WO2023224044A1 - Equipment diagnosis system and equipment diagnosis method - Google Patents
Equipment diagnosis system and equipment diagnosis method Download PDFInfo
- Publication number
- WO2023224044A1 WO2023224044A1 PCT/JP2023/018289 JP2023018289W WO2023224044A1 WO 2023224044 A1 WO2023224044 A1 WO 2023224044A1 JP 2023018289 W JP2023018289 W JP 2023018289W WO 2023224044 A1 WO2023224044 A1 WO 2023224044A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abnormality
- abnormality cause
- diagnostic
- diagnosis
- candidate
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 156
- 238000000034 method Methods 0.000 title claims description 55
- 230000005856 abnormality Effects 0.000 claims abstract description 250
- 230000002159 abnormal effect Effects 0.000 claims description 91
- 208000024891 symptom Diseases 0.000 claims description 69
- 230000008569 process Effects 0.000 claims description 35
- 238000010586 diagram Methods 0.000 claims description 24
- 238000011156 evaluation Methods 0.000 claims description 17
- 238000012790 confirmation Methods 0.000 claims description 16
- 238000004891 communication Methods 0.000 description 70
- 239000000446 fuel Substances 0.000 description 58
- 238000002347 injection Methods 0.000 description 32
- 239000007924 injection Substances 0.000 description 32
- 238000012937 correction Methods 0.000 description 26
- 238000002485 combustion reaction Methods 0.000 description 20
- 238000001816 cooling Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 7
- 238000002405 diagnostic procedure Methods 0.000 description 6
- 230000007717 exclusion Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 3
- 239000003595 mist Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 208000002693 Multiple Abnormalities Diseases 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000035943 smell Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
Definitions
- the present invention relates to a device diagnosis system and a device diagnosis method.
- This application claims priority based on Japanese Patent Application No. 2022-081303 filed in Japan on May 18, 2022, the contents of which are incorporated herein.
- Diagnostic rules include a method of linking related causes of an abnormality based on the content of abnormal symptoms, and a method of narrowing down to the most likely cause of an abnormality based on measurement data.
- Patent Documents 1 to 3 listed below disclose a diesel engine support device, a monitoring diagnosis system, and an engine failure diagnosis device as examples of equipment diagnosis systems.
- the user can check the abnormal parts/external influence factors that may be the cause of the abnormality from the screen, but if the user does not have sufficient knowledge of the equipment to be diagnosed, the background of the diagnosis result Unable to understand the reason for the diagnosis. As a result, it takes time for the user to take appropriate measures when dealing with the diagnosis result of the device diagnosis system, and there is a possibility that the user cannot take prompt action regarding the diagnosis result.
- the present invention has been made in view of the above-mentioned circumstances, and provides a device diagnostic system that makes it easy to read the phenomenon that led to the diagnosis result, and allows for quicker response than before.
- the purpose of this invention is to provide a method for diagnosing devices.
- a device diagnostic system is a device diagnostic system that identifies an abnormality cause candidate based on a state amount of a device, and includes an input device that receives the state amount, and the state amount accepted by the input device. and a diagnostic device that identifies the abnormality cause candidate, and physical phenomena and engineering factors related to the abnormality cause candidate, based on the abnormality cause candidate, the physical phenomenon, and the engineering factor based on the abnormality cause candidate and a predetermined diagnosis rule. and an output device that outputs the diagnosis result.
- the diagnostic device when the diagnostic device identifies a plurality of abnormality cause candidates, the diagnostic device generates an evaluation value indicating the possibility of failure based on the state quantity. and the output device adds the evaluation value and the magnitude of the evaluation in the process of calculating the evaluation value to the abnormal symptom in the state quantity, the abnormal cause candidate, the physical phenomenon, and the engineering factor.
- the diagnostic results obtained are output.
- the input device receives abnormality confirmation information indicating the normal abnormality cause candidate, and the diagnostic device
- the abnormality cause candidates excluding the normal abnormality cause candidates, the physical phenomenon, and the engineering factors are identified based on the confirmation information, and the output device outputs a diagnosis result excluding the normal abnormality cause candidates. do.
- the input device receives abnormality cause identification information indicating the true cause of the abnormality
- the diagnostic device includes: A diagnostic rule is updated based on the abnormality cause identification information.
- the diagnostic device may detect the abnormality cause candidate, the physical phenomenon, and the engineering diagnosis for a plurality of abnormal symptoms. The cause is identified, and the output device outputs the diagnostic results regarding the plurality of abnormal symptoms.
- the output device outputs the diagnosis result as a Sankey diagram.
- a device diagnostic system is a device diagnostic system that identifies an abnormality cause candidate based on a state amount of a device, and includes an input device that receives the state amount, and the state amount accepted by the input device. and a diagnostic device that identifies the abnormality cause candidate and a physical phenomenon or engineering factor related to the abnormality cause candidate based on the abnormality cause candidate, the physical phenomenon, or the engineering factor based on the abnormality cause candidate and a predetermined diagnosis rule. and an output device that outputs the diagnosis result.
- An apparatus diagnosis method is a device diagnosis method for identifying an abnormality cause candidate based on a state quantity of the apparatus, comprising: an acceptance step for accepting the state quantity; and the state quantity accepted in the acceptance process. and a diagnostic step of identifying the abnormality cause candidate, and physical phenomena and engineering factors related to the abnormality cause candidate, based on the abnormality cause candidate, the physical phenomenon, and the engineering factor based on the abnormality cause candidate and a predetermined diagnosis rule. and an output step of outputting the diagnosis result as a diagnosis result.
- the present invention it is possible to provide a device diagnosis system and a device diagnosis method that make it easy to read what kind of phenomenon led to the diagnosis result and can take action more quickly than before. It is.
- FIG. 1 is a block diagram showing the overall configuration of a device diagnostic system according to an embodiment of the present invention.
- FIG. 1 is a block diagram showing the main configuration of a device diagnostic system according to an embodiment of the present invention.
- 1 is a flowchart showing the overall operation of a device diagnostic system according to an embodiment of the present invention.
- 1 is a flowchart illustrating operations of main parts of a device diagnostic system according to an embodiment of the present invention. It is a correspondence table showing an example of the relationship between state quantities and abnormal symptoms in one embodiment of the present invention. It is a table showing an example of diagnostic rules in one embodiment of the present invention.
- FIG. 2 is a first schematic diagram showing the interrelationships among abnormal symptoms, physical phenomena, engineering factors, and abnormal cause candidates in an embodiment of the present invention.
- FIG. 7 is a flowchart showing a process for excluding abnormality cause candidates in an embodiment of the present invention.
- FIG. 7 is a second schematic diagram showing the correspondence of device abnormalities in an embodiment of the present invention.
- It is a flowchart which shows update processing of a diagnostic rule in one embodiment of the present invention.
- FIG. 7 is a third schematic diagram showing the correspondence of device abnormalities in an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing an output screen (Sankey diagram) of diagnostic results for a plurality of abnormal symptoms in an embodiment of the present invention.
- the device diagnosis system provides device diagnosis services to a plurality of users (clients) on a specific communication network.
- the device diagnosis system includes a device diagnosis server A, a communication line B, and n pieces of device equipment C1 to Cn (n: a natural number).
- the device diagnosis server A and the n devices C1 to Cn are electrically connected via a communication line B as shown.
- the n pieces of equipment C1 to Cn will be explained.
- Each of the n pieces of equipment C1 to Cn includes equipments 1a, 2a, . . . , na and communication devices 1b, 2b, . . . nb. That is, the first equipment C1 includes a first equipment 1a and a first communication device 1b, the second equipment C2 includes a second equipment 2a and a second communication device 2b, and... , the n-th equipment Cn includes an n-th equipment na and an n-th communication device nb.
- the n devices 1a, 2a, ..., na are diagnostic targets in the device diagnostic system.
- the devices 1a, 2a, . . . , na are devices that operate in each of the devices C1 to Cn, and are equipped with a plurality of sensors and measuring instruments that detect or measure the operating state.
- the devices 1a, 2a, ..., na are electrically connected to the communication devices 1b, 2b, ..., nb, and transmit the detection results or measurement results of the plurality of sensors and measuring instruments to the devices 1a, 2a, ..., na. It is output as the state quantity J to the communication devices 1b, 2b, . . . , nb.
- the first device 1a in the first device facility C1 outputs the detection results and/or measurement results of the plurality of sensors and measuring instruments to the first communication device 1b as the state quantity J of the first device 1a.
- the second device 2a in the second device facility C2 outputs the detection results and/or measurement results of the plurality of sensors and measuring instruments to the second communication device 2b as the state quantity J of the second device 2a.
- the n-th device na in the n-th device facility Cn outputs the detection results and/or measurement results of the plurality of sensors and measuring instruments to the n-th communication device nb as the state quantity J of the n-th device na. do.
- the devices 1a, 2a, . . . , na are, for example, engines operated in each of the devices C1 to Cn.
- the n communication devices 1b, 2b, ..., nb are each electrically connected to the communication section a1 of the device diagnosis server A via the communication line B.
- the communication devices 1b, 2b, ..., nb transmit diagnostic requests regarding the respective devices 1a, 2a, ..., na to the communication section a1 via the communication line B, and also transmit the diagnosis results corresponding to these diagnostic requests to the communication section a1.
- a client computer that receives data from a client computer.
- each communication device 1b, 2b, . . . , nb is electrically connected to each device 1a, 2a, .
- the diagnosis request sent from each communication device 1b, 2b, ..., nb (client computer) to the device diagnosis server A includes the state quantity J of each device 1a, 2a, ..., na and the device equipment C1 to Cn.
- Device information that specifies devices 1a, 2a, ..., na is included.
- the state quantity J is determined by the operator of the devices 1a, 2a, ..., na. Includes abnormal symptoms recognized by na (e.g. strange sounds, strange smells, etc.).
- Each communication device 1b, 2b, ..., nb notifies the device diagnosis server A of the operating state of each device 1a, 2a, ..., na at the time of a diagnosis request, thereby informing the device 1a, 2a, ..., na of each device 1a, 2a, ..., na.
- Diagnosis that is, whether or not an abnormality has occurred, identification of a candidate cause of the abnormality if an abnormality has occurred, and provision of the reason for the abnormality behind the identification of the candidate cause of the abnormality is requested.
- the reason for the abnormality is a physical phenomenon and engineering factor related to identifying the candidate cause of the abnormality, and is derived based on the state quantity J of each device 1a, 2a, ..., na. .
- the device diagnosis server A performs diagnosis on diagnosis requests sequentially received randomly from the n devices C1 to Cn via the communication line B, and provides the diagnosis results to the devices C1 to Cn as service information.
- the device diagnosis server A is a type of computer equipped with a device diagnosis program and a communication function, and as shown in FIG. Equipped with a5.
- the communication unit a1 is electrically connected to each equipment C1 to Cn via the communication line B, and mainly receives diagnosis requests and the like and transmits diagnosis results and the like.
- the communication unit a1 is a functional component that performs information communication with each device C1 to Cn according to a preset communication protocol, and is electrically connected to the calculation unit a2 inside the device diagnosis server A.
- the communication unit a1 performs information communication with each equipment C1 to Cn under the control of the calculation unit a2.
- the calculation unit a2 is electrically connected to the communication unit a1, the storage unit a3, the operation unit a4, and the display unit a5, and is a central functional component in the device diagnosis server A.
- the calculation section a2 executes the device diagnosis program stored in the storage section a3, thereby executing the device diagnosis according to the diagnosis request. Further, the calculation unit a2 transmits the diagnosis result corresponding to the diagnosis request to each device C1 to Cn via the communication unit a1.
- the storage unit a3 stores in advance a device diagnosis program and also stores in advance device basic information necessary for executing the device diagnosis program. Furthermore, the storage section a3 is electrically connected to the calculation section a2, and temporarily stores the results of calculations performed by the calculation section a2 when executing the device diagnosis program. Reading and writing of information in the storage unit a3 is controlled by the calculation unit a2.
- the device diagnosis program is an application program that can be executed by the calculation unit a2. Although the details will be described later, the device diagnosis program uses the state quantity J and basic device information of each device 1a, 2a, ..., na (diagnosis target) included in the diagnosis request.
- the arithmetic unit a2 is caused to perform a diagnostic process for diagnosing na and a process for outputting the diagnostic results in each device 1a, 2a, . . . , na.
- the device basic information is information necessary for the calculation unit a2 to execute the device diagnosis program, and includes, for example, design information of each device 1a, 2a, ..., na (diagnosis target), each device 1a, 2a, ... , na during normal times (normal state quantities), and diagnostic rules preset for each abnormal symptom of each device 1a, 2a, . . . , na. Note that the details of the diagnostic rule will be described later.
- the operation unit a4 is electrically connected to the calculation unit a2, and is mainly operated during maintenance of the device diagnosis server A. That is, the operation unit a4 is not directly involved in the normal processing of the device diagnosis server A, that is, the device diagnosis processing based on a diagnosis request. Note that during maintenance of the device diagnosis server A, operation section a4 is operated by the administrator of the device diagnosis server A to input operation information to the calculation section a2, and based on this operation information, information is stored in advance in the storage section a3. The device diagnostic program and basic device information will be updated.
- the display section a5 is electrically connected to the calculation section a2, and is mainly operated during maintenance of the device diagnosis server A, like the operation section a4. That is, information necessary for maintenance of the device diagnosis server A is displayed as an image on the display section a5.
- the administrator of the device diagnosis server A performs appropriate maintenance of the device diagnosis server A by checking the image displayed on the display section a5.
- the communication line B is a signal transmission line that conforms to a predetermined communication protocol, and the transmission medium is wired and/or wireless. Furthermore, the communication signals transmitted through the communication line B are electrical signals and/or optical signals.
- the communication line B is a WAN (Wide Area Network) or a LAN (Local Area Network).
- the state quantity of each device 1a, 2a, ..., na is received by the device diagnosis server A from any of the n device facilities C1 to Cn via the communication line B. Identify abnormality cause candidates based on J, identify physical phenomena and engineering factors related to identification of abnormality cause candidates in addition to abnormality cause candidates, and diagnose abnormality cause candidates, physical phenomena, and engineering factors. As a result, it is output to each equipment C1 to Cn via the communication line B.
- the device diagnostic server A corresponds to the input device, diagnostic device, and output device of the present invention.
- the device diagnosis server A when the device diagnosis server A receives a diagnosis request from any of the n devices C1 to Cn (step S1), the device diagnosis server A performs the diagnosis of the devices 1a, 2a, ..., na based on this diagnosis request.
- One of the diagnostic processes is executed (step S2), and the result of this diagnostic process (diagnosis result) is outputted (transmitted) to one of the n devices C1 to Cn (step S3).
- the diagnosis request includes device information regarding the devices 1a, 2a, ..., na. That is, since the diagnosis request includes the state quantity J regarding the devices 1a, 2a, . Therefore, step S1 corresponds to the receiving step in the device diagnosis method according to the present embodiment.
- step S2 is a process of identifying abnormality cause candidates, physical phenomena, and engineering factors based on the state quantity J obtained in step S1 and a diagnosis rule described later, and the device diagnosis method according to the present embodiment.
- step S3 is a process of outputting abnormality cause candidates, physical phenomena, and engineering factors obtained in the diagnosis process to the equipment C1 to Cn as diagnosis results, and is an output step in the equipment diagnosis method according to the present embodiment. corresponds to That is, the series of processes shown in FIG. 2A are basic processes performed by the device diagnosis server A, and are basic steps in the device diagnosis method according to this embodiment.
- the communication unit a1 when the communication unit a1 receives a diagnosis request from any of the n communication devices 1b, 2b, . . . , nb, it outputs this diagnosis request to the calculation unit a2. Then, the calculation unit a2 recognizes the diagnosis execution target based on the device information included in the diagnosis request, and starts the diagnosis process (step S2).
- the calculation unit a2 starts a diagnostic process (step S2) that targets the first device 1a for diagnosis based on the device information included in the first diagnostic request.
- step S2 the diagnosis processing (step S2) and output processing (step S3) in the device diagnosis system and device diagnosis method according to the present embodiment will be described in detail.
- the case where the 1st apparatus 1a is diagnosed is demonstrated, and the case where the 1st apparatus 1a is a diesel engine is demonstrated to make it more concrete.
- the calculation unit a2 first obtains an abnormal symptom item and an abnormality degree X indicating the degree of the abnormality (step S21). That is, the calculation unit a2 acquires the abnormal symptom item regarding the first device 1a based on the state quantity J of the first device 1a received from the first communication device 1b, and also stores the degree of the abnormal symptom in the storage unit a3.
- the degree of abnormality X is obtained by evaluating using the normal state quantity of the first device 1a stored in advance.
- the state quantity J of the diesel engine includes supply air pressure, supercharger rotation speed, supercharger inlet exhaust gas temperature, cylinder outlet exhaust temperature, cylinder maximum pressure, and color of combustion exhaust gas. These include taste, vibration noise of the cylinder head, mist concentration in the crank chamber, number of times the starting motor is used, engine output, and drop in lubricating oil pressure.
- the deviation (deviation amount) of the relationship between the charge air pressure and the turbocharger rotation speed from the normal relationship is calculated based on the combination of the charge air pressure and the supercharger rotation speed.
- the calculation unit a2 calculates the supply pressure and supercharger rotation speed in the state quantity J and the supply pressure and supercharger rotation speed in the normal state quantity of the first equipment 1a included in the basic equipment information.
- a quantity indicating the degree of abnormality that is, an abnormality degree X is obtained from the difference between the two, and when the abnormality degree X exceeds a predetermined threshold value, it is determined that it is an abnormal symptom. Furthermore, if the degree of abnormality X is smaller than a predetermined threshold value, it can be determined that no abnormal symptoms are occurring.
- the calculation unit a2 obtains the degree of abnormality indicating the degree of the abnormal symptom as “high” or “low” based on the positive/negative, ie, magnitude relationship between the state quantity J and the normal state quantity. For example, if the supply pressure when the supercharger rotational speed in the state quantity J is higher than the supply pressure in the normal state quantity, the calculation unit a2 calculates "supply pressure vs. supercharger rotational speed ( "high)" is acquired as the abnormality degree, and if the supply pressure at a certain state of the turbocharger rotation speed in the state quantity J is smaller than the supply pressure in the normal state quantity, "supply pressure vs. Obtain “machine rotation speed (low)” as the abnormality level.
- cylinder outlet exhaust gas temperature positive deviation (large) means that when the exhaust gas temperature at the cylinder exit is higher than the average value, the difference from the average value (positive deviation) is large;
- ⁇ Outlet exhaust gas temperature negative side deviation (large)'' means that when the exhaust gas temperature at the cylinder outlet is lower than the average value, the difference from the average value (negative side deviation) is large.
- an abnormality degree X called “maximum cylinder pressure (high)” is obtained based on the maximum cylinder pressure, and an abnormal symptom can be determined.
- the degree of abnormality X can be obtained and abnormal symptoms can be determined. For example, it is possible to determine an abnormality by obtaining an abnormality level X of "exhaust color (blackish)” based on the color of the combustion exhaust gas, and to determine “cylinder head abnormal noise (large)” based on the vibration sound of the cylinder head. )", which is the degree of abnormality X, can be obtained to determine abnormal symptoms.
- abnormal symptoms by obtaining the degree of abnormality X called “mist amount (large)” based on the amount of mist in the crank chamber, and to determine the “number of times the starting motor is used” based on the number of times the starting motor is used. It is possible to determine an abnormal symptom by obtaining an abnormality degree X of "Exceeding”. Furthermore, an abnormality level X of "lubricating oil pressure (low)” is obtained from alarm information detected on the equipment side indicating a decrease in lubricating oil pressure, and an abnormal symptom can be determined.
- the calculation unit a2 When the calculation unit a2 acquires the abnormal symptom with the degree of abnormality regarding the first device 1a based on the state quantity J and the normal state quantity regarding the first device 1a in this way, the calculation unit a2 stores a diagnostic rule corresponding to the abnormal symptom. It is acquired from section a3 (step S22). This diagnostic rule establishes a relationship between an abnormal symptom and a candidate cause of the abnormality through physical phenomena and engineering factors.
