WO2023234130A1 - 粒子2次元音響収束装置及びそれを用いた音響濃縮装置 - Google Patents
粒子2次元音響収束装置及びそれを用いた音響濃縮装置 Download PDFInfo
- Publication number
- WO2023234130A1 WO2023234130A1 PCT/JP2023/019243 JP2023019243W WO2023234130A1 WO 2023234130 A1 WO2023234130 A1 WO 2023234130A1 JP 2023019243 W JP2023019243 W JP 2023019243W WO 2023234130 A1 WO2023234130 A1 WO 2023234130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dimensional
- acoustic
- particle
- flow path
- convergence
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 118
- 239000007788 liquid Substances 0.000 claims abstract description 24
- 238000005259 measurement Methods 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 4
- 239000012141 concentrate Substances 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 abstract 1
- 239000011859 microparticle Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 17
- 230000005284 excitation Effects 0.000 description 12
- 238000004088 simulation Methods 0.000 description 10
- 238000009826 distribution Methods 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 229920000426 Microplastic Polymers 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229920006332 epoxy adhesive Polymers 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000001530 Raman microscopy Methods 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005404 monopole Effects 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D43/00—Separating particles from liquids, or liquids from solids, otherwise than by sedimentation or filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/10—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N37/00—Details not covered by any other group of this subclass
Definitions
- the present invention relates to a particle two-dimensional acoustic convergence device configured to converge particles contained in a liquid flowing in a flow path to the center of a cross section of the flow path using ultrasonic waves, and an acoustic convergence device using the same. Concerning a concentrator.
- Non-Patent Document 1 The principle of ultrasonic radiation pressure applied to particles in a standing wave is that, first, when an ultrasonic standing wave is introduced into a fluid, the pressure amplitude is minimum at the node of the sound pressure of the standing wave, and at the antinode. Maximum. On the other hand, the displacement of the medium is maximum at the nodes of the sound pressure and minimum at the antinodes.
- Non-Patent Document 2 the applicability of acoustic convergence technology for particles contained in liquids as a means to enable continuous collection and continuous analysis of microplastics in the plastic problem in the environment was previously discussed. , the research results have been disclosed (see Non-Patent Document 2).
- plankton nets with a mesh size of about 0.3 mm (300 ⁇ m) have been widely used for sampling microplastics.
- items smaller than the mesh size were not collected, and the actual situation was unknown.
- To collect even smaller microplastics it is necessary to make the mesh finer, but the finer the mesh, the more likely it is that clogging will occur.
- the microplastics collected through the mesh had to be picked up one by one by humans using tweezers for analysis, but the process itself was difficult due to the microscopic size. Therefore, technology for continuous collection and continuous analysis of microplastics was required.
- FIG. 9 shows a state where acoustic focusing is turned off and a change from that state to a state where acoustic focusing is turned on.
- This system generates a horizontal half-wavelength standing wave in a microchannel (microchannel), forms a node on the vertical center line, and focuses the particles there. Note that the research results disclosed in Non-Patent Document 2 utilize this one-dimensional convergence.
- acoustic convergence is widely used to collect particles in a flow path, but conventional one-dimensional convergence This is due to the fact that the concentration factor was limited to about 10 due to the large influence of disturbances in the sound field at the branching part.
- Two-dimensional convergence has been proposed to improve this, and it has been reported that the concentration factor can be increased to about 60 by this.
- this conventional two-dimensional convergence method requires the preparation of two independent vibration systems, especially in the case of a typical rectangular flow path, making the system complex and expensive, so it is rarely used. Ta.
- an object of the present invention is to provide a two-dimensional particle acoustic convergence device that can efficiently converge and condense particles present in a liquid flowing in a flow path using the acoustic effect of ultrasonic waves with a simple configuration. and to provide an acoustic concentrator using the same.
- the present invention includes the following configuration to achieve the above object.
- the particle included in the liquid flowing in the flow path is configured to be focused at the center of the cross section of the flow path using ultrasonic waves.
- a two-dimensional particle acoustic focusing device comprising: a rectangular flow path having a substantially rectangular cross-sectional shape when cut perpendicular to the extending direction of the flow path; and a long side of the rectangle of the rectangular flow path.
- the first ultrasonic wave is generated such that the length and the length of a half wavelength are substantially equal, and the length of the short side of the rectangle of the rectangular flow path is substantially equal to the length of a half wavelength.
- One ultrasonic wave generating device is provided that simultaneously irradiates the second ultrasonic waves generated in a combined state into the rectangular flow path.
- the ultrasonic generator synthesizes signals of two different frequencies for generating the first ultrasonic wave and the second ultrasonic wave. It can be characterized by comprising a signal adjustment means for adjusting the ratio and magnitude.
- the ultrasonic wave generating device includes a signal generator that generates signals of two different frequencies, and an ultrasonic wave generated by receiving the signal from the signal generator. It can be characterized in that it includes a piezoelectric vibrator that generates vibration as a component.
- At least a portion of the rectangular flow path to which at least the first ultrasonic wave and the second ultrasonic wave are irradiated with the liquid It can be characterized in that it is installed in an upright state so that it flows in the vertical direction.
- an optical measuring device whose measurement ability is affected by the depth of field is disposed at a position facing the rectangular flow path. It can be a feature.
- the two-dimensional particle acoustic focusing device is provided, and in the downstream flow path of the rectangular channel, one branch It branches into three channels: a flow channel, a branch channel on the other side, and a central branch channel provided to flow the particles focused in the center of the rectangular channel by the two-dimensional particle acoustic focusing device. It can be characterized by having a three-branch flow path formed so as to
- the three-branch flow path is formed by dividing the rectangle into three in the length direction of the long side. It can be characterized by being present.
- the acoustic concentrating device using a plurality of the two-dimensional particle acoustic focusing devices are connected in series with respect to the flow of the liquid containing the particles. It can be characterized in that it is configured by being connected to.
- the acoustic concentrating device using the plurality of two-dimensional particle acoustic converging devices is arranged in parallel with respect to the flow of the liquid containing the particles. It can be characterized in that it is configured by being connected to.
- particles present in a liquid flowing in a flow path can be efficiently collected using the acoustic effect of ultrasonic waves with a simple configuration. It has the particularly advantageous effect of being able to converge and condense.
- FIG. 2 is a cross-sectional view schematically showing an example of the form of the two-dimensional particle acoustic convergence device according to the present invention, taken perpendicular to the extending direction of the flow path (flow direction of the liquid).
- FIG. 2 is an explanatory diagram of an example of an acoustic concentrator using a two-dimensional particle acoustic convergence device according to the present invention, in which a plurality of three-branch channels are connected in series.
- (a) A perspective view showing an example of the form of a flow path and a schematic explanatory diagram of a three-branch flow path.
- FIG. 2 is an explanatory perspective view of an example of an acoustic concentrator using a two-dimensional particle acoustic focusing device according to the present invention, in which a plurality of three-branch channels are connected in parallel.
- FIG. 2 is an explanatory diagram illustrating an experimental setup state for acoustic focusing of particles according to an example of the present invention.
- the inset shows a typical acoustic pressure field with standing waves.
- (b) Design diagram of a microfluidic chip with rectangular microchannels. Note that acoustic convergence was evaluated by observing the area in front of the three branches using a confocal fluorescence microscope from the opposite side of the PZT.
- 3 is a graph showing the frequency dependence of electrical measurement values of PZT in Examples according to the present invention. Although some peaks are seen around 500 kHz, no peaks are seen above 800 kHz, and the admittance increases slightly. The dashed line indicates 515kHz.
- FIG. 4 is a reconstructed cross-sectional image of fluorescent fine particles excited at a single frequency and two frequencies according to an example of the present invention.
- microparticles are observed in a green fluorescence image, and when superimposed with the red fluorescence image of the microchannel, the microparticles appear yellow (the bright part in this figure, which is displayed in gray scale).
- the amplitude of horizontal convergence is shown on the left side of the image, and the amplitude of vertical convergence is shown above it.
- the clearest two-dimensional convergence image is surrounded by a thick gray line.
- the scale bar indicates 500 ⁇ m. It is an explanatory view explaining numerical simulation for acoustic convergence of an example concerning the present invention.
- the white and black arrows indicate the frequencies employed in the horizontal and vertical convergence experiments, respectively.
- a two-dimensional particle acoustic convergence device is a device configured to converge particles contained in a liquid flowing in a flow path onto a central portion of a cross section of the flow path using ultrasonic waves.
