threshold determination unit 32 receives input of time-series data of body movements in the pre-task, and determines an appropriate main action muscle to which EMS should be presented in order to stabilize the posture in the body movement.
- the threshold values h_ta and h_so for determining the main action muscle are output to the main action muscle determining section 33.
- the tibialis anterior muscle of the subject is determined to be the appropriate main action muscle as described below.
- the determination is made by the main action muscle determining section 33.
- the subject's soleus muscle is determined to be the appropriate main action muscle as described above, and the main action muscle is determined as follows. The determination is made by the section 33.
- the height h of the front end of the balance board indicated by the time-series data of the subject's current body movement, it is assumed that the height h of the front end of the balance board is in the region of "h_ta ⁇ h ⁇ h_so", that is, it is not below the threshold h_ta but above the threshold h_so as described above. In the region where there is no balance, the subject can maintain balance relatively horizontally, so the height h of the front end of the balance board can be called the "stable region.”
- the height h of the front end of the balance board shown in the above-mentioned time-series data of the current body movement in areas other than the above-mentioned "h_ta ⁇ h ⁇ h_so", that is, in the area below the above-mentioned threshold h_ta or above the threshold h_so, the balance Since the board is highly tilted, the height h of the front edge of the balance board can be called the "unstable area.”
- the main action muscle determining unit 33 inputs the time series data of the subject's current body motion transmitted from the body movement evaluation unit 11, and uses this time series data and the threshold value output from the main action muscle threshold determination unit 32. Based on this, an appropriate main action muscle is determined according to the subject's physical movement at time t. In this embodiment, the main action muscle determining unit 33 determines whether the appropriate main action muscle should be the tibialis anterior (TA) or the soleus (SO) (S3).
- TA tibialis anterior
- SO soleus
- the co-contraction threshold determination unit 34 receives input of time-series data of the subject's muscle activity based on EMG in the preliminary experiment, and determines whether the time-series data of the subject's current muscle activity based on EMG is in a co-contraction state. Outputs the threshold value for In this embodiment, when the value of the muscle activity of the antagonist muscle exceeds the threshold value Eth, it can be determined that the EMG time-series data of the subject's current muscle activity is in a co-contraction state.
- the co-contraction determination unit 35 inputs the time-series data of the subject's current muscle movement transmitted from the myoelectric evaluation unit 21 via the main action muscle determination unit 33, and uses this time-series data and co-contraction threshold determination. Based on the threshold value Eth output from the unit 34, it is determined whether the subject's current muscle activity at time t is in a co-contraction state, that is, whether the subject's agonist muscle and antagonist muscle are co-contracting. (S4).
- the co-contraction determining unit 35 sends a trigger signal, which is a control signal for presenting EMS to the determined appropriate main action muscle. It is sent to the microcomputer 40.
- the co-contraction determining unit 35 does not transmit the trigger signal (S6).
- ⁇ Electrical stimulation presentation section 51 When the microcomputer 40 receives the trigger signal transmitted from the co-contraction determination section 35, the electrical stimulation presentation section 51 of the electrical stimulation device 50 receives and recognizes this signal from the microcomputer 40, and the above-determined appropriateness of the subject is detected. EMS is presented to the main action muscles for ⁇ t seconds (S5). This suppresses co-contraction occurring in the subject.
- the threshold may be determined based on the movements of a physical therapist, etc., and EMS may be presented as a stimulus to a patient with paralysis, and the threshold may be determined based on the movements of a professional player or coach. It is also possible that a threshold value is determined and applied to the practitioner.
- the subject of motion of the test object may be a mechanical power source such as an artificial muscle rather than a human muscle, and the thresholds related to muscle activity and body motion are based on time-series data of human body motion. It is also possible that a signal is determined and input to the artificial muscle in place of electrical stimulation.
- the time-series data of the body motion in the preliminary experiment and the time-series data of the muscle activity of the target muscle by EMG in the preliminary experiment, which are stored in the above-mentioned time-series data storage unit 31, are stored in the distribution server 60 as shown in the diagram.
- the data may be stored in advance in a storage device that does not contain the data.
- the main action muscle threshold determination section 32 or the co-contraction threshold determination section 34 of the co-contraction control device 30 sends information to the distribution server 60 via the communication network, as necessary.
- a request for distribution (acquisition) of the above-mentioned time-series data, so-called download is made, and in response to this distribution request, the distribution unit (not shown) of the distribution server 60 transmits the stored time-series data to It can be distributed to the co-contraction control device 30 that is the source of the distribution request via the communication network.
- the various threshold values determined by the main action muscle threshold determination section 32 or the co-contraction threshold determination section 34 described above may be stored in advance in a storage device (not shown) in the distribution server 60 as threshold data.
- the main action muscle determining unit 33 or the co-contraction determining unit 35 of the co-contraction control device 30 requests the distribution server 60 to distribute the threshold data, a so-called download request, via the communication network.
- the distribution unit of the distribution server 60 can distribute the stored threshold data to the co-contraction control device 30 that is the source of the distribution request via the communication network.
- the formula for determining the threshold determined by the main action muscle threshold determination unit 32 is not limited to one formula as shown in formulas (1) and (2) above, but may include multiple formulas.
- the configuration may be such that the user can arbitrarily select different types of threshold values, for example, a formula for professionals and a formula for amateurs.
- a formula for professionals is, for example, a formula that includes relatively complex parameters that can be handled by professionals
- a formula for amateurs is a formula that includes relatively simple parameters that can be handled by, for example, amateurs.
- the formula for determining the threshold determined by the above-mentioned co-contraction threshold determination unit 34 is not limited to one formula as shown in the above-mentioned formula (3), but can include multiple types of thresholds, e.g.
- the configuration may be such that the user can arbitrarily select from formulas for professionals and amateurs.
- the main action muscle to which EMS should be presented is sequentially determined, and the EMS is applied to the main action muscle at an appropriate timing when co-contraction occurs.
- the main action muscles that should be operated to stabilize the subject's posture are sequentially determined, and EMS is presented to the main action muscles at the timing when co-contraction occurs, thereby making it efficient. It is thought that this will realize stable ankle joint movements and contribute to postural stability, such as reducing center of gravity sway.
- FIG. 4 is a block diagram showing an example of the hardware configuration of a co-contraction control device according to an embodiment of the present invention.
- the co-contraction control device 30 according to the above embodiment is configured by, for example, a server computer or a personal computer, and includes hardware such as a CPU (Central Processing Unit). It has a processor (hardware processor) 311A.
