[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023228609A1 - Lens device, imaging device, and lens drive method - Google Patents

Lens device, imaging device, and lens drive method Download PDF

Info

Publication number
WO2023228609A1
WO2023228609A1 PCT/JP2023/014726 JP2023014726W WO2023228609A1 WO 2023228609 A1 WO2023228609 A1 WO 2023228609A1 JP 2023014726 W JP2023014726 W JP 2023014726W WO 2023228609 A1 WO2023228609 A1 WO 2023228609A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
rotational position
optical lens
amount
operation ring
Prior art date
Application number
PCT/JP2023/014726
Other languages
French (fr)
Japanese (ja)
Inventor
正信 伊藤
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023228609A1 publication Critical patent/WO2023228609A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming

Definitions

  • the present technology relates to a lens device, an imaging device, and a lens driving method that include an operation ring such as a focus operation ring or a zoom operation ring.
  • optical elements such as lenses are arranged inside, and the optical elements are moved in the optical axis direction by rotating an operating ring provided on the outer circumference.
  • Some cameras are configured to allow focusing and zooming.
  • Examples of methods for performing focusing and zooming by rotating the operating ring include mechanical drive methods and electric drive methods.
  • the mechanical drive method is a method in which a cam ring that moves the optical element and an operating ring are mechanically connected, and a force corresponding to the rotation of the operating ring is mechanically transmitted to the cam ring to move the optical element. .
  • the amount and direction of rotation of the operating ring are electrically read by a predetermined sensor, the arithmetic circuit calculates the amount of drive of the optical element, and the drive circuit drives the actuator based on the calculated amount of drive.
  • This is a method (so-called by-wire method) in which the optical element is moved by using a wire.
  • the electric drive system is disclosed, for example, in Patent Document 1 below.
  • the electric drive method moves the optical element using an electric actuator, so unlike the mechanical drive method, the rotational position of the operating ring and the position of the optical element in the optical axis direction are not necessarily fixed.
  • the focus lens is movable within a movable range from the Near end to the Far end in the optical axis direction. If the focus operation ring, which is an operation ring corresponding to the focus ring, continues to be rotated, the focus lens will eventually reach either the Near end or the Far end.
  • preparations may be made by marking the rotational position of the focus operation ring that corresponds to the position of the subject to be focused on.
  • the correspondence between the rotational position of the focus operation ring and the position of the focus lens in the optical axis direction may deviate, so even if the focus operation ring is aligned with the marked rotation position, it will not always be as set. It does not necessarily mean that the subject will be in focus.
  • the present technology has been developed in view of these problems, and aims to prevent the correspondence between the rotational position of the operating ring and the position of the optical lens in the optical axis direction from being no longer maintained.
  • a lens device includes an operation ring that is rotatably operated in a direction around an axis, an optical lens that is movable between a first end and a second end in an optical axis direction, and an operation direction and amount of operation for the operation ring.
  • an arithmetic processing unit that determines the moving direction and amount of movement of the optical lens according to the operation ring, and the operating ring has a first rotational position corresponding to the first end of the optical lens, and A rotational position corresponding to the second end of the optical lens is defined as a second rotational position, and the arithmetic processing unit defines a corresponding range in which the rotational position of the operating ring is from the first rotational position to the second rotational position.
  • the amount of movement is determined so that the optical lens does not move when the distance is outside the range. As a result, even if the operating ring is turned excessively toward the Far side from the first rotation position, the optical lens remains positioned at the Far end. When the optical lens is rotated from a rotation position that is too far to the first rotation position to the Near side, the optical lens does not move in accordance with the rotation of the operating ring until it returns to the first rotation position. The same applies when the operating ring is turned excessively from the second rotational position to the Near side, and the optical lens is not moved until it returns to the second rotational position from the rotational position where the operation ring was turned too much towards the Near side. do not have.
  • FIG. 1 is a perspective view showing the appearance of an imaging device including a lens device of the present technology.
  • FIG. 2 is a schematic perspective view of the lens device taken along the line AA shown in FIG. 1 in a direction perpendicular to the optical axis.
  • FIG. 3 is an enlarged view of a portion indicated by a broken line in FIG. 2.
  • FIG. It is a schematic diagram of the detection pattern part in embodiment.
  • FIG. 3 is a schematic perspective view showing the detection unit seen from the operation ring side.
  • FIG. 3 is a diagram schematically showing the positional relationship between a detection section and a detection pattern section.
  • FIG. 3 is a diagram showing waveforms of each light reception signal with a phase difference of 90 degrees.
  • FIG. 1 is a perspective view showing the appearance of an imaging device including a lens device of the present technology.
  • FIG. 2 is a schematic perspective view of the lens device taken along the line AA shown in FIG. 1 in a direction perpendicular to the optical axis.
  • FIG. 2 is a block diagram showing an example of the internal configuration of a lens device and a main body.
  • FIG. 3 is a diagram for explaining the relationship between a focus lens movable range and a rotational position of a focus operation ring. This is a diagram for explaining the relationship between the focus lens movable range and the rotational position of the focus operation ring together with FIG. 9, and this diagram shows a state in which the focus lens is located at the end of the focus lens movable range. This is a diagram for explaining the relationship between the focus lens movable range and the rotational position of the focus operation ring together with FIG. 9, and this diagram is a diagram showing a state in which the relationship between the focus lens position and the rotational position of the focus operation ring is shifted. .
  • FIG. 2 is a schematic side view of a PI sensor fin and a PI sensor used as a mechanism for moving the focus lens to a reference position.
  • FIG. 2 is a schematic perspective view of a PI sensor fin and a PI sensor.
  • 3 is a flowchart showing the flow of processing executed by the initial setting processing section.
  • FIG. 3 is a functional block diagram of a lens movement amount calculation section.
  • 3 is a flowchart showing the flow of processing executed by a lens-side control unit to calculate a lens movement amount.
  • FIG. 7 is a block diagram showing an example of the internal configuration of a lens device and a main body according to a second embodiment. It is a figure which shows an example of the menu screen for switching a 1st mode and a 2nd mode. 7 is a flowchart of a process for notifying that the focus lens has reached a storage position.
  • an imaging device 1 in the first embodiment includes a main body 2 and a lens device 3 as an embodiment of the present technology.
  • the main body part 2 is provided with a peripheral part of an opening 2a opened on the front side as a main body side mount part 2m, and is connected to the lens side mount part 3m of the lens device 3 by, for example, a bayonet type. and the lens device 3 are electrically and physically connected.
  • the main body side mount part 2m and the lens side mount part 3m are provided with corresponding terminals, respectively.
  • the terminal include a terminal for supplying power (power supply terminal), a terminal for transmitting commands and data (communication terminal), a terminal for transmitting a synchronization signal (synchronization signal terminal), and the like.
  • the imaging device 1 is configured with a main body 2 and an interchangeable lens device 3, but the present technology is not limited to this. It is also possible to apply the present invention to a type in which a lens barrel having a structure similar to that of the present invention is incorporated, and to a collapsible type in which this lens barrel protrudes from or is housed in the main body of the device.
  • One end of the main body part 2 in the left and right direction is provided as a grip part 2b so that it can be easily held by the photographer.
  • the main body part 2 is made up of necessary parts arranged inside and outside the outer casing 4. Specifically, various operating units 5 are arranged on the front, top, and rear surfaces of the outer casing 4.
  • the operation unit 5 includes, for example, a power button, a shutter button, a zoom knob, a shooting mode dial, and the like.
  • the rear monitor 6 is configured with a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and is capable of displaying images. Examples of images displayed on the rear monitor 6 include live view images, images read from the recording medium 33, and GUI (Graphical User Interface) as various operation screens such as menu screens. be able to.
  • the back monitor 6 when the back monitor 6 has a touch panel function, the back monitor 6 also functions as the operation unit 5.
  • the rear end portion of the lens device 3 is provided as the aforementioned lens side mount portion 3m.
  • the lens device 3 includes a lens housing 7 and various optical elements 8 arranged inside the lens housing 7.
  • the optical element 8 for example, a front lens 8m, a focus lens Lf, a zoom lens Lz, an iris, a relay lens, etc. are provided.
  • the lens device 3 includes actuators corresponding to each of the movable optical elements 8.
  • a linear motor is provided as an actuator corresponding to the focus lens Lf.
  • the focus lens Lf is moved in the optical axis direction.
  • a plurality of rotatably supported annular operation rings 9 are provided on the outer periphery of the lens housing 7, one of which is a focus operation ring 9f corresponding to the focus lens Lf, and the other is a focus operation ring 9f that corresponds to the focus lens Lf.
  • the zoom operation ring 9z corresponds to the lens Lz.
  • the focus operation ring 9f can be rotated around the axis, and when rotated in the first direction R1, the focus lens Lf is moved to the Far side ("F" side in FIG. 1), and rotated in the first direction R1.
  • the focus lens Lf is rotated in the second direction R2, which is the opposite direction, the focus lens Lf is moved to the Near side (the "N" side in FIG. 1).
  • the first direction R1 is assumed to be clockwise when viewed from the photographer, and the second direction R2 is assumed to be counterclockwise when viewed from the photographer (see FIG. 1). Note that when the direction around the optical axis is expressed without distinguishing between the first direction R1 and the second direction R2, it is written as the direction around the axis R.
  • the zoom operation ring 9z can be rotated in the direction R around the axis, and when rotated in the first direction R1, the zoom lens Lz is moved to the TELE side ("T" side in FIG. 1), and rotated in the second direction R2. When the zoom lens Lz is rotated, the zoom lens Lz is moved to the WIDE side (the "W" side in FIG. 1).
  • the photographer can perform focusing by rotating the focus operation ring 9f. Further, it is possible to perform zooming by rotating the zoom operation ring 9z.
  • An operator 10 is provided on the outer periphery of the lens housing 7.
  • the operator 10 includes a shake correction operator for switching on/off of shake correction drive, a power zoom operator for performing motor-driven zooming, and the like.
  • a switching operator 10a is provided as the operator 10 for switching between a manual mode in which focusing is performed manually and an auto mode in which focusing is performed automatically. The switching operator 10a will be described later.
  • focus operation ring 9f and the zoom operation ring 9z are one form of the operator 10.
  • FIG. 2 is a perspective view showing the lens device 3 taken along the line AA in FIG. 1 along a plane perpendicular to the optical axis direction, and shows a cross section of the focus operation ring 9f.
  • the focus lens Lf is driven according to the rotational operation of the focus operation ring 9f using the electric drive method described above. That is, the focus lens Lf is driven in the optical axis direction by an actuator arranged inside the lens device 3.
  • FIG. 3 is an enlarged view of the broken line portion in FIG. 2.
  • a fixing member 11 having a substantially annular shape is arranged on the inner peripheral side of the focus operation ring 9f (see FIGS. 2 and 3).
  • the fixing member 11 has a fixed position inside the lens device 3, and the outer circumferential surface 11a faces the inner circumferential surface 12 of the focus operation ring 9f.
  • a substantially circular opening 13 is formed on the inner peripheral side of the fixing member 11 .
  • the inner peripheral surface 12 of the focus operation ring 9f is provided with a detection pattern section 16 in which reflective surfaces 14 and non-reflective surfaces 15 are alternately arranged over the entire circumference in the axial direction R (see FIGS. 2 and 2). (See Figure 3).
  • the focus operation ring 9f is made of a metal with high light reflectivity, such as aluminum, so that the inner circumferential surface 12 is a metal surface.
  • non-reflective carriers 17 made of a resin material with low light reflectance, such as black resin, are arranged at predetermined intervals along the axial direction R. ing. These non-reflective carriers 17 are formed into a film shape by, for example, printing.
  • a portion of the inner peripheral surface 12 of the focus operation ring 9f where the non-reflective carrier 17 is not arranged is formed as a reflective surface 14, and a surface facing inside of the non-reflective carrier 17 is formed as a non-reflective surface 15. It consists of being
  • the focus operation ring 9f does not need to be made of metal; it is sufficient that the inner circumferential surface 12 has a high light reflectance, for example, by applying metal plating or a light reflecting sheet to the inner circumferential surface 12.
  • the detection pattern section 16 moves in the direction R around the axis with respect to the fixed member 11 as the focus operation ring 9f is rotated.
  • the reflective surface 14 and the non-reflective surface 15 are formed at a constant pitch. That is, as shown in the schematic diagram of FIG. 4, in the detection pattern section 16, the width w14 of each reflective surface 14 in the axial direction R matches the width w15 of each non-reflective surface 15 in the axial direction R. There is.
  • the width w14 and the width w15 are, for example, 0.3 mm or less. Thereby, detection resolution sufficient for practical use can be obtained.
  • a detection section 18 is provided at a predetermined position on the outer peripheral surface 11a of the fixed member 11 (see FIG. 3).
  • the detection unit 18 includes, for example, a wiring board 19 which is a flexible board fixed to the outer peripheral surface 11a, a light emitting element 20 mounted outward on the wiring board 19, a board 21, and a board 21 provided on the board 21. It includes a first light receiving element 22, a second light receiving element 23, and a surrounding portion 24.
  • the light emitting element 20 is provided with a light emitting surface 20a from which light is emitted.
  • the first light receiving element 22 is provided with a light receiving surface 22a that receives light, and the second light receiving element 23 is similarly provided with a light receiving surface 23a.
  • the first light receiving element 22 and the second light receiving element 23 are arranged on the substrate 21 by, for example, a single semiconductor manufacturing process.
  • the enclosure portion 24 is formed as a portion that protrudes from the wiring board 19 in its thickness direction and surrounds the light emitting element 20 , the first light receiving element 22 , and the second light receiving element 23 .
  • the surrounding portion 24 prevents unintended light such as external light from being received by the first light receiving element 22 and the second light receiving element 23. Further, it is also possible to prevent foreign matter such as dust from adhering to the light emitting surface 20a and the light receiving surfaces 22a, 23a. Therefore, it is possible to improve the detection accuracy regarding the amount of rotation and the direction of rotation.
  • the light emitted from the light emitting surface 20a is reflected by the detection pattern section 16 and received by the light receiving surface 22a and the light receiving surface 23a (see FIG. 6). At this time, the reflectance of light is increased on the reflective surface 14 of the detection pattern section 16 and the reflectance of light is decreased on the non-reflective surface 15, so that the light is output from the first light receiving element 22 and the second light receiving element 23.
  • the received light signal is approximately a sine wave.
  • the phase difference between the first light receiving signal S1 outputted from the first light receiving element 22 and the second light receiving signal S2 outputted from the second light receiving element 23 allows the rotation direction of the focus operation ring 9f around the axis to be determined. This is approximately 90 degrees (see FIG. 7).
  • the light-receiving surface 22a of the first light-receiving element 22 and the light-receiving surface 23a of the second light-receiving element 23 are spaced apart from each other so that the phase difference between the waveforms of the output signals is approximately 90 degrees.
  • the rotation direction of the focus operation ring 9f around the axis can be determined by detecting which signal, the first light reception signal S1 or the second light reception signal S2, is relatively advanced by 90 degrees.
  • FIG. 8 shows the functional configuration of the imaging device 1.
  • the imaging device 1 includes the main body 2 and the lens device 3 attached to the main body 2.
  • the main body section 2 includes a main body side control section 25, a shutter 26, a shutter control section 27, an image sensor 28, and an ADC (Analog to Digital Converter). 29, a frame memory 30, an image signal processing section 31, a recording section 32, a recording medium 33, a main body side memory 34, a power supply control section 35, and a power supply section 36.
  • a main body side control section 25 a shutter 26 a shutter control section 27, an image sensor 28, and an ADC (Analog to Digital Converter).
  • the power supply control section 35 supplies power supplied from the power supply section 36 to each section of the main body section 2 including the main body side control section 25 . Further, the power supply control section 35 calculates the amount of power supply that can be supplied to the lens device 3 based on the operating state of the imaging device 1, and supplies power to the lens device 3 via the main body side mount section 2m.
  • the power supply unit 36 includes, for example, a secondary battery such as a NiCd battery, a NiMH battery, or a Li battery. Note that the power supply section 36 may be configured to be able to receive power supply from a commercial AC power source via an AC adapter or the like.
  • the main body side control unit 25 is configured with a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc.
  • the overall control of the imaging device 1 is performed by reading the program stored in the storage device into the RAM and executing it.
  • the main body memory 34 is composed of a nonvolatile memory such as an EEPROM (Electrically Erasable Programmable ROM), and can be used to store operating programs for the main body control unit 25 and various data.
  • EEPROM Electrically Erasable Programmable ROM
  • the main body-side control unit 25 causes the imaging device 28 to perform imaging processing based on the operation signal representing the photographer's operation supplied from the operation unit 5. Furthermore, a predetermined command is transmitted to the lens device 3 side via the main body side mount section 2m to drive the focus lens Lf, zoom lens Lz, etc.
  • the main body side control unit 25 can obtain, for example, information indicating the lens position of the focus lens Lf, information indicating the lens position of the zoom lens Lz, etc. from a lens position detection unit (not shown) in the lens device 3. .
  • the shutter 26 is arranged in front of the image sensor 28 (on the subject side) and opens and closes under the control of the shutter control section 27.
  • the shutter control section 27 detects the open/closed state of the shutter 26 and supplies information indicating the detection result to the main body control section 25.
  • the shutter control section 27 drives the shutter 26 into an open state or a closed state based on the control of the main body side control section 25.
  • the image sensor 28 is configured as an image sensor using, for example, a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and images a subject and generates and outputs captured image data.
  • a CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • an electronic shutter can be used, so the shutter 26 can be omitted.
  • the shutter control section 27 used for its control is also omitted.
  • the captured image data output from the image sensor 28 is converted into a digital signal by the ADC 29 and supplied to the frame memory 30.
  • the main body side control unit 25 may be configured to be able to calculate the defocus amount by outputting a phase difference signal from the image sensor 28 to the main body side control unit 25.
  • the image signal processing unit 31 performs predetermined image signal processing on the captured image input via the frame memory 30. Examples of the image signal processing here include demosaic processing, white balance (WB) adjustment, and gamma correction processing.
  • the image signal processing unit 31 performs image signal processing on the captured image as a RAW image input via the frame memory 30, converts it into image data in a predetermined file format, and stores the image data on a recording medium via the recording unit 32. 33 to record. Further, the image signal processing unit 31 converts the captured image subjected to the image signal processing into an image signal according to a predetermined display format, and supplies the signal to the rear monitor 6 to display the captured image.
  • the recording medium 33 is composed of a nonvolatile memory, and the recording unit 32 is configured to be able to write data to the recording medium 33 and read data recorded on the recording medium 33.
  • the recording medium 33 may be detachably attached to the main body section 2 .
  • the main body 2 includes a configuration for communicating with the lens device 3.
  • the lens device 3 includes the above-mentioned lens side mount section 3m, focus operation ring 9f, zoom operation ring 9z, switching operation element 10a, focus lens Lf as optical element 8, aperture Di, focus lens Lf, and detection section 18 (not shown).
  • the lens side control section 37, a lens side memory 38, a power supply control section 39, a focus lens driver 40, an aperture driver 41, a zoom lens driver 42, and a notification section 43 are provided.
  • the switching operator 10a is an operator for switching between a manual mode in which focusing is performed manually and an auto mode in which focusing is performed automatically. Further, as the manual mode, a first mode M1 and a second mode M2, which will be described later, are provided, and the switching operator 10a can switch between the auto mode, the first mode M1, and the second mode M2. .
  • the lens-side control unit 37 is configured to include, for example, a microcomputer having a CPU, ROM, RAM, etc., and the CPU reads a program stored in a predetermined storage device such as the ROM or lens-side memory 38 into the RAM and executes it. By doing so, the entire lens device 3 is controlled.
  • the lens-side control section 37 controls the zoom lens Lz based on an instruction from the main body section 2 supplied via a predetermined communication terminal of the lens-side mount section 3m or an operation received by the operator by the operation section 5. control the position of Specifically, the lens-side control unit 37 acquires the current position of the zoom lens Lz from a lens position detection unit constituted by a magnetic sensor (MR sensor), etc., and moves the zoom lens Lz to a predetermined position based on the acquired result. The moving direction and moving amount are determined, and the determined moving direction and moving amount are output to the zoom lens driver 42 along with a moving command. Based on the movement command supplied from the lens-side control unit 37, the zoom lens driver 42 moves the zoom lens Lz in the optical axis direction so as to follow the specified movement direction and movement amount.
  • MR sensor magnetic sensor
  • the lens position detection section has a configuration for detecting the states of the optical elements 8 included in the lens device 3, such as the positions of the zoom lens Lz and the focus lens Lf, and the aperture diameter of the diaphragm Di.
  • the lens position can be detected using, for example, a magnetic sensor, a photodiode array, a potentiometer, a reflective encoder, or the like.
  • the lens-side control unit 37 controls (the aperture diameter of) the diaphragm Di in response to instructions from the main body 2 supplied via a predetermined communication terminal of the lens-side mount unit 3m. Specifically, the lens side control section 37 acquires the aperture diameter of the aperture Di detected by the aperture detection sensor in the lens position detection section, and controls the aperture driver 41 to obtain the F value instructed by the main body section 2. A command is issued to drive the aperture Di. The aperture driver 41 drives the aperture Di to have the aperture diameter instructed by the lens-side control unit 37.
  • the lens-side control section 37 controls the position of the focus lens Lf based on instructions from the main body section 2 supplied via a predetermined communication terminal of the lens-side mount section 3m.
  • information on a target focus lens position is instructed from the main body 2 to the lens side control unit 37.
  • the lens-side control unit 37 acquires the current position of the focus lens Lf from the lens position detection unit, and based on the information on the acquired current position and the information on the target focus lens position instructed from the main body 2, adjusts the focus lens Lf.
  • the moving direction and moving amount for moving the lens to the target position are determined, and the determined moving direction and moving amount are output to the focus lens driver 40 along with a moving command.
  • the focus lens driver 40 moves the focus lens Lf in the optical axis direction so as to follow the specified movement direction and movement amount.
  • the focus lens Lf is configured as a "focus lens group” including one or more optical elements.
  • these optical elements are integrally displaced during focus adjustment.
  • this also applies to the zoom lens Lz. That is, the zoom lens Lz is configured as a "zoom lens group” that includes one or more optical elements, and when the zoom lens group includes multiple optical elements, these optical elements are integrated as a zoom adjustment. It becomes something that is displaced.
  • the zoom lens Lz and the focus lens Lf are each composed of one zoom lens group and one focus lens group, but it is also possible to configure each of them to include a plurality of zoom lens groups and a plurality of focus lens groups. be.
  • the focus lens driver 40 can be configured to include, for example, an ultrasonic motor, a DC motor, a linear actuator, a stepping motor, a piezo element (piezoelectric element), etc. as a lens drive source.
  • the lens-side memory 38 is composed of a non-volatile memory such as an EEPROM, and can be used to store operation programs for the lens-side control section 37 and various data.
  • the power supply control unit 39 detects the amount of power of the power supplied from the main body 2, and controls the power to each part in the lens device 3 (lens side control unit 37 and various drive units) based on the detected amount of power. Supply power by optimally distributing the amount.
  • the notification unit 43 is provided to notify the photographer that the focus lens Lf or zoom lens Lz has reached the end of its movable range.
  • the notification unit 43 may be configured as a light emitting body that provides notification by emitting light, a speaker that provides notification by sound, or a vibration element that provides notification by vibration.
  • the notification unit 43 may be configured to provide notification using an image using the rear monitor 6.
  • the notification section 43 includes a vibrator in each of the focus operation ring 9f and the zoom operation ring 9z, and notifies the photographer by vibrating the vibrator to appeal to the photographer's tactile sense.
  • the lens-side control unit 37 in this embodiment drives the zoom lens Lz and the focus lens Lf when the photographer operates the focus operation ring 9f and the zoom operation ring 9z as the operators 10.
  • the focus lens Lf will be taken as an example.
  • One is a method in which the amount and direction of movement of the focus lens Lf are determined according to the amount and direction of rotation of the focus operation ring 9f.
  • the other method is a method in which the amount and direction of movement of the focus lens Lf are determined according to the angular velocity and rotation direction of the rotation operation of the focus operation ring 9f.
  • the focus lens Lf is moved according to the amount and direction of rotation of the former focus operation ring 9f.
  • the focus lens Lf is movable in the optical axis direction, but the range of movement is mechanically or controlled.
  • the term “focus lens movable range Rf” is used without distinguishing between the two.
  • the ends of the focus lens movable range Rf are the aforementioned “Near end” and “Far end”, respectively.
  • the focus lens movable range Rf is a finite range
  • the range in which the focus operation ring 9f can be rotated is infinite (see FIG. 9). Therefore, if the focus operation ring 9f continues to be rotated in one direction, for example, in the first direction R1, the focus lens Lf will eventually reach the Far end of the focus lens movable range Rf (see FIG. 10).
  • the rotational position of the focus operation ring 9f at this time is defined as a first rotational position P1.
  • the rotational position of the focus operation ring 9f at this time is defined as a second rotational position P2.
  • One is a mode in which the focus lens Lf is moved while maintaining the correspondence between the Far end and the rotational position of the focus operation ring 9f, and the correspondence between the Near end and the rotational position of the focus operation ring 9f. . Specifically, until the focus operation ring 9f is rotated in the second direction R2 by the amount by which the focus operation ring 9f has been rotated too much from the Far end, that is, the discrepancy in the relationship between the rotational position of the focus operation ring 9f and the position of the focus lens Lf is resolved. The rotation operation of the focus operation ring 9f is ignored until the state shown in FIG. 10 is reached. This behavior is referred to as "first mode M1."
  • the focus lens Lf when the focus lens Lf is movable, the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf in the optical axis direction is maintained. Therefore, when the rotational position of the focus operation ring 9f is rotated to a predetermined rotational position, the position of the focus lens Lf is always the same. In other words, it is possible to roughly focus on the target subject just by adjusting the rotational position of the focus operation ring 9f by feeling, and the focusing operation can be performed intuitively.
  • the other is a mode in which the focus lens Lf is moved to the Near end side in a state where the correspondence between the rotational position of the Far end and the focus operation ring 9f and the correspondence between the rotational position of the Near end and the focus operation ring 9f are deviated. It is. Specifically, the point where the operating direction of the rotation operation of the focus operation ring 9f is changed, ie, the turning point, is set as a new first rotation position P1 corresponding to the Far end of the focus lens Lf (see FIG. 12). This behavior is referred to as "second mode M2." Note that in FIG. 12, the new second rotational position P2 is not illustrated.
  • the focus lens Lf can always be moved as long as the focus lens Lf is in a movable direction. Therefore, even if the focus lens Lf is turned too much as described above, it is possible to immediately move the focus lens Lf, and a quick focusing operation can be performed.
  • the lens side control section 37 includes an initial setting processing section F1, a notification processing section F2, a lens movement amount calculation section F3, and a switching processing section. Functions as F4 (see Figure 8).
  • the initial setting processing unit F1 performs a process of moving the focus lens Lf and the zoom lens Lz to their respective reference positions, for example, when the imaging device 1 is started up.
  • the focus lens Lf is provided with a PI sensor fin 44, and a PI sensor 45 is provided at a position corresponding to the PI sensor fin 44 inside the lens device 3 (see FIG. 13).
  • the PI sensor fin 44 is moved by the same amount in the same direction as the focus lens Lf moves.
  • the position of the PI sensor 45 inside the lens device 3 is fixed. That is, the distance between the PI sensor fin 44 and the PI sensor 45 increases or decreases as the focus lens Lf moves.
  • the PI sensor 45 is formed into a substantially U-shape with both ends bent in the same direction, and a light emitter 45a is provided at one of the ends, and a light receiving section 45b is provided at the other end. ing.
  • the light receiving section 45b receives the light emitted from the light emitter 45a and outputs a light reception signal. However, when the PI sensor fin 44 is inserted between both ends of the PI sensor 45, the light emitted from the light emitter 45a is blocked by the PI sensor fin 44 and cannot be received by the light receiving section 45b.