- the first ultrasonic wave generated so that the length of the long side a of the rectangular channel 10 is substantially equal to the length of a half wavelength, and the rectangular shape of the rectangular channel 10
- One ultrasonic wave generator that simultaneously irradiates into the rectangular flow path 10 in a combined state a second ultrasonic wave generated so that the length of the short side b is substantially equal to the length of a half wavelength.
- a device 20 is provided.
- the first ultrasonic wave generates a horizontal half-wave standing wave S1
- the second ultrasonic wave generates a vertical half-wave standing wave S1.
- a standing wave S2 is generated, two-dimensional acoustic focusing can be obtained with a simple configuration, and particles contained in the liquid flowing in the channel can be efficiently focused at the center of the cross section of the rectangular channel 10. I can do it.
- two-dimensional convergence can be achieved with one vibration system, thereby avoiding system complexity. It is possible to reduce manufacturing costs.
- the ultrasonic wave generating device 20 is provided with a signal adjusting means for adjusting the ratio and magnitude of combining two different frequency signals for generating the first ultrasonic wave and the second ultrasonic wave, It can be rationally adjusted to optimize two-dimensional acoustic convergence in response to various conditions such as sampling conditions.
- a signal adjustment means a signal generator that generates signals of two different frequencies or a high frequency power amplifier 22 (amplifier) that can separately amplify and adjust two electrical signals of different frequencies can be used.
- the ultrasonic generator 20 includes, as constituent elements, a signal generator 21 that generates signals of two different frequencies, and a piezoelectric vibrator 23 that generates ultrasonic vibrations in response to the signal from the signal generator 21.
- the ultrasonic generator 20 can be configured simply and rationally, and costs can be reduced.
- the two-dimensional particle acoustic focusing device in the two-dimensional particle acoustic focusing device according to the present invention, at least a portion of the rectangular channel 10 where the first ultrasonic wave and the second ultrasonic wave are irradiated with the liquid flows in the vertical direction. It can be characterized in that it is installed in an upright position. According to this, regarding two-dimensional acoustic convergence within the rectangular flow path 10, the particles contained in the liquid are less susceptible to the influence of gravity, and the particles can be more appropriately focused to the center of the rectangular flow path 10.
- an optical measuring device 30 whose measurement ability is influenced by the depth of field is disposed at a position facing the rectangular flow path 10. According to this, it is possible to control the particles flowing in the rectangular flow path 10 so that they flow within an allowable range of depth of field that allows the optical system measurement device to focus, and the optical system measurement device The accuracy of measurements can be improved. For example, it is possible to more accurately measure particle recognition using image processing, size measurement that involves tracking, and material identification using Raman microscopy.
- the particle two-dimensional acoustic focusing device is provided, and in the downstream flow path of the rectangular flow path 10, one side branch flow path 41 and the other side branch flow path 42, and a central branch channel 43 provided to flow the particles focused in the center of the rectangular channel 10 by the two-dimensional particle acoustic focusing device.
- a three-branch channel 40 is provided.
- the three-branch flow path 40 is formed by dividing the rectangle into three in the length direction of the long side, so that the three flow paths can be divided by appropriately utilizing the shape of the flat rectangular flow path 10.
- Roads (41, 42, 43) have the advantage of being easy to divide and branch appropriately.
- the flow rate in (branch channel 42 on the other side) is set to be 1.1:1:1.1.
- the concentration of microparticles (MP) in the liquid can be concentrated by 3.2 times by the one-stage three-branch channel 40. As shown in FIG. 2, by arranging four stages in series and repeating the concentration, it can be concentrated approximately 100 times.
- the input flow rate is 300 ⁇ L/min, and the case where only one-dimensional acoustic focused ultrasonic wave of 516.2 kHz is irradiated, and the case where two-dimensional acoustic focused ultrasonic waves of 516.2 kHz and 1051 kHz are irradiated.
- the limit is a concentration rate of up to 10 times (output flow rate of 30 ⁇ L/min), and for two-dimensional acoustic focusing, a concentration rate of up to 30 times (output flow rate of 10 ⁇ L/min) is the practical range. It was shown that there is.
- the concentration rate is 30 times (300 ⁇ L/min/10 ⁇ L/min)
- the recovery rate is 90%
- the “Concentration factor” is calculated as 27.
- an acoustic concentrator using a plurality of the particle two-dimensional acoustic convergence devices is configured to be connected in series with respect to the flow of the liquid containing the particles, so that the concentration ratio can be raised to a power. can be improved.
- an acoustic concentrator using a plurality of particle two-dimensional acoustic focusing devices is configured to be connected in parallel for the flow of the liquid containing the particles, thereby increasing the processing flow rate. be able to.
- two-dimensional focusing can dramatically improve the efficiency of particle concentrators, it is not widely used due to the complexity of two-dimensional focusing systems.
- Conventional two-dimensional focusing devices require two independent vibration systems operating at different frequencies.
- two-dimensional convergence can be performed simply by exciting a piezoelectric vibrator (PZT) at two frequencies simultaneously.
- PZT piezoelectric vibrator
- two-dimensional convergence is possible by simply exciting PZT at two frequencies simultaneously with one vibration system and inputting a pre-synthesized signal to a high-frequency power amplifier. This method can be easily applied to most conventional sound systems and improve their efficiency.
- a two-dimensional (2D) focusing method that performs horizontal and vertical focusing within a rectangular microchannel (flow path) using a single piezoelectric vibrator (PZT) excited at two frequencies.
- PZT piezoelectric vibrator
- one PZT is excited by combining signals of different frequencies at an appropriate ratio.
- two-dimensional convergence can be easily realized at low cost because it can be realized using almost the same system as one-dimensional convergence.
- Two-dimensional focusing in conventional rectangular microchannels requires a complicated system because two types of PZT are excited separately at their respective resonant frequencies.
- two-dimensional convergence using a single PZT was achieved by adjusting the amplitude ratio of horizontal convergence at the resonant frequency and vertical convergence at the non-resonant frequency.
- numerical simulations showed that two-dimensional convergence is possible by superimposing excitations of two different frequencies at the same ratio as in experiments.
- acoustic methods2 which can achieve high efficiency by increasing input energy, are widely applied in the biofields3 ), 4) biomedical fields5 ), 6), 7) chemistry and 8) environmental fields. 9), 10) .
- Acoustic methods primarily utilize particle concentration through acoustic radiation force (ARF)-based convergence, which moves particles with a positive acoustic contrast factor, such as cells or plastic particles, to nodes of acoustic standing waves 11) .
- ARF acoustic radiation force
- Conventional particle concentrators using acoustic methods employ horizontal convergence using one-dimensional (1D) standing waves12 ) .
- This system generates a transverse half-wavelength standing wave in a microchannel, forms a node on the vertical centerline, and focuses particles there.
- the concentration factor can be set to 50 or more13 ) , but a practical concentration factor is generally 3 to 10.9), 14) , 15) .
- This limit is mainly due to the instability of acoustic convergence at the bifurcation, which is caused by the disturbance of the acoustic pressure field due to the change in the shape of the bifurcation from a straight channel to a three-branched channel 16) .
- this instability affects small particles that flow slowly on the upper and lower walls of the bifurcation, following the parabolic profile of the pressure-driven flow.
- two-dimensional convergence Simultaneous horizontal and vertical convergence
- This two-dimensional convergence improved the concentration factor limit, and a 67-fold concentration was achieved for polystyrene particles with a diameter of 5 ⁇ m 13) .
- the simplest way to achieve two-dimensional convergence is to use square channels. This allows the horizontal and vertical resonant frequencies to match and achieves two-dimensional convergence without additional equipment or changes in device design 17), 18), 19) .
- Two-dimensional light focusing in a circular channel has also been reported. Two-dimensional convergence in a rectangular channel is more common, but requires two oscillating systems at different frequencies 13), 21), 22) .
- One frequency is for horizontal focusing and is chosen such that half the wavelength corresponds to the microchannel width.
- the other is the frequency for vertical focusing, where half the wavelength corresponds to the depth of the microchannel.
- FIG. 5a shows the experimental setup for acoustic focusing.
- a microfluidic chip (70 x 20 x 2.1 mm 3 ) was fabricated by thermally bonding three 0.7 mm thick borosilicate glass plates (Tempax Float, manufactured by Schott). Rectangular microchannels (width 1.42 mm, depth 0.7 mm) were obtained by machining trifurcated through grooves in the central plate (Fig. 5b).
- a 40 ⁇ 34.5 ⁇ 4.2 mm 3 PZT (C-213, Fuji Ceramics Co., Ltd.) with a thickness mode resonance frequency of 500 kHz was adhered to the microfluidic chip using an epoxy adhesive. The positioning pins accurately position the microfluidic chip and the microfluidic connector.