- the diagnostic rule includes an abnormal symptom with an abnormal degree, a lower judgment limit set for each abnormal symptom with an abnormal degree, and one or more physical phenomena related to the abnormal symptom. , a weight for abnormal symptoms of a physical phenomenon (weighting coefficient g), one or more engineering factors related to the physical phenomenon, and a degree of relationship of the engineering factor to the physical phenomenon (first ratio k1), It includes an abnormality cause candidate and the degree of relationship of the abnormality cause candidate to the engineering factor (second ratio k2).
- this diagnostic rule uses physical phenomena and engineering factors to describe the process of identifying abnormal cause candidates from abnormal symptoms, and uses physical phenomena to provide specific background information when identifying abnormal cause candidates from abnormal symptoms. Shown as phenomena and engineering factors.
- FIG. 4 shows, as an example, diagnostic rules regarding abnormal symptoms: "Cylinder outlet exhaust gas temperature negative side deviation (large)” and “Cylinder outlet exhaust gas temperature average (high).”
- ⁇ insufficient fuel in a specific cylinder'' and ⁇ poor combustion/unburnt'' are set as engineering factors related to ⁇ amount of heat input into a specific cylinder (small)'', and ⁇ measurement interference (low temperature )" is set as an engineering factor related to "Unburnt material accumulation”, and “Cylinder water intrusion” is set as an engineering factor related to "Cooling (large)”.
- the first ratio k1 to "insufficient fuel in a specific cylinder” which is an engineering factor and "amount of heat input to a specific cylinder (small)” which is a physical phenomenon of “poor combustion/unburnt” is “insufficient fuel in a specific cylinder”.
- “55%” is set for "poor combustion/unburned” and "45%” for "poor combustion/unburned”.
- the first ratio k1 for "measurement interference (low temperature)" which is a physical phenomenon of "unburnt material accumulation" which is an engineering factor
- a first ratio k1 for "cooling (large)” which is a physical phenomenon of "water intrusion” is set to "100%".
- ⁇ fuel injection pump,'' ⁇ fuel injection valve,'' and ⁇ fuel high pressure pipe'' were set as abnormality cause candidates related to the engineering factor of ⁇ insufficient fuel in a specific cylinder,'' and "Fuel injection pump” and "fuel injection valve” are set as abnormality cause candidates related to the factors.
- ⁇ temperature sensor'' has been set as a candidate for an abnormality cause related to the engineering factor of ⁇ unburnt material accumulation
- ⁇ cylinder head'' has been set as a candidate for an abnormality cause related to an engineering factor of ⁇ water intrusion into the cylinder.'' Set.
- the second ratio k2 for the abnormality cause candidate "fuel injection pump” is set to “20%”
- the second ratio k2 for the abnormality cause candidate "fuel injection valve” is set to “20%.”
- k2 is set to "60%”
- the second ratio k2 regarding the "fuel high pressure pipe” which is a candidate for the abnormality cause is set to "20%”.
- the second ratio k2 for the abnormality cause candidate "fuel injection pump” is "30%”
- the second ratio k2 for the abnormality cause candidate "fuel injection valve” is ⁇ 30%.''
- the ratio k2 of each is set to "70%”.
- the second ratio k2 for the abnormality cause candidate "temperature sensor” is set to "100%"
- the second ratio k2 is set to "100%”
- the second ratio k2 regarding the abnormality cause candidate "cylinder head” is set to "100%”.
- the engineering factors related to the physical phenomenon of ⁇ insufficient air amount in the cylinder'' are ⁇ supercharger efficiency (low),'' ⁇ pressure loss in the exhaust path after the turbocharger (large),'' and ⁇ pressure loss at the inlet of the air supply path ( "Intake air cooling capacity (Low)” and “Intake air temperature (High)” are set as engineering factors related to the physical phenomenon “Cylinder air temperature (High)”. )' is set, and 'excessive fuel in all cylinders' and 'excessive fuel (burden by abnormal cylinder)' are further set as engineering factors related to the physical phenomenon 'heat input to all cylinders (large)'.
- the first ratios k1 for the phenomenon "insufficient air amount in the cylinder" are set to "30%”, “10%”, “30%”, and "30%”, respectively.
- the first ratio k1 of the engineering factor “supply air cooling capacity (low)” to the physical phenomenon “in-cylinder air temperature (high)” is set to "70%”
- the engineering factor The ratio (degree of relationship) of a certain “intake air temperature (high)” to "cylinder air temperature (high)” which is a physical phenomenon is set to "30%”.
- the first ratio k1 to "all cylinder input heat amount (large)” which is a physical phenomenon of "excess fuel in all cylinders" which is an engineering factor is set to "60%”
- the engineering factor “fuel excess” is set to "60%”.
- the ratio (degree of relationship) of the physical phenomenon of "excessive heat (load of abnormal cylinder)” to "all cylinders input heat (large)” is set to "40%".
- A/C, A/C cooling water system was set as a candidate cause of abnormality related to the engineering factor “supply air cooling capacity (low)", and the engineering factor “intake air temperature (high)” "High engine room temperature” is set as a candidate for the cause of the abnormality related to this.
- overload/high Pme is set as a candidate for abnormality cause related to "excessive fuel in all cylinders” which is an engineering factor corresponding to "heat input to all cylinders (large)” which is a physical phenomenon.
- “Fuel injection valve,” “fuel injection pump,” and “fuel high pressure pipe” are set as abnormality cause candidates related to "excess fuel (abnormal cylinder load).”
- the second ratio k2 regarding the abnormality cause candidate "supercharger turbine side” is “40%”
- the abnormality cause candidate "supercharger blower side” is 40%.
- the second ratio k2 regarding the “side” is set to “30%”
- the second ratio k2 regarding the "intake filter” which is the abnormality cause candidate is set to "30%”.
- the second ratio k2 regarding the abnormality cause candidate "exhaust gas system post-supercharger” is set to "100%".
- the second ratio k2 related to the abnormality cause candidate "air supply valve/valve seat” is “70%”
- the abnormality cause candidate "supercharging The second ratio k2 regarding the "after-flight air supply route” is respectively set to "30%”.
- the second ratio k2 regarding the "post-supercharger air supply route" which is the abnormality cause candidate is set to "100%”.
- the second percentage k2 is set to "100%".
- the second ratio k2 regarding the abnormality cause candidate "engine room temperature high” is set to "100%".
- the second ratio k2 regarding "overload/high Pme” which is a candidate cause of abnormality is "100 %”.
- the second ratio k2 regarding the engineering factor “excess fuel (abnormal cylinder load)” regarding the abnormality cause candidate "fuel injection valve” is "60%”
- the abnormality cause candidate "fuel injection pump” The second ratio k2 is set to "20%”
- the second ratio k2 regarding the "high pressure fuel pipe" which is a candidate cause of the abnormality is set to "20%”.
- the calculation unit a2 determines whether the degree of abnormality of the abnormal symptom is below a preset lower limit for determination (step S23). That is, the calculation unit a2 determines whether or not the degree of abnormality of the abnormal symptom acquired in step S21 is equal to or higher than the lower limit for determination set in the diagnostic rule, and determines whether or not the degree of abnormality of the abnormal symptom is equal to or higher than the lower limit for determination.
- An individual abnormality cause state index ⁇ is calculated (step S24). Note that the calculation unit a2 does not calculate the individual abnormality cause state index ⁇ for abnormal symptoms whose degree of abnormality is smaller than the lower limit for determination.
- the calculation unit a2 calculates the comprehensive abnormality cause state index ⁇ (step S25).
- FIG. 5 shows an example of the correlation between abnormal symptoms, physical phenomena, engineering factors, and abnormal cause candidates obtained through the processing of steps S21 to S24 described above.
- ) is a first schematic diagram showing the mutual relationship regarding "
- the numbers shown in square brackets "[]” are numbers that indicate the calculation process of the individual abnormality cause state index ⁇
- the numbers shown in normal parentheses "()" are the weighting coefficient g
- the numbers without parentheses. are the first ratio k1 and the second ratio k2
- the numerical value shown in curly brackets " ⁇ " is the comprehensive abnormality cause state index ⁇ .
- the abnormality degree X of the abnormal symptom "negative side deviation (large) in cylinder outlet exhaust gas temperature” is 7, which is equal to or higher than the lower limit for determination, and therefore is determined to be an abnormal symptom.
- the weighting coefficient of "specific cylinder input heat amount (small)", which is one of the physical phenomena that has a connection with this, is 80, and the numerical value indicating the calculation process is [560].
- the first ratio k1 of "insufficient fuel in a specific cylinder”, which is one of the engineering factors related to this, is 55%, and the numerical value indicating the calculation process is [308].
- the second ratio k2 of "fuel injection pump”, which is one of the causes of abnormality that has a connection with this, is 20%, and the individual abnormality cause state index ⁇ is 62.
- the individual abnormality cause state index ⁇ in accordance with the connection with "poor combustion/unburnt” is 75, which is 30% of [252].
- the comprehensive abnormality cause state index ⁇ of the “fuel injection pump” is the sum of these two ⁇ , which is ⁇ 137 ⁇ . Calculations along other connection relationships shown in FIG. 5 are also similar, and their explanation will be omitted.
- FIG. 5 shows the interrelationship between multiple abnormality cause candidates in terms of failure probability using the comprehensive abnormality cause state index ⁇ and the magnitude of the evaluation in the calculation process.
- the calculation unit a2 displays an output screen that displays diagnostic results based on abnormal symptoms, physical phenomena, engineering factors, abnormal cause candidates, comprehensive abnormal cause state index ⁇ , and the magnitude of evaluation in the calculation process as shown in FIG. is generated and the output screen is transmitted to the communication unit a1 (step S26).
- the output screen (diagnosis result) is, for example, a Sankey diagram as shown in FIG. In FIG. 6, for the abnormal symptom "negative side deviation of cylinder outlet exhaust gas temperature (large)", a plurality of abnormality cause candidates are displayed as thick bands in descending order of failure probability, that is, in descending order of comprehensive abnormality cause state index ⁇ .
- the output screen (diagnosis result) as a Sankey diagram visually indicates the priority to be dealt with among a plurality of abnormality cause candidates estimated as the cause of the abnormal symptom.
- the output screen (diagnosis result) is sent to the first equipment C1 that has sent the diagnosis request to the equipment diagnosis server A.
- the communication device 1b which is a client computer, receives the output screen (diagnosis result) and displays the output screen (diagnosis result) on the display device.
- the device diagnosis server A instead of simply presenting an abnormality cause candidate to the first equipment C1, physical phenomena and engineering factors related to the abnormality cause candidate are presented together. Therefore, in the first equipment C1, it is possible to read the phenomenon that led to the diagnosis result, and it is possible to take action more quickly and accurately than in the past.
- the comprehensive abnormality cause state index ⁇ which is an evaluation value indicating the possibility of failure, is presented for a plurality of abnormality cause candidates. It can be easily grasped, and therefore, even with the comprehensive abnormality cause state index ⁇ , the first equipment C1 can take quicker and more accurate measures than before.
- the factual relationship of the abnormality is confirmed in order from the abnormality cause candidate with the highest comprehensive abnormality cause state index ⁇ (in FIG. 6, the abnormality cause candidate with the highest comprehensive abnormality cause state index ⁇ If it is confirmed that the fuel injection valve (fuel injection valve) is normal, it is necessary to understand the cause of the abnormality other than the abnormality cause candidate with the highest comprehensive abnormality cause state index ⁇ .
- the comprehensive abnormality cause state index ⁇ is calculated based on the above-mentioned formulas (1) and (2), that is, it is an estimated value calculated based on engineering rationality. Therefore, at the time when the abnormality cause candidate with the highest comprehensive abnormality cause state index ⁇ (estimated value) is confirmed to be normal, this comprehensive abnormality cause state index ⁇ and the comprehensive abnormality cause state index ⁇ regarding other abnormality cause candidates is the estimate to be corrected.
- the first communication device 1b sends the confirmation result, that is, the comprehensive abnormality cause state, to the equipment diagnosis server A.
- Abnormality confirmation information indicating that the abnormality cause candidate with the highest index ⁇ is normal is transmitted.
- the abnormality confirmation information is received by the communication unit a1 of the device diagnosis server A and output to the calculation unit a2.
- the operator of the first equipment C1 confirms that the abnormality cause candidate is actually normal. This is done by inputting confirmation information into the communication device 1b, but the method is not limited to this method.
- the calculation unit a2 Upon acquiring the abnormality confirmation information, the calculation unit a2 executes the process of excluding abnormality cause candidates shown in FIG. 7.
- the exclusion process is to exclude abnormality cause candidates whose normality has been confirmed as exclusion targets from the abnormality cause candidates, and is a process of updating the comprehensive abnormality cause state index ⁇ based on the abnormality confirmation information.
- the calculation unit a2 corrects the second ratio k2 for abnormality cause candidates whose normality has been confirmed to "0" (step Sa1). For example, as shown in FIG. 8, the second ratio k2 set for "fuel injection valve", which is the abnormality cause candidate with the highest comprehensive abnormality cause state index ⁇ in FIG. 5, is all corrected to "0".
- the calculation unit a2 corrects the second ratio k2 regarding the abnormality cause candidate "fuel injection valve” from “60%” to "0%” for the engineering factor “specific cylinder fuel shortage", and Regarding the cause "poor combustion/uncombustion", the second ratio k2 regarding the abnormality cause candidate "fuel injection valve” is revised from “70%” to "0%”.
- the calculation unit a2 determines whether there is an abnormality cause candidate (sibling candidate) that is a sibling of the abnormality cause candidate "fuel injection valve" (step Sa2).
- the sibling candidate is an abnormality cause candidate other than the exclusion target related to the engineering factor related to the abnormality cause candidate whose second ratio k2 has been corrected to "0%".
- the engineering factors related to the "fuel injection valve” that is a candidate cause of the abnormality are "insufficient fuel in a specific cylinder” and “poor combustion/unburned.”
- step Sa1 the engineering factors “insufficient fuel in specific cylinder” and “poor combustion/unburnt” and the second ratio k2 regarding the abnormality cause candidate "fuel injection valve” were all corrected to "0", so the sibling candidate
- the second ratio k2 regarding "insufficient fuel in a specific cylinder” and “poor combustion/unburnt” is naturally adjusted under the influence of the correction of the second ratio k2 regarding the "fuel injection valve" which is a candidate cause of the abnormality. Should.
- step Sa3 If the calculation unit a2 determines in step Sa2 that there is a sibling candidate, it adjusts the second ratio k2 regarding the sibling candidates (step Sa3).
- the calculation unit a2 changes the second ratio k2 between the engineering factor "insufficient fuel in specific cylinder” and the abnormality cause candidate "fuel injection pump” in FIG. 5 from “20%” to "50%".
- %'', and the second ratio k2 regarding the engineering factor ⁇ insufficient fuel in a specific cylinder'' and the abnormality cause candidate ⁇ fuel high pressure pipe'' is adjusted from ⁇ 20%'' to ⁇ 50%.
- step Sa2 when the calculation unit a2 determines that there is no sibling candidate in step Sa2, it changes the first ratio k1 regarding the abnormality cause candidate (single candidate) for which there is no sibling candidate to "0" (step Sa4). That is, the calculation unit a2 excludes the engineering factor (parent factor) related to the individual candidate from the engineering factor candidates by changing the setting of the first ratio k1 regarding the individual candidate to "0".
- the abnormality cause candidate "cylinder head” is related only to the engineering factor "cooling water intrusion into the cylinder", and "cooling water intrusion into the cylinder” is related only to the abnormality cause candidate "cylinder head”. Since they are related, it is a single candidate with no sibling candidates.
- the calculation unit a2 changes the first ratio k1 regarding the abnormality cause candidate "cylinder head” from “100%” to "0%”, thereby reducing the engineering factor "cylinder cooling”. Exclude "water intrusion" from the candidates.
- the calculation unit a2 determines whether there is an engineering factor (sibling factor) that is a sibling to the engineering factor excluded in step Sa4 (step Sa5). Then, when a sibling factor exists, the calculation unit a2 adjusts the first ratio k1 regarding the sibling factor (step Sa6).
- the calculation unit a2 calculates the adjustment of the first ratio k1 regarding the sibling factor based on the following equation (4).
- k1' is the first ratio after adjustment (first adjustment ratio)
- kc is the first ratio related to the parent factor (engineering factor) related to the abnormality cause candidate to be excluded.
- kd is the value of the first ratio k1 regarding the sibling factor.
- k1' kc ⁇ kd/(100-kc)+kd (4)
- the calculation unit a2 calculates the weight of the physical phenomenon (parent phenomenon) that is the parent of the exclusion factor.
- the coefficient g is set to "0" (step Sa7). For example, in the case of FIG. 5, the weighting coefficient g regarding the physical phenomenon "cooling (large)" is changed from "5" to "0" as shown in FIG.
- the calculation unit a2 calculates the adjusted weighting coefficient g, the first ratio k1
- the comprehensive abnormality cause state index ⁇ is recalculated based on the second ratio k2 (step Sa8). That is, as shown in FIG. 8, the comprehensive abnormality cause state index ⁇ for the abnormality cause candidate "fuel injection pump” is recalculated from "137" to "406", and the "fuel injection valve” to be excluded (abnormality cause candidate) ” is recalculated from “361” to “0”.
- the comprehensive abnormality cause state index ⁇ regarding the abnormality cause candidate "fuel high pressure pipe” is recalculated from "62" to "154". Furthermore, the comprehensive abnormality cause state index ⁇ regarding the abnormality cause candidate "cylinder head” is recalculated from "35" to "0".
- the calculation unit a2 recreates the output screen (Sankey diagram) based on FIG. 8 created in this way, and transmits the output screen (Sankey diagram) to the communication unit a1 (step Sa9).
- the communication unit a1 transmits the output screen (Sankey diagram) to the first equipment C1 as an update screen for the abnormality confirmation information previously received from the first communication device 1b. That is, the output screen recreated based on the abnormality confirmation information is a diagnosis result in which normal abnormality cause candidates are excluded based on the abnormality confirmation information.
- the state of the abnormality cause candidate is confirmed based on the comprehensive abnormality cause state index ⁇ of the abnormality cause candidate shown on the update screen.
- the health of the abnormality cause candidate with the largest comprehensive abnormality cause state index ⁇ is confirmed on the update screen.
- abnormality confirmation information indicating this fact will be sent to the device diagnosis server A again.
- the update screen (Sankey diagram), like the first output screen (Sankey diagram), does not simply present the abnormality cause candidates and the comprehensive abnormality cause state index ⁇ , but rather displays the physical information related to the abnormality cause candidates. Presented together with phenomena and engineering factors. Therefore, in the first equipment C1, it is possible to read what kind of phenomenon led to the diagnosis result, and it is possible to take action more quickly than before.
- the true cause of the abnormality is identified in the first equipment C1. Then, the first communication device 1b in the first equipment C1 transmits information indicating the true cause of the abnormality (abnormality cause identification information) to the equipment diagnosis server A.
- the diagnostic rule update process is a process (correction process) that corrects the weighting coefficient g, the first ratio k1 and/or the second ratio k2 in the diagnostic rule shown in FIG. 4 based on the true cause of the abnormality.
- the calculation unit a2 first determines whether a predetermined shortest correction interval T1 or more has elapsed between the current correction process and the previous correction process (step Sb1). If the calculation unit a2 determines that the current correction process has elapsed for the shortest correction interval T1 or more, it then determines whether the total correction amount within the predetermined correction effective period T2 is within the predetermined maximum correction amount H. (Step Sb2).
- step Sb1 if the current correction process has not passed the shortest correction interval T1 or more, and in step Sb2, if the total correction amount within the correction effective period T2 is not within the maximum correction amount H, the calculation unit a2 calculates , the weighting coefficient g, the first ratio k1 and/or the second ratio k2 are not corrected, and the correction process is canceled.
- the calculation unit a2 performs the calculation only when the current correction process has elapsed for the shortest correction interval T1 or more in step Sb1, and only when the total correction amount within the correction effective period T2 is within the maximum correction amount H in step Sb2.
- the shortest correction interval T1, correction effective period T2, and maximum correction amount H are parameters for evaluating whether or not the correction process can be executed.
