[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023223567A1 - Centrifugal separation device - Google Patents

Centrifugal separation device Download PDF

Info

Publication number
WO2023223567A1
WO2023223567A1 PCT/JP2022/021035 JP2022021035W WO2023223567A1 WO 2023223567 A1 WO2023223567 A1 WO 2023223567A1 JP 2022021035 W JP2022021035 W JP 2022021035W WO 2023223567 A1 WO2023223567 A1 WO 2023223567A1
Authority
WO
WIPO (PCT)
Prior art keywords
bowl
liquid
discharge port
solid matter
separated
Prior art date
Application number
PCT/JP2022/021035
Other languages
French (fr)
Japanese (ja)
Inventor
信介 羽島
正浩 大竹
勝 青山
Original Assignee
巴工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巴工業株式会社 filed Critical 巴工業株式会社
Priority to PCT/JP2022/021035 priority Critical patent/WO2023223567A1/en
Publication of WO2023223567A1 publication Critical patent/WO2023223567A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl

Definitions

  • the present invention relates to a centrifugal separator equipped with a bowl that applies centrifugal force to a processing liquid supplied therein to separate solid and liquid.
  • a centrifugal separator called a decanter is known as a device that separates a processing liquid containing solids into solid and liquid.
  • FIG. 4 schematically shows the basic structure of the decanter.
  • a so-called vertical decanter 10 includes a bowl 11 that rotates around a vertical axis and a screw conveyor 12.
  • a horizontal decanter in which a bowl 11 and a screw conveyor 12 rotate around a horizontal axis is also known.
  • the bowl 11 is a rotary processing container formed into a cylindrical shape.
  • the screw conveyor 12 is a rotary conveying means for conveying the solid matter separated within the bowl 11.
  • a feed tube 13 for supplying the processing liquid is inserted into the screw conveyor 12.
  • the processing liquid discharged from the tip of the feed tube 13 is supplied into the bowl 11 through a supply hole 14 formed on the outer peripheral surface of the screw conveyor 12 using centrifugal force.
  • centrifugal force is applied to the processing liquid in the bowl 11 by supplying the processing liquid into the bowl 11 and rotating the bowl 11 at a predetermined rotational speed.
  • the solids in the liquid separated by the action of centrifugal force are conveyed toward the lower end of the bowl 11 by the screw conveyor 12, and are separated from the liquid at the conical portion of the bowl 11.
  • the solids are then discharged from the solids outlet 15.
  • the separated liquid from which the solids have been separated overflows from the separated liquid outlet 16 and is discharged by continuously supplying the processing liquid to the bowl 11.
  • the present invention has been made based on the above circumstances, and its purpose is to provide a centrifugal separator that can suppress the generation of vibrations when the rotational speed of the bowl is reduced, such as during stopped operation.
  • Our goal is to provide the following.
  • the gist of the present invention is as follows.
  • the centrifugal separator of the present invention is equipped with a solid matter discharge port and a separated liquid discharge port, and applies centrifugal force to the liquid to be treated supplied inside to separate the solids in the liquid into solid and liquid.
  • a screw conveyor disposed within the bowl and rotating at a relative speed with the bowl to convey the solids to the solids discharge port;
  • the inflow hole is provided with a flow path formed in a direction perpendicular or oblique to the rotation axis of the bowl, and the inflow hole is located closer to the rotation axis than the deposited layer of solid matter formed on the inner peripheral surface of the bowl during normal operation.
  • a liquid draining nozzle in which a tip portion is located.
  • L/D is 1.4 or less.
  • the centrifugal separator is a vertical centrifuge in which the rotation axis of the bowl is arranged in the vertical direction.
  • the centrifugal separator of the present invention is provided with a solid matter discharge port and a separated liquid discharge port, and applies centrifugal force to the liquid to be treated supplied inside to separate solid matter in the liquid from solid to liquid; a bowl for discharging the separated liquid from the separated liquid outlet; and a screw conveyor arranged in the bowl and rotating at a relative speed with respect to the bowl to convey the solids to the solids outlet.
  • a liquid draining nozzle whose tip portion protrudes inward from the inner circumferential surface of the bowl, and discharges residual liquid in the bowl before the rotational frequency of the bowl, which is decelerated during stop operation, passes a primary resonance point; It is characterized by having the following.
  • the liquid draining nozzle since the liquid draining nozzle is provided, the liquid can be drained while the bowl is rotating, so that the remaining liquid in the bowl can be prevented from becoming an unbalanced element in the rotation, and, for example, Even if the rotational speed of the bowl is reduced during stopped operation, excessive vibration can be suppressed from occurring.
  • the liquid draining nozzle is equipped with an inflow hole with a flow path formed in a direction perpendicular to or diagonally to the rotation axis of the bowl, and is located closer to the rotation axis than the solid deposit layer formed on the inner peripheral surface of the bowl during normal operation. By locating the tip of the inflow hole, it is possible to prevent the inflow hole from being blocked by solid matter.
  • the centrifugal force acts more directly on it than when the inlet hole is oriented parallel to the rotation axis of the bowl, facilitating the removal of liquid from inside the bowl. be done. As a result, the time required for stop operation can be shortened.
  • FIG. 1 is a block diagram of a decanter according to a preferred embodiment of the present invention. It is a partial sectional view of the above-mentioned decanter. It is a sectional view, a front view, and a back view of the liquid draining nozzle of the above-mentioned decanter. It is an explanatory view showing the main composition of a decanter.
  • FIG. 1 shows a vertical decanter 1 as an example of a centrifugal separator.
  • the decanter 1 includes a bowl 2 that is a rotating container that applies centrifugal force to the processing liquid to separate solid and liquid.
  • a rotating shaft is arranged in the vertical direction, and the bowl 2 is arranged so as to rotate, for example, around a vertical axis.
  • the process pressure during normal operation for centrifugation varies depending on, for example, the type of processing liquid. In the case of high pressure or reduced pressure, the casing 3 is designed to be a pressure vessel.
  • the drive device that rotates the bowl 2 is, for example, a drive motor 31 placed outside the casing 3.
  • the driving force of the drive motor 31 is transmitted to a pulley 34 on the bowl 2 side through an endless rotating belt 33 that spans a pulley 32.
  • the drive motor 31 rotates the bowl 2 at a predetermined rotational speed.
  • the rotation speed is controlled by controlling the output of the drive motor 31 using an inverter.
  • the design value of the rotational speed of the bowl 2 is set, for example, within a range of 800 to 8000 rpm, depending on the size of the bowl 2, the type of processing liquid, and the like.
  • a shaft 4 that rotates the bowl 2 is supported by a bearing mechanism 41 placed at the top of the casing 3.
  • the bearing mechanism 41 is supported by a vibration prevention device 41b based on the casing 3 through a support member 41a arranged around the bearing mechanism 41.
  • the vibration prevention device 41b is, for example, an isolator, and is configured to absorb vibrations using elastic force of rubber or the like.
  • the bowl 2 has a cylindrical upper side and a conical lower side. Further, the upper opening of the cylindrical portion is sealed with a bowl top 20 which is a disc-shaped member, and a separated liquid discharge port 20a is formed in the bowl top 20. Preferably, a plurality of separated liquid discharge ports 20a are formed at intervals, for example, on a concentric circle centered on the rotation axis of the bowl.
  • the cylindrical part of the bowl 2 becomes a pool part that holds the processing liquid due to the action of centrifugal force, and the conical part becomes a beach part from which solids are separated from the liquid.
  • a ring dam 21 serving as a weir is placed in front of the bowl top 20 to raise the liquid level formed during normal operation and increase the amount of liquid held.
  • the discharged separated liquid is received by a gutter-like liquid receiving part 35 formed on the inner peripheral surface of the casing 3, and is further discharged to the outside of the apparatus through a discharge port 36 communicating with the liquid receiving part 35.
  • the solid matter discharge port 22 is formed on the tip side of the conical portion of the bowl 2.
  • a screw conveyor 5 that conveys the solids is rotatably arranged within the bowl 2. More specifically, as an example of forming a speed difference, when the bowl 2 and the screw conveyor 5 are connected via a gear box 6, which is a speed difference generating device, and the bowl 2 is rotated by the drive motor 31, the screw conveyor 5 moves to the bowl 2. It is configured to rotate at a relative speed to the rotation of. Thereby, the solid material can be conveyed by the conveyor flight 51 spirally formed in the body of the screw conveyor 5. During normal operation, the solid matter separated into solid and liquid in the bowl 2 by the action of centrifugal force is conveyed downward by the screw conveyor 5. The solids are separated from the liquid at the beach portion of the conical bowl 2 and are discharged from the solids discharge port 22.
  • the feed tube 23, which is an example of a supply nozzle, is inserted through an opening formed at the lower end of the screw conveyor 5 so as not to contact the screw conveyor 5.
  • a base end 23a of the feed tube 23 is connected to a processing liquid supply source such as a pump, for example. Then, the processing liquid is discharged from the tip of the feed tube 23 and supplied to the buffer chamber 52 formed within the screw conveyor 5. The processing liquid is discharged from the liquid supply hole 53 formed on the outer circumferential surface by the centrifugal force of the rotating screw conveyor 5 and is supplied into the bowl 2 .
  • the feed tube 23 has, for example, a double pipe structure.
  • the inner pipe is used as a supply path for processing liquid, and the outer pipe is used as a supply path for cleaning liquid.
  • the cleaning liquid supply path is connected to the cleaning liquid supply nozzle 24 and further connected to a cleaning liquid supply source such as a pump.
  • FIG. 2 is an enlarged view of a portion where the liquid draining nozzle 7 of FIG. 1 is arranged.
  • the liquid draining nozzle 7 is a nozzle that discharges liquid from the bowl 2 by using centrifugal force during stopped operation, for example, and therefore, during normal operation, the bowl 2 communicates with a pool holding liquid by the action of centrifugal force. There is.
  • the liquid discharged from the liquid drain nozzle 7 is received by the liquid receiving part 35 in the same manner as the separated liquid, and is discharged to the outside of the apparatus through the discharge port 36.