- a sine wave of the required frequency generated by a signal generator with a two-channel output was amplified by a high frequency power amplifier (HSA4011, manufactured by NF Corporation), and the PZT was activated. Two-dimensional convergence was achieved by adding and amplifying signals of different frequencies generated by a signal generator using an amplifier. Green fluorescent polyethylene fine particles (diameter 50 ⁇ m, density 1.025 gmL ⁇ 1 , manufactured by Cospheric) were suspended in distilled water containing 0.2 wt% Tween 20 to prepare a fine particle suspension (10 4 particles mL ⁇ 1 ). . Finally, 1 ppm of Nile Red solution was added so that the microchannel area could be identified by fluorescence imaging.
- HSA4011 high frequency power amplifier
- the microfluidic chip was placed vertically to prevent the microparticles from settling due to gravity.
- the suspension was introduced into the microfluidic chip by suctioning it from all outlets using a syringe pump (flow rate, 300 ⁇ L min ⁇ 1 ).
- a macro confocal microscope (AZ-C2+, Nikon) the alignment state of microparticles within the microchannel was observed by green and red fluorescence imaging.
- the horizontal and vertical excitation frequencies depend on the shape of the microchannel. To generate a standing wave with one node in the horizontal direction, half the wavelength needs to be close to the microchannel width. By using 1480 m/s (the sound speed of water at room temperature), the excitation frequency was expected to be approximately 521 kHz. Similarly, the excitation frequency in the vertical direction should also be about 1060 kHz. Distilled water was poured into the completely set up PZT microchannel, and the impedance was measured using an impedance analyzer (IM3570, Hioki Seisakusho) to evaluate resonance characteristics. As shown in FIG. 6, some admittance peaks are seen around 500 kHz, and at this time the phase approaches zero.
- IM3570 impedance analyzer
- FIG. 7 shows cross-sectional images of two-dimensional convergence with various amplitude combinations.
- two-dimensional convergence was clearly obtained when vertical convergence was performed at 20, 25, and 30V, and horizontal convergence at 10V.
- the amplitude of vertical convergence was 15 V or less, horizontal convergence became predominant, and the influence of vertical convergence on fine particles was small.
- vertical focusing is too strong compared to horizontal focusing, the particles will be split into two spots, as seen in the images obtained with vertical focusing of 25V, 30V and horizontal focusing of 5V. I understand. This result shows that two-dimensional focusing is possible in a rectangular microchannel using one PZT, and that it is necessary to adjust the balance of forces due to horizontal and vertical focusing.
- the Cauchy equation of motion was solved using the "Solid Mechanics Module,” and the piezoelectricity of the PZT domain was considered as a stress-charge form by coupling with the "Electrostatics Module.”
- the epoxy adhesive layer was expressed as a "Thin Elastic Layer”, and its thickness was measured with a micrometer.
- the boundary conditions between the fluid and the glass were defined by setting the "Acoustic-Structure Boundary”. Parameters of material properties, including damping, were obtained from the literature23 ), 24) . Similar to the experiment, the amplitude to excite the PZT was applied between the upper and lower boundaries. The amplitudes of horizontal and vertical convergence were 10V and 30V, respectively.
- f 0 1 - ⁇ f c f 2 / ⁇ p c p 2 is the monopole scattering coefficient of the particle
- f 1 2 ( ⁇ p - ⁇ f ) / (2 ⁇ p + ⁇ f ) is the dipole scattering coefficient of the particle. It is a coefficient.
- V is the volume of the particle
- ⁇ f is the density of the particle
- c p is the speed of sound of the particle.
- the ARF distribution excited at two frequencies was estimated according to the superposition principle. That is, the ARF distributions calculated separately for horizontal and vertical convergence were summed (Fig. 8d). As expected, the ARF points almost everywhere to the center of the microchannel, meaning that the microparticles are essentially two-dimensionally focused to a central spot.
- the ARF in the area near the center of the ceiling wall was directed toward the center in the horizontal direction, but was directed toward the top in the vertical direction. The particles in this area eventually adhered to the center of the ceiling wall.
- the microparticles near the center of the top wall did not converge at the center and headed toward the top wall.