  • the initial setting processing unit F1 moves the focus lens Lf to the reference position based on the signal output from the PI sensor 45.
  • FIG. 15 shows the flow of processing executed by the lens side control unit 37 when the lens side control unit 37 functions as the initial setting processing unit F1.
  • step S101 the lens-side control unit 37 determines whether the output of the PI sensor 45 is "H: High”.
  • the output of the PI sensor 45 is "L: Low”, as shown in FIG. 14, the light emitted from the light emitter 45a of the PI sensor 45 is blocked by the PI sensor fin 44 and reaches the light receiving part 45b. There is no condition.
  • the lens-side control unit 37 moves the focus lens Lf to the Near side in step S102.
  • the amount of movement of the focus lens Lf at this time is the minimum amount of movement according to the movement resolution.
  • the PI sensor fin 44 is moved to the Near side until the light receiving section 45b is in a state where it can receive a predetermined amount of light or more.
  • step S101 If it is determined in step S101 that the output of the PI sensor 45 is "H: High", the lens-side control unit 37 moves the focus lens Lf to the Far side in step S103.
  • the amount of movement of the focus lens Lf at this time is also set to the minimum amount of movement according to the movement resolution.
  • step S104 the lens-side control unit 37 determines whether the output of the PI sensor 45 is "L". If the process in step S104 is executed after the process in step S102 has been executed several times, the output of the PI sensor 45 is normally determined to be "L” in the determination process in step S104.
  • the output of the PI sensor 45 is "H" from the beginning of the series of processes in FIG. 15, this is the case when the PI sensor fin 44 is located away from the PI sensor 45 on the Near side.
  • the output of the PI sensor 45 is determined to be "H” in the determination process of step S104, and the process of step S103, that is, the process of moving the focus lens Lf toward the Far side, is executed.
  • the PI sensor fin 44 approaches the PI sensor 45.
  • step S104 If it is determined in step S104 that the output of the PI sensor 45 is "L”, that is, if it is determined that the output of the PI sensor 45 once became “H” and then became “L” again, the lens side control unit 37 performs a process of setting the current position of the focus lens Lf as a reference position in step S105.
  • the focus lens Lf is controlled to be always positioned at a predetermined position when the imaging device 1 is started.
  • the series of processes shown in FIG. 15 is executed not only when the imaging device 1 is started, but also when the reset button is pressed, so that even when shooting is performed after the imaging device 1 is started, The imaging device 1 can be returned to the initial state as appropriate.
  • the notification processing unit F2 shown in FIG. 8 performs processing to notify the photographer when the focus lens Lf reaches the Near end or the Far end. Specifically, the tactile stimulus is transmitted to the photographer by sending a tactile signal to a vibrator serving as a notification unit 43 provided in the focus lens Lf.
  • the lens movement amount calculation section F3 calculates the amount of movement based on an instruction from the main body section 2 supplied via a predetermined communication terminal of the lens side mount section 3m, or based on the photographer's operation received by the operation section 5. , controls the position of the zoom lens Lz.
  • the lens movement amount calculation unit F3 calculates the movement direction and movement amount of the focus lens Lf according to the sine wave pulses of the first light reception signal S1 and the second light reception signal S2 generated in response to the operation of the focus operation ring 9f. Then, a drive instruction is output to the focus lens driver 40.
  • FIG. 16 shows the behavior of the lens movement amount calculation unit F3 when the focus lens Lf is driven in the first mode M1.
  • a sine wave pulse (first light reception signal S1 and second light reception signal S2) is output from the detection section 18 in response to the rotational operation of the focus operation ring 9f. be done.
  • the lens movement amount calculation unit F3 is configured to include five processing blocks B1, B2, B3, B4, and B5.
  • Processing block B1 calculates the amount of movement of the focus lens Lf based on the detected sine wave pulse. Specifically, this block calculates the amount of movement of the focus lens Lf by counting the number of output sine wave pulses. Furthermore, the processing block B1 specifies the moving direction of the focus lens Lf according to the phase difference between the first light reception signal S1 and the second light reception signal S2 described above.
  • Processing block B2 integrates the amount of movement of the focus lens Lf calculated from the amount of operation performed on the focus operation ring 9f after the imaging device 1 is started or after the imaging device 1 is reset, and adds the amount to the reference position to adjust the focus. This block calculates and holds the target position of the lens Lf.
  • the target position of the focus lens Lf calculated here does not take into account the focus lens movable range Rf, and is stored in the lens side memory 38 as a "pre-processing target position".
  • "Before processing” here means before performing the processing described below in consideration of the focus lens movable range Rf.
  • movement toward the Far side is defined as a movement on the plus side
  • movement toward the Near side is defined as movement on the minus side.
  • the first operation moves 3 pulses (for example, 3 ⁇ m) toward the Far side
  • the next operation moves 10 pulses (for example, 10 ⁇ m) toward the Near side.
  • the integrated value of the movement amount is a movement of "-7" pulses, that is, an operation of moving 7 pulses from the initial position to the Near side has been performed.
  • a position 43 ⁇ m from the Near end is calculated as the pre-processing target position.
  • Processing block B3 is a block that obtains the current position of the focus lens Lf that has been stored.
  • Processing block B4 is a block that calculates the amount of movement of the focus lens Lf by adding the value obtained by multiplying the current position of the focus lens Lf by minus 1 and the target position before processing.
  • processing block B2 the integrated value of the amount of movement of the focus operation ring 9f after starting or resetting the imaging device 1 is held, so that the focus lens Lf can be rotated by an amount that has been turned too much from the Near end or Far end. Until it returns, the target position calculated in processing block B2 will be located outside the focus lens movable range Rf. Therefore, the correspondence relationship between the rotational position of the focus operation ring 9f and the position of the focus lens Lf can be maintained.
  • the processing block B5 performs limit processing on the value added by the processing block B4, that is, the amount of movement of the focus lens Lf, and calculates the movement direction and amount taking into account the focus lens movable range Rf, and outputs it to the subsequent stage. It is a block. If used as is, the movement amount of the focus lens Lf calculated in processing block B4 may reach outside the focus lens movable range Rf. Processing block B5 can set the amount of movement in consideration of the focus lens movable range Rf by performing limit processing.
  • a signal indicating that fact is output.
  • the signal is notified from the lens side control section 37 to the main body side control section 25 as flag information or the like.
  • the processing block B6 is a block that generates and outputs a drive instruction for the focus lens driver 40 based on the moving direction and amount of movement of the focus lens Lf.
  • the behavior of the lens movement amount calculation unit F3 when driving the focus lens Lf in the second mode M2 is the same as in FIG. 16 without the processing of the processing block B2. That is, in the second mode M2, the pre-processing target position of the focus lens Lf is not calculated, and the operation amount for the focus operation ring 9f is added to the current position (processing block B4). Therefore, the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf is not maintained.
  • FIG. 17 shows the flow of processing executed by the lens side control unit 37 when the lens side control unit 37 functions as the lens movement amount calculation unit F3.
  • step S201 the lens movement amount calculation unit F3 performs a process of converting the sine wave pulse detected by the detection unit 18 into the movement amount of the focus lens Lf.
  • the lens movement amount calculation unit F3 calculates a pre-processing target position in step S202.
  • the pre-processing target position is a target position that does not take into account the focus lens movable range Rf.
  • step S203 the lens movement amount calculation unit F3 acquires the current position of the focus lens Lf.
  • step S204 the lens movement amount calculation unit F3 calculates the difference between the current position and the target position.
  • the lens movement amount calculation unit F3 performs limit processing in step S205.
  • the amount of movement is calculated in consideration of the focus lens movable range Rf, and a signal is output when the position of the focus lens Lf is located at the end of the focus lens movable range Rf.
  • step S206 the lens movement amount calculation unit F3 generates and outputs a drive instruction to the focus lens driver 40. As a result, a drive voltage is applied from the focus lens driver 40 to the drive unit that drives the focus lens Lf, and the focus lens Lf is moved.
  • the switching processing unit F4 performs switching between an auto mode in which focusing is performed automatically, and a first mode M1 and a second mode M2 in which focusing is performed manually, in response to an operation on the switching operator 10a.
  • the auto mode operations on the focus operation ring 9f are disabled.
  • the switching operator 10a includes a recess 46 provided on the outer peripheral surface of the lens housing 7 and formed in the shape of a long and narrow groove in the optical axis direction, and a knob 47 that is slidable in the recess 46 in the optical axis direction. We are prepared.
  • the knob portion 47 can maintain its positions in the recessed portion 46 at a position on the main body portion 2 side (first position), at a substantially central position (second position), and at a position on the subject side (third position). It is considered possible.
  • the switching operator 10a is held in a state in which the knob 47 is slid to the first position in the recess 46 when switching to the auto mode ("AF" in the figure), and when switching to the first mode M1 ("AF" in the figure).
  • AF auto mode
  • M1 first mode M1
  • MF2 second mode M2
  • the knob 47 is slid and held in the second position in the recess 46. It is held in a slid state in the third position in the recess 46.
  • the switching processing unit F4 switches the control method for the focus lens Lf between the auto mode, the first mode M1, and the second mode M2 based on a detection signal that detects the position of the knob 47 in the recess 46.
  • the imaging device 1A in the second embodiment has a function of notifying when the focus lens Lf is located at a predetermined position. Further, switching between the auto mode, the first mode M1, and the second mode M2 is performed via the menu screen.
  • the imaging device 1A includes a main body 2 and a lens device 3A (see FIG. 19).
  • a main body side control section 25 performs control for menu display. Through this menu display control, a mode selection screen G1 as shown in FIG. 20 is displayed on the rear monitor 6.
  • Option SL1 is for selecting the first mode M1.
  • the behavior of the focus lens Lf when the manual mode is selected is that the focus is maintained while the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf in the optical axis direction is maintained.
  • the lens Lf is driven.
  • Option SL2 is for selecting second mode M2.
  • the behavior of the focus lens Lf when the manual mode is selected is to drive the focus lens Lf as much as possible according to the rotational operation of the focus operation ring 9f. That is, the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf in the optical axis direction is not maintained.
  • buttons Btn1 and Btn2 are arranged on the mode selection screen G1.
  • the button operator Btn1 has the text "OK” superimposed on the button, and is an operator that is pressed when applying a selection operation to the options SL1 and SL2.
  • the button operator Btn2 has the text "Cancel" superimposed on the button, and is an option that is pressed to end the display of the mode selection screen G1 without applying the selection operation to the options SL1 and SL2. .
  • the lens device 3A includes, as the operators 10, a focus operation ring 9f, a zoom operation ring 9z, a switching operator 10a, and a memory operator 10b.
  • the memory operator 10b is provided on the outer peripheral surface of the lens housing 7 in the form of, for example, a button.
  • the lens-side control unit 37A has a function as a storage processing unit F5 that performs a process of storing the current position of the focus lens Lf when the storage operator 10b is operated.
  • the storage processing unit F65 stores the position of the focus lens Lf at the time when the storage operator 10b is operated, and also stores the state including the position of the zoom lens Lz and the positions of other optical elements 8 at the time. It may be configured as follows.
  • a memory operator 10b is used to store settings such as the position of the optical element 8 for focusing on a desired subject.
  • the notification processing unit F2 of the lens-side control unit 37 performs notification processing using a vibrator or the like when the focus lens Lf reaches the end of the focus lens movable range Rf.
  • the notification processing unit F2 also performs notification processing using a vibrator or the like as the notification unit 43 when the focus lens Lf reaches the storage position stored by the storage operator 10b.
  • the vibration pattern upon arrival may be different from the vibration pattern upon arrival at the storage position. This allows the photographer to appropriately grasp the position of the focus lens Lf, thereby improving convenience.
  • FIG. 21 shows an example of a process that the lens-side control unit 37 executes to realize the functions of the storage processing unit F5 and the notification processing unit F2. Note that FIG. 21 omits the process for notifying that the focus lens Lf has reached the end of the focus lens movable range Rf.
  • step S301 the lens-side control unit 37 determines whether or not an operation on the storage operator 10b has been detected. If it is determined that the operation has been detected, the lens-side control unit 37 executes a storage process to store the current position of the focus lens Lf in step S302.
  • step S302 After the processing in step S302, or if it is determined in step S301 that no operation has been detected, the lens-side control unit 37 determines in step S303 whether or not a focusing operation by the photographer has been detected.
  • step S304 if a rotational operation on the focus operation ring 9f is detected, it is determined that a focusing operation has been detected, and the lens-side control unit 37 proceeds to step S304.
  • step S304 the lens-side control unit 37 determines whether the position of the focus lens Lf matches the stored position.
  • the lens-side control unit 37 causes the notification unit 43 to perform notification processing in step S305.
  • step S305 After executing the process in step S305, or if it is determined in step S303 that no focusing operation has been detected, or if it is determined in step S304 that the focus lens Lf and the stored position do not match, the lens side
  • the control unit 37 After executing the process in step S305, or if it is determined in step S303 that no focusing operation has been detected, or if it is determined in step S304 that the focus lens Lf and the stored position do not match, the lens side
  • the control unit 37 After executing the process in step S305, or if it is determined in step S303 that no focusing operation has been detected, or if it is determined in step S304 that the focus lens Lf and the stored position do not match, the lens side
  • the control unit 37 After executing the process in step S305, or if it is determined in step S303 that no focusing operation has been detected, or if it is determined in step S304 that the focus lens Lf and the stored position do not match, the lens side
  • the control unit 37 After executing
  • a vibrator serving as the notification section 43 may be provided in the main body section 2 in addition to the one described above.
  • a vibrator may be provided on the grip section 2b (see FIG. 1) of the main body section 2 to provide tactile stimulation to the photographer's right palm.
  • the storage operator 10b described above may be provided in the main body section 2.
  • the lens device 3 attached to the main body 2 is easier to weigh than the main body 2. Therefore, by providing the vibrator as the notification section 43 and the memory operator 10b in the main body section 2, the degree of freedom in arranging components inside the lens device 3 can be improved, and the enlargement of the lens device 3 can be prevented. This makes it possible to suppress weight increase.
  • the Near end and Far end of the focus lens Lf described above may be set in a controlled manner not at the mechanical end but at a position with some margin from the mechanical end. This can prevent the Near end and Far end from differing from device to device due to manufacturing errors. That is, individual differences due to manufacturing errors of the imaging device 1 can be absorbed.
  • the processing block B3 shown in FIG. 16 described above has been described as a block for calculating the pre-processing target value, other examples are also possible.
  • the processing block B5 outputs a Near end signal that becomes "H” when the focus lens Lf reaches the Near end, and outputs a Far end signal that becomes "H” when the focus lens Lf reaches the Far end. Output.
  • processing block B2 performs a process of holding the operation amount of the excessive rotation operation and canceling it with the operation amount in the opposite direction. For example, when the Near end signal is set to "H", processing block B2 sets the operation amount to the Near side as a positive value and the operation amount to the Far side as a negative value. ) is integrated and stored in the lens side memory 38. For example, when the Near end signal is set to "H” and an operation is performed to move it 10 ⁇ m toward the Near side, "10" is stored in the lens side memory 38. After that, when an operation is performed to move it 15 ⁇ m toward the Far side, it is canceled out with the 10 ⁇ m stored in the lens side memory 38, and the value that cannot be canceled out, 5 ⁇ m, is output to the processing block B4.
  • processing block B4 5 ⁇ m after cancellation in processing block B2 is added to the current position of focus lens Lf obtained in processing block B3, and the result is output to processing block B5 as a target position.
  • the zoom operation ring 9z, the zoom lens Lz, and the zoom lens driver 42 may also have the same configuration. Good too. In that case, by replacing the above-mentioned "Near” with “TELE” and “Far” with “WIDE", the zooming operation can be performed while maintaining the rotational position of the zoom operation ring 9z and the positional relationship of the zoom lens Lz. It can be performed.
  • the lens device 3 (3A) includes an operation ring (focus operation ring 9f and zoom operation ring 9z) that is rotatably operated in the direction R around the axis, and a first end ( An optical lens (focus lens Lf or zoom lens Lz) that can be moved between a second end (for example, a Far end or a WIDE end) and a second end (for example, a Near end or a TELE end), and an optical It is equipped with an arithmetic processing unit (lens-side control unit 37, 37A) that determines the direction and amount of movement of the lens, and the operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position P1.
  • an arithmetic processing unit las-side control unit 37, 37A
  • the rotational position corresponding to the second end of the optical lens is defined as a second rotational position P2. Further, the arithmetic processing unit determines the amount of movement so that the optical lens does not move when the rotational position of the operating ring is outside the corresponding range from the first rotational position P1 to the second rotational position P2. This allows the optical lens to remain at the Far end (WIDE end in the case of the zoom lens Lz) even if the operating ring is turned excessively to the Far side from the first rotational position P1 (in the case of excessive turning as described above). be done.
  • the photographer can sense the rotational position of the operation ring when performing the focusing operation again after performing the focusing operation once. By aligning with , you can easily perform appropriate focusing operations and achieve smooth focusing.
  • the optical lens may be the focus lens Lf, the first end may be the Far end, and the second end may be the Near end.
  • the focus position can be roughly adjusted to a desired position by intuitively adjusting the rotational position of the focus operation ring 9f to a predetermined rotational position.
  • the optical lens may be the zoom lens Lz
  • the first end may be the TELE end
  • the second end may be the WIDE end.
  • the lens device 3 (3A) includes a notification section 43 that notifies that the position of the optical lens (focus lens Lf or zoom lens Lz) has reached a predetermined position. You can. This allows the photographer to recognize that the optical lens has reached its movement limit or reached a desired position.
  • the predetermined position may be either the first end (for example, the Far end or the WIDE end) or the second end (for example, the Near end or the TELE end).
  • the notification unit 43 can notify the photographer of the movable range (for example, focus lens movable range Rf) of the optical lens (focus lens Lf or zoom lens Lz) by, for example, light emission from a light emitter, vibration by a vibrator, or sound. can. Therefore, the photographer is prevented from rotating the operation ring (focus operation ring 9f or zoom operation ring 9z) more than necessary, and the amount of operation required to return the rotational position of the operation ring to within the corresponding range is prevented. can be reduced. Therefore, smooth photographing can be supported.
  • the movable range for example, focus lens movable range Rf
  • the optical lens focus lens Lf or zoom lens Lz
  • the predetermined position is the rotational position of the operation ring (focus operation ring 9f or zoom operation ring 9z) specified by the photographer in the corresponding range. It may be set to a corresponding position. For example, by aligning and registering the focus position at a predetermined position in advance, it is possible to easily adjust the focus position to a desired position when rotating the operating ring.
  • the lens device 3A includes a memory operator 10b that stores the rotational position of the operation ring (focus operation ring 9f or zoom operation ring 9z) specified by the photographer, and performs arithmetic processing.
  • (lens-side control units 37, 37A) may perform notification processing using the notification unit 43 when the stored rotational position matches the rotational position of the operating ring being operated. This allows the photographer to memorize a desired focus position and desired angle of view. Therefore, by perceiving the notification from the notification unit 43, it becomes possible to set a desired photographing state, and convenience is improved.
  • a vibrator may be provided as the notification section 43 in the lens device 3 (3A). Vibration of the vibrator notifies that the optical lens (focus lens Lf or zoom lens Lz) has reached its movement limit position. This allows the photographer to perceive the movable range of the optical lens even when looking through the finder, for example.
  • the arithmetic processing section (lens side control section 37, 37A) of the lens device 3 (3A) sets the reference position of the optical lens (focus lens Lf and zoom lens Lz). Initial setting processing may also be performed.
  • the reference position of the optical lens is, for example, approximately the center of the movable range of the optical lens. In this way, the optical lens is moved to the reference position each time the initial setting process is executed, so that the optical lens is always adjusted according to the usual operation of the operation ring (focus operation ring 9f or zoom operation ring 9z) Since it moves like this, it is suitable for intuitive operation.
  • the arithmetic processing unit (lens side control unit 37, 37A) of the lens device 3 (3A) is capable of switching between the first mode M1 and the second mode M2.
  • 1 mode M1 sets the amount of movement so that the optical lens (focus lens Lf or zoom lens Lz) does not move when the rotational position of the operation ring (focus operation ring 9f or zoom operation ring 9z) is outside the corresponding range.
  • the second mode M2 may be a mode in which the direction of movement and amount of movement are determined according to the direction and amount of rotation of the operation ring, regardless of the rotational position of the operation ring.
  • the preferred operation mode may differ depending on the photographer.
  • one of the issues is whether or not the optical lens is moved in the opposite direction at the same time as the rotational direction is switched.
  • these modes can be switched, so the movement mode of the optical lens can be selected according to the photographer's preference, and convenience can be improved. can.
  • the lens device 3 (3A) may include a switching operator 10a that performs switching.
  • a switching operator 10a By providing the switching operator 10a, it is possible to easily switch between the first mode M1 and the second mode M2.
  • the imaging device 1 (1A) includes a main body 2 in which an image sensor 28 is disposed and a mount (main body side mount 2m), and a mount (main body side mount 2m). 2m), and the lens barrel includes an operation ring (focus operation ring 9f or zoom operation ring 9z) that is rotatably operated in the direction R around the axis, and an optical An optical lens (focus lens Lf or zoom lens Lz) that is movable between a first end and a second end in the axial direction, and the direction and amount of movement of the optical lens are determined according to the direction and amount of operation with respect to the operation ring.
  • an operation ring focus operation ring 9f or zoom operation ring 9z
  • an optical An optical lens focus lens Lf or zoom lens Lz
  • a calculation processing unit (lens side control unit 37, 37A), and the operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position P1, and a rotational position corresponding to the second end of the optical lens.
  • the rotational position is set as the second rotational position P2, and the arithmetic processing unit determines whether the optical lens is rotated when the rotational position of the operating ring is outside the corresponding range from the first rotational position P1 to the second rotational position P2.
  • the amount of movement may be determined so as not to move.
  • the main body 2 of the imaging device 1 (1A) is configured such that the position of the optical lens (focus lens Lf or zoom lens Lz) reaches either the first end or the second end. It may also include a notification section 43 that notifies the user of the fact that he/she has done so.
  • the imaging device 1 (1A) is equipped with a lens barrel as an interchangeable lens device 3 (3A)
  • the photographer can use the optical It can be recognized that the lens has reached its travel limit.
  • a vibrator may be provided as the notification section 43.
  • a vibrator serving as the notification section 43 is provided, for example, in a grip portion of the main body section 2. This allows the photographer to perceive that the optical lens (focus lens Lf or zoom lens Lz) has reached its movement limit.
  • the arithmetic processing unit (lens side control unit 37A) in the imaging device 1A detects that the rotational position of the operation ring (focus operation ring 9f or zoom operation ring 9z) is outside the corresponding range.
  • a first mode M1 determines the amount of movement so that the optical lens (focus lens Lf or zoom lens Lz) does not move when Displaying a menu (displaying mode selection screen G1) for switching between the second mode M2 that determines the direction and amount of movement, and switching between the first mode M1 and the second mode M2 according to the operation on the menu display. Processing may be performed.
  • the lens driving method in the present technology includes an optical lens (a focus lens Lf or a zoom lens Lz) that is movable between a first end and a second end in the optical axis direction, and an optical lens that is rotated in a direction R around the axis.
  • the operating ring 9 (focus operating ring 9f, zoom operating ring 9z) has a rotational position corresponding to the first end as a first rotational position P1, and a rotational position corresponding to the second end of the optical lens as a second rotational position P2. ), the moving direction and moving amount of the optical lens are determined according to the operating direction and operating amount with respect to the operating ring, and the rotational position of the operating ring is set to the first rotation.
  • a lens device serving as a computer device executes a process of determining a movement amount so that the optical lens does not move when the optical lens is outside the corresponding range from the position P1 to the second rotational position P2.
  • the program in this technology has a function of determining the moving direction and amount of movement of the optical lens according to the operating direction and amount of operation with respect to the operating ring, and the function of determining the rotational position of the operating ring from the first rotational position P1 to the second rotational position P2.
  • HDD Hard Disk Drive
  • ROM Compact Disk Read Only Memory
  • MO Magnetic Optical
  • DVD Digital Versatile Disc
  • Blu-ray Disc registered trademark
  • magnetic disk semiconductor
  • semiconductor It can be stored (recorded) temporarily or permanently in a removable recording medium such as a memory or a memory card.
  • a removable recording medium can be provided as so-called package software.
  • a program can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
  • LAN Local Area Network
  • the present technology can also adopt the following configuration.
  • the operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position, and a rotational position corresponding to the second end of the optical lens as a second rotational position,
  • the arithmetic processing unit determines the amount of movement so that the optical lens does not move when the rotational position of the operation ring is outside a corresponding range from the first rotational position to the second rotational position.
  • the optical lens is a focus lens, The first end is a Far end, The lens device according to (1) above, wherein the second end is a Near end.
  • the optical lens is a zoom lens, The first end is a TELE end, The lens device according to (1) above, wherein the second end is a WIDE end.
  • the lens device according to (4) above, wherein the predetermined position is either the first end or the second end.
  • the lens device according to (4) above, wherein the predetermined position is a position corresponding to a rotational position of the operating ring specified by the photographer in the corresponding range.
  • the arithmetic processing unit is The lens device according to (6) above, wherein notification processing using the notification unit is performed when the stored rotational position and the rotational position of the operating ring during operation match.
  • a vibrator is provided as the notification section.
  • the arithmetic processing unit performs initial setting processing to set a reference position of the optical lens.
  • the arithmetic processing unit is capable of switching between a first mode and a second mode
  • the first mode is a mode in which the amount of movement is determined so that the optical lens does not move when the rotational position of the operation ring is outside the corresponding range
  • the second mode is a mode in which the moving direction and the moving amount are determined according to the rotational direction and rotation amount of the operating ring, regardless of the rotational position of the operating ring.
  • a main body portion having an image sensor disposed therein and a mount portion; a lens barrel attached to the mount section,
  • the lens barrel is an operating ring that is rotated around the axis; an optical lens movable between a first end and a second end in the optical axis direction; an arithmetic processing unit that determines the moving direction and amount of movement of the optical lens according to the operating direction and operating amount with respect to the operating ring,
  • the operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position, and a rotational position corresponding to the second end of the optical lens as a second rotational position,
  • the arithmetic processing unit determines the amount of movement so that the optical lens does not move when the rotational position of the operation ring is outside a corresponding range from the first rotational position to the second rotational position.
  • Imaging device (13) The imaging device according to (12), wherein the main body includes a notification unit that reports that the position of the optical lens has reached either the first end or the second end. (14) The imaging device according to (13) above, wherein a vibrator is provided as the notification section. (15) The arithmetic processing unit is a first mode in which the amount of movement is determined so that the optical lens does not move when the rotational position of the operation ring is outside the corresponding range; and a first mode in which the operation ring rotates regardless of the rotational position of the operation ring.
  • the moving direction and amount of movement of the optical lens are determined according to the operating direction and operating amount for the operating ring, and the rotational position of the operating ring is within a corresponding range from the first rotational position to the second rotational position.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

