WO2023222971A1 - System for generating cold and for supplying electrical power from seawater and the sun - Google Patents
System for generating cold and for supplying electrical power from seawater and the sun Download PDFInfo
- Publication number
- WO2023222971A1 WO2023222971A1 PCT/FR2023/050696 FR2023050696W WO2023222971A1 WO 2023222971 A1 WO2023222971 A1 WO 2023222971A1 FR 2023050696 W FR2023050696 W FR 2023050696W WO 2023222971 A1 WO2023222971 A1 WO 2023222971A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- heat transfer
- transfer fluid
- seawater
- heat
- Prior art date
Links
- 239000013535 sea water Substances 0.000 title claims abstract description 67
- 239000012530 fluid Substances 0.000 claims abstract description 111
- 239000013529 heat transfer fluid Substances 0.000 claims abstract description 83
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims description 35
- 238000003860 storage Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000009360 aquaculture Methods 0.000 claims description 4
- 244000144974 aquaculture Species 0.000 claims description 4
- 239000003507 refrigerant Substances 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 2
- 238000004378 air conditioning Methods 0.000 description 8
- 238000005086 pumping Methods 0.000 description 7
- 238000005057 refrigeration Methods 0.000 description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000003570 air Substances 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- PGJHURKAWUJHLJ-UHFFFAOYSA-N 1,1,2,3-tetrafluoroprop-1-ene Chemical compound FCC(F)=C(F)F PGJHURKAWUJHLJ-UHFFFAOYSA-N 0.000 description 2
- LDTMPQQAWUMPKS-UHFFFAOYSA-N 1-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C=CCl LDTMPQQAWUMPKS-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 1
- 241001481710 Cerambycidae Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000010795 Steam Flooding Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
- F01K9/003—Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/006—Methods of steam generation characterised by form of heating method using solar heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
Definitions
- the present invention relates to a system for generating cold and supplying electrical energy from sea water and the sun. More particularly, the invention uses a combination of marine energy conversion and solar energy to power an air conditioning system and produce electrical energy.
- the temperature at the bottom of the oceans is approximately constant. At a depth of a thousand meters, the temperature of sea water is approximately 5°C.
- the principle of marine air conditioning consists of pumping sea water to this depth in order to cool by thermal exchange a network of chilled water which is used to cool the air of an air conditioning system or the condensers of an air conditioning system. refrigeration unit.
- This type of air conditioning system is known by the acronym SWAC, from English “Sea Water Air Conditioning”.
- SWAC allows energy savings of 80% to 90% compared to a conventional system using air in coastal areas where the outside temperature is high.
- the thermal energy of the sea is also used to produce electrical energy.
- Electrical energy production systems using sea water are known by the acronym OTEC, from English “Ocean Thermal Energy Conversion”.
- OTEC consists of using the temperature differential existing between a hot source made up of surface sea water which can be between 25°C and 30°C in tropical areas and a cold source made up of water. deep sea which is around 5°C.
- the principle of OTEC consists of evaporating a working fluid using the hot source.
- the steam from the working fluid drives a turbogenerator. After passing through the turbo generator, the working fluid is cooled using the cold source.
- the working fluid can be seawater for so-called “open cycle” OTEC systems or another fluid for so-called “closed cycle” systems.
- the efficiency of an OTEC system corresponds to the ratio between the electrical energy produced and the energy required to operate the system, in particular the energy of pumping deep seawater.
- the electrical energy produced comes mainly from the temperature difference between the cold source and the hot source.
- the efficiency is generally between 2% and 5% depending on the surface water temperature and the type of OTEC structure.
- it is known to heat surface sea water by circulating it in pipes heated by the sun, which makes it possible to increase the temperature of the hot source by a few tens of degrees and therefore Increase the yield by a few percent during a sunny day to get an overall yield of around 8% to 12%.
- document US2011/0048006 describes a seawater desalination plant, the latter being heated by solar radiation to produce steam driving a turbine of an electric generator necessarily for the operation of said plant, then fresh water and salt.
- documents EP2071184A1 and EP2096305A1 describe electricity production plants from solar energy using a cold source via an open circuit of cold water drawn from a river or the sea.
- the invention proposes to improve the SWAC and OTEC systems by producing a combination of the two systems using the sea water rejected by the SWAC system as a cold source of an OTEC system, the hot source of the OTEC system being constituted by a closed circuit of heat transfer fluid heated by solar energy.
- the hot source of the OTEC system being constituted by a closed circuit of heat transfer fluid heated by solar energy.
