WO2023223974A1 - Package - Google Patents
Package Download PDFInfo
- Publication number
- WO2023223974A1 WO2023223974A1 PCT/JP2023/017948 JP2023017948W WO2023223974A1 WO 2023223974 A1 WO2023223974 A1 WO 2023223974A1 JP 2023017948 W JP2023017948 W JP 2023017948W WO 2023223974 A1 WO2023223974 A1 WO 2023223974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- package
- packaging material
- volume
- contents
- lifsi
- Prior art date
Links
- 239000005022 packaging material Substances 0.000 claims abstract description 80
- 150000008040 ionic compounds Chemical class 0.000 claims abstract description 60
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 230000035699 permeability Effects 0.000 claims abstract description 9
- 239000005021 flexible packaging material Substances 0.000 claims abstract description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 31
- 238000004806 packaging method and process Methods 0.000 claims description 21
- 239000011737 fluorine Chemical group 0.000 claims description 5
- 125000000962 organic group Chemical group 0.000 claims description 5
- 150000001767 cationic compounds Chemical class 0.000 claims description 4
- 229910001411 inorganic cation Inorganic materials 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 58
- 229910010941 LiFSI Inorganic materials 0.000 description 57
- 229910052782 aluminium Inorganic materials 0.000 description 33
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 33
- 238000003860 storage Methods 0.000 description 26
- -1 fluorosulfonyl Chemical group 0.000 description 21
- 238000000034 method Methods 0.000 description 17
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 239000011800 void material Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 238000011065 in-situ storage Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000005243 fluidization Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 125000003709 fluoroalkyl group Chemical group 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910000266 aqualite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910005143 FSO2 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical group [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 125000006001 difluoroethyl group Chemical group 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 125000003784 fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical class FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000004714 phosphonium salts Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical class OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/24—Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
Definitions
- the packaging material 2 is for packaging the contents 1 and has flexibility.
- the flexible packaging material 2 is one that does not maintain a fixed shape and can be deformed in accordance with external conditions.
- a packaging material made of a deformable material can be selected, such as a packaging material made of a plastic resin film.
- the thickness of the laminate is not particularly limited, but is preferably about 50 ⁇ m to 200 ⁇ m, for example.
- the thickness of the aluminum layer is preferably about 5 ⁇ m to 20 ⁇ m. If the thickness of the aluminum layer is within the above range, the formation of pinholes due to a decrease in film strength will be suppressed, and the flexibility of the packaging material 2 will also be ensured.
- the bulk volume of the contents 1 is a filling rate of 10% or more and 60% or less with respect to the internal volume of the packaging material 2 (bulk filling rate of the contents with respect to the internal volume of the packaging material). ) is preferably filled.
- both the "bulk filling rate (1)" and (2) of the contents are within the predetermined range, it is possible to further deform the package P in accordance with the external conditions, and the package P In combination with the presence of voids G at a predetermined ratio inside, even if the contents 1 aggregate, it is possible to further fluidize the aggregates.
- the preferable lower limit of "bulk filling rate of contents (2)” is 10% or more, and may be 20% or more or 30% or more.
- a preferable upper limit of "bulk filling rate (2) of contents” is 60% or less, and may be 50% or less or 40% or less.
- fluorosulfonylimide salt can be produced, for example, by the production methods described in Patent Documents 1 and 2.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Packages (AREA)
Abstract
This package (P) is characterized in that an ionic compound containing fluorine atoms or a composition containing the ionic compound is packaged in a flexible packaging material (2) as contents (1), the packaging material (2) includes at least one metal layer (3), the moisture permeability of the packaging material (2) is 0.1 g/m2·24 hours or less, and the bulk filling rate of the contents (1) is 50-97% with respect to the volume of the package (P).
Description
本開示は、フッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物を包装した包装体に関するものである。
The present disclosure relates to a package containing an ionic compound containing a fluorine atom or a composition containing the ionic compound.
例えば、電解質、燃料電池の電解液への添加物、選択的求電子フッ素化剤、光酸発生剤、熱酸発生剤、近赤外線吸収色素、帯電防止剤、反応触媒等に使用されるフルオロスルホニルイミド塩等のフッ素原子を含むイオン性化合物は、通常、結晶化させて乾燥した後、得られた粉末をそのまま包装して保存・移送(出荷)される。ここで、フッ素原子を含むイオン性化合物は、吸湿性が高く、加水分解を受けてフッ酸を発生し易い。フッ酸は強酸であるため、保存・移送に用いられる容器や袋を侵すおそれがある。また、電池用途等では水の存在は悪影響をもたらすため、イオン性化合物中の水の存在量はできるだけ低減させなければならない。
For example, fluorosulfonyl used in electrolytes, additives to fuel cell electrolytes, selective electrophilic fluorination agents, photoacid generators, thermal acid generators, near-infrared absorbing dyes, antistatic agents, reaction catalysts, etc. Ionic compounds containing fluorine atoms, such as imide salts, are usually crystallized and dried, and then the resulting powder is packaged as it is for storage and transportation (shipping). Here, the ionic compound containing a fluorine atom has high hygroscopicity and is easily hydrolyzed to generate hydrofluoric acid. Hydrofluoric acid is a strong acid and may corrode containers and bags used for storage and transportation. Furthermore, since the presence of water has an adverse effect in battery applications, etc., the amount of water present in the ionic compound must be reduced as much as possible.
そこで、本出願人は、フッ素原子を有するイオン性化合物または該イオン性化合物を含有する組成物を、初期の水分量を所定量以下に低減させた上で少なくとも1層の金属層を有する包装材料で包装すると、保存安定性良好に保存できることを見出し、その包装体を提案している(特許文献1及び2)。この包装体では、保存・移送中のイオン性化合物の加水分解が可及的に抑制されるため、上記の不都合の発生が抑制される。
Therefore, the present applicant has developed an ionic compound having a fluorine atom or a composition containing the ionic compound into a packaging material having at least one metal layer after reducing the initial water content to a predetermined amount or less. They have found that packaging with good storage stability can be achieved and have proposed packaging for this purpose (Patent Documents 1 and 2). In this package, hydrolysis of the ionic compound during storage and transportation is suppressed as much as possible, so the occurrence of the above-mentioned inconveniences is suppressed.
さらに、本出願人は、フルオロスルホニルイミドが吸湿し難い雰囲気下でフルオロスルホニルイミドを小分けして、小スケールの包装体を製造する方法を見出し、その包装体の製造方法も提案している(特許文献3)。この方法では、より安価なドライルームで、フルオロスルホニルイミドが貯蔵された貯蔵容器から内容量の小さい包装容器にフルオロスルホニルイミドの小分けを行うことができるため、製品コストが低減され、作業性が向上する。
Furthermore, the applicant has discovered a method for manufacturing small-scale packages by dividing fluorosulfonylimide in an atmosphere in which fluorosulfonylimide does not easily absorb moisture, and has also proposed a method for manufacturing such packages (patent Reference 3). With this method, fluorosulfonylimide can be subdivided from the storage container in which it was stored into smaller packaging containers in a less expensive dry room, reducing product costs and improving workability. do.
ところで、フッ素原子を有するイオン性化合物は、上記したように吸湿性が高いため、保存期間(例えば1ヵ月以上)や保存・移送環境によっては、上記の包装体でも保存・移送中に水分を吸収する。また、粉末は凝集する性質がある。凝集したイオン性化合物またはイオン性化合物を含有する組成物(凝集物)は、包装材料からの排出が困難になるだけでなく、後続の工程において例えば凝集物を溶解するのに時間がかかる等、作業性にも影響する。
By the way, as mentioned above, ionic compounds containing fluorine atoms are highly hygroscopic, so depending on the storage period (for example, one month or more) and the storage/transport environment, even the above packaging may absorb moisture during storage/transport. do. In addition, the powder has the property of agglomerating. Aggregated ionic compounds or compositions containing ionic compounds (agglomerates) are not only difficult to discharge from the packaging material, but also have problems in subsequent steps, e.g., because it takes time to dissolve the aggregates. It also affects workability.
本開示は斯かる点に鑑みてなされたものであり、その目的とするところは、包装体内でフッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物の粉末が凝集したときであっても、包装体内部で凝集物を容易に流動化できる包装体を提供することにある。
The present disclosure has been made in view of the above, and its purpose is to prevent the powder of an ionic compound containing a fluorine atom or a composition containing the ionic compound from agglomerating in a package. The object of the present invention is to provide a package that can easily fluidize aggregates inside the package.
本願発明者らは、検討を進めた結果、包装材料をフレキシブルなもので構成し、さらに包装体内部に存在する空隙部の体積(具体的には、内容物と空隙部との体積比率)を特定することで、粉末が凝集したときであっても、包装体内部で凝集物を容易に流動状態(例えば粉末状)に戻す(流動化する)ことができることを見出した。本開示は、具体的には以下のとおりである。
As a result of further studies, the inventors of the present application have determined that the packaging material is made of a flexible material, and that the volume of the void existing inside the package (specifically, the volume ratio of the contents to the void) is It has been found that by specifying this, even when the powder is agglomerated, the agglomerate can be easily returned to a fluid state (for example, powder) (fluidized) inside the package. Specifically, the present disclosure is as follows.
本開示の包装体は、フッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物を内容物としてフレキシブルな包装材料で包装してなる包装体であって、上記包装材料が少なくとも1層の金属層を含み、該包装材料の透湿度が0.1g/m2・24時間以下であり、上記内容物の嵩充填率が、上記包装体の体積に対して、50%以上97%以下であることを特徴とする。上記内容物の嵩充填率が、上記包装材料の内容積に対して、10%以上60%以下であってもよい。上記フッ素原子を含むイオン性化合物が一般式(I):
[化1]
MN(XSO2)(FSO2) (Mは無機カチオン、Xは有機基またはフッ素を示す。) (I)
で表されるフルオロスルホニルイミドであってもよい。 The package of the present disclosure is a package in which an ionic compound containing a fluorine atom or a composition containing the ionic compound is packaged with a flexible packaging material, and the package includes at least one layer of the packaging material. The packaging material has a moisture permeability of 0.1 g/ m2 ·24 hours or less, and the bulk filling rate of the contents is 50% or more and 97% or less with respect to the volume of the packaging body. It is characterized by The bulk filling rate of the above-mentioned contents may be 10% or more and 60% or less with respect to the internal volume of the above-mentioned packaging material. The ionic compound containing a fluorine atom has the general formula (I):
[Chemical formula 1]
MN(XSO 2 )(FSO 2 ) (M is an inorganic cation, X is an organic group or fluorine.) (I)
It may also be a fluorosulfonylimide represented by
[化1]
MN(XSO2)(FSO2) (Mは無機カチオン、Xは有機基またはフッ素を示す。) (I)
で表されるフルオロスルホニルイミドであってもよい。 The package of the present disclosure is a package in which an ionic compound containing a fluorine atom or a composition containing the ionic compound is packaged with a flexible packaging material, and the package includes at least one layer of the packaging material. The packaging material has a moisture permeability of 0.1 g/ m2 ·24 hours or less, and the bulk filling rate of the contents is 50% or more and 97% or less with respect to the volume of the packaging body. It is characterized by The bulk filling rate of the above-mentioned contents may be 10% or more and 60% or less with respect to the internal volume of the above-mentioned packaging material. The ionic compound containing a fluorine atom has the general formula (I):
[Chemical formula 1]
MN(XSO 2 )(FSO 2 ) (M is an inorganic cation, X is an organic group or fluorine.) (I)
It may also be a fluorosulfonylimide represented by
本開示の包装体によれば、包装体内でフッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物の粉末が凝集したときであっても、包装体内部で凝集物を容易に流動化できる。
According to the package of the present disclosure, even when powder of an ionic compound containing a fluorine atom or a composition containing the ionic compound aggregates within the package, the aggregates can be easily fluidized within the package. can be converted into
以下、本実施の形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
Hereinafter, this embodiment will be described in detail based on the drawings. The following description of preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its applications, or its uses.