A lens device according to the present technology comprises: an operation ring which is rotationally operated around an axis; an optical lens movable between a first end and a second end in the optical axis direction; and a calculation processing unit for determining the movement direction and the movement amount of the optical lens in accordance with the operation direction and the operation amount for the operation ring. In the operation ring, a rotation position corresponding to the first end of the optical lens is defined as a first rotation position, and a rotation position corresponding to the second end of the optical lens is defined as a second rotation position. The calculation processing unit determines the movement amount such that the optical lens is not to move in a case where the rotation position of the operation ring is outside a coverable range defined as being from the first rotation position to the second rotation position.

Description

レンズ装置、撮像装置、レンズ駆動方法Lens device, imaging device, lens driving method
 本技術は、例えばフォーカス操作リングやズーム操作リング等の操作リングを備えたレンズ装置、撮像装置及びレンズ駆動方法に関するものである。 The present technology relates to a lens device, an imaging device, and a lens driving method that include an operation ring such as a focus operation ring or a zoom operation ring.
 例えば、交換レンズやビデオカメラ、デジタルスチルカメラ等の各種レンズ装置には、内部にレンズ等の光学素子が配置され、外周側に設けられた操作リングの回転操作により光学素子を光軸方向に移動させてフォーカシングやズーミングが可能に構成されたものがある。 For example, in various lens devices such as interchangeable lenses, video cameras, and digital still cameras, optical elements such as lenses are arranged inside, and the optical elements are moved in the optical axis direction by rotating an operating ring provided on the outer circumference. Some cameras are configured to allow focusing and zooming.
 操作リングの回転操作によりフォーカシングやズーミングを行う方式としては、メカ駆動方式、電気駆動方式を挙げることができる。メカ駆動方式は、光学素子を移動させるカム環と操作リングとを機械的に連結し、操作リングの回転に応じた力が機械的にカム環に伝達されて光学素子が移動される方式である。 Examples of methods for performing focusing and zooming by rotating the operating ring include mechanical drive methods and electric drive methods. The mechanical drive method is a method in which a cam ring that moves the optical element and an operating ring are mechanically connected, and a force corresponding to the rotation of the operating ring is mechanically transmitted to the cam ring to move the optical element. .
 また、電気駆動方式は、操作リングの回転量や回転方向を所定のセンサにより電気的に読み取り、演算回路で光学素子の駆動量を計算し、計算した駆動量に基づきドライブ回路がアクチュエータを駆動して光学素子を移動させる方式(所謂バイワイヤ方式)である。 In addition, in the electric drive method, the amount and direction of rotation of the operating ring are electrically read by a predetermined sensor, the arithmetic circuit calculates the amount of drive of the optical element, and the drive circuit drives the actuator based on the calculated amount of drive. This is a method (so-called by-wire method) in which the optical element is moved by using a wire.
 電気駆動方式については例えば下記特許文献1に開示されている。 The electric drive system is disclosed, for example, in Patent Document 1 below.
特開2019-117391号公報Japanese Patent Application Publication No. 2019-117391
 電気駆動方式は、電気的なアクチュエータで光学素子を動かすため、メカ駆動方式と異なり、操作リングの回転位置と光軸方向における光学素子の位置は必ずしも定まっていない。 The electric drive method moves the optical element using an electric actuator, so unlike the mechanical drive method, the rotational position of the operating ring and the position of the optical element in the optical axis direction are not necessarily fixed.
 例えば、光学素子としてフォーカスレンズを例に挙げると、フォーカスレンズは光軸方向におけるNear端からFar端までの可動範囲を移動可能とされている。フォーカスリングに対応した操作リングであるフォーカス操作リングの回転操作をし続けると、フォーカスレンズは何れNear端かFar端の何れかに到達する。 For example, taking a focus lens as an example of an optical element, the focus lens is movable within a movable range from the Near end to the Far end in the optical axis direction. If the focus operation ring, which is an operation ring corresponding to the focus ring, continues to be rotated, the focus lens will eventually reach either the Near end or the Far end.
 フォーカスレンズがNear端に達した状態でフォーカス操作リングを更にNear側に回転操作すると、フォーカスレンズはNear端に位置したままフォーカス操作リングのみが回転される。 When the focus operation ring is further rotated toward the Near side with the focus lens reaching the Near end, only the focus operation ring is rotated while the focus lens remains at the Near end.
 そこからフォーカス操作リングをFar側に回転操作すると、フォーカスレンズのFar端に向けての移動が直ちに開始される。このとき、フォーカス操作リングの回転位置とフォーカスレンズの光軸方向における位置の対応関係がずれてしまうという問題が生じる。 When the focus operation ring is rotated from there to the Far side, movement of the focus lens toward the Far end is immediately started. At this time, a problem arises in that the correspondence relationship between the rotational position of the focus operation ring and the position of the focus lens in the optical axis direction deviates.
 撮影においては、合焦したい被写体の位置に対応したフォーカス操作リングの回転位置をマーキングすることにより撮影準備を行う場合がある。しかし、フォーカス操作リングの回転位置とフォーカスレンズの光軸方向の位置の対応関係がずれてしまう可能性があるため、フォーカス操作リングをマーキングされた回転位置に合わせたとしても、必ずしも設定した通りの被写体に合焦されるとは限らない。 When photographing, preparations may be made by marking the rotational position of the focus operation ring that corresponds to the position of the subject to be focused on. However, there is a possibility that the correspondence between the rotational position of the focus operation ring and the position of the focus lens in the optical axis direction may deviate, so even if the focus operation ring is aligned with the marked rotation position, it will not always be as set. It does not necessarily mean that the subject will be in focus.
 本技術はこのような問題を鑑みて為されたものであり、操作リングの回転位置と光軸方向における光学レンズの位置の対応関係が維持されなくなってしまうことを防止することを目的とする。 The present technology has been developed in view of these problems, and aims to prevent the correspondence between the rotational position of the operating ring and the position of the optical lens in the optical axis direction from being no longer maintained.
 本技術に係るレンズ装置は、軸周り方向に回転操作される操作リングと、光軸方向における第1端と第2端の間を移動可能な光学レンズと、前記操作リングに対する操作方向及び操作量に応じて前記光学レンズの移動方向及び移動量を決定する演算処理部と、を備え、前記操作リングは、前記光学レンズの前記第1端に対応した回転位置が第1回転位置とされ、前記光学レンズの前記第2端に対応した回転位置が第2回転位置とされ、前記演算処理部は、前記操作リングの回転位置が前記第1回転位置から前記第2回転位置までとされた対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定するものである。
 これにより、操作リングを第1回転位置よりもFar側に過剰に回した場合に光学レンズがFar端に位置したままとされる。そして、第1回転位置よりもFar側に回しすぎた回転位置からNear側に回した場合に、第1回転位置に戻ってくるまでは操作リングの回転に応じた光学レンズの移動が行われない。操作リングを第2回転位置からNear側に過剰に回した場合についても同様であり、操作リングをNear側に回しすぎた回転位置から第2回転位置に戻ってくるまでは光学レンズの移動が行われない。
A lens device according to the present technology includes an operation ring that is rotatably operated in a direction around an axis, an optical lens that is movable between a first end and a second end in an optical axis direction, and an operation direction and amount of operation for the operation ring. an arithmetic processing unit that determines the moving direction and amount of movement of the optical lens according to the operation ring, and the operating ring has a first rotational position corresponding to the first end of the optical lens, and A rotational position corresponding to the second end of the optical lens is defined as a second rotational position, and the arithmetic processing unit defines a corresponding range in which the rotational position of the operating ring is from the first rotational position to the second rotational position. The amount of movement is determined so that the optical lens does not move when the distance is outside the range.
As a result, even if the operating ring is turned excessively toward the Far side from the first rotation position, the optical lens remains positioned at the Far end. When the optical lens is rotated from a rotation position that is too far to the first rotation position to the Near side, the optical lens does not move in accordance with the rotation of the operating ring until it returns to the first rotation position. The same applies when the operating ring is turned excessively from the second rotational position to the Near side, and the optical lens is not moved until it returns to the second rotational position from the rotational position where the operation ring was turned too much towards the Near side. do not have.
本技術のレンズ装置を備えた撮像装置の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of an imaging device including a lens device of the present technology. 図1に示すA-A線の位置で光軸に直交する方向にレンズ装置を切断した際の概略斜視図である。FIG. 2 is a schematic perspective view of the lens device taken along the line AA shown in FIG. 1 in a direction perpendicular to the optical axis. 図2における破線で示した部分の拡大図である。FIG. 3 is an enlarged view of a portion indicated by a broken line in FIG. 2. FIG. 実施形態における検出パターン部の模式図である。It is a schematic diagram of the detection pattern part in embodiment. 操作リング側から見た検出部を示す概略斜視図である。FIG. 3 is a schematic perspective view showing the detection unit seen from the operation ring side. 検出部と検出パターン部との位置関係を模式的に表した図である。FIG. 3 is a diagram schematically showing the positional relationship between a detection section and a detection pattern section. 位相差が90度とされた各受光信号の波形を表した図である。FIG. 3 is a diagram showing waveforms of each light reception signal with a phase difference of 90 degrees. レンズ装置及び本体部の内部構成例を示したブロック図である。FIG. 2 is a block diagram showing an example of the internal configuration of a lens device and a main body. フォーカスレンズ可動範囲とフォーカス操作リングの回転位置の関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between a focus lens movable range and a rotational position of a focus operation ring. 図9と共にフォーカスレンズ可動範囲とフォーカス操作リングの回転位置の関係を説明するための図であり、本図はフォーカスレンズがフォーカスレンズ可動範囲の端に位置した状態を示す図である。This is a diagram for explaining the relationship between the focus lens movable range and the rotational position of the focus operation ring together with FIG. 9, and this diagram shows a state in which the focus lens is located at the end of the focus lens movable range. 図9と共にフォーカスレンズ可動範囲とフォーカス操作リングの回転位置の関係を説明するための図であり、本図はフォーカスレンズの位置とフォーカス操作リングの回転位置の関係がずれた状態を示す図である。This is a diagram for explaining the relationship between the focus lens movable range and the rotational position of the focus operation ring together with FIG. 9, and this diagram is a diagram showing a state in which the relationship between the focus lens position and the rotational position of the focus operation ring is shifted. . 図9と共にフォーカスレンズ可動範囲とフォーカス操作リングの回転位置の関係を説明するための図であり、本図はフォーカスレンズの位置とフォーカス操作リングの回転位置の関係がずれた状態でフォーカスレンズが移動される様子を示す図である。This is a diagram for explaining the relationship between the focus lens movable range and the rotational position of the focus operation ring together with FIG. FIG. フォーカスレンズの基準位置に移動させる機構として用いられるPIセンサフィンとPIセンサについての概略側面図である。FIG. 2 is a schematic side view of a PI sensor fin and a PI sensor used as a mechanism for moving the focus lens to a reference position. PIセンサフィンとPIセンサの概略斜視図である。FIG. 2 is a schematic perspective view of a PI sensor fin and a PI sensor. 初期設定処理部が実行する処理の流れを示すフローチャートである。3 is a flowchart showing the flow of processing executed by the initial setting processing section. レンズ移動量算出部の機能ブロック図である。FIG. 3 is a functional block diagram of a lens movement amount calculation section. レンズ移動量を算出するためにレンズ側制御部が実行する処理の流れを示すフローチャートである。3 is a flowchart showing the flow of processing executed by a lens-side control unit to calculate a lens movement amount. 切替操作子の具体的な構成例を示すためにレンズ装置の一部を拡大して示す概略斜視図である。It is a schematic perspective view which expands and shows a part of lens apparatus in order to show the specific example of a structure of a switching operator. 第2の実施の形態についてのレンズ装置及び本体部の内部構成例を示したブロック図である。FIG. 7 is a block diagram showing an example of the internal configuration of a lens device and a main body according to a second embodiment. 第1モードと第2モードを切り替えるためのメニュー画面の一例を示す図である。It is a figure which shows an example of the menu screen for switching a 1st mode and a 2nd mode. フォーカスレンズが記憶位置に到達したことを報知するための処理についてのフローチャートである。7 is a flowchart of a process for notifying that the focus lens has reached a storage position.
 以下、添付図面を参照し、実施の形態を次の順序で説明する。
<1.撮像装置の構成>
<2.操作リングの回転量検出のための構成>
<3.撮像装置の機能構成>
<4.レンズ側制御部の機能構成>
<5.第2の実施の形態>
<6.変形例>
<7.まとめ>
<8.本技術>
Hereinafter, embodiments will be described in the following order with reference to the accompanying drawings.
<1. Configuration of imaging device>
<2. Configuration for detecting the amount of rotation of the operating ring>
<3. Functional configuration of imaging device>
<4. Functional configuration of lens side control section>
<5. Second embodiment>
<6. Modified example>
<7. Summary>
<8. This technology>
<1.撮像装置の構成>
 以下の説明においては、撮像装置1に対して被写体側を前方として記載する。即ち、前後方向は撮像装置1の光軸方向に一致する。但し、これらの方向は説明の便宜上なされたものであり、本技術の実施にあたってこれらの方向に限定されることはない。
<1. Configuration of imaging device>
In the following description, the subject side with respect to the imaging device 1 will be described as being in front. That is, the front-rear direction coincides with the optical axis direction of the imaging device 1. However, these directions are made for convenience of explanation, and the implementation of the present technology is not limited to these directions.
 第1の実施の形態における撮像装置1は図1に示すように本体部2と本技術の実施の形態としてのレンズ装置3とを有して構成されている。
 本体部2は前面に開口された開口部2aの周辺部が本体側マウント部2mとして設けられており、レンズ装置3のレンズ側マウント部3mと例えばバヨネット式で結合されることにより、本体部2とレンズ装置3が電気的及び物理的に接続される。
As shown in FIG. 1, an imaging device 1 in the first embodiment includes a main body 2 and a lens device 3 as an embodiment of the present technology.
The main body part 2 is provided with a peripheral part of an opening 2a opened on the front side as a main body side mount part 2m, and is connected to the lens side mount part 3m of the lens device 3 by, for example, a bayonet type. and the lens device 3 are electrically and physically connected.
 本体側マウント部2mとレンズ側マウント部3mには、それぞれ対応した端子が設けられている。該端子としては、例えば、電源供給のための端子(電源供給端子)、コマンドやデータを伝送するための端子(通信端子)、同期信号を伝送するための端子(同期信号端子)等がある。 The main body side mount part 2m and the lens side mount part 3m are provided with corresponding terminals, respectively. Examples of the terminal include a terminal for supplying power (power supply terminal), a terminal for transmitting commands and data (communication terminal), a terminal for transmitting a synchronization signal (synchronization signal terminal), and the like.
 なお、以下の説明においては撮像装置1が本体部2と交換式のレンズ装置3とで構成されている例を挙げるが、本技術はこれに限らず、装置本体の内部にレンズ装置3の内部構造と同様の構造を有するレンズ鏡筒が組み込まれたタイプやこのレンズ鏡筒が装置本体に対して突出又は収納される沈胴タイプにも適用することが可能である。 Note that in the following description, an example will be given in which the imaging device 1 is configured with a main body 2 and an interchangeable lens device 3, but the present technology is not limited to this. It is also possible to apply the present invention to a type in which a lens barrel having a structure similar to that of the present invention is incorporated, and to a collapsible type in which this lens barrel protrudes from or is housed in the main body of the device.
 本体部2の左右方向の一方の端部は撮影者が把持しやすいようにグリップ部2bとして設けられている。 One end of the main body part 2 in the left and right direction is provided as a grip part 2b so that it can be easily held by the photographer.
 本体部2は、外筐4の内外に所要の各部が配置されて成る。具体的に、外筐4には、前面や上面や後面に各種の操作部5が配置されている。操作部5としては、例えば、電源ボタン、シャッタボタン、ズーム摘子、撮影モードダイヤル等が設けられている。 The main body part 2 is made up of necessary parts arranged inside and outside the outer casing 4. Specifically, various operating units 5 are arranged on the front, top, and rear surfaces of the outer casing 4. The operation unit 5 includes, for example, a power button, a shutter button, a zoom knob, a shooting mode dial, and the like.
 外筐4の後面には表示面が後方を向くように破線で示す背面モニタ6が配置されている。背面モニタ6は、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置で構成され、画像表示が可能とされる。背面モニタ6に表示される画像としては、例えば、スルー画像や、記録媒体33から読み出された画像などの他、メニュー画面などの各種操作画面としてのGUI(Graphical User Interface)の表示等を行うことができる。 A rear monitor 6, indicated by a broken line, is arranged on the rear surface of the outer casing 4 so that its display surface faces rearward. The rear monitor 6 is configured with a panel type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and is capable of displaying images. Examples of images displayed on the rear monitor 6 include live view images, images read from the recording medium 33, and GUI (Graphical User Interface) as various operation screens such as menu screens. be able to.
 なお、背面モニタ6がタッチパネル機能を有している場合には、背面モニタ6が操作部5としても機能する。 Note that when the back monitor 6 has a touch panel function, the back monitor 6 also functions as the operation unit 5.
 レンズ装置3は、後端部が前述のレンズ側マウント部3mとして設けられている。 The rear end portion of the lens device 3 is provided as the aforementioned lens side mount portion 3m.
 レンズ装置3はレンズ筐体7とその内部に配置された各種の光学素子8とを有して構成されている。光学素子8としては、例えば、前玉レンズ8mやフォーカスレンズLf、ズームレンズLz、アイリス、及びリレーレンズ等が設けられている。 The lens device 3 includes a lens housing 7 and various optical elements 8 arranged inside the lens housing 7. As the optical element 8, for example, a front lens 8m, a focus lens Lf, a zoom lens Lz, an iris, a relay lens, etc. are provided.
 レンズ装置3は、光学素子8のうち可動するものそれぞれに対応したアクチュエータを備えている。例えば、フォーカスレンズLfに対応したアクチュエータとしてリニアモータが設けられる。このリニアモータに対して、ドライバによる駆動電圧が印加されることにより、フォーカスレンズLfが光軸方向に可動される。 The lens device 3 includes actuators corresponding to each of the movable optical elements 8. For example, a linear motor is provided as an actuator corresponding to the focus lens Lf. By applying a drive voltage from a driver to this linear motor, the focus lens Lf is moved in the optical axis direction.
 レンズ筐体7の外周部には、回転自在に支持された円環状の操作リング9が複数設けられており、一つはフォーカスレンズLfに対応したフォーカス操作リング9fとされ、もう一つはズームレンズLzに対応したズーム操作リング9zとされている。 A plurality of rotatably supported annular operation rings 9 are provided on the outer periphery of the lens housing 7, one of which is a focus operation ring 9f corresponding to the focus lens Lf, and the other is a focus operation ring 9f that corresponds to the focus lens Lf. The zoom operation ring 9z corresponds to the lens Lz.
 フォーカス操作リング9fは軸周り方向に回転操作可能とされ、第1方向R1に回転操作されるとフォーカスレンズLfがFar側(図1中の「F」側)に移動され、第1方向R1とは逆方向とされた第2方向R2に回転操作されるとフォーカスレンズLfがNear側(図1中の「N」側)に移動される。 The focus operation ring 9f can be rotated around the axis, and when rotated in the first direction R1, the focus lens Lf is moved to the Far side ("F" side in FIG. 1), and rotated in the first direction R1. When the focus lens Lf is rotated in the second direction R2, which is the opposite direction, the focus lens Lf is moved to the Near side (the "N" side in FIG. 1).
 以下の説明においては、第1方向R1は撮影者から見て時計回りとされ、第2方向R2は撮影者から見て反時計回りとされる(図1参照)。なお、第1方向R1と第2方向R2を区別せずに光軸の軸周り方向を表すときは軸周り方向Rと記載する。 In the following description, the first direction R1 is assumed to be clockwise when viewed from the photographer, and the second direction R2 is assumed to be counterclockwise when viewed from the photographer (see FIG. 1). Note that when the direction around the optical axis is expressed without distinguishing between the first direction R1 and the second direction R2, it is written as the direction around the axis R.
 ズーム操作リング9zは軸周り方向Rに回転操作可能とされ、第1方向R1に回転操作されるとズームレンズLzがTELE側(図1中の「T」側)に移動され、第2方向R2に回転操作されるとズームレンズLzがWIDE側(図1中の「W」側)に移動される。 The zoom operation ring 9z can be rotated in the direction R around the axis, and when rotated in the first direction R1, the zoom lens Lz is moved to the TELE side ("T" side in FIG. 1), and rotated in the second direction R2. When the zoom lens Lz is rotated, the zoom lens Lz is moved to the WIDE side (the "W" side in FIG. 1).
 撮影者は、フォーカス操作リング9fを回転操作することによりフォーカシングを行うことが可能とされている。また、ズーム操作リング9zを回転操作することによりズーミングを行うことが可能とされている。 The photographer can perform focusing by rotating the focus operation ring 9f. Further, it is possible to perform zooming by rotating the zoom operation ring 9z.
 レンズ筐体7の外周部には操作子10が設けられている。本実施の形態においては、操作子10としては、ぶれ補正駆動のオンオフを切り換えるぶれ補正用操作子やモータ駆動によるズーミングを行うためのパワーズーム操作子等が設けられている。それ以外にも、本実施の形態においては、操作子10としてフォーカシングを手動で行うマニュアルモードと自動で行うオートモードを切り替える切替操作子10aが設けられている。切替操作子10aについては改めて後述する。 An operator 10 is provided on the outer periphery of the lens housing 7. In this embodiment, the operator 10 includes a shake correction operator for switching on/off of shake correction drive, a power zoom operator for performing motor-driven zooming, and the like. In addition, in this embodiment, a switching operator 10a is provided as the operator 10 for switching between a manual mode in which focusing is performed manually and an auto mode in which focusing is performed automatically. The switching operator 10a will be described later.
 なお、フォーカス操作リング9f及びズーム操作リング9zは、操作子10の一態様である。
Note that the focus operation ring 9f and the zoom operation ring 9z are one form of the operator 10.
<2.操作リングの回転量検出のための構成>
 図2は、図1のA-A線の位置で光軸方向の直交面によって切断された状態のレンズ装置3を示す斜視図であり、フォーカス操作リング9fの断面が示されたものである。
<2. Configuration for detecting the amount of rotation of the operating ring>
FIG. 2 is a perspective view showing the lens device 3 taken along the line AA in FIG. 1 along a plane perpendicular to the optical axis direction, and shows a cross section of the focus operation ring 9f.
 レンズ装置3において、フォーカス操作リング9fの回転操作に応じたフォーカスレンズLfの駆動は前述した電気駆動方式により行われる。すなわち、レンズ装置3の内部に配置されたアクチュエータによりフォーカスレンズLfが光軸方向に駆動される。 In the lens device 3, the focus lens Lf is driven according to the rotational operation of the focus operation ring 9f using the electric drive method described above. That is, the focus lens Lf is driven in the optical axis direction by an actuator arranged inside the lens device 3.
 図2の破線部分を拡大して表示したものが図3である。
 フォーカス操作リング9fの内周側には、略環状の形状を有する固定部材11が配置されている(図2及び図3参照)。固定部材11は、レンズ装置3内部における位置が固定され、外周面11aがフォーカス操作リング9fの内周面12と対向した状態とされる。
 固定部材11の内周側には、略円形の開口13が形成されている。
FIG. 3 is an enlarged view of the broken line portion in FIG. 2.
A fixing member 11 having a substantially annular shape is arranged on the inner peripheral side of the focus operation ring 9f (see FIGS. 2 and 3). The fixing member 11 has a fixed position inside the lens device 3, and the outer circumferential surface 11a faces the inner circumferential surface 12 of the focus operation ring 9f.
A substantially circular opening 13 is formed on the inner peripheral side of the fixing member 11 .
 フォーカス操作リング9fの内周面12には、軸周り方向Rの全周に亘って反射面14と非反射面15とが交互に配置された検出パターン部16が設けられている(図2及び図3参照)。 The inner peripheral surface 12 of the focus operation ring 9f is provided with a detection pattern section 16 in which reflective surfaces 14 and non-reflective surfaces 15 are alternately arranged over the entire circumference in the axial direction R (see FIGS. 2 and 2). (See Figure 3).
 反射面14と非反射面15の構成は各種考えられる。例えば、図3に示すように、フォーカス操作リング9fがアルミ等の光反射率が高い金属で構成されることにより、内周面12は金属面とされている。また、フォーカス操作リング9fの内周面12上には、例えば黒色樹脂等の光反射率が低くされた樹脂材料による非反射担体17が軸周り方向Rに沿って所定間隔で離隔されて配置されている。これら非反射担体17は、例えば印刷等により膜状に形成されている。 Various configurations of the reflective surface 14 and the non-reflective surface 15 are possible. For example, as shown in FIG. 3, the focus operation ring 9f is made of a metal with high light reflectivity, such as aluminum, so that the inner circumferential surface 12 is a metal surface. Further, on the inner circumferential surface 12 of the focus operation ring 9f, non-reflective carriers 17 made of a resin material with low light reflectance, such as black resin, are arranged at predetermined intervals along the axial direction R. ing. These non-reflective carriers 17 are formed into a film shape by, for example, printing.
 検出パターン部16は、フォーカス操作リング9fの内周面12における非反射担体17が配置されていない部分が反射面14として形成され、非反射担体17の内側を向く面が非反射面15として形成されることにより成る。 In the detection pattern section 16, a portion of the inner peripheral surface 12 of the focus operation ring 9f where the non-reflective carrier 17 is not arranged is formed as a reflective surface 14, and a surface facing inside of the non-reflective carrier 17 is formed as a non-reflective surface 15. It consists of being
 なお、フォーカス操作リング9fは金属製である必要はなく、例えば内周面12に金属メッキや光反射シートが施される等、内周面12の光反射率が高められていればよい。 Note that the focus operation ring 9f does not need to be made of metal; it is sufficient that the inner circumferential surface 12 has a high light reflectance, for example, by applying metal plating or a light reflecting sheet to the inner circumferential surface 12.
 上記のように固定部材11はレンズ装置3内部における位置が固定とされるため、検出パターン部16は、フォーカス操作リング9fの回転操作に伴い固定部材11に対して軸周り方向Rに移動する。 As described above, since the position of the fixed member 11 inside the lens device 3 is fixed, the detection pattern section 16 moves in the direction R around the axis with respect to the fixed member 11 as the focus operation ring 9f is rotated.
 検出パターン部16において、反射面14と非反射面15の形成ピッチは一定のピッチとされている。即ち、図4の模式図に示すように、検出パターン部16においては各反射面14の軸周り方向Rにおける幅w14と、各非反射面15の軸周り方向Rにおける幅w15とが一致している。
 幅w14と幅w15は例えば0.3mm以下とされている。これにより、実使用上十分な検出分解能を得ることができる。
In the detection pattern section 16, the reflective surface 14 and the non-reflective surface 15 are formed at a constant pitch. That is, as shown in the schematic diagram of FIG. 4, in the detection pattern section 16, the width w14 of each reflective surface 14 in the axial direction R matches the width w15 of each non-reflective surface 15 in the axial direction R. There is.
The width w14 and the width w15 are, for example, 0.3 mm or less. Thereby, detection resolution sufficient for practical use can be obtained.
 検出パターン部16の軸周り方向Rについての動きを検出するために、固定部材11の外周面11a上の所定位置に検出部18が設けられている(図3参照)。 In order to detect the movement of the detection pattern section 16 in the axial direction R, a detection section 18 is provided at a predetermined position on the outer peripheral surface 11a of the fixed member 11 (see FIG. 3).
 検出部18についての概略斜視図を図5に示す。
 検出部18は、例えば外周面11aに固定されるフレキシブル基板とされた配線基板19と、配線基板19上に外向きに取り付けられた発光素子20と、基板21と、基板21上に設けられた第1受光素子22及び第2受光素子23と、囲い部24と、を備えている。
A schematic perspective view of the detection unit 18 is shown in FIG.
The detection unit 18 includes, for example, a wiring board 19 which is a flexible board fixed to the outer peripheral surface 11a, a light emitting element 20 mounted outward on the wiring board 19, a board 21, and a board 21 provided on the board 21. It includes a first light receiving element 22, a second light receiving element 23, and a surrounding portion 24.
 発光素子20には光が出射される発光面20aが設けられている。
 第1受光素子22には光を受光する受光面22aが設けられ、第2受光素子23には同様に受光面23aが設けられている。
The light emitting element 20 is provided with a light emitting surface 20a from which light is emitted.
The first light receiving element 22 is provided with a light receiving surface 22a that receives light, and the second light receiving element 23 is similarly provided with a light receiving surface 23a.
 第1受光素子22及び第2受光素子23は例えば単一の半導体製造プロセスにより基板21上に配置されている。 The first light receiving element 22 and the second light receiving element 23 are arranged on the substrate 21 by, for example, a single semiconductor manufacturing process.
 囲い部24は、配線基板19からその厚み方向に突出され、発光素子20、第1受光素子22、及び第2受光素子23の周囲を囲う部分として形成されている。囲い部24により、外光等の意図しない光が第1受光素子22、第2受光素子23において受光されてしまうことの防止が図られる。また、発光面20aや受光面22a、23aに埃等の異物が付着することの抑止も図られる。
 従って、回転量や回転方向についての検出精度の向上を図ることができる。
The enclosure portion 24 is formed as a portion that protrudes from the wiring board 19 in its thickness direction and surrounds the light emitting element 20 , the first light receiving element 22 , and the second light receiving element 23 . The surrounding portion 24 prevents unintended light such as external light from being received by the first light receiving element 22 and the second light receiving element 23. Further, it is also possible to prevent foreign matter such as dust from adhering to the light emitting surface 20a and the light receiving surfaces 22a, 23a.
Therefore, it is possible to improve the detection accuracy regarding the amount of rotation and the direction of rotation.
 発光面20aから照射された光は、検出パターン部16に反射されて受光面22a及び受光面23aで受光される(図6参照)。このとき、検出パターン部16の反射面14においては光の反射率が高くされ非反射面15においては光の反射率が低くされることから、第1受光素子22や第2受光素子23から出力される受光信号は略正弦波とされる。 The light emitted from the light emitting surface 20a is reflected by the detection pattern section 16 and received by the light receiving surface 22a and the light receiving surface 23a (see FIG. 6). At this time, the reflectance of light is increased on the reflective surface 14 of the detection pattern section 16 and the reflectance of light is decreased on the non-reflective surface 15, so that the light is output from the first light receiving element 22 and the second light receiving element 23. The received light signal is approximately a sine wave.
 また、第1受光素子22から出力される第1受光信号S1と第2受光素子23から出力される第2受光信号S2の位相差は、フォーカス操作リング9fの軸周り方向の回転方向が判別できるように略90degとされる(図7参照)。
 換言すれば、第1受光素子22の受光面22aと第2受光素子23の受光面23aは、出力信号の波形の位相差が略90degとなるように離隔されて配置される。
Further, the phase difference between the first light receiving signal S1 outputted from the first light receiving element 22 and the second light receiving signal S2 outputted from the second light receiving element 23 allows the rotation direction of the focus operation ring 9f around the axis to be determined. This is approximately 90 degrees (see FIG. 7).