- the invention is a system for generating cold and producing electrical energy which comprises:
- a solar heating element arranged to heat a first heat transfer fluid circulating in a closed heat transfer fluid circuit comprising a circulation pump;
- an electrical energy generation subsystem comprising a closed circuit of working fluid comprising a circulation pump, in fluid connection with: o an evaporator so that the latter heats said working fluid to obtain steam under pressure , said evaporator being a first heat exchanger in fluid connection with a closed circuit of heat transfer fluid to transfer heat energy from said heat transfer fluid to the working fluid; o a turbogenerator transforming said steam under pressure into electrical energy; o a condenser so that the latter cools said steam under pressure after its passage through the turbogenerator liquefying the working fluid upstream of the evaporator;
- seawater circulation circuit comprising a seawater pump in fluid connection with a second heat exchanger
- such a system is arranged in such a way: - the seawater circulation circuit is arranged to pump said seawater to a depth such that the temperature of said pumped seawater is of the order of 5°C at the inlet of said water circulation circuit sea ;
- system further comprises a cold generation subsystem comprising a closed cold fluid circuit comprising a circulation pump, in fluid connection with the second heat exchanger so that the latter cools the cold fluid with sea water of the seawater circulation circuit;
- a cold generation subsystem comprising a closed cold fluid circuit comprising a circulation pump, in fluid connection with the second heat exchanger so that the latter cools the cold fluid with sea water of the seawater circulation circuit;
- the condenser is a third heat exchanger in fluid connection with the seawater circulation circuit downstream of the second heat exchanger, in order to cool the working fluid from the seawater contained in said circulation circuit sea water after it has been heated by said second heat exchanger.
- the closed circuit of heat transfer fluid in fluid connection with the evaporator to transfer heat energy from said heat transfer fluid to the working fluid is the closed circuit of the first heat transfer fluid heated by the solar heating element.
- said closed circuit of heat transfer fluid in fluid connection with the evaporator to transfer heat energy from said heat transfer fluid to the working fluid is a closed circuit of a second heat transfer fluid comprising a circulation pump, in fluidic connection with a buffer tank filled with a third heat transfer storage fluid, said buffer tank also being in fluidic connection with the closed circuit of the first heat transfer fluid heated by the solar heating element, said second heat transfer fluid thus being heated by exchange thermal with the third heat transfer fluid, the latter being heated by heat exchange with the first heat transfer fluid.
- the first heat transfer fluid can be heated in a heating pipe in which said first heat transfer fluid circulates. and on which solar rays are concentrated using at least one parabolic cylindrical mirror.
- the working fluid can be a refrigerant.
- the seawater in the seawater circulation circuit downstream of the condenser maintains a sufficiently low temperature to be used by a third-party device.
- a system according to the invention can be arranged so that the condenser can be in fluid connection, downstream of it, with a third-party aquaculture or industrial process cooling device.
- FIG. 1 illustrates a first embodiment of a cold generation and electrical energy supply system according to the invention
- FIG. 2 and 3 illustrate a solar heating element used by the invention
- FIG. 4 illustrates a second embodiment of a cold generation and electrical energy supply system according to the invention.
- the invention is intended to be used near the sea and must be located in a location with a steep coastline and strong sunshine all year round.
- the invention can be advantageously located in an area between the Tropic of Cancer and the Tropic of Capricorn, that is to say between 30° North and 30° South latitude.
- FIG. 1 illustrates a first embodiment of a cold generation and electrical energy supply system according to the invention.
- a system mainly comprises a cold generation subsystem 100 and an electrical energy production subsystem 200.
- the cold generation subsystem 100 mainly comprises a closed cold fluid circuit 110, a first heat exchanger 120 and a seawater circulation circuit 130.
- the closed cold fluid circuit 110 also includes a cold unit 111 and a circulation pump 112.
- the seawater circuit 130 further comprises a seawater pump 131.
- the refrigeration unit 111 can be an air conditioning unit or a negative refrigeration production unit.
- the cold unit 111 includes a heat exchanger making it possible to exchange calories between the cold fluid, for example fresh water, and the air which is then distributed in pipes.
- the cold fluid is used to cool the condenser(s) of one or more refrigeration machines constituting the refrigeration group 111.
- the circulation pump 112 ensures the circulation of the cold fluid in the circuit closed 110 so that the cold fluid can circulate between the first heat exchanger 120 and the cold unit 111.
- the seawater pump 131 is a pump which allows seawater to be pumped at depth, for example a thousand meters deep.
- a pump 131 can be composed of one or more pumping pumps cascaded according to a known technique in order to allow such pumping.
- the seawater pumped from a thousand meters deep is at an almost constant temperature all year round, which is around 5°C.
- the seawater circulation circuit 130 is therefore arranged to pump said seawater to a depth such that the temperature of said pumped seawater is of the order of 5°C at the inlet of said water circulation circuit. sea 130.
- the first heat exchanger 120 is in fluid connection with the closed cold fluid circuit 110 and with the seawater circulation circuit
- the sizing must also take into account that the sea water leaving the first heat exchanger must be at a temperature between 10°C and 14 °C and preferably 12°C.
- the cold generation subsystem 100 corresponds to a state-of-the-art SWAC system.
- the seawater leaving the first heat exchanger is at a lower temperature than a state-of-the-art system.
- the electrical energy generation subsystem 200 mainly comprises a closed circuit of working fluid 210, a closed circuit of heat transfer fluid 220, a second heat exchanger 230, a third heat exchanger 240 and a turbogenerator 250.
- the closed circuit of working fluid 210 is in fluidic connection with the second heat exchanger 230, the third heat exchanger 240 and the turbogenerator 250.
- a pump 211 ensures the circulation of the working fluid inside the closed circuit of working fluid 210. Such pump 211 is optional if the second and third exchangers are positioned vertically and have sufficient height for circulation to occur naturally under the action of gravity.