- the calculation unit a2 identifies engineering factors, physical phenomena, and abnormal symptoms related to the true cause of the abnormality based on the current diagnostic rules (step Sb3). For example, as shown in Figure 10, if the true cause of the abnormality is the "fuel injection pump,” the engineering factors related to the “fuel injection pump” are “insufficient fuel in a specific cylinder” and “improper combustion/unburned.” It is. Further, the physical phenomenon related to these "insufficient fuel in a specific cylinder” and “poor combustion/unburnt” is “amount of heat input to a specific cylinder (small).” Furthermore, the abnormal symptom related to this "specific cylinder input heat amount (small)” is “negative side deviation of cylinder outlet exhaust gas temperature (large).”
- the calculation unit a2 calculates only a preset standard correction amount h for the engineering factors, physical phenomena, and abnormal symptoms.
- the weighting coefficient g, the first ratio k1 and/or the second ratio k2 are increased.
- the second ratio k2 regarding "poor combustion/uncombustion”, which is an engineering factor, and "fuel injection pump”, which is the true cause of the abnormality is increased from “30%” to "38.5%”.
- the first ratio k1 between the engineering factor “poor combustion/unburnt” and the physical phenomenon “heat amount input into a specific cylinder (small)” is increased from “45%” to "48.2%”.
- the weighting coefficient g relating to the physical phenomenon “amount of heat input to a specific cylinder (small)” and the abnormal symptom “negative side deviation of cylinder outlet exhaust gas temperature (large)” is increased from “80” to "85".
- the calculation unit a2 decreases the first ratio k1 and/or the second ratio k2 related to the increase in the weighting coefficient g and the first ratio k1 or/and the second ratio k2.
- the first ratio k1 and/or second ratio k2 related to this increase is the second ratio regarding "poor combustion/unburnt" and "fuel injection valve” which is a candidate cause of abnormality.
- the calculation unit a2 calculates "poor combustion/unburned” and "unburned” which is the candidate cause of the abnormality.
- the second ratio k2 related to "fuel injection valve” is decreased from “70%” to "61.5%”.
- the first ratio k1 between the engineering factor “poor combustion/unburnt” and the physical phenomenon “heat input to a specific cylinder (small)” increases, the engineering factor “insufficient fuel in a specific cylinder” increases. and the physical phenomenon “amount of heat input into a specific cylinder (small)”, the first ratio k1 is decreased from “55%” to "51.8%".
- the calculation unit a2 ends the device diagnostic service for the first equipment C1.
- the calculation unit a2 then enters a standby state until a new diagnosis request is input from the communication unit a1. That is, the device diagnosis server A returns from the standby state to the active state every time a diagnosis request is input, and responds to each device 1a, 2a, . . . in response to a diagnosis request randomly received from n devices C1 to Cn. , na (diagnosis target) is performed.
- the diagnostic rule is optimally updated based on the true abnormality cause every time the true abnormality cause is identified in the first equipment C1.
- the ability to estimate abnormality cause candidates gradually improves over time. Therefore, according to the present embodiment, it is possible to improve the equipment diagnostic ability for each equipment C1 to Cn as the operating time passes.
- the device diagnosis system according to the present invention is configured as the device diagnosis server A, but the present invention is not limited to this.
- the device diagnosis server A may be a computer that does not have the function of a server
- the communication devices 1b, 2b, . . . , nb may be devices that do not have the function of a client.
- the communication devices 1b, 2b, ..., nb in each equipment C1 to Cn are not limited to fixedly installed devices, but may also be portable communication devices such as notebook PCs or tablet terminals with communication functions. good. Such a portable communication device is communicably connected to each device 1a, 2a, .
- the device basic information is stored in the storage unit a3 of the device diagnosis server A in advance. This is to reduce the communication load between the equipment C1 to Cn and the equipment diagnosis server A. However, if such communication load need not be ignored or taken into consideration, all or part of the device basic information may be transmitted to the device diagnosis server A from the device facilities C1 to Cn.
- the output screen (diagnosis result) is output as a Sankey diagram to each equipment C1 to Cn, but the present invention is not limited to this.
- the output screen (diagnosis result) may be displayed in a display format other than the Sankey diagram as long as the relationship between the abnormality cause candidate, physical phenomenon, and engineering factor can be understood.
- the output screen (diagnosis result) for one abnormal symptom was shown as the Sankey diagram in FIG. 6, but the present invention is not limited to this.
- the comprehensive abnormal cause state index ⁇ for each abnormal cause candidate is calculated, and the diagnostic results regarding multiple abnormal symptoms are combined into one Sankey diagram.
- a hierarchy is provided for both physical phenomena and engineering factors, and the relationship between the four hierarchies of abnormal symptoms, physical phenomena, engineering factors, and abnormal cause candidates is established.
- An evaluation value indicating the possibility of failure was calculated.
- the output device outputs a diagnosis result in which an evaluation value indicating the possibility of failure and information indicating the magnitude of the evaluation in the calculation process are added to the abnormal symptoms, physical phenomena or engineering factors, and abnormal cause candidates. Output.
- the present invention it is possible to provide a device diagnosis system and a device diagnosis method that make it easy to read what kind of phenomenon led to the diagnosis result and can take action more quickly than before. It is.
- a Device diagnosis server (input device, diagnostic device, output device) a1 Communication section a2 Arithmetic section a3 Storage section a4 Operation section a5 Display section B Communication line C1 to Cn Equipment and equipment 1a, 2a,..., na Communication device 1b, 2b,..., nb Equipment (diagnosis target)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
This equipment diagnosis system for identifying an abnormality cause candidate on the basis of a state quantity of equipment comprises: an input device for receiving a state quantity; a diagnosis device for identifying, on the basis of the state quantity received by the input device and a prescribed diagnosis rule, an abnormality cause candidate and a physical phenomenon and an engineering factor relating to the abnormality cause candidate; and an output device for outputting the abnormality cause candidate, the physical phenomenon, and the engineering factor, as diagnosis results.
Description
本発明は、機器診断システム及び機器診断方法に関する。
本願は、2022年5月18日に、日本に出願された特願2022-081303号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a device diagnosis system and a device diagnosis method.
This application claims priority based on Japanese Patent Application No. 2022-081303 filed in Japan on May 18, 2022, the contents of which are incorporated herein.
本願は、2022年5月18日に、日本に出願された特願2022-081303号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a device diagnosis system and a device diagnosis method.
This application claims priority based on Japanese Patent Application No. 2022-081303 filed in Japan on May 18, 2022, the contents of which are incorporated herein.
従来の機器診断システムは、ロガーシステムで判定された警報、センサから入力された一つまたは複数の計測データから各種手法により検知したプリアラームなどの異常症状の検出時に、過去の経験や知識に基づいて構築された診断ルールに従い異常部品/外的影響要因など異常原因やチェックすべきポイントを診断結果として画面上に列挙するものが多い。診断ルールは、異常症状の内容から、関連する異常原因を紐づけておく方法や計測データからより可能性の高い異常原因に絞り込む方法などがある。下記特許文献1~3には、機器診断システムの例として、ディーゼル機関支援装置、監視診断システム及びエンジン故障診断装置が開示されている。
Conventional equipment diagnostic systems use past experience and knowledge to detect abnormal symptoms such as alarms determined by logger systems and pre-alarms detected using various methods from one or more measurement data input from sensors. In many cases, causes of abnormalities such as abnormal parts/external influence factors and points to be checked are listed on the screen as diagnostic results according to diagnostic rules established by the system. Diagnostic rules include a method of linking related causes of an abnormality based on the content of abnormal symptoms, and a method of narrowing down to the most likely cause of an abnormality based on measurement data. Patent Documents 1 to 3 listed below disclose a diesel engine support device, a monitoring diagnosis system, and an engine failure diagnosis device as examples of equipment diagnosis systems.
上記背景技術において、利用者は異常原因であろう異常部品/外的影響要因を画面上から確認することはできるが、診断対象となる機器の知識が十分にない場合には、診断結果の背景にある診断理由を把握することができない。この結果、利用者は、機器診断システムの診断結果に対処する場合に適切な処置を採るのに時間を要し、診断結果について迅速な対処ができない可能性がある。
In the above background technology, the user can check the abnormal parts/external influence factors that may be the cause of the abnormality from the screen, but if the user does not have sufficient knowledge of the equipment to be diagnosed, the background of the diagnosis result Unable to understand the reason for the diagnosis. As a result, it takes time for the user to take appropriate measures when dealing with the diagnosis result of the device diagnosis system, and there is a possibility that the user cannot take prompt action regarding the diagnosis result.
本発明は、上述した事情に鑑みてなされたものであり、診断結果について、どのような現象によりその診断結果に至ったかを読み取ることを容易にし、従来よりも迅速な対処が可能な機器診断システム及び機器診断方法の提供を目的とするものである。
The present invention has been made in view of the above-mentioned circumstances, and provides a device diagnostic system that makes it easy to read the phenomenon that led to the diagnosis result, and allows for quicker response than before. The purpose of this invention is to provide a method for diagnosing devices.
本発明の第1の態様に係る機器診断システムは、機器の状態量に基づいて異常原因候補を特定する機器診断システムにおいて、前記状態量を受け入れる入力装置と、前記入力装置が受け入れた前記状態量と所定の診断ルールとに基づいて前記異常原因候補、並びに前記異常原因候補に関係する物理的現象及び工学的要因を特定する診断装置と、前記異常原因候補、前記物理的現象及び前記工学的要因を診断結果として出力する出力装置とを備える。
A device diagnostic system according to a first aspect of the present invention is a device diagnostic system that identifies an abnormality cause candidate based on a state amount of a device, and includes an input device that receives the state amount, and the state amount accepted by the input device. and a diagnostic device that identifies the abnormality cause candidate, and physical phenomena and engineering factors related to the abnormality cause candidate, based on the abnormality cause candidate, the physical phenomenon, and the engineering factor based on the abnormality cause candidate and a predetermined diagnosis rule. and an output device that outputs the diagnosis result.
本発明の第2の態様に係る機器診断システムでは、上記第1の態様において、前記診断装置は、前記異常原因候補を複数特定した場合に、前記状態量に基づいて故障可能性を示す評価値を算出し、前記出力装置は、前記状態量における異常症状、前記異常原因候補、前記物理的現象、及び前記工学的要因に、前記評価値及び前記評価値の算出過程における評価の大きさを付加した前記診断結果を出力する。
In the device diagnostic system according to a second aspect of the present invention, in the first aspect, when the diagnostic device identifies a plurality of abnormality cause candidates, the diagnostic device generates an evaluation value indicating the possibility of failure based on the state quantity. and the output device adds the evaluation value and the magnitude of the evaluation in the process of calculating the evaluation value to the abnormal symptom in the state quantity, the abnormal cause candidate, the physical phenomenon, and the engineering factor. The diagnostic results obtained are output.
本発明の第3の態様に係る機器診断システムでは、上記第1または第2の態様において、前記入力装置は、正常な前記異常原因候補を示す異常確認情報を受け入れ、前記診断装置は、前記異常確認情報に基づいて正常な前記異常原因候補を除外した前記異常原因候補、前記物理的現象及び前記工学的要因を特定し、前記出力装置は、正常な前記異常原因候補を除外した診断結果を出力する。
In the device diagnostic system according to a third aspect of the present invention, in the first or second aspect, the input device receives abnormality confirmation information indicating the normal abnormality cause candidate, and the diagnostic device The abnormality cause candidates excluding the normal abnormality cause candidates, the physical phenomenon, and the engineering factors are identified based on the confirmation information, and the output device outputs a diagnosis result excluding the normal abnormality cause candidates. do.
本発明の第4の態様に係る機器診断システムでは、上記第1~第3のいずれかの態様において、前記入力装置は、真の異常原因を示す異常原因特定情報を受け入れ、前記診断装置は、前記異常原因特定情報に基づいて診断ルールを更新する。
In the device diagnostic system according to a fourth aspect of the present invention, in any one of the first to third aspects, the input device receives abnormality cause identification information indicating the true cause of the abnormality, and the diagnostic device includes: A diagnostic rule is updated based on the abnormality cause identification information.
本発明の第5の態様に係る機器診断システムでは、上記第1~第4のいずれかの態様において、前記診断装置は、複数の異常症状について前記異常原因候補、前記物理的現象及び前記工学的要因を特定し、前記出力装置は、前記複数の異常症状に関する前記診断結果を出力する。
In a device diagnostic system according to a fifth aspect of the present invention, in any one of the first to fourth aspects, the diagnostic device may detect the abnormality cause candidate, the physical phenomenon, and the engineering diagnosis for a plurality of abnormal symptoms. The cause is identified, and the output device outputs the diagnostic results regarding the plurality of abnormal symptoms.
本発明の第6の態様に係る機器診断システムでは、上記第1~第5のいずれかの態様において、前記出力装置は、前記診断結果をサンキーダイヤグラムとして出力する。
In the equipment diagnosis system according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the output device outputs the diagnosis result as a Sankey diagram.
本発明の第7の態様に係る機器診断システムは、機器の状態量に基づいて異常原因候補を特定する機器診断システムにおいて、前記状態量を受け入れる入力装置と、前記入力装置が受け入れた前記状態量と所定の診断ルールとに基づいて前記異常原因候補、及び前記異常原因候補に関係する物理的現象または工学的要因を特定する診断装置と、前記異常原因候補、前記物理的現象または前記工学的要因を診断結果として出力する出力装置とを備える。
A device diagnostic system according to a seventh aspect of the present invention is a device diagnostic system that identifies an abnormality cause candidate based on a state amount of a device, and includes an input device that receives the state amount, and the state amount accepted by the input device. and a diagnostic device that identifies the abnormality cause candidate and a physical phenomenon or engineering factor related to the abnormality cause candidate based on the abnormality cause candidate, the physical phenomenon, or the engineering factor based on the abnormality cause candidate and a predetermined diagnosis rule. and an output device that outputs the diagnosis result.
本発明の第8の態様に係る機器診断方法は、機器の状態量に基づいて異常原因候補を特定する機器診断方法において、前記状態量を受け入れる受入工程と、前記受入工程で受け入れた前記状態量と所定の診断ルールとに基づいて前記異常原因候補、並びに前記異常原因候補に関係する物理的現象及び工学的要因を特定する診断工程と、前記異常原因候補、前記物理的現象及び前記工学的要因を診断結果として出力する出力工程とを有する。
An apparatus diagnosis method according to an eighth aspect of the present invention is a device diagnosis method for identifying an abnormality cause candidate based on a state quantity of the apparatus, comprising: an acceptance step for accepting the state quantity; and the state quantity accepted in the acceptance process. and a diagnostic step of identifying the abnormality cause candidate, and physical phenomena and engineering factors related to the abnormality cause candidate, based on the abnormality cause candidate, the physical phenomenon, and the engineering factor based on the abnormality cause candidate and a predetermined diagnosis rule. and an output step of outputting the diagnosis result as a diagnosis result.
本発明によれば、診断結果について、どのような現象によりその診断結果に至ったかを読み取ることを容易にし、従来よりも迅速な対処が可能な機器診断システム及び機器診断方法を提供することが可能である。
According to the present invention, it is possible to provide a device diagnosis system and a device diagnosis method that make it easy to read what kind of phenomenon led to the diagnosis result and can take action more quickly than before. It is.
以下、図面を参照して、本発明の一実施形態について説明する。
本実施形態に係る機器診断システムは、特定の通信網上で機器診断サービスを複数のユーザ(クライアント)に提供する。図1Aに示すように、機器診断システムは、機器診断サーバA、通信回線B及びn個(n:自然数)の機器設備C1~Cnを備える。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
The device diagnosis system according to this embodiment provides device diagnosis services to a plurality of users (clients) on a specific communication network. As shown in FIG. 1A, the device diagnosis system includes a device diagnosis server A, a communication line B, and n pieces of device equipment C1 to Cn (n: a natural number).
本実施形態に係る機器診断システムは、特定の通信網上で機器診断サービスを複数のユーザ(クライアント)に提供する。図1Aに示すように、機器診断システムは、機器診断サーバA、通信回線B及びn個(n:自然数)の機器設備C1~Cnを備える。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
The device diagnosis system according to this embodiment provides device diagnosis services to a plurality of users (clients) on a specific communication network. As shown in FIG. 1A, the device diagnosis system includes a device diagnosis server A, a communication line B, and n pieces of device equipment C1 to Cn (n: a natural number).
機器診断サーバA及びn個の機器設備C1~Cnは、図示するように通信回線Bを介して電気的に接続されている。n個の機器設備C1~Cnについて先に説明すると、n個の機器設備C1~Cnは、各々に機器1a,2a,…,naと通信装置1b,2b,…,nbとを備える。すなわち、第1の機器設備C1は第1の機器1aと第1の通信装置1bとを備え、第2の機器設備C2は第2の機器2aと第2の通信装置2bとを備え、……、第nの機器設備Cnは第nの機器naと第nの通信装置nbとを備える。
The device diagnosis server A and the n devices C1 to Cn are electrically connected via a communication line B as shown. First, the n pieces of equipment C1 to Cn will be explained. Each of the n pieces of equipment C1 to Cn includes equipments 1a, 2a, . . . , na and communication devices 1b, 2b, . . . nb. That is, the first equipment C1 includes a first equipment 1a and a first communication device 1b, the second equipment C2 includes a second equipment 2a and a second communication device 2b, and... , the n-th equipment Cn includes an n-th equipment na and an n-th communication device nb.
n個の機器1a,2a,…,naは、機器診断システムにおける診断対象である。機器1a,2a,…,naは、各機器設備C1~Cnにおいて運転稼働する装置であり、運転稼働状態を検出あるいは測定する複数のセンサや計測器を備えている。機器1a,2a,…,naは、通信装置1b,2b,…,nbと電気的に接続されており、複数のセンサや計測器の検出結果あるいは計測結果を機器1a,2a,…,naの状態量Jとして通信装置1b,2b,…,nbに出力する。
The n devices 1a, 2a, ..., na are diagnostic targets in the device diagnostic system. The devices 1a, 2a, . . . , na are devices that operate in each of the devices C1 to Cn, and are equipped with a plurality of sensors and measuring instruments that detect or measure the operating state. The devices 1a, 2a, ..., na are electrically connected to the communication devices 1b, 2b, ..., nb, and transmit the detection results or measurement results of the plurality of sensors and measuring instruments to the devices 1a, 2a, ..., na. It is output as the state quantity J to the communication devices 1b, 2b, . . . , nb.
すなわち、第1の機器設備C1における第1の機器1aは、複数のセンサや計測器の検出結果あるいは/及び計測結果を第1の機器1aの状態量Jとして第1の通信装置1bに出力する。第2の機器設備C2における第2の機器2aは、複数のセンサや計測器の検出結果あるいは/及び計測結果を第2の機器2aの状態量Jとして第2の通信装置2bに出力する。同様に、第nの機器設備Cnにおける第nの機器naは、複数のセンサや計測器の検出結果あるいは/及び計測結果を第nの機器naの状態量Jとして第nの通信装置nbに出力する。機器1a,2a,…,naは、例えば各機器設備C1~Cnで運用されているエンジンである。
That is, the first device 1a in the first device facility C1 outputs the detection results and/or measurement results of the plurality of sensors and measuring instruments to the first communication device 1b as the state quantity J of the first device 1a. . The second device 2a in the second device facility C2 outputs the detection results and/or measurement results of the plurality of sensors and measuring instruments to the second communication device 2b as the state quantity J of the second device 2a. Similarly, the n-th device na in the n-th device facility Cn outputs the detection results and/or measurement results of the plurality of sensors and measuring instruments to the n-th communication device nb as the state quantity J of the n-th device na. do. The devices 1a, 2a, . . . , na are, for example, engines operated in each of the devices C1 to Cn.
n個の通信装置1b,2b,…,nbは、図1Aに示すように、各々に通信回線Bを介して機器診断サーバAの通信部a1に電気的に接続されている。通信装置1b,2b,…,nbは、各機器1a,2a,…,naに関する診断要求を通信回線Bを介して通信部a1に送信するとともに、この診断要求に対応する診断結果を通信部a1から受信するクライアントコンピュータである。また、各通信装置1b,2b,…,nbは、各機器設備C1~Cnの内部において、各機器1a,2a,…,naと電気的に接続されている。
As shown in FIG. 1A, the n communication devices 1b, 2b, ..., nb are each electrically connected to the communication section a1 of the device diagnosis server A via the communication line B. The communication devices 1b, 2b, ..., nb transmit diagnostic requests regarding the respective devices 1a, 2a, ..., na to the communication section a1 via the communication line B, and also transmit the diagnosis results corresponding to these diagnostic requests to the communication section a1. A client computer that receives data from a client computer. Further, each communication device 1b, 2b, . . . , nb is electrically connected to each device 1a, 2a, .