- a program memory 311B, a data memory 312, an input/output interface 313, and a communication interface 314 are connected to the hardware processor 311A via a bus 315.
- the communication interface 314 includes, for example, one or more wireless communication interface units, and enables transmission and reception of information with a communication network NW.
- a wireless interface for example, an interface adopting a low power wireless data communication standard such as a wireless LAN (Local Area Network) is used.
- the motion capture system 10 and electromyograph 20 shown in FIG. 1, and other input devices and output devices (not shown) are connected to the input/output interface 313.
- the input/output interface 313 can receive operation data input by a user through an input device such as a keyboard, touch panel, touchpad, mouse, etc., and output data on a liquid crystal or organic display. It is possible to output and display the image on an output device including a display device using EL (Electro Luminescence) or the like.
- the input device and the output device may be a device built into the co-contraction control device 30, or an input device of another information terminal that can communicate with the co-contraction control device 30 via the network NW. Devices and output devices may also be used.
- the program memory 311B is a non-temporary tangible storage medium, such as a non-volatile memory such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) that can be written to and read from at any time. It is used in combination with a nonvolatile memory such as a ROM (Read Only Memory), and stores programs necessary for executing various control processes and the like according to an embodiment.
- a non-volatile memory such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) that can be written to and read from at any time. It is used in combination with a nonvolatile memory such as a ROM (Read Only Memory), and stores programs necessary for executing various control processes and the like according to an embodiment.
- the data memory 312 is a tangible storage medium that is used in combination with the above-mentioned nonvolatile memory and volatile memory such as RAM (Random Access Memory), and is used to perform various processes. It is used to store various data acquired and created during the process.
- RAM Random Access Memory
- the co-contraction control device 30 includes a main action muscle threshold determination unit 32, a main action muscle determination unit 33, and a co-contraction threshold determination unit shown in FIG. 2 as processing function units using software.
- the data processing device may be configured as a data processing device having a co-contraction determining unit 34 and a co-contraction determining unit 35.
- Each information storage unit and time-series data storage unit 31 used as a working memory by each part of the co-contraction control device 30 may be configured by using the data memory 312 shown in FIG. 4.
- these storage areas are not essential to the co-contraction control device 30, and may be stored in an external storage medium such as a USB (Universal Serial Bus) memory, or in a database server located in the cloud. It may be an area provided in a storage device such as a database server.
- Any of the above processing function units can be realized by causing the hardware processor 311A to read and execute a program stored in the program memory 311B. Note that some or all of these processing functions may be implemented in a variety of other formats, including integrated circuits such as application specific integrated circuits (ASICs) or field-programmable gate arrays (FPGAs). May be realized.
- ASICs application specific integrated circuits
- FPGAs field-programmable gate arrays
- each embodiment can be applied to a magnetic disk (floppy (registered trademark) disk, hard disk) as a program (software means) that can be executed by a computer (computer). etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memories (ROM, RAM, Flash memory, etc.), and are stored in recording media, or transmitted and distributed via communication media. can be done.
- the programs stored on the medium side also include a setting program for configuring software means (including not only execution programs but also tables and data structures) in the computer to be executed by the computer.
- a computer that realizes this device reads a program recorded on a recording medium, and if necessary, constructs software means using a setting program, and executes the above-described processing by controlling the operation of the software means.
- the recording medium referred to in this specification is not limited to one for distribution, and includes storage media such as a magnetic disk and a semiconductor memory provided inside a computer or in a device connected via a network.
- the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof.
- each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained.
- the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本発明の実施形態は、共収縮制御装置、共収縮制御方法、サーバ装置、配信方法およびプログラムに関する。 Embodiments of the present invention relate to a co-contraction control device, a co-contraction control method, a server device, a distribution method, and a program.
人が円滑な関節運動を行なうためには、主動作筋(agonist muscle)と拮抗筋(antagonist muscle)の適切な収縮と弛緩が重要である。主動作筋は、目的動作のために主に収縮する働きを担う。また、拮抗筋は、主動作筋の反対側に位置し、主動作筋の収縮と同時に弛緩することで効率的な動作を補助する。 Appropriate contraction and relaxation of agonist muscles and antagonist muscles is important for humans to perform smooth joint movements. Main action muscles are primarily responsible for contracting for purposeful movements. Furthermore, the antagonist muscles are located on the opposite side of the main action muscles, and assist efficient movement by relaxing at the same time as the main action muscles contract.
しかしながら、実際の運動場面では、拮抗筋が主動筋と同時に収縮する、すなわち共収縮(co-contraction)が発生するときがあり、主動作筋による関節運動の妨げとなる。この共収縮を抑制する技術としては、筋電気刺激(EMS(Electrical Muscle Stimulation))が用いられている。 However, in actual exercise situations, there are times when the antagonist muscles contract simultaneously with the agonist muscles, or co-contraction, which obstructs joint movement by the agonist muscles. Electrical Muscle Stimulation (EMS) is used as a technique to suppress this co-contraction.
例えば非特許文献1では、被験者の主動作筋である前脛骨筋(tibialis anterior muscle: TA)へのEMSの提示(供給)により、その拮抗筋である下腿三頭筋(triceps surae)のストレッチ(stretch)効果、すなわち共収縮抑制効果が短時間で増強されたことが開示されている。
For example, in
また、例えば非特許文献2では、被験者について随意的に共収縮させた状態でも拮抗筋を抑制させる脊髄反射メカニズムが機能することが開示されている。 Furthermore, for example, Non-Patent Document 2 discloses that a spinal reflex mechanism that suppresses antagonistic muscles functions even in a state where subjects voluntarily co-contract.
上記の非特許文献1または2に開示された技術は、主動作筋と拮抗筋とが予め既知であるシンプル(simple)な関節動作を対象とし、主動作筋へのEMS提示は定常である。しかしながら、複雑な運動動作、例えばバランス運動(balance exercise)など、において、共収縮を抑制して円滑な動作を実現するためには、上記の技術では考慮されていない、以下の課題(1)、(2)が考えられる。
The technology disclosed in Non-Patent
(1) 運動中に主動作筋と拮抗筋とが時々刻々と切り替わる中で、主動作筋とされるべき適切な筋に対してEMSを提示する必要がある。
(2) 共収縮が生じる適切なタイミング(timing)でEMSを提示する必要がある。
(1) During exercise, the agonist muscles and antagonistic muscles switch from moment to moment, and it is necessary to present EMS to the appropriate muscle that should be the agonist muscle.