- the working fluid is a refrigerant having a vaporization point located between 70°C and 80°C at a pressure of the order of six to seven bars.
- the working fluid may be a chloro-trifluoropropene.
- a suitable chloro-trifluoropropene is sold under the Solstice® brand with the reference zd(R-1233zd) by the Honeywell company.
- the 250 turbogenerator mainly consists of a turbine connected to an electric generator.
- the turbine receives the working fluid in the form of pressurized steam coming from the third heat exchanger 240.
- the pressurized steam drives the turbine which drives the electric generator and thus produces electricity.
- the second heat exchanger 230 is also connected or connected, fluidically upstream thereof and downstream of the first heat exchanger 120, to the seawater circulation circuit 130 in order to allow an exchange of calories between the water sea water leaving said first heat exchanger 120 and the working fluid circulating in said closed circuit 210, the sea water heating up while cooling the working fluid.
- the second heat exchanger 230 operates as a condenser to liquefy the working fluid then in the vapor state by heat exchange with sea water.
- the dimensioning of the second heat exchanger 230 is carried out in order to allow condensation of the working fluid of the vapor state at a temperature of 90°C to a liquid state at 40°C while only heating the seawater by 10°C during the heat exchange.
- the sea water leaving the second heat exchanger 230 is at a temperature between 20°C and 24°C and preferably 22°C.
- Such an exchange can be achieved with a circulation volume of working fluid ten times lower than the circulation volume of sea water.
- the temperature of sea water at a depth of fifty meters in a tropical zone being substantially constant at around 22°C, it is possible to reject the sea water leaving the second heat exchanger 230 at this depth of fifty meters without harming marine flora or fauna.
- the seawater leaving the second heat exchanger 230 maintains a sufficiently low temperature to be used in a third-party aquaculture device for the production of species which develop in a temperature range of 12° C to 20°C or in an industrial process cooling device requiring fresh water such as certain data centers with many computer servers.
- the condenser 230 can advantageously be in fluid connection, downstream of it, with such a third-party aquaculture or industrial process cooling device.
- the third heat exchanger 240 is also connected to the closed circuit of heat transfer fluid 220 in order to allow an exchange of calories between the working fluid circulating in said closed circuit 210 and the heat transfer fluid circulating in the closed circuit of heat transfer fluid 220, the heat transfer fluid work heating up while cooling the heat transfer fluid.
- the third heat exchanger 240 functions as an evaporator which transforms the working fluid from the liquid state to the vapor state by heat exchange with the heat transfer fluid.
- the dimensioning of the third heat exchanger 240 is carried out in order to transform the working fluid into steam under pressure at a temperature of 150°C while only cooling the heat transfer fluid by approximately 20°C during the heat exchange.
- the heat transfer fluid In order to carry out such a heat exchange, the heat transfer fluid must enter the third heat exchanger at a temperature of approximately 180°C and exit said third exchanger at a temperature of approximately 160°C.
- Such an exchange can be achieved with a circulation volume of working fluid twenty times lower than the circulation volume of heat transfer fluid.
- the closed circuit of heat transfer fluid 220 comprises a heating element 260 and a circulation pump 270.
- the heating capacity of the heating element 260 and the circulation flow rate of the heat transfer fluid define the heating capacity of the heat transfer fluid.
- the circulation rate of heat transfer fluid can also be adjusted as a function of the temperature of said heat transfer fluid, an equilibrium circulation speed corresponding to the inlet and outlet temperatures of the heat transfer fluid.
- evaporator 240 indicated in the previous paragraph.
- the heat transfer fluid is a fluid that must withstand a high temperature without degrading or vaporizing. Such a heat transfer fluid can be water under pressure which requires pipes that can withstand a pressure of fifty bars so that the water does not turn into steam.
- the heat transfer fluid may consist of a mixture of isopropyl and biphenyl which can be used at temperatures of more than 200°C at low pressure, such as for example the heat transfer fluid sold under the brand Therminol®62 by the Eastman company.
- heating element 260 mainly comprises a pipe 261 inside which the heat transfer fluid circulates.
- the pipe 261 can consist of a plurality of straight sections in fluidic connections in parallel and spaced apart from each other.
- the pipe 261 could also be folded on itself in order to form a serpentine comprising several straight sections spaced between them.
- the heating element 260 comprises a cylindrical-parabolic mirror 262 located under said straight section in order to concentrate the solar rays on said pipe 261.
- the cylindrical-parabolic mirror 262 can be motorized in order to rotate around of driving depending on the elevation of the sun.
- the surface of each parabolic mirror 262 is at least ten times greater than the projected surface of the pipe 261 on said mirror 262.
- the pipe 261 is preferably made of highly conductive material, for example steel, and painted in a color that tends to absorb infrared rays, for example in matte black.
- the pipe 261 can be placed in an insulation enclosure 263 matching the shape of the pipe 261 while being spaced from said pipe 261.
- the insulation enclosure is made of a material transparent to solar rays.
- Said enclosure 263 is hermetically closed and is preferably made of insulating materials.