In other words, the light-receiving surface 22a of the first light-receiving element 22 and the light-receiving surface 23a of the second light-receiving element 23 are spaced apart from each other so that the phase difference between the waveforms of the output signals is approximately 90 degrees.
 フォーカス操作リング9fの軸周り方向の回転方向は、第1受光信号S1と第2受光信号S2の何れの信号が相対的に90deg進んでいるかを検出することにより判別可能である。
The rotation direction of the focus operation ring 9f around the axis can be determined by detecting which signal, the first light reception signal S1 or the second light reception signal S2, is relatively advanced by 90 degrees.
<3.撮像装置の機能構成>
 撮像装置1の機能構成について図8に示す。
<3. Functional configuration of imaging device>
FIG. 8 shows the functional configuration of the imaging device 1.
 撮像装置1は、上述したように、本体部2と本体部2に装着されるレンズ装置3とを備えている。 As described above, the imaging device 1 includes the main body 2 and the lens device 3 attached to the main body 2.
 本体部2は、上述した本体側マウント部2mと操作部5と背面モニタ6とに加えて、本体側制御部25、シャッタ26、シャッタ制御部27、撮像素子28、ADC(Analog to Digital Converter)29、フレームメモリ30、画像信号処理部31、記録部32、記録媒体33、本体側メモリ34、電源制御部35、電源部36を備えている。 In addition to the above-described main body side mount section 2m, operation section 5, and rear monitor 6, the main body section 2 includes a main body side control section 25, a shutter 26, a shutter control section 27, an image sensor 28, and an ADC (Analog to Digital Converter). 29, a frame memory 30, an image signal processing section 31, a recording section 32, a recording medium 33, a main body side memory 34, a power supply control section 35, and a power supply section 36.
 電源制御部35は、電源部36から供給される電源を、本体側制御部25を始めとした本体部2の各部へ供給する。また、電源制御部35は、撮像装置1の動作状態に基づき、レンズ装置3に供給可能な電源電力量を算出し、本体側マウント部2mを介してレンズ装置3に電源を供給する。
 電源部36は、例えば、NiCd電池やNiMH電池、Li電池等の二次電池を有して構成される。なお、電源部36としては、ACアダプタ等を介して商用交流電源からの電源供給を受けることが可能に構成することもできる。
The power supply control section 35 supplies power supplied from the power supply section 36 to each section of the main body section 2 including the main body side control section 25 . Further, the power supply control section 35 calculates the amount of power supply that can be supplied to the lens device 3 based on the operating state of the imaging device 1, and supplies power to the lens device 3 via the main body side mount section 2m.
The power supply unit 36 includes, for example, a secondary battery such as a NiCd battery, a NiMH battery, or a Li battery. Note that the power supply section 36 may be configured to be able to receive power supply from a commercial AC power source via an AC adapter or the like.
 本体側制御部25は、CPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)等を有するマイクロコンピュータを備えて構成され、CPUがROMや本体側メモリ34等の所定の記憶装置に記憶されたプログラムをRAMに読み出して実行することにより、撮像装置1の全体制御を行う。 The main body side control unit 25 is configured with a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc. The overall control of the imaging device 1 is performed by reading the program stored in the storage device into the RAM and executing it.
 本体側メモリ34は、例えばEEPROM(Electrically Erasable Programmable ROM)等の不揮発性メモリで構成され、本体側制御部25の動作プログラムや各種データの記憶に用いることができる。 The main body memory 34 is composed of a nonvolatile memory such as an EEPROM (Electrically Erasable Programmable ROM), and can be used to store operating programs for the main body control unit 25 and various data.
 本体側制御部25は、操作部5から供給された撮影者の操作を表す操作信号に基づいて、撮像素子28による撮像処理を実行させる。更に、所定のコマンドを、本体側マウント部2mを介してレンズ装置3側に送信し、フォーカスレンズLfやズームレンズLz等を駆動させる。 The main body-side control unit 25 causes the imaging device 28 to perform imaging processing based on the operation signal representing the photographer's operation supplied from the operation unit 5. Furthermore, a predetermined command is transmitted to the lens device 3 side via the main body side mount section 2m to drive the focus lens Lf, zoom lens Lz, etc.
 また、本体側制御部25は、例えばフォーカスレンズLfのレンズ位置を示す情報やズームレンズLzのレンズ位置を示す情報等を、レンズ装置3におけるレンズ位置検出部(不図示)から取得可能とされる。 Further, the main body side control unit 25 can obtain, for example, information indicating the lens position of the focus lens Lf, information indicating the lens position of the zoom lens Lz, etc. from a lens position detection unit (not shown) in the lens device 3. .
 シャッタ26は、撮像素子28の前方(被写体側)に配置されており、シャッタ制御部27の制御に従って開閉する。シャッタ26が閉状態であるとき、レンズ装置3の光学系を通過してきた被写体の光が遮断される。シャッタ制御部27は、シャッタ26の開閉状態を検出し、検出結果を示す情報を本体側制御部25に供給する。シャッタ制御部27は、本体側制御部25の制御に基づいてシャッタ26を開状態又は閉状態に駆動する。 The shutter 26 is arranged in front of the image sensor 28 (on the subject side) and opens and closes under the control of the shutter control section 27. When the shutter 26 is in the closed state, the light from the object that has passed through the optical system of the lens device 3 is blocked. The shutter control section 27 detects the open/closed state of the shutter 26 and supplies information indicating the detection result to the main body control section 25. The shutter control section 27 drives the shutter 26 into an open state or a closed state based on the control of the main body side control section 25.
 撮像素子28は、例えば、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等によるイメージセンサとして構成され、被写体を撮像し、撮像画像データを生成して出力する。
 撮像素子28がCCDセンサやCMOSセンサで構成される場合には、電子シャッタを用いることができるため、シャッタ26を省略することも可能である。シャッタ26が省略された場合、その制御に用いられるシャッタ制御部27も省略される。
The image sensor 28 is configured as an image sensor using, for example, a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and images a subject and generates and outputs captured image data.
When the image sensor 28 is composed of a CCD sensor or a CMOS sensor, an electronic shutter can be used, so the shutter 26 can be omitted. When the shutter 26 is omitted, the shutter control section 27 used for its control is also omitted.
 撮像素子28から出力された撮像画像データは、ADC29でデジタル信号に変換されて、フレームメモリ30に供給される。なお、撮像素子28から本体側制御部25に対して位相差信号を出力することにより本体側制御部25においてデフォーカス量を算出可能に構成されていてもよい。 The captured image data output from the image sensor 28 is converted into a digital signal by the ADC 29 and supplied to the frame memory 30. Note that the main body side control unit 25 may be configured to be able to calculate the defocus amount by outputting a phase difference signal from the image sensor 28 to the main body side control unit 25.
 画像信号処理部31は、フレームメモリ30を介して入力される撮像画像に対して所定の画像信号処理を施す。ここでの画像信号処理としては、例えばデモザイク処理やホワイトバランス(WB)調整、ガンマ補正の処理等を挙げることができる。
 画像信号処理部31は、フレームメモリ30を介して入力されるRAW画像としての撮像画像に画像信号処理を施した後、所定のファイル形式の画像データに変換し、記録部32を介して記録媒体33に記録させる。
 また、画像信号処理部31は、画像信号処理を施した後の撮像画像を、所定の表示フォーマットに従った画像信号に変換して、背面モニタ6に供給し、撮像された画像を表示させる。
The image signal processing unit 31 performs predetermined image signal processing on the captured image input via the frame memory 30. Examples of the image signal processing here include demosaic processing, white balance (WB) adjustment, and gamma correction processing.
The image signal processing unit 31 performs image signal processing on the captured image as a RAW image input via the frame memory 30, converts it into image data in a predetermined file format, and stores the image data on a recording medium via the recording unit 32. 33 to record.
Further, the image signal processing unit 31 converts the captured image subjected to the image signal processing into an image signal according to a predetermined display format, and supplies the signal to the rear monitor 6 to display the captured image.
 記録媒体33は、不揮発性メモリで構成され、記録部32は、記録媒体33に対するデータの書き込み、及び記録媒体33に記録されたデータの読み出しを行うことが可能に構成されている。ここで、記録媒体33は、本体部2に対して着脱自在とされてもよい。 The recording medium 33 is composed of a nonvolatile memory, and the recording unit 32 is configured to be able to write data to the recording medium 33 and read data recorded on the recording medium 33. Here, the recording medium 33 may be detachably attached to the main body section 2 .
 なお、本体部2は、図8に示す構成以外にも、レンズ装置3との通信を行うための構成等を備えている。 In addition to the configuration shown in FIG. 8, the main body 2 includes a configuration for communicating with the lens device 3.
 レンズ装置3は、上述したレンズ側マウント部3mとフォーカス操作リング9fとズーム操作リング9zと切替操作子10aと光学素子8としてのフォーカスレンズLf、絞りDi、フォーカスレンズLfと検出部18と不図示のレンズ位置検出部とに加えて、レンズ側制御部37、レンズ側メモリ38、電源制御部39、フォーカスレンズドライバ40、絞りドライバ41、ズームレンズドライバ42、報知部43を備えている。 The lens device 3 includes the above-mentioned lens side mount section 3m, focus operation ring 9f, zoom operation ring 9z, switching operation element 10a, focus lens Lf as optical element 8, aperture Di, focus lens Lf, and detection section 18 (not shown). In addition to the lens position detection section, the lens side control section 37, a lens side memory 38, a power supply control section 39, a focus lens driver 40, an aperture driver 41, a zoom lens driver 42, and a notification section 43 are provided.
 切替操作子10aは、フォーカシングを手動で行うマニュアルモードと自動で行うオートモードを切り替えるための操作子とされている。また、マニュアルモードとしては後述する第1モードM1と第2モードM2とが設けられており、切替操作子10aは、オートモードと第1モードM1と第2モードM2の切り替えが可能とされている。 The switching operator 10a is an operator for switching between a manual mode in which focusing is performed manually and an auto mode in which focusing is performed automatically. Further, as the manual mode, a first mode M1 and a second mode M2, which will be described later, are provided, and the switching operator 10a can switch between the auto mode, the first mode M1, and the second mode M2. .
 レンズ側制御部37は、例えば、CPUやROM、RAM等を有するマイクロコンピュータを備えて構成され、CPUがROMやレンズ側メモリ38等の所定の記憶装置に記憶されたプログラムをRAMに読み出して実行することによりレンズ装置3の全体制御を行う。 The lens-side control unit 37 is configured to include, for example, a microcomputer having a CPU, ROM, RAM, etc., and the CPU reads a program stored in a predetermined storage device such as the ROM or lens-side memory 38 into the RAM and executes it. By doing so, the entire lens device 3 is controlled.
 例えば、レンズ側制御部37は、レンズ側マウント部3mの所定の通信端子を介して供給された本体部2からの指示、又は、操作部5が受け付けた撮影者の操作に基づき、ズームレンズLzの位置を制御する。具体的に、レンズ側制御部37は、例えば磁気センサ(MRセンサ)等で構成されるレンズ位置検出部からズームレンズLzの現在位置を取得し、取得結果に基づいてズームレンズLzを所定の位置に移動させるための移動方向及び移動量を決定し、決定した移動方向及び移動量を移動命令と共にズームレンズドライバ42に出力する。ズームレンズドライバ42は、レンズ側制御部37から供給された移動命令に基づいて、指示された移動方向及び移動量となるようにズームレンズLzを光軸方向に移動させる。 For example, the lens-side control section 37 controls the zoom lens Lz based on an instruction from the main body section 2 supplied via a predetermined communication terminal of the lens-side mount section 3m or an operation received by the operator by the operation section 5. control the position of Specifically, the lens-side control unit 37 acquires the current position of the zoom lens Lz from a lens position detection unit constituted by a magnetic sensor (MR sensor), etc., and moves the zoom lens Lz to a predetermined position based on the acquired result. The moving direction and moving amount are determined, and the determined moving direction and moving amount are output to the zoom lens driver 42 along with a moving command. Based on the movement command supplied from the lens-side control unit 37, the zoom lens driver 42 moves the zoom lens Lz in the optical axis direction so as to follow the specified movement direction and movement amount.
 ここで、レンズ位置検出部は、ズームレンズLz、フォーカスレンズLfの位置や、絞りDiの開口径等、レンズ装置3が備える光学素子8の状態を検出するための構成を有している。レンズ位置の検出は、例えば、磁気センサ、フォトダイオードアレイ、ポテンショメータ、反射式エンコーダ等で行うことができる。 Here, the lens position detection section has a configuration for detecting the states of the optical elements 8 included in the lens device 3, such as the positions of the zoom lens Lz and the focus lens Lf, and the aperture diameter of the diaphragm Di. The lens position can be detected using, for example, a magnetic sensor, a photodiode array, a potentiometer, a reflective encoder, or the like.
 レンズ側制御部37は、レンズ側マウント部3mの所定の通信端子を介して供給された本体部2からの指示等に応じて、絞りDi(の開口径)を制御する。具体的に、レンズ側制御部37は、レンズ位置検出部における絞り検出センサによって検出された絞りDiの開口径を取得して、本体部2から指示されたF値となるように絞りドライバ41に指令を出し、絞りDiを駆動させる。絞りドライバ41は、レンズ側制御部37から指示された開口径となるように絞りDiを駆動させる。 The lens-side control unit 37 controls (the aperture diameter of) the diaphragm Di in response to instructions from the main body 2 supplied via a predetermined communication terminal of the lens-side mount unit 3m. Specifically, the lens side control section 37 acquires the aperture diameter of the aperture Di detected by the aperture detection sensor in the lens position detection section, and controls the aperture driver 41 to obtain the F value instructed by the main body section 2. A command is issued to drive the aperture Di. The aperture driver 41 drives the aperture Di to have the aperture diameter instructed by the lens-side control unit 37.
 レンズ側制御部37は、レンズ側マウント部3mの所定の通信端子を介して供給された本体部2からの指示に基づき、フォーカスレンズLfの位置を制御する。
 AFの制御においては、例えば、本体部2から目標とするフォーカスレンズ位置の情報(目標フォーカスレンズ位置)がレンズ側制御部37に指示される。レンズ側制御部37は、レンズ位置検出部からフォーカスレンズLfの現在位置を取得し、取得した該現在位置の情報と本体部2から指示された目標フォーカスレンズ位置の情報とに基づき、フォーカスレンズLfを目標とする位置に移動させるための移動方向及び移動量を決定し、決定した移動方向及び移動量を移動命令とともにフォーカスレンズドライバ40に出力する。フォーカスレンズドライバ40は、指示された移動方向及び移動量となるようにフォーカスレンズLfを光軸方向に移動させる。
The lens-side control section 37 controls the position of the focus lens Lf based on instructions from the main body section 2 supplied via a predetermined communication terminal of the lens-side mount section 3m.
In the AF control, for example, information on a target focus lens position (target focus lens position) is instructed from the main body 2 to the lens side control unit 37. The lens-side control unit 37 acquires the current position of the focus lens Lf from the lens position detection unit, and based on the information on the acquired current position and the information on the target focus lens position instructed from the main body 2, adjusts the focus lens Lf. The moving direction and moving amount for moving the lens to the target position are determined, and the determined moving direction and moving amount are output to the focus lens driver 40 along with a moving command. The focus lens driver 40 moves the focus lens Lf in the optical axis direction so as to follow the specified movement direction and movement amount.
 なお、フォーカスレンズLfは、一又は複数の光学要素を含む「フォーカスレンズ群」として構成される。フォーカスレンズ群が複数の光学要素を含む場合、それらの光学要素は、フォーカス調整に伴い一体に変位されることになる。
 なお、この点はズームレンズLzについても同様である。すなわち、ズームレンズLzは、一又は複数の光学要素を含む「ズームレンズ群」として構成されるものであり、ズームレンズ群が複数の光学要素を含む場合、それら光学要素はズーム調整に伴い一体に変位されるものとなる。
Note that the focus lens Lf is configured as a "focus lens group" including one or more optical elements. When the focus lens group includes a plurality of optical elements, these optical elements are integrally displaced during focus adjustment.
Note that this also applies to the zoom lens Lz. That is, the zoom lens Lz is configured as a "zoom lens group" that includes one or more optical elements, and when the zoom lens group includes multiple optical elements, these optical elements are integrated as a zoom adjustment. It becomes something that is displaced.
 本例では、ズームレンズLz、フォーカスレンズLfはそれぞれ一つのズームレンズ群、フォーカスレンズ群で構成されるものとしているが、それぞれ複数のズームレンズ群、フォーカスレンズ群を備える構成とすることも可能である。 In this example, the zoom lens Lz and the focus lens Lf are each composed of one zoom lens group and one focus lens group, but it is also possible to configure each of them to include a plurality of zoom lens groups and a plurality of focus lens groups. be.
 フォーカスレンズドライバ40は、レンズの駆動源として、例えば超音波モータ、DCモータ、リニアアクチュエータ、ステッピングモータ、ピエゾ素子(圧電素子)等を有する構成とすることができる。 The focus lens driver 40 can be configured to include, for example, an ultrasonic motor, a DC motor, a linear actuator, a stepping motor, a piezo element (piezoelectric element), etc. as a lens drive source.
 レンズ側メモリ38は、例えばEEPROM等の不揮発性メモリで構成され、レンズ側制御部37の動作プログラムや各種データの記憶に用いることができる。 The lens-side memory 38 is composed of a non-volatile memory such as an EEPROM, and can be used to store operation programs for the lens-side control section 37 and various data.
 電源制御部39は、本体部2から供給された電源の電力量を検出し、検出した電力量に基づいてレンズ装置3内の各部(レンズ側制御部37や各種の駆動部)に対して電力量を最適に配分して電源を供給する。 The power supply control unit 39 detects the amount of power of the power supplied from the main body 2, and controls the power to each part in the lens device 3 (lens side control unit 37 and various drive units) based on the detected amount of power. Supply power by optimally distributing the amount.
 報知部43は、フォーカスレンズLfやズームレンズLzが可動範囲の端部に達したことを撮影者へ報知するために設けられている。報知部43の態様としては、発光による報知を行う発光体とされてもよいし、音声による報知を行うスピーカとされてもよいし、振動による報知を行う振動素子とされてもよい。或いは、報知部43は、背面モニタ6を用いた画像による報知を行う構成とされていてもよい。 The notification unit 43 is provided to notify the photographer that the focus lens Lf or zoom lens Lz has reached the end of its movable range. The notification unit 43 may be configured as a light emitting body that provides notification by emitting light, a speaker that provides notification by sound, or a vibration element that provides notification by vibration. Alternatively, the notification unit 43 may be configured to provide notification using an image using the rear monitor 6.
 本実施の形態においては、報知部43はフォーカス操作リング9fやズーム操作リング9zそれぞれに振動子を備え、該振動子を振動させて撮影者の触覚に訴えることにより撮影者に対する報知を行う。
In this embodiment, the notification section 43 includes a vibrator in each of the focus operation ring 9f and the zoom operation ring 9z, and notifies the photographer by vibrating the vibrator to appeal to the photographer's tactile sense.
<4.レンズ側制御部の機能構成>
 本実施の形態におけるレンズ側制御部37は、操作子10としてのフォーカス操作リング9fやズーム操作リング9zに対して撮影者の操作がなされた場合にズームレンズLzやフォーカスレンズLfの駆動を行う。以降の説明においては、フォーカスレンズLfを例に挙げる。
<4. Functional configuration of lens side control section>
The lens-side control unit 37 in this embodiment drives the zoom lens Lz and the focus lens Lf when the photographer operates the focus operation ring 9f and the zoom operation ring 9z as the operators 10. In the following description, the focus lens Lf will be taken as an example.
 フォーカス操作リング9fの操作に応じてフォーカスレンズLfを移動させる場合の駆動方式は主に二通り考えられる。一つは、フォーカス操作リング9fの回転操作の回転量と回転方向に応じてフォーカスレンズLfの移動量及び移動方向が決定される方式である。もう一つは、フォーカス操作リング9fの回転操作の角速度と回転方向に応じてフォーカスレンズLfの移動量と移動方向が決定される方式である。 There are mainly two possible driving methods for moving the focus lens Lf in accordance with the operation of the focus operation ring 9f. One is a method in which the amount and direction of movement of the focus lens Lf are determined according to the amount and direction of rotation of the focus operation ring 9f. The other method is a method in which the amount and direction of movement of the focus lens Lf are determined according to the angular velocity and rotation direction of the rotation operation of the focus operation ring 9f.
 本技術の実施においては、前者であるフォーカス操作リング9fの回転量と回転方向に応じてフォーカスレンズLfが移動されるものである。 In the implementation of the present technology, the focus lens Lf is moved according to the amount and direction of rotation of the former focus operation ring 9f.
 フォーカスレンズLfは、光軸方向に移動可能とされるが移動が可能な範囲がメカ的或いは制御的に定められている。ここでは、両者を区別せずに「フォーカスレンズ可動範囲Rf」と記載する。また、フォーカスレンズ可動範囲Rfの端部は、それぞれ前述した「Near端」と「Far端」とされる。 The focus lens Lf is movable in the optical axis direction, but the range of movement is mechanically or controlled. Here, the term “focus lens movable range Rf” is used without distinguishing between the two. Further, the ends of the focus lens movable range Rf are the aforementioned "Near end" and "Far end", respectively.
 フォーカスレンズ可動範囲Rfが有限の範囲であるのに対して、フォーカス操作リング9fの回転操作が可能な範囲は無限である(図9参照)。従って、フォーカス操作リング9fを一方向、例えば、第1方向R1に回し続けると、フォーカスレンズLfはいずれフォーカスレンズ可動範囲RfのFar端に達する(図10参照)。このときのフォーカス操作リング9fの回転位置を第1回転位置P1とする。 While the focus lens movable range Rf is a finite range, the range in which the focus operation ring 9f can be rotated is infinite (see FIG. 9). Therefore, if the focus operation ring 9f continues to be rotated in one direction, for example, in the first direction R1, the focus lens Lf will eventually reach the Far end of the focus lens movable range Rf (see FIG. 10). The rotational position of the focus operation ring 9f at this time is defined as a first rotational position P1.
 また、フォーカス操作リング9fを第2方向R2に回し続けると、フォーカスレンズLfはいずれフォーカスレンズ可動範囲RfのNear端に達する。このときのフォーカス操作リング9fの回転位置を第2回転位置P2とする。 Furthermore, if the focus operation ring 9f continues to be rotated in the second direction R2, the focus lens Lf will eventually reach the Near end of the focus lens movable range Rf. The rotational position of the focus operation ring 9f at this time is defined as a second rotational position P2.
 フォーカスレンズLfがFar端に達した図10に示す状態から更に第1方向R1にフォーカス操作リング9fの回転操作を続けると、フォーカスレンズLfがFar端に位置したままフォーカス操作リング9fが回転される所謂回し過ぎの状態となる(図11参照)。回し過ぎの状態においては、図11に示すように、フォーカス操作リング9fの回転位置とフォーカスレンズLfの位置の関係がずれた状態となる。 When the rotation operation of the focus operation ring 9f is further continued in the first direction R1 from the state shown in FIG. 10 in which the focus lens Lf has reached the Far end, the focus operation ring 9f is rotated while the focus lens Lf is located at the Far end. This results in a so-called over-rotation condition (see FIG. 11). In a state where it is turned too much, as shown in FIG. 11, the relationship between the rotational position of the focus operation ring 9f and the position of the focus lens Lf becomes deviated.
 この回し過ぎの状態から今度はフォーカス操作リング9fを逆方向である第2方向R2に回転させる回転操作を始めると、フォーカスレンズLfの挙動は二通り考えられる。 When the rotation operation of rotating the focus operation ring 9f in the opposite direction, that is, the second direction R2, is started from this over-rotation state, there are two possible behaviors of the focus lens Lf.
 一つは、Far端とフォーカス操作リング9fの回転位置の対応関係、及び、Near端とフォーカス操作リング9fの回転位置の対応関係がそれぞれ保たれた状態でフォーカスレンズLfが移動されるモードである。具体的には、Far端からフォーカス操作リング9fを回し過ぎた分だけ第2方向R2に回転操作されるまで、即ち、フォーカス操作リング9fの回転位置とフォーカスレンズLfの位置の関係のずれが解消した図10の状態になるまでフォーカス操作リング9fの回転操作を無視するものである。この挙動を「第1モードM1」とする。 One is a mode in which the focus lens Lf is moved while maintaining the correspondence between the Far end and the rotational position of the focus operation ring 9f, and the correspondence between the Near end and the rotational position of the focus operation ring 9f. . Specifically, until the focus operation ring 9f is rotated in the second direction R2 by the amount by which the focus operation ring 9f has been rotated too much from the Far end, that is, the discrepancy in the relationship between the rotational position of the focus operation ring 9f and the position of the focus lens Lf is resolved. The rotation operation of the focus operation ring 9f is ignored until the state shown in FIG. 10 is reached. This behavior is referred to as "first mode M1."
 第1モードM1では、フォーカスレンズLfの可動時においては、フォーカス操作リング9fの回転位置とフォーカスレンズLfの光軸方向の位置の対応関係が維持される。従って、フォーカス操作リング9fの回転位置を所定の回転位置に回転させた場合のフォーカスレンズLfの位置は常に同じ位置とされる。
 即ち、フォーカス操作リング9fの回転位置を感覚で合わせるだけで目的の被写体におおよそ合焦させることが可能となり、合焦操作を直感的に行うことができる。
In the first mode M1, when the focus lens Lf is movable, the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf in the optical axis direction is maintained. Therefore, when the rotational position of the focus operation ring 9f is rotated to a predetermined rotational position, the position of the focus lens Lf is always the same.
In other words, it is possible to roughly focus on the target subject just by adjusting the rotational position of the focus operation ring 9f by feeling, and the focusing operation can be performed intuitively.
 もう一つは、Far端とフォーカス操作リング9fの回転位置の対応関係、及びNear端とフォーカス操作リング9fの回転位置の対応関係がずれた状態でフォーカスレンズLfがNear端側に移動されるモードである。具体的には、フォーカス操作リング9fの回転操作の操作方向が変わった地点、即ち折り返し点がフォーカスレンズLfのFar端に対応する新たな第1回転位置P1とされる(図12参照)。この挙動を「第2モードM2」とする。なお、図12においては、新たな第2回転位置P2については図示していない。 The other is a mode in which the focus lens Lf is moved to the Near end side in a state where the correspondence between the rotational position of the Far end and the focus operation ring 9f and the correspondence between the rotational position of the Near end and the focus operation ring 9f are deviated. It is. Specifically, the point where the operating direction of the rotation operation of the focus operation ring 9f is changed, ie, the turning point, is set as a new first rotation position P1 corresponding to the Far end of the focus lens Lf (see FIG. 12). This behavior is referred to as "second mode M2." Note that in FIG. 12, the new second rotational position P2 is not illustrated.
 第2モードM2では、フォーカス操作リング9fの回転操作を行った場合に、フォーカスレンズLfが可動可能な方向であれば常にフォーカスレンズLfを可動させることができる。従って、上述した回し過ぎの状態であってもフォーカスレンズLfを即座に移動させることが可能となり、迅速な合焦操作を行うことができる。 In the second mode M2, when the focus operation ring 9f is rotated, the focus lens Lf can always be moved as long as the focus lens Lf is in a movable direction. Therefore, even if the focus lens Lf is turned too much as described above, it is possible to immediately move the focus lens Lf, and a quick focusing operation can be performed.
 レンズ側制御部37は、上述したような第1モードM1の制御と第2モードM2の制御を行うために、初期設定処理部F1、報知処理部F2、レンズ移動量算出部F3、切替処理部F4として機能する(図8参照)。 In order to control the first mode M1 and the second mode M2 as described above, the lens side control section 37 includes an initial setting processing section F1, a notification processing section F2, a lens movement amount calculation section F3, and a switching processing section. Functions as F4 (see Figure 8).
 初期設定処理部F1は、例えば、撮像装置1の起動時においてフォーカスレンズLf及びズームレンズLzをそれぞれの基準位置に移動させる処理を行う。そのために、フォーカスレンズLfにはPIセンサフィン44が設けられ、レンズ装置3の内部におけるPIセンサフィン44に対応する位置にPIセンサ45が設けられている(図13参照)。 The initial setting processing unit F1 performs a process of moving the focus lens Lf and the zoom lens Lz to their respective reference positions, for example, when the imaging device 1 is started up. For this purpose, the focus lens Lf is provided with a PI sensor fin 44, and a PI sensor 45 is provided at a position corresponding to the PI sensor fin 44 inside the lens device 3 (see FIG. 13).
 PIセンサフィン44は、フォーカスレンズLfの移動に伴って同方向に同量だけ移動される。一方、PIセンサ45はレンズ装置3内部における位置が固定とされている。即ち、PIセンサフィン44とPIセンサ45の距離はフォーカスレンズLfの移動によって増減する。 The PI sensor fin 44 is moved by the same amount in the same direction as the focus lens Lf moves. On the other hand, the position of the PI sensor 45 inside the lens device 3 is fixed. That is, the distance between the PI sensor fin 44 and the PI sensor 45 increases or decreases as the focus lens Lf moves.
 PIセンサ45は図14に示すように両端部が同方向に折り曲げられた略コ字状に形成されており、両端部の一方には発光体45aが設けられ他方には受光部45bが設けられている。 As shown in FIG. 14, the PI sensor 45 is formed into a substantially U-shape with both ends bent in the same direction, and a light emitter 45a is provided at one of the ends, and a light receiving section 45b is provided at the other end. ing.
 受光部45bは発光体45aから出射された光を受光して受光信号を出力する。但し、PIセンサフィン44がPIセンサ45の両端部の間に挿入された状態においては発光体45aから出射された光がPIセンサフィン44によって遮られ受光部45bで受光できなくなる。 The light receiving section 45b receives the light emitted from the light emitter 45a and outputs a light reception signal. However, when the PI sensor fin 44 is inserted between both ends of the PI sensor 45, the light emitted from the light emitter 45a is blocked by the PI sensor fin 44 and cannot be received by the light receiving section 45b.
 初期設定処理部F1は、PIセンサ45から出力される信号に基づいてフォーカスレンズLfを基準位置に移動させる。 The initial setting processing unit F1 moves the focus lens Lf to the reference position based on the signal output from the PI sensor 45.
 レンズ側制御部37が初期設定処理部F1として機能する際にレンズ側制御部37が実行する処理の流れについて図15に示す。 FIG. 15 shows the flow of processing executed by the lens side control unit 37 when the lens side control unit 37 functions as the initial setting processing unit F1.
 先ず、レンズ側制御部37はステップS101において、PIセンサ45の出力が「H:High」であるか否かを判定する。PIセンサ45の出力が「L:Low」とされた状態は、図14に示すようにPIセンサ45の発光体45aから出射された光がPIセンサフィン44に遮られて受光部45bに届いていない状態である。 First, in step S101, the lens-side control unit 37 determines whether the output of the PI sensor 45 is "H: High". When the output of the PI sensor 45 is "L: Low", as shown in FIG. 14, the light emitted from the light emitter 45a of the PI sensor 45 is blocked by the PI sensor fin 44 and reaches the light receiving part 45b. There is no condition.
 この場合には、レンズ側制御部37はステップS102において、フォーカスレンズLfをNear側に移動させる。このときのフォーカスレンズLfの移動量は移動分解能に応じた最小移動量とされる。 In this case, the lens-side control unit 37 moves the focus lens Lf to the Near side in step S102. The amount of movement of the focus lens Lf at this time is the minimum amount of movement according to the movement resolution.
 このステップS101の判定処理とステップS102の移動処理とを繰り返すことにより、受光部45bが所定以上の光を受光できる状態となるまでPIセンサフィン44がNear側に移動される。 By repeating the determination process in step S101 and the movement process in step S102, the PI sensor fin 44 is moved to the Near side until the light receiving section 45b is in a state where it can receive a predetermined amount of light or more.
 ステップS101においてPIセンサ45の出力が「H:High」であると判定した場合、レンズ側制御部37はステップS103において、フォーカスレンズLfをFar側に移動させる。このときのフォーカスレンズLfの移動量についても移動分解能に応じた最小移動量とされる。 If it is determined in step S101 that the output of the PI sensor 45 is "H: High", the lens-side control unit 37 moves the focus lens Lf to the Far side in step S103. The amount of movement of the focus lens Lf at this time is also set to the minimum amount of movement according to the movement resolution.