(2) EMS must be presented at the appropriate timing for co-contraction to occur.
この発明は、上記事情に着目してなされたもので、その目的とするところは、共収縮を抑制して円滑な動作を実現することができるようにした共収縮制御装置、共収縮制御方法、サーバ装置、配信方法およびプログラムを提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and its objectives are to provide a co-contraction control device, a co-contraction control method, and a co-contraction control method capable of suppressing co-contraction and realizing smooth operation. The purpose of the present invention is to provide a server device, a distribution method, and a program.
本発明の一態様に係る共収縮制御装置は、被験対象物の身体動作の時系列データおよび閾値に基づいて、前記被験対象物の主動作筋を判定する主動作筋判定部と、前記被験対象物の筋活動の時系列データおよび閾値に基づいて、前記主動作筋判定部により判定された主動作筋と前記被験対象物の拮抗筋との共収縮が生じているか否かを判定する共収縮判定部と、前記共収縮が生じていると前記共収縮判定部により判定されたときに、当該共収縮を抑制させるための、前記主動作筋判定部により判定された主動作筋に対する電気刺激の制御信号を出力する出力部と、を備える。 A co-contraction control device according to one aspect of the present invention includes: a main action muscle determination unit that determines a main action muscle of the test object based on time-series data of the body motion of the test object and a threshold; co-contraction for determining whether or not co-contraction occurs between the main action muscle determined by the main action muscle determination unit and the antagonist muscle of the test object, based on time series data of muscle activity of the object and a threshold value; a determination unit; and when the co-contraction determination unit determines that the co-contraction is occurring, electrical stimulation is applied to the main action muscle determined by the main action muscle determination unit to suppress the co-contraction. and an output section that outputs a control signal.
本発明の一態様に係る共収縮制御方法は、共収縮制御装置により行なわれる方法であって、前記共収縮制御装置の主動作筋判定部により、被験対象物の身体動作の時系列データおよび閾値に基づいて、前記被験対象物の主動作筋を判定し、前記共収縮制御装置の共収縮判定部により、前記被験対象物の筋活動の時系列データおよび閾値に基づいて、前記主動作筋判定部により判定された主動作筋と前記被験対象物の拮抗筋との共収縮が生じているか否かを判定し、前記共収縮制御装置の出力部により、前記共収縮が生じていると前記共収縮判定部により判定されたときに、当該共収縮を抑制させるための、前記主動作筋判定部により判定された主動作筋に対する電気刺激の制御信号を出力する。 A co-contraction control method according to one aspect of the present invention is a method performed by a co-contraction control device, in which a main action muscle determination unit of the co-contraction control device uses time-series data of the body motion of a test subject and a threshold value. The co-contraction determination unit of the co-contraction control device determines the main action muscle of the test object based on the time-series data and threshold of the muscle activity of the test object. The output unit of the co-contraction control device determines whether or not co-contraction is occurring between the main action muscle determined by the unit and the antagonist muscle of the test object, and the output unit of the co-contraction control device determines that the co-contraction is occurring. When determined by the contraction determination section, a control signal for electrical stimulation of the main action muscle determined by the main action muscle determination section is output in order to suppress the co-contraction.
本発明によれば、共収縮を抑制して円滑な動作を実現することができる。 According to the present invention, it is possible to suppress co-contraction and realize smooth operation.
以下、図面を参照しながら、この発明に係わる一実施形態を説明する。
本発明の一実施形態で説明される技術は、被験対象物である被験者の運動中の関節動作に基づいて、被験者の姿勢を安定させるために動作させるべき筋で、共収縮が生じたときにEMSが提示されるべき主動作筋を逐次判定する機能と、被験者の運動中の筋活動に基づいて共収縮の発生を判定して、共収縮が発生したタイミングで、この共収縮を抑制するためのEMSを提示する機能、すなわち2つの機能を具備した、共収縮を抑制する技術である。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
The technology described in one embodiment of the present invention is based on the joint motion of the test subject during exercise, and is based on the joint motion of the test subject during movement. A function that sequentially determines the main action muscles to which EMS should be presented, and a function that determines the occurrence of co-contraction based on the subject's muscle activity during exercise, and suppresses this co-contraction at the timing when co-contraction occurs. This is a technology that suppresses co-contraction and has two functions: the ability to present an EMS.
本実施形態では、実運動の例として、立位バランス(standing balance)タスク中の足関節制御を挙げる。本タスクは、姿勢を安定させるために、すなわち身体の重心動揺(postural sway)を抑えるために、足関節の複雑な制御が要求され、この足関節の共収縮が重心動揺の増大の主な原因とされている。ここでは、前後方向にのみ傾くバランスボード(balance board)上での右片足立位タスクを対象とする。 In the present embodiment, ankle joint control during a standing balance task is taken as an example of an actual exercise. This task requires complex control of the ankle joints in order to stabilize posture, that is, to suppress postural sway of the body's center of gravity, and co-contraction of the ankle joints is the main cause of increased postural sway. It is said that Here, we will focus on a task of standing on one right leg on a balance board that tilts only in the front-back direction.
図1は、本発明の一実施形態に係る共収縮制御システムの適用例を示す図である。
図1に示された例では、共収縮制御システム100は、モーションキャプチャシステム(motion capture system)10、筋電計20、共収縮制御装置30、マイクロコンピュータ(microcomputer)(マイコン)40、電気刺激装置(筋電気刺激装置)50、および配信サーバ(server)60を有する。
FIG. 1 is a diagram showing an example of application of a co-contraction control system according to an embodiment of the present invention.