- the insulation enclosure 263 is for example made of polycarbonate and is spaced from the pipe 261 by a distance of at least ten centimeters.
- the enclosure 263 can be placed under vacuum or can be filled with a transparent neutral gas serving as a thermal insulator, such as for example argon.
- a transparent neutral gas serving as a thermal insulator, such as for example argon.
- the heating element is dimensioned so that the latter can bring the temperature of the heat transfer fluid to a temperature of approximately 180° C. with circulation of the heat transfer fluid at steady state which brings said fluid to the heating element at a temperature of 'approximately 160°C.
- the efficiency between the electrical energy produced and the energy necessary for the operation of the sub -electric energy production system 200 is of the order of 12%.
- the cold generation subsystem 100 is supplied with deep seawater without the need for added pumping power.
- only sea and solar energy are used to produce electrical energy and cold.
- such a system can only operate when the sun is up and cannot produce electrical energy or generate cold during the night.
- Figure 4 illustrates a second embodiment of the invention allowing optimal operation during the night while using only solar energy to heat the working fluid.
- the second embodiment differs from the first embodiment by replacing the heat transfer fluid circuit 220 with a fluid circuit.
- intermediate heat transfer 320 connected to a buffer tank 330 and comprising a circulation pump 321.
- the buffer tank 330 comprises two fluid circulation coils circulating in a heat storage fluid, one of the coils being in fluid connection with the heat transfer circuit intermediate heat transfer fluid 320, the other of the coils being in fluid connection with a heating circuit 340.
- the heating circuit 340 comprises a heating element 260 and a circulation pump 341.
- the heating element 260 is for example in accordance with that described using Figures 2 and 3.
- the third heat exchanger 240 is connected to the intermediate heat transfer fluid circuit 320 in order to allow an exchange of calories between the working fluid circulating in said closed circuit 210 and a first heat transfer fluid circulating in the intermediate heat transfer fluid circuit 320, the heat transfer fluid work heating up while cooling the first heat transfer fluid.
- the third heat exchanger 240 functions as an evaporator which transforms the working fluid from the liquid state to the vapor state by heat exchange with the heat transfer fluid.
- the dimensioning of the third heat exchanger 240 is carried out in order to transform the working fluid into steam under pressure at a temperature of 80°C to 90°C while only cooling the first heat transfer fluid by 'approximately 20°C to 30°C during heat exchange.
- the first heat transfer fluid In order to carry out such a heat exchange, the first heat transfer fluid must enter the third heat exchanger at a temperature of approximately 100°C to 120°C and exit said third exchanger at a temperature of approximately 80°C to 90°C. .
- the temperature of the first heat transfer fluid is regulated by adjusting the flow rate of the circulation pump 321 as a function of the temperature of the storage fluid.
- the circulation volume of the working fluid can vary between two and five times the circulation volume of the first heat transfer fluid.
- the working fluid is a refrigerant having a vaporization point around 50°C at a pressure of around thirteen bars.
- the working fluid can be a tetrafluoropropene.
- a suitable tetrafluoropropene is sold under the Solstice® brand with the reference yf (R-1234yf) by the Honeywell company.
- the principle of generating electrical energy is the same as in the first embodiment except using a hot source at a lower temperature.
- Heating of the first heat transfer fluid is carried out by passing the first heat transfer fluid into the buffer tank 330 which takes heat from the storage fluid.
- the storage fluid is heated by the heating circuit 340 containing a second heat transfer fluid.
- Heating of the second heat transfer fluid is carried out by the heating element 260.
- the circulation flow rate of the second heat transfer fluid defines the heating capacity of the storage fluid using the second heat transfer fluid by the heating circuit 340.
- the flow rate of circulation of the second heat transfer fluid can also be adjusted as a function of the temperature of said second heat transfer fluid and of the storage fluid.
- the second heat transfer fluid can reach a temperature of approximately 180° C. at the entrance to the coil of the buffer tank 330 so as to be able to bring the temperature of the storage fluid to an equal temperature.
- the buffer tank 330 must contain a sufficient quantity of storage fluid to be able to maintain a temperature above 100°C throughout the night in order to be able to heat the first heat transfer fluid and thus allow the continuous production of electrical energy.
- the storage fluid must have a very high thermal storage capacity.
- the storage fluid can be water put under pressure, for example between twelve and fourteen bars and the first and second heat transfer fluids can be a mixture of isopropyl and biphenyl remaining at low pressure.
- the first and second heat transfer fluids can be a mixture of isopropyl and biphenyl remaining at low pressure.
- the volume of the storage fluid can be defined as a function of the flow rate of the first fluid then to define the flow rate of the second fluid.
- this second example allows continuous use regardless of day or night.
- the different elements of the exemplary embodiments differently.
- the circulation temperatures of the different fluids correspond to a preferred mode of operation and can be changed according to implementation choices corresponding to different efficiencies.
