WO2023226398A1 - 混流风机及风管机 - Google Patents
混流风机及风管机 Download PDFInfo
- Publication number
- WO2023226398A1 WO2023226398A1 PCT/CN2022/140577 CN2022140577W WO2023226398A1 WO 2023226398 A1 WO2023226398 A1 WO 2023226398A1 CN 2022140577 W CN2022140577 W CN 2022140577W WO 2023226398 A1 WO2023226398 A1 WO 2023226398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow fan
- mixed
- flow
- air
- impeller
- Prior art date
Links
- 230000008859 change Effects 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 11
- 230000008602 contraction Effects 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000002829 reductive effect Effects 0.000 description 33
- 238000004088 simulation Methods 0.000 description 18
- 238000004364 calculation method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 230000003068 static effect Effects 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/403—Casings; Connections of working fluid especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/002—Details, component parts, or accessories especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/181—Axial flow rotors
- F04D29/183—Semi axial flow rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/667—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
Definitions
- the present disclosure relates to the technical field of air treatment equipment, and specifically relates to a mixed-flow fan and an air duct fan.
- the duct machine is a type of air conditioner.
- some duct machines use the method of emitting cold air from the top and hot air from the bottom. This can achieve waterfall cooling and carpet-type heating.
- the air outlet of the air duct machine is reversible.
- the air duct machine with reversible air outlet usually uses a cross-flow mixed flow fan or a centrifugal mixed flow fan.
- this kind of mixed flow fan cannot rotate in reverse direction.
- the rear wind direction cannot be reversed. Therefore, at least two mixed-flow fans can only be installed, one responsible for forward air outlet and one responsible for reverse air outlet. This will not only make the mixed-flow fan structure larger, but also cost more.
- the mixed-flow fan is a mixed-flow fan between the axial mixed-flow fan and the centrifugal mixed-flow fan.
- the impeller of the mixed-flow fan allows the air to move both centrifugally and axially.
- the airflow movement mixes two forms of movement, axial flow and centrifugal flow, so it is called "mixed flow”.
- the mixed-flow fan can not only make the volume smaller, but also ensure the direction and pressure of the air flow.
- the present disclosure provides a mixed flow fan and an air duct machine, which alleviates the problem of limited air supply effect of the mixed flow fan due to volume limitations.
- a mixed-flow fan including: a volute; and a current collector, which is disposed at the air inlet position of the volute, and the current collector has a structure similar to that of the volute.
- the flow guide channel also has an outlet end, the inner diameter of the flow guide channel located at the outlet end is D3, and the range of D1/D3 is 1 ⁇ 1.2.
- the distance from the inlet end to the outlet end is H1, and the range of H1/D2 is 0.1 ⁇ 0.3.
- the flow guide channel also has a constriction section, the constriction section is located between the inlet end and the outlet end, and the flow area of the constriction section is from the inlet end to the outlet end. gradually decreases in the direction of the end.
- the rate of change in the reduction of the flow area of the constriction section gradually decreases.
- the rate of change in the reduction of the flow area of the constriction section remains unchanged.
- the flow guide channel further has a straight section, the straight section is connected to the constriction section, and the straight section is located between the constriction section and the outlet end.
- the impeller includes blades, the maximum height of the blades in the impeller axis direction is H2, and the range of H2/D2 is 0.38 to 0.48.
- the impeller further includes a wheel cover, an air flow channel is formed inside the wheel cover, and the blades are located in the air flow channel; the air flow channel has an expansion section, and the expansion section is located in the air flow channel. Between the air inlet end and the air outlet end of the air flow channel, the flow area of the expansion section gradually increases in the direction from the air inlet end of the air flow channel to the air outlet end of the air flow channel.
- the volute is further provided with an air outlet; the distance between the inlet end of the guide channel and the air outlet is A, and the ratio of H2/A ranges from 0.37 to 0.47.
- the maximum diameter of the volute is B, and the ratio of B/D2 ranges from 1.1 to 1.25.
- a line connecting the center of the inlet end of the flow guide channel and the center of the air outlet is collinear with the axis of the impeller.
- the blades have dimples and/or protrusions on their surface.
- an air duct fan including the above-mentioned mixed-flow fan.
- the mixed-flow fan of the present disclosure adjusts the ratio of the inner diameter of the inlet end of the guide channel to the maximum outlet diameter of the impeller, so that the airflow encounters less resistance and generates less turbulence when flowing through the collector and impeller. Under the condition that the volume of the overall mixed-flow fan is limited, the air volume is increased by nearly 6%, the pressure head is increased by nearly 8%, and the calculation efficiency is increased by nearly 6%. This greatly improves the performance of the mixed-flow fan and makes the mixed-flow fan more efficient.
- Figure 1 is a schematic structural diagram of a mixed-flow fan provided by some embodiments of the present disclosure
- Figure 2 is a schematic structural diagram of an impeller of a mixed-flow fan provided by some embodiments of the present disclosure
- Figure 3 is a schematic structural diagram of a current collector of a mixed-flow fan provided by other embodiments of the present disclosure
- mixed-flow fans are usually equipped with a collector at the air inlet.
- the collector can evenly and smoothly introduce the gas on the intake side into the interior of the mixed-flow fan to reduce flow loss and improve the efficiency of the mixed-flow fan. Therefore, the structure of the collector will affect the performance of the mixed flow fan. A well-designed collector will have less flow loss, while an unreasonable design will worsen the inlet conditions and lead to a decrease in performance.
- the more conventional optimization methods for the structure of the collector are mostly based on the height of the collector, the size of the air inlet, the size of the air outlet and the shape of the guide surface. Although these improvements can improve the air supply of the mixed flow fan to a certain extent. efficiency.
- this conventional improvement of the structural parameters of the collector has a very limited impact on the air volume of the mixed-flow fan. The reason is that when the mixed-flow fan is running, the process of airflow entering the mixed-flow fan and being sent out by the mixed-flow fan is a coherent overall process. Therefore, when considering improvement factors, you cannot only consider the optimization of the parameters of a single component and ignore it.
- the problem of coordination between the parameters of the current collector and the parameters of other components of the mixed flow fan The neglected cooperation between the parameters of the current collector and the parameters of other components of the mixed-flow fan is an improvement point that can effectively increase the air volume of the mixed-flow fan.
- Embodiment 1 of the present disclosure as shown in Figures 1 and 2 discloses a mixed-flow fan, which includes a volute 10, a current collector 20 and an impeller 30.
- the current collector 20 is connected to the volute 10.
- the current collector 20 is disposed at the air inlet of the volute 10.