In the example shown in FIG. 1, the
共収縮制御システムによる運用の事前準備として、モーションキャプチャシステム10が有する図示しないバランスボードの前端に、図示しないモーションキャプチャ計測用マーカー(marker)(単にマーカーと称することがある)が貼り付けられて、このバランスボードが共収縮制御装置30に接続されるとする。
モーションキャプチャシステム10は、マーカーの3次元位置座標を計測する。
As a preliminary preparation for operation by the co-contraction control system, a motion capture measurement marker (not shown) (sometimes simply referred to as a marker) is affixed to the front end of a balance board (not shown) included in the
The
また、事前準備として、被験者の足関節の前脛骨筋およびヒラメ筋(soleus:SO)に筋電計20が貼り付けられて、この筋電計20が共収縮制御装置30に接続されるとする。
In addition, as a preliminary preparation, it is assumed that an
筋電計20は、被験者の各筋の筋活動を筋電図法(electromyography(EMG))により計測する。また、被験者の同筋に図示しない電気刺激用電極が貼り付けられて、筋電気刺激装置50に接続される。この筋電気刺激装置50は、マイコン40を介して共収縮制御装置30に接続される。
The
筋電気刺激装置50は、被験者の各筋にEMSを提示して筋肉を収縮させることができる。また、モーションキャプチャシステム10と筋電計20は同期して動作する。共収縮制御システム100では、重心動揺パラメータ(parameter)およびEMGによる計測結果に応じて、被験者の前脛骨筋またはヒラメ筋に対してEMSが提示される。ここでは、重心動揺パラメータとして、バランスボード前端の高さ(h)の動揺が用いられる。
The electrical
図2は、本発明の一実施形態に係る共収縮制御システムの機能構成例を示すブロック図である。
図2に示されるように、共収縮制御システム100は、モーションキャプチャシステム10内の身体動作評価部11、筋電計20内の筋電評価部21、共収縮制御装置30内の時系列データ格納部31、主動作筋閾値判定部32、主動作筋判定部33、共収縮閾値判定部34、および共収縮判定部35、ならびに電気刺激装置50内の電気刺激提示部51を含む各種機能により実現され得る。
FIG. 2 is a block diagram showing an example of the functional configuration of a co-contraction control system according to an embodiment of the present invention.
As shown in FIG. 2, the
図3は、本発明の一実施形態に係る共収縮制御システムの処理動作の手順の一例を示すフローチャートである。
・身体動作評価部11
身体動作評価部11は、時刻tにおける被験者の身体対象部位の位置を計測して、この計測結果を、被験者の現在の身体動作の時系列データとして共収縮制御装置30に送信する。本実施形態では、バランスボードを利用する被験者の現在の身体動作によるバランスボード前端の高さhがモーションキャプチャシステム10により計測されて、この計測結果に基づいて、上記身体対象部位の位置が計測される。
FIG. 3 is a flowchart illustrating an example of a processing operation procedure of the co-contraction control system according to an embodiment of the present invention.
・Body
The body
・筋電評価部21
筋電評価部21は、時刻tにおける被験者の各筋の筋活動をEMGにより計測して、この計測結果を、被験者の現在の筋活動の時系列データとして共収縮制御装置30に送信する。
・
The
・時系列データ格納部31
被験者本人が事前に現在と同様の動作タスクを実施し、事前実験(事前タスク)における身体動作の時系列データ(time series data)と、事前実験におけるEMGによる対象の筋の筋活動の時系列データがそれぞれ収集されて、時系列データ格納部31に格納される(S1,S2)。
例えば、本実施形態では、被験者本人が事前に現在と同様のバランスタスクを実施し、(1)身体動作の時系列データ、すなわちバランスボード前端の高さhの時系列データhtと、(2)EMGによる各筋の筋活動の時系列データEt、が、それぞれ収集され得る。
・Time series
The subject himself performed a movement task similar to the current one in advance, and the time series data of the body movement in the pre-experiment (pre-task) and the time-series data of the muscle activity of the target muscle by EMG in the pre-experiment were collected. are collected and stored in the time series data storage section 31 (S1, S2).
For example, in this embodiment, the subject performs a balance task similar to the current one in advance, and obtains (1) time-series data of body movements, that is, time-series data ht of the height h of the front end of the balance board, and (2) Time series data Et of muscle activity of each muscle based on EMG can be collected.
・主動作筋閾値判定部32
主動作筋閾値判定部32は、事前タスクにおける身体動作の時系列データの入力を受けて、タスクの種別に応じた所定の式を用いて、適切な主動作筋、すなわち被験者の姿勢を安定させるために動作させるべき主動作筋で、共収縮が生じたときにEMSが提示されるべき主動作筋が判定されるための閾値を主動作筋判定部33に出力する。
例えば、主動作筋閾値判定部32は、事前タスクにおける身体動作の時系列データの入力を受け付けて、上記身体動作における姿勢を安定させるためにEMSが提示されるべき適切な主動作筋が判定されるための閾値h_taおよびh_soを主動作筋判定部33に出力する。
- Main action muscle
The main action muscle
For example, the main action muscle
本実施形態では、被験者の現在の身体動作の時系列データで示されるバランスボード前端の高さhが閾値h_ta以下のときは、被験者の前脛骨筋が上記適切な主動作筋であると、下記の主動作筋判定部33により判定される。また、上記現在の身体動作の時系列データで示されるバランスボード前端の高さhが閾値h_so以上のときは、被験者のヒラメ筋が上記適切な主動作筋であると、下記の主動作筋判定部33により判定される。
In this embodiment, when the height h of the front end of the balance board indicated by the time-series data of the subject's current body movement is less than or equal to the threshold value h_ta, the tibialis anterior muscle of the subject is determined to be the appropriate main action muscle as described below. The determination is made by the main action
バランスボード前端の高さhの時系列データの平均値をh_meanとし、当該時系列データの標準偏差をh_stdとすると、以下の式(1)、(2)が定義される。
h_ta = h_mean - h_std …式(1)
h_so = h_mean + h_std …式(2)
If the average value of the time series data of the height h of the front end of the balance board is h_mean, and the standard deviation of the time series data is h_std, the following equations (1) and (2) are defined.
h_ta = h_mean - h_std...Equation (1)
h_so = h_mean + h_std…Equation (2)
ここで、被験者の現在の身体動作の時系列データで示されるバランスボード前端の高さhについて、「h_ta < h < h_so」の領域、すなわち上記のような、閾値h_ta以下でなく閾値h_so以上でもない領域では、被験者は比較的水平にバランスを維持出来ているため、バランスボード前端の高さhが「安定領域」と呼ぶことができる。 Here, regarding the height h of the front end of the balance board indicated by the time-series data of the subject's current body movement, it is assumed that the height h of the front end of the balance board is in the region of "h_ta < h < h_so", that is, it is not below the threshold h_ta but above the threshold h_so as described above. In the region where there is no balance, the subject can maintain balance relatively horizontally, so the height h of the front end of the balance board can be called the "stable region."