[包装体]
図1及び2は本開示の一実施形態に係る包装体Pを示す。本開示の包装体Pは、内容物1として後述するフッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物(以下まとめて「イオン性化合物等」とも称する)を保存または移送(出荷)するためのものである。包装体Pは、イオン性化合物等を市場に流通させるときの出荷形態をいう。つまり、包装体Pは、包装材料2によって内容物1のイオン性化合物等が包装された状態のものをいい、包装材料2と、それに包装される内容物1とを含む。 [Package]
1 and 2 show a package P according to an embodiment of the present disclosure. The package P of the present disclosure stores or transports (ships) an ionic compound containing a fluorine atom or a composition containing the ionic compound (hereinafter collectively referred to as "ionic compound, etc.") as contents 1, which will be described later. ). The package P refers to a shipping form when an ionic compound or the like is distributed on the market. That is, the package P refers to a state in which the content 1 such as an ionic compound is packaged with the packaging material 2, and includes the packaging material 2 and the content 1 packaged therein.
図1及び2は本開示の一実施形態に係る包装体Pを示す。本開示の包装体Pは、内容物1として後述するフッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物(以下まとめて「イオン性化合物等」とも称する)を保存または移送(出荷)するためのものである。包装体Pは、イオン性化合物等を市場に流通させるときの出荷形態をいう。つまり、包装体Pは、包装材料2によって内容物1のイオン性化合物等が包装された状態のものをいい、包装材料2と、それに包装される内容物1とを含む。 [Package]
1 and 2 show a package P according to an embodiment of the present disclosure. The package P of the present disclosure stores or transports (ships) an ionic compound containing a fluorine atom or a composition containing the ionic compound (hereinafter collectively referred to as "ionic compound, etc.") as contents 1, which will be described later. ). The package P refers to a shipping form when an ionic compound or the like is distributed on the market. That is, the package P refers to a state in which the content 1 such as an ionic compound is packaged with the packaging material 2, and includes the packaging material 2 and the content 1 packaged therein.
<包装材料>
包装材料2は内容物1を包装するためのものであり、フレキシブル性を有する。フレキシブル性を有する包装材料2とは、決まった形態を保持しないものであり、外界の条件に合わせて変形できるものをいう。フレキシブル性を有する包装材料2は、例えば変形が可能な材料で作製された包装材料を選ぶことができ、例えばプラスチック樹脂フィルムからなる包装材料等が挙げられる。 <Packaging materials>
The packaging material 2 is for packaging the contents 1 and has flexibility. The flexible packaging material 2 is one that does not maintain a fixed shape and can be deformed in accordance with external conditions. As the flexible packaging material 2, for example, a packaging material made of a deformable material can be selected, such as a packaging material made of a plastic resin film.
包装材料2は内容物1を包装するためのものであり、フレキシブル性を有する。フレキシブル性を有する包装材料2とは、決まった形態を保持しないものであり、外界の条件に合わせて変形できるものをいう。フレキシブル性を有する包装材料2は、例えば変形が可能な材料で作製された包装材料を選ぶことができ、例えばプラスチック樹脂フィルムからなる包装材料等が挙げられる。 <Packaging materials>
The packaging material 2 is for packaging the contents 1 and has flexibility. The flexible packaging material 2 is one that does not maintain a fixed shape and can be deformed in accordance with external conditions. As the flexible packaging material 2, for example, a packaging material made of a deformable material can be selected, such as a packaging material made of a plastic resin film.
包装材料2は少なくとも1層の金属層3を含む。この金属層3によって外部からの湿分や水の侵入が抑制される。金属層3としては、アルミニウムまたはアルミニウム合金層(以下単に「アルミニウム層」とも称する)、ステンレス鋼層等が挙げられる。金属層3の中では、フレキシブルな包装材料2とする観点から、アルミニウム層が好ましい。フレキシブルな包装材料2は、例えば、アルミニウム層を有する積層体、具体的にはアルミニウム層の両側を樹脂フィルムで保護した積層体等で形成された密封可能な袋で構成されていてもよい。樹脂フィルムを構成する樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ナイロン;ポリスチレン等が挙げられる。積層体の積層数はフレキシブル性を有していれば特に限定されず、2層でもよく、3層以上でもよい。また、金属層3の層数は少なくとも1層を有し、フレキシブル性が確保されていれば特に限定されず、2層以上でもよい。また、包装材料2は、上記の袋を少なくとも1種含む2種以上の袋で構成されていてもよい。例えば、上記の袋を複数枚重ねたものを1つの包装材料としてもよい。なお、内容物1が直接接する袋(その内面)の材質としては、樹脂フィルムを含むものが好ましい。
The packaging material 2 includes at least one metal layer 3. This metal layer 3 suppresses moisture and water from entering from the outside. Examples of the metal layer 3 include an aluminum or aluminum alloy layer (hereinafter also simply referred to as an "aluminum layer"), a stainless steel layer, and the like. Among the metal layers 3, an aluminum layer is preferable from the viewpoint of making the packaging material 2 flexible. The flexible packaging material 2 may be constituted by a sealable bag formed of, for example, a laminate having an aluminum layer, specifically a laminate in which both sides of the aluminum layer are protected with resin films. Examples of the resin constituting the resin film include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; nylon; and polystyrene. The number of layers in the laminate is not particularly limited as long as it has flexibility, and may be two layers or three or more layers. Further, the number of layers of the metal layer 3 is not particularly limited as long as it has at least one layer and flexibility is ensured, and may be two or more layers. Moreover, the packaging material 2 may be comprised of two or more types of bags including at least one type of bag mentioned above. For example, a plurality of the above-mentioned bags stacked may be used as one packaging material. The material of the bag (inner surface thereof) with which the contents 1 come into direct contact is preferably one containing a resin film.
積層体の厚さは特に限定されないが、例えば50μm~200μm程度が好ましい。この場合、アルミニウム層の厚さは5μm~20μm程度が好ましい。アルミニウム層の厚さが上記範囲内にあれば膜強度の低下に起因するピンホールの形成が抑制され、また包装材料2のフレキシブル性も確保される。
The thickness of the laminate is not particularly limited, but is preferably about 50 μm to 200 μm, for example. In this case, the thickness of the aluminum layer is preferably about 5 μm to 20 μm. If the thickness of the aluminum layer is within the above range, the formation of pinholes due to a decrease in film strength will be suppressed, and the flexibility of the packaging material 2 will also be ensured.
積層体の製造方法は、例えば、アルミニウム箔に適宜接着剤を介して樹脂フィルムを貼付する方法、樹脂を押出しながらアルミニウム箔に積層する方法、樹脂フィルムにアルミニウムを蒸着しさらに樹脂フィルムを積層する方法等が挙げられる。また、これらの積層体を密封する方法としては、例えば、袋に予め形成しておいたチャックを利用し、さらにヒートシールや超音波溶着等の手段を用いる方法等が挙げられる。
Methods for manufacturing the laminate include, for example, attaching a resin film to aluminum foil using an appropriate adhesive, laminating the resin onto the aluminum foil while extruding it, and depositing aluminum on the resin film and then laminating the resin film. etc. Further, as a method for sealing these laminates, for example, a method using a zipper previously formed on the bag and further using means such as heat sealing or ultrasonic welding can be mentioned.
また、包装材料2(上記積層体で構成される場合はその積層体)の透湿度は0.1g/m2・24時間以下である。本明細書において、透湿度とは、包装材料2の生地(積層体)1m2あたり、24時間で透過する水分量をいう。包装材料2の透湿度が上記範囲内にあれば外部からの湿分や水の侵入が抑制され、また包装材料2のフレキシブル性も確保される。なお、透湿度は一般に公知の方法で測定できる。
Moreover, the moisture permeability of the packaging material 2 (if it is composed of the above-mentioned laminate, the laminate) is 0.1 g/m 2 ·24 hours or less. In this specification, moisture permeability refers to the amount of moisture that permeates per 1 m 2 of fabric (laminate) of the packaging material 2 in 24 hours. If the moisture permeability of the packaging material 2 is within the above range, the intrusion of moisture and water from the outside will be suppressed, and the flexibility of the packaging material 2 will also be ensured. Note that moisture permeability can be measured by a generally known method.
包装材料2の形状は、特に限定されず、ボトル型、筒型、パック型、パウチ型等が挙げられる。ボトル型、筒型としては、その水平方向の断面形状が円形、楕円形、多角形等の密閉容器が挙げられる。パック型、パウチ型としては、その水平方向の断面形状を四角形等とした角柱状の密閉容器等が挙げられる。包装材料2の内容積は、特に限定されない。
The shape of the packaging material 2 is not particularly limited, and examples thereof include a bottle shape, a cylinder shape, a pack shape, a pouch shape, and the like. Examples of bottle-shaped and cylindrical containers include closed containers whose horizontal cross-sectional shape is circular, elliptical, polygonal, and the like. Examples of the pack type and pouch type include a prismatic sealed container whose horizontal cross-sectional shape is rectangular or the like. The internal volume of the packaging material 2 is not particularly limited.
なお、包装材料2は、フッ素原子を含むイオン性化合物の吸湿を抑制する観点から、少なくとも1つの外袋(不図示)で覆われていてもよい。換言すると、本開示の包装体Pは外袋をさらに含むものでもよい。外袋としては、例えば、樹脂製袋、樹脂製容器、ガラス製容器等が挙げられる。樹脂製袋や樹脂製容器を構成する樹脂としては、上記樹脂フィルムを構成する樹脂やフッ素樹脂等が挙げられ、2種以上の樹脂の積層体で形成されたものでもよい。また、包装材料2と外袋との間や、包装材料2が複数枚の外袋で何重にも覆われている構造において各外袋間には、乾燥不活性ガスや乾燥空気等が充填されていてもよく、真空にされていてもよい。
Note that the packaging material 2 may be covered with at least one outer bag (not shown) from the viewpoint of suppressing moisture absorption of the ionic compound containing a fluorine atom. In other words, the package P of the present disclosure may further include an outer bag. Examples of the outer bag include resin bags, resin containers, glass containers, and the like. Examples of the resin constituting the resin bag or the resin container include the resin constituting the resin film described above, fluororesin, etc., and a laminate of two or more resins may be used. In addition, dry inert gas, dry air, etc. may be filled between the packaging material 2 and the outer bag, or between each outer bag in a structure in which the packaging material 2 is covered with multiple outer bags. or may be evacuated.
<包装体の体積に対する内容物の嵩充填率>
ここで、本開示の包装体Pでは、包装体Pの体積に対する内容物1の占める割合として、内容物1の嵩体積が特定される。具体的には、内容物1の嵩体積が、包装体Pの体積に対して50%以上97%以下の充填率(包装体の体積に対する内容物の嵩充填率)で充填される。本明細書において、包装体の体積に対する内容物の嵩充填率とは、数式(1):
[数1]
包装体の体積に対する内容物の嵩充填率(%)=[(内容物の質量/内容物のかさ比重)/包装体の体積]×100 (1)
で求められる値(以下「内容物の嵩充填率(1)」とも称する)をいう。 <Bulk filling rate of contents relative to the volume of the package>
Here, in the package P of the present disclosure, the bulk volume of the content 1 is specified as the ratio of the content 1 to the volume of the package P. Specifically, the bulk volume of the contents 1 is filled with the volume of the package P at a filling rate of 50% or more and 97% or less (the bulk filling rate of the contents with respect to the volume of the package). In this specification, the bulk filling rate of the contents with respect to the volume of the package is expressed by the formula (1):
[Number 1]
Bulk filling rate (%) of contents to volume of package = [(mass of contents/bulk specific gravity of contents)/volume of package] x 100 (1)
(hereinafter also referred to as "bulk filling rate of contents (1)").