- the working fluid, the heat transfer fluid and the storage fluid are given as an example and other fluids can be used depending on the operating temperatures desired by those skilled in the art. Thus, those skilled in the art will be able to modify the sizing according to their needs.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
The invention relates to a system for generating cold and for producing electrical power. A subsystem (100) for generating cold comprises a closed circuit of cold fluid (110) and a heat exchanger (120), the heat exchanger cooling the cold fluid by means of seawater. A subsystem (200) for generating electrical power comprises a working fluid circulating in a closed circuit (210) between an evaporator (240), a turbogenerator (250) and a condenser (230). The evaporator (240) is a heat exchanger that transfers heat energy between the working fluid and a heat transfer fluid heated by solar energy. The condenser (230) is a heat exchanger that cools the working fluid by means of the seawater exiting the first heat exchanger (120).
Description
Système de génération de froid et de fourniture d’énergie électrique à partir de l’eau de mer et du soleil System for generating cold and supplying electrical energy from sea water and the sun
La présente invention se rapporte à un système de génération de froid et de fourniture d’énergie électrique à partir de l’eau de mer et du soleil. Plus particulièrement, l’invention utilise une combinaison de la conversion de l’énergie marine et de l’énergie solaire pour alimenter un système de climatisation et produire de l’énergie électrique. The present invention relates to a system for generating cold and supplying electrical energy from sea water and the sun. More particularly, the invention uses a combination of marine energy conversion and solar energy to power an air conditioning system and produce electrical energy.
La température au fond des océans est sensiblement constante. À mille mètres de fond, la température de l’eau de mer est sensiblement égale à 5°C. Le principe de la climatisation marine consiste à pomper de l’eau de mer à cette profondeur afin de refroidir par échange thermique un réseau d’eau glacée qui est utilisé pour refroidir l’air d’un système de climatisation ou les condenseurs d’un groupe frigorifique. Ce type de système de climatisation est connu sous l’acronyme SWAC, de l’anglais « Sea Water Air Conditioning ». Un SWAC permet des économies d’énergie de 80% à 90% par rapport à un système conventionnel utilisant l’air dans les zones côtières où la température extérieure est élevée. The temperature at the bottom of the oceans is approximately constant. At a depth of a thousand meters, the temperature of sea water is approximately 5°C. The principle of marine air conditioning consists of pumping sea water to this depth in order to cool by thermal exchange a network of chilled water which is used to cool the air of an air conditioning system or the condensers of an air conditioning system. refrigeration unit. This type of air conditioning system is known by the acronym SWAC, from English “Sea Water Air Conditioning”. A SWAC allows energy savings of 80% to 90% compared to a conventional system using air in coastal areas where the outside temperature is high.
L’énergie thermique de la mer est aussi utilisée pour produire de l’énergie électrique. Les systèmes de production d’énergie électrique utilisant l’eau de mer sont connus sous l’acronyme OTEC, de l’anglais « Ocean Thermal Energy Conversion ». Le principe de l’OTEC consiste à utiliser le différentiel de température existant entre une source chaude constituée d’eau de mer de surface qui peut être compris entre 25°C et 30°C dans les zones tropicales et une source froide constituée d’eau de mer profonde qui est aux alentours de 5°C. Le principe de l’OTEC consiste à évaporer un fluide de travail à l’aide de la source chaude. La vapeur du fluide de travail entraîne un turbogénérateur. Après passage dans le turbo générateur, le fluide de travail est refroidi à l’aide de la source froide. Le fluide de travail peut être l’eau de mer pour les systèmes OTEC dits en « cycle ouvert » ou un autre fluide pour les systèmes dits en « cycle fermé ».
Le rendement d’un système OTEC correspond au ratio entre l’énergie électrique produite et l’énergie nécessaire pour faire fonctionner le système, notamment l’énergie de pompage de l’eau de mer profonde. L’énergie électrique produite provient principalement de la différence de température entre la source froide et la source chaude. Ainsi, pour un système OTEC fonctionnant en cycle fermé, le rendement est généralement compris entre 2% et 5% suivant la température de l’eau en surface et le type de structure d’OTEC. Afin d’augmenter le rendement, il est connu de réchauffer l’eau de mer de surface en la faisant circuler dans des conduites chauffées au soleil, ce qui permet d’augmenter la température de la source chaude de quelques dizaines de degrés et donc d’augmenter le rendement de quelques pourcents pendant une journée ensoleillée pour obtenir un rendement global d’environ 8% à 12%. Éloigné du domaine OTEC, le document US2011/0048006 décrit une centrale de dessalement d’eau de mer, cette dernière étant chauffée par rayonnement solaire pour produire de la vapeur entraînant une turbine d’un générateur électrique nécessairement au fonctionnement de ladite centrale, puis de l’eau douce et du sel. Par ailleurs, les documents EP2071184A1 et EP2096305A1 décrivent des centrales de production d’électricité à partir d’énergie solaire exploitant une source froide via un circuit ouvert d’eau froide puisée dans une rivière ou dans la mer. The thermal energy of the sea is also used to produce electrical energy. Electrical energy production systems using sea water are known by the acronym OTEC, from English “Ocean Thermal Energy Conversion”. The principle of OTEC consists of using the temperature differential existing between a hot source made up of surface sea water which can be between 25°C and 30°C in tropical areas and a cold source made up of water. deep sea which is around 5°C. The principle of OTEC consists of evaporating a working fluid using the hot source. The steam from the working fluid drives a turbogenerator. After passing through the turbo generator, the working fluid is cooled using the cold source. The working fluid can be seawater for so-called “open cycle” OTEC systems or another fluid for so-called “closed cycle” systems. The efficiency of an OTEC system corresponds to the ratio between the electrical energy produced and the energy required to operate the system, in particular the energy of pumping deep seawater. The electrical energy produced comes mainly from the temperature difference between the cold source and the hot source. Thus, for an OTEC system operating in a closed cycle, the efficiency is generally between 2% and 5% depending on the surface water temperature and the type of OTEC structure. In order to increase efficiency, it is known to heat surface sea water by circulating it in pipes heated by the sun, which makes it possible to increase the temperature of the hot source by a few tens of degrees and therefore Increase the yield by a few percent during a sunny day to get an overall yield of around 8% to 12%. Far from the OTEC field, document US2011/0048006 describes a seawater desalination plant, the latter being heated by solar radiation to produce steam driving a turbine of an electric generator necessarily for the operation of said plant, then fresh water and salt. Furthermore, documents EP2071184A1 and EP2096305A1 describe electricity production plants from solar energy using a cold source via an open circuit of cold water drawn from a river or the sea.