- the number of fine particles adhering to the wall surface was 6, accounting for 6.1% of the total fine particles.
- the small particles attached to the wall in the simulation can be ignored. In fact, it was confirmed that no microparticles were attached to the upper wall.
- Optical system measuring device 40 3-branch channel 41 Branch channel on one side 42 Branch channel on the other side 43 Branch channel in the center
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
超音波による音響効果を利用し、流路内を流れる液体中に存在する粒子を、簡易な構成で効率的に収束や濃縮することができる粒子2次元音響収束装置及びそれを用いた音響濃縮装置を提供する。流路内を流れる液体に含まれる粒子を、超音波を用いて、前記流路の断面の中央部に収束させるように構成される粒子2次元音響収束装置であって、前記流路の延長方向に直交して破断した状態の断面形状が実質的に長方形に形成された長方形流路10と、長方形流路10の長方形の長辺aの長さと半波長分の長さが実質的に同等となるように発生される第1の超音波、及び長方形流路10の長方形の短辺bの長さと半波長分の長さが実質的に同等となるように発生される第2の超音波を、合成した状態で同時に長方形流路10内へ照射する一つの超音波発生装置20を備える。
Description
本発明は、流路内を流れる液体に含まれる粒子を、超音波を用いて、前記流路の断面の中央部に収束させるように構成される粒子2次元音響収束装置及びそれを用いた音響濃縮装置に関する。
従来、液体に含まれる粒子の音響収束については、例えば、超音波輻射圧による生体微粒子操作技術として、溶液中に懸濁された微粒子を、超音波を用いることで、配列・配向や濃縮する研究成果が開示されている(非特許文献1参照)。なお、定在波中での微粒子が受ける超音波輻射圧の原理は、先ず、流体中に超音波の定在波を導入すると、定在波の音圧の節で圧力振幅は最小、腹で最大となる。他方、媒体の変位は、音圧の節で最大、腹で最小となる。ここで媒質とは異なった密度、圧縮率の微粒子を音場中に導入すると、超音波の圧力振動、媒質振動による微粒子の仕事が系全体として最小となるように微粒子は移動しようとする。これが超音波輻射圧である(非特許文献1・図2の説明文)。
また、先に、本発明者らによれば、環境におけるプラスチック問題において、マイクロプラスチックの連続回収や連続分析を可能とするための手段として、液体に含まれる粒子の音響収束技術の適用可能性について、その研究成果が開示されている(非特許文献2参照)。
この環境におけるプラスチック問題に関して、マイクロプラスチックのサンプリングは、従来、メッシュサイズが約0.3mm(300μm)のプランクトン用ネットが広く用いられていた。そのため、メッシュサイズより小さいものは回収されず、その実態が不明だった。より微小なマイクロプラスチックの回収には、メッシュを細かくする必要があるが、細かくすればするほど目詰まりが発生し易くなる。そして、メッシュで回収したマイクロプラスチックは、分析に向けて人間がひとつひとつピンセットでピックアップして集めていたが、微小なものはその作業そのものが困難であった。そこで、マイクロプラスチックの連続回収や連続分析の技術が求められていた。
従来の流路内を流れる液体に含まれる粒子に関する音響法による微粒子収束装置では、先ず1次元収束を利用するものとして、1次元(1D)定在波による水平収束が知られている(図9参照)。なお、図9では、音響集束をOFFにした状態と、その状態から音響集束をONにした状態の変化を示している。このシステムでは、マイクロチャンネル(微小流路)内に横方向の半波長定在波を発生させ、垂直方向の中心線上に節を形成し、そこに微粒子を収束させるものである。なお、非特許文献2に開示された研究成果は、この1次元収束を利用したものである。
また、従来の音響法による微粒子収束装置において、2次元収束を利用する場合は、最も簡単な方法として、正方形のチャネル(流路)を用いるものがある。これによれば、水平と垂直の共振周波数が一致し、追加の装置や装置の設計変更なしに、一つの超音波発生装置によって2次元収束が達成される。また、円形のチャネル(流路)での2次元収束も報告されている。
これに対して、2次元収束を利用する場合は、長方形のチャネル(流路)での2次元収束がより一般的であるが、従来、異なる周波数で2つの振動系(特許文献1参照)が必要になっていた。1つの周波数は水平収束用で、波長の半分がマイクロチャネル(微小流路)幅に相当するように選択される。もう1つは垂直収束用の周波数で、波長の半分がマイクロチャネル(微小流路)の深さに相当する。この2つの振動系は、圧電振動子(PZT)、信号発生器、高周波電力増幅器(アンプ)がそれぞれ2つずつ必要で、システム全体が複雑になり、1次元収束用の振動系1つに比べ、コストが2倍近くになる。さらに、幅と深さに対応した共振周波数の異なる2つのPZTをマイクロ流体デバイスに取り付ける必要があり、マイクロ流体デバイスの設計に制約が生じる。
粒子2次元音響収束装置及びそれを用いた音響濃縮装置に関して解決しようとする課題は、先ず、流路中での微粒子回収において、音響収束は広く用いられているが、従来の1次元収束では、分岐部における音場の乱れの影響を大きく受け、濃縮倍率は10程度に制限されていたことにある。この改善に、2次元収束が提案されており、これにより濃縮倍率を60程度まで高められることが報告されている。しかし、この従来の2次元収束は、特に一般的な長方形流路の場合、2つの独立した振動系を用意する必要があり、システムが複雑になる上に、コストがかかるため用いられることは少なかった。
そこで、本発明の目的は、超音波による音響効果を利用し、流路内を流れる液体中に存在する粒子を、簡易な構成で効率的に収束や濃縮することができる粒子2次元音響収束装置及びそれを用いた音響濃縮装置を提供することにある。
本発明は、上記目的を達成するために次の構成を備える。
本発明にかかる粒子2次元音響収束装置の一例によれば、流路内を流れる液体に含まれる粒子を、超音波を用いて、前記流路の断面の中央部に収束させるように構成される粒子2次元音響収束装置であって、前記流路の延長方向に直交して破断した状態の断面形状が実質的に長方形に形成された長方形流路と、該長方形流路の長方形の長辺の長さと半波長分の長さが実質的に同等となるように発生される第1の超音波、及び前記長方形流路の長方形の短辺の長さと半波長分の長さが実質的に同等となるように発生される第2の超音波を、合成した状態で同時に前記長方形流路内へ照射する一つの超音波発生装置を備える。
本発明にかかる粒子2次元音響収束装置の一例によれば、流路内を流れる液体に含まれる粒子を、超音波を用いて、前記流路の断面の中央部に収束させるように構成される粒子2次元音響収束装置であって、前記流路の延長方向に直交して破断した状態の断面形状が実質的に長方形に形成された長方形流路と、該長方形流路の長方形の長辺の長さと半波長分の長さが実質的に同等となるように発生される第1の超音波、及び前記長方形流路の長方形の短辺の長さと半波長分の長さが実質的に同等となるように発生される第2の超音波を、合成した状態で同時に前記長方形流路内へ照射する一つの超音波発生装置を備える。
また、本発明にかかる粒子2次元音響収束装置の一例によれば、超音波発生装置が、前記第1の超音波及び前記第2の超音波を発生させる二つの異なる周波数の信号について、合成する割合や大きさを調整する信号調整手段を備えることを特徴とすることができる。
また、本発明にかかる粒子2次元音響収束装置の一例によれば、前記超音波発生装置が、二つの異なる周波数の信号を生成させる信号発生器と、該信号発生器による信号を受けて超音波振動を発生させる圧電振動子とを構成要素として備えることを特徴とすることができる。
また、本発明にかかる粒子2次元音響収束装置の一例によれば、前記流路の少なくとも前記第1の超音波及び前記第2の超音波が照射される前記長方形流路の部分が、前記液体が鉛直方向に流れるように立てた状態に設置されていることを特徴とすることができる。
また、本発明にかかる粒子2次元音響収束装置の一例によれば、被写界深度によって計測能力が影響される光学系計測装置が、前記長方形流路に臨む位置に配設されていることを特徴とすることができる。
また、本発明にかかる粒子2次元音響収束装置を用いた音響濃縮装置の一例によれば、前記粒子2次元音響収束装置を備える共に、前記長方形流路の下流側流路において、一方側の分岐流路、他方側の分岐流路、及び前記粒子2次元音響収束装置によって前記長方形流路の中央部に収束された粒子を流すように設けられた中央の分岐流路の3つの流路に分岐されるように形成された3分岐流路を備えることを特徴とすることができる。
また、本発明にかかる粒子2次元音響収束装置を用いた音響濃縮装置の一例によれば、前記3分岐流路が、前記長方形の長辺の長さ方向について3つに分けることで形成されていることを特徴とすることができる。
また、本発明にかかる粒子2次元音響収束装置を用いた音響濃縮装置の一例によれば、複数の前記粒子2次元音響収束装置を用いた音響濃縮装置が、前記粒子を含む液体の流れについて直列に接続されて構成されていることを特徴とすることができる。
また、本発明にかかる粒子2次元音響収束装置を用いた音響濃縮装置の一例によれば、複数の前記粒子2次元音響収束装置を用いた音響濃縮装置が、前記粒子を含む液体の流れについて並列に接続されて構成されていることを特徴とすることができる。
本発明にかかる粒子2次元音響収束装置及びそれに用いた音響濃縮装置によれば、超音波による音響効果を利用し、流路内を流れる液体中に存在する粒子を、簡易な構成で効率的に収束や濃縮することができるという特別有利な効果を奏する。
本発明にかかる粒子2次元音響収束装置の実施例を、添付図面(図1~8)に基づいて詳細に説明する。本発明にかかる粒子2次元音響収束装置は、流路内を流れる液体に含まれる粒子を、超音波を用いて、前記流路の断面の中央部に収束させるように構成される装置である。