  • the decanter 1 has a structure in which the separated liquid outlet 20a is formed in the bowl top 20 and the separated liquid is discharged by overflow, so that ) cannot be drained from there. Further, when a ring dam 21 serving as a weir is provided, a liquid level is formed up to at least the upper end of the ring dam 21. It is undesirable to allow the liquid held in the bowl 2 to fall into the water because it will mix with the separated solids. Therefore, this embodiment has a configuration in which a liquid draining nozzle 7 that can drain liquid while the bowl 2 is rotated is provided.
  • symbol 21a in a figure is a sealing material.
  • the liquid inside the bowl 2 also flows out from the nozzle during normal operation. Therefore, for example, in order to prevent the solid-liquid separation efficiency from decreasing too much, under normal operating conditions, the flow rate Q2 from the liquid removal nozzle 7 is sufficiently small compared to the flow rate Q1 of the processing liquid supplied to the bowl 2, and the internal fluid It is desirable to design the nozzle so that the time during which centrifugal force acts on the centrifugal force (centrifugal residence time) is not affected, for example, as a guideline, Q2 is one-tenth or less of Q1.
  • the drain nozzle 7 can be prevented from being clogged with deposits, and as a result, there is an advantage in that the influence on the throughput Q1 can be set to a minimum.
  • a plurality of liquid draining nozzles 7 can be provided. In this case, the total amount of outflow from each nozzle is used as the outflow amount Q2.
  • the inner diameter of bowl 2 is 400 mm
  • the amount of liquid held in bowl 2 is 30 L (liters)
  • the rotation speed of bowl 2 during normal operation is 4000 rpm
  • the flow rate of processing liquid is 150 L/min
  • the supply of processing liquid is stopped after the end of the normal operation and the rotational speed of the bowl 2 is maintained at 4000 rpm, which is the same as the normal operation, the liquid in the bowl 2 can be drained in 10 minutes after starting the stop operation. It becomes a calculation.
  • the liquid draining nozzle 7 is an elongated tubular nozzle that has a flow path formed therein that penetrates in the longitudinal direction.
  • the structure of the tip is important to prevent it from being blocked by solid matter. This is because if the drain nozzle 7 is made thinner in order to suppress the amount of outflow during normal operation, the tip of the nozzle becomes more likely to become clogged with solid matter during normal operation. As a result of actual tests, it has been concluded that the position of the nozzle tip in the bowl 2, the shape and orientation of the tip are important in order to prevent clogging with solid matter during normal operation. The reason is detailed below.
  • the position of the nozzle tip inside the bowl 2 will be explained.
  • solid matter settles on the inner peripheral surface of the bowl due to the action of centrifugal force, and some of the solid matter adheres to and accumulates on the surface of the bowl 2.
  • the tip of the liquid removal nozzle 7 is likely to become clogged during normal operation. If the draining nozzle 7 is clogged with solid matter, the liquid in the bowl 2 cannot be drained during stopped operation, resulting in excessive vibration.
  • the tip of the inflow hole 70 of the draining nozzle 7 is arranged so as to be located above (on the rotation axis side of the bowl) the layer of solid matter deposited on the inner circumferential surface of the bowl during normal operation.
  • the distal end portion is arranged so as to protrude from the inner circumferential surface of the bowl 2 toward the inside of the bowl 2 .
  • the thickness of the deposited layer is preferably measured, for example, by opening the bowl 2 after normal operation. Alternatively, it is estimated by simulation or the like.
  • distance H1 from the inner peripheral surface of the bowl 2 to the tip of the conveyor flight 51 is 1.7 mm
  • the thickness H2 of the deposited layer formed during normal operation is 0.5 mm
  • inflow from the inner peripheral surface of the bowl 2 The distance H3 to the tip of the hole 70 is 1.7 mm.
  • distance H3 is also the same as distance H1. That is, it is at the same position as the tip of the conveyor flight 51.
  • the inflow hole 70 is preferably a circular through hole.
  • the channel length L is set to 1.4 mm or less.
  • the shape of the inflow hole 70 does not necessarily have to be circular, and may be other shapes such as a polygon, for example.
  • the inflow hole 70 communicates with the enlarged diameter portion 71 in the longitudinal direction within the nozzle, and further communicates with a flow path 72 formed to the base end side.
  • the expanded diameter portion 71 expands to a diameter of 2.3 mm, for example.
  • the length of the flow path 72 is, for example, 32.2 mm.
  • symbol 73 is a hexagonal hole.
  • the liquid removal nozzle 7 has a small-diameter inflow hole 70 formed at its tip, but the flow path from there is enlarged, so that the liquid can flow smoothly inside the nozzle and be discharged from the end.
  • Such a liquid draining nozzle 7 is formed by processing a round bar member, for example.
  • the value of L/D increases in two ways: when the opening diameter D is made small, and when the flow path length L is made long. In the former case, blockage by solid objects is likely to occur. In the latter case, the farther the expanded diameter portion 71 is, the greater the liquid resistance becomes and the liquid in the nozzle does not flow smoothly. In some cases, it may induce blockage of solid objects. Since the drain nozzle 7 can be prevented from being blocked by deposits, there is an advantage that the influence on the flow rate can be set to a minimum.
  • the liquid draining nozzle 7 is disposed in a direction perpendicular or oblique to the rotation axis (for example, rotation center axis) of the bowl 2.
  • the tip of the liquid draining nozzle 7 is arranged in an oblique direction facing downward. In plan view, it is along the diameter line of the bowl 2.
  • the angle ⁇ with respect to the axis R perpendicular to the rotation axis is set to be 60 degrees or less, especially as shown in FIG. 3(b). In the illustrated example, the angle ⁇ is 50 degrees.
  • the liquid draining nozzle 7 may be arranged in an oblique direction with the tip of the liquid draining nozzle 7 facing upward. Further, it does not necessarily have to be along the diameter line in plan view. For example, it may be arranged obliquely in the direction opposite to the direction of rotation of the bowl 2.
  • the liquid draining nozzle 7 is not necessarily entirely linear. That is, the liquid draining nozzle 7 mentioned here does not exclude, for example, one bent in a dogleg shape or curved halfway. It is sufficient that at least the flow path length L of the inflow hole 70 is arranged in a direction perpendicular to the rotation axis of the bowl 2 or in an oblique direction.
  • the liquid draining nozzle 7 is arranged so that its tip is located between the ring dam 21 and the conveyor flight 51, as shown in FIG. This area is close to the separated liquid discharge port 21a and is a position where the nozzle tip does not interfere with the rotating conveyor flight 51.
  • the drive motor 31 is first started and the rotation of the bowl 2 is accelerated until it reaches a predetermined rotational speed.
  • the driving force is transmitted to the screw conveyor 5 through the gear box 6, which is a differential speed generator, and the screw conveyor 5 rotates at a differential speed relative to the rotating bowl 2.
  • the rotational speed of the bowl 2 is set to 4000 rpm, and the differential speed is set to 10 min -1 .
  • the processing liquid is discharged from the feed tube 23 and supplied into the bowl 2 through the liquid discharge hole 53.
  • the types of treatment liquid and solid matter are not particularly limited.
  • the processing liquid supplied into the bowl 2 forms a liquid pool on the beach part of the bowl 2 due to the action of centrifugal force, and solid matter in the liquid settles to the inner peripheral surface of the bowl 2 due to the action of the centrifugal force. solid-liquid separation is performed.
  • the processing liquid is continuously supplied, whereby the separated liquid overflows from the upper end of the ring dam 21 and is discharged from the separated liquid outlet 20a. At this time, the liquid in the bowl 2 also flows out from the liquid draining nozzle 7 due to the action of centrifugal force.
  • the separated liquid from the separated liquid outlet 20a and the liquid flowing from the liquid draining nozzle 7 are discharged toward the inner peripheral surface of the casing 3 by the action of centrifugal force, and are received by the liquid receiving portion 35. Thereafter, it is discharged from the apparatus through the discharge port 36.
  • the solids separated into solid and liquid by centrifugal force in the bowl 2 are conveyed toward the lower side of the bowl 2 by the screw conveyor 5, and are separated from the liquid at the conical beach part of the bowl 2 and solidified.
  • the material is discharged from the material discharge port 22.
  • the solid matter is discharged from the lower side of the casing 3.
  • the normal operation is ended and the operation is shifted to a stopped operation.
  • the stop operation for example, the supply of the processing liquid is stopped and the bowl 2 continues to rotate, thereby draining the remaining liquid in the bowl 2 from the liquid draining nozzle 7.
  • the cleaning liquid is discharged from the liquid draining nozzle 7 by rotating the bowl 2.
  • the rotational speed of the bowl 2 is reduced and the apparatus is stopped.
  • the bowl 2 may be decelerated by lowering the output of the drive motor 31 using an inverter, or by stopping the drive motor 31 and allowing it to decelerate naturally.
  • the draining time may be set using a timer, for example.
  • the rotational speed of the bowl 2 during draining does not have to be the same as during normal operation.
  • the vehicle may be driven at a constant speed slower than normal operation, or at a reduced speed.
  • the rotation speed may be controlled automatically by the control unit or may be controlled manually.
  • one of the purposes of increasing the amount of liquid held in the bowl 2 is to improve the throughput of the decanter 1.
  • this retained liquid becomes a cause of excessive vibration.
  • Excessive vibration occurs when the rotation of the bowl 2 is decelerated with an unbalanced element such as residual liquid, and the rotational frequency is amplified when passing through the primary resonance point of the device (decanter 1). Confirmed on actual machine.
  • vibrations generated during normal operation are absorbed by the vibration prevention device 41b, it is difficult to absorb excessive vibrations amplified by resonance.
  • the band of the primary resonance point which is the resonance point of the decanter 1 as a device, is 400 to 800 rpm (that is, a frequency of 10 Hz ⁇ 3Hz), and resonance does not occur during normal operation, for example, when rotating at 4000 rpm.
  • the band of the primary resonance point can be determined by actually operating the device and measuring the vibration.
  • the interior of the decanter can be drained by continuing to rotate the bowl 2 after normal operation. Therefore, it is possible to pass through the primary resonance point after removing the unbalanced rotational element of the residual liquid, and it is possible to suppress the occurrence of excessive vibration.
  • a horizontal type decanter in which both sides of the bowl 2 are supported by two shafts, is less prone to excessive vibration than a vertical type, in which the rotating shaft is supported by one shaft. It is also possible to apply it to