また、上記現在の身体動作の時系列データで示されるバランスボード前端の高さhについて、上記「h_ta < h < h_so」以外の領域、すなわち上記の閾値h_ta以下または閾値h_so以上の領域では、バランスボードが大きく傾いているため、バランスボード前端の高さhが「不安定領域」と呼ぶことができる。 In addition, regarding the height h of the front end of the balance board shown in the above-mentioned time-series data of the current body movement, in areas other than the above-mentioned "h_ta < h < h_so", that is, in the area below the above-mentioned threshold h_ta or above the threshold h_so, the balance Since the board is highly tilted, the height h of the front edge of the balance board can be called the "unstable area."
・主動作筋判定部33
主動作筋判定部33は、身体動作評価部11から送信された、被験者の現在の身体動作の時系列データを入力し、この時系列データと、主動作筋閾値判定部32から出力された閾値に基づき、時刻tにおける被験者の身体動作に応じた適切な主動作筋を判定する。本実施形態では、主動作筋判定部33は、上記適切な主動作筋が前脛骨筋(TA)とヒラメ筋(SO)のどちらであるべきかを判定する(S3)。
・Main action
The main action
・共収縮閾値判定部34
共収縮閾値判定部34は、事前実験におけるEMGによる被験者の筋活動の時系列データの入力を受け付けて、EMGによる被験者の現在の筋活動の時系列データが共収縮状態にあるか否かが判定されるための閾値を出力する。本実施形態では、拮抗筋の筋活動の値が閾値Ethを超えたときは、EMGによる被験者の現在の筋活動の時系列データが共収縮状態にあると判定され得る。
- Co-contraction
The co-contraction
また、事前実験における身体動作の時系列データのうちバランスボード前端の高さが安定領域(h_ta < h < h_so)であるときにおける、EMGによる被験者の筋活動の時系列データの平均値をE_meanとし、バランスボード前端の高さが当該安定領域であるときにおける、EMGによる被験者の筋活動の時系列データの標準偏差をE_stdとすると、以下の式(3)が定義される。
Eth = E_mean + E_std …式(3)
In addition, among the time-series data of body movements in the preliminary experiment, when the height of the front end of the balance board is in the stable region (h_ta < h < h_so), the average value of the time-series data of the subject's muscle activity by EMG is defined as E_mean. , when the height of the front end of the balance board is in the stable region, the following equation (3) is defined, assuming that E_std is the standard deviation of time-series data of the subject's muscle activity based on EMG.
Eth = E_mean + E_std…Equation (3)
・共収縮判定部35
共収縮判定部35は、筋電評価部21から送信された、被験者の現在の筋動作の時系列データを主動作筋判定部33を介して入力し、この時系列データと、共収縮閾値判定部34から出力された閾値Ethに基づき、時刻tにおける被験者の現在の筋活動が共収縮状態にあるか否か、すなわち被験者の主動作筋と拮抗筋が共収縮しているか否かを判定する(S4)。
・
The
上記筋活動が共収縮状態にあるとき、すなわち被験者の拮抗筋の筋活動の値が閾値Ethを超えていると判定されたときは(S4のYes)、共収縮の抑制のために被験者の拮抗筋の動作(収縮)の抑制が必要と考えられるため、共収縮判定部35は、上記判定された適切な主動作筋に対してEMSを提示するための制御信号であるトリガ(trigger)信号をマイコン40に送信する。
一方で、上記筋活動が共収縮状態にないとき、すなわち被験者の拮抗筋の筋活動の値が閾値Eth以下であると判定されたときは(S4のNo)、被験者は自力で姿勢を制御可能と考えられるため、共収縮判定部35は、上記トリガ信号は送信しない(S6)。
When the above muscle activity is in a co-contraction state, that is, when it is determined that the value of the muscle activity of the subject's antagonist muscle exceeds the threshold value Eth (Yes in S4), the subject's antagonist muscle activity is in a state of co-contraction to suppress co-contraction. Since it is considered necessary to suppress muscle movement (contraction), the
On the other hand, when the above muscle activity is not in a co-contraction state, that is, when it is determined that the value of the muscle activity of the subject's antagonist muscle is less than or equal to the threshold Eth (No in S4), the subject can control the posture on their own. Therefore, the
・電気刺激提示部51
共収縮判定部35から送信されたトリガ信号をマイコン40が受信すると、電気刺激装置50の電気刺激提示部51は、この信号をマイコン40から受信するとともに認識して、被験者の上記判定された適切な主動作筋に対しEMSをΔt秒間にわたって提示する(S5)。これにより、被験者において生じている共収縮が抑制される。
・Electrical
When the
次に、本実施形態に係るバリエーション(variation)について、以下の(1)~(7)にて説明する。
(1) 事前実験における身体動作と筋活動の時系列データは、他者、例えば運動の熟練者など、のバランスタスクのデータが用いられても良い。例えば、理学療法士(physical therapist)等の動作に基づいて閾値が決定され、麻痺を伴う患者にEMSが刺激として提示されても良く、プロ選手(professional player)またはコーチ(coach)の動作に基づいて閾値が決定され、練習者に適用されることも可能である。
Next, variations according to this embodiment will be explained in (1) to (7) below.
(1) As the time-series data of body movements and muscle activities in the preliminary experiment, data from a balance task performed by another person, such as an expert exerciser, may be used. For example, the threshold may be determined based on the movements of a physical therapist, etc., and EMS may be presented as a stimulus to a patient with paralysis, and the threshold may be determined based on the movements of a professional player or coach. It is also possible that a threshold value is determined and applied to the practitioner.
(2) 被験対象物の運動主体は、人間の筋肉ではなく人工筋肉(artificial muscle)等の機械的動力源でも良く、筋活動および身体動作に係る閾値が人間の身体動作の時系列データに基づいて決定され、電気刺激の代わりとなる信号が人工筋肉へ入力されることも可能である。 (2) The subject of motion of the test object may be a mechanical power source such as an artificial muscle rather than a human muscle, and the thresholds related to muscle activity and body motion are based on time-series data of human body motion. It is also possible that a signal is determined and input to the artificial muscle in place of electrical stimulation.
(3) 実運動の例として、上記の立位バランスタスクの他に、例えば歩行、または腕の周期的なスイング動作(swing motion)など、主動作筋と拮抗筋の切り替えが必要な他の動作に対しても適用可能であり、対象とする筋も運動課題に応じて変更可能である。 (3) As an example of actual exercise, in addition to the above-mentioned standing balance task, other movements that require switching between agonist muscles and antagonistic muscles, such as walking or periodic swing motion of the arm, etc. The target muscles can also be changed depending on the exercise task.