本発明にかかる粒子2次元音響収束装置では、図1に示すように、流路の延長方向(液体の流れ方向)に直交して破断した状態の断面形状が実質的に長方形に形成された長方形流路10と、その長方形流路10の長方形の長辺aの長さと半波長分の長さが実質的に同等となるように発生される第1の超音波、及び長方形流路10の長方形の短辺bの長さと半波長分の長さが実質的に同等となるように発生される第2の超音波を、合成した状態で同時に長方形流路10内へ照射する一つの超音波発生装置20を備える。
本発明にかかる粒子2次元音響収束装置によれば、図1に示すように、第1の超音波によって水平の半波長の定在波S1が生じ、第2の超音波によって垂直の半波長の定在波S2が生じ、簡易な構成で、2次元音響収束を得ることができ、流路内を流れる液体に含まれる粒子を、長方形流路10の断面の中央部に効率的に収束させることができる。すなわち、単一の圧電素子(圧電振動子23)を、異なる2つの周波数で同時に駆動することで、1つの振動系で2次元収束を実現することができるため、システムが複雑化することを回避でき、製造コストを低減できる。
また、超音波発生装置20が、前記第1の超音波及び前記第2の超音波を発生させる二つの異なる周波数の信号について、合成する割合や大きさを調整する信号調整手段を備えることで、サンプリング条件などの種々の条件に対応し、2次元音響収束の最適化を図るように合理的に調整できる。この信号調整手段としては、二つの異なる周波数の信号を生成させる信号発生器や、二つの異なる周波数の電気信号についてそれぞれを別々に増幅調整ができる高周波電力増幅器22(アンプ)を用いることができる。
また、超音波発生装置20が、二つの異なる周波数の信号を生成させる信号発生器21と、その信号発生器21による信号を受けて超音波振動を発生させる圧電振動子23とを構成要素として備えることによれば、超音波発生装置20を簡易且つ合理的に構成することができ、コストを低減できる。
また、本発明にかかる粒子2次元音響集束装置では、流路の少なくとも前記第1の超音波及び前記第2の超音波が照射される長方形流路10の部分が、前記液体が鉛直方向に流れるように立てた状態に設置されていることを特徴とすることができる。これによれば、長方形流路10内における2次元音響収束について、液体に含まれる粒子が重力の影響を受けにくくなり、粒子を長方形流路10の中央部へより適正に収束させることができる。
また、本実施例では、図1に示すように、被写界深度によって計測能力が影響される光学系計測装置30が、長方形流路10に臨む位置に配設されている。
これによれば、長方形流路10内を流れる微粒子が、光学系計測装置の焦点(ピント)を合わすことができる被写界深度の許容範囲を流れるように制御でき、その微粒子について光学系計測装置による計測の精度を高めることができる。例えば、画像処理による粒子認識や追跡を伴うサイズ計測、さらには顕微ラマンによる材質同定などについて、より正確に計測することができる。
これによれば、長方形流路10内を流れる微粒子が、光学系計測装置の焦点(ピント)を合わすことができる被写界深度の許容範囲を流れるように制御でき、その微粒子について光学系計測装置による計測の精度を高めることができる。例えば、画像処理による粒子認識や追跡を伴うサイズ計測、さらには顕微ラマンによる材質同定などについて、より正確に計測することができる。
また、本実施例では、図2に示すように、前記粒子2次元音響収束装置を備える共に、長方形流路10の下流側流路において、一方側の分岐流路41、他方側の分岐流路42、及び前記粒子2次元音響収束装置によって長方形流路10の中央部に収束された粒子を流すように設けられた中央の分岐流路43の3つの流路に分岐されるように形成された3分岐流路40を備える。
なお、3分岐流路40が、前記長方形の長辺の長さ方向について3つに分けることで形成されていることで、扁平な長方形流路10の形態を適切に利用して、3つの流路(41、42、43)に、適切に区画・分岐し易いメリットがある。
この実施例の3分岐流路40によれば、例えば、図2に示すように、左の分岐流路(一方側の分岐流路41)、中央の分岐流路43、及び右の分岐流路(他方側の分岐流路42)における流量が、1.1:1:1.1となるように設定されている。これによれば、この1段の3分岐流路40によって、微粒子(MP)の液中濃度を、3.2倍に濃縮することができる。これを、図2に示すように、4段直列に配されて濃縮が繰り返されることで、約100倍に濃縮できることになる。
ここで、図3に基づいて、「Concentration factor」の求め方について説明する。図3は、本発明にかかる「Sample output flow rate(アウトプット流量)」と、「Concentration factor」と、の関係の一例を示すグラフである。なお、濃縮率=アウトプット流量/インプット流量、「Concentration factor」=回収率×濃縮率、の関係になっている。
この例では、インプット流量が300μL/minであり、1次元音響集束の516.2kHzのみの超音波を照射した場合と、2次元音響集束の516.2kHz及び1051kHzの2つの超音波を照射した場合について、1次元音響集束では濃縮率10倍(アウトプット流量が30μL/min)までが限界であり、2次元音響集束では濃縮率30倍(アウトプット流量が10μL/min)までが実用可能範囲であることが示された。なお、2次元音響集束において、濃縮率が30倍(300μL/min/10μL/min)のとき、回収率は90%であり、「Concentration factor」は、27と計算される。
この例では、インプット流量が300μL/minであり、1次元音響集束の516.2kHzのみの超音波を照射した場合と、2次元音響集束の516.2kHz及び1051kHzの2つの超音波を照射した場合について、1次元音響集束では濃縮率10倍(アウトプット流量が30μL/min)までが限界であり、2次元音響集束では濃縮率30倍(アウトプット流量が10μL/min)までが実用可能範囲であることが示された。なお、2次元音響集束において、濃縮率が30倍(300μL/min/10μL/min)のとき、回収率は90%であり、「Concentration factor」は、27と計算される。
また、図2に示すように、複数の前記粒子2次元音響収束装置を用いた音響濃縮装置が、前記粒子を含む液体の流れについて直列に接続されて構成されていることで、濃縮率を累乗的に高めることができる。
また、図4に示すように、複数の前記粒子2次元音響収束装置を用いた音響濃縮装置が、前記粒子を含む液体の流れについて並列に接続されて構成されていることで、処理流量に高めることができる。
次に、2つの異なる周波数で励起した単一トランスデューサ(圧電振動子)による長方形マイクロチャネル(微小流路)内での微粒子二次元音響収束に関する具体的な研究成果(実施例)について、以下に詳細に説明する。
(概要)
2次元収束は粒子濃縮装置の効率を飛躍的に向上させることができるが、2次元収束システムの複雑さのため、広く使用されていない。従来の2次元収束装置では、異なる周波数で動作する2つの独立した振動系が必要であった。これに対し、提案方式では、圧電振動子(PZT)を2つの周波数で同時に加振するだけで、2次元収束を行うことができる。提案方式では、1つの振動系でPZTを2つの周波数で同時に加振し、あらかじめ合成した信号を高周波電力増幅器に入力するだけで、2次元収束が可能となる。この方法は、従来のほとんどの音響システムに容易に適用することができ、その効率を向上させることができる。
2次元収束は粒子濃縮装置の効率を飛躍的に向上させることができるが、2次元収束システムの複雑さのため、広く使用されていない。従来の2次元収束装置では、異なる周波数で動作する2つの独立した振動系が必要であった。これに対し、提案方式では、圧電振動子(PZT)を2つの周波数で同時に加振するだけで、2次元収束を行うことができる。提案方式では、1つの振動系でPZTを2つの周波数で同時に加振し、あらかじめ合成した信号を高周波電力増幅器に入力するだけで、2次元収束が可能となる。この方法は、従来のほとんどの音響システムに容易に適用することができ、その効率を向上させることができる。
本実施例では、2つの周波数で励起された単一の圧電振動子(PZT)を用いて、長方形マイクロチャネル(流路)内に水平および垂直収束を行う2次元(2D)収束方式を提案する。この提案手法では、異なる周波数の信号を適切な比率で合成することにより、1つのPZTを励起する。この提案方式によれば、1次元収束とほぼ同じシステムで実現できるため、低コストで簡単に2次元収束を実現することができる。
従来の長方形マイクロチャネルでの2次元収束は、2種類のPZTをそれぞれの共振周波数で別々に励起するため、複雑なシステムが必要であった。本実験では、共振周波数での水平収束と非共振周波数での垂直収束の振幅比を調整することで、単一のPZTによる2次元収束を実現した。また、数値シミュレーションにより、2つの異なる周波数の励起を実験と同じ比率で重ね合わせることにより、2次元収束が可能であることが示された。
音響、電気、磁気、光学、慣性などの力を用いて微小粒子を連続的に分離する様々な技術が開発されている1)。その中でも、投入エネルギーを増やすことで高効率を実現できる音響法2)は、バイオ分野3),4)バイオメディカル分野5),6),7)化学分野8)環境分野で広く応用されている9),10)。音響法は、細胞やプラスチック粒子などの音響コントラスト因子が正の微粒子を音響定在波の節に移動させる音響放射力(ARF)に基づく収束による微粒子の濃縮を主に利用している11)。
従来の音響法による微粒子濃縮装置では、一次元(1D)定在波による水平収束が採用されている12)。このシステムは、マイクロチャンネル内に横方向の半波長定在波を発生させ、垂直方向の中心線上に節を形成し、そこに微粒子を収束させるものである。三叉路の分岐部の流量と分岐比を調整することにより、収束した微粒子は中央の分岐部にのみ流れ込み、そこから濃縮微粒子を回収することができる。理想的には、マイクロチャネルの幅と微粒子の収束幅の比に依存するはずであり、濃縮倍率を50以上に設定できるが13)、実用的な濃縮倍率は一般に3~109),14),15)に制限されている。この限界は、主に分岐部での音響収束が不安定になるためであり、分岐部の形状が直線チャネルから3分岐に変化することによる音響圧力場の乱れが原因である16)。特に、この不安定性は、圧力駆動流の放物線状プロファイルに従って、分岐部の上下の壁をゆっくりと流れる微小粒子に影響を与える。この不安定性の影響を抑制するために、中心部の単一スポットに2次元収束(水平・垂直同時収束)することが報告されている。この2次元収束により濃縮倍率の限界が改善され、直径5μmのポリスチレン粒子に対して67倍の濃縮が達成された13)。