Landscapes

  • Centrifugal Separators (AREA)

Abstract

[Problem] To provide a centrifugal separation device that is able to suppress the generation of vibration when the rotation of a bowl decelerates during, for example, a stopping operation. [Solution] This centrifugal separation device comprises: a bowl that comprises a solid matter discharge port and a separated liquid discharge port, performs solid-liquid separation of solid matter from a liquid by applying a centrifugal force to a processing liquid supplied thereinside, and discharges the separated liquid from the separated liquid discharge port; a screw conveyor that is disposed inside the bowl rotates while having a relative speed difference with the bowl, and conveys the solid matter to the solid matter discharge port; and a liquid drain nozzle that comprises an inflow hole which forms a flow path in a direction that crosses or is oblique to a rotary shaft of the bowl, the leading end of the inflow hole being positioned further toward the rotary shaft side than a sedimentation layer of the solid matter formed on the bowl inner circumferential surface due to normal operations.

Description

遠心分離装置centrifugal separator
 本発明は、内部に供給した処理液に遠心力を付与して固液分離するボウルを備える遠心分離装置に関する。 The present invention relates to a centrifugal separator equipped with a bowl that applies centrifugal force to a processing liquid supplied therein to separate solid and liquid.
 固形物を含む処理液を固液分離する装置として、デカンタと称される遠心分離装置が知られている。図4は、デカンタの基本構造を概略的に示している。いわゆる竪型のデカンタ10は、鉛直軸廻りに回転するボウル11とスクリューコンベア12を備えている。なお、図示は省略するが、ボウル11とスクリューコンベア12が水平軸廻りに回転する横型のデカンタも知られている。 A centrifugal separator called a decanter is known as a device that separates a processing liquid containing solids into solid and liquid. FIG. 4 schematically shows the basic structure of the decanter. A so-called vertical decanter 10 includes a bowl 11 that rotates around a vertical axis and a screw conveyor 12. Although not shown, a horizontal decanter in which a bowl 11 and a screw conveyor 12 rotate around a horizontal axis is also known.
 ボウル11は、円筒状に形成した回転式の処理容器である。スクリューコンベア12は、ボウル11内で分離した固形物を搬送する回転式の搬送手段である。処理液を供給するフィードチューブ13は、スクリューコンベア12内に挿入している。フィードチューブ13の先端から吐出した処理液は、遠心力を利用して、スクリューコンベア12の外周面に形成した供給孔14からボウル11内に供給する。 The bowl 11 is a rotary processing container formed into a cylindrical shape. The screw conveyor 12 is a rotary conveying means for conveying the solid matter separated within the bowl 11. A feed tube 13 for supplying the processing liquid is inserted into the screw conveyor 12. The processing liquid discharged from the tip of the feed tube 13 is supplied into the bowl 11 through a supply hole 14 formed on the outer peripheral surface of the screw conveyor 12 using centrifugal force.
 このような構成において、処理液をボウル11内に供給し、ボウル11を所定の回転速度で回転させることによって、ボウル11内の処理液に遠心力を付与する。遠心力の作用で固液分離された液中の固形物は、スクリューコンベア12によってボウル11の下端側に向けて搬送され、ボウル11の円錐状に形成した部分で液から離脱する。そして固形物出口15から排出される。一方、固形物が分離された分離液は、処理液をボウル11に連続的に供給することにより、分離液出口16から溢流して排出される。 In such a configuration, centrifugal force is applied to the processing liquid in the bowl 11 by supplying the processing liquid into the bowl 11 and rotating the bowl 11 at a predetermined rotational speed. The solids in the liquid separated by the action of centrifugal force are conveyed toward the lower end of the bowl 11 by the screw conveyor 12, and are separated from the liquid at the conical portion of the bowl 11. The solids are then discharged from the solids outlet 15. On the other hand, the separated liquid from which the solids have been separated overflows from the separated liquid outlet 16 and is discharged by continuously supplying the processing liquid to the bowl 11.
 処理液を遠心分離する通常運転を終えて例えば装置を停止する場合、処理液の供給を止め、ボウル11の回転速度を減速させていく。しかしながら、ボウル11内に液を残した状態でこの停止運転を行うと、残存液が回転のアンバランス要素となり、減速の途中で過大振動が発生してしまう。結果、装置の損傷等を招く場合がある。この過大振動は、竪型のデカンタ1に発生し易い。 For example, when the apparatus is stopped after the normal operation of centrifuging the processing liquid, the supply of the processing liquid is stopped and the rotational speed of the bowl 11 is reduced. However, if this stop operation is performed with liquid remaining in the bowl 11, the remaining liquid becomes an unbalanced element in the rotation, resulting in excessive vibration during deceleration. As a result, damage to the device may occur. This excessive vibration is likely to occur in the vertical decanter 1.
特開昭49-78262号公報Japanese Patent Application Publication No. 49-78262 特開昭55-22397号公報Japanese Patent Application Publication No. 55-22397
 本発明は、このような事情に基づいてなされたものであり、その目的は、例えば停止運転時など、ボウルの回転速度を減速させた際に振動が発生するのを抑えることのできる遠心分離装置を提供することにある。 The present invention has been made based on the above circumstances, and its purpose is to provide a centrifugal separator that can suppress the generation of vibrations when the rotational speed of the bowl is reduced, such as during stopped operation. Our goal is to provide the following.
 本発明の要旨とするところは、以下の通りである。
(1)本発明の遠心分離装置は、固形物排出口と分離液排出口を備え、内部に供給した被処理液に遠心力を付与して液中の固形物を固液分離し、分離液を前記分離液排出口から排出するボウルと、前記ボウル内に配置され、前記ボウルとは相対的な差速をもって回転して、前記固形物を前記固形物排出口へ搬送するスクリューコンベアと、前記ボウルの回転軸に直交する方向又は斜め方向に流路を形成した流入孔を備え、通常運転によってボウル内周面に形成される前記固形物の堆積層よりも前記回転軸側に前記流入孔の先端部が位置する液抜きノズルと、を備えたことを特徴とする。
(2)前記液抜きノズルは、前記流入孔の開口径をDとし、該流入孔の流路長をLとしたとき、L/Dが1.4以下である。
(3)前記遠心分離装置は、前記ボウルの回転軸を上下方向に配置した竪型の遠心分離装置である。
(4)また、本発明の遠心分離装置は、固形物排出口と分離液排出口を備え、内部に供給した被処理液に遠心力を付与して液中の固形物を固液分離し、分離液を前記分離液排出口から排出するボウルと、前記ボウル内に配置され、前記ボウルとは相対的な差速をもって回転して、前記固形物を前記固形物排出口へ搬送するスクリューコンベアと、前記ボウルの内周面から内側に向けて先端部が突出し、停止運転時に減速する前記ボウルの回転周波数が一次共振点を通過する前に前記ボウル内の残留液を排出する液抜きノズルと、を備えたことを特徴とする。
The gist of the present invention is as follows.
(1) The centrifugal separator of the present invention is equipped with a solid matter discharge port and a separated liquid discharge port, and applies centrifugal force to the liquid to be treated supplied inside to separate the solids in the liquid into solid and liquid. a bowl for discharging the solids from the separated liquid discharge port; a screw conveyor disposed within the bowl and rotating at a relative speed with the bowl to convey the solids to the solids discharge port; The inflow hole is provided with a flow path formed in a direction perpendicular or oblique to the rotation axis of the bowl, and the inflow hole is located closer to the rotation axis than the deposited layer of solid matter formed on the inner peripheral surface of the bowl during normal operation. A liquid draining nozzle in which a tip portion is located.
(2) In the liquid draining nozzle, when the opening diameter of the inflow hole is D and the flow path length of the inflow hole is L, L/D is 1.4 or less.
(3) The centrifugal separator is a vertical centrifuge in which the rotation axis of the bowl is arranged in the vertical direction.
(4) Furthermore, the centrifugal separator of the present invention is provided with a solid matter discharge port and a separated liquid discharge port, and applies centrifugal force to the liquid to be treated supplied inside to separate solid matter in the liquid from solid to liquid; a bowl for discharging the separated liquid from the separated liquid outlet; and a screw conveyor arranged in the bowl and rotating at a relative speed with respect to the bowl to convey the solids to the solids outlet. , a liquid draining nozzle whose tip portion protrudes inward from the inner circumferential surface of the bowl, and discharges residual liquid in the bowl before the rotational frequency of the bowl, which is decelerated during stop operation, passes a primary resonance point; It is characterized by having the following.
 本発明の遠心分離装置によれば、液抜きノズルを設けたことにより、ボウルを回転させた状態で液抜きができるので、ボウル内の残留液が回転のアンバランス要素となるのを防ぎ、例えば停止運転時にボウルの回転速度を減速させても、過大振動が発生するのを抑えることができる。しかも液抜きノズルは、ボウルの回転軸に直交する方向又は斜め方向に流路を形成した流入孔を備え、通常運転によってボウル内周面に形成される固形物の堆積層よりも回転軸側に流入孔の先端部を位置させたことにより、流入孔が固形物で閉塞されるのを抑えることができる。 According to the centrifugal separator of the present invention, since the liquid draining nozzle is provided, the liquid can be drained while the bowl is rotating, so that the remaining liquid in the bowl can be prevented from becoming an unbalanced element in the rotation, and, for example, Even if the rotational speed of the bowl is reduced during stopped operation, excessive vibration can be suppressed from occurring. In addition, the liquid draining nozzle is equipped with an inflow hole with a flow path formed in a direction perpendicular to or diagonally to the rotation axis of the bowl, and is located closer to the rotation axis than the solid deposit layer formed on the inner peripheral surface of the bowl during normal operation. By locating the tip of the inflow hole, it is possible to prevent the inflow hole from being blocked by solid matter.