ここで、本開示の包装体Pでは、包装体Pの体積に対する内容物1の占める割合として、内容物1の嵩体積が特定される。具体的には、内容物1の嵩体積が、包装体Pの体積に対して50%以上97%以下の充填率(包装体の体積に対する内容物の嵩充填率)で充填される。本明細書において、包装体の体積に対する内容物の嵩充填率とは、数式(1):
[数1]
包装体の体積に対する内容物の嵩充填率(%)=[(内容物の質量/内容物のかさ比重)/包装体の体積]×100 (1)
で求められる値(以下「内容物の嵩充填率(1)」とも称する)をいう。 <Bulk filling rate of contents relative to the volume of the package>
Here, in the package P of the present disclosure, the bulk volume of the content 1 is specified as the ratio of the content 1 to the volume of the package P. Specifically, the bulk volume of the contents 1 is filled with the volume of the package P at a filling rate of 50% or more and 97% or less (the bulk filling rate of the contents with respect to the volume of the package). In this specification, the bulk filling rate of the contents with respect to the volume of the package is expressed by the formula (1):
[Number 1]
Bulk filling rate (%) of contents to volume of package = [(mass of contents/bulk specific gravity of contents)/volume of package] x 100 (1)
(hereinafter also referred to as "bulk filling rate of contents (1)").
「(内容物の質量/内容物のかさ比重)」とは、内容物1の嵩体積をいう。「包装体の体積」とは、内容物1を包装材料2に充填した後の(包装材料2によって内容物1が包装された状態における)、内容物1が占める嵩体積と包装体P内部に存在する空隙部Gの体積とを合計したものをいう。換言すると、「内容物の嵩充填率(1)」は、包装体P内部における、内容物1(例えば粉末状)の見かけの嵩体積と、空隙部Gの体積との比率を規定したものといえる。
"(Mass of contents/bulk specific gravity of contents)" refers to the bulk volume of the contents 1. "Volume of the package" refers to the bulk volume occupied by the content 1 and the inside of the package P after the content 1 is filled into the packaging material 2 (in a state where the content 1 is wrapped by the packaging material 2). This is the sum of the volume of the existing void G. In other words, the "bulk filling rate of the contents (1)" defines the ratio between the apparent bulk volume of the contents 1 (for example, powder) and the volume of the void G inside the package P. I can say that.
包装体Pの体積は、露点-30℃のドライルームで室温(25℃程度)の測定条件下で測定した値をいう。包装体Pの体積は、例えば市販のレーザー体積計で測定することができる。なお、包装体Pを構成する包装材料2の厚みはフレキシブル性を有するほど十分に薄いため(例えば200μm以下程度)、厚み分の体積は通常除く必要がない。一方、厚みが相当ある包装材料2については、その厚み分の体積を除いてもよい。包装体Pの体積は、in situ体積、すなわち内容物1を包装材料2に充填した後、包装する(包装体Pを完成させる)ときに測定してもよい。
The volume of the package P is a value measured under measurement conditions at room temperature (approximately 25°C) in a dry room with a dew point of -30°C. The volume of the package P can be measured using, for example, a commercially available laser volume meter. Note that since the thickness of the packaging material 2 constituting the package P is sufficiently thin (for example, about 200 μm or less) to have flexibility, it is usually not necessary to remove the volume corresponding to the thickness. On the other hand, if the packaging material 2 is considerably thick, the volume corresponding to the thickness may be removed. The volume of the package P may be measured in situ, that is, when the packaging material 2 is filled with the contents 1 and then packaged (the package P is completed).
包装体Pの体積に対する「内容物の嵩充填率(1)」が上記範囲内(特に上限値以下)であれば、包装材料2内に十分な空隙(空間)が存在するため、内容物1が凝集した場合でも、その凝集物が移動可能な空間が確保される。換言すると、本開示の包装体Pでは、凝集物を流動状態に戻すための空間が確保される。また、本開示の包装体Pでは、フレキシブルな包装材料2で構成されている。これらより、内容物1が凝集したときでも、包装体Pが外界の条件に合わせて変形し、凝集物が崩れて変形によって生じる空間に広がり、流動状態(例えば粉末状)に戻すことができる。なお、「内容物の嵩充填率(1)」は、包装体Pの保存・移送コストの観点から、下限値以上が好ましい。「内容物の嵩充填率(1)」が下限値未満であると、空隙部Gの体積が大きいため、包装体Pが変形し易く、例えば荷積みの際に荷崩れするおそれや、包装体P(包装材料2)が破れ易くなることがある。また空隙部Gの体積が大きいことで、外界の温度変化によって空隙部Gの体積が変化し、その変化量も相対的に大きくなるため、上記の荷積みの問題がより顕著となることが考えられる。例えば、内容物1充填後の包装体Pの体積が大きいものとして10000cm3(10L)程度になる包装材料2に対して5L~9.7Lの嵩体積を有する内容物1を充填すれば、包装体Pの体積に対する「内容物の嵩充填率(1)」が上記範囲内になる。また、包装体Pの体積が上記よりも小さいものの例としては、後述する各実施例に記載の量が参考になる。なお、「内容物の嵩充填率(1)」の下限は、50%以上であり、60%以上又は70%以上であってもよい。「内容物の嵩充填率(1)」の上限は、97%以下であり、95%以下、90%以下又は80%以下であってもよい。換言すると、「内容物の嵩充填率(1)」は、50%以上97%以下であり、50%以上95%以下、50%以上90%以下、50%以上80%以下、60%以上97%以下、60%以上95%以下、60%以上90%以下、60%以上80%以下、70%以上97%以下、70%以上95%以下、70%以上90%以下、70%以上80%以下であってもよい。
If the "bulk filling rate (1) of the contents" relative to the volume of the package P is within the above range (especially below the upper limit), there are sufficient voids (spaces) in the packaging material 2, so that the contents 1 Even if the particles aggregate, a space is secured in which the aggregates can move. In other words, in the package P of the present disclosure, a space is secured for returning the aggregate to a fluid state. Furthermore, the package P of the present disclosure is made of a flexible packaging material 2. Therefore, even when the contents 1 aggregate, the package P deforms in accordance with the external conditions, the aggregates collapse and spread in the space created by the deformation, and can be returned to a fluid state (for example, powder). In addition, the "bulk filling rate of contents (1)" is preferably equal to or higher than the lower limit value from the viewpoint of storage and transportation costs of the package P. If the "bulk filling rate of contents (1)" is less than the lower limit, the volume of the void G is large, so the package P is likely to deform, for example, the package may collapse during loading, or the package may P (packaging material 2) may become easily torn. In addition, since the volume of the void G is large, the volume of the void G changes due to changes in the temperature of the outside world, and the amount of change becomes relatively large, so it is thought that the above-mentioned loading problem will become more pronounced. It will be done. For example, if the content 1 having a bulk volume of 5L to 9.7L is filled with the packaging material 2, which is about 10000 cm 3 (10L), assuming that the volume of the package P after filling the content 1 is large, the packaging The "bulk filling rate (1) of the contents" relative to the volume of the body P falls within the above range. Moreover, as an example of a package P having a volume smaller than the above, the amounts described in each example described later can be used as a reference. Note that the lower limit of "bulk filling rate (1) of contents" is 50% or more, and may be 60% or more or 70% or more. The upper limit of "bulk filling rate (1) of contents" is 97% or less, and may be 95% or less, 90% or less, or 80% or less. In other words, the "bulk filling rate (1) of contents" is 50% or more and 97% or less, 50% or more and 95% or less, 50% or more and 90% or less, 50% or more and 80% or less, and 60% or more and 97%. % or less, 60% to 95%, 60% to 90%, 60% to 80%, 70% to 97%, 70% to 95%, 70% to 90%, 70% to 80% It may be the following.
<包装材料の内容積に対する内容物の嵩充填率>
また、本開示の包装体Pでは、内容物1の嵩体積は、包装材料2の内容積に対して、10%以上60%以下の充填率(包装材料の内容積に対する内容物の嵩充填率)で充填されることが好ましい。本明細書においては、包装材料の内容積に対する内容物の嵩充填率とは、数式(2):
[数2]
包装材料の内容積に対する内容物の嵩充填率(%)=[(内容物の質量/内容物のかさ比重)/包装材料の内容積]×100 (2)
で求められる値(以下「内容物の嵩充填率(2)」とも称する)をいう。 <Bulk filling rate of contents relative to internal volume of packaging material>
In the package P of the present disclosure, the bulk volume of the contents 1 is a filling rate of 10% or more and 60% or less with respect to the internal volume of the packaging material 2 (bulk filling rate of the contents with respect to the internal volume of the packaging material). ) is preferably filled. In this specification, the bulk filling rate of the contents with respect to the internal volume of the packaging material is expressed by the formula (2):
[Number 2]
Bulk filling rate of contents to internal volume of packaging material (%) = [(mass of contents/bulk specific gravity of contents)/internal volume of packaging material] x 100 (2)
(hereinafter also referred to as "bulk filling rate of contents (2)").
また、本開示の包装体Pでは、内容物1の嵩体積は、包装材料2の内容積に対して、10%以上60%以下の充填率(包装材料の内容積に対する内容物の嵩充填率)で充填されることが好ましい。本明細書においては、包装材料の内容積に対する内容物の嵩充填率とは、数式(2):
[数2]
包装材料の内容積に対する内容物の嵩充填率(%)=[(内容物の質量/内容物のかさ比重)/包装材料の内容積]×100 (2)
で求められる値(以下「内容物の嵩充填率(2)」とも称する)をいう。 <Bulk filling rate of contents relative to internal volume of packaging material>
In the package P of the present disclosure, the bulk volume of the contents 1 is a filling rate of 10% or more and 60% or less with respect to the internal volume of the packaging material 2 (bulk filling rate of the contents with respect to the internal volume of the packaging material). ) is preferably filled. In this specification, the bulk filling rate of the contents with respect to the internal volume of the packaging material is expressed by the formula (2):
[Number 2]
Bulk filling rate of contents to internal volume of packaging material (%) = [(mass of contents/bulk specific gravity of contents)/internal volume of packaging material] x 100 (2)
(hereinafter also referred to as "bulk filling rate of contents (2)").
「包装材料の内容積」とは、内容物1を包装材料2に充填し、且つ当該包装材料2を封止できる最大体積をいい、換言すると内容物1の収納可能最大体積のことである。収納可能最大体積は、室温(25℃程度)の条件下で包装材料2に水等を満たし充填量を測定することで、その内容積を測定できる。
The "inner volume of the packaging material" refers to the maximum volume that can fill the packaging material 2 with the contents 1 and seal the packaging material 2. In other words, it refers to the maximum volume that can accommodate the contents 1. The maximum storable volume can be determined by filling the packaging material 2 with water or the like at room temperature (approximately 25° C.) and measuring the filling amount.
包装材料2の内容積に対する「内容物の嵩充填率(2)」が上記範囲内であることで、包装材料2の内容積は内容物1の嵩体積に対して十分な大きさになる。換言すると、「内容物の嵩充填率(1)」が上記範囲の上限値又はその近傍であっても、包装体P内部に存在する空隙部G自体の体積(凝集物を流動状態に戻すための空間)が十分に確保され、外界の条件に応じた包装体Pの変形量を増大できる。したがって、「内容物の嵩充填率(1)」及び(2)の両方が所定範囲内であれば、外界の条件に合わせて包装体Pをより一層変形することが可能であり、包装体P内部に所定の比率で空隙部Gが存在することと合わせて、内容物1が凝集した場合でも、その凝集物をより一層流動化することが可能である。なお、「内容物の嵩充填率(2)」の好ましい下限は、10%以上であり、20%以上又は30%以上であってもよい。「内容物の嵩充填率(2)」の好ましい上限は、60%以下であり、50%以下又は40%以下であってもよい。換言すると、好ましい「内容物の嵩充填率(2)」は、10%以上60%以下であり、10%以上50%以下、10%以上40%以下、20%以上60%以下、20%以上50%以下、20%以上40%以下、30%以上60%以下、30%以上50%以下、30%以上40%以下であってもよい。
When the "bulk filling rate (2) of the contents" with respect to the internal volume of the packaging material 2 is within the above range, the internal volume of the packaging material 2 becomes large enough for the bulk volume of the contents 1. In other words, even if the "bulk filling rate (1) of the contents" is at or near the upper limit of the above range, the volume of the void G itself existing inside the package P (in order to return the aggregates to a fluid state) The amount of deformation of the package P according to external conditions can be increased. Therefore, if both the "bulk filling rate (1)" and (2) of the contents are within the predetermined range, it is possible to further deform the package P in accordance with the external conditions, and the package P In combination with the presence of voids G at a predetermined ratio inside, even if the contents 1 aggregate, it is possible to further fluidize the aggregates. In addition, the preferable lower limit of "bulk filling rate of contents (2)" is 10% or more, and may be 20% or more or 30% or more. A preferable upper limit of "bulk filling rate (2) of contents" is 60% or less, and may be 50% or less or 40% or less. In other words, the preferable "bulk filling rate (2) of contents" is 10% or more and 60% or less, 10% or more and 50% or less, 10% or more and 40% or less, 20% or more and 60% or less, and 20% or more It may be 50% or less, 20% or more and 40% or less, 30% or more and 60% or less, 30% or more and 50% or less, or 30% or more and 40% or less.