ここで、各通信装置1b,2b,…,nb(クライアントコンピュータ)が機器診断サーバAに送信する診断要求には、各機器1a,2a,…,naの状態量J及び機器設備C1~Cnつまり機器1a,2a,…,naを特定する機器情報が含まれている。状態量Jは、各機器1a,2a,…,naにおけるセンサや計測器の検出結果あるいは/及び計測結果の他に、機器1a,2a,…,naの運用者が機器1a,2a,…,naについて認知した異常症状(例えば異音や異臭等)を含む。
Here, the diagnosis request sent from each communication device 1b, 2b, ..., nb (client computer) to the device diagnosis server A includes the state quantity J of each device 1a, 2a, ..., na and the device equipment C1 to Cn. Device information that specifies devices 1a, 2a, ..., na is included. In addition to the detection results and/or measurement results of sensors and measuring instruments in each device 1a, 2a, ..., na, the state quantity J is determined by the operator of the devices 1a, 2a, ..., na. Includes abnormal symptoms recognized by na (e.g. strange sounds, strange smells, etc.).
各通信装置1b,2b,…,nbは、各機器1a,2a,…,naの診断要求時における運転稼働状態を機器診断サーバAに通知することによって、各機器1a,2a,…,naの診断、つまり異常が発生しているか否か、また異常が発生している場合の異常原因候補の特定、さらに異常原因候補の特定の背景にある異常理由の提供を要求する。詳細については後述するが、異常理由は、異常原因候補の特定に関係する物理的現象及び工学的要因であり、各機器1a,2a,…,naの状態量Jに基づいて導き出されるものである。
Each communication device 1b, 2b, ..., nb notifies the device diagnosis server A of the operating state of each device 1a, 2a, ..., na at the time of a diagnosis request, thereby informing the device 1a, 2a, ..., na of each device 1a, 2a, ..., na. Diagnosis, that is, whether or not an abnormality has occurred, identification of a candidate cause of the abnormality if an abnormality has occurred, and provision of the reason for the abnormality behind the identification of the candidate cause of the abnormality is requested. Although the details will be described later, the reason for the abnormality is a physical phenomenon and engineering factor related to identifying the candidate cause of the abnormality, and is derived based on the state quantity J of each device 1a, 2a, ..., na. .
機器診断サーバAは、通信回線Bを介してn個の機器設備C1~Cnからランダムに順次受信する診断要求に対して診断を実施し、診断結果をサービス情報として機器設備C1~Cnに提供する。機器診断サーバAは、機器診断プログラムが搭載されるとともに通信機能を備えた一種のコンピュータであり、図1Bに示すように、通信部a1、演算部a2、記憶部a3、操作部a4及び表示部a5を備える。
The device diagnosis server A performs diagnosis on diagnosis requests sequentially received randomly from the n devices C1 to Cn via the communication line B, and provides the diagnosis results to the devices C1 to Cn as service information. . The device diagnosis server A is a type of computer equipped with a device diagnosis program and a communication function, and as shown in FIG. Equipped with a5.
通信部a1は、通信回線Bを介して各機器設備C1~Cnと電気的に接続されており、診断要求等の受信と診断結果等の送信を主に行う。通信部a1は、予め設定された通信プロトコルに従って各機器設備C1~Cnと情報通信を行う機能構成要素であり、機器診断サーバAの内部において演算部a2と電気的に接続されている。通信部a1は、演算部a2による制御の下で各機器設備C1~Cnとの情報通信を行う。
The communication unit a1 is electrically connected to each equipment C1 to Cn via the communication line B, and mainly receives diagnosis requests and the like and transmits diagnosis results and the like. The communication unit a1 is a functional component that performs information communication with each device C1 to Cn according to a preset communication protocol, and is electrically connected to the calculation unit a2 inside the device diagnosis server A. The communication unit a1 performs information communication with each equipment C1 to Cn under the control of the calculation unit a2.
演算部a2は、通信部a1、記憶部a3、操作部a4及び表示部a5と電気的に接続されており、機器診断サーバAにおける中心的な機能構成要素である。演算部a2は、通信部a1から入力された診断要求に対して、記憶部a3に記憶された機器診断プログラムを実行することにより、診断要求に応じた機器診断を実行する。また、演算部a2は、診断要求に対応する診断結果を通信部a1を介して各機器設備C1~Cnに送信させる。
The calculation unit a2 is electrically connected to the communication unit a1, the storage unit a3, the operation unit a4, and the display unit a5, and is a central functional component in the device diagnosis server A. In response to the diagnosis request input from the communication section a1, the calculation section a2 executes the device diagnosis program stored in the storage section a3, thereby executing the device diagnosis according to the diagnosis request. Further, the calculation unit a2 transmits the diagnosis result corresponding to the diagnosis request to each device C1 to Cn via the communication unit a1.
記憶部a3は、機器診断プログラムを予め記憶するとともに機器診断プログラムの実行に必要な機器基本情報を予め記憶する。また、記憶部a3は、演算部a2と電気的に接続されており、演算部a2が機器診断プログラムを実行する上で演算した結果を一時的に記憶する。記憶部a3は、演算部a2によって情報の読み書きが制御される。
The storage unit a3 stores in advance a device diagnosis program and also stores in advance device basic information necessary for executing the device diagnosis program. Furthermore, the storage section a3 is electrically connected to the calculation section a2, and temporarily stores the results of calculations performed by the calculation section a2 when executing the device diagnosis program. Reading and writing of information in the storage unit a3 is controlled by the calculation unit a2.
ここで、機器診断プログラムは、演算部a2が実行可能なアプリケーションプログラムである。詳細については後述するが、機器診断プログラムは、診断要求に含まれる各機器1a,2a,…,na(診断対象)の状態量Jと機器基本情報とを用いて各機器1a,2a,…,naを診断する診断処理及び各機器1a,2a,…,naにおける診断結果の出力処理を演算部a2に行わせる。
Here, the device diagnosis program is an application program that can be executed by the calculation unit a2. Although the details will be described later, the device diagnosis program uses the state quantity J and basic device information of each device 1a, 2a, ..., na (diagnosis target) included in the diagnosis request. The arithmetic unit a2 is caused to perform a diagnostic process for diagnosing na and a process for outputting the diagnostic results in each device 1a, 2a, . . . , na.
また、機器基本情報は、演算部a2が機器診断プログラムを実行する上で必要な情報であり、例えば各機器1a,2a,…,na(診断対象)の設計情報、各機器1a,2a,…,naの正常時における状態量J(正常状態量)、また各機器1a,2a,…,naの異常症状毎に予め設定された診断ルール等である。なお、診断ルールの詳細については後述する。
Further, the device basic information is information necessary for the calculation unit a2 to execute the device diagnosis program, and includes, for example, design information of each device 1a, 2a, ..., na (diagnosis target), each device 1a, 2a, ... , na during normal times (normal state quantities), and diagnostic rules preset for each abnormal symptom of each device 1a, 2a, . . . , na. Note that the details of the diagnostic rule will be described later.
操作部a4は、演算部a2と電気的に接続されており、機器診断サーバAのメンテナンスの際に主に操作される。すなわち、操作部a4は、機器診断サーバAの通常処理つまり診断要求に基づく機器診断処理に直接関与するものではない。なお、機器診断サーバAのメンテナンス時には、操作部a4が機器診断サーバAの管理者によって操作されることにより演算部a2に操作情報が入力され、この操作情報に基づいて記憶部a3に予め記憶された機器診断プログラムや機器基本情報の更新等が行われる。
The operation unit a4 is electrically connected to the calculation unit a2, and is mainly operated during maintenance of the device diagnosis server A. That is, the operation unit a4 is not directly involved in the normal processing of the device diagnosis server A, that is, the device diagnosis processing based on a diagnosis request. Note that during maintenance of the device diagnosis server A, operation section a4 is operated by the administrator of the device diagnosis server A to input operation information to the calculation section a2, and based on this operation information, information is stored in advance in the storage section a3. The device diagnostic program and basic device information will be updated.
表示部a5は、演算部a2と電気的に接続されており、操作部a4と同様に機器診断サーバAのメンテナンスの際に主に操作される。すなわち、表示部a5には、機器診断サーバAのメンテナンスに必要な情報が画像表示される。機器診断サーバAの管理者は、表示部a5に表示される画像を確認することによって、機器診断サーバAの適切なメンテナンスを行う。
The display section a5 is electrically connected to the calculation section a2, and is mainly operated during maintenance of the device diagnosis server A, like the operation section a4. That is, information necessary for maintenance of the device diagnosis server A is displayed as an image on the display section a5. The administrator of the device diagnosis server A performs appropriate maintenance of the device diagnosis server A by checking the image displayed on the display section a5.
通信回線Bは、所定の通信プロトコルに即した信号伝送線路であり、伝送媒体は有線あるいは/及び無線である。また、通信回線Bを伝送する通信信号は、電気信号あるいは/及び光信号である。通信回線Bは、WAN(Wide Area Network:広域通信網)あるいはLAN(Local Area Network:ローカルエリアネットワーク)である。
The communication line B is a signal transmission line that conforms to a predetermined communication protocol, and the transmission medium is wired and/or wireless. Furthermore, the communication signals transmitted through the communication line B are electrical signals and/or optical signals. The communication line B is a WAN (Wide Area Network) or a LAN (Local Area Network).
ここで、本実施形態に係る機器診断システムは、機器診断サーバAが通信回線Bを介してn個の機器設備C1~Cnのいずれかから受け入れた各機器1a,2a,…,naの状態量Jに基づいて異常原因候補を特定し、異常原因候補に加えて、異常原因候補の特定に関係する物理的現象及び工学的要因を特定し、異常原因候補、物理的現象及び工学的要因を診断結果として通信回線Bを介して各機器設備C1~Cnに出力する。機器診断システムにおいて、機器診断サーバAは、本発明の入力装置、診断装置及び出力装置に相当する。
Here, in the device diagnosis system according to the present embodiment, the state quantity of each device 1a, 2a, ..., na is received by the device diagnosis server A from any of the n device facilities C1 to Cn via the communication line B. Identify abnormality cause candidates based on J, identify physical phenomena and engineering factors related to identification of abnormality cause candidates in addition to abnormality cause candidates, and diagnose abnormality cause candidates, physical phenomena, and engineering factors. As a result, it is output to each equipment C1 to Cn via the communication line B. In the device diagnostic system, the device diagnostic server A corresponds to the input device, diagnostic device, and output device of the present invention.
次に、本実施形態に係る機器診断システムの動作及び機器診断システムを用いた機器診断方法について、図2A~8をも参照して詳しく説明する。
Next, the operation of the device diagnosis system according to this embodiment and the device diagnosis method using the device diagnosis system will be described in detail with reference to FIGS. 2A to 8.
機器診断サーバAは、図2Aに示すように、n個の機器設備C1~Cnのいずれかから診断要求を受信すると(ステップS1)、この診断要求に基づいて機器1a,2a,…,naのいずれかの診断処理を実行し(ステップS2)、この診断処理の結果(診断結果)をn個の機器設備C1~Cnのいずれかに出力(送信)する(ステップS3)。
As shown in FIG. 2A, when the device diagnosis server A receives a diagnosis request from any of the n devices C1 to Cn (step S1), the device diagnosis server A performs the diagnosis of the devices 1a, 2a, ..., na based on this diagnosis request. One of the diagnostic processes is executed (step S2), and the result of this diagnostic process (diagnosis result) is outputted (transmitted) to one of the n devices C1 to Cn (step S3).
ここで、診断要求には機器1a,2a,…,naに関する機器情報が含まれている。すなわち、診断要求には機器1a,2a,…,naに関する状態量Jが含まれているので、機器診断サーバAは、機器設備C1~Cnのいずれかから診断要求とともに状態量Jを受け入れる。したがって、ステップS1は、本実施形態に係る機器診断方法における受入工程に相当する。
Here, the diagnosis request includes device information regarding the devices 1a, 2a, ..., na. That is, since the diagnosis request includes the state quantity J regarding the devices 1a, 2a, . Therefore, step S1 corresponds to the receiving step in the device diagnosis method according to the present embodiment.
また、ステップS2は、ステップS1で得られた状態量Jと後述する診断ルールとに基づいて異常原因候補、物理的現象及び工学的要因を特定する処理であり、本実施形態に係る機器診断方法における診断工程に相当する。さらに、ステップS3は、診断工程で得られた異常原因候補、物理的現象及び工学的要因を診断結果として機器設備C1~Cnに出力する処理であり、本実施形態に係る機器診断方法における出力工程に相当する。すなわち、図2Aに示す一連の処理は、機器診断サーバAが行う基本処理であり、本実施形態に係る機器診断方法における基本工程である。
Further, step S2 is a process of identifying abnormality cause candidates, physical phenomena, and engineering factors based on the state quantity J obtained in step S1 and a diagnosis rule described later, and the device diagnosis method according to the present embodiment. This corresponds to the diagnostic process in Further, step S3 is a process of outputting abnormality cause candidates, physical phenomena, and engineering factors obtained in the diagnosis process to the equipment C1 to Cn as diagnosis results, and is an output step in the equipment diagnosis method according to the present embodiment. corresponds to That is, the series of processes shown in FIG. 2A are basic processes performed by the device diagnosis server A, and are basic steps in the device diagnosis method according to this embodiment.
すなわち、機器診断サーバAにおいて、通信部a1は、n個の通信装置1b,2b,…,nbのいずれかから診断要求を受信すると、この診断要求を演算部a2に出力する。そして、演算部a2は、診断要求に含まれる機器情報に基づいて診断実行対象を認知し、診断処理(ステップS2)を開始する。
That is, in the device diagnosis server A, when the communication unit a1 receives a diagnosis request from any of the n communication devices 1b, 2b, . . . , nb, it outputs this diagnosis request to the calculation unit a2. Then, the calculation unit a2 recognizes the diagnosis execution target based on the device information included in the diagnosis request, and starts the diagnosis process (step S2).
例えば、第1の機器設備C1における第1の通信装置1bが機器診断サーバAの通信部a1に第1の機器1aを診断実行対象とする診断要求(第1の診断要求)を送信した場合、通信部a1は、第1の診断要求を受信して演算部a2に出力する。この結果、演算部a2は、第1の診断要求に含まれる機器情報に基づいて第1の機器1aを診断実行対象とする診断処理(ステップS2)を開始する。
For example, when the first communication device 1b in the first equipment C1 transmits a diagnosis request (first diagnosis request) for the first device 1a to be diagnosed to the communication unit a1 of the device diagnosis server A, The communication unit a1 receives the first diagnosis request and outputs it to the calculation unit a2. As a result, the calculation unit a2 starts a diagnostic process (step S2) that targets the first device 1a for diagnosis based on the device information included in the first diagnostic request.
続いて図2Bを参照して、本実施形態に係る機器診断システム及び機器診断方法における診断処理(ステップS2)及び出力処理(ステップS3)について詳しく説明する。なお、以下では第1の機器1aを診断する場合について説明し、またより具体化するために第1の機器1aがディーゼルエンジンである場合について説明する。
Next, with reference to FIG. 2B, the diagnosis processing (step S2) and output processing (step S3) in the device diagnosis system and device diagnosis method according to the present embodiment will be described in detail. In addition, below, the case where the 1st apparatus 1a is diagnosed is demonstrated, and the case where the 1st apparatus 1a is a diesel engine is demonstrated to make it more concrete.
演算部a2は、診断処理(ステップS2)において、最初に異常症状項目とその異常の程度を示す異常度Xとを取得する(ステップS21)。すなわち、演算部a2は、第1の通信装置1bから受信した第1の機器1aの状態量Jに基づいて第1の機器1aに関する異常症状項目を取得し、また異常症状の程度を記憶部a3に予め記憶された第1の機器1aの正常状態量を用いて評価することにより異常度Xを取得する。
In the diagnostic process (step S2), the calculation unit a2 first obtains an abnormal symptom item and an abnormality degree X indicating the degree of the abnormality (step S21). That is, the calculation unit a2 acquires the abnormal symptom item regarding the first device 1a based on the state quantity J of the first device 1a received from the first communication device 1b, and also stores the degree of the abnormal symptom in the storage unit a3. The degree of abnormality X is obtained by evaluating using the normal state quantity of the first device 1a stored in advance.
例えば、ディーゼルエンジン(第1の機器1a)の状態量Jには、給気圧力、過給機回転速度、過給機入口排気ガス温度、シリンダ出口排気温度、シリンダ最高圧力、燃焼排気ガスの色味、シリンダヘッドの振動音、クランク室のミスト濃度、始動用モータの使用回数、機関出力、また潤滑油圧力低下等がある。
For example, the state quantity J of the diesel engine (first device 1a) includes supply air pressure, supercharger rotation speed, supercharger inlet exhaust gas temperature, cylinder outlet exhaust temperature, cylinder maximum pressure, and color of combustion exhaust gas. These include taste, vibration noise of the cylinder head, mist concentration in the crank chamber, number of times the starting motor is used, engine output, and drop in lubricating oil pressure.
そして、これらの状態量Jのうち、例えば給気圧力と過給機回転速度との組み合わせに基づいて給気圧力と過給機回転速度との関係の正常な関係からの偏差(乖離量)を計算することができる。すなわち、演算部a2は、ステップS21において、状態量Jにおける給気圧力及び過給機回転速度と機器基本情報に含まれる第1の機器1aの正常状態量における給気圧力及び過給機回転速度とを比較し、両者の差分から異常の程度を示す量つまり異常度Xを取得し、異常度Xが所定の閾値を超える場合にはそれを異常症状と判定する。また、異常度Xが所定の閾値よりも小さい場合は異常症状は起こっていないと判断できる。
Among these state quantities J, for example, the deviation (deviation amount) of the relationship between the charge air pressure and the turbocharger rotation speed from the normal relationship is calculated based on the combination of the charge air pressure and the supercharger rotation speed. can be calculated. That is, in step S21, the calculation unit a2 calculates the supply pressure and supercharger rotation speed in the state quantity J and the supply pressure and supercharger rotation speed in the normal state quantity of the first equipment 1a included in the basic equipment information. A quantity indicating the degree of abnormality, that is, an abnormality degree X is obtained from the difference between the two, and when the abnormality degree X exceeds a predetermined threshold value, it is determined that it is an abnormal symptom. Furthermore, if the degree of abnormality X is smaller than a predetermined threshold value, it can be determined that no abnormal symptoms are occurring.
ここで、演算部a2は、状態量Jと正常状態量の正/負つまり大小関係に基づいて「高」あるいは「低」それぞれの異常症状の程度を示す異常度を取得する。例えば、状態量Jにおける過給機回転速度がある状態の時の給気圧力が、正常状態量における給気圧力よりも大きい場合、演算部a2は、「給気圧力vs過給機回転速度(高)」を異常度として取得し、状態量Jにおける過給機回転速度がある状態の時の給気圧力が、正常状態量における給気圧力よりも小さい場合には「給気圧力vs過給機回転速度(低)」を異常度として取得する。
Here, the calculation unit a2 obtains the degree of abnormality indicating the degree of the abnormal symptom as "high" or "low" based on the positive/negative, ie, magnitude relationship between the state quantity J and the normal state quantity. For example, if the supply pressure when the supercharger rotational speed in the state quantity J is higher than the supply pressure in the normal state quantity, the calculation unit a2 calculates "supply pressure vs. supercharger rotational speed ( "high)" is acquired as the abnormality degree, and if the supply pressure at a certain state of the turbocharger rotation speed in the state quantity J is smaller than the supply pressure in the normal state quantity, "supply pressure vs. Obtain "machine rotation speed (low)" as the abnormality level.