 さらに、ボウルの回転軸と直交する方向或いは斜め方向に向く流入孔は、ボウルの回転軸と平行にした場合に比べて、遠心力が直接的に作用するので、ボウル内からの液抜きが促進される。結果、停止運転の時間短縮が可能となる。 Furthermore, when the inflow hole is oriented perpendicularly or obliquely to the rotation axis of the bowl, the centrifugal force acts more directly on it than when the inlet hole is oriented parallel to the rotation axis of the bowl, facilitating the removal of liquid from inside the bowl. be done. As a result, the time required for stop operation can be shortened.
本発明の好ましい実施形態に従うデカンタの構成図である。FIG. 1 is a block diagram of a decanter according to a preferred embodiment of the present invention. 上記デカンタの部分断面図である。It is a partial sectional view of the above-mentioned decanter. 上記デカンタの液抜きノズルの断面図、正面図及び背面図である。It is a sectional view, a front view, and a back view of the liquid draining nozzle of the above-mentioned decanter. デカンタの主要な構成を示す説明図である。It is an explanatory view showing the main composition of a decanter.
 以下、本発明の好ましい実施形態に従う遠心分離装置について、添付図面を参照しながら説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。 Hereinafter, a centrifugal separator according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings. However, the technical scope of the present invention is not interpreted to be limited in any way by the embodiments described below.
 図1は、遠心分離装置の一例として、竪型タイプのデカンタ1を示している。デカンタ1は、処理液に遠心力を付与して固液分離する回転容器であるボウル2を備える。竪型のデカンタ1の場合、上下方向に回転軸を配置し、ボウル2が例えば鉛直軸廻りに回転するように配置する。ボウル2を収容する外装体であるケーシング3は、遠心分離のプロセス空間を形成する。遠心分離を行う通常運転時のプロセス圧力は、例えば処理液の種類などによって様々である。高圧の場合、或いは減圧する場合、ケーシング3は、圧力容器となるように設計する。 FIG. 1 shows a vertical decanter 1 as an example of a centrifugal separator. The decanter 1 includes a bowl 2 that is a rotating container that applies centrifugal force to the processing liquid to separate solid and liquid. In the case of a vertical decanter 1, a rotating shaft is arranged in the vertical direction, and the bowl 2 is arranged so as to rotate, for example, around a vertical axis. A casing 3, which is an exterior body housing the bowl 2, forms a process space for centrifugation. The process pressure during normal operation for centrifugation varies depending on, for example, the type of processing liquid. In the case of high pressure or reduced pressure, the casing 3 is designed to be a pressure vessel.
 ボウル2を回転させる駆動装置は、例えばケーシング3の外に配置した、駆動モーター31である。駆動モーター31の駆動力は、一例として、プーリー32に架け渡した無端の回転ベルト33を通じて、ボウル2側のプーリー34に伝達する。駆動モーター31は、所定の回転速度となるようにボウル2を回転させる。回転速度の制御は、好ましい一例として、インバーターで駆動モーター31の出力を制御することによって行う。ボウル2の回転速度の設計値は、例えばボウル2のサイズや処理液の種類などに応じて、例えば800~8000rpmの範囲内に設定される。 The drive device that rotates the bowl 2 is, for example, a drive motor 31 placed outside the casing 3. For example, the driving force of the drive motor 31 is transmitted to a pulley 34 on the bowl 2 side through an endless rotating belt 33 that spans a pulley 32. The drive motor 31 rotates the bowl 2 at a predetermined rotational speed. As a preferable example, the rotation speed is controlled by controlling the output of the drive motor 31 using an inverter. The design value of the rotational speed of the bowl 2 is set, for example, within a range of 800 to 8000 rpm, depending on the size of the bowl 2, the type of processing liquid, and the like.
 ボウル2を回転させるシャフト4は、ケーシング3の上部に配置した軸受機構41で軸支している。軸受機構41は、その周囲に配置した支持部材41aを通じて、ケーシング3を基礎とする振動防止装置41bに支持されている。竪型タイプのデカンタ1は、軸受機構41に懸架された状態でボウル2が回転するので、振動によって回転軸の芯ズレが起きる場合がある。そこで振動防止装置41bを設けて、遠心分離の実行時(=通常運転時)に発生する振動を吸収する。振動防止装置41bは、例えばアイソレータであり、ゴム等の弾性力を利用して振動を吸収する構成である。 A shaft 4 that rotates the bowl 2 is supported by a bearing mechanism 41 placed at the top of the casing 3. The bearing mechanism 41 is supported by a vibration prevention device 41b based on the casing 3 through a support member 41a arranged around the bearing mechanism 41. In the vertical type decanter 1, since the bowl 2 rotates while being suspended on the bearing mechanism 41, the rotation axis may become misaligned due to vibration. Therefore, a vibration prevention device 41b is provided to absorb vibrations generated during centrifugal separation (=during normal operation). The vibration prevention device 41b is, for example, an isolator, and is configured to absorb vibrations using elastic force of rubber or the like.
 ボウル2は、上部側を円筒状に形成し、下部側を円錐状に形成している。さらに円筒状の部分の上部開口を、円盤状部材であるボウルトップ20で封止し、このボウルトップ20に分離液排出口20aを形成している。分離液排出口20aは、例えばボウルの回転軸を中心とした同心円上に間隔をあけて複数形成するのが好ましい。 The bowl 2 has a cylindrical upper side and a conical lower side. Further, the upper opening of the cylindrical portion is sealed with a bowl top 20 which is a disc-shaped member, and a separated liquid discharge port 20a is formed in the bowl top 20. Preferably, a plurality of separated liquid discharge ports 20a are formed at intervals, for example, on a concentric circle centered on the rotation axis of the bowl.
 通常運転時、ボウル2の円筒状の部分は、遠心力の作用によって処理液を保有するプール部となり、円錐状の部分は、固形物が液から離脱するビーチ部となる。さらに図の例では、ボウルトップ20の手前に堰となるリングダム21を配置し、通常運転時に形成される液面を高くして液保有量を増やしている。この構成において、処理液をボウル2内に連続的に供給すると、固形物が分離された液である分離液がリングダム21から溢流(オーバーフロー)し、分離液排出口20aを通じてボウル2から排出される。排出された分離液は、ケーシング3の内周面に形成した樋状の液受部35に受けられ、さらに液受部35と連通する排出口36を介して装置外に排出される。一方、固形物排出口22は、ボウル2の円錐状の部分の先端側に形成する。 During normal operation, the cylindrical part of the bowl 2 becomes a pool part that holds the processing liquid due to the action of centrifugal force, and the conical part becomes a beach part from which solids are separated from the liquid. Furthermore, in the illustrated example, a ring dam 21 serving as a weir is placed in front of the bowl top 20 to raise the liquid level formed during normal operation and increase the amount of liquid held. In this configuration, when the processing liquid is continuously supplied into the bowl 2, the separated liquid, which is the liquid from which solids have been separated, overflows from the ring dam 21 and is discharged from the bowl 2 through the separated liquid outlet 20a. be done. The discharged separated liquid is received by a gutter-like liquid receiving part 35 formed on the inner peripheral surface of the casing 3, and is further discharged to the outside of the apparatus through a discharge port 36 communicating with the liquid receiving part 35. On the other hand, the solid matter discharge port 22 is formed on the tip side of the conical portion of the bowl 2.
 固形物を搬送するスクリューコンベア5は、ボウル2内にて回転可能に配置する。より詳しくは、差速形成の一例として、ボウル2とスクリューコンベア5を差速発生装置であるギアボックス6を介して連結し、駆動モーター31でボウル2を回転させると、スクリューコンベア5がボウル2の回転に対して相対的な差速をもって回転するように構成している。これによりスクリューコンベア5の胴部に螺旋状に形成したコンベアフライト51で固形物を搬送することができる。通常運転時、ボウル2内にて遠心力の作用で固液分離されている固形物は、スクリューコンベア5によって下方側に搬送される。そして円錐状に形成したボウル2のビーチ部にて液から離脱し、固形物排出口22から排出される。 A screw conveyor 5 that conveys the solids is rotatably arranged within the bowl 2. More specifically, as an example of forming a speed difference, when the bowl 2 and the screw conveyor 5 are connected via a gear box 6, which is a speed difference generating device, and the bowl 2 is rotated by the drive motor 31, the screw conveyor 5 moves to the bowl 2. It is configured to rotate at a relative speed to the rotation of. Thereby, the solid material can be conveyed by the conveyor flight 51 spirally formed in the body of the screw conveyor 5. During normal operation, the solid matter separated into solid and liquid in the bowl 2 by the action of centrifugal force is conveyed downward by the screw conveyor 5. The solids are separated from the liquid at the beach portion of the conical bowl 2 and are discharged from the solids discharge port 22.