ここで、「包装材料の内容積」は、包装材料2自体(包装前)の体積であり、包装後の体積である「包装体の体積」よりも通常大きな値である。「包装材料の内容積」を基準とする「内容物の嵩充填率(2)」は、所定容量の包装材料2に充填する内容物1の嵩体積を決定するときの指標(設計値)ともいえる。一方、「包装体の体積」を基準とする「内容物の嵩充填率(1)」は、所定容量の包装材料2に充填する内容物1の嵩体積と、内容物1充填後の包装材料2を密閉包装した包装体P内部に形成される空隙部Gの体積との比率であり、包装体P(出荷形態)における内容物1の嵩体積を決定するときの指標(実測値)ともいえる。このように、「内容物の嵩充填率(1)」と「内容物の嵩充填率(2)」とは、その意義が異なる。
Here, the "inner volume of the packaging material" is the volume of the packaging material 2 itself (before packaging), and is usually a larger value than the "volume of the package", which is the volume after packaging. The "bulk filling rate of contents (2)" based on the "inner volume of the packaging material" is also an index (design value) when determining the bulk volume of the contents 1 to be filled into a predetermined volume of the packaging material 2. I can say that. On the other hand, the "bulk filling rate of contents (1)" based on the "volume of the package" is the bulk volume of the contents 1 to be filled into a predetermined volume of the packaging material 2, and the packaging material after filling the contents 1. It is the ratio to the volume of the void G formed inside the package P in which Content 1 is hermetically packaged, and can be said to be an index (actual measurement value) when determining the bulk volume of Content 1 in the package P (shipping form). . In this way, the "bulk filling rate of contents (1)" and the "bulk filling rate of contents (2)" have different meanings.
空隙部Gには、例えば、空気、不活性ガス(希ガス(ヘリウム等)、窒素等)、ドライエア等が封入されていてもよく、封入されていなくてもよい。包装体P内部に空隙部Gが存在していればよく、必要に応じて空隙部Gにガスを封入すればよい。つまり、本開示の包装体Pは、真空状態にした包装(真空パック)を含まない。
The void G may or may not be filled with, for example, air, an inert gas (rare gas (such as helium), nitrogen, etc.), dry air, or the like. It is sufficient that a void G exists inside the package P, and gas may be filled in the void G as necessary. That is, the package P of the present disclosure does not include packaging in a vacuum state (vacuum pack).
<内容物>
本開示の包装体Pにおいて、包装材料2によって包装される内容物1となるのは、フッ素原子を含むイオン性化合物またはフッ素原子を含むイオン性化合物を含有する組成物である。つまり、内容物1は、フッ素原子を含むイオン性化合物そのものでもよく、フッ素原子を含むイオン性化合物と他の成分を含む組成物でもよい。フッ素原子を有するイオン性化合物は、空気中の湿分によって加水分解しフッ酸を発生するおそれがあるため、保存または移送時の透湿を防ぐ必要があるが、本開示の包装体Pとすることで、透湿が抑制され、また凝集した場合でも容易に流動化できる。 <Contents>
In the package P of the present disclosure, the content 1 packaged with the packaging material 2 is an ionic compound containing a fluorine atom or a composition containing an ionic compound containing a fluorine atom. That is, the content 1 may be an ionic compound containing a fluorine atom itself, or may be a composition containing an ionic compound containing a fluorine atom and other components. Since an ionic compound having a fluorine atom may be hydrolyzed by moisture in the air and generate hydrofluoric acid, it is necessary to prevent moisture permeation during storage or transportation, but this is the package P of the present disclosure. As a result, moisture permeation is suppressed, and even if aggregated, it can be easily fluidized.
本開示の包装体Pにおいて、包装材料2によって包装される内容物1となるのは、フッ素原子を含むイオン性化合物またはフッ素原子を含むイオン性化合物を含有する組成物である。つまり、内容物1は、フッ素原子を含むイオン性化合物そのものでもよく、フッ素原子を含むイオン性化合物と他の成分を含む組成物でもよい。フッ素原子を有するイオン性化合物は、空気中の湿分によって加水分解しフッ酸を発生するおそれがあるため、保存または移送時の透湿を防ぐ必要があるが、本開示の包装体Pとすることで、透湿が抑制され、また凝集した場合でも容易に流動化できる。 <Contents>
In the package P of the present disclosure, the content 1 packaged with the packaging material 2 is an ionic compound containing a fluorine atom or a composition containing an ionic compound containing a fluorine atom. That is, the content 1 may be an ionic compound containing a fluorine atom itself, or may be a composition containing an ionic compound containing a fluorine atom and other components. Since an ionic compound having a fluorine atom may be hydrolyzed by moisture in the air and generate hydrofluoric acid, it is necessary to prevent moisture permeation during storage or transportation, but this is the package P of the present disclosure. As a result, moisture permeation is suppressed, and even if aggregated, it can be easily fluidized.
(フッ素原子を含むイオン性化合物)
フッ素原子を含むイオン性化合物としては、具体的には、LiCF3SO3、NaCF3SO3、KCF3SO3等のトリフルオロメタンスルホン酸のアルカリ金属塩やアルカリ土類金属塩;LiC(CF3SO2)3、LiN(CF3CF2SO2)2、LiN(CF3SO2)2、LiN(FSO2)2等のパーフルオロスルホン酸イミドのアルカリ金属塩やアルカリ土類金属塩;LiPF6、NaPF6、KPF6等のヘキサルフルオロリン酸のアルカリ金属塩やアルカリ土類金属塩;LiBF4、NaBF4等のテトラフルオロ硼酸塩;LiAsF6、LiSbF6、NaAsF6等のアルカリ金属塩;(C2H5)4NBF4、(C2H5)3(CH3)NBF4等のテトラフルオロ硼酸の第4級アンモニウム塩、(C2H5)4NPF6等の第4級アンモニウム塩;(CH3)4P・BF4、(C2H5)4P・BF4等の第4級ホスホニウム塩等が挙げられる。 (Ionic compounds containing fluorine atoms)
Examples of ionic compounds containing fluorine atoms include alkali metal salts and alkaline earth metal salts of trifluoromethanesulfonic acid such as LiCF 3 SO 3 , NaCF 3 SO 3 , KCF 3 SO 3 ; LiC(CF 3 Alkali metal salts and alkaline earth metal salts of perfluorosulfonic acid imides such as SO 2 ) 3 , LiN(CF 3 CF 2 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(FSO 2 ) 2 ; LiPF Alkali metal salts and alkaline earth metal salts of hexalfluorophosphoric acid such as 6 , NaPF 6 and KPF 6 ; tetrafluoroborates such as LiBF 4 and NaBF 4 ; alkali metal salts such as LiAsF 6 , LiSbF 6 and NaAsF 6 ; Quaternary ammonium salts of tetrafluoroboric acid such as (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 )NBF 4 , and quaternary ammoniums such as (C 2 H 5 ) 4 NPF 6 Salts; quaternary phosphonium salts such as (CH 3 ) 4 P.BF 4 and (C 2 H 5 ) 4 P.BF 4 are exemplified.
フッ素原子を含むイオン性化合物としては、具体的には、LiCF3SO3、NaCF3SO3、KCF3SO3等のトリフルオロメタンスルホン酸のアルカリ金属塩やアルカリ土類金属塩;LiC(CF3SO2)3、LiN(CF3CF2SO2)2、LiN(CF3SO2)2、LiN(FSO2)2等のパーフルオロスルホン酸イミドのアルカリ金属塩やアルカリ土類金属塩;LiPF6、NaPF6、KPF6等のヘキサルフルオロリン酸のアルカリ金属塩やアルカリ土類金属塩;LiBF4、NaBF4等のテトラフルオロ硼酸塩;LiAsF6、LiSbF6、NaAsF6等のアルカリ金属塩;(C2H5)4NBF4、(C2H5)3(CH3)NBF4等のテトラフルオロ硼酸の第4級アンモニウム塩、(C2H5)4NPF6等の第4級アンモニウム塩;(CH3)4P・BF4、(C2H5)4P・BF4等の第4級ホスホニウム塩等が挙げられる。 (Ionic compounds containing fluorine atoms)
Examples of ionic compounds containing fluorine atoms include alkali metal salts and alkaline earth metal salts of trifluoromethanesulfonic acid such as LiCF 3 SO 3 , NaCF 3 SO 3 , KCF 3 SO 3 ; LiC(CF 3 Alkali metal salts and alkaline earth metal salts of perfluorosulfonic acid imides such as SO 2 ) 3 , LiN(CF 3 CF 2 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiN(FSO 2 ) 2 ; LiPF Alkali metal salts and alkaline earth metal salts of hexalfluorophosphoric acid such as 6 , NaPF 6 and KPF 6 ; tetrafluoroborates such as LiBF 4 and NaBF 4 ; alkali metal salts such as LiAsF 6 , LiSbF 6 and NaAsF 6 ; Quaternary ammonium salts of tetrafluoroboric acid such as (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 )NBF 4 , and quaternary ammoniums such as (C 2 H 5 ) 4 NPF 6 Salts; quaternary phosphonium salts such as (CH 3 ) 4 P.BF 4 and (C 2 H 5 ) 4 P.BF 4 are exemplified.
フッ素原子を含むイオン性化合物の中では、一般式(I):
[化2]
MN(XSO2)(FSO2) (I)
で表されるフルオロスルホニルイミドが本開示の包装体Pの包装対象として好適である。フルオロスルホニルイミド塩は吸湿性が高い上、加水分解によってフッ酸に加えて硫酸も生成する可能性があり、確実に透湿を防止できる包装材料2で包装する必要があるためである。なお、加水分解が起こったか否かは、フルオロスルホニルイミドの場合、フッ素イオンと硫酸イオンの定量(イオンクロマトグラフィー)で確認できる。 Among the ionic compounds containing a fluorine atom, general formula (I):
[Chemical 2]
MN( XSO2 )( FSO2 )(I)
The fluorosulfonylimide represented by is suitable for packaging in the package P of the present disclosure. This is because fluorosulfonylimide salt is highly hygroscopic and may generate sulfuric acid in addition to hydrofluoric acid upon hydrolysis, so it is necessary to package it with packaging material 2 that can reliably prevent moisture permeation. In the case of fluorosulfonylimide, whether or not hydrolysis has occurred can be confirmed by quantitative determination of fluorine ions and sulfate ions (ion chromatography).
[化2]
MN(XSO2)(FSO2) (I)
で表されるフルオロスルホニルイミドが本開示の包装体Pの包装対象として好適である。フルオロスルホニルイミド塩は吸湿性が高い上、加水分解によってフッ酸に加えて硫酸も生成する可能性があり、確実に透湿を防止できる包装材料2で包装する必要があるためである。なお、加水分解が起こったか否かは、フルオロスルホニルイミドの場合、フッ素イオンと硫酸イオンの定量(イオンクロマトグラフィー)で確認できる。 Among the ionic compounds containing a fluorine atom, general formula (I):
[Chemical 2]
MN( XSO2 )( FSO2 )(I)
The fluorosulfonylimide represented by is suitable for packaging in the package P of the present disclosure. This is because fluorosulfonylimide salt is highly hygroscopic and may generate sulfuric acid in addition to hydrofluoric acid upon hydrolysis, so it is necessary to package it with packaging material 2 that can reliably prevent moisture permeation. In the case of fluorosulfonylimide, whether or not hydrolysis has occurred can be confirmed by quantitative determination of fluorine ions and sulfate ions (ion chromatography).