 続いて、レンズ側制御部37はステップS104において、PIセンサ45の出力が「L」であるか否かを判定する。ステップS102の処理を何度か実行した後にステップS104の処理を実行した場合には、通常ステップS104の判定処理においてPIセンサ45の出力が「L」であると判定される。 Subsequently, in step S104, the lens-side control unit 37 determines whether the output of the PI sensor 45 is "L". If the process in step S104 is executed after the process in step S102 has been executed several times, the output of the PI sensor 45 is normally determined to be "L" in the determination process in step S104.
 一方、図15の一連の処理の始めからPIセンサ45の出力が「H」であるときは、PIセンサ45に対してPIセンサフィン44がNear側に離れて位置している場合などである。このようなときは、ステップS104の判定処理でPIセンサ45の出力が「H」であると判定され、ステップS103の処理、即ち、フォーカスレンズLfをFar側に移動させる処理が実行されることにより、PIセンサフィン44がPIセンサ45に近づく。 On the other hand, when the output of the PI sensor 45 is "H" from the beginning of the series of processes in FIG. 15, this is the case when the PI sensor fin 44 is located away from the PI sensor 45 on the Near side. In such a case, the output of the PI sensor 45 is determined to be "H" in the determination process of step S104, and the process of step S103, that is, the process of moving the focus lens Lf toward the Far side, is executed. , the PI sensor fin 44 approaches the PI sensor 45.
 ステップS104においてPIセンサ45の出力が「L」であると判定した場合、即ち、PIセンサ45の出力が一度「H」になった後に再び「L」となったと判定した場合、レンズ側制御部37はステップS105において、フォーカスレンズLfの現在位置を基準位置として設定する処理を行う。 If it is determined in step S104 that the output of the PI sensor 45 is "L", that is, if it is determined that the output of the PI sensor 45 once became "H" and then became "L" again, the lens side control unit 37 performs a process of setting the current position of the focus lens Lf as a reference position in step S105.
 これにより、撮像装置1の起動時に必ず所定の位置にフォーカスレンズLfが位置するように制御される。なお、図15に示す一連の処理は、撮像装置1の起動時のみならずリセットボタンが押下された場合などに実行されることにより、撮像装置1の起動後に撮影を行った場合であっても適宜撮像装置1を初期状態へと戻すことができる。 Thereby, the focus lens Lf is controlled to be always positioned at a predetermined position when the imaging device 1 is started. Note that the series of processes shown in FIG. 15 is executed not only when the imaging device 1 is started, but also when the reset button is pressed, so that even when shooting is performed after the imaging device 1 is started, The imaging device 1 can be returned to the initial state as appropriate.
 図8に示す報知処理部F2は、フォーカスレンズLfがNear端に達した場合、或いはFar端に達した場合にその旨を撮影者に報知するための処理を行う。具体的には、フォーカスレンズLfに設けられた報知部43としての振動子に対して触覚信号を送ることにより触覚刺激を撮影者に伝達する。 The notification processing unit F2 shown in FIG. 8 performs processing to notify the photographer when the focus lens Lf reaches the Near end or the Far end. Specifically, the tactile stimulus is transmitted to the photographer by sending a tactile signal to a vibrator serving as a notification unit 43 provided in the focus lens Lf.
 レンズ移動量算出部F3は、上述したように、レンズ側マウント部3mの所定の通信端子を介して供給された本体部2からの指示、又は、操作部5が受け付けた撮影者の操作に基づき、ズームレンズLzの位置を制御する。 As described above, the lens movement amount calculation section F3 calculates the amount of movement based on an instruction from the main body section 2 supplied via a predetermined communication terminal of the lens side mount section 3m, or based on the photographer's operation received by the operation section 5. , controls the position of the zoom lens Lz.
 また、レンズ移動量算出部F3は、フォーカス操作リング9fの操作に応じて発生する第1受光信号S1及び第2受光信号S2の正弦波パルスに応じてフォーカスレンズLfの移動方向と移動量を算出し、フォーカスレンズドライバ40に駆動指示を出力する。 Further, the lens movement amount calculation unit F3 calculates the movement direction and movement amount of the focus lens Lf according to the sine wave pulses of the first light reception signal S1 and the second light reception signal S2 generated in response to the operation of the focus operation ring 9f. Then, a drive instruction is output to the focus lens driver 40.
 なお、レンズ移動量算出部F3は、前述した第1モードM1と第2モードM2の別に応じてフォーカスレンズLfの駆動方法を異ならせる。第1モードM1でフォーカスレンズLfを駆動させる場合のレンズ移動量算出部F3の挙動について図16に示す。 Note that the lens movement amount calculation unit F3 changes the driving method of the focus lens Lf depending on the first mode M1 and the second mode M2 described above. FIG. 16 shows the behavior of the lens movement amount calculation unit F3 when the focus lens Lf is driven in the first mode M1.
 フォーカス操作リング9fの検出パターン部16と検出部18の協働により、フォーカス操作リング9fの回転操作に応じて検出部18から正弦波パルス(第1受光信号S1及び第2受光信号S2)が出力される。 Through the cooperation of the detection pattern section 16 of the focus operation ring 9f and the detection section 18, a sine wave pulse (first light reception signal S1 and second light reception signal S2) is output from the detection section 18 in response to the rotational operation of the focus operation ring 9f. be done.
 レンズ移動量算出部F3は、五つの処理ブロックB1、B2、B3、B4、B5を含んで構成されている。
 処理ブロックB1は、検出した正弦波パルスに基づいてフォーカスレンズLfの移動量を算出する。具体的には出力された正弦波パルスの数をカウントすることでフォーカスレンズLfの移動量を算出するブロックである。また、処理ブロックB1は、上述した第1受光信号S1と第2受光信号S2の位相差に応じてフォーカスレンズLfの移動方向を特定する。
The lens movement amount calculation unit F3 is configured to include five processing blocks B1, B2, B3, B4, and B5.
Processing block B1 calculates the amount of movement of the focus lens Lf based on the detected sine wave pulse. Specifically, this block calculates the amount of movement of the focus lens Lf by counting the number of output sine wave pulses. Furthermore, the processing block B1 specifies the moving direction of the focus lens Lf according to the phase difference between the first light reception signal S1 and the second light reception signal S2 described above.
 処理ブロックB2は、撮像装置1の起動後或いは撮像装置1のリセット後に行われたフォーカス操作リング9fに対する操作量から算出されたフォーカスレンズLfの移動量を積算して基準位置に加算することによりフォーカスレンズLfの目標位置を算出して保持するブロックである。 Processing block B2 integrates the amount of movement of the focus lens Lf calculated from the amount of operation performed on the focus operation ring 9f after the imaging device 1 is started or after the imaging device 1 is reset, and adds the amount to the reference position to adjust the focus. This block calculates and holds the target position of the lens Lf.
 ここで算出されるフォーカスレンズLfの目標位置は、フォーカスレンズ可動範囲Rfを考慮していないものとされ、「処理前目標位置」としてレンズ側メモリ38に記憶される。ここでいう「処理前」とは、フォーカスレンズ可動範囲Rfを考慮した後述の処理を行う前という意味である。 The target position of the focus lens Lf calculated here does not take into account the focus lens movable range Rf, and is stored in the lens side memory 38 as a "pre-processing target position". "Before processing" here means before performing the processing described below in consideration of the focus lens movable range Rf.
 処理前目標位置の算出例について述べる。
 例えば、Far側への移動をプラス側の移動としNear側の移動をマイナス側の移動とする。Near端から50μmの位置が基準位置とされたとき、最初の操作でFar側に3パルス分(例えば3μm)の移動が行われ、次の操作でNear側に10パルス分(例えば10μm)の移動が行われた場合、移動量の積算値としては「-7」パルス分の移動、即ち初期位置よりも7パルス分だけNear側に移動させる操作が行われたこととなる。このとき、処理前目標位置としてNear端から43μmの位置が算出される。
An example of calculating the target position before processing will be described.
For example, movement toward the Far side is defined as a movement on the plus side, and movement toward the Near side is defined as movement on the minus side. When a position 50 μm from the Near end is set as the reference position, the first operation moves 3 pulses (for example, 3 μm) toward the Far side, and the next operation moves 10 pulses (for example, 10 μm) toward the Near side. When this has been performed, the integrated value of the movement amount is a movement of "-7" pulses, that is, an operation of moving 7 pulses from the initial position to the Near side has been performed. At this time, a position 43 μm from the Near end is calculated as the pre-processing target position.
 処理ブロックB3は、記憶済みとされたフォーカスレンズLfの現在位置を取得するブロックである。 Processing block B3 is a block that obtains the current position of the focus lens Lf that has been stored.
 処理ブロックB4は、フォーカスレンズLfの現在位置にマイナス1を乗算した値と処理前目標位置を足し込むことによりフォーカスレンズLfの移動量を算出するブロックである。フォーカスレンズLfの現在位置がNear端から50μmである場合、処理ブロックB4の演算結果は、(-50)+43=-7μmとなる。即ち、Near側に7μm移動させれば処理目標位置に達することがわかる。 Processing block B4 is a block that calculates the amount of movement of the focus lens Lf by adding the value obtained by multiplying the current position of the focus lens Lf by minus 1 and the target position before processing. When the current position of the focus lens Lf is 50 μm from the Near end, the calculation result of processing block B4 is (-50)+43=-7 μm. That is, it can be seen that the processing target position is reached by moving 7 μm toward the Near side.
 なお、処理ブロックB2において撮像装置1の起動後或いはリセット後からのフォーカス操作リング9fの移動量の積算値が保持されることで、フォーカスレンズLfのNear端やFar端から回し過ぎた分を回し戻すまで処理ブロックB2において算出された目標位置がフォーカスレンズ可動範囲Rf外に位置することになる。
 従って、フォーカス操作リング9fの回転位置とフォーカスレンズLfの位置の対応関係を維持することができる。
Note that in processing block B2, the integrated value of the amount of movement of the focus operation ring 9f after starting or resetting the imaging device 1 is held, so that the focus lens Lf can be rotated by an amount that has been turned too much from the Near end or Far end. Until it returns, the target position calculated in processing block B2 will be located outside the focus lens movable range Rf.
Therefore, the correspondence relationship between the rotational position of the focus operation ring 9f and the position of the focus lens Lf can be maintained.
 処理ブロックB5は、処理ブロックB4によって足し込まれた値、即ち、フォーカスレンズLfの移動量についてリミット処理を行うと共にフォーカスレンズ可動範囲Rfを加味した移動方向と移動量を算出して後段に出力するブロックである。
 処理ブロックB4で算出されたフォーカスレンズLfの移動量は、そのまま用いるとフォーカスレンズ可動範囲Rfの範囲外に達してしまう場合がある。処理ブロックB5は、リミット処理を行うことでフォーカスレンズ可動範囲Rfを考慮した移動量を設定することができる。
The processing block B5 performs limit processing on the value added by the processing block B4, that is, the amount of movement of the focus lens Lf, and calculates the movement direction and amount taking into account the focus lens movable range Rf, and outputs it to the subsequent stage. It is a block.
If used as is, the movement amount of the focus lens Lf calculated in processing block B4 may reach outside the focus lens movable range Rf. Processing block B5 can set the amount of movement in consideration of the focus lens movable range Rf by performing limit processing.
 また、リミット処理では、移動後のフォーカスレンズLfの位置がFar端やNear端に位置している場合にはその旨を示す信号を出力する。当該信号は、フラグ情報などとしてレンズ側制御部37から本体側制御部25に通知される。 In addition, in the limit processing, if the position of the focus lens Lf after movement is located at the Far end or Near end, a signal indicating that fact is output. The signal is notified from the lens side control section 37 to the main body side control section 25 as flag information or the like.
 処理ブロックB6は、フォーカスレンズLfの移動方向及び移動量に基づいてフォーカスレンズドライバ40に対する駆動指示を生成して出力するブロックである。 The processing block B6 is a block that generates and outputs a drive instruction for the focus lens driver 40 based on the moving direction and amount of movement of the focus lens Lf.
 なお、第2モードM2でフォーカスレンズLfを駆動させる場合のレンズ移動量算出部F3の挙動は、図16から処理ブロックB2の処理を省いたものとなる。即ち、第2モードM2においてはフォーカスレンズLfの処理前目標位置が算出されず、フォーカス操作リング9fに対する操作量が現在位置に足し込まれる(処理ブロックB4)。
 従って、フォーカス操作リング9fの回転位置とフォーカスレンズLfの位置の対応関係が維持されない。
Note that the behavior of the lens movement amount calculation unit F3 when driving the focus lens Lf in the second mode M2 is the same as in FIG. 16 without the processing of the processing block B2. That is, in the second mode M2, the pre-processing target position of the focus lens Lf is not calculated, and the operation amount for the focus operation ring 9f is added to the current position (processing block B4).
Therefore, the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf is not maintained.
 レンズ側制御部37がレンズ移動量算出部F3として機能する際にレンズ側制御部37が実行する処理の流れについて図17に示す。 FIG. 17 shows the flow of processing executed by the lens side control unit 37 when the lens side control unit 37 functions as the lens movement amount calculation unit F3.
 レンズ移動量算出部F3はステップS201において、検出部18が検出した正弦波パルスをフォーカスレンズLfの移動量に変換する処理を行う。 In step S201, the lens movement amount calculation unit F3 performs a process of converting the sine wave pulse detected by the detection unit 18 into the movement amount of the focus lens Lf.
 次に、レンズ移動量算出部F3はステップS202において、処理前目標位置を算出する。処理前目標位置は、前述したように、フォーカスレンズ可動範囲Rfを考慮していない目標位置である。 Next, the lens movement amount calculation unit F3 calculates a pre-processing target position in step S202. As described above, the pre-processing target position is a target position that does not take into account the focus lens movable range Rf.
 レンズ移動量算出部F3はステップS203において、フォーカスレンズLfの現在位置を取得する。 In step S203, the lens movement amount calculation unit F3 acquires the current position of the focus lens Lf.
 レンズ移動量算出部F3はステップS204において、現在位置と目標位置の差分を算出する。 In step S204, the lens movement amount calculation unit F3 calculates the difference between the current position and the target position.
 レンズ移動量算出部F3はステップS205において、リミット処理を行う。リミット処理では、フォーカスレンズ可動範囲Rfを考慮した移動量を算出すると共に、フォーカスレンズLfの位置がフォーカスレンズ可動範囲Rfの端に位置する場合には信号を出力する。 The lens movement amount calculation unit F3 performs limit processing in step S205. In the limit processing, the amount of movement is calculated in consideration of the focus lens movable range Rf, and a signal is output when the position of the focus lens Lf is located at the end of the focus lens movable range Rf.
 レンズ移動量算出部F3はステップS206において、フォーカスレンズドライバ40への駆動指示を生成して出力する。
 これにより、フォーカスレンズドライバ40からフォーカスレンズLfを駆動させる駆動部に駆動電圧が印加されてフォーカスレンズLfが移動される。
In step S206, the lens movement amount calculation unit F3 generates and outputs a drive instruction to the focus lens driver 40.
As a result, a drive voltage is applied from the focus lens driver 40 to the drive unit that drives the focus lens Lf, and the focus lens Lf is moved.
 図8の説明に戻る。
 切替処理部F4は、切替操作子10aに対する操作に応じて、自動でフォーカシングを行うオートモードと、手動でフォーカシングを行う第1モードM1と第2モードM2の切り替えを行う。オートモードにおいては、フォーカス操作リング9fに対する操作が無効とされる。
Returning to the explanation of FIG.
The switching processing unit F4 performs switching between an auto mode in which focusing is performed automatically, and a first mode M1 and a second mode M2 in which focusing is performed manually, in response to an operation on the switching operator 10a. In the auto mode, operations on the focus operation ring 9f are disabled.
 切替操作子10aの具体的な構成例を図18に示す。切替操作子10aは、レンズ筐体7の外周面に設けられ光軸方向に細長い溝状に形成された凹部46と、該凹部46を光軸方向にスライド可能とされた摘子部47とを備えている。 A specific example of the configuration of the switching operator 10a is shown in FIG. The switching operator 10a includes a recess 46 provided on the outer peripheral surface of the lens housing 7 and formed in the shape of a long and narrow groove in the optical axis direction, and a knob 47 that is slidable in the recess 46 in the optical axis direction. We are prepared.
 摘子部47は、凹部46における本体部2側の位置(第1位置)と、略中央の位置(第2位置)と、被写体側の位置(第3位置)とにおいて位置を保持することが可能とされている。切替操作子10aは、オートモード(図中の「AF」)に切り替えられる際に摘子部47が凹部46における第1位置にスライドされた状態で保持され、第1モードM1(図中の「MF1」)に切り替えられる際に摘子部47が凹部46における第2位置にスライドされた状態で保持され、第2モードM2(図中の「MF2」)に切り替えられる際に摘子部47が凹部46における第3位置にスライドされた状態で保持される。 The knob portion 47 can maintain its positions in the recessed portion 46 at a position on the main body portion 2 side (first position), at a substantially central position (second position), and at a position on the subject side (third position). It is considered possible. The switching operator 10a is held in a state in which the knob 47 is slid to the first position in the recess 46 when switching to the auto mode ("AF" in the figure), and when switching to the first mode M1 ("AF" in the figure). When switching to the second mode M2 ("MF2" in the figure), the knob 47 is slid and held in the second position in the recess 46. It is held in a slid state in the third position in the recess 46.
 切替処理部F4は、摘子部47の凹部46における位置を検出した検出信号に基づいて、フォーカスレンズLfについての制御方法を、オートモードと第1モードM1と第2モードM2とで切り替える。
The switching processing unit F4 switches the control method for the focus lens Lf between the auto mode, the first mode M1, and the second mode M2 based on a detection signal that detects the position of the knob 47 in the recess 46.
<5.第2の実施の形態>
 第2の実施の形態における撮像装置1Aは、上述した第1の実施の形態と異なり、フォーカスレンズLfが所定の位置に位置した場合にその旨を報知する機能を有している。また、オートモードと第1モードM1と第2モードM2の切り替えがメニュー画面を介して行われる。
<5. Second embodiment>
Unlike the first embodiment described above, the imaging device 1A in the second embodiment has a function of notifying when the focus lens Lf is located at a predetermined position. Further, switching between the auto mode, the first mode M1, and the second mode M2 is performed via the menu screen.
 ここでは、撮像装置1Aにおける第1の実施の形態とは異なる部分についての説明を主に行い、同様の構成とされた部分については適宜説明を省略する。 Here, parts of the imaging device 1A that are different from the first embodiment will be mainly described, and descriptions of parts having the same configuration will be omitted as appropriate.
 撮像装置1Aは、本体部2とレンズ装置3Aを備えている(図19参照)。 The imaging device 1A includes a main body 2 and a lens device 3A (see FIG. 19).
 本体部2は、本体側制御部25がメニュー表示のための制御を行う。このメニュー表示制御により、背面モニタ6上に図20に示すようなモード選択画面G1が表示される。 In the main body section 2, a main body side control section 25 performs control for menu display. Through this menu display control, a mode selection screen G1 as shown in FIG. 20 is displayed on the rear monitor 6.
 モード選択画面G1においては、「MF RING MODE」とされたタイトルと共に、二つの選択肢SL1、SL2が提示される。 On the mode selection screen G1, two options SL1 and SL2 are presented with the title "MF RING MODE".
 選択肢SL1は、第1モードM1を選択するためのものである。選択肢SL1が選択されると、マニュアルモードが選択された際のフォーカスレンズLfの挙動として、フォーカス操作リング9fの回転位置とフォーカスレンズLfの光軸方向の位置の対応関係が維持された状態でフォーカスレンズLfの駆動がなされる。 Option SL1 is for selecting the first mode M1. When option SL1 is selected, the behavior of the focus lens Lf when the manual mode is selected is that the focus is maintained while the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf in the optical axis direction is maintained. The lens Lf is driven.
 選択肢SL2は、第2モードM2を選択するためのものである。選択肢SL2が選択されると、マニュアルモードが選択された際のフォーカスレンズLfの挙動として、フォーカス操作リング9fの回転操作に応じて可能な限りフォーカスレンズLfが駆動される。即ち、フォーカス操作リング9fの回転位置とフォーカスレンズLfの光軸方向の位置の対応関係は維持されない。 Option SL2 is for selecting second mode M2. When the option SL2 is selected, the behavior of the focus lens Lf when the manual mode is selected is to drive the focus lens Lf as much as possible according to the rotational operation of the focus operation ring 9f. That is, the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf in the optical axis direction is not maintained.
 また、モード選択画面G1には、二つのボタン操作子Btn1、Btn2が配置されている。 Furthermore, two button operators Btn1 and Btn2 are arranged on the mode selection screen G1.
 ボタン操作子Btn1は、ボタン上に「OK」というテキストが重畳表示されており、選択肢SL1、SL2に対する選択操作を適用する際に押下される操作子である。 The button operator Btn1 has the text "OK" superimposed on the button, and is an operator that is pressed when applying a selection operation to the options SL1 and SL2.
 ボタン操作子Btn2は、ボタン上に「キャンセル」というテキストが重畳表示されており、選択肢SL1、SL2に対する選択操作を適用せずにモード選択画面G1の表示を終了させる際に押下される選択肢である。 The button operator Btn2 has the text "Cancel" superimposed on the button, and is an option that is pressed to end the display of the mode selection screen G1 without applying the selection operation to the options SL1 and SL2. .
 レンズ装置3Aは、図19に示すように、操作子10としてフォーカス操作リング9fとズーム操作リング9zと切替操作子10aとに加えて、記憶操作子10bを備えている。記憶操作子10bは、例えば、ボタンなどの態様でレンズ筐体7の外周面上に設けられている。 As shown in FIG. 19, the lens device 3A includes, as the operators 10, a focus operation ring 9f, a zoom operation ring 9z, a switching operator 10a, and a memory operator 10b. The memory operator 10b is provided on the outer peripheral surface of the lens housing 7 in the form of, for example, a button.
 レンズ側制御部37Aは、記憶操作子10bが操作された際にフォーカスレンズLfの現在の位置を記憶する処理を行う記憶処理部F5としての機能を有している。記憶処理部F65は、記憶操作子10bが操作された時点でのフォーカスレンズLfの位置を記憶すると共に、当該時点におけるズームレンズLzの位置や他の光学素子8の位置も含めた状態を記憶するように構成されていてもよい。 The lens-side control unit 37A has a function as a storage processing unit F5 that performs a process of storing the current position of the focus lens Lf when the storage operator 10b is operated. The storage processing unit F65 stores the position of the focus lens Lf at the time when the storage operator 10b is operated, and also stores the state including the position of the zoom lens Lz and the positions of other optical elements 8 at the time. It may be configured as follows.
 例えば、所望の被写体に合焦するための光学素子8の位置などの設定を記憶するための記憶操作子10bは用いられる。 For example, a memory operator 10b is used to store settings such as the position of the optical element 8 for focusing on a desired subject.
 レンズ側制御部37の報知処理部F2は、上述したように、フォーカスレンズLfがフォーカスレンズ可動範囲Rfの端に到達した際に振動子等を用いた報知処理を行うものである。これに加えて、報知処理部F2は、フォーカスレンズLfが記憶操作子10bによって記憶された記憶位置に到達した際にも報知部43としての振動子等を用いた報知処理を行う。 As described above, the notification processing unit F2 of the lens-side control unit 37 performs notification processing using a vibrator or the like when the focus lens Lf reaches the end of the focus lens movable range Rf. In addition to this, the notification processing unit F2 also performs notification processing using a vibrator or the like as the notification unit 43 when the focus lens Lf reaches the storage position stored by the storage operator 10b.
 これにより、撮影者は、所望の被写体に合焦するための操作を適切且つ迅速に行うことが可能となる。 This allows the photographer to appropriately and quickly perform an operation to focus on a desired subject.
 なお、報知処理部F2がレンズ装置3Aに搭載された振動子を用いて報知を行う場合には、フォーカスレンズLfがNear側の端部に到達した際の振動パターンと、Far側の端部に到達した際の振動パターンと、記憶位置に到達した際の振動パターンとをそれぞれ異ならせてもよい。これにより、撮影者はフォーカスレンズLfの位置を適切に把握することができ利便性の向上が図られる。 In addition, when the notification processing unit F2 performs notification using a vibrator mounted on the lens device 3A, the vibration pattern when the focus lens Lf reaches the end on the Near side and the end on the Far side The vibration pattern upon arrival may be different from the vibration pattern upon arrival at the storage position. This allows the photographer to appropriately grasp the position of the focus lens Lf, thereby improving convenience.
 レンズ側制御部37が記憶処理部F5及び報知処理部F2としての機能を実現するために実行する処理の一例について図21に示す。なお、図21は、フォーカスレンズLfがフォーカスレンズ可動範囲Rfの端に到達したことを報知するための処理を省略して記載している。 FIG. 21 shows an example of a process that the lens-side control unit 37 executes to realize the functions of the storage processing unit F5 and the notification processing unit F2. Note that FIG. 21 omits the process for notifying that the focus lens Lf has reached the end of the focus lens movable range Rf.
 レンズ側制御部37はステップS301において、記憶操作子10bに対する操作を検出したか否かを判定する。当該操作を検出したと判定した場合、レンズ側制御部37はステップS302において、フォーカスレンズLfの現在位置を記憶する記憶処理を実行する。 In step S301, the lens-side control unit 37 determines whether or not an operation on the storage operator 10b has been detected. If it is determined that the operation has been detected, the lens-side control unit 37 executes a storage process to store the current position of the focus lens Lf in step S302.
 ステップS302の処理後、或いは、ステップS301で操作を検出していないと判定した場合、レンズ側制御部37はステップS303において、撮影者によるフォーカシング操作を検出したか否かを判定する。 After the processing in step S302, or if it is determined in step S301 that no operation has been detected, the lens-side control unit 37 determines in step S303 whether or not a focusing operation by the photographer has been detected.
 例えば、フォーカス操作リング9fに対する回転操作を検出した場合、フォーカシング操作を検出したと判定してレンズ側制御部37はステップS304へと進む。 For example, if a rotational operation on the focus operation ring 9f is detected, it is determined that a focusing operation has been detected, and the lens-side control unit 37 proceeds to step S304.
 ステップS304において、レンズ側制御部37はフォーカスレンズLfの位置と記憶された位置が一致しているか否かを判定する。 In step S304, the lens-side control unit 37 determines whether the position of the focus lens Lf matches the stored position.
 一致したと判定した場合、レンズ側制御部37はステップS305において、報知部43による報知処理を実行する。 If it is determined that they match, the lens-side control unit 37 causes the notification unit 43 to perform notification processing in step S305.
 ステップS305の処理を実行した後、或いは、ステップS303においてフォーカシング操作を検出していないと判定した場合や、ステップS304においてフォーカスレンズLfと記憶された位置が一致していないと判定した場合、レンズ側制御部37はステップS301の処理へと戻る。
After executing the process in step S305, or if it is determined in step S303 that no focusing operation has been detected, or if it is determined in step S304 that the focus lens Lf and the stored position do not match, the lens side The control unit 37 returns to the process of step S301.
<6.変形例>
 報知部43としての振動子は上述した以外に本体部2に設けられていてもよい。
 例えば、本体部2のグリップ部2b(図1参照)に振動子が設けられることにより、撮影者の右掌に触覚刺激を与えてもよい。
<6. Modified example>
A vibrator serving as the notification section 43 may be provided in the main body section 2 in addition to the one described above.
For example, a vibrator may be provided on the grip section 2b (see FIG. 1) of the main body section 2 to provide tactile stimulation to the photographer's right palm.
 上述した記憶操作子10bは、本体部2に設けられていてもよい。
 本体部2に取り付けられるレンズ装置3は本体部2と比較して重量化しやすい。従って、本体部2に報知部43としての振動子や記憶操作子10bが設けられることにより、レンズ装置3の内部における部品配置の自由度を向上させることができ、レンズ装置3の大型化を防止し重量化を抑制することができる。
The storage operator 10b described above may be provided in the main body section 2.
The lens device 3 attached to the main body 2 is easier to weigh than the main body 2. Therefore, by providing the vibrator as the notification section 43 and the memory operator 10b in the main body section 2, the degree of freedom in arranging components inside the lens device 3 can be improved, and the enlargement of the lens device 3 can be prevented. This makes it possible to suppress weight increase.
 上述したフォーカスレンズLfについてのNear端やFar端は機構的な端部ではなく機構的な端部から若干の余裕を持たせた位置において制御的に設定されてもよい。これにより、製造誤差によって装置ごとにNear端やFar端が異なってしまうことを防止することができる。即ち、撮像装置1の製造誤差による個体差を吸収することができる。 The Near end and Far end of the focus lens Lf described above may be set in a controlled manner not at the mechanical end but at a position with some margin from the mechanical end. This can prevent the Near end and Far end from differing from device to device due to manufacturing errors. That is, individual differences due to manufacturing errors of the imaging device 1 can be absorbed.
 上述した図16に示す処理ブロックB3は、処理前目標値を算出するブロックとして説明したが、これ以外の例も考えられる。例えば、処理ブロックB5は、フォーカスレンズLfがNear端に達した状態において「H」となるNear端信号を出力し、フォーカスレンズLfがFar端に達した状態において「H」となるFar端信号を出力する。 Although the processing block B3 shown in FIG. 16 described above has been described as a block for calculating the pre-processing target value, other examples are also possible. For example, the processing block B5 outputs a Near end signal that becomes "H" when the focus lens Lf reaches the Near end, and outputs a Far end signal that becomes "H" when the focus lens Lf reaches the Far end. Output.
 そして、処理ブロックB2は、過剰な回転操作の操作量を保持すると共に、逆方向の操作量と相殺する処理を行う。例えば、Near端信号が「H」とされた場合には、処理ブロックB2は、Near側への操作量をプラスの値、Far側への操作量をマイナスの値として操作量(移動量でもよい)を積算してレンズ側メモリ38に記憶する。
 例えば、Near端信号が「H」とされた状態で、Near側に10μm移動させる操作を行うと、レンズ側メモリ38に「10」が記憶される。その後、Far側に15μm移動させる操作を行うと、レンズ側メモリ38に記憶された10μmと相殺すると共に、相殺しきれなかった値である5μmが処理ブロックB4に出力される。
Then, processing block B2 performs a process of holding the operation amount of the excessive rotation operation and canceling it with the operation amount in the opposite direction. For example, when the Near end signal is set to "H", processing block B2 sets the operation amount to the Near side as a positive value and the operation amount to the Far side as a negative value. ) is integrated and stored in the lens side memory 38.
For example, when the Near end signal is set to "H" and an operation is performed to move it 10 μm toward the Near side, "10" is stored in the lens side memory 38. After that, when an operation is performed to move it 15 μm toward the Far side, it is canceled out with the 10 μm stored in the lens side memory 38, and the value that cannot be canceled out, 5 μm, is output to the processing block B4.
 処理ブロックB4では、処理ブロックB3で取得したフォーカスレンズLfの現在位置に処理ブロックB2において相殺後の5μmが足し込まれて、目標位置として処理ブロックB5に出力される。 In processing block B4, 5 μm after cancellation in processing block B2 is added to the current position of focus lens Lf obtained in processing block B3, and the result is output to processing block B5 as a target position.
 このような処理を用いた場合でも、フォーカス操作リング9fの回転位置とフォーカスレンズLfの位置の対応関係を維持することができる。 Even when such processing is used, the correspondence between the rotational position of the focus operation ring 9f and the position of the focus lens Lf can be maintained.
 なお、上述した例においてはフォーカス操作リング9fとフォーカスレンズLf及びフォーカスレンズドライバ40を例に挙げて説明したが、ズーム操作リング9zとズームレンズLz及びズームレンズドライバ42についても同様の構成を備えてもよい。その際には、上述した「Near」を「TELE」と読み替え、「Far」を「WIDE」と読み替えることで、ズーム操作リング9zの回転位置とズームレンズLzの位置関係を維持した状態でズーミング操作を行うことができる。
In addition, although the focus operation ring 9f, the focus lens Lf, and the focus lens driver 40 were explained as an example in the above-mentioned example, the zoom operation ring 9z, the zoom lens Lz, and the zoom lens driver 42 may also have the same configuration. Good too. In that case, by replacing the above-mentioned "Near" with "TELE" and "Far" with "WIDE", the zooming operation can be performed while maintaining the rotational position of the zoom operation ring 9z and the positional relationship of the zoom lens Lz. It can be performed.
<7.まとめ>
 上述した各例において説明したように、レンズ装置3(3A)は、軸周り方向Rに回転操作される操作リング(フォーカス操作リング9fやズーム操作リング9z)と、光軸方向における第1端(例えばFar端やWIDE端)と第2端(例えばNear端やTELE端)の間を移動可能な光学レンズ(フォーカスレンズLfやズームレンズLz)と、操作リングに対する操作方向及び操作量に応じて光学レンズの移動方向及び移動量を決定する演算処理部(レンズ側制御部37、37A)と、を備え、操作リングは、光学レンズの第1端に対応した回転位置が第1回転位置P1とされ、光学レンズの第2端に対応した回転位置が第2回転位置P2とされる。また、演算処理部は、操作リングの回転位置が第1回転位置P1から第2回転位置P2までとされた対応範囲の範囲外にある場合に光学レンズが移動しないように移動量を決定する。