 供給ノズルの一例であるフィードチューブ23は、スクリューコンベア5の下端側に形成した開口を通じて、スクリューコンベア5に接触しないように挿入している。フィードチューブ23の基端側23aは、例えばポンプなどの処理液の供給元と接続する。そして、フィードチューブ23の先端から処理液を吐出し、スクリューコンベア5内に形成したバッファー室52に処理液を供給する。処理液は、回転するスクリューコンベア5の遠心力により、外周面に形成した液供給孔53から吐出され、ボウル2内に供給される。 The feed tube 23, which is an example of a supply nozzle, is inserted through an opening formed at the lower end of the screw conveyor 5 so as not to contact the screw conveyor 5. A base end 23a of the feed tube 23 is connected to a processing liquid supply source such as a pump, for example. Then, the processing liquid is discharged from the tip of the feed tube 23 and supplied to the buffer chamber 52 formed within the screw conveyor 5. The processing liquid is discharged from the liquid supply hole 53 formed on the outer circumferential surface by the centrifugal force of the rotating screw conveyor 5 and is supplied into the bowl 2 .
 フィードチューブ23は例えば二重管構造とする。そして内側の管を処理液の供給路とし、外側の管を洗浄液の供給路とする。洗浄液の供給路は、洗浄液供給ノズル24と接続し、さらにポンプなどの洗浄液の供給元と接続する。 The feed tube 23 has, for example, a double pipe structure. The inner pipe is used as a supply path for processing liquid, and the outer pipe is used as a supply path for cleaning liquid. The cleaning liquid supply path is connected to the cleaning liquid supply nozzle 24 and further connected to a cleaning liquid supply source such as a pump.
 続いて、ボウル2内の液抜き機構について説明する。図2は、図1の液抜きノズル7を配置した部分の拡大図である。液抜きノズル7は、例えば停止運転時に遠心力を利用してボウル2内から液を排出するノズルであり、従って通常運転時にボウル2が遠心力の作用で液を保有するプール部と連通している。液抜きノズル7から排出される液は、分離液と同様に液受部35で受けられ、排出口36を介して装置外に排出される。 Next, the liquid draining mechanism inside the bowl 2 will be explained. FIG. 2 is an enlarged view of a portion where the liquid draining nozzle 7 of FIG. 1 is arranged. The liquid draining nozzle 7 is a nozzle that discharges liquid from the bowl 2 by using centrifugal force during stopped operation, for example, and therefore, during normal operation, the bowl 2 communicates with a pool holding liquid by the action of centrifugal force. There is. The liquid discharged from the liquid drain nozzle 7 is received by the liquid receiving part 35 in the same manner as the separated liquid, and is discharged to the outside of the apparatus through the discharge port 36.
 既述のように、デカンタ1は、ボウルトップ20に分離液排出口20aを形成し、溢流によって分離液を排出する構造であるため、分離液排出口20aよりも下(ボウル内周面側)に保有している液をここから抜くことはできない。さらに堰となるリングダム21を設けている場合は、少なくともリングダム21の上端まで液面が形成される。ボウル2内に保有した液を落水させることは、分離した固形物と混ざるので望ましくない。そこで本実施形態は、ボウル2を回転させた状態で液抜き可能な液抜きノズル7を設けた構成としている。なお、図中の符号21aは、シール材である。 As described above, the decanter 1 has a structure in which the separated liquid outlet 20a is formed in the bowl top 20 and the separated liquid is discharged by overflow, so that ) cannot be drained from there. Further, when a ring dam 21 serving as a weir is provided, a liquid level is formed up to at least the upper end of the ring dam 21. It is undesirable to allow the liquid held in the bowl 2 to fall into the water because it will mix with the separated solids. Therefore, this embodiment has a configuration in which a liquid draining nozzle 7 that can drain liquid while the bowl 2 is rotated is provided. In addition, the code|symbol 21a in a figure is a sealing material.
 このようなボウル2の内側と外側を連通させる液抜きノズル7は、停止運転時にボウル2内の液抜きができる反面、通常運転時にもボウル2内の液がノズルから流出することとなる。そのため、例えば固液分離効率が低下し過ぎないように、通常運転の条件下、ボウル2に供給する処理液の流量Q1に対し、液抜きノズル7からの流出量Q2が十分に小さく、内部流体に対して遠心力が作用する時間(遠心滞留時間)に影響を及ぼさない程度、例えば目安としてQ2がQ1の10分の1以下に収まるようにノズル設計するのが望ましい。なお、液抜きノズル7は、詳しくは後述する通り堆積物で閉塞するのを抑えることができるので、結果、処理量Q1への影響を最小限として設定できるメリットがある。液抜きノズル7は、複数設けることができる。この場合、流出量Q2は各ノズルからの流出量の合計値を用いる。なお、液抜きノズル7を複数設ける場合、ボウル2の全周を均等に分割するように配置するのが好ましい。例えば2個の液抜きノズル7を設ける場合はボウル2の直径線上に対向配置する。 Although such a liquid draining nozzle 7 that communicates the inside and outside of the bowl 2 can drain the liquid inside the bowl 2 during stop operation, the liquid inside the bowl 2 also flows out from the nozzle during normal operation. Therefore, for example, in order to prevent the solid-liquid separation efficiency from decreasing too much, under normal operating conditions, the flow rate Q2 from the liquid removal nozzle 7 is sufficiently small compared to the flow rate Q1 of the processing liquid supplied to the bowl 2, and the internal fluid It is desirable to design the nozzle so that the time during which centrifugal force acts on the centrifugal force (centrifugal residence time) is not affected, for example, as a guideline, Q2 is one-tenth or less of Q1. Note that, as will be described in detail later, the drain nozzle 7 can be prevented from being clogged with deposits, and as a result, there is an advantage in that the influence on the throughput Q1 can be set to a minimum. A plurality of liquid draining nozzles 7 can be provided. In this case, the total amount of outflow from each nozzle is used as the outflow amount Q2. In addition, when providing a plurality of liquid draining nozzles 7, it is preferable to arrange them so that the entire circumference of the bowl 2 may be equally divided. For example, when two draining nozzles 7 are provided, they are arranged opposite to each other on the diameter line of the bowl 2.
 一例として、ボウル2の内径が400mm、ボウル2内の液保有量が30L(リットル)、通常運転時のボウル2の回転速度が4000rpm、処理液の供給流量が150L/minの場合、設計値として、液抜きノズル7からの流出量を3L/min(=1.5L/min×2基)とする。この場合、通常運転の終了後に処理液の供給を止めて、ボウル2の回転速度を例えば通常運転と同じ4000rpmに維持すれば、停止運転を開始してから10minでボウル2内の液抜きができる計算となる。 As an example, if the inner diameter of bowl 2 is 400 mm, the amount of liquid held in bowl 2 is 30 L (liters), the rotation speed of bowl 2 during normal operation is 4000 rpm, and the flow rate of processing liquid is 150 L/min, the design value is , the flow rate from the liquid removal nozzle 7 is set to 3 L/min (=1.5 L/min x 2 units). In this case, if the supply of processing liquid is stopped after the end of the normal operation and the rotational speed of the bowl 2 is maintained at 4000 rpm, which is the same as the normal operation, the liquid in the bowl 2 can be drained in 10 minutes after starting the stop operation. It becomes a calculation.
 液抜きノズル7は、全体としては長手方向に貫通する流路を内部に形成した細長い管状のノズルである。但し、固形物で閉塞されないためには先端部の構造が重要となる。通常運転時の流出量を抑えるために液抜きノズル7を細くすると、通常運転を行っている最中にノズル先端部が固形物で閉塞し易くなるからである。実際に試験を行った結果、通常運転時に固形物で閉塞するのを防止するためには、ボウル2内のノズル先端部の位置、先端部の形状及び向きが重要であることを導き出している。以下にその理由を詳述する。 The liquid draining nozzle 7 is an elongated tubular nozzle that has a flow path formed therein that penetrates in the longitudinal direction. However, the structure of the tip is important to prevent it from being blocked by solid matter. This is because if the drain nozzle 7 is made thinner in order to suppress the amount of outflow during normal operation, the tip of the nozzle becomes more likely to become clogged with solid matter during normal operation. As a result of actual tests, it has been concluded that the position of the nozzle tip in the bowl 2, the shape and orientation of the tip are important in order to prevent clogging with solid matter during normal operation. The reason is detailed below.
 まず、ボウル2内のノズル先端部の位置について説明する。通常運転時、高速で回転するボウル2内では、遠心力の作用によってボウル内周面側に固形物が沈降し、その中にはボウル2の表面に付着して堆積するものがある。このようにボウル2の表面に堆積し易い固形物が処理液に含まれていると、通常運転の最中に、液抜きノズル7の先端部が閉塞し易い。液抜きノズル7が固形物で閉塞すると、結果、停止運転時にボウル2内の液抜きができず過大振動が発生してしまう。 First, the position of the nozzle tip inside the bowl 2 will be explained. During normal operation, in the bowl 2 that rotates at high speed, solid matter settles on the inner peripheral surface of the bowl due to the action of centrifugal force, and some of the solid matter adheres to and accumulates on the surface of the bowl 2. If the processing liquid contains solid matter that tends to accumulate on the surface of the bowl 2, the tip of the liquid removal nozzle 7 is likely to become clogged during normal operation. If the draining nozzle 7 is clogged with solid matter, the liquid in the bowl 2 cannot be drained during stopped operation, resulting in excessive vibration.