一般式(I)において、Xはフッ素または有機基を示す。Xがフッ素であれば、一般式(I)はビス(フルオロスルホニル)イミド塩を示す。有機基としては、ハロアルキル基、シアノ基、アルコキシ基、ニトロ基、水酸基、脂肪族基、芳香族基等が挙げられる。有機基の中では、炭素数1~6のフッ化アルキル基(フルオロアルキル基)が好ましい。Xがフルオロアルキル基であれば、N-(フルオロスルホニル)-N-(フルオロアルキルスルホニル)イミド塩となる。なお、「フルオロアルキル」とは、炭素数1~6のアルキル基において、1つ以上の水素原子がフッ素原子で置換されたものを意味し、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、ペンタフルオロエチル基等が含まれる。Xの中では、フッ素原子、トリフルオロメチル基およびペンタフルオロエチル基が好ましい。
In general formula (I), X represents fluorine or an organic group. When X is fluorine, general formula (I) represents a bis(fluorosulfonyl)imide salt. Examples of the organic group include a haloalkyl group, a cyano group, an alkoxy group, a nitro group, a hydroxyl group, an aliphatic group, an aromatic group, and the like. Among the organic groups, a fluorinated alkyl group (fluoroalkyl group) having 1 to 6 carbon atoms is preferred. When X is a fluoroalkyl group, it becomes an N-(fluorosulfonyl)-N-(fluoroalkylsulfonyl)imide salt. The term "fluoroalkyl" refers to an alkyl group having 1 to 6 carbon atoms in which one or more hydrogen atoms have been replaced with a fluorine atom, such as fluoromethyl group, difluoromethyl group, trifluoromethyl group, etc. group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, pentafluoroethyl group, etc. Among X, fluorine atom, trifluoromethyl group and pentafluoroethyl group are preferred.
また、一般式(I)において、Mは無機カチオンを示す。無機カチオンとしては、アルカリ金属イオンまたはアルカリ土類金属イオンが好適である。アルカリ金属としては、Li、Na、K等が挙げられる。アルカリ土類金属としては、Ca、Mg等が挙げられる。より一般的な化合物は、MがLiのリチウムフルオロスルホニルイミドである。
Furthermore, in general formula (I), M represents an inorganic cation. As the inorganic cation, alkali metal ions or alkaline earth metal ions are suitable. Examples of the alkali metal include Li, Na, K, and the like. Examples of alkaline earth metals include Ca, Mg, and the like. A more common compound is lithium fluorosulfonylimide, where M is Li.
なお、フルオロスルホニルイミド塩は、例えば特許文献1、2等に記載の製造方法により製造することができる。
Note that the fluorosulfonylimide salt can be produced, for example, by the production methods described in Patent Documents 1 and 2.
(フッ素原子を含むイオン性化合物を含有する組成物)
フッ素原子を含むイオン性化合物を含有する組成物は、上記フッ素原子を有するイオン性化合物を含有していればよく、他の成分を含有してもよい。内容物1がフッ素原子を有するイオン性化合物を含有する組成物である場合には、組成物中のフッ素原子を有するイオン性化合物は3質量%以上が好ましく、より好ましくは5質量%以上、さらに好ましくは8質量%以上、特に好ましくは10質量%以上である。他の成分は、溶媒、他のイオン性化合物、他の粉体等、組成物が粉体である状態であれば、適宜配合できる。 (Composition containing an ionic compound containing a fluorine atom)
The composition containing an ionic compound containing a fluorine atom only needs to contain the above-mentioned ionic compound containing a fluorine atom, and may contain other components. When the content 1 is a composition containing an ionic compound having a fluorine atom, the amount of the ionic compound having a fluorine atom in the composition is preferably 3% by mass or more, more preferably 5% by mass or more, and further Preferably it is 8% by mass or more, particularly preferably 10% by mass or more. Other components such as solvents, other ionic compounds, and other powders can be appropriately blended as long as the composition is in powder form.
フッ素原子を含むイオン性化合物を含有する組成物は、上記フッ素原子を有するイオン性化合物を含有していればよく、他の成分を含有してもよい。内容物1がフッ素原子を有するイオン性化合物を含有する組成物である場合には、組成物中のフッ素原子を有するイオン性化合物は3質量%以上が好ましく、より好ましくは5質量%以上、さらに好ましくは8質量%以上、特に好ましくは10質量%以上である。他の成分は、溶媒、他のイオン性化合物、他の粉体等、組成物が粉体である状態であれば、適宜配合できる。 (Composition containing an ionic compound containing a fluorine atom)
The composition containing an ionic compound containing a fluorine atom only needs to contain the above-mentioned ionic compound containing a fluorine atom, and may contain other components. When the content 1 is a composition containing an ionic compound having a fluorine atom, the amount of the ionic compound having a fluorine atom in the composition is preferably 3% by mass or more, more preferably 5% by mass or more, and further Preferably it is 8% by mass or more, particularly preferably 10% by mass or more. Other components such as solvents, other ionic compounds, and other powders can be appropriately blended as long as the composition is in powder form.
[イオン性化合物等の包装材料への充填方法]
イオン性化合物等を包装材料2に充填する方法は、充填後の「内容物の嵩充填率(1)」を上記範囲内に調整すること以外は特に限定されない。例えば、イオン性化合物等の貯蔵容器から内容量がそれよりも小さい包装材料2に小分けしてもよい。この場合、例えば特許文献1、2等に記載のように、イオン性化合物等は水分量1000ppm以下で貯蔵されているものが好ましい。小分けの方法は、例えば特許文献3に記載の方法を適用してもよい。小分け作業は、作業者が行ってもよく、自動小分け装置等を用いてもよい。 [Method of filling ionic compounds, etc. into packaging materials]
The method of filling the packaging material 2 with the ionic compound, etc. is not particularly limited, except that the "bulk filling rate (1) of contents" after filling is adjusted within the above range. For example, a storage container for ionic compounds or the like may be subdivided into packaging materials 2 having smaller contents. In this case, for example, as described in Patent Documents 1 and 2, it is preferable that the ionic compound etc. be stored at a moisture content of 1000 ppm or less. As the subdivision method, for example, the method described in Patent Document 3 may be applied. The subdivision work may be performed by an operator, or an automatic subdivision device or the like may be used.
イオン性化合物等を包装材料2に充填する方法は、充填後の「内容物の嵩充填率(1)」を上記範囲内に調整すること以外は特に限定されない。例えば、イオン性化合物等の貯蔵容器から内容量がそれよりも小さい包装材料2に小分けしてもよい。この場合、例えば特許文献1、2等に記載のように、イオン性化合物等は水分量1000ppm以下で貯蔵されているものが好ましい。小分けの方法は、例えば特許文献3に記載の方法を適用してもよい。小分け作業は、作業者が行ってもよく、自動小分け装置等を用いてもよい。 [Method of filling ionic compounds, etc. into packaging materials]
The method of filling the packaging material 2 with the ionic compound, etc. is not particularly limited, except that the "bulk filling rate (1) of contents" after filling is adjusted within the above range. For example, a storage container for ionic compounds or the like may be subdivided into packaging materials 2 having smaller contents. In this case, for example, as described in Patent Documents 1 and 2, it is preferable that the ionic compound etc. be stored at a moisture content of 1000 ppm or less. As the subdivision method, for example, the method described in Patent Document 3 may be applied. The subdivision work may be performed by an operator, or an automatic subdivision device or the like may be used.
[包装体の保存・輸送]
本開示の包装体Pは、比較的低温で保存または移送することが好ましい。保存または移送するときの温度は、好ましくは50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下である。包装体Pの保存または移送温度が上記範囲内にあればその内容物1であるイオン性化合物等の加水分解や熱分解が抑制される。 [Storage and transportation of packaging]
The package P of the present disclosure is preferably stored or transported at a relatively low temperature. The temperature during storage or transportation is preferably 50°C or lower, more preferably 40°C or lower, even more preferably 30°C or lower. If the storage or transfer temperature of the package P is within the above range, hydrolysis and thermal decomposition of the ionic compounds and the like that are the contents 1 are suppressed.
本開示の包装体Pは、比較的低温で保存または移送することが好ましい。保存または移送するときの温度は、好ましくは50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下である。包装体Pの保存または移送温度が上記範囲内にあればその内容物1であるイオン性化合物等の加水分解や熱分解が抑制される。 [Storage and transportation of packaging]
The package P of the present disclosure is preferably stored or transported at a relatively low temperature. The temperature during storage or transportation is preferably 50°C or lower, more preferably 40°C or lower, even more preferably 30°C or lower. If the storage or transfer temperature of the package P is within the above range, hydrolysis and thermal decomposition of the ionic compounds and the like that are the contents 1 are suppressed.
[その他の実施形態]
本開示の包装体Pは、ドラム缶、段ボール箱、プラスチック製のケース等で覆われていてもよい。これにより、保存・移送中に包装体P(包装材料2)の表面にピンホールが形成するのが抑制され、その結果、内容物1のフッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物の吸湿が抑制される。 [Other embodiments]
The package P of the present disclosure may be covered with a drum, a cardboard box, a plastic case, or the like. This suppresses the formation of pinholes on the surface of the package P (packaging material 2) during storage and transportation, and as a result, the ionic compound containing a fluorine atom of the contents 1 or the ionic compound containing Moisture absorption of the composition is suppressed.
本開示の包装体Pは、ドラム缶、段ボール箱、プラスチック製のケース等で覆われていてもよい。これにより、保存・移送中に包装体P(包装材料2)の表面にピンホールが形成するのが抑制され、その結果、内容物1のフッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物の吸湿が抑制される。 [Other embodiments]
The package P of the present disclosure may be covered with a drum, a cardboard box, a plastic case, or the like. This suppresses the formation of pinholes on the surface of the package P (packaging material 2) during storage and transportation, and as a result, the ionic compound containing a fluorine atom of the contents 1 or the ionic compound containing Moisture absorption of the composition is suppressed.
[まとめ]
本開示の包装体Pは、包装材料2でイオン性化合物等を包装したものである。包装材料2は少なくとも1層の金属層3を含み、その透湿度が0.1g/m2・24時間以下であるため、イオン性化合物等の保存または移送するときの透湿が十分に抑制される。また、イオン性化合物等の内容物1は包装体Pの体積に対して50%以上97%以下の嵩充填率(内容物の嵩充填率(1))で充填されているため、包装材料2内に内容物1が移動(流動)可能な大きさの空隙(空間)が確保される。これらより、包装体Pを所定期間(例えば1ヵ月以上)保存した後に内容物1が凝集した場合であっても、その凝集物を流動状態に容易に戻すことができる。このように、本開示の包装体Pは、イオン性化合物等の保存又は移送に適しているだけでなく、凝集物を容易に流動化できるという機能を有するため、包装材料2からのイオン性化合物等の排出が容易になり、またイオン性化合物等を溶解する時間も短縮される等、作業性の向上も図ることができる。なお、イオン性化合物等の内容物1が包装材料2の内容積に対して10%以上60%以下の嵩充填率(内容物の嵩充填率(2))で充填されることで、上記空隙(空間)がより一層確保されると共に、外界の条件に応じた包装体P自体の変形量が増えるため、上記の効果の向上を図ることができる。 [summary]
The package P of the present disclosure is one in which an ionic compound or the like is packaged using the packaging material 2. Since the packaging material 2 includes at least one metal layer 3 and has a moisture permeability of 0.1 g/ m2 ·24 hours or less, moisture permeation is sufficiently suppressed during storage or transportation of ionic compounds, etc. Ru. In addition, since the contents 1 such as ionic compounds are filled with a bulk filling rate (bulk filling rate (1) of contents) of 50% to 97% with respect to the volume of the package P, the packaging material 2 A gap (space) large enough to allow the contents 1 to move (flow) is secured inside. Therefore, even if the contents 1 aggregate after the package P is stored for a predetermined period (for example, one month or more), the aggregates can be easily returned to a fluid state. In this way, the packaging P of the present disclosure is not only suitable for storing or transporting ionic compounds, etc., but also has the function of easily fluidizing aggregates, so that the ionic compounds from the packaging material 2 can be easily fluidized. etc., and the time for dissolving ionic compounds etc. is also shortened, so that workability can be improved. In addition, by filling the content 1 such as an ionic compound with a bulk filling rate of 10% to 60% (bulk filling rate (2) of contents) to the internal volume of the packaging material 2, the above-mentioned voids are filled. (Space) is further secured, and the amount of deformation of the package P itself in response to external conditions increases, so the above effects can be improved.