 これにより、操作リングを第1回転位置P1よりもFar側に過剰に回した場合(上述した回し過ぎの場合)に光学レンズがFar端(ズームレンズLzの場合はWIDE端)に位置したままとされる。そして、第1回転位置P1よりもFar側(ズームレンズLzの場合はWIDE側)に回しすぎた回転位置からNear側(ズームレンズLzの場合はTELE側)に回した場合に、第1回転位置P1に戻ってくるまでは操作リングの回転に応じた光学レンズの移動が行われない。操作リングを第2回転位置P2からNear側(ズームレンズLzの場合はTELE側)に過剰に回した場合についても同様であり、操作リングをNear側(ズームレンズLzの場合はTELE側)に回しすぎた回転位置から第2回転位置P2に戻ってくるまでは光学レンズの移動が行われない。
 従って、操作リングの回転位置と光学レンズの位置が対応した状態が維持されるため、撮影者は、一度合焦操作を行った後に再度合焦操作を行う場合に、操作リングの回転位置を感覚で合わせることで適切な合焦操作を行いやすく、スムーズな合焦を行うことができる。
<7. Summary>
As explained in each of the above examples, the lens device 3 (3A) includes an operation ring (focus operation ring 9f and zoom operation ring 9z) that is rotatably operated in the direction R around the axis, and a first end ( An optical lens (focus lens Lf or zoom lens Lz) that can be moved between a second end (for example, a Far end or a WIDE end) and a second end (for example, a Near end or a TELE end), and an optical It is equipped with an arithmetic processing unit (lens-side control unit 37, 37A) that determines the direction and amount of movement of the lens, and the operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position P1. , the rotational position corresponding to the second end of the optical lens is defined as a second rotational position P2. Further, the arithmetic processing unit determines the amount of movement so that the optical lens does not move when the rotational position of the operating ring is outside the corresponding range from the first rotational position P1 to the second rotational position P2.
This allows the optical lens to remain at the Far end (WIDE end in the case of the zoom lens Lz) even if the operating ring is turned excessively to the Far side from the first rotational position P1 (in the case of excessive turning as described above). be done. Then, when the rotation position is turned too far to the Far side (WIDE side in the case of the zoom lens Lz) than the first rotation position P1, when it is turned to the Near side (the TELE side in the case of the zoom lens Lz), the first rotation position The optical lens is not moved in accordance with the rotation of the operating ring until it returns to P1. The same applies when the operating ring is turned excessively from the second rotational position P2 to the Near side (TELE side in the case of the zoom lens Lz); The optical lens does not move until it returns to the second rotation position P2 from the rotation position it passed.
Therefore, since the rotational position of the operation ring and the position of the optical lens are maintained in correspondence, the photographer can sense the rotational position of the operation ring when performing the focusing operation again after performing the focusing operation once. By aligning with , you can easily perform appropriate focusing operations and achieve smooth focusing.
 上述したように、レンズ装置3(3A)において、光学レンズはフォーカスレンズLfとされ、第1端はFar端とされ、第2端はNear端とされてもよい。
 これにより、フォーカス操作リング9fの回転位置を感覚で所定の回転位置に合わせることによりピント位置をおおよそ所望の位置に合わせることができる。
As described above, in the lens device 3 (3A), the optical lens may be the focus lens Lf, the first end may be the Far end, and the second end may be the Near end.
Thereby, the focus position can be roughly adjusted to a desired position by intuitively adjusting the rotational position of the focus operation ring 9f to a predetermined rotational position.
 上述したように、レンズ装置3(3A)において、光学レンズはズームレンズLzとされ、第1端はTELE端とされ、第2端はWIDE端とされてもよい。
 これにより、ズーム操作リング9zの回転位置を感覚で所定の回転位置に合わせることによりおおよそ所望の画角に合わせることができる。
As described above, in the lens device 3 (3A), the optical lens may be the zoom lens Lz, the first end may be the TELE end, and the second end may be the WIDE end.
Thereby, by intuitively adjusting the rotational position of the zoom operation ring 9z to a predetermined rotational position, it is possible to roughly adjust to a desired angle of view.
 図8等を参照して説明したように、レンズ装置3(3A)は、光学レンズ(フォーカスレンズLfやズームレンズLz)の位置が所定の位置に達したことを報知する報知部43を備えていてもよい。
 これにより、撮影者は光学レンズが移動限界に達したことや所望の位置に達したことなどを認識することができる。
As described with reference to FIG. 8 and the like, the lens device 3 (3A) includes a notification section 43 that notifies that the position of the optical lens (focus lens Lf or zoom lens Lz) has reached a predetermined position. You can.
This allows the photographer to recognize that the optical lens has reached its movement limit or reached a desired position.
 前述したように、レンズ装置3(3A)において、所定の位置は第1端(例えばFar端やWIDE端)または第2端(例えばNear端やTELE端)の何れかとされてもよい。
 報知部43は、例えば、発光体の発光や振動子による振動や音声などによって光学レンズ(フォーカスレンズLfやズームレンズLz)の可動範囲(例えばフォーカスレンズ可動範囲Rf)を撮影者に報知することができる。従って、必要以上に撮影者が操作リング(フォーカス操作リング9fやズーム操作リング9z)を回転させてしまうことが防止され、操作リングの回転位置を対応範囲内に戻す操作を行う際の操作量を低減させることができる。従って、円滑な撮影を支援することができる。
As described above, in the lens device 3 (3A), the predetermined position may be either the first end (for example, the Far end or the WIDE end) or the second end (for example, the Near end or the TELE end).
The notification unit 43 can notify the photographer of the movable range (for example, focus lens movable range Rf) of the optical lens (focus lens Lf or zoom lens Lz) by, for example, light emission from a light emitter, vibration by a vibrator, or sound. can. Therefore, the photographer is prevented from rotating the operation ring (focus operation ring 9f or zoom operation ring 9z) more than necessary, and the amount of operation required to return the rotational position of the operation ring to within the corresponding range is prevented. can be reduced. Therefore, smooth photographing can be supported.
 図21等を参照して説明したように、レンズ装置3(3A)において、所定の位置は、対応範囲において撮影者が指定した操作リング(フォーカス操作リング9fやズーム操作リング9z)の回転位置に対応した位置とされてもよい。
 例えば、予め所定の位置にピント位置を合わせて登録しておくことで、操作リングの回転操作時に所望の位置にピント位置を合わせることを容易に行うことができる。
As explained with reference to FIG. 21 etc., in the lens device 3 (3A), the predetermined position is the rotational position of the operation ring (focus operation ring 9f or zoom operation ring 9z) specified by the photographer in the corresponding range. It may be set to a corresponding position.
For example, by aligning and registering the focus position at a predetermined position in advance, it is possible to easily adjust the focus position to a desired position when rotating the operating ring.
 図19等を参照して説明したように、レンズ装置3Aは、撮影者が指定した操作リング(フォーカス操作リング9fやズーム操作リング9z)の回転位置を記憶させる記憶操作子10bを備え、演算処理部(レンズ側制御部37、37A)は、記憶させた回転位置と操作中の操作リングの回転位置が一致した場合に報知部43を用いた報知処理を行ってもよい。
 これにより、撮影者は所望のピント位置や所望の画角を記憶させることができる。従って、報知部43の報知を知覚することにより所望の撮影状態をセッティングすることが可能となり、利便性の向上が図られる。
As described with reference to FIG. 19 etc., the lens device 3A includes a memory operator 10b that stores the rotational position of the operation ring (focus operation ring 9f or zoom operation ring 9z) specified by the photographer, and performs arithmetic processing. (lens-side control units 37, 37A) may perform notification processing using the notification unit 43 when the stored rotational position matches the rotational position of the operating ring being operated.
This allows the photographer to memorize a desired focus position and desired angle of view. Therefore, by perceiving the notification from the notification unit 43, it becomes possible to set a desired photographing state, and convenience is improved.
 上述したように、レンズ装置3(3A)における報知部43として振動子が設けられていてもよい。
 振動子が振動することにより光学レンズ(フォーカスレンズLfやズームレンズLz)が移動限界の位置に達したことを通知する。これにより、例えば、ファインダを覗き込んだ状態でも光学レンズの可動範囲を撮影者に知覚させることができる。
As described above, a vibrator may be provided as the notification section 43 in the lens device 3 (3A).
Vibration of the vibrator notifies that the optical lens (focus lens Lf or zoom lens Lz) has reached its movement limit position. This allows the photographer to perceive the movable range of the optical lens even when looking through the finder, for example.
 図9等を参照して説明したように、レンズ装置3(3A)の演算処理部(レンズ側制御部37、37A)は、光学レンズ(フォーカスレンズLfやズームレンズLz)の基準位置を設定する初期設定処理を行ってもよい。
 光学レンズの基準位置は例えば光学レンズの可動範囲の略中央とされる。このように、初期設定処理が実行されるたびに光学レンズが基準位置に移動されることで、普段通りの操作リング(フォーカス操作リング9fやズーム操作リング9z)の操作に応じて光学レンズがいつものように移動されるため、感覚での操作に好適である。
As explained with reference to FIG. 9 etc., the arithmetic processing section (lens side control section 37, 37A) of the lens device 3 (3A) sets the reference position of the optical lens (focus lens Lf and zoom lens Lz). Initial setting processing may also be performed.
The reference position of the optical lens is, for example, approximately the center of the movable range of the optical lens. In this way, the optical lens is moved to the reference position each time the initial setting process is executed, so that the optical lens is always adjusted according to the usual operation of the operation ring (focus operation ring 9f or zoom operation ring 9z) Since it moves like this, it is suitable for intuitive operation.
 図8等を参照して説明したように、レンズ装置3(3A)の演算処理部(レンズ側制御部37、37A)は、第1モードM1と第2モードM2とを切り替え可能とされ、第1モードM1は、操作リング(フォーカス操作リング9fやズーム操作リング9z)の回転位置が対応範囲の範囲外にある場合に光学レンズ(フォーカスレンズLfやズームレンズLz)が移動しないように移動量を決定するモードとされ、第2モードM2は、操作リングの回転位置によらず操作リングの回転方向と回転量に応じて移動方向及び移動量を決定するモードとされてもよい。
 撮影者によっては好みの操作態様が異なる場合がある。例えば、操作リングの回転操作が対応範囲外まで及んでしまった場合に、回転方向の切り替えと同時に光学レンズの逆方向への移動が行われるのか否かについてもその一つである。
 本技術のレンズ装置3(3A)では、これらの態様を切り替え可能とされているため、撮影者の好みに合わせた光学レンズの移動態様を選択することができ、利便性の向上を図ることができる。
As described with reference to FIG. 8 and the like, the arithmetic processing unit (lens side control unit 37, 37A) of the lens device 3 (3A) is capable of switching between the first mode M1 and the second mode M2. 1 mode M1 sets the amount of movement so that the optical lens (focus lens Lf or zoom lens Lz) does not move when the rotational position of the operation ring (focus operation ring 9f or zoom operation ring 9z) is outside the corresponding range. The second mode M2 may be a mode in which the direction of movement and amount of movement are determined according to the direction and amount of rotation of the operation ring, regardless of the rotational position of the operation ring.
The preferred operation mode may differ depending on the photographer. For example, when the rotational operation of the operating ring extends beyond the corresponding range, one of the issues is whether or not the optical lens is moved in the opposite direction at the same time as the rotational direction is switched.
In the lens device 3 (3A) of the present technology, these modes can be switched, so the movement mode of the optical lens can be selected according to the photographer's preference, and convenience can be improved. can.
 図8等を参照して説明したように、レンズ装置3(3A)は、切り替えを行う切替操作子10aを備えていてもよい。
 切替操作子10aが設けられることで、第1モードM1と第2モードM2の切り替えを簡易に行うことができる。
As described with reference to FIG. 8 and the like, the lens device 3 (3A) may include a switching operator 10a that performs switching.
By providing the switching operator 10a, it is possible to easily switch between the first mode M1 and the second mode M2.
 上述した各例において説明したように、撮像装置1(1A)は、内部に撮像素子28が配置されマウント部(本体側マウント部2m)を備えた本体部2と、マウント部(本体側マウント部2m)に取り付けられるレンズ鏡筒(レンズ装置3、3A)と、を備え、レンズ鏡筒は、軸周り方向Rに回転操作される操作リング(フォーカス操作リング9fやズーム操作リング9z)と、光軸方向における第1端と第2端の間を移動可能な光学レンズ(フォーカスレンズLfやズームレンズLz)と、操作リングに対する操作方向及び操作量に応じて光学レンズの移動方向及び移動量を決定する演算処理部(レンズ側制御部37、37A)と、を備え、操作リングは、光学レンズの第1端に対応した回転位置が第1回転位置P1とされ、光学レンズの第2端に対応した回転位置が第2回転位置P2とされ、演算処理部は、操作リングの回転位置が第1回転位置P1から第2回転位置P2までとされた対応範囲の範囲外にある場合に光学レンズが移動しないように移動量を決定してもよい。
 これにより、撮像装置1(1A)において上述した効果を得ることができる。即ち、操作リングの回転位置と光学レンズの位置が対応した状態が維持されるため、撮影者は、一度合焦操作を行った後に再度合焦操作を行う場合に、操作リングの回転位置を感覚で合わせることで適切な合焦操作を行いやすく、スムーズな合焦を行うことができる。
As described in each of the above examples, the imaging device 1 (1A) includes a main body 2 in which an image sensor 28 is disposed and a mount (main body side mount 2m), and a mount (main body side mount 2m). 2m), and the lens barrel includes an operation ring (focus operation ring 9f or zoom operation ring 9z) that is rotatably operated in the direction R around the axis, and an optical An optical lens (focus lens Lf or zoom lens Lz) that is movable between a first end and a second end in the axial direction, and the direction and amount of movement of the optical lens are determined according to the direction and amount of operation with respect to the operation ring. a calculation processing unit (lens side control unit 37, 37A), and the operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position P1, and a rotational position corresponding to the second end of the optical lens. The rotational position is set as the second rotational position P2, and the arithmetic processing unit determines whether the optical lens is rotated when the rotational position of the operating ring is outside the corresponding range from the first rotational position P1 to the second rotational position P2. The amount of movement may be determined so as not to move.
Thereby, the above-mentioned effects can be obtained in the imaging device 1 (1A). In other words, since the rotational position of the operation ring and the position of the optical lens are maintained in correspondence, the photographer can sense the rotational position of the operation ring when performing the focusing operation once and then again. By aligning with , you can easily perform appropriate focusing operations and achieve smooth focusing.
  図8等を参照して説明したように、撮像装置1(1A)の本体部2は、光学レンズ(フォーカスレンズLfやズームレンズLz)の位置が第1端または第2端の何れかに達したことを報知する報知部43を有していてもよい。
 これにより、例えば、撮像装置1(1A)が交換式のレンズ装置3(3A)としてのレンズ鏡筒を備えている場合に、本体部2に取り付けられるレンズ鏡筒によらず、撮影者は光学レンズが移動限界に達したことを認識することができる。
As described with reference to FIG. 8 and the like, the main body 2 of the imaging device 1 (1A) is configured such that the position of the optical lens (focus lens Lf or zoom lens Lz) reaches either the first end or the second end. It may also include a notification section 43 that notifies the user of the fact that he/she has done so.
As a result, for example, when the imaging device 1 (1A) is equipped with a lens barrel as an interchangeable lens device 3 (3A), the photographer can use the optical It can be recognized that the lens has reached its travel limit.
 上述したように、撮像装置1(1A)においては、報知部43として振動子が設けられてもよい。
 報知部43としての振動子は、例えば、本体部2のグリップ部分に設けられる。これにより、撮影者は光学レンズ(フォーカスレンズLfやズームレンズLz)が移動限界に達したことを知覚することができる。
As described above, in the imaging device 1 (1A), a vibrator may be provided as the notification section 43.
A vibrator serving as the notification section 43 is provided, for example, in a grip portion of the main body section 2. This allows the photographer to perceive that the optical lens (focus lens Lf or zoom lens Lz) has reached its movement limit.
 図20等を参照して説明したように、撮像装置1Aにおける演算処理部(レンズ側制御部37A)は、操作リング(フォーカス操作リング9fやズーム操作リング9z)の回転位置が対応範囲の範囲外にある場合に光学レンズ(フォーカスレンズLfやズームレンズLz)が移動しないように移動量を決定する第1モードM1と、操作リングの回転位置によらず操作リングの回転方向と回転量に応じて移動方向及び移動量を決定する第2モードM2とを切り替えるためのメニュー表示(モード選択画面G1の表示)を行い、メニュー表示に対する操作に応じて第1モードM1と第2モードM2とを切り替える切替処理を行ってもよい。
 メニュー表示に対する操作によって第1モードM1と第2モードM2の切り替えを行うことにより、切替ボタン等を設けることと比較して部品点数の削減を図ることができ、製造工数や製造コストの削減を図ることができる。
As explained with reference to FIG. 20 etc., the arithmetic processing unit (lens side control unit 37A) in the imaging device 1A detects that the rotational position of the operation ring (focus operation ring 9f or zoom operation ring 9z) is outside the corresponding range. A first mode M1 determines the amount of movement so that the optical lens (focus lens Lf or zoom lens Lz) does not move when Displaying a menu (displaying mode selection screen G1) for switching between the second mode M2 that determines the direction and amount of movement, and switching between the first mode M1 and the second mode M2 according to the operation on the menu display. Processing may be performed.
By switching between the first mode M1 and the second mode M2 by operating the menu display, it is possible to reduce the number of parts compared to providing a switching button, etc., and reduce manufacturing man-hours and manufacturing costs. be able to.
 本技術におけるレンズ駆動方法は、光軸方向における第1端と第2端の間を移動可能な光学レンズ(フォーカスレンズLfやズームレンズLz)と、軸周り方向Rに回転操作され、光学レンズの第1端に対応した回転位置が第1回転位置P1とされ、光学レンズの第2端に対応した回転位置が第2回転位置P2とされた操作リング9(フォーカス操作リング9f、ズーム操作リング9z)と、を備えたレンズ装置3(3A)のレンズ駆動方法として、操作リングに対する操作方向及び操作量に応じて光学レンズの移動方向及び移動量を決定し、操作リングの回転位置が第1回転位置P1から第2回転位置P2までとされた対応範囲の範囲外にある場合に光学レンズが移動しないように移動量を決定する処理を、コンピュータ装置としてのレンズ装置が実行するものである。 The lens driving method in the present technology includes an optical lens (a focus lens Lf or a zoom lens Lz) that is movable between a first end and a second end in the optical axis direction, and an optical lens that is rotated in a direction R around the axis. The operating ring 9 (focus operating ring 9f, zoom operating ring 9z) has a rotational position corresponding to the first end as a first rotational position P1, and a rotational position corresponding to the second end of the optical lens as a second rotational position P2. ), the moving direction and moving amount of the optical lens are determined according to the operating direction and operating amount with respect to the operating ring, and the rotational position of the operating ring is set to the first rotation. A lens device serving as a computer device executes a process of determining a movement amount so that the optical lens does not move when the optical lens is outside the corresponding range from the position P1 to the second rotational position P2.
 本技術におけるプログラムは、操作リングに対する操作方向及び操作量に応じて光学レンズの移動方向及び移動量を決定する機能と、操作リングの回転位置が第1回転位置P1から第2回転位置P2までとされた対応範囲の範囲外にある場合に光学レンズが移動しないように移動量を決定する機能とを、レンズ装置3(3A)の演算処理装置(レンズ側制御部37、37A)に実行させるプログラムである。
 このようなプログラムにより上述したレンズ装置3(3A)としての各種の処理を実現することができる。
The program in this technology has a function of determining the moving direction and amount of movement of the optical lens according to the operating direction and amount of operation with respect to the operating ring, and the function of determining the rotational position of the operating ring from the first rotational position P1 to the second rotational position P2. A program that causes the arithmetic processing unit (lens-side control unit 37, 37A) of the lens device 3 (3A) to execute a function of determining the amount of movement so that the optical lens does not move when the optical lens is outside the specified compatible range. It is.
With such a program, various types of processing as the lens device 3 (3A) described above can be realized.
 これらのプログラムはコンピュータ装置等の機器に内蔵されている記録媒体としてのHDD(Hard Disk Drive)や、CPUを有するマイクロコンピュータ内のROM等に予め記録しておくことができる。あるいはまたプログラムは、フレキシブルディスク、CD-ROM(Compact Disk Read Only Memory)、MO(Magneto Optical)ディスク、DVD(Digital Versatile Disc)、ブルーレイディスク(Blu-ray Disc(登録商標))、磁気ディスク、半導体メモリ、メモリカードなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、このようなプログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN(Local Area Network)、インターネットなどのネットワークを介してダウンロードすることもできる。
These programs can be recorded in advance in an HDD (Hard Disk Drive) as a recording medium built into equipment such as a computer device, or in a ROM in a microcomputer having a CPU. Alternatively, the program may be a flexible disk, CD-ROM (Compact Disk Read Only Memory), MO (Magneto Optical) disk, DVD (Digital Versatile Disc), Blu-ray Disc (registered trademark), magnetic disk, semiconductor It can be stored (recorded) temporarily or permanently in a removable recording medium such as a memory or a memory card. Such a removable recording medium can be provided as so-called package software.
In addition to installing such a program into a personal computer or the like from a removable recording medium, it can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limiting, and other effects may also exist.
 また、上述した各例はいかように組み合わせてもよく、各種の組み合わせを用いた場合であっても上述した種々の作用効果を得ることが可能である。
Moreover, the above-mentioned examples may be combined in any way, and even when various combinations are used, it is possible to obtain the various effects described above.
<8.本技術>
 なお本技術は以下のような構成も採ることができる。
(1)
 軸周り方向に回転操作される操作リングと、
 光軸方向における第1端と第2端の間を移動可能な光学レンズと、
 前記操作リングに対する操作方向及び操作量に応じて前記光学レンズの移動方向及び移動量を決定する演算処理部と、を備え、
 前記操作リングは、前記光学レンズの前記第1端に対応した回転位置が第1回転位置とされ、前記光学レンズの前記第2端に対応した回転位置が第2回転位置とされ、
 前記演算処理部は、前記操作リングの回転位置が前記第1回転位置から前記第2回転位置までとされた対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定する
 レンズ装置。
(2)
 前記光学レンズはフォーカスレンズとされ、
 前記第1端はFar端とされ、
 前記第2端はNear端とされた
 上記(1)に記載のレンズ装置。
(3)
 前記光学レンズはズームレンズとされ、
 前記第1端はTELE端とされ、
 前記第2端はWIDE端とされた
 上記(1)に記載のレンズ装置。
(4)
 前記光学レンズの位置が所定の位置に達したことを報知する報知部を備えた
 上記(1)から上記(3)の何れかに記載のレンズ装置。
(5)
 前記所定の位置は前記第1端または前記第2端の何れかとされた
 上記(4)に記載のレンズ装置。
(6)
 前記所定の位置は、前記対応範囲において撮影者が指定した前記操作リングの回転位置に対応した位置とされた
 上記(4)に記載のレンズ装置。
(7)
 撮影者が指定した前記操作リングの回転位置を記憶させる記憶操作子を備え、
 前記演算処理部は、
 前記記憶させた回転位置と操作中の前記操作リングの回転位置が一致した場合に前記報知部を用いた報知処理を行う
 上記(6)に記載のレンズ装置。
(8)
 前記報知部として振動子が設けられた
 上記(4)から上記(7)の何れかに記載のレンズ装置。
(9)
 前記演算処理部は、前記光学レンズの基準位置を設定する初期設定処理を行う
 上記(1)から上記(8)の何れかに記載のレンズ装置。
(10)
 前記演算処理部は、第1モードと第2モードとを切り替え可能とされ、
 前記第1モードは、前記操作リングの回転位置が前記対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定するモードとされ、
 前記第2モードは、前記操作リングの回転位置によらず前記操作リングの回転方向と回転量に応じて前記移動方向及び前記移動量を決定するモードとされた
 上記(1)から上記(9)の何れかに記載のレンズ装置。
(11)
 前記切り替えを行う切替操作子を備えた
 上記(10)に記載のレンズ装置。
(12)
 内部に撮像素子が配置されマウント部を備えた本体部と、
 前記マウント部に取り付けられるレンズ鏡筒と、を備え、
 前記レンズ鏡筒は、
 軸周り方向に回転操作される操作リングと、
 光軸方向における第1端と第2端の間を移動可能な光学レンズと、
 前記操作リングに対する操作方向及び操作量に応じて前記光学レンズの移動方向及び移動量を決定する演算処理部と、を備え、
 前記操作リングは、前記光学レンズの前記第1端に対応した回転位置が第1回転位置とされ、前記光学レンズの前記第2端に対応した回転位置が第2回転位置とされ、
 前記演算処理部は、前記操作リングの回転位置が前記第1回転位置と前記第2回転位置までとされた対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定する
 撮像装置。
(13)
 前記本体部は、前記光学レンズの位置が前記第1端または前記第2端の何れかに達したことを報知する報知部を有する
 上記(12)に記載の撮像装置。
(14)
 前記報知部として振動子が設けられた
 上記(13)に記載の撮像装置。
(15)
 前記演算処理部は、
 前記操作リングの回転位置が前記対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定する第1モードと、前記操作リングの回転位置によらず前記操作リングの回転方向と回転量に応じて前記移動方向及び前記移動量を決定する第2モードとを切り替えるためのメニュー表示を行い、
 前記メニュー表示に対する操作に応じて前記第1モードと前記第2モードとを切り替える切替処理を行う
 上記(12)から上記(14)の何れかに記載の撮像装置。
(16)
 光軸方向における第1端と第2端の間を移動可能な光学レンズと、
 軸周り方向に回転操作され、前記光学レンズの前記第1端に対応した回転位置が第1回転位置とされ、前記光学レンズの前記第2端に対応した回転位置が第2回転位置とされた操作リングと、を備えたレンズ装置のレンズ駆動方法として、
 前記操作リングに対する操作方向及び操作量に応じて前記光学レンズの移動方向及び移動量を決定し、前記操作リングの回転位置が前記第1回転位置から前記第2回転位置までとされた対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定する
 レンズ駆動方法。
<8. This technology>
Note that the present technology can also adopt the following configuration.
(1)
an operating ring that is rotated around the axis;
an optical lens movable between a first end and a second end in the optical axis direction;
an arithmetic processing unit that determines the moving direction and amount of movement of the optical lens according to the operating direction and operating amount with respect to the operating ring,
The operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position, and a rotational position corresponding to the second end of the optical lens as a second rotational position,
The arithmetic processing unit determines the amount of movement so that the optical lens does not move when the rotational position of the operation ring is outside a corresponding range from the first rotational position to the second rotational position. Lens device.
(2)
The optical lens is a focus lens,
The first end is a Far end,
The lens device according to (1) above, wherein the second end is a Near end.
(3)
The optical lens is a zoom lens,
The first end is a TELE end,
The lens device according to (1) above, wherein the second end is a WIDE end.
(4)
The lens device according to any one of (1) to (3) above, including a notification unit that notifies that the position of the optical lens has reached a predetermined position.
(5)
The lens device according to (4) above, wherein the predetermined position is either the first end or the second end.
(6)
The lens device according to (4) above, wherein the predetermined position is a position corresponding to a rotational position of the operating ring specified by the photographer in the corresponding range.
(7)
comprising a memory operator for storing the rotational position of the operating ring specified by the photographer;
The arithmetic processing unit is
The lens device according to (6) above, wherein notification processing using the notification unit is performed when the stored rotational position and the rotational position of the operating ring during operation match.
(8)
The lens device according to any one of (4) to (7) above, wherein a vibrator is provided as the notification section.
(9)
The lens device according to any one of (1) to (8) above, wherein the arithmetic processing unit performs initial setting processing to set a reference position of the optical lens.
(10)
The arithmetic processing unit is capable of switching between a first mode and a second mode,
The first mode is a mode in which the amount of movement is determined so that the optical lens does not move when the rotational position of the operation ring is outside the corresponding range,
The second mode is a mode in which the moving direction and the moving amount are determined according to the rotational direction and rotation amount of the operating ring, regardless of the rotational position of the operating ring. (1) to (9) above. The lens device according to any one of.
(11)
The lens device according to (10) above, including a switching operator that performs the switching.
(12)
A main body portion having an image sensor disposed therein and a mount portion;
a lens barrel attached to the mount section,
The lens barrel is
an operating ring that is rotated around the axis;
an optical lens movable between a first end and a second end in the optical axis direction;
an arithmetic processing unit that determines the moving direction and amount of movement of the optical lens according to the operating direction and operating amount with respect to the operating ring,
The operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position, and a rotational position corresponding to the second end of the optical lens as a second rotational position,
The arithmetic processing unit determines the amount of movement so that the optical lens does not move when the rotational position of the operation ring is outside a corresponding range from the first rotational position to the second rotational position. Imaging device.
(13)
The imaging device according to (12), wherein the main body includes a notification unit that reports that the position of the optical lens has reached either the first end or the second end.
(14)
The imaging device according to (13) above, wherein a vibrator is provided as the notification section.
(15)
The arithmetic processing unit is
a first mode in which the amount of movement is determined so that the optical lens does not move when the rotational position of the operation ring is outside the corresponding range; and a first mode in which the operation ring rotates regardless of the rotational position of the operation ring. Displaying a menu for switching between a second mode that determines the moving direction and the moving amount according to the direction and the amount of rotation;
The imaging device according to any one of (12) to (14) above, wherein a switching process is performed to switch between the first mode and the second mode in accordance with an operation on the menu display.
(16)
an optical lens movable between a first end and a second end in the optical axis direction;
The optical lens is rotated in a direction around the axis, and a rotational position corresponding to the first end of the optical lens is a first rotational position, and a rotational position corresponding to the second end of the optical lens is a second rotational position. As a lens driving method for a lens device equipped with an operation ring,
The moving direction and amount of movement of the optical lens are determined according to the operating direction and operating amount for the operating ring, and the rotational position of the operating ring is within a corresponding range from the first rotational position to the second rotational position. A lens driving method in which the amount of movement is determined so that the optical lens does not move when the optical lens is out of range.
1、1A 撮像装置
2 本体部
2m 本体側マウント部
3、3A レンズ装置
9f フォーカス操作リング
9z ズーム操作リング
10a 切替操作子
10b 記憶操作子
37、37A レンズ側制御部(演算処理部)
43 報知部
Lf フォーカスレンズ
Lz ズームレンズ
M1 第1モード
M2 第2モード
P1 第1回転位置
P2 第2回転位置
R 軸周り方向
1, 1A Imaging device 2 Main unit 2m Main unit side mount unit 3, 3A Lens device 9f Focus operation ring 9z Zoom operation ring 10a Switching operator 10b Memory operator 37, 37A Lens side control unit (arithmetic processing unit)
43 Notification unit Lf Focus lens Lz Zoom lens M1 First mode M2 Second mode P1 First rotation position P2 Second rotation position R Direction around the axis