(4) 上記の時系列データ格納部31に格納される、事前実験における身体動作の時系列データと、事前実験におけるEMGによる対象の筋の筋活動の時系列データは、配信サーバ60内の図示しない記憶装置に予め記憶されてもよい。
この場合、必要に応じて、上記各種閾値の判定のために、共収縮制御装置30の主動作筋閾値判定部32または共収縮閾値判定部34が、通信ネットワークを介して、配信サーバ60への上記時系列データの配信(取得)要求、いわゆるダウンロード(download)のリクエスト(request)を行ない、配信サーバ60の図示しない配信部は、この配信要求に応じて、上記記憶される時系列データを、通信ネットワークを介して配信要求元である共収縮制御装置30に配信することができる。
(4) The time-series data of the body motion in the preliminary experiment and the time-series data of the muscle activity of the target muscle by EMG in the preliminary experiment, which are stored in the above-mentioned time-series
In this case, in order to determine the various threshold values described above, the main action muscle
(5) 上記の主動作筋閾値判定部32または共収縮閾値判定部34により判定される各種閾値は、配信サーバ60内の図示しない記憶装置に閾値データとして予め記憶されてもよい。
この場合、必要に応じて、共収縮制御装置30の主動作筋判定部33または共収縮判定部35が、通信ネットワークを介して、配信サーバ60への上記閾値データの配信要求、いわゆるダウンロードのリクエストを行ない、配信サーバ60の配信部は、この配信要求に応じて、上記記憶される閾値のデータを、通信ネットワークを介して配信要求元である共収縮制御装置30に配信することができる。
(5) The various threshold values determined by the main action muscle
In this case, if necessary, the main action
(6) 上記の主動作筋閾値判定部32により判定される閾値を求めるための式は、上記の式(1)および(2)に示されたような一通りの式に限らず、複数の種類の閾値、例えばプロ用の式とアマチュア(amateur)用の式から利用者が任意に選択できる構成でもよい。プロ用の式は、例えばプロが取り扱える比較的複雑なパラメータなどが含まれる式であり、アマチュア用の式は、例えばアマチュアが取り扱える比較的簡易なパラメータなどが含まれる式である。
(6) The formula for determining the threshold determined by the main action muscle
(7) 上記の共収縮閾値判定部34により判定される閾値を求めるための式は、上記の式(3)に示されたような一通りの式に限らず、複数の種類の閾値、例えばプロ用、アマチュア用の式から利用者が任意に選択できる構成でもよい。
(7) The formula for determining the threshold determined by the above-mentioned co-contraction
以上説明した、本発明の一実施形態では、被験対象物にて共収縮が生じたときにEMSが提示されるべき主動作筋を逐次判定し、共収縮が起こる適切なタイミングでEMSを上記主動作筋に提示することで、複雑な運動動作、例えばバランス運動など、においても共収縮を抑制して円滑な動作を実現することができる。 In one embodiment of the present invention described above, when co-contraction occurs in a test object, the main action muscle to which EMS should be presented is sequentially determined, and the EMS is applied to the main action muscle at an appropriate timing when co-contraction occurs. By presenting it to the active muscles, it is possible to suppress co-contraction and achieve smooth movement even during complex movement movements, such as balance movements.
上記の立位バランスタスクの例では、被験者の姿勢を安定させるために動作すべき主動作筋を逐次判定し、共収縮が発生するタイミングでEMSを上記主動作筋に提示することで、効率的な足関節動作を実現し、姿勢の安定、例えば重心動揺の低減、に貢献すると考えられる。 In the example of the standing balance task above, the main action muscles that should be operated to stabilize the subject's posture are sequentially determined, and EMS is presented to the main action muscles at the timing when co-contraction occurs, thereby making it efficient. It is thought that this will realize stable ankle joint movements and contribute to postural stability, such as reducing center of gravity sway.
図4は、本発明の一実施形態に係る共収縮制御装置のハードウエア構成の一例を示すブロック図である。
図4に示された例では、上記の実施形態に係る共収縮制御装置30は、例えばサーバコンピュータ(server computer)またはパーソナルコンピュータ(personal computer)により構成され、CPU(Central Processing Unit)等のハードウエアプロセッサ(hardware processor)311Aを有する。そして、このハードウエアプロセッサ311Aに対し、プログラムメモリ(program memory)311B、データメモリ(data memory)312、入出力インタフェース(interface)313及び通信インタフェース314が、バス(bus)315を介して接続される。図1に示されたマイコン40、電気刺激装置50、および配信サーバ60についても同様であり、配信サーバ60は上記のサーバコンピュータにより構成され得る。
FIG. 4 is a block diagram showing an example of the hardware configuration of a co-contraction control device according to an embodiment of the present invention.