なお、ディーゼルエンジンの状態量J及び正常状態量を用いることにより、給気圧力と過給機回転速度との関係の他に図3に示すような異常症状を抽出することができる。例えば、過給機入口排気ガス温度と機関出力との組み合わせに基づいて、「過給機入口排気ガス温度vs機関出力(高)」及び「過給機入口排気ガス温度vs機関出力(低)」という異常度Xを取得し、異常症状を判定することができる。
Note that by using the state quantity J and the normal state quantity of the diesel engine, it is possible to extract abnormal symptoms as shown in FIG. 3 in addition to the relationship between the supply air pressure and the supercharger rotation speed. For example, based on the combination of turbocharger inlet exhaust gas temperature and engine output, "supercharger inlet exhaust gas temperature vs. engine output (high)" and "supercharger inlet exhaust gas temperature vs. engine output (low)" It is possible to obtain the degree of abnormality X and determine the abnormal symptoms.
また、シリンダ出口排気温度に基づいて「シリンダ出口排気温度プラス側偏差(大)」、「シリンダ出口排気温度マイナス側偏差(大)」、「シリンダ出口排気温度平均(高)」及び「シリンダ出口排気温度平均(低)」という異常度Xを取得し、異常症状を判定することができる。
Also, based on the cylinder outlet exhaust temperature, "Cylinder outlet exhaust temperature positive deviation (large)", "Cylinder outlet exhaust temperature negative deviation (large)", "Average cylinder outlet exhaust temperature (high)", and "Cylinder outlet exhaust It is possible to obtain an abnormality degree X called "temperature average (low)" and determine abnormal symptoms.
ここで、「シリンダ出口排気温度プラス側偏差(大)」とは、シリンダ出口の排気温度が平均値より高いものについて、平均値との差(プラス側偏差)が大きいという意味であり、「シリンダ出口排気温度マイナス側偏差(大)」とは、シリンダ出口の排気温度が平均値より低いものについて、平均値との差(マイナス側偏差)が大きいという意味である。また、シリンダ最高圧力に基づいて「シリンダ最高圧力(高)」という異常度Xを取得し、異常症状を判定することができる。
Here, "cylinder outlet exhaust gas temperature positive deviation (large)" means that when the exhaust gas temperature at the cylinder exit is higher than the average value, the difference from the average value (positive deviation) is large; ``Outlet exhaust gas temperature negative side deviation (large)'' means that when the exhaust gas temperature at the cylinder outlet is lower than the average value, the difference from the average value (negative side deviation) is large. Further, an abnormality degree X called "maximum cylinder pressure (high)" is obtained based on the maximum cylinder pressure, and an abnormal symptom can be determined.
また、状態量Jが症状や利用状況などを示す場合でも、正常状態量と比較する事により、異常度Xを取得し、異常症状を判定することができる。例えば燃焼排気ガスの色味に基づいて「排気色黒味(多)」という異常度Xを取得し異常症状を判定することができ、シリンダヘッドの振動音に基づいて「シリンダヘッド異音(大)」という異常度Xを取得し異常症状を判定することができる。
Furthermore, even when the state quantity J indicates a symptom, usage status, etc., by comparing it with the normal state quantity, the degree of abnormality X can be obtained and abnormal symptoms can be determined. For example, it is possible to determine an abnormality by obtaining an abnormality level X of "exhaust color (blackish)" based on the color of the combustion exhaust gas, and to determine "cylinder head abnormal noise (large)" based on the vibration sound of the cylinder head. )", which is the degree of abnormality X, can be obtained to determine abnormal symptoms.
さらには、クランク室のミスト量に基づいて「ミスト量(多)」という異常度Xを取得し異常症状を判定することができ、始動用モータの使用回数に基づいて「始動用モータ使用回数(超過)」という異常度Xを取得し異常症状を判定することができる。さらには潤滑油圧力低下という機器側で検出した警報情報より「潤滑油圧力(低)」という異常度Xを取得し、異常症状を判定できる。
Furthermore, it is possible to determine abnormal symptoms by obtaining the degree of abnormality X called "mist amount (large)" based on the amount of mist in the crank chamber, and to determine the "number of times the starting motor is used" based on the number of times the starting motor is used. It is possible to determine an abnormal symptom by obtaining an abnormality degree X of "Exceeding". Furthermore, an abnormality level X of "lubricating oil pressure (low)" is obtained from alarm information detected on the equipment side indicating a decrease in lubricating oil pressure, and an abnormal symptom can be determined.
演算部a2は、このようにして第1の機器1aに関する状態量J及び正常状態量に基づいて第1の機器1aに関する異常度を伴う異常症状を取得すると、異常症状に対応する診断ルールを記憶部a3から取得する(ステップS22)。この診断ルールは、異常症状と異常原因候補との関係を物理的現象と工学的要因とを介して関係付けるものである。
When the calculation unit a2 acquires the abnormal symptom with the degree of abnormality regarding the first device 1a based on the state quantity J and the normal state quantity regarding the first device 1a in this way, the calculation unit a2 stores a diagnostic rule corresponding to the abnormal symptom. It is acquired from section a3 (step S22). This diagnostic rule establishes a relationship between an abnormal symptom and a candidate cause of the abnormality through physical phenomena and engineering factors.
診断ルールについてさらに詳しく説明する。診断ルールは、一例として図4に示すように、異常度を伴う異常症状と、異常度を伴う異常症状毎に設定される判定下限値と、異常症状に関係する1あるいは複数の物理的現象と、物理的現象の異常症状に対する重み(重み係数g)と、物理的現象に関係する1あるいは複数の工学的要因と、工学的要因の物理的現象に対する関係度(第1の割合k1)と、異常原因候補と、異常原因候補の工学的要因に対する関係度(第2の割合k2)とを含む。
Let's explain the diagnostic rules in more detail. As shown in FIG. 4 as an example, the diagnostic rule includes an abnormal symptom with an abnormal degree, a lower judgment limit set for each abnormal symptom with an abnormal degree, and one or more physical phenomena related to the abnormal symptom. , a weight for abnormal symptoms of a physical phenomenon (weighting coefficient g), one or more engineering factors related to the physical phenomenon, and a degree of relationship of the engineering factor to the physical phenomenon (first ratio k1), It includes an abnormality cause candidate and the degree of relationship of the abnormality cause candidate to the engineering factor (second ratio k2).
すなわち、この診断ルールは、異常症状から異常原因候補を特定する際のプロセスを物理的現象及び工学的要因を用いて示し、異常症状から異常原因候補を特定する際における特定の背景情報を物理的現象及び工学的要因として示す。なお、図4では、「シリンダ出口排気温度マイナス側偏差(大)」及び「シリンダ出口排気温度平均(高)」という異常症状に関する診断ルールを一例として示している。
In other words, this diagnostic rule uses physical phenomena and engineering factors to describe the process of identifying abnormal cause candidates from abnormal symptoms, and uses physical phenomena to provide specific background information when identifying abnormal cause candidates from abnormal symptoms. Shown as phenomena and engineering factors. Note that FIG. 4 shows, as an example, diagnostic rules regarding abnormal symptoms: "Cylinder outlet exhaust gas temperature negative side deviation (large)" and "Cylinder outlet exhaust gas temperature average (high)."
図4の「シリンダ出口排気温度マイナス側偏差(大)」について見ると、この異常症状に関係する物理的現象として「特定シリンダ投入熱量(小)」、「計測干渉(温度低)」、「冷却(大)」が設定される。また、このような物理的現象の異常症状に対する重み係数gは、各々に「80」、「10」及び「5」と設定される。
Looking at "Cylinder outlet exhaust temperature negative side deviation (large)" in Figure 4, the physical phenomena related to this abnormal symptom are "amount of heat input to a specific cylinder (small)", "measurement interference (low temperature)", "cooling (Large)" is set. Furthermore, the weighting coefficients g for abnormal symptoms of such physical phenomena are set to "80", "10", and "5", respectively.
そして、上述した物理的現象のうち、「特定シリンダ投入熱量(小)」に関係する工学的要因として「特定シリンダ燃料過少」及び「燃焼不良・未燃」が設定され、「計測干渉(温度低)」に関係する工学的要因として「未燃物堆積」が設定され、さらに「冷却(大)」に関係する工学的要因として「シリンダ内水侵入」が設定される。
Of the physical phenomena mentioned above, ``insufficient fuel in a specific cylinder'' and ``poor combustion/unburnt'' are set as engineering factors related to ``amount of heat input into a specific cylinder (small)'', and ``measurement interference (low temperature )" is set as an engineering factor related to "Unburnt material accumulation", and "Cylinder water intrusion" is set as an engineering factor related to "Cooling (large)".
そして、工学的要因である「特定シリンダ燃料過少」及び「燃焼不良・未燃」の物理的現象である「特定シリンダ投入熱量(小)」に対する第1の割合k1が、「特定シリンダ燃料過少」について「55%」、「燃焼不良・未燃」について「45%」と設定される。また、工学的要因である「未燃物堆積」の物理的現象である「計測干渉(温度低)」に対する第1の割合k1が「100%」と設定され、工学的要因である「シリンダ内水侵入」の物理的現象である「冷却(大)」に対する第1の割合k1が「100%」と設定される。
Then, the first ratio k1 to "insufficient fuel in a specific cylinder" which is an engineering factor and "amount of heat input to a specific cylinder (small)" which is a physical phenomenon of "poor combustion/unburnt" is "insufficient fuel in a specific cylinder". "55%" is set for "poor combustion/unburned" and "45%" for "poor combustion/unburned". In addition, the first ratio k1 for "measurement interference (low temperature)", which is a physical phenomenon of "unburnt material accumulation" which is an engineering factor, is set to "100%", and the engineering factor "inside cylinder A first ratio k1 for "cooling (large)" which is a physical phenomenon of "water intrusion" is set to "100%".
そして、「特定シリンダ燃料過少」という工学的要因に関係する異常原因候補として「燃料噴射ポンプ」、「燃料噴射弁」及び「燃料高圧管」が設定され、「燃焼不良・未燃」という工学的要因に関係する異常原因候補として「燃料噴射ポンプ」及び「燃料噴射弁」が設定される。また、「未燃物堆積」という工学的要因に関係する異常原因候補として「温度センサ」が設定され、さらに「シリンダ内水侵入」という工学的要因に関係する異常原因候補として「シリンダヘッド」が設定される。
Then, ``fuel injection pump,'' ``fuel injection valve,'' and ``fuel high pressure pipe'' were set as abnormality cause candidates related to the engineering factor of ``insufficient fuel in a specific cylinder,'' and "Fuel injection pump" and "fuel injection valve" are set as abnormality cause candidates related to the factors. In addition, ``temperature sensor'' has been set as a candidate for an abnormality cause related to the engineering factor of ``unburnt material accumulation,'' and furthermore, ``cylinder head'' has been set as a candidate for an abnormality cause related to an engineering factor of ``water intrusion into the cylinder.'' Set.
そして、工学的要因の「特定シリンダ燃料過少」について、異常原因候補の「燃料噴射ポンプ」に関する第2の割合k2が「20%」に、異常原因候補の「燃料噴射弁」に関する第2の割合k2が「60%」に、異常原因候補の「燃料高圧管」に関する第2の割合k2が「20%」に各々設定される。また、工学的要因の「燃焼不良・未燃」について、異常原因候補の「燃料噴射ポンプ」に関する第2の割合k2が「30%」に、また異常原因候補の「燃料噴射弁」に関する第2の割合k2が「70%」に各々設定される。
Regarding the engineering factor "insufficient fuel in a specific cylinder," the second ratio k2 for the abnormality cause candidate "fuel injection pump" is set to "20%," and the second ratio k2 for the abnormality cause candidate "fuel injection valve" is set to "20%." k2 is set to "60%", and the second ratio k2 regarding the "fuel high pressure pipe" which is a candidate for the abnormality cause is set to "20%". In addition, regarding the engineering factor "poor combustion/uncombustion," the second ratio k2 for the abnormality cause candidate "fuel injection pump" is "30%," and the second ratio k2 for the abnormality cause candidate "fuel injection valve" is ``30%.'' The ratio k2 of each is set to "70%".
また、工学的要因の「未燃物堆積」について、異常原因候補の「温度センサ」に関する第2の割合k2が「100%」に設定され、また工学的要因の「シリンダ内水侵入」については、異常原因候補の「シリンダヘッド」に関する第2の割合k2が「100%」に各々設定される。
In addition, for the engineering factor "unburnt material accumulation", the second ratio k2 for the abnormality cause candidate "temperature sensor" is set to "100%", and for the engineering factor "water intrusion into the cylinder", the second ratio k2 is set to "100%". , the second ratio k2 regarding the abnormality cause candidate "cylinder head" is set to "100%".
一方、「シリンダ出口排気温度平均(高)」について見ると、この異常症状に関係する物理的現象として「シリンダ内空気量不足」、「シリンダ内空気温度(高)」、「全シリンダ 投入熱量(大)」が設定される。また、このような物理的現象の異常症状に対する重み係数gは、各々に「70」、「30」及び「30」と設定される。
On the other hand, when looking at the "average cylinder outlet exhaust temperature (high)", the physical phenomena related to this abnormal symptom are "insufficient amount of air in the cylinder", "air temperature in the cylinder (high)", and "heat input to all cylinders ( Large)" is set. Further, the weighting coefficients g for abnormal symptoms of such physical phenomena are set to "70", "30", and "30", respectively.
そして、物理的現象の「シリンダ内空気量不足」に関係する工学的要因として「過給機効率(低)」、「過給機後排気経路圧損(大)」、「給気経路入口圧損(大)」及び「給気経路漏出」が設定され、物理的現象の「シリンダ内空気温度(高)」に関係する工学的要因として「給気冷却能力(低)」及び「吸入空気温度(高)」が設定され、さらに物理的現象の「全シリンダ投入熱量(大)」に関係する工学的要因として「全シリンダ燃料過多」及び「燃料過多(異常シリンダ分負担)」が設定される。
The engineering factors related to the physical phenomenon of ``insufficient air amount in the cylinder'' are ``supercharger efficiency (low),'' ``pressure loss in the exhaust path after the turbocharger (large),'' and ``pressure loss at the inlet of the air supply path ( "Intake air cooling capacity (Low)" and "Intake air temperature (High)" are set as engineering factors related to the physical phenomenon "Cylinder air temperature (High)". )' is set, and 'excessive fuel in all cylinders' and 'excessive fuel (burden by abnormal cylinder)' are further set as engineering factors related to the physical phenomenon 'heat input to all cylinders (large)'.
そして、工学的要因である「過給機効率(低)」、「過給機後排気経路圧損(大)」、「給気経路入口圧損(大)」及び「給気経路漏出」の物理的現象である「シリンダ内空気量不足」に対する第1の割合k1は、各々に「30%」、「10%」、「30%」及び「30%」と設定される。
Then, the physical effects of the engineering factors ``supercharger efficiency (low)'', ``pressure drop in the exhaust path after the turbocharger (large)'', ``pressure drop at the inlet of the air supply path (large)'', and ``air supply path leakage'' are considered. The first ratios k1 for the phenomenon "insufficient air amount in the cylinder" are set to "30%", "10%", "30%", and "30%", respectively.
また、工学的要因である「給気冷却能力(低)」の物理的現象である「シリンダ内空気温度(高)」に対する第1の割合k1が「70%」に設定され、工学的要因である「吸入空気温度(高)」の物理的現象である「シリンダ内空気温度(高)」に対する割合(関係度)が「30%」に設定される。さらに、工学的要因である「全シリンダ燃料過多」の物理的現象である「全シリンダ投入熱量(大)」に対する第1の割合k1が「60%」に設定され、工学的要因である「燃料過多(異常シリンダ分負担)」の物理的現象である「全シリンダ 投入熱量(大)」に対する割合(関係度)が「40%」に設定される。
In addition, the first ratio k1 of the engineering factor "supply air cooling capacity (low)" to the physical phenomenon "in-cylinder air temperature (high)" is set to "70%", and the engineering factor The ratio (degree of relationship) of a certain "intake air temperature (high)" to "cylinder air temperature (high)" which is a physical phenomenon is set to "30%". Furthermore, the first ratio k1 to "all cylinder input heat amount (large)" which is a physical phenomenon of "excess fuel in all cylinders" which is an engineering factor is set to "60%", and the engineering factor "fuel excess" is set to "60%". The ratio (degree of relationship) of the physical phenomenon of "excessive heat (load of abnormal cylinder)" to "all cylinders input heat (large)" is set to "40%".
そして、工学的要因の「過給機効率(低)」に関係する異常原因候補として「過給機タービン側」、「過給機ブロワ側」及び「吸気フィルタ」が設定される。工学的要因の「過給機後排気経路圧損(大)」に関係する異常原因候補として「排ガス系統過給機後」が設定される。また、工学的要因の「給気経路入口圧損(大)」に関係する異常原因候補として「給気弁・弁座」及び「過給機後給気経路」が設定され、工学的要因の「給気経路漏出」に関係する異常原因候補として「過給機後給気経路」が設定される。
Then, "supercharger turbine side," "supercharger blower side," and "intake filter" are set as abnormality cause candidates related to the engineering factor "supercharger efficiency (low)." ``Exhaust gas system after turbocharger'' is set as a candidate cause of abnormality related to the engineering factor ``pressure drop in exhaust path after turbocharger (large)''. In addition, "air supply valve/valve seat" and "air supply route after supercharger" were set as abnormality cause candidates related to the engineering factor "air supply route inlet pressure drop (large)", and the engineering factor "air supply route inlet pressure drop (large)" "Air supply route after supercharger" is set as an abnormality cause candidate related to "air supply route leakage".
また、工学的要因の「給気冷却能力(低)」に関係する異常原因候補として「A/C、A/C冷却水系統」が設定され、工学的要因の「吸入空気温度(高)」に関係する異常原因候補として「機関室温度高」が設定される。さらに、物理的現象の「全シリンダ投入熱量(大)」に対応する工学的要因の「全シリンダ燃料過多」に関係する異常原因候補として「過負荷・高Pme」が設定され、工学的要因の「燃料過多(異常シリンダ分負担)」に関係する異常原因候補として「燃料噴射弁」、「燃料噴射ポンプ」及び「燃料高圧管」が設定される。
In addition, "A/C, A/C cooling water system" was set as a candidate cause of abnormality related to the engineering factor "supply air cooling capacity (low)", and the engineering factor "intake air temperature (high)" "High engine room temperature" is set as a candidate for the cause of the abnormality related to this. Furthermore, "overload/high Pme" is set as a candidate for abnormality cause related to "excessive fuel in all cylinders" which is an engineering factor corresponding to "heat input to all cylinders (large)" which is a physical phenomenon. "Fuel injection valve," "fuel injection pump," and "fuel high pressure pipe" are set as abnormality cause candidates related to "excess fuel (abnormal cylinder load)."
さらに、工学的要因の「過給機効率(低)」について、異常原因候補の「過給機タービン側」に関する第2の割合k2が「40%」に、異常原因候補の「過給機ブロワ側」に関する第2の割合k2が「30%」に、異常原因候補の「吸気フィルタ」に関する第2の割合k2が「30%」に各々設定される。
Furthermore, regarding the engineering factor "supercharger efficiency (low)", the second ratio k2 regarding the abnormality cause candidate "supercharger turbine side" is "40%", and the abnormality cause candidate "supercharger blower side" is 40%. The second ratio k2 regarding the "side" is set to "30%", and the second ratio k2 regarding the "intake filter" which is the abnormality cause candidate is set to "30%".