2次元収束を実現する最も簡単な方法は、正方形のチャネルを用いることである。これにより、水平と垂直の共振周波数が一致し、追加の装置や装置の設計変更なしに2次元収束が達成される17),18),19)。また、円形チャネルでの2次元集光も報告されている。長方形チャネルでの2次元収束がより一般的であるが、異なる周波数で2つの振動系が必要となる13),21),22)。1つの周波数は水平収束用で、波長の半分がマイクロチャネル幅に相当するように選択される。もう1つは垂直収束用の周波数で、波長の半分がマイクロチャネルの深さに相当する。この2つの振動系は、圧電振動子(PZT)、信号発生器、高周波電力増幅器がそれぞれ2つずつ必要で、システム全体が複雑になり、1次元収束用の振動系1つに比べ、コストが2倍近くになる。さらに、幅と深さに対応した共振周波数の異なる2つのPZTをマイクロ流体デバイスに取り付ける必要があり、マイクロ流体デバイスの設計に制約が生じる場合があるほか、音圧音場に影響を与える可能性がある。
この研究では、水平収束と垂直収束の2つの周波数で励起される単一のPZTを用いた長方形チャネルでの微粒子の2次元収束について報告する。具体的には、水平収束はPZTの共振周波数で効率的に行われ、非共振周波数での非効率的な垂直収束はPZTへの入力電力を増加させることで補われる。これらの信号は、まず適切な比率で合成され、増幅されてPZTを励起する。したがって、2次元収束は1次元収束と同じ振動系で実現され、2つの励振信号が必要なる点が異なるだけである。まず、水平収束と垂直収束をそれぞれの周波数でPZTを加振することにより確認する。次に、2つの周波数で同時にPZTを加振することにより、2次元収束を実証する。最後に、2次元収束のメカニズムを解明するために、実験装置の数値シミュレーションを行った。
図5aに音響収束の実験装置を示す。マイクロ流体チップ(70×20×2.1mm3)は、厚さ0.7mmのホウケイ酸ガラス板(テンパックスフロート、ショット社製)を3枚熱接着することにより作製した。長方形のマイクロチャネル(幅1.42mm、深さ0.7mm)は、中央の板に三叉状の貫通溝を機械加工して得た(図5b)。厚みモードの共振周波数が500kHzである40×34.5×4.2mm3のPZT(C‐213、富士セラミックス株式会社)をエポキシ系接着剤でマイクロ流体チップに接着した。位置決めピンはマイクロ流体チップとマイクロ流体コネクタを正確に位置決めするものである。2チャンネル出力付き信号発生器で発生させた必要な周波数の正弦波を高周波電力増幅器(HSA4011,NF社製)で増幅し,PZTを作動させた。2次元収束は、信号発生器で発生させた異なる周波数の信号を増幅器で加算増幅した。緑色蛍光ポリエチレン微粒子(直径50μm、密度1.025gmL-1、Cospheric社製)をTween20を0.2wt%添加した蒸留水に懸濁させ、微粒子懸濁液(104個mL-1)を調製した。最後に、マイクロチャネルの領域が蛍光イメージングで識別できるように、ナイルレッド溶液を1ppm添加した。マイクロ流体チップは、微粒子が重力によって沈降するのを防ぐために垂直に置かれた。懸濁液はシリンジポンプですべての流出口から吸引してマイクロ流体チップに導入した(流速、300μLmin-1)。マクロ共焦点顕微鏡(AZ‐C2+, Nikon)を用いて、緑色および赤色蛍光イメージングによりマイクロチャネル内の微粒子の整列状態を観察した。
水平および垂直方向の励起周波数は、マイクロチャネルの形状に依存する。水平方向に節が1つの定在波を発生させるためには、波長の半分がマイクロチャネル幅に近いことが必要である。1480m/s(室温での水の音速)を用いることで、加振周波数は521kHz程度になると予想された。同様に、垂直方向の加振周波数も1060kHz程度になるはずである。完全にセットアップされたPZTのマイクロチャンネルに蒸留水を流し、インピーダンスアナライザー(IM3570、日置製作所)でインピーダンスを測定し、共振特性を評価した。図6に示すように、500kHz付近にいくつかのアドミタンスピークが見られ、このとき位相はゼロに近づく。このピークが水平方向の収束に該当するとすれば、低振幅で効率よく収束が行われることになる。一方、800kHz以上のアドミタンスピークは見られず、位相も-85°とほぼ一定であることから、垂直方向の収束は効率が悪く、500kHz付近のアドミタンスピークでの収束よりも大きな電力投入が必要であると考えられる。
次に、両方向の1次元収束をそれぞれ行い、共焦点顕微鏡で断面像を構築した。三叉路の手前で微粒子の並び方を観察し、500kHzと800kHzを中心に励起周波数を探した。その結果、水平収束用と垂直収束用の励起周波数はそれぞれ515kHzと1051kHzと決定し、本研究中は固定した。水平方向の収束では、PZTを5Vまたは10Vの振幅で加振した。図7左端の画像に示すように、最も低い振幅である5V(中段画像)でも、微粒子は中央の垂直線上に整列していることが確認された。垂直方向の収束には、5,10,15,20,25,30Vの電圧を印加した。インピーダンス測定から予想されるように、垂直方向の収束は水平方向の収束よりも高い振幅を必要とした。10Vの垂直収束では、5Vの水平収束ほど狭い領域に微粒子を配列させることができなかった。そこで、30Vまでの振幅で垂直方向のフォーカシングを検討した。また、高い振幅での垂直方向の収束では、微粒子が一列に並ばず、2つのスポットに収束していた。これは、垂直方向の収束を行う周波数の振動では、水平方向の1つの音圧の節の線だけでなく、垂直方向の2つの音圧の節の線が形成される可能性があるためであると考えられる。また、使用した長方形チャネルのアスペクト比(幅/奥行き)がほぼ2であることから、水平収束の第2高調波としても機能し、そのために2つの節線に由来する2スポット収束が発生したのだろう。
そして、1つのPZTを2つの励起周波数で同時に励起することで、提案した2次元収束を実験的に確認することにした。2種類の異なる周波数の信号を加算し、増幅器で増幅し、PZTに印加した。様々な振幅の組み合わせによる2次元収束の断面画像を図7に示す。実験では、垂直収束を20、25、30V、水平収束を10Vの条件で行うと、2次元収束が明確に得られた。垂直収束の振幅が15V以下では、水平収束が優位となり、垂直収束が微粒子に与える影響は少なかった。一方、水平集光に比べ垂直集光が強すぎると、25V、30Vの垂直集光と5Vの水平集光で得られた画像に見られるように、微粒子が2つのスポットに分割されてしまうことがわかった。この結果は、1つのPZTによる長方形マイクロチャネルでの2次元収束が可能であり、水平収束と垂直収束による力のバランスを調整する必要があることを示している。
2つの異なる周波数での加振による二次元収束のメカニズムを調べるため、COMSOL Multiphysics(ver.5.6,COMSOL Inc.)を用いた周波数領域での数値シミュレーションを行った。計算機リソースの制約から、断面2次元モデルを使用した(図8a)。モデルは、流体、マイクロ流体チップであるガラス、接着剤であるエポキシ、PZTの4つのドメインで構成されている。PZTの中心は、実験と同様にマイクロ流体チップの中心から1.25mmずらして配置した。流体ドメインでは,“Pressure Acoustics Module”を用いてHelmholtz方程式を解き,粘性境界層を無視した.本研究で使用した微粒子は音響流体力を無視できる大きさであるため、ARFのみを考慮した。ガラス、エポキシ、PZTの全ての固体ドメインにおいて、「Solid Mechanics Module」を用いてCauchy運動方程式を解き、「Electrostatics Module」との結合によりPZTドメインの圧電性を応力‐電荷形態として考慮した。また、エポキシ接着剤層は「Thin Elastic Layer」として表現し、その厚さはマイクロメーターで測定した。流体とガラスの境界条件は、“Acoustic‐Structure Boundary”を設定することで定義した。ダンピングを含む材料特性のパラメータは文献から取得した23),24)。実験と同様に、PZTを励起する振幅は、上下の境界間で適用した。水平収束と垂直収束の振幅はそれぞれ10Vと30Vであった。
水平収束と垂直収束の励振周波数は、次式で計算される音響エネルギー密度Eacを参照して求めた。
ここで、〈.〉は時間平均、ρfは流体密度、cfは流体中の音速、pは音圧、vは音速を表す。図8bは、流体領域におけるEacの平均値を両周波数付近でプロットしたものである。515kHz付近では、共振周波数が実験結果よりも若干低くシフトしており、499kHzにかなり大きなピークが見られることから、水平収束に採用した。垂直収束の1000kHz以上の領域では、1020kHzに大きなピークがあり、いくつかの小さなピークも見られた。しかし、この大きなピークでは、水平圧力の節線はなく、水平周波数の2次高調波周波数に対応する垂直の音圧の節の線が2つできていた。そこで、垂直収束のための周波数をより高い領域で探索し、音圧とARFの分布から1083kHzを垂直収束のために選択した。
各加振周波数における流体領域での音圧とARFの分布を図8cに示す。音響圧力場から生じるポリエチレン粒子に作用するARFのFは、式(2)24)を用いて計算した。
ここで、f0=1-ρfcf2/ρpcp
2は粒子のモノポール散乱係数、f1=2(ρp-ρf)/(2ρp+ρf)は粒子のダイポール散乱係数である。Vは粒子の体積、ρfは粒子の密度、cpは粒子の音速である。水平収束のシミュレーションでは、中心にほぼ垂直に圧力節線が形成された。ARFは水平で、どこでも垂直な中心線を指していた。ARFの最大値は94pNであった。垂直収束のシミュレーションでは、圧力の節線は水平に形成されたが、全体としては湾曲していた。この挙動により、ARFの分布は部分的に弱く、特に中心より下の中央領域と上壁付近で顕著であった。印加振幅が水平収束の3倍にもかかわらず、垂直収束の最大ARFは46pNであり、水平収束の約半分であった。
2次元収束を再現するために、2つの周波数で励起されたARF分布を重ね合わせの原理に従って推定した。すなわち、水平収束と垂直収束について別々に計算したARF分布を合計した(図8d)。予想通り、ARFはほぼすべての場所でマイクロチャネルの中心を指しており、これは微粒子が基本的に中心部のスポットに二次元的に収束していることを意味している。ここで、天壁の中心に近い領域のARFは、水平方向には中心を向いているが、垂直方向には頂上を向いていた。そして,この領域の微粒子は最終的に天壁の中心部に付着した。