- the current collector 20 has a guide channel 21 that communicates with the inside of the volute 10.
- the inner diameter of the inlet end 211 of the guide channel 21 is D1; the impeller 30 is disposed on the volute.
- the maximum diameter of the impeller 30 is D2, and the range of D1/D2 is 0.8 to 0.9.
- the mixed-flow fan of the present disclosure sets the range of D1/D2 to 0.8-0.9.
- the inner diameter of the inlet end 211 of the guide channel 21 is D1. That is to say, D1 is the inlet diameter of the entire mixed-flow fan, and D2 is the maximum outlet diameter of the impeller 30. At a reasonable ratio between the two, the mixed-flow fan can obtain relatively excellent performance data.
- the simulation data is as follows:
- the airflow can enter the impeller 30 smoothly and evenly while ensuring the air intake volume, so that the airflow can flow through the collector 20 and the impeller 30 , the resistance encountered is smaller, the turbulence generated is less, and the air inlet resistance of the impeller 30 is reduced. Therefore, the function of the impeller 30 is increased, thereby increasing the air volume and pressure head of the mixed flow fan, and the calculation efficiency is also improved.
- the value of D1/D2 is 0.84
- the air intake volume is larger, but the turbulence generated is the least, and the air intake resistance of the impeller 30 is the smallest.
- the air volume, pressure head and calculation efficiency are significantly improved, and the air volume is increased. Nearly 6%, the pressure head is increased by nearly 8%, and the calculation efficiency is increased by nearly 6%; when D1/D2 is reduced to 0.78, the flow surface of the air inlet end 331 is reduced too much, which affects the air intake volume.
- the mixed-flow fan of the present disclosure adjusts the ratio of the inner diameter of the inlet end 211 of the flow guide channel 21 to the maximum outlet diameter of the impeller 30, so that the air flow rate is increased and the resistance encountered during the flow through the collector 20 and the impeller 30 is increased. It is small and generates less turbulence. Under the condition that the volume of the overall mixed-flow fan is limited, the air volume is increased by nearly 6%, the pressure head is increased by nearly 8%, and the calculation efficiency is increased by nearly 6%, which greatly improves the performance of the mixed-flow fan. force, making the mixed flow fan more efficient.
- the flow guide channel 21 also has an outlet end 212.
- the inner diameter of the flow guide channel 21 located at the outlet end 212 is D3, and the range of D1/D3 is 1 ⁇ 1.2.
- the mixed flow fan of the present disclosure sets the range of D1/D3 to 1 to 1.2.
- the size of D1 is generally larger than the size of D3.
- D1/D3 If the value is too large, the external size of the mixed-flow fan will be expanded and the overall layout will be affected. If the value of D1/D3 is too small, it will not play the role of current collection, and the performance of the mixed-flow fan will also be reduced.
- the value of D1/D3 when the value of D1/D3 is greater than 1.2, it will affect the overall layout of the mixed-flow fan, so it is not considered; when the value of D1/D3 is 1.15, the air flow is stable and even while ensuring the air intake. Entering the impeller 30, the airflow encounters the least resistance and generates the least turbulence when flowing through the collector 20 and the impeller 30, which significantly reduces the air intake resistance of the impeller 30. Therefore, the impeller 30 has the strongest function. , the mixed-flow fan has the largest air volume and pressure head, and the mixed-flow fan has the highest efficiency; when D1/D3 decreases to 1.00, the size of the air inlet end 331 decreases, the air intake volume is affected, and the air inlet resistance increases seriously.
- the air volume and pressure head of the mixed-flow fan are significantly reduced, and the efficiency of the mixed-flow fan is also significantly reduced; when the value of D1/D3 is reduced to 0.99, since the current collector 20 cannot function as a current collector, it can be seen from the above table that The air volume of the mixed-flow fan is severely attenuated, and the efficiency of the pressure head and the mixed-flow fan is much lower than the ratio of 1.15.
- the uniform velocity field generated by the current collector 20 can completely cover the rotation range of the impeller 30, thereby making When the impeller 30 rotates, the airflow resistance at each position is relatively even, preventing excessive local resistance when the impeller 30 rotates, thereby significantly increasing the air volume and pressure head of the mixed-flow fan, and significantly improving the efficiency of the mixed-flow fan.
- the mixed-flow fan of the present disclosure optimizes the relationship between the inner diameter of the inlet end 211 and the outlet end 212 of the guide channel, so that the airflow encounters less resistance and generates turbulence when flowing through the collector guide channel 10
- the air volume is increased by nearly 11%
- the pressure head is increased by 10%
- the calculation efficiency is increased by nearly 5%, which greatly improves the performance of the mixed-flow fan and makes the efficiency of the mixed-flow fan more efficient. higher.
- the air volume increases when the rotation speed is the same, correspondingly, the rotation speed can be reduced when the air volume is the same, thereby reducing the noise caused during the rotation.
- the distance from the inlet end 211 to the outlet end 212 is H1, and the range of H1/D2 is 0.1 ⁇ 0.3.
- the mixed-flow fan of the present disclosure sets the range of H1/D2 to 0.1 to 0.3.
- the height H1 of the collector 20 is relative to the maximum diameter D2 of the impeller 30. An excessively high H1 will affect the layout and distribution of the mixed-flow fan, and H1 is biased. If it is small, it will increase the air intake loss of the mixed flow fan and affect the performance of the mixed flow fan.
- the airflow can enter the impeller 30 smoothly and evenly, so that the airflow encounters less resistance when flowing through the collector 20 and the impeller 30, resulting in There is less turbulence and the air inlet resistance of the impeller 30 is reduced. Therefore, the function of the impeller 30 is increased, thereby increasing the air volume and pressure head of the mixed flow fan, and the calculation efficiency is also improved.
- the value of H1/D2 is At 0.12
- the flow field formed by the airflow is the smoothest and most uniform, the turbulence generated is the least, and the air intake resistance of the impeller 30 is the smallest.
- the air volume, pressure head and calculation efficiency are significantly improved; when H1/D2 is reduced to When 0.09, the current collector 20 cannot effectively collect the current, which affects the air intake volume.
- the air intake volume will be attenuated by about 3%. Therefore, the air volume and pressure head of the mixed flow fan are seriously reduced, and the efficiency of the mixed flow fan is is also significantly reduced; when H1/D2 increases to 0.35, the collector 20 will squeeze the size space of the impeller 30, reducing the performance of the blades, causing the air volume and pressure head of the mixed-flow fan to be seriously reduced, and the mixed-flow fan's Efficiency is also significantly reduced.
- the flow guide channel 21 also has a constriction section 213.
- the constriction section 213 is located between the inlet end 211 and the outlet end 212.