そして、工学的要因の「過給機後排気経路圧損(大)」について、異常原因候補の「排ガス系統過給機後」に関する第2の割合k2が「100%」に設定される。また、工学的要因の「給気経路入口圧損(大)」について、異常原因候補の「給気弁・弁座」に関する第2の割合k2が「70%」に、異常原因候補の「過給機後給気経路」に関する第2の割合k2が「30%」に各々設定される。さらに、工学的要因の「給気経路漏出」について、異常原因候補の「過給機後給気経路」に関する第2の割合k2が「100%」に設定される。
For the engineering factor "post-supercharger exhaust path pressure drop (large)", the second ratio k2 regarding the abnormality cause candidate "exhaust gas system post-supercharger" is set to "100%". In addition, regarding the engineering factor "air supply route inlet pressure drop (large)", the second ratio k2 related to the abnormality cause candidate "air supply valve/valve seat" is "70%", and the abnormality cause candidate "supercharging The second ratio k2 regarding the "after-flight air supply route" is respectively set to "30%". Further, regarding the engineering factor "air supply route leakage", the second ratio k2 regarding the "post-supercharger air supply route" which is the abnormality cause candidate is set to "100%".
また、物理的現象の「シリンダ内空気温度(高)」に対応する工学的要因の「給気冷却能力(低)」について、異常原因候補の「A/C、A/C冷却水系統」に関する第2の割合k2が「100%」に設定される。
In addition, regarding the engineering factor ``supply air cooling capacity (low)'' which corresponds to the physical phenomenon ``in-cylinder air temperature (high)'', regarding the ``A/C, A/C cooling water system'', which is a candidate cause of the abnormality, The second percentage k2 is set to "100%".
また、工学的要因の「吸入空気温度(高)」について、異常原因候補の「機関室温度高」に関する第2の割合k2が「100%」に設定される。
Furthermore, for the engineering factor "intake air temperature (high)", the second ratio k2 regarding the abnormality cause candidate "engine room temperature high" is set to "100%".
さらに、物理的現象の「全シリンダ投入熱量(大)」に対応する工学的要因の「全シリンダ燃料過多」について、異常原因候補の「過負荷・高Pme」に関する第2の割合k2が「100%」に設定される。また、工学的要因の「燃料過多(異常シリンダ分負担)」の異常原因候補の「燃料噴射弁」に関する第2の割合k2が「60%」に、また異常原因候補の「燃料噴射ポンプ」に関する第2の割合k2が「20%」に、また異常原因候補の「燃料高圧管」に関する第2の割合k2が「20%」に各々設定される。
Furthermore, regarding the engineering factor "excessive fuel in all cylinders" which corresponds to the physical phenomenon "heat input to all cylinders (large)", the second ratio k2 regarding "overload/high Pme" which is a candidate cause of abnormality is "100 %”. In addition, the second ratio k2 regarding the engineering factor "excess fuel (abnormal cylinder load)" regarding the abnormality cause candidate "fuel injection valve" is "60%", and the abnormality cause candidate "fuel injection pump" The second ratio k2 is set to "20%", and the second ratio k2 regarding the "high pressure fuel pipe" which is a candidate cause of the abnormality is set to "20%".
演算部a2は、このような診断ルールを記憶部a3から取得すると、異常症状の異常度が予め設定された判定下限値を下回るか否かを判定する(ステップS23)。すなわち、演算部a2は、ステップS21で取得された異常症状の異常度について、診断ルールに設定された判定下限値以上であるか否かを判断し、異常度が判定下限値以上の異常症状について個別異常原因状態指数αを算出する(ステップS24)。なお、演算部a2は、異常度が判定下限値より小さい異常症状については、個別異常原因状態指数αを算出しない。
Upon acquiring such a diagnostic rule from the storage unit a3, the calculation unit a2 determines whether the degree of abnormality of the abnormal symptom is below a preset lower limit for determination (step S23). That is, the calculation unit a2 determines whether or not the degree of abnormality of the abnormal symptom acquired in step S21 is equal to or higher than the lower limit for determination set in the diagnostic rule, and determines whether or not the degree of abnormality of the abnormal symptom is equal to or higher than the lower limit for determination. An individual abnormality cause state index α is calculated (step S24). Note that the calculation unit a2 does not calculate the individual abnormality cause state index α for abnormal symptoms whose degree of abnormality is smaller than the lower limit for determination.
個別異常原因状態指数αは、下式(1)に示すように異常度X、重み係数g、第1の割合k1、第2の割合k2の関数として与えられる値であり、診断ルールに含まれる全ての異常症状、物理的現象、工学的要因及び異常原因候補の繋がりの関係に沿って算出される。
α=(X・g・k1)/100・k2/100 (1) The individual abnormality cause state index α is a value given as a function of the degree of abnormality It is calculated based on the relationship among all abnormal symptoms, physical phenomena, engineering factors, and abnormal cause candidates.
α=(X・g・k1)/100・k2/100 (1)
α=(X・g・k1)/100・k2/100 (1) The individual abnormality cause state index α is a value given as a function of the degree of abnormality It is calculated based on the relationship among all abnormal symptoms, physical phenomena, engineering factors, and abnormal cause candidates.
α=(X・g・k1)/100・k2/100 (1)
演算部a2は、全ての異常症状、物理的現象、工学的要因及び異常原因候補について個別異常原因状態指数αを算出すると、総合異常原因状態指数βを算出する(ステップS25)。総合異常原因状態指数βは、下式(2)に示すように異常原因候補毎に関係する個別異常原因状態指数αを合算したものであり、複数の異常原因候補について故障可能性(故障の疑わしさ)を示す評価値である。なお、個別異常原因状態指数α及び総合異常原因状態指数βの算出の具体例については、図5の説明において後述する。
β=Σ{(X・g・k1)/100・k2/100} (2) After calculating the individual abnormality cause state index α for all the abnormal symptoms, physical phenomena, engineering factors, and abnormality cause candidates, the calculation unit a2 calculates the comprehensive abnormality cause state index β (step S25). The comprehensive anomaly cause state index β is the sum of the individual anomaly cause state index α related to each anomaly cause candidate, as shown in equation (2) below, and is the sum of the individual anomaly cause state index α related to each anomaly cause candidate. This is an evaluation value indicating the degree of quality. Note that a specific example of calculating the individual abnormality cause state index α and the comprehensive abnormality cause state index β will be described later in the explanation of FIG.
β=Σ{(X・g・k1)/100・k2/100} (2)
β=Σ{(X・g・k1)/100・k2/100} (2) After calculating the individual abnormality cause state index α for all the abnormal symptoms, physical phenomena, engineering factors, and abnormality cause candidates, the calculation unit a2 calculates the comprehensive abnormality cause state index β (step S25). The comprehensive anomaly cause state index β is the sum of the individual anomaly cause state index α related to each anomaly cause candidate, as shown in equation (2) below, and is the sum of the individual anomaly cause state index α related to each anomaly cause candidate. This is an evaluation value indicating the degree of quality. Note that a specific example of calculating the individual abnormality cause state index α and the comprehensive abnormality cause state index β will be described later in the explanation of FIG.
β=Σ{(X・g・k1)/100・k2/100} (2)
図5は、上述したステップS21~S24の処理によって得られた異常症状、物理的現象、工学的要因及び異常原因候補の相互関係の一例として、異常症状の「シリンダ出口排気温度マイナス側偏差(大)」に関する相互関係を示す第1の模式図である。図5において、カギ括弧「[]」で示す数値は個別異常原因状態指数αの演算過程を示す数値であり、通常括弧「()」で示す数値は重み係数g、括弧が付加されていない数値は第1の割合k1及び第2の割合k2、また中括弧「{}」で示す数値は総合異常原因状態指数βである。
FIG. 5 shows an example of the correlation between abnormal symptoms, physical phenomena, engineering factors, and abnormal cause candidates obtained through the processing of steps S21 to S24 described above. )" is a first schematic diagram showing the mutual relationship regarding " In Figure 5, the numbers shown in square brackets "[]" are numbers that indicate the calculation process of the individual abnormality cause state index α, and the numbers shown in normal parentheses "()" are the weighting coefficient g, and the numbers without parentheses. are the first ratio k1 and the second ratio k2, and the numerical value shown in curly brackets "{}" is the comprehensive abnormality cause state index β.
図5の例では、異常症状である「シリンダ出口排気温度マイナス側偏差(大)」について異常度Xが7であり、判定下限値以上であるため異常症状と判定される。これと繋がりの関係を有する物理的現象の一つである「特定シリンダ投入熱量(小)」の重み係数は80であり、計算過程を示す数値は[560]となる。
In the example of FIG. 5, the abnormality degree X of the abnormal symptom "negative side deviation (large) in cylinder outlet exhaust gas temperature" is 7, which is equal to or higher than the lower limit for determination, and therefore is determined to be an abnormal symptom. The weighting coefficient of "specific cylinder input heat amount (small)", which is one of the physical phenomena that has a connection with this, is 80, and the numerical value indicating the calculation process is [560].
これと繋がりの関係を有する工学的要因の一つである「特定シリンダ燃料過少」の第1の割合k1は55%であり、計算過程を示す数値は[308]となる。これと繋がりの関係を有する異常原因の一つである「燃料噴射ポンプ」の第2の割合k2は20%であり、個別異常原因状態指数αは62となる。
The first ratio k1 of "insufficient fuel in a specific cylinder", which is one of the engineering factors related to this, is 55%, and the numerical value indicating the calculation process is [308]. The second ratio k2 of "fuel injection pump", which is one of the causes of abnormality that has a connection with this, is 20%, and the individual abnormality cause state index α is 62.
同様の計算により「燃焼不良・未燃」との繋がりの関係に沿った個別異常原因状態指数αは[252]の30%である75となる。「燃料噴射ポンプ」の総合異常原因状態指数βはこれら二つのαの合計である{137}となる。図5の他の繋がりの関係に沿った計算も同様であり、説明を省略する。
By similar calculation, the individual abnormality cause state index α in accordance with the connection with "poor combustion/unburnt" is 75, which is 30% of [252]. The comprehensive abnormality cause state index β of the “fuel injection pump” is the sum of these two α, which is {137}. Calculations along other connection relationships shown in FIG. 5 are also similar, and their explanation will be omitted.
図5は、故障可能性における複数の異常原因候補間の相互関係を総合異常原因状態指数β及びその算出過程における評価の大きさによって示す。演算部a2は、図5に示すような異常症状、物理的現象、工学的要因、異常原因候補及び総合異常原因状態指数β及びその算出過程における評価の大きさに基づいて診断結果を示す出力画面を生成し、出力画面を通信部a1に送信させる(ステップS26)。
FIG. 5 shows the interrelationship between multiple abnormality cause candidates in terms of failure probability using the comprehensive abnormality cause state index β and the magnitude of the evaluation in the calculation process. The calculation unit a2 displays an output screen that displays diagnostic results based on abnormal symptoms, physical phenomena, engineering factors, abnormal cause candidates, comprehensive abnormal cause state index β, and the magnitude of evaluation in the calculation process as shown in FIG. is generated and the output screen is transmitted to the communication unit a1 (step S26).
出力画面(診断結果)は、例えば図6に示すようにサンキーダイヤグラムである。図6では、異常症状の「シリンダ出口排気温度マイナス側偏差(大)」について、複数の異常原因候補が故障可能性が高い順つまり総合異常原因状態指数βが大きい順に太い帯として表示される。サンキーダイヤグラムとしての出力画面(診断結果)は、異常症状の原因として推定される複数の異常原因候補のうち、対処すべき優先度を視覚的に示す。
The output screen (diagnosis result) is, for example, a Sankey diagram as shown in FIG. In FIG. 6, for the abnormal symptom "negative side deviation of cylinder outlet exhaust gas temperature (large)", a plurality of abnormality cause candidates are displayed as thick bands in descending order of failure probability, that is, in descending order of comprehensive abnormality cause state index β. The output screen (diagnosis result) as a Sankey diagram visually indicates the priority to be dealt with among a plurality of abnormality cause candidates estimated as the cause of the abnormal symptom.
出力画面(診断結果)は、機器診断サーバAに診断要求を送信してきた第1の機器設備C1に送信される。第1の機器設備C1では、クライアントコンピュータである通信装置1bが出力画面(診断結果)を受信し、出力画面(診断結果)を表示装置に表示する。
The output screen (diagnosis result) is sent to the first equipment C1 that has sent the diagnosis request to the equipment diagnosis server A. In the first equipment C1, the communication device 1b, which is a client computer, receives the output screen (diagnosis result) and displays the output screen (diagnosis result) on the display device.
本実施形態に係る機器診断サーバAによれば、第1の機器設備C1に対して異常原因候補を単に提示するのではなく、異常原因候補に関係する物理的現象及び工学的要因を一緒に提示するので、第1の機器設備C1では診断結果について、どのような現象によりその診断結果に至ったかを読み取ることが出来、従来よりも迅速かつ的確な対処が可能である。
According to the device diagnosis server A according to the present embodiment, instead of simply presenting an abnormality cause candidate to the first equipment C1, physical phenomena and engineering factors related to the abnormality cause candidate are presented together. Therefore, in the first equipment C1, it is possible to read the phenomenon that led to the diagnosis result, and it is possible to take action more quickly and accurately than in the past.
また、図5及び図6に示すように異常原因候補は一般的に複数推定し得る。本実施形態によれば、複数の異常原因候補について、故障可能性を示す評価値である総合異常原因状態指数βが提示されるので、複数の異常原因候補の中から故障可能性の高いものを容易に把握することが可能であり、よって総合異常原因状態指数βによっても第1の機器設備C1では従来よりも迅速かつ的確な対処が可能である。
Furthermore, as shown in FIGS. 5 and 6, multiple abnormality cause candidates can generally be estimated. According to this embodiment, the comprehensive abnormality cause state index β, which is an evaluation value indicating the possibility of failure, is presented for a plurality of abnormality cause candidates. It can be easily grasped, and therefore, even with the comprehensive abnormality cause state index β, the first equipment C1 can take quicker and more accurate measures than before.
第1の機器設備C1では、例えば総合異常原因状態指数βが最も高い異常原因候補から順に異常の事実関係を確認することになる、総合異常原因状態指数βが最も高い異常原因候補(図6では燃料噴射弁)が正常であることが確認された場合には、総合異常原因状態指数βが最も高い異常原因候補以外の異常原因を把握する必要がある。
In the first equipment C1, for example, the factual relationship of the abnormality is confirmed in order from the abnormality cause candidate with the highest comprehensive abnormality cause state index β (in FIG. 6, the abnormality cause candidate with the highest comprehensive abnormality cause state index β If it is confirmed that the fuel injection valve (fuel injection valve) is normal, it is necessary to understand the cause of the abnormality other than the abnormality cause candidate with the highest comprehensive abnormality cause state index β.
ここで、総合異常原因状態指数βは、上述した式(1)及び式(2)に基づいて算出されたもの、つまり工学的合理性に基づいて算出された推定値である。したがって、総合異常原因状態指数β(推定値)が最も高い異常原因候補が正常であることが確認された時点で、この総合異常原因状態指数β及び他の異常原因候補に関する総合異常原因状態指数βは修正されるべき推定値となる。
Here, the comprehensive abnormality cause state index β is calculated based on the above-mentioned formulas (1) and (2), that is, it is an estimated value calculated based on engineering rationality. Therefore, at the time when the abnormality cause candidate with the highest comprehensive abnormality cause state index β (estimated value) is confirmed to be normal, this comprehensive abnormality cause state index β and the comprehensive abnormality cause state index β regarding other abnormality cause candidates is the estimate to be corrected.
第1の機器設備C1では、総合異常原因状態指数βが最も高い異常原因候補が正常であることが確認された場合、第1の通信装置1bから機器診断サーバAに確認結果つまり総合異常原因状態指数βが最も高い異常原因候補が正常である旨の異常確認情報を送信する。そして、異常確認情報は、機器診断サーバAの通信部a1で受信され、演算部a2に出力される。なお、総合異常原因状態指数βが最も高い異常原因候補が正常であることの確認は、典型的には第1の機器設備C1の操作者が異常原因候補が実際には正常であることを確認し通信装置1bに確認情報を入力することによってなされるが、この方法に限られるものではない。
In the first equipment C1, when the abnormality cause candidate with the highest comprehensive abnormality cause state index β is confirmed to be normal, the first communication device 1b sends the confirmation result, that is, the comprehensive abnormality cause state, to the equipment diagnosis server A. Abnormality confirmation information indicating that the abnormality cause candidate with the highest index β is normal is transmitted. Then, the abnormality confirmation information is received by the communication unit a1 of the device diagnosis server A and output to the calculation unit a2. In addition, to confirm that the abnormality cause candidate with the highest comprehensive abnormality cause state index β is normal, typically, the operator of the first equipment C1 confirms that the abnormality cause candidate is actually normal. This is done by inputting confirmation information into the communication device 1b, but the method is not limited to this method.
演算部a2は、異常確認情報を取得すると、図7に示す異常原因候補の除外処理を実行する。除外処理は、正常性が確認された異常原因候補を除外対象として異常原因候補から除外するものであり、異常確認情報に基づく総合異常原因状態指数βの更新処理である。
Upon acquiring the abnormality confirmation information, the calculation unit a2 executes the process of excluding abnormality cause candidates shown in FIG. 7. The exclusion process is to exclude abnormality cause candidates whose normality has been confirmed as exclusion targets from the abnormality cause candidates, and is a process of updating the comprehensive abnormality cause state index β based on the abnormality confirmation information.
異常原因候補の除外処理において、演算部a2は、正常性が確認された異常原因候補に関する第2の割合k2を「0」に修正する(ステップSa1)。例えば図8に示すように、図5において総合異常原因状態指数βが最も高い異常原因候補である「燃料噴射弁」に設定された第2の割合k2を全て「0」に修正する。
In the abnormality cause candidate exclusion process, the calculation unit a2 corrects the second ratio k2 for abnormality cause candidates whose normality has been confirmed to "0" (step Sa1). For example, as shown in FIG. 8, the second ratio k2 set for "fuel injection valve", which is the abnormality cause candidate with the highest comprehensive abnormality cause state index β in FIG. 5, is all corrected to "0".
すなわち、演算部a2は、工学的要因の「特定シリンダ燃料過少」について、異常原因候補の「燃料噴射弁」に関する第2の割合k2を「60%」から「0%」に修正し、工学的要因の「燃焼不良・未燃」について、異常原因候補の「燃料噴射弁」に関する第2の割合k2を「70%」から「0%」に修正する。
That is, the calculation unit a2 corrects the second ratio k2 regarding the abnormality cause candidate "fuel injection valve" from "60%" to "0%" for the engineering factor "specific cylinder fuel shortage", and Regarding the cause "poor combustion/uncombustion", the second ratio k2 regarding the abnormality cause candidate "fuel injection valve" is revised from "70%" to "0%".
そして、演算部a2は、異常原因候補の「燃料噴射弁」に兄弟となる異常原因候補(兄弟候補)が存在するか否かを判定する(ステップSa2)。兄弟候補は、第2の割合k2を「0%」に修正した異常原因候補に関係する工学的要因について、この工学的要因に関係する除外対象以外の異常原因候補である。
Then, the calculation unit a2 determines whether there is an abnormality cause candidate (sibling candidate) that is a sibling of the abnormality cause candidate "fuel injection valve" (step Sa2). The sibling candidate is an abnormality cause candidate other than the exclusion target related to the engineering factor related to the abnormality cause candidate whose second ratio k2 has been corrected to "0%".
例えば図5において、異常原因候補の「燃料噴射弁」に関係する工学的要因は、「特定シリンダ燃料過少」及び「燃焼不良・未燃」である。ステップSa1では、工学的要因の「特定シリンダ燃料過少」及び「燃焼不良・未燃」と異常原因候補の「燃料噴射弁」に関する第2の割合k2を全て「0」に修正したので、兄弟候補の「特定シリンダ燃料過少」及び「燃焼不良・未燃」に関する第2の割合k2は、当然に異常原因候補の「燃料噴射弁」に関する第2の割合k2の修正の影響を受けて調整されるべきである。
For example, in FIG. 5, the engineering factors related to the "fuel injection valve" that is a candidate cause of the abnormality are "insufficient fuel in a specific cylinder" and "poor combustion/unburned." In step Sa1, the engineering factors "insufficient fuel in specific cylinder" and "poor combustion/unburnt" and the second ratio k2 regarding the abnormality cause candidate "fuel injection valve" were all corrected to "0", so the sibling candidate The second ratio k2 regarding "insufficient fuel in a specific cylinder" and "poor combustion/unburnt" is naturally adjusted under the influence of the correction of the second ratio k2 regarding the "fuel injection valve" which is a candidate cause of the abnormality. Should.