In the example shown in FIG. 4, the
通信インタフェース314は、例えば1つ以上の無線の通信インタフェースユニットを含んでおり、通信ネットワーク(network)NWとの間で情報の送受信を可能にする。無線インタフェースとしては、例えば無線LAN(Local Area Network)などの小電力無線データ通信規格が採用されたインタフェースが使用される。
The
入出力インタフェース313には、図1に示されるモーションキャプチャシステム10および筋電計20、およびその他の図示しない入力デバイス、出力デバイスが接続される。
入出力インタフェース313は、キーボード、タッチパネル(touch panel)、タッチパッド(touchpad)、マウス(mouse)等の入力デバイスを通じて利用者などにより入力された操作データを取り込むことができ、出力データを液晶または有機EL(Electro Luminescence)等が用いられた表示デバイスを含む出力デバイスへ出力して表示させる処理を行なうことができる。なお、入力デバイスおよび出力デバイスには、共収縮制御装置30に内蔵されたデバイスが使用されてもよく、また、ネットワークNWを介して共収縮制御装置30と通信可能である他の情報端末の入力デバイスおよび出力デバイスが使用されてもよい。
The
The input/
プログラムメモリ311Bは、非一時的な有形の記憶媒体として、例えば、HDD(Hard Disk Drive)またはSSD(Solid State Drive)等の随時書込みおよび読出しが可能な不揮発性メモリ(non-volatile memory)と、ROM(Read Only Memory)等の不揮発性メモリとが組み合わせて使用されたもので、一実施形態に係る各種制御処理等を実行する為に必要なプログラムが格納されている。
The
データメモリ312は、有形の記憶媒体として、例えば、上記の不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリ(volatile memory)とが組み合わせて使用されたもので、各種処理が行なわれる過程で取得および作成された各種データが記憶される為に用いられる。
The
本発明の一実施形態に係る共収縮制御装置30は、ソフトウエア(software)による処理機能部として、図2に示される主動作筋閾値判定部32、主動作筋判定部33、共収縮閾値判定部34、および共収縮判定部35を有するデータ処理装置として構成され得る。
The
共収縮制御装置30の各部によるワークメモリ(working memory)などとして用いられる各情報記憶部および時系列データ格納部31は、図4に示されたデータメモリ312が用いられることで構成され得る。ただし、これらの構成される記憶領域は共収縮制御装置30内に必須の構成ではなく、例えば、USB(Universal Serial Bus)メモリなどの外付け記憶媒体、又はクラウド(cloud)に配置されたデータベースサーバ(database server)等の記憶装置に設けられた領域であってもよい。
Each information storage unit and time-series
上記の処理機能部は、いずれも、プログラムメモリ311Bに格納されたプログラムを上記ハードウエアプロセッサ311Aにより読み出させて実行させることにより実現され得る。なお、これらの処理機能部の一部または全部は、特定用途向け集積回路(ASIC(Application Specific Integrated Circuit))またはFPGA(Field-Programmable Gate Array)などの集積回路を含む、他の多様な形式によって実現されてもよい。
Any of the above processing function units can be realized by causing the
また、各実施形態に記載された手法は、計算機(コンピュータ)に実行させることができるプログラム(ソフトウエア手段)として、例えば磁気ディスク(フロッピー(登録商標)ディスク(Floppy disk)、ハードディスク(hard disk)等)、光ディスク(optical disc)(CD-ROM、DVD、MO等)、半導体メモリ(ROM、RAM、フラッシュメモリ(Flash memory)等)等の記録媒体に格納し、また通信媒体により伝送して頒布され得る。なお、媒体側に格納されるプログラムには、計算機に実行させるソフトウエア手段(実行プログラムのみならずテーブル(table)、データ構造も含む)を計算機内に構成させる設定プログラムをも含む。本装置を実現する計算機は、記録媒体に記録されたプログラムを読み込み、また場合により設定プログラムによりソフトウエア手段を構築し、このソフトウエア手段によって動作が制御されることにより上述した処理を実行する。なお、本明細書でいう記録媒体は、頒布用に限らず、計算機内部あるいはネットワークを介して接続される機器に設けられた磁気ディスク、半導体メモリ等の記憶媒体を含むものである。 In addition, the method described in each embodiment can be applied to a magnetic disk (floppy (registered trademark) disk, hard disk) as a program (software means) that can be executed by a computer (computer). etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memories (ROM, RAM, Flash memory, etc.), and are stored in recording media, or transmitted and distributed via communication media. can be done. Note that the programs stored on the medium side also include a setting program for configuring software means (including not only execution programs but also tables and data structures) in the computer to be executed by the computer. A computer that realizes this device reads a program recorded on a recording medium, and if necessary, constructs software means using a setting program, and executes the above-described processing by controlling the operation of the software means. Note that the recording medium referred to in this specification is not limited to one for distribution, and includes storage media such as a magnetic disk and a semiconductor memory provided inside a computer or in a device connected via a network.
なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 Note that the present invention is not limited to the above-described embodiments, and can be variously modified at the implementation stage without departing from the gist thereof. Moreover, each embodiment may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the embodiments described above include various inventions, and various inventions can be extracted by combinations selected from the plurality of constituent features disclosed. For example, if a problem can be solved and an effect can be obtained even if some constituent features are deleted from all the constituent features shown in the embodiment, the configuration from which these constituent features are deleted can be extracted as an invention.
100…共収縮制御システム
10…モーションキャプチャシステム
11…身体動作評価部
20…筋電計
21…筋電評価部
30…共収縮制御装置
31…時系列データ格納部
32…主動作筋閾値判定部
33…主動作筋判定部
34…共収縮閾値判定部
35…共収縮判定部
40…マイクロコンピュータ(マイコン)
50…電気刺激装置(筋電気刺激装置)
51…電気刺激提示部
60…配信サーバ
DESCRIPTION OF
50...Electrical stimulation device (muscle electrical stimulation device)
51...Electrical
Claims (7)
前記被験対象物の筋活動の時系列データおよび閾値に基づいて、前記主動作筋判定部により判定された主動作筋と前記被験対象物の拮抗筋との共収縮が生じているか否かを判定する共収縮判定部と、
前記共収縮が生じていると前記共収縮判定部により判定されたときに、当該共収縮を抑制させるための、前記主動作筋判定部により判定された主動作筋に対する電気刺激の制御信号を出力する出力部と、
を備える共収縮制御装置。 a main action muscle determination unit that determines the main action muscle of the test subject based on time-series data of the body motion of the test subject and a threshold;
Determining whether or not co-contraction occurs between the main action muscle determined by the main action muscle determination unit and the antagonist muscle of the test object, based on the time series data of muscle activity of the test object and a threshold value. a co-contraction determination unit that performs
When the co-contraction determining section determines that the co-contraction is occurring, outputting a control signal for electrical stimulation of the main action muscle determined by the main action muscle determining section to suppress the co-contraction. an output section to
A co-contraction control device comprising:
請求項1に記載の共収縮制御装置。 The time series data of muscle activity is data that can be obtained from a server device via a communication network.
The co-contraction control device according to claim 1.
前記被験対象物の立位バランスタスクにおける足関節の動作に係る筋活動の時系列データおよび閾値に基づいて、前記主動作筋判定部により判定された主動作筋と前記被験対象物の拮抗筋との共収縮が生じているか否かを判定する、
請求項1に記載の共収縮制御装置。 The co-shrinkage determination unit includes:
The main action muscle determined by the main action muscle determination unit and the antagonist muscle of the test object based on the time series data and threshold of muscle activity related to the movement of the ankle joint of the test object in the standing balance task. determining whether co-contraction has occurred;
The co-contraction control device according to claim 1.