 そこで、液抜きノズル7の流入孔70の先端部が、通常運転時にボウル内周面に形成される固形物の堆積層よりも上(ボウルの回転軸側)に位置するように配置する。好ましい一例として、ボウル2の内周面からボウル2の内側に向けて先端部が突出するように配置する。堆積層の厚みは、例えば通常運転後にボウル2を開放して実測するのが好ましい。或いは、シミュレーションなどにより推測する。図の例の様に、流入孔70の先端部をコンベアフライト51がない部分に配置しても、例えば粉体を連続的に落下させた場合に確認できる安息角のように、溶液中の固形物は著しい処理条件の変化がない環境では一定の堆積形態をとることが実機の分解調査で判明している。従って堆積層の厚みの実測値或いは推測値が分かれば先端部の位置を固定してよい。さらに図の例の様に上部側のコンベアフライト51がない部分に配置した場合、固形物の堆積が少なく閉塞し難い。また、分離液排出口20aに近いので分離液と共に回収し易いというメリットがある。 Therefore, the tip of the inflow hole 70 of the draining nozzle 7 is arranged so as to be located above (on the rotation axis side of the bowl) the layer of solid matter deposited on the inner circumferential surface of the bowl during normal operation. As a preferable example, the distal end portion is arranged so as to protrude from the inner circumferential surface of the bowl 2 toward the inside of the bowl 2 . The thickness of the deposited layer is preferably measured, for example, by opening the bowl 2 after normal operation. Alternatively, it is estimated by simulation or the like. Even if the tip of the inflow hole 70 is placed in a part where there is no conveyor flight 51, as in the example shown in the figure, the solid state in the solution is Disassembly studies of actual equipment have revealed that substances take a fixed form of accumulation in environments where there are no significant changes in processing conditions. Therefore, if the actual or estimated thickness of the deposited layer is known, the position of the tip may be fixed. Furthermore, when the conveyor flight 51 is disposed on the upper side as in the example shown in the figure, there is less accumulation of solid matter and it is difficult to block the conveyor flight. Furthermore, since it is close to the separated liquid outlet 20a, it has the advantage of being easy to recover together with the separated liquid.
 一例として、ボウル2の内周面からコンベアフライト51の先端までの距離H1が1.7mm、通常運転で形成される堆積層の厚みH2が0.5mmのとき、ボウル2の内周面から流入孔70の先端までの距離H3を1.7mmとする。この場合、距離H3は、距離H1と同じでもある。すなわち、コンベアフライト51の先端と同じ位置である。 As an example, when the distance H1 from the inner peripheral surface of the bowl 2 to the tip of the conveyor flight 51 is 1.7 mm, and the thickness H2 of the deposited layer formed during normal operation is 0.5 mm, inflow from the inner peripheral surface of the bowl 2 The distance H3 to the tip of the hole 70 is 1.7 mm. In this case, distance H3 is also the same as distance H1. That is, it is at the same position as the tip of the conveyor flight 51.
 次にノズル先端部の形状について説明する。液抜きノズル7の先端部は、特に図3(a)に示すように、流入孔70の開口径をDとし、流入孔70の流路長をLとしたとき、L/D=1.4以下の薄型にすると閉塞防止効果が高いことを確認している。流入孔70は、好ましくは円形の貫通孔である。円形の貫通孔とした場合、直径φ(=D)は1mmが好ましい。この場合、流路長Lを1.4mm以下とする。但し、直径φ(=D)のサイズが限定されることはなく、例えばボウル2のサイズなどにもよるが、2.5mm以下としてよい。さらに流入孔70の形状は、必ずしも円形でなくてよく、例えば多角形にするなど他の形状であってもよい。 Next, the shape of the nozzle tip will be explained. In particular, as shown in FIG. 3(a), the tip of the liquid draining nozzle 7 has a ratio of L/D=1.4, where the opening diameter of the inflow hole 70 is D and the flow path length of the inflow hole 70 is L. It has been confirmed that the thinner structure shown below is highly effective in preventing blockages. The inflow hole 70 is preferably a circular through hole. In the case of a circular through hole, the diameter φ (=D) is preferably 1 mm. In this case, the channel length L is set to 1.4 mm or less. However, the size of the diameter φ (=D) is not limited, and may be 2.5 mm or less, although it depends on the size of the bowl 2, for example. Further, the shape of the inflow hole 70 does not necessarily have to be circular, and may be other shapes such as a polygon, for example.
 流入孔70は、ノズル内の長手方向において拡径部71と連通し、さらに基端側まで形成した流路72と連通する。拡径部71は、例えば直径2.3mmまで拡径する。流路72の長さは、例えば32.2mmである。また、符号73は、六角穴である。液抜きノズル7は、先端に細径の流入孔70を形成しているが、そこから先は拡径した流路としているのでノズル内を液がスムーズに流れて端部から排出できる。このような液抜きノズル7は、例えば丸棒部材を加工して形成する。 The inflow hole 70 communicates with the enlarged diameter portion 71 in the longitudinal direction within the nozzle, and further communicates with a flow path 72 formed to the base end side. The expanded diameter portion 71 expands to a diameter of 2.3 mm, for example. The length of the flow path 72 is, for example, 32.2 mm. Moreover, the code|symbol 73 is a hexagonal hole. The liquid removal nozzle 7 has a small-diameter inflow hole 70 formed at its tip, but the flow path from there is enlarged, so that the liquid can flow smoothly inside the nozzle and be discharged from the end. Such a liquid draining nozzle 7 is formed by processing a round bar member, for example.
 ここで、L/D=1.4以下は、実際に行った試験結果から導き出した好ましい値である。L/Dの値が大きくなるのは、開口径Dを小さくした場合と、流路長Lを長くした場合の2通りである。前者の場合、固形物による閉塞が起き易くなる。後者の場合、拡径部71まで遠くなる分、液抵抗が大きくノズル内の液がスムーズに流れなくなる。場合によっては固形物の閉塞を誘発する。液抜きノズル7は、堆積物で閉塞するのを抑えることができるので、結果、流速への影響を最小限として設定できるメリットがある。 Here, L/D=1.4 or less is a preferable value derived from the results of actually conducted tests. The value of L/D increases in two ways: when the opening diameter D is made small, and when the flow path length L is made long. In the former case, blockage by solid objects is likely to occur. In the latter case, the farther the expanded diameter portion 71 is, the greater the liquid resistance becomes and the liquid in the nozzle does not flow smoothly. In some cases, it may induce blockage of solid objects. Since the drain nozzle 7 can be prevented from being blocked by deposits, there is an advantage that the influence on the flow rate can be set to a minimum.
 続いて、ノズルの向きについて説明する。液抜きノズル7は、ボウル2の回転軸(例えば回転中心軸線)に対して、直交する方向、又は、斜め方向に配置する。好ましい一例として図2には、液抜きノズル7の先端が下方側を向いた斜め方向に配置している。平面視では、ボウル2の直径線上に沿っている。液抜きノズル7を斜め方向に配置する場合、特に図3(b)に示すように、回転軸と直交する軸Rに対する角度θが60度以下となるようにする。図の例では、角度θは50度である。この範囲内に設定すると、ノズル先端の流入孔70に遠心力が直接的に作用し、停止運転時において液抜きノズル7からの排出が促進される。なお、液抜きノズル7は、液抜きノズル7の先端が上方側を向く斜め方向に配置してもよい。また、必ずしも平面視において直径線上に沿ってなくともよい。例えばボウル2の回転方向とは反対の方向に斜めに配置するなどである。 Next, the orientation of the nozzle will be explained. The liquid draining nozzle 7 is disposed in a direction perpendicular or oblique to the rotation axis (for example, rotation center axis) of the bowl 2. As a preferable example, in FIG. 2, the tip of the liquid draining nozzle 7 is arranged in an oblique direction facing downward. In plan view, it is along the diameter line of the bowl 2. When the liquid draining nozzle 7 is arranged in an oblique direction, the angle θ with respect to the axis R perpendicular to the rotation axis is set to be 60 degrees or less, especially as shown in FIG. 3(b). In the illustrated example, the angle θ is 50 degrees. When set within this range, centrifugal force acts directly on the inflow hole 70 at the tip of the nozzle, promoting discharge from the drain nozzle 7 during stopped operation. Note that the liquid draining nozzle 7 may be arranged in an oblique direction with the tip of the liquid draining nozzle 7 facing upward. Further, it does not necessarily have to be along the diameter line in plan view. For example, it may be arranged obliquely in the direction opposite to the direction of rotation of the bowl 2.
 さらに、液抜きノズル7は、必ずしも全体が直線状であるとは限らない。すなわち、ここで言う液抜きノズル7は、例えば途中でくの字に曲げたものや湾曲させたものを除外しない。少なくとも流入孔70の流路長Lの向きが、ボウル2の回転軸と直交する方向、又は、斜め方向に配置されていればよい。 Further, the liquid draining nozzle 7 is not necessarily entirely linear. That is, the liquid draining nozzle 7 mentioned here does not exclude, for example, one bent in a dogleg shape or curved halfway. It is sufficient that at least the flow path length L of the inflow hole 70 is arranged in a direction perpendicular to the rotation axis of the bowl 2 or in an oblique direction.
 液抜きノズル7の配置位置は、図2に示すように、リングダム21とコンベアフライト51の間に先端部が位置するように配置する。この領域は、分離液排出口21aに近く、ノズル先端部が回動するコンベアフライト51とは干渉しない位置である。 The liquid draining nozzle 7 is arranged so that its tip is located between the ring dam 21 and the conveyor flight 51, as shown in FIG. This area is close to the separated liquid discharge port 21a and is a position where the nozzle tip does not interfere with the rotating conveyor flight 51.
 続いて、上述の構成のデカンタ1で遠心分離を行い、その後、停止させる制御の一例を説明する。遠心分離を実行する通常運転の開始は、まず駆動モーター31を起動し、ボウル2の回転が所定の回転速度になるまで加速させていく。駆動モーター31でボウル2を回転させると、差速発生装置であるギアボックス6を通じてスクリューコンベア5に駆動力が伝達され、回転するボウル2に対して相対的な差速をもってスクリューコンベア5が回転する。一例として、ボウル2の回転速度を4000rpmに設定し、差速を10min-1とする。 Next, an example of control in which the decanter 1 having the above-described configuration performs centrifugation and then stops the centrifugation will be described. To start a normal operation for performing centrifugation, the drive motor 31 is first started and the rotation of the bowl 2 is accelerated until it reaches a predetermined rotational speed. When the bowl 2 is rotated by the drive motor 31, the driving force is transmitted to the screw conveyor 5 through the gear box 6, which is a differential speed generator, and the screw conveyor 5 rotates at a differential speed relative to the rotating bowl 2. . As an example, the rotational speed of the bowl 2 is set to 4000 rpm, and the differential speed is set to 10 min -1 .