演算部a2は、ステップSa2において兄弟候補が存在すると判定すると、兄弟候補に関する第2の割合k2を調整する(ステップSa3)。演算部a2は、兄弟候補に関する第2の割合k2の調整を下式(3)に基づいて算出する。なお、式(3)において、k2’は調整後の第2の割合(第2の調整割合)であり、kaは除外対象に関する第2の割合k2の値であり、またkbは兄弟候補に関する第2の割合k2の値である。
k2’=ka・kb/(100-ka)+kb (3) If the calculation unit a2 determines in step Sa2 that there is a sibling candidate, it adjusts the second ratio k2 regarding the sibling candidates (step Sa3). The calculation unit a2 calculates the adjustment of the second ratio k2 regarding the sibling candidates based on the following formula (3). Note that in equation (3), k2' is the second ratio after adjustment (second adjustment ratio), ka is the value of the second ratio k2 regarding the excluded target, and kb is the value of the second ratio k2 regarding the sibling candidate. This is the value of the ratio k2 of 2.
k2'=ka・kb/(100-ka)+kb (3)
k2’=ka・kb/(100-ka)+kb (3) If the calculation unit a2 determines in step Sa2 that there is a sibling candidate, it adjusts the second ratio k2 regarding the sibling candidates (step Sa3). The calculation unit a2 calculates the adjustment of the second ratio k2 regarding the sibling candidates based on the following formula (3). Note that in equation (3), k2' is the second ratio after adjustment (second adjustment ratio), ka is the value of the second ratio k2 regarding the excluded target, and kb is the value of the second ratio k2 regarding the sibling candidate. This is the value of the ratio k2 of 2.
k2'=ka・kb/(100-ka)+kb (3)
演算部a2は、図8に示すように、図5における工学的要因の「特定シリンダ燃料過少」と異常原因候補の「燃料噴射ポンプ」とに関する第2の割合k2を「20%」から「50%」に調整し、また工学的要因の「特定シリンダ燃料過少」と異常原因候補の「燃料高圧管」とに関する第2の割合k2を「20%」から「50%」に調整する。
As shown in FIG. 8, the calculation unit a2 changes the second ratio k2 between the engineering factor "insufficient fuel in specific cylinder" and the abnormality cause candidate "fuel injection pump" in FIG. 5 from "20%" to "50%". %'', and the second ratio k2 regarding the engineering factor ``insufficient fuel in a specific cylinder'' and the abnormality cause candidate ``fuel high pressure pipe'' is adjusted from ``20%'' to ``50%.''
一方、演算部a2は、ステップSa2において兄弟候補が存在しないと判定すると、兄弟候補が存在しない異常原因候補(単独候補)に関する第1の割合k1を「0」に変更する(ステップSa4)。すなわち、演算部a2は、単独候補に関する第1の割合k1を「0」に設定変更することによって、単独候補と関係する工学的要因(親要因)を工学的要因候補から除外する。
On the other hand, when the calculation unit a2 determines that there is no sibling candidate in step Sa2, it changes the first ratio k1 regarding the abnormality cause candidate (single candidate) for which there is no sibling candidate to "0" (step Sa4). That is, the calculation unit a2 excludes the engineering factor (parent factor) related to the individual candidate from the engineering factor candidates by changing the setting of the first ratio k1 regarding the individual candidate to "0".
例えば図5について、異常原因候補の「シリンダヘッド」は、工学的要因の「シリンダ内冷却水侵入」のみに関係し、また「シリンダ内冷却水侵入」は異常原因候補の「シリンダヘッド」のみに関係するので、兄弟候補が存在しない単独候補である。演算部a2は、図8に示すように、異常原因候補の「シリンダヘッド」に関する第1の割合k1を「100%」から「0%」に変更することにより、工学的要因の「シリンダ内冷却水侵入」を候補から除外する。
For example, in Figure 5, the abnormality cause candidate "cylinder head" is related only to the engineering factor "cooling water intrusion into the cylinder", and "cooling water intrusion into the cylinder" is related only to the abnormality cause candidate "cylinder head". Since they are related, it is a single candidate with no sibling candidates. As shown in FIG. 8, the calculation unit a2 changes the first ratio k1 regarding the abnormality cause candidate "cylinder head" from "100%" to "0%", thereby reducing the engineering factor "cylinder cooling". Exclude "water intrusion" from the candidates.
そして、演算部a2は、ステップSa4で除外した工学的要因に兄弟となる工学的要因(兄弟要因)が存在するか否かを判定する(ステップSa5)。そして、演算部a2は、兄弟要因が存在する場合、兄弟要因に関する第1の割合k1を調整する(ステップSa6)。
Then, the calculation unit a2 determines whether there is an engineering factor (sibling factor) that is a sibling to the engineering factor excluded in step Sa4 (step Sa5). Then, when a sibling factor exists, the calculation unit a2 adjusts the first ratio k1 regarding the sibling factor (step Sa6).
演算部a2は、兄弟要因に関する第1の割合k1の調整を下式(4)に基づいて算出する。なお、式(4)において、k1’は調整後の第1の割合(第1の調整割合)であり、kcは除外対象の異常原因候補に関係する親要因(工学的要因)に関する第1の割合k1の値であり、またkdは兄弟要因に関する第1の割合k1の値である。
k1’=kc・kd/(100-kc)+kd (4) The calculation unit a2 calculates the adjustment of the first ratio k1 regarding the sibling factor based on the following equation (4). In equation (4), k1' is the first ratio after adjustment (first adjustment ratio), and kc is the first ratio related to the parent factor (engineering factor) related to the abnormality cause candidate to be excluded. is the value of the ratio k1, and kd is the value of the first ratio k1 regarding the sibling factor.
k1'=kc・kd/(100-kc)+kd (4)
k1’=kc・kd/(100-kc)+kd (4) The calculation unit a2 calculates the adjustment of the first ratio k1 regarding the sibling factor based on the following equation (4). In equation (4), k1' is the first ratio after adjustment (first adjustment ratio), and kc is the first ratio related to the parent factor (engineering factor) related to the abnormality cause candidate to be excluded. is the value of the ratio k1, and kd is the value of the first ratio k1 regarding the sibling factor.
k1'=kc・kd/(100-kc)+kd (4)
さらに、演算部a2は、ステップSa4で除外した工学的要因(除外要因)に兄弟となる工学的要因(兄弟要因)が存在しない場合、除外要因の親となる物理的現象(親現象)の重み係数gを「0」に設定変更する(ステップSa7)。例えば図5の場合、図8に示すように物理的現象の「冷却(大)」に関する重み係数gが「5」から「0」に変更される。
Furthermore, if there is no sibling engineering factor (sibling factor) to the engineering factor (exclusion factor) excluded in step Sa4, the calculation unit a2 calculates the weight of the physical phenomenon (parent phenomenon) that is the parent of the exclusion factor. The coefficient g is set to "0" (step Sa7). For example, in the case of FIG. 5, the weighting coefficient g regarding the physical phenomenon "cooling (large)" is changed from "5" to "0" as shown in FIG.
このようにして異常確認情報に基づく重み係数g、第1の割合k1及び第2の割合k2の調整(変更)が完了すると、演算部a2は、調整後の重み係数g、第1の割合k1及び第2の割合k2に基づいて総合異常原因状態指数βの再計算を行う(ステップSa8)。すなわち、図8に示すように、異常原因候補の「燃料噴射ポンプ」に関する総合異常原因状態指数βは「137」から「406」に再計算され、除外対象(異常原因候補)の「燃料噴射弁」に関する総合異常原因状態指数βは「361」から「0」に再計算される。
When the adjustment (change) of the weighting coefficient g, the first ratio k1, and the second ratio k2 based on the abnormality confirmation information is completed in this way, the calculation unit a2 calculates the adjusted weighting coefficient g, the first ratio k1 Then, the comprehensive abnormality cause state index β is recalculated based on the second ratio k2 (step Sa8). That is, as shown in FIG. 8, the comprehensive abnormality cause state index β for the abnormality cause candidate "fuel injection pump" is recalculated from "137" to "406", and the "fuel injection valve" to be excluded (abnormality cause candidate) ” is recalculated from “361” to “0”.
また、異常原因候補の「燃料高圧管」に関する総合異常原因状態指数βは「62」から「154」に再計算される。さらに、異常原因候補の「シリンダヘッド」に関する総合異常原因状態指数βは「35」から「0」に再計算される。
Furthermore, the comprehensive abnormality cause state index β regarding the abnormality cause candidate "fuel high pressure pipe" is recalculated from "62" to "154". Furthermore, the comprehensive abnormality cause state index β regarding the abnormality cause candidate "cylinder head" is recalculated from "35" to "0".
演算部a2は、このように作成した図8に基づいて出力画面(サンキーダイヤグラム)を再作成し、出力画面(サンキーダイヤグラム)を通信部a1に送信させる(ステップSa9)。通信部a1は、出力画面(サンキーダイヤグラム)を第1の通信装置1bから先に受信した異常確認情報に対する更新画面として第1の機器設備C1に送信する。すなわち、異常確認情報に基づいて再作成された出力画面は、異常確認情報に基づいて正常な異常原因候補を除外した診断結果である。
The calculation unit a2 recreates the output screen (Sankey diagram) based on FIG. 8 created in this way, and transmits the output screen (Sankey diagram) to the communication unit a1 (step Sa9). The communication unit a1 transmits the output screen (Sankey diagram) to the first equipment C1 as an update screen for the abnormality confirmation information previously received from the first communication device 1b. That is, the output screen recreated based on the abnormality confirmation information is a diagnosis result in which normal abnormality cause candidates are excluded based on the abnormality confirmation information.
そして、第1の機器設備C1では、更新画面に示される異常原因候補の総合異常原因状態指数βに基づいて異常原因候補の状態を確認する。第1の機器設備C1では、例えば更新画面において総合異常原因状態指数βが最も大きい異常原因候補の健全性を確認する。そして、この確認の結果、更新画面において総合異常原因状態指数βが最も大きい異常原因候補が正常だった場合には、この旨を示す異常確認情報を機器診断サーバAに再度送信することになる。
Then, in the first equipment C1, the state of the abnormality cause candidate is confirmed based on the comprehensive abnormality cause state index β of the abnormality cause candidate shown on the update screen. In the first equipment C1, for example, the health of the abnormality cause candidate with the largest comprehensive abnormality cause state index β is confirmed on the update screen. As a result of this confirmation, if the abnormality cause candidate with the largest comprehensive abnormality cause state index β on the update screen is normal, abnormality confirmation information indicating this fact will be sent to the device diagnosis server A again.
ここで、更新画面(サンキーダイヤグラム)は、最初の出力画面(サンキーダイヤグラム)と同様に、異常原因候補及び総合異常原因状態指数βを単純に提示するのではなく、異常原因候補に関係する物理的現象及び工学的要因と一緒に提示される。したがって、第1の機器設備C1では診断結果について、どのような現象によりその診断結果に至ったかを読み取ることが出来、従来よりも迅速な対処が可能である。
Here, the update screen (Sankey diagram), like the first output screen (Sankey diagram), does not simply present the abnormality cause candidates and the comprehensive abnormality cause state index β, but rather displays the physical information related to the abnormality cause candidates. Presented together with phenomena and engineering factors. Therefore, in the first equipment C1, it is possible to read what kind of phenomenon led to the diagnosis result, and it is possible to take action more quickly than before.
このような第1の機器設備C1と機器診断サーバAとの間における何回かの交信によって、第1の機器設備C1では真の異常原因が特定される。そして、第1の機器設備C1に置ける第1の通信装置1bは、真の異常原因を示す情報(異常原因特定情報)を機器診断サーバAに送信する。
Through several communications between the first equipment C1 and the equipment diagnosis server A, the true cause of the abnormality is identified in the first equipment C1. Then, the first communication device 1b in the first equipment C1 transmits information indicating the true cause of the abnormality (abnormality cause identification information) to the equipment diagnosis server A.
機器診断サーバAでは、通信部a1が異常原因特定情報を受信すると、異常原因特定情報は演算部a2に出力される。演算部a2は、異常原因特定情報が通信部a1から入力されると、図9に示す診断ルールの更新処理を実施する。診断ルールの更新処理は、図4に示した診断ルールにおける重み係数g、第1の割合k1あるいは/及び第2の割合k2を真の異常原因に基づいて補正する処理(補正処理)である。
In the device diagnosis server A, when the communication unit a1 receives the abnormality cause identification information, the abnormality cause identification information is output to the calculation unit a2. When the abnormality cause specifying information is input from the communication unit a1, the calculation unit a2 executes the diagnostic rule update process shown in FIG. 9. The diagnostic rule update process is a process (correction process) that corrects the weighting coefficient g, the first ratio k1 and/or the second ratio k2 in the diagnostic rule shown in FIG. 4 based on the true cause of the abnormality.
診断ルールの更新処理において、演算部a2は、最初に今回の補正処理が前回の補正処理に対して所定の最短補正間隔T1以上経過しているかを判定する(ステップSb1)。演算部a2は、今回の補正処理が最短補正間隔T1以上経過していると判定すると、続いて所定の補正有効期間T2内における合計補正量が所定の最大補正量H以内か否かを判定する(ステップSb2)。
In the diagnostic rule update process, the calculation unit a2 first determines whether a predetermined shortest correction interval T1 or more has elapsed between the current correction process and the previous correction process (step Sb1). If the calculation unit a2 determines that the current correction process has elapsed for the shortest correction interval T1 or more, it then determines whether the total correction amount within the predetermined correction effective period T2 is within the predetermined maximum correction amount H. (Step Sb2).
そして、演算部a2は、ステップSb1において今回の補正処理が最短補正間隔T1以上経過していない場合、またステップSb2において補正有効期間T2内における合計補正量が最大補正量H以内ではない場合には、重み係数g、第1の割合k1あるいは/及び第2の割合k2の補正を行うことなく補正処理を中止する。
Then, in step Sb1, if the current correction process has not passed the shortest correction interval T1 or more, and in step Sb2, if the total correction amount within the correction effective period T2 is not within the maximum correction amount H, the calculation unit a2 calculates , the weighting coefficient g, the first ratio k1 and/or the second ratio k2 are not corrected, and the correction process is canceled.
すなわち、演算部a2は、ステップSb1において今回の補正処理が最短補正間隔T1以上経過している場合、またステップSb2において補正有効期間T2内における合計補正量が最大補正量H以内である場合のみに、重み係数g、第1の割合k1あるいは/及び第2の割合k2の補正処理を実行する。なお、最短補正間隔T1、補正有効期間T2及び最大補正量Hは、補正処理の実行の可否を評価するためのパラメータである。
That is, the calculation unit a2 performs the calculation only when the current correction process has elapsed for the shortest correction interval T1 or more in step Sb1, and only when the total correction amount within the correction effective period T2 is within the maximum correction amount H in step Sb2. , the weighting coefficient g, the first ratio k1 and/or the second ratio k2. Note that the shortest correction interval T1, correction effective period T2, and maximum correction amount H are parameters for evaluating whether or not the correction process can be executed.
続いて、演算部a2は、真の異常原因に関係する工学的要因、物理的現象及び異常症状を現行の診断ルールに基づいて特定する(ステップSb3)。例えば図10に示すように、真の異常原因が「燃料噴射ポンプ」であった場合、「燃料噴射ポンプ」に関係する工学的要因は、「特定シリンダ燃料過少」及び「燃焼不良・未燃」である。また、これら「特定シリンダ燃料過少」及び「燃焼不良・未燃」に関係する物理的現象は、「特定シリンダ投入熱量(小)」である。さらに、この「特定シリンダ投入熱量(小)」に関係する異常症状は、「シリンダ出口排気温度マイナス側偏差(大)」である。
Subsequently, the calculation unit a2 identifies engineering factors, physical phenomena, and abnormal symptoms related to the true cause of the abnormality based on the current diagnostic rules (step Sb3). For example, as shown in Figure 10, if the true cause of the abnormality is the "fuel injection pump," the engineering factors related to the "fuel injection pump" are "insufficient fuel in a specific cylinder" and "improper combustion/unburned." It is. Further, the physical phenomenon related to these "insufficient fuel in a specific cylinder" and "poor combustion/unburnt" is "amount of heat input to a specific cylinder (small)." Furthermore, the abnormal symptom related to this "specific cylinder input heat amount (small)" is "negative side deviation of cylinder outlet exhaust gas temperature (large)."
演算部a2は、ステップSb3において真の異常原因に関係する工学的要因、物理的現象及び異常症状を特定すると、工学的要因、物理的現象及び異常症状について、予め設定された基準補正量hだけ重み係数g、第1の割合k1あるいは/及び第2の割合k2を増加させる。
After identifying the engineering factors, physical phenomena, and abnormal symptoms related to the true cause of the abnormality in step Sb3, the calculation unit a2 calculates only a preset standard correction amount h for the engineering factors, physical phenomena, and abnormal symptoms. The weighting coefficient g, the first ratio k1 and/or the second ratio k2 are increased.
例えば、工学的要因の「燃焼不良・未燃」と真の異常原因である「燃料噴射ポンプ」とに関する第2の割合k2を「30%」から「38.5%」に増大させる。また、工学的要因の「燃焼不良・未燃」と物理的現象の「特定シリンダ投入熱量(小)」とに関する第1の割合k1を「45%」から「48.2%」に増大させる。さらに、物理的現象の「特定シリンダ投入熱量(小)」と異常症状の「シリンダ出口排気温度マイナス側偏差(大)」とに関する重み係数gを「80」から「85」に増大させる。
For example, the second ratio k2 regarding "poor combustion/uncombustion", which is an engineering factor, and "fuel injection pump", which is the true cause of the abnormality, is increased from "30%" to "38.5%". In addition, the first ratio k1 between the engineering factor "poor combustion/unburnt" and the physical phenomenon "heat amount input into a specific cylinder (small)" is increased from "45%" to "48.2%". Furthermore, the weighting coefficient g relating to the physical phenomenon "amount of heat input to a specific cylinder (small)" and the abnormal symptom "negative side deviation of cylinder outlet exhaust gas temperature (large)" is increased from "80" to "85".
また、演算部a2は、このような重み係数g、第1の割合k1あるいは/及び第2の割合k2の増大に関係する第1の割合k1あるいは/及び第2の割合k2を減少させる。この増大に関係する第1の割合k1あるいは/及び第2の割合k2は、図10の場合には、「燃焼不良・未燃」と異常原因候補の「燃料噴射弁」とに関する第2の割合k2、また物理的現象の「特定シリンダ投入熱量(小)」と工学的要因の「特定シリンダ燃料過少」とに関する第1の割合k1である。
Furthermore, the calculation unit a2 decreases the first ratio k1 and/or the second ratio k2 related to the increase in the weighting coefficient g and the first ratio k1 or/and the second ratio k2. In the case of FIG. 10, the first ratio k1 and/or second ratio k2 related to this increase is the second ratio regarding "poor combustion/unburnt" and "fuel injection valve" which is a candidate cause of abnormality. k2, and a first ratio k1 regarding the physical phenomenon "heat amount input to a specific cylinder (small)" and the engineering factor "insufficient fuel in a specific cylinder".
演算部a2は、「燃焼不良・未燃」と真の異常原因である「燃料噴射ポンプ」とに関する第2の割合k2の増大に伴って、「燃焼不良・未燃」と異常原因候補の「燃料噴射弁」とに関する第2の割合k2を「70%」から「61.5%」に減少させる。また、工学的要因の「燃焼不良・未燃」と物理的現象の「特定シリンダ投入熱量(小)」とに関する第1の割合k1の増大に伴って、工学的要因の「特定シリンダ燃料過少」と物理的現象「特定シリンダ投入熱量(小)」とに関する第1の割合k1を「55%」から「51.8%」に減少させる。
As the second ratio k2 regarding "poor combustion/unburned" and "fuel injection pump" which is the true cause of the abnormality increases, the calculation unit a2 calculates "poor combustion/unburned" and "unburned" which is the candidate cause of the abnormality. The second ratio k2 related to "fuel injection valve" is decreased from "70%" to "61.5%". In addition, as the first ratio k1 between the engineering factor "poor combustion/unburnt" and the physical phenomenon "heat input to a specific cylinder (small)" increases, the engineering factor "insufficient fuel in a specific cylinder" increases. and the physical phenomenon "amount of heat input into a specific cylinder (small)", the first ratio k1 is decreased from "55%" to "51.8%".