- the flow area of the constriction section 213 gradually decreases in the direction from the inlet end 211 to the outlet end 212. Small. Since the flow area of the constricted section 213 of the flow guide channel 21 gradually decreases, a tapered flow channel is formed, which accelerates the air flow and forms a uniform velocity field and pressure field, thereby reducing flow loss and improving the efficiency of the mixed flow fan.
- the rate of change in the reduction of the flow area of the constriction section 213 gradually decreases. That is to say, the inner wall of the flow guide channel 21 located in the contraction section 213 is an arc-shaped inner wall, and along the direction from the inlet end 211 to the outlet end 212, the curvature of the inner wall gradually decreases, and the airflow in the arc of the inner wall of the collector 20 Under the action, from the inlet of the collector 20 to the outlet of the collector 20, the arc can not only guide the air flow, but also reduce the flow resistance of this section to a certain extent, thereby increasing the air volume.
- the rate of change in the reduction of the flow area of the constriction section 213 remains unchanged. That is to say, the inner wall of the flow guide channel 21 located in the contraction section 213 is flat, and along the direction from the inlet end 211 to the outlet end 212, the straight section can also play the role of airflow guidance and gathering like an arc, and the processing Simple and low cost.
- the flow guide channel 21 also has a straight section, the straight section is connected to the contraction section 213 , and the straight section is located between the contraction section 213 and the outlet end 212 .
- This straight section is located at the end of the collector, and the flow of the aggregated gas will be chaotic. This straight section can suppress the mixed flow air flow, thereby improving the air intake conditions of the mixed flow fan to a certain extent.
- the impeller 30 includes blades 31.
- the maximum height of the blades 31 in the axial direction of the impeller 30 is H2, and the range of H2/D2 is 0.38 to 0.48.
- the value of H2/D2 will also affect the basic layout of the entire mixed-flow fan.
- the H2 height of the impeller 30 is insufficient and an effective pressurization channel cannot be formed.
- the impeller 30 cannot sufficiently expand the gas. Pressure will cause the mixed flow fan to have insufficient pressure carrying capacity, and the blade shape of the blade 31 will be more axial flow; when the value of H2/D2 is too large, a huge radial space will be wasted to meet the rotation demand, affecting the mixed flow fan Basic dimensions of the gas site.
- the impeller 30 when the range of H2/D2 is 0.38 ⁇ 0.48, the impeller 30 can form an effective pressurization channel, and the impeller 30 can sufficiently expand the gas to increase the pressure capacity of the mixed flow fan, thus making the mixed flow fan
- the air volume and pressure head are increased, and the calculation efficiency is also improved.
- the impeller 30 when the value of H2/D2 is 0.12, the impeller 30 has the best gas expansion effect, and the mixed flow fan has the highest pressure carrying capacity. Therefore, the air volume and pressure The head and calculation efficiency are significantly improved; when H2/D2 is less than 0.38, the H2 height of the impeller 30 is insufficient to form an effective pressurization channel, and the impeller 30 cannot sufficiently expand the gas, which will cause the mixed flow fan to be pressurized.
- the impeller 30 also includes a wheel cover 32, an air flow channel 33 is formed inside the wheel cover 32, and the blades 31 are located in the air flow channel 33; the air flow channel 33 has an expansion section 333, and the expansion section 333 is located between the air inlet end 331 of the air flow channel 33 and the air flow channel 33. Between the air outlet ends 332, in the direction from the air inlet end 331 of the air flow channel 33 to the air outlet end 332 of the air flow channel 33, the flow area of the expansion section 333 gradually increases. By providing the expansion section 333, the static pressure of the air flow can be increased, thereby improving the working efficiency of the mixed flow fan.
- the volute 10 is also provided with an air outlet 11; the distance between the inlet end 211 of the guide channel 21 and the air outlet 11 is A, and the ratio of H2/A ranges from 0.37 to 0.47.
- the distance A can also be understood as the length of the volute 10. In the vertical direction shown in Figure 1, the length of the volute 10 is A.
- the impeller 30 when H2/A ranges from 0.35 to 0.48, the impeller 30 has a larger work surface on the airflow, ensuring the pressure carrying capacity of the mixed-flow fan. Therefore, the air volume and pressure head of the mixed-flow fan are increased, and the pressure is expanded. The loss is reduced.
- the value of H2/A when the value of H2/A is 0.41, the mixed-flow fan has the strongest pressure capability. Therefore, the air volume and pressure head are significantly increased, and the expansion loss is significantly reduced; when the value of H2/A is reduced to 0.30 , the insufficient work area of the impeller 30 will lead to insufficient pressure carrying capacity of the mixed-flow fan.
- the air volume and pressure head of the mixed-flow fan are severely reduced, and the expansion loss increases significantly; when H2/A increases to 0.52, the mixed-flow fan It is difficult for the fan to effectively convert the high dynamic pressure generated by the impeller 30 into static pressure, and the pressure-carrying capacity of the mixed-flow fan will be insufficient. As a result, the air volume and pressure head of the mixed-flow fan will be severely reduced, and the expansion loss will be significantly increased.
- the mixed-flow fan of this embodiment is installed in the air duct machine, there are process requirements and structural coordination requirements for the size and shape of the volute 10 of the mixed-flow fan. Therefore, the volute 10 of the mixed-flow fan is further improved. While meeting the above requirements of the air duct fan, the air volume of the mixed flow fan is maximized.
- the maximum diameter of the volute 10 is B, and the ratio of B/D2 ranges from 1.1 to 1.25. As shown in Figure 1, the maximum diameter B of the volute 10 directly determines the shape of the volute of the mixed flow fan, and the value of the maximum diameter B also has a corresponding relationship with the impeller 30.
- the impeller 30 is in the radial direction with the volute.
- the gap between the shells is controlled within a certain range, which can increase the air volume of the mixed flow fan.
- the airflow does work through the impeller 30 and begins to have high dynamic pressure, and these dynamic pressures need enough space to be released, and part of them are converted into static pressure to continue flowing. According to the simulation data, it can be seen that when the range of B/D2 When it is 1.1 to 1.25, the pressure relief space is sufficient, and the proportion of dynamic pressure converted into static pressure is large, so that the air volume and pressure head of the mixed flow fan are large, and the expansion loss is small.
- B/D2 when the value of B/D2 is 1.19
- B/D2 when the ratio of dynamic pressure to static pressure is the largest, the air volume and pressure head of the mixed-flow fan are significantly increased, and the expansion loss is significantly reduced; when B/D2 is reduced to 1.04, the pressure relief space is insufficient, which will lead to dynamic The proportion of pressure converted into static pressure is relatively small. Therefore, the air volume and pressure head of the mixed flow fan are severely reduced, and the expansion loss is also significantly increased.