本開示の包装体Pは、包装材料2でイオン性化合物等を包装したものである。包装材料2は少なくとも1層の金属層3を含み、その透湿度が0.1g/m2・24時間以下であるため、イオン性化合物等の保存または移送するときの透湿が十分に抑制される。また、イオン性化合物等の内容物1は包装体Pの体積に対して50%以上97%以下の嵩充填率(内容物の嵩充填率(1))で充填されているため、包装材料2内に内容物1が移動(流動)可能な大きさの空隙(空間)が確保される。これらより、包装体Pを所定期間(例えば1ヵ月以上)保存した後に内容物1が凝集した場合であっても、その凝集物を流動状態に容易に戻すことができる。このように、本開示の包装体Pは、イオン性化合物等の保存又は移送に適しているだけでなく、凝集物を容易に流動化できるという機能を有するため、包装材料2からのイオン性化合物等の排出が容易になり、またイオン性化合物等を溶解する時間も短縮される等、作業性の向上も図ることができる。なお、イオン性化合物等の内容物1が包装材料2の内容積に対して10%以上60%以下の嵩充填率(内容物の嵩充填率(2))で充填されることで、上記空隙(空間)がより一層確保されると共に、外界の条件に応じた包装体P自体の変形量が増えるため、上記の効果の向上を図ることができる。 [summary]
The package P of the present disclosure is one in which an ionic compound or the like is packaged using the packaging material 2. Since the packaging material 2 includes at least one metal layer 3 and has a moisture permeability of 0.1 g/ m2 ·24 hours or less, moisture permeation is sufficiently suppressed during storage or transportation of ionic compounds, etc. Ru. In addition, since the contents 1 such as ionic compounds are filled with a bulk filling rate (bulk filling rate (1) of contents) of 50% to 97% with respect to the volume of the package P, the packaging material 2 A gap (space) large enough to allow the contents 1 to move (flow) is secured inside. Therefore, even if the contents 1 aggregate after the package P is stored for a predetermined period (for example, one month or more), the aggregates can be easily returned to a fluid state. In this way, the packaging P of the present disclosure is not only suitable for storing or transporting ionic compounds, etc., but also has the function of easily fluidizing aggregates, so that the ionic compounds from the packaging material 2 can be easily fluidized. etc., and the time for dissolving ionic compounds etc. is also shortened, so that workability can be improved. In addition, by filling the content 1 such as an ionic compound with a bulk filling rate of 10% to 60% (bulk filling rate (2) of contents) to the internal volume of the packaging material 2, the above-mentioned voids are filled. (Space) is further secured, and the amount of deformation of the package P itself in response to external conditions increases, so the above effects can be improved.
以下に、本開示を実施例に基づいて説明する。なお、本開示は、以下の実施例に限定されるものではなく、以下の実施例を本開示の趣旨に基づいて変形、変更することが可能であり、それらを本開示の範囲から除外するものではない。
The present disclosure will be described below based on examples. Note that the present disclosure is not limited to the following examples, and the following examples can be modified and changed based on the spirit of the present disclosure, and these are excluded from the scope of the present disclosure. isn't it.
(実施例1)
露点-30℃のドライルームで、フレキシブルな包装材料として34cm×24cm×7cm(内容積4300cm3)の3方アルミ袋にフッ素原子を含むイオン性化合物(内容物)としてリチウムビス(フルオロスルホニル)イミド〔株式会社日本触媒製、LiN(FSO2)2、以下「LiFSI」という、かさ比重:1.5〕1.5kgを入れ、残る1方をヒートシールし、アルミ袋を密閉した。アルミ袋の透湿度は0.1g/m2・24時間以下(測定限界以下)であった。LiFSI充填後のアルミ袋(包装体)は、市販のレーザー体積計でin situ体積を測定したところ、約1050cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は1000cm3(=1500/1.5)であり、アルミ袋内のLiFSIが占める割合として包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約95%(≒1000/1050×100)であった。また、アルミ袋内のLiFSIが占める割合として包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約23%(≒1000/4300×100)であった。以上のようにして、アルミ袋でLiFSIを包装した包装体を得た。続いて、包装体を室温23℃、相対湿度50%で1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集していたが、包装材料内に空間を確保することでLiFSIを流動化することができた。なお、流動化の方法は、包装体を50cmの高さより自由落下させた。最後に、露点-30℃のドライルームでアルミ袋を開封し、回収したLiFSI中の水分量を後述する方法に基づいて測定したところ、27ppm(1ヵ月保管後)であった。「ppm」は「質量ppm」を意味する。なお、保管前のLiFSI中の水分量は16ppmであった。 (Example 1)
In a dry room with a dew point of -30°C, lithium bis(fluorosulfonyl)imide was placed as an ionic compound (content) containing fluorine atoms in a three-sided aluminum bag measuring 34 cm x 24 cm x 7 cm (inner volume 4300 cm 3 ) as a flexible packaging material. [Nippon Shokubai Co., Ltd., LiN (FSO 2 ) 2 , hereinafter referred to as "LiFSI", bulk specific gravity: 1.5] 1.5 kg was put therein, the remaining one side was heat sealed, and the aluminum bag was sealed. The moisture permeability of the aluminum bag was 0.1 g/m 2 ·24 hours or less (below the measurement limit). The in situ volume of the aluminum bag (package) filled with LiFSI was measured using a commercially available laser volumeter, and the volume was approximately 1050 cm 3 (volume of the package). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 1000 cm 3 (=1500/1.5), and the bulk filling rate of LiFSI to the volume of the package is expressed as the proportion of LiFSI in the aluminum bag (the bulk of the contents). The filling rate (1)) was approximately 95% (≈1000/1050×100). Furthermore, as a proportion of LiFSI in the aluminum bag, the bulk filling ratio of LiFSI to the internal volume of the packaging material (bulk filling ratio of contents (2)) was about 23% (≈1000/4300×100). As described above, a package containing LiFSI in an aluminum bag was obtained. Subsequently, the package was stored for one month at a room temperature of 23° C. and a relative humidity of 50%. After being stored for one month, the LiFSI contained in the package had aggregated, but it was possible to fluidize the LiFSI by securing space within the packaging material. In addition, the fluidization method was to allow the package to fall freely from a height of 50 cm. Finally, the aluminum bag was opened in a dry room with a dew point of -30°C, and the moisture content in the recovered LiFSI was measured based on the method described below, and it was found to be 27 ppm (after one month storage). "ppm" means "mass ppm". Note that the moisture content in LiFSI before storage was 16 ppm.
露点-30℃のドライルームで、フレキシブルな包装材料として34cm×24cm×7cm(内容積4300cm3)の3方アルミ袋にフッ素原子を含むイオン性化合物(内容物)としてリチウムビス(フルオロスルホニル)イミド〔株式会社日本触媒製、LiN(FSO2)2、以下「LiFSI」という、かさ比重:1.5〕1.5kgを入れ、残る1方をヒートシールし、アルミ袋を密閉した。アルミ袋の透湿度は0.1g/m2・24時間以下(測定限界以下)であった。LiFSI充填後のアルミ袋(包装体)は、市販のレーザー体積計でin situ体積を測定したところ、約1050cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は1000cm3(=1500/1.5)であり、アルミ袋内のLiFSIが占める割合として包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約95%(≒1000/1050×100)であった。また、アルミ袋内のLiFSIが占める割合として包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約23%(≒1000/4300×100)であった。以上のようにして、アルミ袋でLiFSIを包装した包装体を得た。続いて、包装体を室温23℃、相対湿度50%で1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集していたが、包装材料内に空間を確保することでLiFSIを流動化することができた。なお、流動化の方法は、包装体を50cmの高さより自由落下させた。最後に、露点-30℃のドライルームでアルミ袋を開封し、回収したLiFSI中の水分量を後述する方法に基づいて測定したところ、27ppm(1ヵ月保管後)であった。「ppm」は「質量ppm」を意味する。なお、保管前のLiFSI中の水分量は16ppmであった。 (Example 1)
In a dry room with a dew point of -30°C, lithium bis(fluorosulfonyl)imide was placed as an ionic compound (content) containing fluorine atoms in a three-sided aluminum bag measuring 34 cm x 24 cm x 7 cm (inner volume 4300 cm 3 ) as a flexible packaging material. [Nippon Shokubai Co., Ltd., LiN (FSO 2 ) 2 , hereinafter referred to as "LiFSI", bulk specific gravity: 1.5] 1.5 kg was put therein, the remaining one side was heat sealed, and the aluminum bag was sealed. The moisture permeability of the aluminum bag was 0.1 g/m 2 ·24 hours or less (below the measurement limit). The in situ volume of the aluminum bag (package) filled with LiFSI was measured using a commercially available laser volumeter, and the volume was approximately 1050 cm 3 (volume of the package). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 1000 cm 3 (=1500/1.5), and the bulk filling rate of LiFSI to the volume of the package is expressed as the proportion of LiFSI in the aluminum bag (the bulk of the contents). The filling rate (1)) was approximately 95% (≈1000/1050×100). Furthermore, as a proportion of LiFSI in the aluminum bag, the bulk filling ratio of LiFSI to the internal volume of the packaging material (bulk filling ratio of contents (2)) was about 23% (≈1000/4300×100). As described above, a package containing LiFSI in an aluminum bag was obtained. Subsequently, the package was stored for one month at a room temperature of 23° C. and a relative humidity of 50%. After being stored for one month, the LiFSI contained in the package had aggregated, but it was possible to fluidize the LiFSI by securing space within the packaging material. In addition, the fluidization method was to allow the package to fall freely from a height of 50 cm. Finally, the aluminum bag was opened in a dry room with a dew point of -30°C, and the moisture content in the recovered LiFSI was measured based on the method described below, and it was found to be 27 ppm (after one month storage). "ppm" means "mass ppm". Note that the moisture content in LiFSI before storage was 16 ppm.
[水分測定]
LiFSI約3gを超脱水メタノール(富士フィルム和光純薬株式会社製)約8gに溶解させ、サンプルを調製した。カールフィッシャー水分測定装置 AQ-2000(平沼産業株式会社製)を用い、発生液としてアクアライトRS-A(平沼産業株式会社製)、対極液としてアクアライトCN(平沼産業株式会社製)を用いて、サンプルの水分量を測定した。 [Moisture measurement]
A sample was prepared by dissolving about 3 g of LiFSI in about 8 g of ultra-dehydrated methanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). Karl Fischer moisture measuring device AQ-2000 (manufactured by Hiranuma Sangyo Co., Ltd.) was used, Aqualite RS-A (manufactured by Hiranuma Sangyo Co., Ltd.) was used as the generated liquid, and Aqualite CN (manufactured by Hiranuma Sangyo Co., Ltd.) was used as the counter electrode. , the moisture content of the sample was measured.
LiFSI約3gを超脱水メタノール(富士フィルム和光純薬株式会社製)約8gに溶解させ、サンプルを調製した。カールフィッシャー水分測定装置 AQ-2000(平沼産業株式会社製)を用い、発生液としてアクアライトRS-A(平沼産業株式会社製)、対極液としてアクアライトCN(平沼産業株式会社製)を用いて、サンプルの水分量を測定した。 [Moisture measurement]
A sample was prepared by dissolving about 3 g of LiFSI in about 8 g of ultra-dehydrated methanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.). Karl Fischer moisture measuring device AQ-2000 (manufactured by Hiranuma Sangyo Co., Ltd.) was used, Aqualite RS-A (manufactured by Hiranuma Sangyo Co., Ltd.) was used as the generated liquid, and Aqualite CN (manufactured by Hiranuma Sangyo Co., Ltd.) was used as the counter electrode. , the moisture content of the sample was measured.