 処理液は、フィードチューブ23から吐出し、液吐出孔53を通じてボウル2内に供給する。処理液及び固形物の種類は特に限定されない。ボウル2内に供給した処理液は、遠心力の作用によってボウル2内のビーチ部に液溜まりを形成し、さらに遠心力の作用で液中の固形物がボウル2の内周面側に沈降して固液分離がなされる。処理液は連続的に供給し、これにより分離液がリングダム21の上端から溢流して分離液排出口20aから排出される。なおこのとき遠心力の作用によって液抜きノズル7からもボウル2内の液が流出する。分離液排出口20aからの分離液および液抜きノズル7からの流出液は、それぞれ遠心力の作用でケーシング3の内周面側に向けて排出され、液受部35に受けられる。その後、排出口36から装置外に排出される。 The processing liquid is discharged from the feed tube 23 and supplied into the bowl 2 through the liquid discharge hole 53. The types of treatment liquid and solid matter are not particularly limited. The processing liquid supplied into the bowl 2 forms a liquid pool on the beach part of the bowl 2 due to the action of centrifugal force, and solid matter in the liquid settles to the inner peripheral surface of the bowl 2 due to the action of the centrifugal force. solid-liquid separation is performed. The processing liquid is continuously supplied, whereby the separated liquid overflows from the upper end of the ring dam 21 and is discharged from the separated liquid outlet 20a. At this time, the liquid in the bowl 2 also flows out from the liquid draining nozzle 7 due to the action of centrifugal force. The separated liquid from the separated liquid outlet 20a and the liquid flowing from the liquid draining nozzle 7 are discharged toward the inner peripheral surface of the casing 3 by the action of centrifugal force, and are received by the liquid receiving portion 35. Thereafter, it is discharged from the apparatus through the discharge port 36.
 一方、ボウル2内で遠心力により固液分離された固形物は、スクリューコンベア5によってボウル2の下方側に向けて搬送され、円錐状に形成したボウル2のビーチ部で液から離脱して固形物排出口22から排出される。固形物は、ケーシング3の下部側から排出する。 On the other hand, the solids separated into solid and liquid by centrifugal force in the bowl 2 are conveyed toward the lower side of the bowl 2 by the screw conveyor 5, and are separated from the liquid at the conical beach part of the bowl 2 and solidified. The material is discharged from the material discharge port 22. The solid matter is discharged from the lower side of the casing 3.
 そして例えば予定していた処理液量の固液分離が終わると、通常運転を終了し、停止運転に移行する。停止運転は、一例として、処理液の供給を停止し、ボウル2の回転を続けることによって、液抜きノズル7からボウル2内の残留液を排出する。なお、ボウル2内に洗浄液を供給する場合、ボウル2を回転させながら行うことで、液抜きノズル7から洗浄後の液を排出する。このような液抜き運転によってボウル2内の液抜きが終了すると、ボウル2の回転速度を減速して装置を停止させる。ボウル2の減速は、インバーターで駆動モーター31の出力を下げることで行ってもよく、駆動モーター31を停止して自然に減速させてもよい。既述したように、ボウル2内の液抜き速度は、計算によって把握できるので、例えばタイマーで液抜き時間を設定するようにしてもよい。また、液抜き時のボウル2の回転速度は、通常運転と同じでなくともよい。例えば通常運転よりも遅い一定の速度で、或いは速度を落としながらであってもよい。但し、以下の理由により、液抜き工程が終わるまでは、過大振動が発生し得る一次共振点の帯域まで回転速度を下げないようにするのが望ましい。回転速度の制御は制御部による自動であってもよく手動であってもよい。 For example, when the solid-liquid separation of the planned amount of treated liquid is completed, the normal operation is ended and the operation is shifted to a stopped operation. In the stop operation, for example, the supply of the processing liquid is stopped and the bowl 2 continues to rotate, thereby draining the remaining liquid in the bowl 2 from the liquid draining nozzle 7. When supplying the cleaning liquid into the bowl 2, the cleaning liquid is discharged from the liquid draining nozzle 7 by rotating the bowl 2. When the liquid in the bowl 2 is drained by such liquid draining operation, the rotational speed of the bowl 2 is reduced and the apparatus is stopped. The bowl 2 may be decelerated by lowering the output of the drive motor 31 using an inverter, or by stopping the drive motor 31 and allowing it to decelerate naturally. As described above, since the speed of draining the liquid in the bowl 2 can be determined by calculation, the draining time may be set using a timer, for example. Furthermore, the rotational speed of the bowl 2 during draining does not have to be the same as during normal operation. For example, the vehicle may be driven at a constant speed slower than normal operation, or at a reduced speed. However, for the following reasons, it is desirable not to reduce the rotational speed to the band of the primary resonance point where excessive vibration may occur until the liquid draining process is finished. The rotation speed may be controlled automatically by the control unit or may be controlled manually.
 すなわち、ボウル2内の液保有量を増やす目的の一つにデカンタ1の処理能力の向上がある。しかしながら装置を停止する停止運転時においては、この保有した液が過大振動を発生させる要因となる。過大振動は、残留液というアンバランス要素を抱えた状態でボウル2の回転を減速していくと、回転周波数が装置(デカンタ1)の一次共振点を通過する際に増幅されて発生することを実機で確認している。通常運転時に発生する振動は、振動防止装置41bで吸収するようにしているが、共振により増幅された過大振動を吸収するのは難しい。なお、ボウル2のサイズや処理液の種類にもよるが、デカンタ1の装置としての共振点である一次共振点の帯域は、一例として上述したサイズの場合、400~800rpm(すなわち、周波数10Hz±3Hz)のあたりにあり、例えば4000rpmで回転させる通常運転では共振は起きない。一次共振点の帯域は実際に装置を動かして振動を測定すれば把握できる。 That is, one of the purposes of increasing the amount of liquid held in the bowl 2 is to improve the throughput of the decanter 1. However, during a stop operation in which the device is stopped, this retained liquid becomes a cause of excessive vibration. Excessive vibration occurs when the rotation of the bowl 2 is decelerated with an unbalanced element such as residual liquid, and the rotational frequency is amplified when passing through the primary resonance point of the device (decanter 1). Confirmed on actual machine. Although vibrations generated during normal operation are absorbed by the vibration prevention device 41b, it is difficult to absorb excessive vibrations amplified by resonance. Although it depends on the size of the bowl 2 and the type of processing liquid, the band of the primary resonance point, which is the resonance point of the decanter 1 as a device, is 400 to 800 rpm (that is, a frequency of 10 Hz ± 3Hz), and resonance does not occur during normal operation, for example, when rotating at 4000 rpm. The band of the primary resonance point can be determined by actually operating the device and measuring the vibration.
 本実施形態のデカンタによれば、好ましい一例を詳述した液抜きノズル7を設けたことにより、通常運転後にボウル2の回転を継続して内部の液抜きをすることができる。従って、残留液という回転のアンバランス要素を取り除いてから一次共振点を通過させることができ、過大振動の発生を抑えることができる。 According to the decanter of this embodiment, by providing the liquid draining nozzle 7, a preferred example of which is described in detail, the interior of the decanter can be drained by continuing to rotate the bowl 2 after normal operation. Therefore, it is possible to pass through the primary resonance point after removing the unbalanced rotational element of the residual liquid, and it is possible to suppress the occurrence of excessive vibration.
 さらに、ボウル2内のノズル先端部の位置、先端部の形状及び向きを、上述した理由に基づき適正に設定したことにより、通常運転時に液抜きノズル7が閉塞するのを防ぐことができる。その結果、停止運転時に液抜きができないという不具合を未然に防ぐことができる。液抜きノズル7からの液抜きは、停止運転時に減速するボウル2の回転周波数が一次共振点を通過する前に終えるのが望ましい。なお、液抜きノズル7の流入孔70の先端部を、堆積層よりも上(回転軸側)に設定すると、先端部から下(ボウル内周面側)の液は残るが、その液量は僅かである。 Furthermore, by appropriately setting the position, shape, and orientation of the nozzle tip in the bowl 2 based on the above-mentioned reasons, it is possible to prevent the drain nozzle 7 from clogging during normal operation. As a result, the problem of not being able to drain the liquid during stopped operation can be prevented. It is desirable to finish draining the liquid from the liquid draining nozzle 7 before the rotational frequency of the bowl 2, which is decelerated during stopped operation, passes through the primary resonance point. Note that if the tip of the inflow hole 70 of the liquid draining nozzle 7 is set above the deposited layer (on the rotating shaft side), the liquid will remain below the tip (on the inner peripheral surface side of the bowl), but the amount of liquid will be Very little.
 なお、ボウル2の両側を二軸で軸支する横型タイプのデカンタは、回転軸を一軸で軸支する竪型タイプに比べて過大振動が発生し難いが、上述の液抜き機構を横型のデカンタに適用することも可能である。 Note that a horizontal type decanter, in which both sides of the bowl 2 are supported by two shafts, is less prone to excessive vibration than a vertical type, in which the rotating shaft is supported by one shaft. It is also possible to apply it to
 以上、本発明を具体的な実施形態に則して詳細に説明したが、形式や細部についての種々の置換、変形、変更等が、特許請求の範囲の記載により規定されるような本発明の精神及び範囲から逸脱することなく行われることが可能であることは、当該技術分野における通常の知識を有する者には明らかである。 Although the present invention has been described in detail in accordance with specific embodiments, various substitutions, modifications, changes, etc. in form and details may be made to the present invention as defined by the claims. It will be apparent to those of ordinary skill in the art that anything may be done without departing from the spirit and scope.
 1   デカンタ
 2   ボウル
 20a 分離液排出口
 22  固形物排出口
 3   ケーシング
 31  駆動モーター
 4   シャフト
 5   スクリューコンベア
 51  コンベアフライト
 7   液抜きノズル
 70  流入孔
 71  拡径部
 72  流路