- B/D2 increases to 1.30, the performance of the fan blades is reduced and the mixed flow The air volume and pressure head of the fan are severely reduced, and the expansion loss is significantly increased. It will further expand the overall size of the mixed-flow fan and compress the basic size of the remaining components, which is not conducive to improving the performance of the mixed-flow fan.
- the volute 10 of the mixed-flow fan in this embodiment has a ball table structure.
- the maximum diameter of the volute 10 is equal to the diameter of the ball table structure.
- the volute 10 is located at the two bottom surfaces of the ball table, which are the inlet end 211 and the inlet end of the guide channel 21 respectively. Air outlet 11.
- the line connecting the center of the inlet end 211 of the flow guide channel 21 and the center of the air outlet 11 is collinear with the axis of the impeller 30 .
- the blade 31 has dimples and/or protrusions on its surface. Dimples and ridges can improve airflow, reduce noise, and increase air volume.
- an air duct fan including the above-mentioned mixed-flow fan.
- the mixed flow fan is a mixed flow fan between the axial mixed flow fan and the centrifugal mixed flow fan.
- the impeller of the mixed flow fan allows the air to move both centrifugally and axially.
- the air flow movement in the volute mixes both axial flow and centrifugal movement. form, so it is called "mixed flow”. Since the mixed flow fan can not only make the volume smaller, but also ensure the flow direction and wind pressure of the air flow, the mixed flow fan is installed in the air duct machine and the wind direction is reversible to change the air outlet direction.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种混流风机及包括其的风管机,混流风机包括:蜗壳(10);集流器(20),集流器(20)设置在蜗壳(10)的进风口位置处,集流器(20)具有与蜗壳(10)内部连通的导流通道(21),导流通道(21)的进口端的内径为D1;叶轮(30),叶轮(30)设置于蜗壳(10)内部,叶轮(30)的最大直径为D2, D1/D2 的范围为0.8~0.9。该混流风机通过调整导流通道(21)的进口端内径与叶轮(30)的最大出口直径的比值,使气流在流经集流器(20)和叶轮(30)过程中,遇到的阻力更小,产生的紊流更少,在整体混流风机体积受限的条件下,提高了混流风机的做功能力,使混流风机的效率更高。
Description
相关申请的交叉引用
本公开是以CN申请号为202210584211.9,申请日为2022年5月27日的申请为
基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
本公开涉及空气处理设备技术领域,具体涉及一种混流风机及风管机。
风管机是空调的一种,为了提高舒适性,有些风管机采用上出冷风,下出热风的方式,这样可以实现瀑布式制冷和地毯式暖风,为了实现这种出风方式,需要风管机的出风可逆,在一些相关技术中,出风可逆的风管机通常采用贯流混流风机、离心混流风机,但是这种混流风机由于混流风机扇叶的设置方式的问题,反转后风向不能可逆,因此,只能在设置至少两个混流风机,一个负责正向出风,一个负责逆向出风,这样不仅管混流风机结构会更大,成本更高。
为了减小成本,需要将混流风机缩小,而混流风机是介于轴流混流风机和离心混流风机之间的混流风机,混流风机的叶轮让空气既做离心运动又做轴向运动,蜗壳内的气流运动混合了轴流与离心两种运动形式,所以叫“混流”。而且,混流风机不仅可以将体积做小,而且可以保证气流的流向和风压。
然而,由于体积限制,相关技术中的混流风机的送风效果有限,如何在体积限制的前提下,提高送风效率,是本领域亟待解决的问题。
发明内容
本公开提供了一种混流风机及风管机,缓解了由于体积限制,混流风机的送风效果有限的问题。
根据本公开的一个方面,公开了一种混流风机,包括:蜗壳;集流器,所述集流器设置在所述蜗壳的进风口位置处,所述集流器具有与所述蜗壳内部连通的导流通道,所述导流通道的进口端的内径为D1;叶轮,所述叶轮设置于所述蜗壳内部,所述叶轮的最大直径为D2,D1/D2的范围为0.8~0.9。
在一些实施例中,所述导流通道还具有出口端,所述导流通道位于所述出口端的内径为D3,D1/D3的范围为1~1.2。
在一些实施例中,所述进口端至所述出口端的距离为H1,H1/D2的范围为0.1~0.3。
在一些实施例中,所述导流通道还具有收缩段,所述收缩段位于所述进口端与所述出口端之间,所述收缩段的过流面积在所述进口端至所述出口端的方向上逐渐减小。
在一些实施例中,所述进口端至所述出口端的方向上,所述收缩段的过流面积减小的变化率逐渐降低。
在一些实施例中,所述进口端至所述出口端的方向上,所述收缩段过流面积减小的变化率不变。
在一些实施例中,所述导流通道还具有直线段,所述直线段与所述收缩段相连,所述直线段位于所述收缩段与所述出口端之间。
在一些实施例中,所述叶轮包括叶片,所述叶片在所述叶轮轴线方向的最大高度为H2,H2/D2的范围为0.38~0.48。