2次元収束の確認は,COMSOL Multiphysicsの「Particle Tracing Module」を用いた粒子追跡シミュレーションによって行った。最初に,14×7個の粒子を0.1mm間隔でグリッドポイント上に速度ゼロで配置した.各粒子について、ARFと慣性を伴う抗力をニュートン形式で解いた。図8eと動画S1に10秒間の粒子位置と軌跡を示す。全体的に、微小粒子は最初水平方向に移動し、その後中心に向かって垂直方向に移動した。この微小粒子の移動は、水平方向の力が支配的であることで説明できる。最初の5秒間は、微小粒子は垂直方向の中心線に収束し、その後、ほとんどの微小粒子は中心部のスポットに収束した。図8dから予測されるように、上壁中央付近の微小粒子は中央で収束せず、上壁へ向かった。壁面に付着した微粒子は6個であり、全微粒子の6.1%であった。ポアズイユ流の放物線状の速度分布を考慮すると、シミュレーションで壁に付着した微小粒子は無視できると思われる。実際、上部の壁には微小粒子が付着していないことが確認された。
2次元収束の実験では、ほぼ全ての微粒子が中央の出口から回収された。この実験条件下での平均流速は5mm/sであった。Hagen‐Poiseuilleの法則を仮定すると、マイクロチャネルの中心線で最大流速10mm/sが得られた。入口で中央に導入された微粒子は,3分岐に3.5秒で到達する。3秒でほぼすべての微粒子が収束することから,3つの流出口に均等に分流させると,中央のマイクロチャネルから微粒子が回収されると考えられる.このシミュレーションの結果は実験結果と一致している。
本研究では、1枚のPZTを用いた長方形マイクロチャネルにおける2次元収束を実証した。PZTを2つの周波数で励起し、微小粒子をマイクロチャネル中央の1つのスポットに収束させることができた。従来の2次元収束では、PZT、信号発生器、高周波電力増幅器など2つの振動系が必要であるが、提案手法では、2つの出力チャンネルを持つ信号発生器を含む1つの振動系で2次元収束を実現することができた。また、PZT1枚というシンプルな構成により、デバイス設計の自由度を向上させることができる。また、数値シミュレーションにより、2つの異なる周波数の加振を重ね合わせることで2次元収束が可能であることを示した。本手法は、従来の2つの振動系を用いた2次元収束よりも高い濃縮倍率で安定した粒子収束を行うために、広く応用できるものと期待される。
(参考文献)
1)A. Lenshof and T. Laurell, Chem Soc Rev 39, 1203 (2010).
2)P. Sajeesh and A.K. Sen, Microfluid Nanofluid 17, 1 (2014).
3)H. Boehm, L.G. Briarty, K.C. Lowe, J.B. Power, E. Benes, and M.R. Davey, Biotech Bioeng 82, 74 (2003).
4)B. Hammarstroem, M. Vassalli, and P. Glynne-Jones, J Appl Phycol 32, 339 (2020).
5)F. Trampler, S.A. Sonderhoff, P.W.S. Pui, D.G. Kilburn, and J.M. Piret, Nat Biotechnol 12, 281 (1994).
6)F. Petersson, A. Nilsson, C. Holm, H. Joensson, and T. Laurell, Analyst 129, 938 (2004).
7)P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, and T. Laurell, Anal Chem 84, 7954 (2012).
8)I. Leibacher, P. Reichert, and J. Dual, Lab Chip 15, 2896 (2015).
9)Y. Akiyama, T. Egawa, K. Koyano, and H. Moriwaki, Sens Actuators B: Chem 127328 (2019).
10)L.N. Perera and M.E. Piyasena, Sep Purif Technol 288, 120649 (2022).
11)H. Bruus, Lab Chip 12, 1014 (2012).
12)T. Laurell, F. Petersson, and A. Nilsson, Chem. Soc. Rev. 36, 492 (2007).
13)M. Nordin and T. Laurell, Lab Chip 12, 4610 (2012).
14)A. Nilsson, F. Petersson, H. Joensson, and T. Laurell, Lab Chip 4, 131 (2004).
15)O. Jakobsson, S.S. Oh, M. Antfolk, M. Eisenstein, T. Laurell, and H.T. Soh, Anal Chem 87, 8497 (2015).
16)P. Augustsson, J. Persson, S. Ekstrom, M. Ohlin, and T. Laurell, Lab Chip 9, 810 (2009).
17)M. Antfolk, P.B. Muller, P. Augustsson, H. Bruus, and T. Laurell, Lab Chip 14, 2791 (2014).
18)C. Perfetti and C.S. Iorio, Acoust Sci Technol 37, 221 (2016).
19)J. Lei, F. Cheng, K. Li, and Z. Guo, Appl Phys Lett 116, 033104 (2020).
20)G. Goddard and G. Kaduchak, J Acoust Soc Am 117, 8 (2005).
21)O. Jakobsson, C. Grenvall, M. Nordin, M. Evander, and T. Laurell, Lab Chip 14, 1943 (2014).
22)C. Grenvall, C. Antfolk, C.Z. Bisgaard, and T. Laurell, Lab Chip 14, 4629 (2014).
23)J.S. Bach and H. Bruus, Phys Rev Lett 124, 214501 (2020).).
24)A. Tahmasebipour, L. Friedrich, M. Begley, H. Bruus, and C. Meinhart, J Acoust Soc Am 148, 359 (2020).
1)A. Lenshof and T. Laurell, Chem Soc Rev 39, 1203 (2010).
2)P. Sajeesh and A.K. Sen, Microfluid Nanofluid 17, 1 (2014).
3)H. Boehm, L.G. Briarty, K.C. Lowe, J.B. Power, E. Benes, and M.R. Davey, Biotech Bioeng 82, 74 (2003).
4)B. Hammarstroem, M. Vassalli, and P. Glynne-Jones, J Appl Phycol 32, 339 (2020).
5)F. Trampler, S.A. Sonderhoff, P.W.S. Pui, D.G. Kilburn, and J.M. Piret, Nat Biotechnol 12, 281 (1994).
6)F. Petersson, A. Nilsson, C. Holm, H. Joensson, and T. Laurell, Analyst 129, 938 (2004).
7)P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, and T. Laurell, Anal Chem 84, 7954 (2012).
8)I. Leibacher, P. Reichert, and J. Dual, Lab Chip 15, 2896 (2015).
9)Y. Akiyama, T. Egawa, K. Koyano, and H. Moriwaki, Sens Actuators B: Chem 127328 (2019).
10)L.N. Perera and M.E. Piyasena, Sep Purif Technol 288, 120649 (2022).
11)H. Bruus, Lab Chip 12, 1014 (2012).
12)T. Laurell, F. Petersson, and A. Nilsson, Chem. Soc. Rev. 36, 492 (2007).
13)M. Nordin and T. Laurell, Lab Chip 12, 4610 (2012).
14)A. Nilsson, F. Petersson, H. Joensson, and T. Laurell, Lab Chip 4, 131 (2004).
15)O. Jakobsson, S.S. Oh, M. Antfolk, M. Eisenstein, T. Laurell, and H.T. Soh, Anal Chem 87, 8497 (2015).
16)P. Augustsson, J. Persson, S. Ekstrom, M. Ohlin, and T. Laurell, Lab Chip 9, 810 (2009).
17)M. Antfolk, P.B. Muller, P. Augustsson, H. Bruus, and T. Laurell, Lab Chip 14, 2791 (2014).
18)C. Perfetti and C.S. Iorio, Acoust Sci Technol 37, 221 (2016).
19)J. Lei, F. Cheng, K. Li, and Z. Guo, Appl Phys Lett 116, 033104 (2020).
20)G. Goddard and G. Kaduchak, J Acoust Soc Am 117, 8 (2005).