(実施例2)
LiFSIを2.5kgに変更したこと以外は実施例1と同様にしてアルミ袋でLiFSIを包装した包装体を得た。LiFSI充填後のアルミ袋(包装体)は、実施例1と同様にしてin situ体積を測定したところ、約2100cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は1666cm3(≒2500/1.5)であり、包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約80%(≒1666/2100×100)であった。また、包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約39%(≒1666/4300×100)であった。続いて、包装体を実施例1と同様にして1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集していたが、包装材料内に空間を確保することで、実施例1と同様の流動化の方法によりLiFSIを流動化することができた。最後に、実施例1と同様にして、回収したLiFSI中の水分量を測定したところ、24ppm(1ヵ月保管後)であった。なお、保管前のLiFSI中の水分量は16ppmであった。 (Example 2)
A package in which LiFSI was wrapped in an aluminum bag was obtained in the same manner as in Example 1 except that the amount of LiFSI was changed to 2.5 kg. The in situ volume of the aluminum bag (packaging body) filled with LiFSI was measured in the same manner as in Example 1, and the volume was approximately 2100 cm 3 (volume of the packaging body). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 1666 cm 3 (≒2500/1.5), and the bulk filling ratio of LiFSI to the volume of the package (bulk filling ratio of contents (1)) is approximately 80 cm 3 (≒2500/1.5). % (≒1666/2100×100). Moreover, the bulk filling rate of LiFSI with respect to the internal volume of the packaging material (bulk filling rate of contents (2)) was about 39% (≈1666/4300×100). Subsequently, the package was stored in the same manner as in Example 1 for one month. After being stored for one month, the LiFSI contained in the package had aggregated, but by securing space within the packaging material, it was possible to fluidize the LiFSI using the same fluidization method as in Example 1. did it. Finally, the moisture content in the recovered LiFSI was measured in the same manner as in Example 1 and found to be 24 ppm (after one month of storage). Note that the moisture content in LiFSI before storage was 16 ppm.
LiFSIを2.5kgに変更したこと以外は実施例1と同様にしてアルミ袋でLiFSIを包装した包装体を得た。LiFSI充填後のアルミ袋(包装体)は、実施例1と同様にしてin situ体積を測定したところ、約2100cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は1666cm3(≒2500/1.5)であり、包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約80%(≒1666/2100×100)であった。また、包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約39%(≒1666/4300×100)であった。続いて、包装体を実施例1と同様にして1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集していたが、包装材料内に空間を確保することで、実施例1と同様の流動化の方法によりLiFSIを流動化することができた。最後に、実施例1と同様にして、回収したLiFSI中の水分量を測定したところ、24ppm(1ヵ月保管後)であった。なお、保管前のLiFSI中の水分量は16ppmであった。 (Example 2)
A package in which LiFSI was wrapped in an aluminum bag was obtained in the same manner as in Example 1 except that the amount of LiFSI was changed to 2.5 kg. The in situ volume of the aluminum bag (packaging body) filled with LiFSI was measured in the same manner as in Example 1, and the volume was approximately 2100 cm 3 (volume of the packaging body). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 1666 cm 3 (≒2500/1.5), and the bulk filling ratio of LiFSI to the volume of the package (bulk filling ratio of contents (1)) is approximately 80 cm 3 (≒2500/1.5). % (≒1666/2100×100). Moreover, the bulk filling rate of LiFSI with respect to the internal volume of the packaging material (bulk filling rate of contents (2)) was about 39% (≈1666/4300×100). Subsequently, the package was stored in the same manner as in Example 1 for one month. After being stored for one month, the LiFSI contained in the package had aggregated, but by securing space within the packaging material, it was possible to fluidize the LiFSI using the same fluidization method as in Example 1. did it. Finally, the moisture content in the recovered LiFSI was measured in the same manner as in Example 1 and found to be 24 ppm (after one month of storage). Note that the moisture content in LiFSI before storage was 16 ppm.
(実施例3)
LiFSIを3.5kgに変更したこと以外は実施例1と同様にしてアルミ袋でLiFSIを包装した包装体を得た。LiFSI充填後のアルミ袋(包装体)は、実施例1と同様にしてin situ体積を測定したところ、約2600cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は2333cm3(=3500/1.5)であり、包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約90%(≒2333/2600×100)であった。また、包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約54%(≒2333/4300×100)であった。続いて、包装体を実施例1と同様にして1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集していたが、包装材料内に空間を確保することで、実施例1と同様の流動化の方法によりLiFSIを流動化することができた。最後に、実施例1と同様にして、回収したLiFSI中の水分量を測定したところ、20ppm(1ヵ月保管後)であった。なお、保管前のLiFSI中の水分量は16ppmであった。 (Example 3)
A package in which LiFSI was wrapped in an aluminum bag was obtained in the same manner as in Example 1 except that the weight of LiFSI was changed to 3.5 kg. The in situ volume of the aluminum bag (packaging body) filled with LiFSI was measured in the same manner as in Example 1, and the volume was approximately 2600 cm 3 (volume of the packaging body). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 2333 cm 3 (=3500/1.5), and the bulk filling ratio of LiFSI to the volume of the package (bulk filling ratio of contents (1)) is approximately 90 cm 3 (=3500/1.5). % (≒2333/2600×100). Moreover, the bulk filling rate of LiFSI to the internal volume of the packaging material (bulk filling rate of contents (2)) was about 54% (≈2333/4300×100). Subsequently, the package was stored in the same manner as in Example 1 for one month. After being stored for one month, the LiFSI contained in the package had aggregated, but by securing space within the packaging material, it was possible to fluidize the LiFSI using the same fluidization method as in Example 1. did it. Finally, the moisture content in the recovered LiFSI was measured in the same manner as in Example 1, and was found to be 20 ppm (after one month of storage). Note that the moisture content in LiFSI before storage was 16 ppm.
LiFSIを3.5kgに変更したこと以外は実施例1と同様にしてアルミ袋でLiFSIを包装した包装体を得た。LiFSI充填後のアルミ袋(包装体)は、実施例1と同様にしてin situ体積を測定したところ、約2600cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は2333cm3(=3500/1.5)であり、包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約90%(≒2333/2600×100)であった。また、包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約54%(≒2333/4300×100)であった。続いて、包装体を実施例1と同様にして1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集していたが、包装材料内に空間を確保することで、実施例1と同様の流動化の方法によりLiFSIを流動化することができた。最後に、実施例1と同様にして、回収したLiFSI中の水分量を測定したところ、20ppm(1ヵ月保管後)であった。なお、保管前のLiFSI中の水分量は16ppmであった。 (Example 3)
A package in which LiFSI was wrapped in an aluminum bag was obtained in the same manner as in Example 1 except that the weight of LiFSI was changed to 3.5 kg. The in situ volume of the aluminum bag (packaging body) filled with LiFSI was measured in the same manner as in Example 1, and the volume was approximately 2600 cm 3 (volume of the packaging body). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 2333 cm 3 (=3500/1.5), and the bulk filling ratio of LiFSI to the volume of the package (bulk filling ratio of contents (1)) is approximately 90 cm 3 (=3500/1.5). % (≒2333/2600×100). Moreover, the bulk filling rate of LiFSI to the internal volume of the packaging material (bulk filling rate of contents (2)) was about 54% (≈2333/4300×100). Subsequently, the package was stored in the same manner as in Example 1 for one month. After being stored for one month, the LiFSI contained in the package had aggregated, but by securing space within the packaging material, it was possible to fluidize the LiFSI using the same fluidization method as in Example 1. did it. Finally, the moisture content in the recovered LiFSI was measured in the same manner as in Example 1, and was found to be 20 ppm (after one month of storage). Note that the moisture content in LiFSI before storage was 16 ppm.
(実施例4)
LiFSIを0.75kgに変更したこと以外は実施例1と同様にしてアルミ袋でLiFSIを包装した包装体を得た。LiFSI充填後のアルミ袋(包装体)は、実施例1と同様にしてin situ体積を測定したところ、約980cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は500cm3(≒750/1.5)であり、包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約51%(≒500/980×100)であった。また、包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約12%(≒500/4300×100)であった。続いて、包装体を実施例1と同様にして1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集していたが、包装材料内に空間を確保することで、実施例1と同様の流動化の方法によりLiFSIを流動化することができた。最後に、実施例1と同様にして、回収したLiFSI中の水分量を測定したところ、20ppm(1ヵ月保管後)であった。なお、保管前のLiFSI中の水分量は16ppmであった。 (Example 4)
A package in which LiFSI was wrapped in an aluminum bag was obtained in the same manner as in Example 1 except that the amount of LiFSI was changed to 0.75 kg. The in-situ volume of the aluminum bag (package) filled with LiFSI was measured in the same manner as in Example 1, and the volume was approximately 980 cm 3 (volume of the package). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 500 cm 3 (≒750/1.5), and the bulk filling rate of LiFSI to the volume of the package (bulk filling rate (1) of contents) is approximately 51 cm 3 (≒750/1.5). % (≒500/980×100). Moreover, the bulk filling rate of LiFSI to the internal volume of the packaging material (bulk filling rate of contents (2)) was about 12% (≈500/4300×100). Subsequently, the package was stored in the same manner as in Example 1 for one month. After being stored for one month, the LiFSI contained in the package had aggregated, but by securing space within the packaging material, it was possible to fluidize the LiFSI using the same fluidization method as in Example 1. did it. Finally, the moisture content in the recovered LiFSI was measured in the same manner as in Example 1, and was found to be 20 ppm (after storage for one month). Note that the moisture content in LiFSI before storage was 16 ppm.
LiFSIを0.75kgに変更したこと以外は実施例1と同様にしてアルミ袋でLiFSIを包装した包装体を得た。LiFSI充填後のアルミ袋(包装体)は、実施例1と同様にしてin situ体積を測定したところ、約980cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は500cm3(≒750/1.5)であり、包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約51%(≒500/980×100)であった。また、包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約12%(≒500/4300×100)であった。続いて、包装体を実施例1と同様にして1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集していたが、包装材料内に空間を確保することで、実施例1と同様の流動化の方法によりLiFSIを流動化することができた。最後に、実施例1と同様にして、回収したLiFSI中の水分量を測定したところ、20ppm(1ヵ月保管後)であった。なお、保管前のLiFSI中の水分量は16ppmであった。 (Example 4)
A package in which LiFSI was wrapped in an aluminum bag was obtained in the same manner as in Example 1 except that the amount of LiFSI was changed to 0.75 kg. The in-situ volume of the aluminum bag (package) filled with LiFSI was measured in the same manner as in Example 1, and the volume was approximately 980 cm 3 (volume of the package). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 500 cm 3 (≒750/1.5), and the bulk filling rate of LiFSI to the volume of the package (bulk filling rate (1) of contents) is approximately 51 cm 3 (≒750/1.5). % (≒500/980×100). Moreover, the bulk filling rate of LiFSI to the internal volume of the packaging material (bulk filling rate of contents (2)) was about 12% (≈500/4300×100). Subsequently, the package was stored in the same manner as in Example 1 for one month. After being stored for one month, the LiFSI contained in the package had aggregated, but by securing space within the packaging material, it was possible to fluidize the LiFSI using the same fluidization method as in Example 1. did it. Finally, the moisture content in the recovered LiFSI was measured in the same manner as in Example 1, and was found to be 20 ppm (after storage for one month). Note that the moisture content in LiFSI before storage was 16 ppm.