在一些实施例中,所述叶轮还包括轮盖,所述轮盖内部形成气流通道,所述叶片位于所述气流通道内;所述气流通道具有扩张段,所述扩张段位于所述气流通道的进气端与所述气流通道的出气端之间,在所述气流通道进气端至所述气流通道出气端的方向上,所述扩张段的过流面积逐渐增大。
在一些实施例中,所述蜗壳上还设置有出风口;所述导流通道的进口端与所述出风口之间的距离为A,H2/A的比值范围为0.37~0.47。
在一些实施例中,沿所述叶轮的径向方向,所述蜗壳最大直径为B,B/D2的比值范围为1.1~1.25。
在一些实施例中,所述导流通道的进口端的中心与所述出风口的中心连线与所述叶轮的轴线共线。
在一些实施例中,所述叶片的表面上具有凹坑和/或凸起。
根据本公开的第二个方面,公开了一种风管机,包括上述的混流风机。
本公开的混流风机通过调整导流通道的进口端内径与叶轮的最大出口直径的比值,使气流在流经集流器和叶轮过程中,遇到的阻力更小,产生的紊流更少,在整体混流风机体积受限的条件下,使风量提高将近6%、压头提高将近8%,计算效率提高将近6%,大大提高了混流风机的做功能力,使混流风机的效率更高。
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开一些实施例提供的混流风机的结构示意图;
图2是本公开一些实施例提供的混流风机的叶轮的结构示意图;
图3是本公开另一些实施例提供的混流风机的集流器的结构示意图;
图例:10、蜗壳;11、出风口;20、集流器;21、导流通道;211、进口端;212、出口端;213、收缩段;30、叶轮;31、叶片;32、轮盖;33、气流通道;331、进气端;332、出气端;333、扩张段。
下面将结合本公开实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
在一些相关技术中,混流风机通常都会在进风口设置集流器,集流器可以将进气侧的气体均匀平滑地导入混流风机内部,以降低流动损失提高混流风机效率。因此,集流器的结构会影响混流风机性能,设计良好的集流器流动损失较小,而设计不合理会使进口条件恶化,导致性能下降。
目前,针对集流器的结构比较常规的优化方式多是针对集流器的高度、进气口尺寸、出气口尺寸以及导流面形状,虽然这些改进可以在一定程度上提升混流风机的送风效率。然而,经过申请人对于气流流动原理的研究,以及通过仿真模拟实验数据进 行分析后发现:针对集流器的结构自身参数的这种常规改进对混流风机的风量影响非常有限。究其原因,混流风机在运行时,气流进入混流风机再被混流风机送出的过程是一个连贯的整体过程,因此,考虑改进因素时,不能够仅仅考虑单个部件的自身参数的优化,而忽略了集流器的参数与混流风机其他部件参数之间的配合问题。而被忽略的集流器的参数与混流风机其他部件参数之间的配合,反而是能够有效提升混流风机风量的改进点。
基于上述理由,如图1和图2所示的本公开的实施例一,公开了一种混流风机,包括蜗壳10、集流器20和叶轮30,集流器20与蜗壳10连接,集流器20设置在蜗壳10的进风口位置处,集流器20具有与蜗壳10内部连通的导流通道21,导流通道21的进口端211的内径为D1;叶轮30设置于蜗壳10内部,叶轮30的最大直径为D2,D1/D2的范围为0.8~0.9。
本公开的混流风机通过将D1/D2的范围为0.8~0.9,在本实施例中,导流通道21的进口端211的内径为D1,也就是说,D1为整个混流风机的进口直径,D2为叶轮30的最大出口直径,在两者合理的比值下,混流风机能够获得较为优秀的性能数据,仿真数据如下:
D1/D2 | 转速(rpm) | 计算风量(m 3/h) | 计算压头(Pa) | 计算效率(%) |
0.78 | 2200 | 482 | 84.9 | 64.7 |
0.80 | 2200 | 501 | 86.3 | 67.2 |
0.84 | 2200 | 510 | 90.4 | 69.1 |
0.90 | 2200 | 498 | 87.9 | 66.3 |
0.93 | 2200 | 485 | 83.5 | 64.3 |
根据仿真数据可知,当D1/D2的值在0.8~0.9之间时,在保证进气量的同时,气流可以平稳、均匀地进入叶轮30,使气流在流经集流器20和叶轮30过程中,遇到的阻力更小,产生的紊流更少,减少叶轮30的进气阻力,因此,叶轮30的做功能增加,从而使混流风机的风量、压头均有提高,计算效率也提高,其中,当D1/D2的值为0.84时,进气量较大,但是产生的紊流最少,叶轮30的进气阻力最小,因此,风量、压头和计算效率有明显地提升,风量提高将近6%、压头提高将近8%,计算效率提高将近6%;当D1/D2的减小到0.78时,气流进气端331过流面减小过大,影响进气量,因此,从 而使混流风机的风量、压头均严重减小,混流风机的效率也明显降低,达到不能使用的状态;而当D1/D2的增大到0.93时,进气量虽然得到了保证,因此,叶轮30尺寸过大,导致均匀地气流场无法完全覆盖叶轮30,从而产生更多紊流,阻力增加,导致叶轮30做功能降低,使混流风机的风量、压头均严重减小,混流风机的效率也明显降低。
本公开的混流风机通过调整导流通道21的进口端211内径与叶轮30的最大出口直径的比值,使气流在流经集流器20和叶轮30过程中,气流量提高,遇到的阻力更小,产生的紊流更少,在整体混流风机体积受限的条件下,从而使风量提高将近6%、压头提高将近8%,计算效率提高将近6%,大大提高了混流风机的做功能力,使混流风机的效率更高。
在一些实施例中,导流通道21还具有出口端212,导流通道21位于出口端212的内径为D3,D1/D3的范围为1~1.2。本公开的混流风机通过将D1/D3的范围为1~1.2,对于集流器20而言,D1的尺寸一般要大于D3的尺寸,但为了保证混流风机的可旋转功能,若D1/D3的值偏大将会扩大混流风机的外部尺寸,影响整体布局,而D1/D3的值偏小则不会起到集流的作用,混流风机性能也会下降。对本实施例的混流风机进行仿真试验,改变混流风机D1/D3的数值,仿真结果如下:
D1/D3 | 转速(rpm) | 计算风量(m 3/h) | 计算压头(Pa) | 计算效率(%) |
1.15 | 2200 | 510 | 90.4 | 69.1 |
1.00 | 2200 | 476 | 83.6 | 65.2 |
0.99 | 2200 | 460 | 82.1 | 64.3 |
根据仿真数据可知,当D1/D3的值大于1.2时会影响混流风机的整体布局,因此不予考虑;当D1/D3的值为1.15时,在保证进气量的同时,气流平稳、均匀地进入叶轮30,使气流在流经集流器20和叶轮30过程中,遇到的阻力最小,产生的紊流最少,明显减少了叶轮30的进气阻力,因此,叶轮30的做功能最强,混流风机的风量、压头最大,混流风机的效率也最高;当D1/D3的降低至1.00时,进气端331的尺寸减小,进气量受到影响,进气阻力严重增加,因此,混流风机的风量、压头明显减小,混流风机的效率也明显降低;当D1/D3的值减小至0.99时,由于集流器20无法起到集流作用,从上表可以看出,混流风机风量衰减严重,压头与混流风机效率要远低于比 值为1.15的数据。
需要说明的是,当D1/D2的值在0.8~0.9、D1/D3的值在1~1.2之间时,集流器20产生的均匀的速度场可以完全覆盖叶轮30的转动范围,从而使叶轮30在转动时,各个位置受到的气流阻力比较平均,避免叶轮30转动时局部阻力过大,从而使混流风机的风量、压头明显增大,混流风机的效率明显提高。