このような診断ルールの更新処理が完了すると、演算部a2は、第1の機器設備C1に対する機器診断サービスを終了させる。そして、演算部a2は、通信部a1から新たな診断要求が入力されるまで待機状態となる。すなわち、機器診断サーバAは、診断要求が入力される度に待機状態からアクティブ状態に復帰してn個の機器設備C1~Cnからランダムに受信する診断要求に対して各機器1a,2a,…,na(診断対象)の異常診断を実施する。
When such diagnostic rule update processing is completed, the calculation unit a2 ends the device diagnostic service for the first equipment C1. The calculation unit a2 then enters a standby state until a new diagnosis request is input from the communication unit a1. That is, the device diagnosis server A returns from the standby state to the active state every time a diagnosis request is input, and responds to each device 1a, 2a, . . . in response to a diagnosis request randomly received from n devices C1 to Cn. , na (diagnosis target) is performed.
このような診断ルールの更新処理によれば、診断ルールが第1の機器設備C1において真の異常原因が特定される度に真の異常原因に基づいて最適に更新されるので、機器診断サーバAにおける異常原因候補の推定能力が時間の経過とともに順次向上する。したがって、本実施形態によれば、各機器設備C1~Cnに対する機器診断能力を稼働時間の経過とともに向上させることが可能である。
According to such a diagnostic rule update process, the diagnostic rule is optimally updated based on the true abnormality cause every time the true abnormality cause is identified in the first equipment C1. The ability to estimate abnormality cause candidates gradually improves over time. Therefore, according to the present embodiment, it is possible to improve the equipment diagnostic ability for each equipment C1 to Cn as the operating time passes.
なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、本発明に係る機器診断システムを機器診断サーバAとして構成したが、本発明はこれに限定されない。例えば、機器診断サーバAをサーバとしての機能を備えないコンピュータとし、また通信装置1b,2b,…,nbをクライアントとしての機能を備えない装置としてもよい。 Note that the present invention is not limited to the above-described embodiment, and for example, the following modifications can be considered.
(1) In the above embodiment, the device diagnosis system according to the present invention is configured as the device diagnosis server A, but the present invention is not limited to this. For example, the device diagnosis server A may be a computer that does not have the function of a server, and the communication devices 1b, 2b, . . . , nb may be devices that do not have the function of a client.
(1)上記実施形態では、本発明に係る機器診断システムを機器診断サーバAとして構成したが、本発明はこれに限定されない。例えば、機器診断サーバAをサーバとしての機能を備えないコンピュータとし、また通信装置1b,2b,…,nbをクライアントとしての機能を備えない装置としてもよい。 Note that the present invention is not limited to the above-described embodiment, and for example, the following modifications can be considered.
(1) In the above embodiment, the device diagnosis system according to the present invention is configured as the device diagnosis server A, but the present invention is not limited to this. For example, the device diagnosis server A may be a computer that does not have the function of a server, and the
(2)各機器設備C1~Cnにおける通信装置1b,2b,…,nbは、固定設置された装置に限定されず、通信機能を有するノートPCやタブレット端末等、可搬式通信装置でってもよい。このような可搬式通信装置は、各機器設備C1~Cnにおいて、無線LAN等の無線通信によって各機器1a,2a,…,na(診断対象)と通信自在に接続されている。
(2) The communication devices 1b, 2b, ..., nb in each equipment C1 to Cn are not limited to fixedly installed devices, but may also be portable communication devices such as notebook PCs or tablet terminals with communication functions. good. Such a portable communication device is communicably connected to each device 1a, 2a, .
(3)上記実施形態では、機器診断サーバAの記憶部a3に機器基本情報を予め記憶した。これは、機器設備C1~Cnと機器診断サーバAとの間の通信負荷を軽減するためのものである。しかしながら、このような通信負荷を無視あるいは考慮する必要がない場合には、機器基本情報の全部あるいは一部を機器設備C1~Cnから機器診断サーバAに送信してもよい。
(3) In the above embodiment, the device basic information is stored in the storage unit a3 of the device diagnosis server A in advance. This is to reduce the communication load between the equipment C1 to Cn and the equipment diagnosis server A. However, if such communication load need not be ignored or taken into consideration, all or part of the device basic information may be transmitted to the device diagnosis server A from the device facilities C1 to Cn.
(4)上記実施形態では、出力画面(診断結果)をサンキーダイヤグラムとして各機器設備C1~Cnに出力したが、本発明はこれに限定されない。出力画面(診断結果)は、異常原因候補と物理的現象及び工学的要因との関係性が解るものであれば、サンキーダイヤグラム以外の表示態様であってもよい。
(4) In the above embodiment, the output screen (diagnosis result) is output as a Sankey diagram to each equipment C1 to Cn, but the present invention is not limited to this. The output screen (diagnosis result) may be displayed in a display format other than the Sankey diagram as long as the relationship between the abnormality cause candidate, physical phenomenon, and engineering factor can be understood.
(5)上記実施形態では、1つの異常症状に対する出力画面(診断結果)を図6のサンキーダイヤグラムとして示したが、本発明はこれに限定されない。一つの異常原因により複数の異常症状が現れる等、複数の異常症状が関連する事象について、各異常原因候補の総合異常原因状態指数βを算出し、複数の異常症状に関する診断結果を1つのサンキーダイヤグラムとして出力することにより、複数の異常症状に対する物理的現象、工学的要因及び異常原因の関係性を含めた診断および診断結果の提示が出来る。
(5) In the above embodiment, the output screen (diagnosis result) for one abnormal symptom was shown as the Sankey diagram in FIG. 6, but the present invention is not limited to this. For events in which multiple abnormal symptoms are related, such as multiple abnormal symptoms appearing due to one abnormal cause, the comprehensive abnormal cause state index β for each abnormal cause candidate is calculated, and the diagnostic results regarding multiple abnormal symptoms are combined into one Sankey diagram. By outputting as , it is possible to diagnose and present diagnostic results including the relationship between physical phenomena, engineering factors, and causes of abnormality for multiple abnormal symptoms.
例えば、図4に示した診断ルールの異常症状「シリンダ出口排気温度マイナス側偏差(大)」に加え、「シリンダ最高圧力マイナス側偏差(大)」を含めた診断結果をサンキーダイヤグラムで出力すると、図11のようになる。
For example, if you output a diagnosis result including "maximum cylinder pressure deviation (large) on the negative side" in addition to the abnormal symptom "negative side deviation (large) in cylinder outlet exhaust temperature" of the diagnostic rule shown in Figure 4, the result will be output as a Sankey diagram. The result will be as shown in FIG.
(6)上記実施形態では、物理的現象と工学的要因の両方についてそれぞれ階層を設け、異常症状、物理的現象、工学的要因、異常原因候補、の4つの階層の間の繋がりの関係に沿って故障可能性を示す評価値を算出した。しかしながら、診断対象の機器によっては、物理的現象と工学的要因を明瞭に区別するのが難しい場合や、両者を区別して評価する必要性が低い場合もある。
(6) In the above embodiment, a hierarchy is provided for both physical phenomena and engineering factors, and the relationship between the four hierarchies of abnormal symptoms, physical phenomena, engineering factors, and abnormal cause candidates is established. An evaluation value indicating the possibility of failure was calculated. However, depending on the equipment to be diagnosed, it may be difficult to clearly distinguish between physical phenomena and engineering factors, or there may be cases where it is not necessary to distinguish between the two for evaluation.
そのような場合には、物理的現象と工学的要因について階層を分けずに物理的現象または工学的要因の少なくとも一方を含む一つの階層とし、異常症状、物理的現象または工学的要因、異常原因候補、の3つの階層の間の繋がりの関係に沿って故障可能性を示す評価値を算出することもできる。この場合には、出力装置は、異常症状、物理的現象または工学的要因、異常原因候補に、故障可能性を示す評価値及びその算出過程における評価の大きさを示す情報を付加した診断結果を出力する。
In such a case, there should be no separate hierarchy for physical phenomena and engineering factors, but a single hierarchy that includes at least one of physical phenomena or engineering factors, and should include abnormal symptoms, physical phenomena or engineering factors, and causes of abnormalities. It is also possible to calculate an evaluation value indicating the possibility of failure based on the connection relationship between the three hierarchies of candidates. In this case, the output device outputs a diagnosis result in which an evaluation value indicating the possibility of failure and information indicating the magnitude of the evaluation in the calculation process are added to the abnormal symptoms, physical phenomena or engineering factors, and abnormal cause candidates. Output.
本発明によれば、診断結果について、どのような現象によりその診断結果に至ったかを読み取ることを容易にし、従来よりも迅速な対処が可能な機器診断システム及び機器診断方法を提供することが可能である。
According to the present invention, it is possible to provide a device diagnosis system and a device diagnosis method that make it easy to read what kind of phenomenon led to the diagnosis result and can take action more quickly than before. It is.
A 機器診断サーバ(入力装置、診断装置、出力装置)
a1 通信部
a2 演算部
a3 記憶部
a4 操作部
a5 表示部
B 通信回線
C1~Cn 機器設備
1a,2a,…,na 通信装置
1b,2b,…,nb 機器(診断対象) A Device diagnosis server (input device, diagnostic device, output device)
a1 Communication section a2 Arithmetic section a3 Storage section a4 Operation section a5 Display section B Communication line C1 to Cn Equipment and equipment 1a, 2a,..., na Communication device 1b, 2b,..., nb Equipment (diagnosis target)
a1 通信部
a2 演算部
a3 記憶部
a4 操作部
a5 表示部
B 通信回線
C1~Cn 機器設備
1a,2a,…,na 通信装置
1b,2b,…,nb 機器(診断対象) A Device diagnosis server (input device, diagnostic device, output device)
a1 Communication section a2 Arithmetic section a3 Storage section a4 Operation section a5 Display section B Communication line C1 to Cn Equipment and
Claims (8)
- 機器の状態量に基づいて異常原因候補を特定する機器診断システムにおいて、
前記状態量を受け入れる入力装置と、
前記入力装置が受け入れた前記状態量と所定の診断ルールとに基づいて前記異常原因候補、並びに前記異常原因候補に関係する物理的現象及び工学的要因を特定する診断装置と、
前記異常原因候補、前記物理的現象及び前記工学的要因を診断結果として出力する出力装置と
を備える機器診断システム。 In a device diagnostic system that identifies abnormality cause candidates based on device state quantities,
an input device that accepts the state quantity;
a diagnostic device that identifies the abnormality cause candidate and physical phenomena and engineering factors related to the abnormality cause candidate based on the state quantity accepted by the input device and a predetermined diagnostic rule;
An equipment diagnosis system comprising: an output device that outputs the abnormality cause candidate, the physical phenomenon, and the engineering factor as a diagnosis result. - 前記診断装置は、前記状態量に基づいて複数の前記異常原因候補に関する故障可能性を示す評価値を算出し、
前記出力装置は、前記状態量における異常症状、前記異常原因候補、前記物理的現象、及び前記工学的要因に、前記評価値及び前記評価値の算出過程における評価の大きさを付加した前記診断結果を出力する
請求項1に記載の機器診断システム。 The diagnostic device calculates an evaluation value indicating a failure possibility regarding the plurality of abnormality cause candidates based on the state quantity,
The output device outputs the diagnostic result obtained by adding the evaluation value and the magnitude of the evaluation in the process of calculating the evaluation value to the abnormal symptom in the state quantity, the abnormality cause candidate, the physical phenomenon, and the engineering factor. The device diagnostic system according to claim 1, which outputs the following. - 前記入力装置は、正常な前記異常原因候補を示す異常確認情報を受け入れ、
前記診断装置は、前記異常確認情報に基づいて正常な前記異常原因候補を除外した前記異常原因候補、前記物理的現象及び前記工学的要因を特定し、
前記出力装置は、正常な前記異常原因候補を除外した診断結果を出力する
請求項1または2に記載の機器診断システム。 The input device accepts abnormality confirmation information indicating the normal abnormality cause candidate,
The diagnostic device identifies the abnormality cause candidates excluding the normal abnormality cause candidates, the physical phenomenon, and the engineering factor based on the abnormality confirmation information,
The device diagnostic system according to claim 1 or 2, wherein the output device outputs a diagnosis result excluding the normal abnormality cause candidates. - 前記入力装置は、真の異常原因を示す異常原因特定情報を受け入れ、
前記診断装置は、前記異常原因特定情報に基づいて診断ルールを更新する
請求項1または2に記載の機器診断システム。 The input device accepts abnormality cause identification information indicating the true cause of the abnormality,
The device diagnostic system according to claim 1 or 2, wherein the diagnostic device updates a diagnostic rule based on the abnormality cause identification information. - 前記診断装置は、複数の異常症状について前記異常原因候補、前記物理的現象及び前記工学的要因を特定し、
前記出力装置は、前記複数の異常症状に関する前記診断結果を出力する
請求項1または2に記載の機器診断システム。 The diagnostic device identifies the abnormal cause candidate, the physical phenomenon, and the engineering factor for a plurality of abnormal symptoms,
The device diagnostic system according to claim 1 or 2, wherein the output device outputs the diagnostic results regarding the plurality of abnormal symptoms. - 前記出力装置は、前記診断結果をサンキーダイヤグラムとして出力する請求項1または2に記載の機器診断システム。 The device diagnosis system according to claim 1 or 2, wherein the output device outputs the diagnosis result as a Sankey diagram.
- 機器の状態量に基づいて異常原因候補を特定する機器診断システムにおいて、
前記状態量を受け入れる入力装置と、
前記入力装置が受け入れた前記状態量と所定の診断ルールとに基づいて前記異常原因候補、及び前記異常原因候補に関係する物理的現象または工学的要因を特定する診断装置と、
前記異常原因候補、前記物理的現象または前記工学的要因を診断結果として出力する出力装置と
を備える機器診断システム。 In a device diagnostic system that identifies abnormality cause candidates based on device state quantities,
an input device that accepts the state quantity;
a diagnostic device that identifies the abnormality cause candidate and a physical phenomenon or engineering factor related to the abnormality cause candidate based on the state quantity accepted by the input device and a predetermined diagnostic rule;
An equipment diagnosis system comprising: an output device that outputs the abnormality cause candidate, the physical phenomenon, or the engineering factor as a diagnosis result. - 機器の状態量に基づいて異常原因候補を特定する機器診断方法において、
前記状態量を受け入れる受入工程と、
前記受入工程で受け入れた前記状態量と所定の診断ルールとに基づいて前記異常原因候補、並びに前記異常原因候補に関係する物理的現象及び工学的要因を特定する診断工程と、
前記異常原因候補、前記物理的現象及び前記工学的要因を診断結果として出力する出力工程と
を有する機器診断方法。 In a device diagnosis method that identifies candidate causes of an abnormality based on state quantities of the device,
an acceptance step of accepting the state quantity;
a diagnosis step of identifying the abnormality cause candidate and physical phenomena and engineering factors related to the abnormality cause candidate based on the state quantity accepted in the acceptance step and a predetermined diagnostic rule;
An apparatus diagnosis method comprising: an output step of outputting the abnormality cause candidate, the physical phenomenon, and the engineering factor as a diagnosis result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024521947A JPWO2023224044A1 (en) | 2022-05-18 | 2023-05-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-081303 | 2022-05-18 | ||
JP2022081303 | 2022-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023224044A1 true WO2023224044A1 (en) | 2023-11-23 |
Family
ID=88835620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/018289 WO2023224044A1 (en) | 2022-05-18 | 2023-05-16 | Equipment diagnosis system and equipment diagnosis method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023224044A1 (en) |
WO (1) | WO2023224044A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572026A (en) * | 1991-09-18 | 1993-03-23 | Hitachi Ltd | Apparatus and method for diagnosing fault of equipment in rotary system |
JPH0674876A (en) * | 1992-08-28 | 1994-03-18 | Kawasaki Steel Corp | Method and device for diagnosing facility |
JPH08240479A (en) * | 1995-03-06 | 1996-09-17 | Tokyo Electric Power Co Inc:The | Diagnostic device for rotary machine |
JP2003150237A (en) * | 2001-11-12 | 2003-05-23 | Hitachi Ltd | Remote monitoring system and method for high temperature parts |
CN111122199A (en) * | 2019-12-31 | 2020-05-08 | 新奥数能科技有限公司 | Boiler fault diagnosis method and device |
JP2021039491A (en) * | 2019-09-02 | 2021-03-11 | キヤノンメディカルシステムズ株式会社 | Medical examination support device |
-
2023
- 2023-05-16 WO PCT/JP2023/018289 patent/WO2023224044A1/en unknown
- 2023-05-16 JP JP2024521947A patent/JPWO2023224044A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572026A (en) * | 1991-09-18 | 1993-03-23 | Hitachi Ltd | Apparatus and method for diagnosing fault of equipment in rotary system |
JPH0674876A (en) * | 1992-08-28 | 1994-03-18 | Kawasaki Steel Corp | Method and device for diagnosing facility |
JPH08240479A (en) * | 1995-03-06 | 1996-09-17 | Tokyo Electric Power Co Inc:The | Diagnostic device for rotary machine |
JP2003150237A (en) * | 2001-11-12 | 2003-05-23 | Hitachi Ltd | Remote monitoring system and method for high temperature parts |
JP2021039491A (en) * | 2019-09-02 | 2021-03-11 | キヤノンメディカルシステムズ株式会社 | Medical examination support device |
CN111122199A (en) * | 2019-12-31 | 2020-05-08 | 新奥数能科技有限公司 | Boiler fault diagnosis method and device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023224044A1 (en) | 2023-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130066568A1 (en) | Integrated system with acoustic technology, mass imbalance and neural network for detecting, locating and quantifying leaks in ducts | |
CN104272207B (en) | Method and system for the report of real-time gas turbine performance | |
US6760689B2 (en) | System and method for processing data obtained from turbine operations | |
WO2012049771A1 (en) | Automatic remote monitoring and diagnosis system | |
US10060346B2 (en) | Method for monitoring at least one exhaust gas turbocharger | |
JP5292477B2 (en) | Diagnostic device and diagnostic method | |
US8131484B2 (en) | Method for preprocessing vibro-sensor signals for engine diagnostics and device for carrying out thereof | |
WO2010143492A1 (en) | Device abnormality monitoring method and system | |
JP2003114294A (en) | Monitor, diagnosis, inspection and maintenance system for power-generating plant | |
EP2458178B1 (en) | Turbine performance diagnositic system and methods | |
CN113033055B (en) | Marine engine state evaluation method and system based on digital twinning | |
EP1336936A2 (en) | Method and system for diagnosis of plant | |
JP4067811B2 (en) | Remote monitoring system and remote monitoring method for high temperature parts | |
CN111441864A (en) | Engine health diagnosis method and engine diagnosis system | |
WO2023224044A1 (en) | Equipment diagnosis system and equipment diagnosis method | |
JP2003315213A (en) | Apparatus and method for diagnosing vibration | |
JP2005284982A (en) | Abnormality diagnosis apparatus, abnormality diagnosis method, power generator monitoring system, and fuel exhaustion notification device | |
RU2293962C1 (en) | Method and expert system for evaluating technical condition of internal-combustion engine | |
JP2003193808A (en) | Diagnostic method and diagnostic system of electric power plant | |
JP2019100572A (en) | Remote monitoring system for industrial furnace | |
JP4019299B2 (en) | Abnormality diagnosis method for gas turbine | |
JPH01210840A (en) | Abnormality diagnostic expert system for diesel engine | |
KR20180020564A (en) | Apparatus and method for monitoring engine condition | |
KR101004870B1 (en) | Diagnostic method for diesel engine to detect the abnormal combustion as monitoring exhaust gas temperature | |
CN113985765B (en) | Monitoring system and monitoring method for working state of fuel engineering machinery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23807646 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024521947 Country of ref document: JP Kind code of ref document: A |