(比較例1)
LiFSIを4.5kgに変更したこと以外は実施例1と同様にしてアルミ袋でLiFSIを包装した包装体を得た。LiFSI充填後のアルミ袋(包装体)は、実施例1と同様にしてin situ体積を測定したところ、約3060cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は3000cm3(=4500/1.5)であり、包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約98%(≒3000/3060×100)であった。また、包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約70%(≒3000/4300×100)であった。続いて、包装体を実施例1と同様にして1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集しており、包装材料内の空間が十分でないため、実施例1と同様の流動化の方法ではLiFSIを流動化することができなかった。最後に、実施例1と同様にして、回収したLiFSI中の水分量を測定したところ、21ppm(1ヵ月保管後)であった。なお、保管前のLiFSI中の水分量は16ppmであった。 (Comparative example 1)
A package in which LiFSI was wrapped in an aluminum bag was obtained in the same manner as in Example 1 except that the weight of LiFSI was changed to 4.5 kg. The in situ volume of the aluminum bag (packaging body) filled with LiFSI was measured in the same manner as in Example 1, and the volume was approximately 3060 cm 3 (volume of the packaging body). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 3000 cm 3 (=4500/1.5), and the bulk filling ratio of LiFSI to the volume of the package (bulk filling ratio of contents (1)) is approximately 98 cm 3 (=4500/1.5). % (≒3000/3060×100). Moreover, the bulk filling rate of LiFSI with respect to the internal volume of the packaging material (bulk filling rate of contents (2)) was about 70% (≈3000/4300×100). Subsequently, the package was stored in the same manner as in Example 1 for one month. After being stored for one month, the LiFSI contained in the package had aggregated and there was not enough space within the packaging material, so LiFSI could not be fluidized using the same fluidization method as in Example 1. Ta. Finally, the moisture content in the recovered LiFSI was measured in the same manner as in Example 1 and found to be 21 ppm (after storage for one month). Note that the moisture content in LiFSI before storage was 16 ppm.
LiFSIを4.5kgに変更したこと以外は実施例1と同様にしてアルミ袋でLiFSIを包装した包装体を得た。LiFSI充填後のアルミ袋(包装体)は、実施例1と同様にしてin situ体積を測定したところ、約3060cm3(包装体の体積)であった。したがって、アルミ袋に充填されたLiFSIの嵩体積は3000cm3(=4500/1.5)であり、包装体の体積に対するLiFSIの嵩充填率(内容物の嵩充填率(1))は約98%(≒3000/3060×100)であった。また、包装材料の内容積に対するLiFSIの嵩充填率(内容物の嵩充填率(2))は約70%(≒3000/4300×100)であった。続いて、包装体を実施例1と同様にして1ヵ月間保管した。1ヵ月間保管後、包装体の内容物であるLiFSIは凝集しており、包装材料内の空間が十分でないため、実施例1と同様の流動化の方法ではLiFSIを流動化することができなかった。最後に、実施例1と同様にして、回収したLiFSI中の水分量を測定したところ、21ppm(1ヵ月保管後)であった。なお、保管前のLiFSI中の水分量は16ppmであった。 (Comparative example 1)
A package in which LiFSI was wrapped in an aluminum bag was obtained in the same manner as in Example 1 except that the weight of LiFSI was changed to 4.5 kg. The in situ volume of the aluminum bag (packaging body) filled with LiFSI was measured in the same manner as in Example 1, and the volume was approximately 3060 cm 3 (volume of the packaging body). Therefore, the bulk volume of LiFSI filled in an aluminum bag is 3000 cm 3 (=4500/1.5), and the bulk filling ratio of LiFSI to the volume of the package (bulk filling ratio of contents (1)) is approximately 98 cm 3 (=4500/1.5). % (≒3000/3060×100). Moreover, the bulk filling rate of LiFSI with respect to the internal volume of the packaging material (bulk filling rate of contents (2)) was about 70% (≈3000/4300×100). Subsequently, the package was stored in the same manner as in Example 1 for one month. After being stored for one month, the LiFSI contained in the package had aggregated and there was not enough space within the packaging material, so LiFSI could not be fluidized using the same fluidization method as in Example 1. Ta. Finally, the moisture content in the recovered LiFSI was measured in the same manner as in Example 1 and found to be 21 ppm (after storage for one month). Note that the moisture content in LiFSI before storage was 16 ppm.
(実施例のまとめ)
以上の結果から、各実施例と比較例1とを対比すると、LiFSI充填後のフレキシブルなアルミ袋の体積に対するLiFSIの嵩充填率(包装体の体積に対する内容物の嵩充填率(1))を50%以上97%以下とすることで、LiFSIが凝集した場合でも容易に流動化できることが分かった。また、アルミ袋自体の内容積に対するLiFSIの嵩充填率(包装材料の内容積に対する内容物の嵩充填率(2))が10%以上60%以下であれば、上記の効果が得られることも分かった。 (Summary of Examples)
From the above results, when comparing each example and Comparative Example 1, the bulk filling rate of LiFSI to the volume of the flexible aluminum bag after filling with LiFSI (bulk filling rate of contents to the volume of the package (1)) It was found that by setting the ratio to 50% or more and 97% or less, even if LiFSI aggregated, it could be easily fluidized. Furthermore, if the bulk filling ratio of LiFSI to the internal volume of the aluminum bag itself (bulk filling ratio of the contents to the internal volume of the packaging material (2)) is 10% or more and 60% or less, the above effects can be obtained. Do you get it.
以上の結果から、各実施例と比較例1とを対比すると、LiFSI充填後のフレキシブルなアルミ袋の体積に対するLiFSIの嵩充填率(包装体の体積に対する内容物の嵩充填率(1))を50%以上97%以下とすることで、LiFSIが凝集した場合でも容易に流動化できることが分かった。また、アルミ袋自体の内容積に対するLiFSIの嵩充填率(包装材料の内容積に対する内容物の嵩充填率(2))が10%以上60%以下であれば、上記の効果が得られることも分かった。 (Summary of Examples)
From the above results, when comparing each example and Comparative Example 1, the bulk filling rate of LiFSI to the volume of the flexible aluminum bag after filling with LiFSI (bulk filling rate of contents to the volume of the package (1)) It was found that by setting the ratio to 50% or more and 97% or less, even if LiFSI aggregated, it could be easily fluidized. Furthermore, if the bulk filling ratio of LiFSI to the internal volume of the aluminum bag itself (bulk filling ratio of the contents to the internal volume of the packaging material (2)) is 10% or more and 60% or less, the above effects can be obtained. Do you get it.
本開示の包装体は、フッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物を保存または移送するときの形態として有用である。
The package of the present disclosure is useful as a form for storing or transporting an ionic compound containing a fluorine atom or a composition containing the ionic compound.
P 包装体
G 空隙部
1 内容物
2 包装材料
3 金属層 P Packaging G Gap 1 Contents 2 Packaging material 3 Metal layer
G 空隙部
1 内容物
2 包装材料
3 金属層 P Packaging G Gap 1 Contents 2 Packaging material 3 Metal layer
Claims (3)
- フッ素原子を含むイオン性化合物または該イオン性化合物を含有する組成物を内容物としてフレキシブルな包装材料で包装してなる包装体であって、
上記包装材料が少なくとも1層の金属層を含み、該包装材料の透湿度が0.1g/m2・24時間以下であり、
上記内容物の嵩充填率が、上記包装体の体積に対して、50%以上97%以下であることを特徴とする包装体。 A package formed by packaging an ionic compound containing a fluorine atom or a composition containing the ionic compound with a flexible packaging material,
The packaging material includes at least one metal layer, and the packaging material has a moisture permeability of 0.1 g/m 2.24 hours or less,
A package characterized in that the bulk filling rate of the contents is 50% or more and 97% or less with respect to the volume of the package. - 上記内容物の嵩充填率が、上記包装材料の内容積に対して、10%以上60%以下であることを特徴とする請求項1に記載の包装体。 The package according to claim 1, wherein the bulk filling rate of the contents is 10% or more and 60% or less with respect to the internal volume of the packaging material.
- 上記フッ素原子を含むイオン性化合物が一般式(I)で表されるフルオロスルホニルイミドであることを特徴とする請求項1又は2に記載の包装体。
MN(XSO2)(FSO2) (Mは無機カチオン、Xは有機基またはフッ素を示す。) (I) The package according to claim 1 or 2, wherein the ionic compound containing a fluorine atom is a fluorosulfonylimide represented by the general formula (I).
MN(XSO 2 )(FSO 2 ) (M is an inorganic cation, X is an organic group or fluorine.) (I)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-082723 | 2022-05-20 | ||
JP2022082723 | 2022-05-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023223974A1 true WO2023223974A1 (en) | 2023-11-23 |
Family
ID=88835485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/017948 WO2023223974A1 (en) | 2022-05-20 | 2023-05-12 | Package |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023223974A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013091524A (en) * | 2011-08-12 | 2013-05-16 | Nippon Shokubai Co Ltd | Package obtained by packaging ionic compound containing fluorine atom or ionic compound-containing composition containing fluorine atom |
JP2015051805A (en) * | 2013-09-09 | 2015-03-19 | 株式会社日本触媒 | Production method of package of fluoro sulfonyl imide |
JP2015074177A (en) * | 2013-10-09 | 2015-04-20 | 株式会社クラレ | Pouch |
WO2016072421A1 (en) * | 2014-11-05 | 2016-05-12 | 日本碍子株式会社 | Package, method for storing or transporting sub-nano membrane structure, and sub-nano membrane structure |
JP2019151408A (en) * | 2013-07-10 | 2019-09-12 | 住友ベークライト株式会社 | Conveying method of sealing resin composition, and packaging material thereof |
-
2023
- 2023-05-12 WO PCT/JP2023/017948 patent/WO2023223974A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013091524A (en) * | 2011-08-12 | 2013-05-16 | Nippon Shokubai Co Ltd | Package obtained by packaging ionic compound containing fluorine atom or ionic compound-containing composition containing fluorine atom |
JP2019151408A (en) * | 2013-07-10 | 2019-09-12 | 住友ベークライト株式会社 | Conveying method of sealing resin composition, and packaging material thereof |
JP2015051805A (en) * | 2013-09-09 | 2015-03-19 | 株式会社日本触媒 | Production method of package of fluoro sulfonyl imide |
JP2015074177A (en) * | 2013-10-09 | 2015-04-20 | 株式会社クラレ | Pouch |
WO2016072421A1 (en) * | 2014-11-05 | 2016-05-12 | 日本碍子株式会社 | Package, method for storing or transporting sub-nano membrane structure, and sub-nano membrane structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6266702B2 (en) | Package formed by packaging an ionic compound containing a fluorine atom or an ionic compound-containing composition containing a fluorine atom | |
US6765031B2 (en) | Micropore open cell foam composite and method for manufacturing same | |
JP2552625B2 (en) | Box for transporting glass substrates | |
US11699810B2 (en) | Solid nanocomposite electrolyte materials | |
JP2010052751A (en) | Rust-proof packaging material | |
US11149179B2 (en) | Latent heat storage material composition | |
WO2023223974A1 (en) | Package | |
US5789044A (en) | Zeolite molecular sieves for packaging structures | |
KR20210042839A (en) | High performance desiccant with excellent durability and stability | |
JP6368466B2 (en) | Method for producing fluorosulfonylimide package | |
JP2004071427A (en) | Shock-absorbing material and container for battery transport filled with shock absorbing material | |
JP2011251493A (en) | Cover tape for packaging electronic component | |
JPH09258386A (en) | Zeolite molecular sieve for packaging structure | |
CN111732785A (en) | Packaging sheet | |
WO2020003844A1 (en) | Cold preservation tool, distribution packaging container, method for transporting object to be kept cold, and cold preservation tool manufacturing method | |
JP6084044B2 (en) | Cold insulation packaging body and packaging body | |
JP2018165025A (en) | Moisture absorption film and method of manufacturing the same | |
JP2014177287A (en) | Conveying container | |
JP2024145442A (en) | Electrolyte Encapsulation Structure | |
WO2022220057A1 (en) | Syringe transport tool set, syringe transport method, packaging member, and method for using packaging member | |
JP6662408B2 (en) | Outer packaging material for vacuum insulation, vacuum insulation, and articles with vacuum insulation | |
JP2024045967A (en) | Electrolyte composition and storage thereof, transportation, manufacturing method, and anti-caking agent | |
WO2020235481A1 (en) | Transport container and accommodation method | |
US11685819B2 (en) | Polyolefin compositions with improved oxygen scavenging capability | |
JP2019218249A (en) | Method for storing and handling lithium fluorosulfonate, package and method for producing package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23807577 Country of ref document: EP Kind code of ref document: A1 |