Claims (16)

  1.  軸周り方向に回転操作される操作リングと、
     光軸方向における第1端と第2端の間を移動可能な光学レンズと、
     前記操作リングに対する操作方向及び操作量に応じて前記光学レンズの移動方向及び移動量を決定する演算処理部と、を備え、
     前記操作リングは、前記光学レンズの前記第1端に対応した回転位置が第1回転位置とされ、前記光学レンズの前記第2端に対応した回転位置が第2回転位置とされ、
     前記演算処理部は、前記操作リングの回転位置が前記第1回転位置から前記第2回転位置までとされた対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定する
     レンズ装置。
    an operating ring that is rotated around the axis;
    an optical lens movable between a first end and a second end in the optical axis direction;
    an arithmetic processing unit that determines the moving direction and amount of movement of the optical lens according to the operating direction and operating amount with respect to the operating ring,
    The operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position, and a rotational position corresponding to the second end of the optical lens as a second rotational position,
    The arithmetic processing unit determines the amount of movement so that the optical lens does not move when the rotational position of the operation ring is outside a corresponding range from the first rotational position to the second rotational position. Lens device.
  2.  前記光学レンズはフォーカスレンズとされ、
     前記第1端はFar端とされ、
     前記第2端はNear端とされた
     請求項1に記載のレンズ装置。
    The optical lens is a focus lens,
    The first end is a Far end,
    The lens device according to claim 1, wherein the second end is a Near end.
  3.  前記光学レンズはズームレンズとされ、
     前記第1端はTELE端とされ、
     前記第2端はWIDE端とされた
     請求項1に記載のレンズ装置。
    The optical lens is a zoom lens,
    The first end is a TELE end,
    The lens device according to claim 1, wherein the second end is a WIDE end.
  4.  前記光学レンズの位置が所定の位置に達したことを報知する報知部を備えた
     請求項1に記載のレンズ装置。
    The lens device according to claim 1, further comprising a notification unit that reports that the position of the optical lens has reached a predetermined position.
  5.  前記所定の位置は前記第1端または前記第2端の何れかとされた
     請求項4に記載のレンズ装置。
    The lens device according to claim 4, wherein the predetermined position is either the first end or the second end.
  6.  前記所定の位置は、前記対応範囲において撮影者が指定した前記操作リングの回転位置に対応した位置とされた
     請求項4に記載のレンズ装置。
    The lens device according to claim 4, wherein the predetermined position is a position corresponding to a rotational position of the operating ring specified by the photographer in the corresponding range.
  7.  撮影者が指定した前記操作リングの回転位置を記憶させる記憶操作子を備え、
     前記演算処理部は、
     前記記憶させた回転位置と操作中の前記操作リングの回転位置が一致した場合に前記報知部を用いた報知処理を行う
     請求項6に記載のレンズ装置。
    comprising a memory operator for storing the rotational position of the operating ring specified by the photographer;
    The arithmetic processing unit is
    The lens device according to claim 6, wherein a notification process using the notification unit is performed when the stored rotational position and the rotational position of the operating ring during operation match.
  8.  前記報知部として振動子が設けられた
     請求項4に記載のレンズ装置。
    The lens device according to claim 4, wherein a vibrator is provided as the notification section.
  9.  前記演算処理部は、前記光学レンズの基準位置を設定する初期設定処理を行う
     請求項1に記載のレンズ装置。
    The lens device according to claim 1, wherein the arithmetic processing unit performs initial setting processing to set a reference position of the optical lens.
  10.  前記演算処理部は、第1モードと第2モードとを切り替え可能とされ、
     前記第1モードは、前記操作リングの回転位置が前記対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定するモードとされ、
     前記第2モードは、前記操作リングの回転位置によらず前記操作リングの回転方向と回転量に応じて前記移動方向及び前記移動量を決定するモードとされた
     請求項1に記載のレンズ装置。
    The arithmetic processing unit is capable of switching between a first mode and a second mode,
    The first mode is a mode in which the amount of movement is determined so that the optical lens does not move when the rotational position of the operation ring is outside the corresponding range,
    The lens device according to claim 1, wherein the second mode is a mode in which the movement direction and the movement amount are determined according to the rotation direction and rotation amount of the operation ring, regardless of the rotation position of the operation ring.
  11.  前記切り替えを行う切替操作子を備えた
     請求項10に記載のレンズ装置。
    The lens device according to claim 10, further comprising a switching operator that performs the switching.
  12.  内部に撮像素子が配置されマウント部を備えた本体部と、
     前記マウント部に取り付けられるレンズ鏡筒と、を備え、
     前記レンズ鏡筒は、
     軸周り方向に回転操作される操作リングと、
     光軸方向における第1端と第2端の間を移動可能な光学レンズと、
     前記操作リングに対する操作方向及び操作量に応じて前記光学レンズの移動方向及び移動量を決定する演算処理部と、を備え、
     前記操作リングは、前記光学レンズの前記第1端に対応した回転位置が第1回転位置とされ、前記光学レンズの前記第2端に対応した回転位置が第2回転位置とされ、
     前記演算処理部は、前記操作リングの回転位置が前記第1回転位置から前記第2回転位置までとされた対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定する
     撮像装置。
    A main body portion having an image sensor disposed therein and a mount portion;
    a lens barrel attached to the mount section,
    The lens barrel is
    an operating ring that is rotated around the axis;
    an optical lens movable between a first end and a second end in the optical axis direction;
    an arithmetic processing unit that determines the moving direction and amount of movement of the optical lens according to the operating direction and operating amount with respect to the operating ring,
    The operation ring has a rotational position corresponding to the first end of the optical lens as a first rotational position, and a rotational position corresponding to the second end of the optical lens as a second rotational position,
    The arithmetic processing unit determines the amount of movement so that the optical lens does not move when the rotational position of the operation ring is outside a corresponding range from the first rotational position to the second rotational position. Imaging device.
  13.  前記本体部は、前記光学レンズの位置が前記第1端または前記第2端の何れかに達したことを報知する報知部を有する
     請求項12に記載の撮像装置。
    The imaging device according to claim 12, wherein the main body includes a notification unit that reports that the position of the optical lens has reached either the first end or the second end.
  14.  前記報知部として振動子が設けられた
     請求項13に記載の撮像装置。
    The imaging device according to claim 13, further comprising a vibrator as the notification section.
  15.  前記演算処理部は、
     前記操作リングの回転位置が前記対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定する第1モードと、前記操作リングの回転位置によらず前記操作リングの回転方向と回転量に応じて前記移動方向及び前記移動量を決定する第2モードとを切り替えるためのメニュー表示を行い、
     前記メニュー表示に対する操作に応じて前記第1モードと前記第2モードとを切り替える切替処理を行う
     請求項12に記載の撮像装置。
    The arithmetic processing unit is
    a first mode in which the amount of movement is determined so that the optical lens does not move when the rotational position of the operation ring is outside the corresponding range; and a first mode in which the operation ring rotates regardless of the rotational position of the operation ring. Displaying a menu for switching between a second mode that determines the moving direction and the moving amount according to the direction and the amount of rotation;
    The imaging device according to claim 12, wherein a switching process is performed to switch between the first mode and the second mode in accordance with an operation on the menu display.
  16.  光軸方向における第1端と第2端の間を移動可能な光学レンズと、
     軸周り方向に回転操作され、前記光学レンズの前記第1端に対応した回転位置が第1回転位置とされ、前記光学レンズの前記第2端に対応した回転位置が第2回転位置とされた操作リングと、を備えたレンズ装置のレンズ駆動方法として、
     前記操作リングに対する操作方向及び操作量に応じて前記光学レンズの移動方向及び移動量を決定し、前記操作リングの回転位置が前記第1回転位置から前記第2回転位置までとされた対応範囲の範囲外にある場合に前記光学レンズが移動しないように前記移動量を決定する
     レンズ駆動方法。
    an optical lens movable between a first end and a second end in the optical axis direction;
    The optical lens is rotated in a direction around the axis, and a rotational position corresponding to the first end of the optical lens is a first rotational position, and a rotational position corresponding to the second end of the optical lens is a second rotational position. As a lens driving method for a lens device equipped with an operation ring,
    The moving direction and amount of movement of the optical lens are determined according to the operating direction and operating amount for the operating ring, and the rotational position of the operating ring is within a corresponding range from the first rotational position to the second rotational position. A lens driving method in which the amount of movement is determined so that the optical lens does not move when the optical lens is out of range.
PCT/JP2023/014726 2022-05-27 2023-04-11 Lens device, imaging device, and lens drive method WO2023228609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022086777 2022-05-27
JP2022-086777 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228609A1 true WO2023228609A1 (en) 2023-11-30