 
1 Decanter 2 Bowl 20a Separated liquid discharge port 22 Solid matter discharge port 3 Casing 31 Drive motor 4 Shaft 5 Screw conveyor 51 Conveyor flight 7 Liquid removal nozzle 70 Inflow hole 71 Expanded diameter part 72 Channel

Claims (4)

  1.  固形物排出口と分離液排出口を備え、内部に供給した処理液に遠心力を付与して液中の固形物を固液分離し、分離液を前記分離液排出口から排出するボウルと、
     前記ボウル内に配置され、前記ボウルと相対的な差速をもって回転して、前記固形物を前記固形物排出口へ搬送するスクリューコンベアと、
     前記ボウルの回転軸に直交する方向又は斜め方向に流路を形成した流入孔を備え、通常運転によってボウル内周面に形成される前記固形物の堆積層よりも前記回転軸側に前記流入孔の先端部が位置する液抜きノズルと、を備えたことを特徴とする遠心分離装置。
    a bowl that is equipped with a solid matter discharge port and a separated liquid discharge port, applies centrifugal force to the processing liquid supplied therein to separate solid matter in the liquid from solid to liquid, and discharges the separated liquid from the separated liquid discharge port;
    a screw conveyor disposed within the bowl and rotating at a differential speed relative to the bowl to convey the solids to the solids discharge port;
    The inflow hole has a flow path formed in a direction perpendicular or oblique to the rotation axis of the bowl, and the inflow hole is closer to the rotation axis than the solid matter deposit layer formed on the inner peripheral surface of the bowl during normal operation. A centrifugal separator characterized by comprising: a liquid draining nozzle in which a tip of the liquid draining nozzle is located;
  2.  前記液抜きノズルは、前記流入孔の開口径をDとし、該流入孔の流路長をLとしたとき、L/Dが1.4以下であることを特徴とする請求項1に記載の遠心分離装置。 2. The liquid draining nozzle according to claim 1, wherein when the opening diameter of the inflow hole is D and the flow path length of the inflow hole is L, L/D is 1.4 or less. Centrifugal separator.
  3.  前記ボウルの回転軸を上下方向に配置した竪型の遠心分離装置であることを特徴とする請求項1に記載の遠心分離装置。 The centrifugal separator according to claim 1, wherein the centrifugal separator is a vertical separator in which the rotation axis of the bowl is arranged in the vertical direction.
  4.  固形物排出口と分離液排出口を備え、内部に供給した処理液に遠心力を付与して液中の固形物を固液分離し、分離液を前記分離液排出口から排出するボウルと、
     前記ボウル内に配置され、前記ボウルと相対的な差速をもって回転して、前記固形物を前記固形物排出口へ搬送するスクリューコンベアと、
     前記ボウルの内周面から内側に向けて先端部が突出し、停止運転時に減速する前記ボウルの回転周波数が一次共振点を通過する前に前記ボウル内の残留液を排出する液抜きノズルと、を備えたことを特徴とする遠心分離装置。
    a bowl that is equipped with a solid matter discharge port and a separated liquid discharge port, applies centrifugal force to the processing liquid supplied therein to separate solid matter in the liquid from solid to liquid, and discharges the separated liquid from the separated liquid discharge port;
    a screw conveyor disposed within the bowl and rotating at a differential speed relative to the bowl to convey the solids to the solids discharge port;
    a liquid draining nozzle whose tip protrudes inward from an inner circumferential surface of the bowl and discharges residual liquid in the bowl before the rotational frequency of the bowl, which is decelerated during stop operation, passes a primary resonance point; A centrifugal separator characterized by comprising:
PCT/JP2022/021035 2022-05-20 2022-05-20 Centrifugal separation device WO2023223567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021035 WO2023223567A1 (en) 2022-05-20 2022-05-20 Centrifugal separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021035 WO2023223567A1 (en) 2022-05-20 2022-05-20 Centrifugal separation device

Publications (1)

Publication Number Publication Date
WO2023223567A1 true WO2023223567A1 (en) 2023-11-23

Family

ID=88835056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021035 WO2023223567A1 (en) 2022-05-20 2022-05-20 Centrifugal separation device

Country Status (1)

Country Link
WO (1) WO2023223567A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453359A (en) * 1977-09-19 1979-04-26 Pennwalt Corp Centrifugal separator
JPS57140850U (en) * 1981-02-25 1982-09-03
DE102018105079A1 (en) * 2018-03-06 2019-09-12 Gea Mechanical Equipment Gmbh Solid bowl centrifuge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453359A (en) * 1977-09-19 1979-04-26 Pennwalt Corp Centrifugal separator
JPS57140850U (en) * 1981-02-25 1982-09-03
DE102018105079A1 (en) * 2018-03-06 2019-09-12 Gea Mechanical Equipment Gmbh Solid bowl centrifuge

Similar Documents

Publication Publication Date Title
JP6391984B2 (en) centrifuge
KR102323606B1 (en) Decanter centrifuge and method for operating decanter centrifuge
US9266122B2 (en) Centrifugal separator having a feed accelerator
JPH01203063A (en) Decanter type centrifugal separator
WO2023223567A1 (en) Centrifugal separation device
JP2013525095A (en) Separator
JPH03501279A (en) Device for separating particles in liquids, especially suitable for purifying paper suspensions containing fibers
US6056685A (en) Centrifuge having selectively operable harmonic drive for scroll conveyor
US5281195A (en) Centrifugal liquid cleaning apparatus and method
JP2009006235A (en) Foreign matter removal apparatus
JP2003313790A (en) Apparatus for removing air from floating foam formed in floatation operation of paper fiber-containing suspension
WO1997009121A1 (en) Rotary distribution pipe assembly
US3595470A (en) Control apparatus for centrifuge
JP5832828B2 (en) Variable dam of centrifuge and centrifuge
JPH07246349A (en) Separation plate type centrifuge
JP2009297609A (en) Rotary separator
KR20000051926A (en) A Continuation-Separation-Type Centrifugal Separator
JP2010167361A (en) Rotary concentrator and concentration system
KR100746754B1 (en) Cleaning water refining system
KR200284275Y1 (en) A centrifugal-specific gravity separator which can refine oil
JP4775913B2 (en) Cyclone filter
CN204953142U (en) Dull and stereotyped scraper centrifugal separator
WO2024084989A1 (en) Filter device
RU2581392C2 (en) Method of processing product in centrifugal field
JP2009195819A (en) Liquid filtration method and equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941872

Country of ref document: EP

Kind code of ref document: A1