Il est également connu de coupler un système OTEC avec un système SWAC. Les deux systèmes OTEC et SWAC se partagent le pompage d’eau de mer profonde et sont dimensionnés indépendamment l’un de l’autre sans aucune optimisation ou synergie. It is also known to couple an OTEC system with a SWAC system. The two systems OTEC and SWAC share the pumping of deep seawater and are sized independently of each other without any optimization or synergy.
L’invention propose d’améliorer les systèmes SWAC et OTEC en réalisant une combinaison des deux systèmes en utilisant l’eau de mer rejetée par le système SWAC comme source froide d’un système OTEC, la source chaude du système OTEC étant constituée par un circuit fermé de fluide caloporteur chauffé par l’énergie solaire. Un tel système permet d’augmenter considérablement la différence de température permettant de produire
davantage d’énergie électrique tout en réutilisant l’eau de mer ayant servi au système SWAC et donc d’obtenir un rendement beaucoup plus important pour l’OTEC tout en rendant la consommation d’énergie du système SWAC insignifiante. Ainsi, l’invention permet de produire du froid et de l’énergie électrique de manière optimum et écologique. The invention proposes to improve the SWAC and OTEC systems by producing a combination of the two systems using the sea water rejected by the SWAC system as a cold source of an OTEC system, the hot source of the OTEC system being constituted by a closed circuit of heat transfer fluid heated by solar energy. Such a system makes it possible to considerably increase the temperature difference making it possible to produce more electrical energy while reusing the seawater used in the SWAC system and therefore obtaining a much greater efficiency for the OTEC while making the energy consumption of the SWAC system insignificant. Thus, the invention makes it possible to produce cold and electrical energy in an optimum and ecological manner.
Plus particulièrement l’invention est un système de génération de froid et de production d’énergie électrique qui comporte : More particularly, the invention is a system for generating cold and producing electrical energy which comprises:
- un élément chauffant solaire agencé pour chauffer un premier fluide caloporteur circulant dans un circuit fermé de fluide caloporteur comportant une pompe de circulation ; - a solar heating element arranged to heat a first heat transfer fluid circulating in a closed heat transfer fluid circuit comprising a circulation pump;
- un sous-système de génération d’énergie électrique comprenant un circuit fermé de fluide de travail comportant une pompe de circulation, en connexion fluidique avec : o un évaporateur de sorte que ce dernier chauffe ledit fluide de travail pour obtenir de la vapeur sous pression, ledit évaporateur étant un premier échangeur thermique en connexion fluidique avec un circuit fermé de fluide caloporteur pour transférer de l’énergie calorifique dudit fluide caloporteur au fluide de travail ; o un turbogénérateur transformant ladite vapeur sous pression en énergie électrique ; o un condenseur de sorte que ce dernier refroidisse ladite vapeur sous pression après son passage dans le turbogénérateur liquéfiant le fluide de travail en amont de l’évaporateur ; - an electrical energy generation subsystem comprising a closed circuit of working fluid comprising a circulation pump, in fluid connection with: o an evaporator so that the latter heats said working fluid to obtain steam under pressure , said evaporator being a first heat exchanger in fluid connection with a closed circuit of heat transfer fluid to transfer heat energy from said heat transfer fluid to the working fluid; o a turbogenerator transforming said steam under pressure into electrical energy; o a condenser so that the latter cools said steam under pressure after its passage through the turbogenerator liquefying the working fluid upstream of the evaporator;
- un circuit de circulation d’eau de mer comportant une pompe d’eau de mer en connexion fluidique avec un deuxième échangeur thermique ; - a seawater circulation circuit comprising a seawater pump in fluid connection with a second heat exchanger;
Pour produire du froid et de l’énergie électrique de manière optimale et écologique un tel système est agencé de sorte :
- le circuit de circulation d’eau de mer est agencé pour pomper ladite eau de mer à une profondeur telle que la température de ladite eau de mer pompée soit de l’ordre de 5°C en entrée dudit circuit de circulation d’eau de mer ; To produce cold and electrical energy in an optimal and ecological manner, such a system is arranged in such a way: - the seawater circulation circuit is arranged to pump said seawater to a depth such that the temperature of said pumped seawater is of the order of 5°C at the inlet of said water circulation circuit sea ;
- le système comporte en outre un sous-système de génération de froid comprenant un circuit fermé de fluide froid comportant une pompe de circulation, en connexion fluidique avec le deuxième échangeur thermique de sorte que ce dernier refroidisse le fluide froid avec l’eau de mer du circuit de circulation d’eau de mer ; - the system further comprises a cold generation subsystem comprising a closed cold fluid circuit comprising a circulation pump, in fluid connection with the second heat exchanger so that the latter cools the cold fluid with sea water of the seawater circulation circuit;
- le condenseur est un troisième échangeur thermique en connexion fluidique avec le circuit de circulation d’eau de mer en aval du deuxième échangeur thermique, afin de refroidir le fluide de travail à partir de l’eau de mer contenue dans ledit circuit de circulation d’eau de mer après que celle-ci a été réchauffée par ledit deuxième échangeur thermique. - the condenser is a third heat exchanger in fluid connection with the seawater circulation circuit downstream of the second heat exchanger, in order to cool the working fluid from the seawater contained in said circulation circuit sea water after it has been heated by said second heat exchanger.