21)O. Jakobsson, C. Grenvall, M. Nordin, M. Evander, and T. Laurell, Lab Chip 14, 1943 (2014).
22)C. Grenvall, C. Antfolk, C.Z. Bisgaard, and T. Laurell, Lab Chip 14, 4629 (2014).
23)J.S. Bach and H. Bruus, Phys Rev Lett 124, 214501 (2020).).
24)A. Tahmasebipour, L. Friedrich, M. Begley, H. Bruus, and C. Meinhart, J Acoust Soc Am 148, 359 (2020).
以上、本発明につき好適な形態例を挙げて種々説明してきたが、本発明はこの形態例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのは勿論のことである。
a 長辺
b 短辺
S1 水平の半波長の定在波
S2 垂直の半波長の定在波
10 長方形流路
20 超音波発生装置
21 信号発生器
22 高周波電力増幅器
23 圧電振動子
30 光学系計測装置
40 3分岐流路
41 一方側の分岐流路
42 他方側の分岐流路
43 中央の分岐流路
b 短辺
S1 水平の半波長の定在波
S2 垂直の半波長の定在波
10 長方形流路
20 超音波発生装置
21 信号発生器
22 高周波電力増幅器
23 圧電振動子
30 光学系計測装置
40 3分岐流路
41 一方側の分岐流路
42 他方側の分岐流路
43 中央の分岐流路
Claims (9)
- 流路内を流れる液体に含まれる粒子を、超音波を用いて、前記流路の断面の中央部に収束させるように構成される粒子2次元音響収束装置であって、
前記流路の延長方向に直交して破断した状態の断面形状が実質的に長方形に形成された長方形流路と、
該長方形流路の長方形の長辺の長さと半波長分の長さが実質的に同等となるように発生される第1の超音波、及び前記長方形流路の長方形の短辺の長さと半波長分の長さが実質的に同等となるように発生される第2の超音波を、合成した状態で同時に前記長方形流路内へ照射する一つの超音波発生装置を備えることを特徴とする粒子2次元音響収束装置。 - 超音波発生装置が、前記第1の超音波及び前記第2の超音波を発生させる二つの異なる周波数の信号について、合成する割合や大きさを調整する信号調整手段を備えることを特徴とする請求項1記載の粒子2次元音響収束装置。
- 前記超音波発生装置が、二つの異なる周波数の信号を生成させる信号発生器と、該信号発生器による信号を受けて超音波振動を発生させる圧電振動子とを構成要素として備えることを特徴とする請求項2記載の粒子2次元音響収束装置。
- 前記流路の少なくとも前記第1の超音波及び前記第2の超音波が照射される前記長方形流路の部分が、前記液体が鉛直方向に流れるように立てた状態に設置されていることを特徴とする請求項3記載の粒子2次元音響収束装置。
- 被写界深度によって計測能力が影響される光学系計測装置が、前記長方形流路に臨む位置に配設されていることを特徴とする請求項1~4のいずれかに記載の粒子2次元音響収束装置。
- 請求項1~4のいずれかに記載の粒子2次元音響収束装置を備える共に、
前記長方形流路の下流側流路において、一方側の分岐流路、他方側の分岐流路、及び前記粒子2次元音響収束装置によって前記長方形流路の中央部に収束された粒子を流すように設けられた中央の分岐流路の3つの流路に分岐されるように形成された3分岐流路を備えることを特徴とする粒子2次元音響収束装置を用いた音響濃縮装置。 - 前記3分岐流路が、前記長方形の長辺の長さ方向について3つに分けることで形成されていることを特徴とする請求項6記載の粒子2次元音響収束装置を用いた音響濃縮装置
- 複数の前記粒子2次元音響収束装置を用いた音響濃縮装置が、前記粒子を含む液体の流れについて直列に接続されて構成されていることを特徴とする請求項6記載の粒子2次元音響収束装置を用いた音響濃縮装置。
- 複数の前記粒子2次元音響収束装置を用いた音響濃縮装置が、前記粒子を含む液体の流れについて並列に接続されて構成されていることを特徴とする請求項6記載の粒子2次元音響収束装置を用いた音響濃縮装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022087350 | 2022-05-30 | ||
JP2022-087350 | 2022-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023234130A1 true WO2023234130A1 (ja) | 2023-12-07 |
Family
ID=89024863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/019243 WO2023234130A1 (ja) | 2022-05-30 | 2023-05-24 | 粒子2次元音響収束装置及びそれを用いた音響濃縮装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023234130A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09122480A (ja) * | 1995-11-08 | 1997-05-13 | Hitachi Ltd | 超音波処理方法および装置 |
US20090029870A1 (en) * | 2007-04-02 | 2009-01-29 | Ward Michael D | Particle Analyzing Systems and Methods Using Acoustic Radiation Pressure |
JP2011508220A (ja) * | 2007-12-19 | 2011-03-10 | ロス アラモス ナショナル セキュリティー,エルエルシー | 音響サイトメータにおける粒子分析 |
JP2014528089A (ja) * | 2011-09-28 | 2014-10-23 | アコーソート アクチエボラグAcouSort AB | 細胞および/または粒子を分離するシステムおよび方法 |
JP2017515669A (ja) * | 2014-05-08 | 2017-06-15 | フローデザイン ソニックス, インコーポレイテッド | 圧電要素変換器アレイを伴う音響泳動デバイス |
JP2020502539A (ja) * | 2016-10-07 | 2020-01-23 | アコーソート アーベーAcousort Ab | 分散流体における光学的または電気的測定のための方法およびシステム |
-
2023
- 2023-05-24 WO PCT/JP2023/019243 patent/WO2023234130A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09122480A (ja) * | 1995-11-08 | 1997-05-13 | Hitachi Ltd | 超音波処理方法および装置 |
US20090029870A1 (en) * | 2007-04-02 | 2009-01-29 | Ward Michael D | Particle Analyzing Systems and Methods Using Acoustic Radiation Pressure |
JP2011508220A (ja) * | 2007-12-19 | 2011-03-10 | ロス アラモス ナショナル セキュリティー,エルエルシー | 音響サイトメータにおける粒子分析 |
JP2014528089A (ja) * | 2011-09-28 | 2014-10-23 | アコーソート アクチエボラグAcouSort AB | 細胞および/または粒子を分離するシステムおよび方法 |
JP2017515669A (ja) * | 2014-05-08 | 2017-06-15 | フローデザイン ソニックス, インコーポレイテッド | 圧電要素変換器アレイを伴う音響泳動デバイス |
JP2020502539A (ja) * | 2016-10-07 | 2020-01-23 | アコーソート アーベーAcousort Ab | 分散流体における光学的または電気的測定のための方法およびシステム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Goddard et al. | Ultrasonic particle concentration in a line-driven cylindrical tube | |
US10976234B2 (en) | System and method for acoustic focusing hardware and implementations | |
US10724029B2 (en) | Acoustophoretic separation technology using multi-dimensional standing waves | |
US9074979B2 (en) | Ultrasonic analyte concentration and application in flow cytometry | |
Oberti et al. | Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound | |
US8425749B1 (en) | Microfabricated particle focusing device | |
Wiklund et al. | Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip | |
EP2903715B1 (en) | Acoustophoretic separation technology using multi-dimensional standing waves | |
US8865003B2 (en) | Apparatus and method for separation of particles suspended in a liquid from the liquid in which they are suspended | |
US20190160463A1 (en) | Particle manipulation | |
Shields IV et al. | Fabrication and operation of acoustofluidic devices supporting bulk acoustic standing waves for sheathless focusing of particles | |
Qiu et al. | Enhancement of acoustic energy density in bulk-wave-acoustophoresis devices using side actuation | |
Gralinski et al. | Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study | |
Hill et al. | Ultrasonic particle manipulation | |
WO2023234130A1 (ja) | 粒子2次元音響収束装置及びそれを用いた音響濃縮装置 | |
Li et al. | High frequency acoustic on-chip integration for particle characterization and manipulation in microfluidics | |
Jonai et al. | Two-dimensional acoustic focusing of microparticles in a rectangular microchannel using a dual-frequency-excited single transducer | |
KR20110119259A (ko) | 초음파를 이용한 이종 미세입자 분리 장치 및 방법 | |
Fuchsluger et al. | Acoustofluidic Particle Trapping in a Structured Microchannel Using Lateral Transducer Modes | |
Golinka | Research and development of methods and tools for microparticles separation from biological environments | |
Majedy | A microfluidic ultrasonic sample preparation device for bead-based immunoassays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23815889 Country of ref document: EP Kind code of ref document: A1 |