本公开的混流风机通过优化导流通道进口端211的内径与出口端212的内径关系,使气流在流经集流器导流通道10的过程中,遇到的阻力更小,产生的紊流更少,在整体混流风机体积受限的条件下,从而使风量提高将近11%、压头提高10%,计算效率提高将近5%,大大提高了混流风机的做功能力,使混流风机的效率更高。而且,由于在转速相同的情况下,风量提高,相应的,在风量相同的情况下,转速可以降低,从而减少转动过程中带来的噪音。
在一些实施例中,进口端211至出口端212的距离为H1,H1/D2的范围为0.1~0.3。本公开的混流风机通过将H1/D2的范围设置为0.1~0.3,集流器20的高度H1相对于叶轮30最大直径D2来说,过高的H1会影响混流风机的布局分布,而H1偏小则会增加混流风机的进气损失,影响混流风机性能。对本例的混流风机进行仿真试验,改变混流风机H1/D2的数值,仿真结果如下:
H1/D2 | 转速(rpm) | 计算风量(m 3/h) | 计算压头(Pa) | 计算效率(%) |
0.35 | 2200 | 495 | 86.1 | 62.9 |
0.30 | 2200 | 498 | 87.6 | 64.7 |
0.20 | 2200 | 504 | 88.2 | 67.5 |
0.12 | 2200 | 510 | 90.4 | 69.1 |
0.09 | 2200 | 496 | 85.5 | 61.4 |
根据仿真数据可知,当H1/D2的范围为0.1~0.3时,气流可以平稳、均匀地进入叶轮30,使气流在流经集流器20和叶轮30过程中,遇到的阻力更小,产生的紊流更少,减少叶轮30的进气阻力,因此,叶轮30的做功能增加,从而使混流风机的风量、压头均有提高,计算效率也提高,其中,当H1/D2的值为0.12时,气流形成的流场最平稳、最均匀,产生的紊流最少,叶轮30的进气阻力最小,因此,风量、压头和计算效率有明显地提升;当H1/D2的减小到0.09时,集流器20难以起到有效的集流作用, 影响进气量,进气量会有约3%的衰减,因此,混流风机的风量、压头均严重减小,混流风机的效率也明显降低;而当H1/D2的增大到0.35时,集流器20会挤压叶轮30的尺寸空间,降低风叶性能,使混流风机的风量、压头均严重减小,混流风机的效率也明显降低。
如图1所示,导流通道21还具有收缩段213,收缩段213位于进口端211与出口端212之间,收缩段213的过流面积在进口端211至出口端212的方向上逐渐减小。由于导流通道21的收缩段213过流面积逐渐减小,形成渐缩形流道,使气流加速,并形成均匀的速度场和压力场,从而降低流动损失提高混流风机效率。
进口端211至出口端212的方向上,收缩段213的过流面积减小的变化率逐渐降低。也就是说,导流通道21位于收缩段213的内壁是弧形内壁,且沿进口端211至出口端212的方向上,内壁的弧度逐渐减小,气流在集流器20的内壁弧线的作用下,由集流器20的入口聚合到集流器20的出口,该圆弧不仅可以对气流产生导向作用,还会在一定程度上降低该段的流动阻力,起到提升风量的作用。
在图3所示的实施例二中,进口端211至出口端212的方向上,收缩段213过流面积减小的变化率不变。也就是说,导流通道21位于收缩段213的内壁是平面,且沿进口端211至出口端212的方向上,该直线段也能够像弧线一样起到气流导向与聚集的作用,并且加工简易成本低廉。
在图1所示的实施例一中,导流通道21还具有直线段,直线段与收缩段213相连,直线段位于收缩段213与出口端212之间。该直线段处在集流器尾部,被聚合的气体流动会较为混乱,而此直线段则可以对混流的气流进行抑制,进而在一定程度上改善混流风机的进气条件。
如图1和图3所示,叶轮30包括叶片31,叶片31在叶轮30轴线方向的最大高度为H2,H2/D2的范围为0.38~0.48。H2/D2的值同样也会影响整个混流风机的基础布局,当H2/D2的值偏小时,由于叶轮30的H2高度不足,无法形成有效的增压通道,叶轮30无法将气体进行足够的扩压,会导致混流风机带压能力不足,并且叶片31的叶型会更偏向于轴流;当H2/D2的值偏大时,会浪费极大的径向空间来满足旋转需求,影响混流风机气体部位的基本尺寸。对本实施例的混流风机进行仿真试验,改变混流风机H2/D2的数值,仿真结果如下:
H2/D2 | 转速(rpm) | 计算风量(m 3/h) | 叶轮压头(Pa) | 叶轮效率(%) |
0.38 | 2200 | 501 | 114.3 | 78.3 |
0.40 | 2200 | 510 | 126.8 | 87.1 |
0.48 | 2200 | 503 | 115.4 | 79.2 |
0.50 | 2200 | 497 | 111.9 | 74.6 |
根据仿真数据可知,当H2/D2的范围为0.38~0.48时,叶轮30可以形成有效的增压通道,叶轮30可以将气体进行足够的扩压,使混流风机带压能力提升,从而使混流风机的风量、压头均有提高,计算效率也提高,其中,当H2/D2的值为0.12时,叶轮30对气体的扩压效果最好,混流风机的带压能力最高,因此,风量、压头和计算效率有明显地提升;当H2/D2的小于0.38时,叶轮30的H2高度不足,无法形成有效的增压通道,叶轮30无法将气体进行足够的扩压,会导致混流风机带压能力不足,因此,混流风机的风量、压头均严重减小,混流风机的效率也明显降低;而当H2/D2的增大到0.50时,叶轮30性能反而降低,使混流风机的风量、压头均严重减小,混流风机的效率也明显降低,另外,增加尺寸后,会浪费极大的径向空间来满足旋转需求,影响混流风机气体部位的基本尺寸。
叶轮30还包括轮盖32,轮盖32内部形成气流通道33,叶片31位于气流通道33内;气流通道33具有扩张段333,扩张段333位于气流通道33的进气端331与气流通道33的出气端332之间,在气流通道33进气端331至气流通道33出气端332的方向上,扩张段333的过流面积逐渐增大。通过设置扩张段333,可以提高气流的静压力,从而提高混流风机工作效率。
蜗壳10上还设置有出风口11;导流通道21的进口端211与出风口11之间的距离为A,H2/A的比值范围为0.37~0.47。其中,A的距离也可以理解为蜗壳10的长度,图1显示的竖直方向上,蜗壳10的长度即为A。对本例的混流风机进行仿真试验,改变混流风机H2/A的数值,仿真结果如下
H2/A | 转速(rpm) | 计算风量(m 3/h) | 叶轮压头(Pa) | 扩压损失(Pa) |
0.30 | 2200 | 468 | 91.4 | 49.6 |
0.35 | 2200 | 482 | 104.3 | 41.3 |
0.41 | 2200 | 510 | 126.8 | 36.2 |
0.48 | 2200 | 493 | 121.9 | 62.1 |
0.52 | 2200 | 485 | 116.7 | 73.3 |
根据仿真数据可知,当H2/A的范围为0.35~0.48时,叶轮30对气流做功面较大,保证混流风机的带压能力,因此,使混流风机的风量、压头均有提高,扩压损失减少,其中,当H2/A的值为0.41时,混流风机的带压能力最强,因此,风量、压头明显地提升,扩压损失明显下降;当H2/A的减小到0.30时,叶轮30做功面积不足,会导致混流风机的带压能力不足,因此,混流风机的风量、压头均严重减小,扩压损失明显增多;而当H2/A的增大到0.52时,混流风机难以把叶轮30产生的高动压有效转化为静压,混流风机的带压能力会有所欠缺,从而使混流风机的风量、压头均严重减小,反而使扩压损失明显增多。