Family

ID=88919103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014726 WO2023228609A1 (en) 2022-05-27 2023-04-11 Lens device, imaging device, and lens drive method

Country Status (1)

Country Link
WO (1) WO2023228609A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265771A (en) * 1993-03-15 1994-09-22 Minolta Camera Co Ltd Lens barrel using magnetic sensor
JP2003244490A (en) * 2002-02-19 2003-08-29 Canon Inc Image pickup device, image pickup method, computer readable storage medium and computer program
JP2006078638A (en) * 2004-09-08 2006-03-23 Canon Inc Optical equipment
JP2007272219A (en) * 2006-03-10 2007-10-18 Canon Inc Optical apparatus, image pickup apparatus and lens device
JP2007279677A (en) * 2006-03-14 2007-10-25 Olympus Imaging Corp Focus state display device for camera
JP2010092035A (en) * 2008-09-11 2010-04-22 Panasonic Corp Lens barrel and imaging apparatus
JP2021184008A (en) * 2020-05-21 2021-12-02 株式会社ニコン Optical instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265771A (en) * 1993-03-15 1994-09-22 Minolta Camera Co Ltd Lens barrel using magnetic sensor
JP2003244490A (en) * 2002-02-19 2003-08-29 Canon Inc Image pickup device, image pickup method, computer readable storage medium and computer program
JP2006078638A (en) * 2004-09-08 2006-03-23 Canon Inc Optical equipment
JP2007272219A (en) * 2006-03-10 2007-10-18 Canon Inc Optical apparatus, image pickup apparatus and lens device
JP2007279677A (en) * 2006-03-14 2007-10-25 Olympus Imaging Corp Focus state display device for camera
JP2010092035A (en) * 2008-09-11 2010-04-22 Panasonic Corp Lens barrel and imaging apparatus
JP2021184008A (en) * 2020-05-21 2021-12-02 株式会社ニコン Optical instrument

Similar Documents

Publication Publication Date Title
JP4910998B2 (en) Image blur correction device, lens barrel, and imaging device
JP2007322712A (en) Image blur correcting device, lens device and imaging apparatus
JP2006319824A (en) Imaging device
JP5906435B2 (en) Camera system, camera body and lens unit
JP2007121853A (en) Imaging apparatus
US9398220B2 (en) Shake correction apparatus and image pickup apparatus thereof, and optical device mountable on image pickup apparatus
JP2006079007A (en) Digital camera
JP2007065041A (en) Imaging apparatus
JP2006337680A (en) Driving device, shake correcting unit and imaging apparatus
WO2023228609A1 (en) Lens device, imaging device, and lens drive method
JP2014056480A (en) Rotation operation unit and electronic device having the same
JP5718144B2 (en) Drive control device
US12035022B2 (en) Information input device allowing tilt operation of multi-directional input
WO2023228697A1 (en) Lens device, imaging device, and lens driving method
JP2017044878A (en) Image-capturing device and control method therefor
JP7422465B2 (en) Information input device and its imaging device
JP6059948B2 (en) Interchangeable lens and imaging apparatus using the same
JP4770282B2 (en) LENS DEVICE AND IMAGING DEVICE
JP2009086494A (en) Initial position setting method for camera-shake correction unit, lens barrel and imaging apparatus
JP2021021844A (en) Lens device and imaging device
JP7187230B2 (en) Electronic equipment with vibration device
WO2023204100A1 (en) Optical device
JP2018194758A (en) Optical instrument
JP6257741B2 (en) Interchangeable lens and imaging apparatus using the same
JP7309338B2 (en) Electronic equipment with vibration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811487

Country of ref document: EP

Kind code of ref document: A1