請求項1に記載の共収縮制御装置からの配信要求に従って、前記記憶装置に記憶された、前記被験対象物の筋活動の時系列データを、通信ネットワークを介して前記共収縮制御装置に配信する配信部と、
を備えるサーバ装置。 a storage device in which time-series data of muscle activity of the test subject is stored in advance;
In accordance with a distribution request from the co-contraction control device according to claim 1, the time-series data of the muscle activity of the test subject stored in the storage device is distributed to the co-contraction control device via a communication network. Distribution department and
A server device comprising:
前記共収縮制御装置の主動作筋判定部により、被験対象物の身体動作の時系列データおよび閾値に基づいて、前記被験対象物の主動作筋を判定し、
前記共収縮制御装置の共収縮判定部により、前記被験対象物の筋活動の時系列データおよび閾値に基づいて、前記主動作筋判定部により判定された主動作筋と前記被験対象物の拮抗筋との共収縮が生じているか否かを判定し、
前記共収縮制御装置の出力部により、前記共収縮が生じていると前記共収縮判定部により判定されたときに、当該共収縮を抑制させるための、前記主動作筋判定部により判定された主動作筋に対する電気刺激の制御信号を出力する、
共収縮制御方法。 A method carried out by a co-contraction control device, the method comprising:
The main action muscle determination unit of the co-contraction control device determines the main action muscle of the test subject based on time-series data of the body motion of the test subject and a threshold;
The co-contraction determination unit of the co-contraction control device determines the main action muscle and the antagonist muscle of the test object, which are determined by the main action muscle determination unit, based on time-series data of muscle activity of the test object and a threshold value. Determine whether co-contraction has occurred with
When the output unit of the co-contraction control device determines that the co-contraction is occurring, the main action muscle determination unit determines that the co-contraction is suppressed. Outputs control signals for electrical stimulation of working muscles,
Co-contraction control method.
前記サーバ装置の配信部により、請求項1乃至3のいずれか1項に記載の共収縮制御装置からの配信要求に従って、前記記憶装置に記憶された、前記被験対象物の筋活動の時系列データを、通信ネットワークを介して前記共収縮制御装置に配信する、
配信方法。 A method carried out by a server device equipped with a storage device in which time-series data of muscle activity of the test subject is stored in advance,
Time-series data of the muscle activity of the subject, which is stored in the storage device by the distribution unit of the server device, in accordance with a distribution request from the co-contraction control device according to any one of claims 1 to 3. to the co-contraction control device via a communication network;
Delivery method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024526091A JPWO2023238251A1 (en) | 2022-06-07 | 2022-06-07 | |
PCT/JP2022/023005 WO2023238251A1 (en) | 2022-06-07 | 2022-06-07 | Co-contraction control device, co-contraction control method, server device, delivery method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/023005 WO2023238251A1 (en) | 2022-06-07 | 2022-06-07 | Co-contraction control device, co-contraction control method, server device, delivery method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023238251A1 true WO2023238251A1 (en) | 2023-12-14 |
Family
ID=89118118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023005 WO2023238251A1 (en) | 2022-06-07 | 2022-06-07 | Co-contraction control device, co-contraction control method, server device, delivery method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023238251A1 (en) |
WO (1) | WO2023238251A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119049651A (en) * | 2024-10-30 | 2024-11-29 | 上海傅利叶智能科技有限公司 | Data processing method and related device for upper limb strength training |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017124164A (en) * | 2016-01-07 | 2017-07-20 | パナソニックIpマネジメント株式会社 | Fall risk judgment device, fall risk judgment method and computer program |
JP2019103655A (en) * | 2017-12-13 | 2019-06-27 | 日本電信電話株式会社 | Muscle tone control device, muscle tone control method, and program |
-
2022
- 2022-06-07 WO PCT/JP2022/023005 patent/WO2023238251A1/en active Application Filing
- 2022-06-07 JP JP2024526091A patent/JPWO2023238251A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017124164A (en) * | 2016-01-07 | 2017-07-20 | パナソニックIpマネジメント株式会社 | Fall risk judgment device, fall risk judgment method and computer program |
JP2019103655A (en) * | 2017-12-13 | 2019-06-27 | 日本電信電話株式会社 | Muscle tone control device, muscle tone control method, and program |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119049651A (en) * | 2024-10-30 | 2024-11-29 | 上海傅利叶智能科技有限公司 | Data processing method and related device for upper limb strength training |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023238251A1 (en) | 2023-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gentili et al. | Inertial properties of the arm are accurately predicted during motor imagery | |
Knippenberg et al. | Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy | |
Dimitrova et al. | Postural muscle responses to multidirectional translations in patients with Parkinson's disease | |
Webster et al. | Muscle activation during landing before and after fatigue in individuals with or without chronic ankle instability | |
Bobbert et al. | Humans adjust control to initial squat depth in vertical squat jumping | |
Lazzari et al. | Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial | |
Bechly et al. | Determining the preferred modality for real-time biofeedback during balance training | |
Cleworth et al. | Influence of virtual height exposure on postural reactions to support surface translations | |
Hellmann et al. | Long‐term training effects on masticatory muscles | |
Lorentzen et al. | Twenty weeks of home-based interactive training of children with cerebral palsy improves functional abilities | |
de Brito Silva et al. | Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces | |
Proske et al. | Two senses of human limb position: methods of measurement and roles in proprioception | |
Reschke et al. | Postural reflexes, balance control, and functional mobility with long-duration head-down bed rest | |
Krasovsky et al. | Reduced gait stability in high-functioning poststroke individuals | |
de Marche Baldon et al. | Effect of plyometric training on lower limb biomechanics in females | |
Borreani et al. | Muscle activation during push-ups performed under stable and unstable conditions | |
Asseman et al. | Effect of head position and visual condition on balance control in inverted stance | |
Harry et al. | Focus of attention effects on lower extremity biomechanics during vertical jump landings | |
WO2023238251A1 (en) | Co-contraction control device, co-contraction control method, server device, delivery method, and program | |
Miziara et al. | Analysis of the biomechanical parameters of high-performance of the roundhouse kicks in Taekwondo athletes | |
Hayes et al. | Biomechanical differences between able-bodied and spinal cord injured individuals walking in an overground robotic exoskeleton | |
Karolus et al. | Imprecise but fun: Playful interaction using electromyography | |
Palaniappan et al. | Adaptive virtual reality exergame for individualized rehabilitation for persons with spinal cord injury | |
CN115691760A (en) | A vestibular training rehabilitation system and method based on the combination of virtual reality technology and microcurrent technology | |
Canet‐Vintró et al. | Effects of focal vibration on changes in sports performance in amateur athletes: A randomized clinical trial |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22945758 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024526091 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22945758 Country of ref document: EP Kind code of ref document: A1 |