由于本实施例的混流风机是设置在风管机内的,所以对于混流风机的蜗壳10的尺寸形状是有工艺要求以及结构配合要求的,因此,对混流风机的蜗壳10做进一步改进,在满足风管机上述要求的同时,最大化提升混流风机的风量。在本实施例中,沿叶轮30的径向方向,蜗壳10的最大直径为B,B/D2的比值范围为1.1~1.25。参见图1所示,蜗壳10的最大直径B直接决定了混流风机的蜗壳形状,而且最大直径B的数值也和叶轮30之间具有对应关系,也就是说叶轮30在径向方向与蜗壳之间的缝隙控制在一定的范围内,能够提升混流风机的风量。对本实施例的混流风机进行仿真试验,改变混流风机B/D2的数值,仿真结果如下
B/D2 | 转速(rpm) | 计算风量(m 3/h) | 叶轮压头(Pa) | 扩压损失(Pa) |
1.04 | 2200 | 496 | 123.4 | 58.4 |
1.10 | 2200 | 502 | 124.6 | 50.3 |
1.19 | 2200 | 510 | 126.8 | 36.2 |
1.25 | 2200 | 504 | 123.7 | 47.6 |
1.30 | 2200 | 498 | 120.3 | 53.1 |
气流经由叶轮30做功,开始带有较高的动压,而这些动压则需要足够的空间进行释放,并将其中一部分转化为静压继续进行流动,根据仿真数据可知,当B/D2的范围为1.1~1.25时,释压空间充足,动压转化为静压的比例较大,从而使混流风机的风量、压头较大,扩压损失较小,其中,当B/D2的值为1.19时,动压转化为静压的比例最大,因此,混流风机的风量、压头明显提升,扩压损失明显减小;当B/D2的减小 到1.04时,释压空间不足,会导致动压转化为静压的比例偏小,因此,混流风机的风量、压头均严重减小,扩压损失也明显增加;而当B/D2的增大到1.30时,降低风叶性能,使混流风机的风量、压头均严重减小,扩压损失明显增加,而且还会进一步扩大混流风机的整体尺寸,压缩其余构件的基础尺寸,不利于混流风机性能的提升。
优选地,本实施例中混流风机的蜗壳10为球台结构,蜗壳10的最大直径等于球台结构的直径,蜗壳10位于球台的两个底面处分别为导流通道21的进口端211和出风口11。通过采用球台结构的蜗壳10,可以最大限度的减小混流风机尺寸,从而保证混流风机的送风效果。
导流通道21的进口端211的中心与出风口11的中心连线与叶轮30的轴线共线。
叶片31的表面上具有凹坑和/或凸起。凹坑以及凸起能够改善气流,减小噪音,提升风量。
根据本公开的实施例三,公开了一种风管机,包括上述的混流风机。混流风机是介于轴流混流风机和离心混流风机之间的混流风机,混流风机的叶轮让空气既做离心运动又做轴向运动,蜗壳内的气流运动混合了轴流与离心两种运动形式,所以叫“混流”。由于混流风机不仅可以将体积做小,而且可以保证气流的流向和风压,所以将混流风机安装在风管机内,并实现风向可逆,改变出风方向。
另外,在没有明确否定的情况下,其中一个实施例的技术特征可以有益地与其他一个或多个实施例相互结合。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。
Claims (14)
- 一种混流风机,包括:蜗壳(10);集流器(20),设于所述蜗壳(10)的进风口位置处,所述集流器(20)具有与所述蜗壳(10)内部连通的导流通道(21),所述导流通道(21)的进口端(211)的内径为D1;叶轮(30),设于所述蜗壳(10)内部,所述叶轮(30)的最大直径为D2,D1/D2的范围为0.8~0.9。
- 根据权利要求1所述的混流风机,其中所述导流通道(21)还具有出口端(212),所述导流通道(21)位于所述出口端(212)的内径为D3,D1/D3的范围为1~1.2。
- 根据权利要求2所述的混流风机,其中所述进口端(211)至所述出口端(212)的距离为H1,H1/D2的范围为0.1~0.3。
- 根据权利要求2或3所述的混流风机,其中所述导流通道(21)还具有收缩段(213),所述收缩段(213)位于所述进口端(211)与所述出口端(212)之间,所述收缩段(213)的过流面积在所述进口端(211)至所述出口端(212)的方向上逐渐减小。
- 根据权利要求4所述的混流风机,其中所述进口端(211)至所述出口端(212)的方向上,所述收缩段(213)的过流面积减小的变化率逐渐降低。
- 根据权利要求4所述的混流风机,其中所述进口端(211)至所述出口端(212)的方向上,所述收缩段(213)过流面积减小的变化率不变。
- 根据权利要求4至6任一项所述的混流风机,其中所述导流通道(21)还具有直线段,所述直线段与所述收缩段(213)相连,所述直线段位于所述收缩段(213)与所述出口端(212)之间。
- 根据权利要求1至7任一项所述的混流风机,其中所述叶轮(30)包括叶片(31),所述叶片(31)在所述叶轮(30)轴线方向的最大高度为H2,H2/D2的范围为0.38~0.48。
- 根据权利要求8所述的混流风机,其中所述叶轮(30)还包括轮盖(32),所述轮盖(32)内部形成气流通道(33),所述叶片(31)位于所述气流通道(33)内;所述气流通道(33)具有扩张段(333),所述扩张段(333)位于所述气流通道(33)的进气端(331)与所述气流通道(33)的出气端(332)之间,在所述进气端(331)至所述出气端(332)的方向上,所述扩张段(333)的过流面积逐渐增大。
- 根据权利要求9所述的混流风机,其中所述蜗壳(10)上还设置有出风口(11);所述导流通道(21)的进口端(211)与所述出风口(11)之间的距离为A,H2/A的范围为0.37~0.47。
- 根据权利要求10所述的混流风机,其中沿所述叶轮(30)的径向方向,所述蜗壳(10)最大直径为B,B/D2的范围为1.1~1.25。
- 根据权利要求10或11所述的混流风机,其中所述导流通道(21)的进口端(211)的中心与所述出风口(11)的中心连线与所述叶轮(30)的轴线共线。
- 根据权利要求8至12任一项所述的混流风机,其中所述叶片(31)的表面上具有凹坑和/或凸起。
- 一种风管机,包括权利要求1至13中任一项所述的混流风机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210584211.9A CN114962333A (zh) | 2022-05-27 | 2022-05-27 | 混流风机及风管机 |
CN202210584211.9 | 2022-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023226398A1 true WO2023226398A1 (zh) | 2023-11-30 |
Family
ID=82955694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/140577 WO2023226398A1 (zh) | 2022-05-27 | 2022-12-21 | 混流风机及风管机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114962333A (zh) |