Selon un premier mode de réalisation, le circuit fermé de fluide caloporteur en connexion fluidique avec l’évaporateur pour transférer de l’énergie calorifique dudit fluide caloporteur au fluide de travail est le circuit fermé du premier fluide caloporteur chauffé par l’élément chauffant solaire. According to a first embodiment, the closed circuit of heat transfer fluid in fluid connection with the evaporator to transfer heat energy from said heat transfer fluid to the working fluid is the closed circuit of the first heat transfer fluid heated by the solar heating element.
Selon un deuxième mode de réalisation, ledit circuit fermé de fluide caloporteur en connexion fluidique avec l’évaporateur pour transférer de l’énergie calorifique dudit fluide caloporteur au fluide de travail est un circuit fermé d’un deuxième fluide caloporteur comportant une pompe de circulation, en connexion fluidique avec un réservoir tampon empli d’un troisième fluide caloporteur de stockage, ledit réservoir tampon étant également en connexion fluidique avec le circuit fermé du premier fluide caloporteur chauffé par l’élément chauffant solaire, ledit deuxième fluide caloporteur étant ainsi chauffé par échange thermique avec le troisième fluide caloporteur, ce dernier étant chauffé par échange thermique avec le premier fluide caloporteur. According to a second embodiment, said closed circuit of heat transfer fluid in fluid connection with the evaporator to transfer heat energy from said heat transfer fluid to the working fluid is a closed circuit of a second heat transfer fluid comprising a circulation pump, in fluidic connection with a buffer tank filled with a third heat transfer storage fluid, said buffer tank also being in fluidic connection with the closed circuit of the first heat transfer fluid heated by the solar heating element, said second heat transfer fluid thus being heated by exchange thermal with the third heat transfer fluid, the latter being heated by heat exchange with the first heat transfer fluid.
Avantageusement, le premier fluide caloporteur peut être chauffé dans une conduite de chauffage dans laquelle circule ledit premier fluide caloporteur
et sur laquelle des rayons solaires sont concentrés à l’aide d’au moins un miroir cylindro-parabolique. Advantageously, the first heat transfer fluid can be heated in a heating pipe in which said first heat transfer fluid circulates. and on which solar rays are concentrated using at least one parabolic cylindrical mirror.
Pour permettre un passage de l’état liquide à l’état vapeur à basse température, le fluide de travail peut être un fluide frigorigène. To allow a transition from the liquid state to the vapor state at low temperature, the working fluid can be a refrigerant.
L’eau de mer du circuit de circulation d’eau de mer en aval du condenseur conserve une température suffisamment basse pour être exploitée par un dispositif tiers. Ainsi, un système selon l’invention peut être agencé de sorte que le condenseur puisse être en connexion fluidique, en aval de celui-ci, avec un dispositif tiers d'aquaculture ou de refroidissement de processus industriels. The seawater in the seawater circulation circuit downstream of the condenser maintains a sufficiently low temperature to be used by a third-party device. Thus, a system according to the invention can be arranged so that the condenser can be in fluid connection, downstream of it, with a third-party aquaculture or industrial process cooling device.
L’invention sera mieux comprise et d’autres caractéristiques et avantages de celle-ci apparaîtront à la lecture de la description suivante de modes de réalisation particuliers de l’invention, donnés à titre d’exemples illustratifs et non limitatifs, et faisant référence aux dessins annexés, parmi lesquels : The invention will be better understood and other characteristics and advantages thereof will appear on reading the following description of particular embodiments of the invention, given by way of illustrative and non-limiting examples, and referring to the appended drawings, including:
- la figure 1 illustre un premier exemple de réalisation d’un système de génération de froid et de fourniture d’énergie électrique selon l’invention ; - Figure 1 illustrates a first embodiment of a cold generation and electrical energy supply system according to the invention;
- les figures 2 et 3 illustrent un élément de chauffage solaire utilisé par l’invention ; - Figures 2 and 3 illustrate a solar heating element used by the invention;
- la figure 4 illustre un deuxième exemple de réalisation d’un système de génération de froid et de fourniture d’énergie électrique selon l’invention. - Figure 4 illustrates a second embodiment of a cold generation and electrical energy supply system according to the invention.