WO (1) | WO2023226398A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114962333A (zh) * | 2022-05-27 | 2022-08-30 | 珠海格力电器股份有限公司 | 混流风机及风管机 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050260075A1 (en) * | 2003-06-18 | 2005-11-24 | Mitsubishi Denki Kabushiki Kaisha | Blower |
JP2011226725A (ja) * | 2010-04-22 | 2011-11-10 | Panasonic Corp | 空気調和機の室内ユニット |
JP2014231747A (ja) * | 2013-05-28 | 2014-12-11 | パナソニック株式会社 | 軸流または斜流ファン及びこれを備えた空気調和機 |
CN205536443U (zh) * | 2016-03-28 | 2016-08-31 | 美的集团武汉制冷设备有限公司 | 空调室内机 |
CN205536172U (zh) * | 2016-03-28 | 2016-08-31 | 广东美的制冷设备有限公司 | 空调室内机 |
TWI633260B (zh) * | 2017-05-23 | 2018-08-21 | 質昌企業股份有限公司 | 無渦漩管道型風機 |
CN109958638A (zh) * | 2019-04-22 | 2019-07-02 | 广东美的制冷设备有限公司 | 风机组件及具有其的空调室外机 |
CN110374900A (zh) * | 2019-08-09 | 2019-10-25 | 西安交通大学 | 一种具有正弦型子午流道的混流风机 |
CN110529410A (zh) * | 2019-08-09 | 2019-12-03 | 西安交通大学 | 一种混流风机 |
CN212987421U (zh) * | 2020-09-03 | 2021-04-16 | 青岛海信日立空调系统有限公司 | 空调室内机 |
EP3879112A1 (en) * | 2020-03-10 | 2021-09-15 | LG Electronics, Inc. | Air circulator |
CN114962333A (zh) * | 2022-05-27 | 2022-08-30 | 珠海格力电器股份有限公司 | 混流风机及风管机 |
-
2022
- 2022-05-27 CN CN202210584211.9A patent/CN114962333A/zh active Pending
- 2022-12-21 WO PCT/CN2022/140577 patent/WO2023226398A1/zh unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050260075A1 (en) * | 2003-06-18 | 2005-11-24 | Mitsubishi Denki Kabushiki Kaisha | Blower |
JP2011226725A (ja) * | 2010-04-22 | 2011-11-10 | Panasonic Corp | 空気調和機の室内ユニット |
JP2014231747A (ja) * | 2013-05-28 | 2014-12-11 | パナソニック株式会社 | 軸流または斜流ファン及びこれを備えた空気調和機 |
CN205536443U (zh) * | 2016-03-28 | 2016-08-31 | 美的集团武汉制冷设备有限公司 | 空调室内机 |
CN205536172U (zh) * | 2016-03-28 | 2016-08-31 | 广东美的制冷设备有限公司 | 空调室内机 |
TWI633260B (zh) * | 2017-05-23 | 2018-08-21 | 質昌企業股份有限公司 | 無渦漩管道型風機 |
CN109958638A (zh) * | 2019-04-22 | 2019-07-02 | 广东美的制冷设备有限公司 | 风机组件及具有其的空调室外机 |
CN110374900A (zh) * | 2019-08-09 | 2019-10-25 | 西安交通大学 | 一种具有正弦型子午流道的混流风机 |
CN110529410A (zh) * | 2019-08-09 | 2019-12-03 | 西安交通大学 | 一种混流风机 |
EP3879112A1 (en) * | 2020-03-10 | 2021-09-15 | LG Electronics, Inc. | Air circulator |
CN212987421U (zh) * | 2020-09-03 | 2021-04-16 | 青岛海信日立空调系统有限公司 | 空调室内机 |
CN114962333A (zh) * | 2022-05-27 | 2022-08-30 | 珠海格力电器股份有限公司 | 混流风机及风管机 |
Also Published As
Publication number | Publication date |
---|---|
CN114962333A (zh) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104564828B (zh) | 用于扩大离心风机出口面积的降噪蜗壳 | |
WO2023226398A1 (zh) | 混流风机及风管机 | |
WO2023226379A1 (zh) | 混流风机及风管机 | |
CN109595197B (zh) | 一种风机 | |
CN114909333A (zh) | 混流风机及风管机 | |
WO2023226393A1 (zh) | 混流风机及风管机 | |
WO2023226363A1 (zh) | 混流风机及风管机 | |
CN114922852A (zh) | 混流风机及风管机 | |
WO2023226399A1 (zh) | 混流风机以及风管机 | |
CN217558625U (zh) | 混流风机及风管机 | |
CN202468472U (zh) | 低稠度叶片扩压器 | |
CN217421632U (zh) | 混流风机及风管机 | |
CN217421631U (zh) | 混流风机及风管机 | |
CN217421627U (zh) | 混流风机及风管机 | |
CN108469073B (zh) | 窗式空调设备 | |
WO2023226365A1 (zh) | 混流风机及风管机 | |
CN217421629U (zh) | 混流风机及风管机 | |
CN216790370U (zh) | 风管机 | |
CN217421633U (zh) | 集流器、混流风机及风管机 | |
CN211599101U (zh) | 一种导流圈装置及轴流风机 | |
CN115899822A (zh) | 导流结构及具有其的天井机 | |
CN217950771U (zh) | 混流风机及风管机 | |
CN208950927U (zh) | 一种多翼风机 | |
CN217582574U (zh) | 叶轮、混流风机及风管机 | |
CN217421628U (zh) | 混流风机及风管机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22943585 Country of ref document: EP Kind code of ref document: A1 |