Afin de simplifier la description qui va suivre, une même référence est utilisée dans différentes figures pour désigner un même objet ou un élément similaire. Ainsi, lorsque la description cite un objet référencé, cet objet pourra être identifié sur plusieurs figures. En outre, les figures ainsi que la description sont données à titre d’exemples illustratifs et non limitatifs de réalisation. Pour
des raisons de représentation, les dessins ne sont pas réalisés à l’échelle afin de permettre de visualiser l’ensemble des éléments sur un même schéma. In order to simplify the description which follows, the same reference is used in different figures to designate the same object or a similar element. Thus, when the description cites a referenced object, this object can be identified on several figures. In addition, the figures as well as the description are given by way of illustrative and non-limiting examples of embodiment. For For reasons of representation, the drawings are not made to scale in order to allow all the elements to be viewed on the same diagram.
De plus, il convient de noter que l’invention a vocation à être utilisée à proximité de la mer et doit être localisée à un emplacement disposant d’une côte abrupte et d’un fort ensoleillement toute l’année. A titre d’exemple, l’invention peut être avantageusement située dans une zone comprise entre le tropique du Cancer et le tropique du Capricorne, c'est-à-dire entre 30° Nord et 30° Sud de latitude. In addition, it should be noted that the invention is intended to be used near the sea and must be located in a location with a steep coastline and strong sunshine all year round. For example, the invention can be advantageously located in an area between the Tropic of Cancer and the Tropic of Capricorn, that is to say between 30° North and 30° South latitude.
La figure 1 illustre un premier exemple de réalisation d’un système de génération de froid et de fourniture d’énergie électrique selon l’invention. Un tel système comporte principalement un sous-système de génération de froid 100 et un sous-système de production d’énergie électrique 200. Figure 1 illustrates a first embodiment of a cold generation and electrical energy supply system according to the invention. Such a system mainly comprises a cold generation subsystem 100 and an electrical energy production subsystem 200.
Le sous-système de génération de froid 100 comporte principalement un circuit fermé de fluide froid 110, un premier échangeur thermique 120 et un circuit de circulation d’eau de mer 130. Le circuit fermé de fluide froid 110 comporte également un groupe de froid 111 et une pompe de circulation 112. Le circuit d’eau de mer 130 comporte en outre une pompe d’eau de mer 131 . The cold generation subsystem 100 mainly comprises a closed cold fluid circuit 110, a first heat exchanger 120 and a seawater circulation circuit 130. The closed cold fluid circuit 110 also includes a cold unit 111 and a circulation pump 112. The seawater circuit 130 further comprises a seawater pump 131.
Le groupe de froid 111 peut être une climatisation ou un groupe de production de froid négatif. Dans le cas d’une climatisation, le groupe de froid 111 comporte un échangeur thermique permettant d’échanger des calories entre le fluide froid, par exemple de l’eau douce, et l’air qui est ensuite distribué dans des canalisations. Dans le cas d’un générateur de froid négatif, le fluide froid est utilisé pour refroidir le ou les condenseurs d’une ou plusieurs machines frigorifiques constituant le groupe de froid 111. La pompe de circulation 112 assure la circulation du fluide froid dans le circuit fermé 110 pour que le fluide froid puisse circuler entre le premier échangeur thermique 120 et le groupe de froid 111. The refrigeration unit 111 can be an air conditioning unit or a negative refrigeration production unit. In the case of air conditioning, the cold unit 111 includes a heat exchanger making it possible to exchange calories between the cold fluid, for example fresh water, and the air which is then distributed in pipes. In the case of a negative cold generator, the cold fluid is used to cool the condenser(s) of one or more refrigeration machines constituting the refrigeration group 111. The circulation pump 112 ensures the circulation of the cold fluid in the circuit closed 110 so that the cold fluid can circulate between the first heat exchanger 120 and the cold unit 111.
La pompe d’eau de mer 131 est une pompe qui permet de pomper de l’eau de mer en profondeur, par exemple à mille mètres de profondeur. Une telle pompe 131 peut être composée d’une ou plusieurs pompes refoulantes cascadées selon une technique connue afin de permettre un tel pompage.
L’eau de mer pompée à mille mètres de fond est à une température quasi constante toute l’année qui est de l’ordre de 5°C. Le circuit de circulation d’eau de mer 130 est donc agencé pour pomper ladite eau de mer à une profondeur telle que la température de ladite eau de mer pompée soit de l’ordre de 5°C en entrée dudit circuit de circulation d’eau de mer 130. The seawater pump 131 is a pump which allows seawater to be pumped at depth, for example a thousand meters deep. Such a pump 131 can be composed of one or more pumping pumps cascaded according to a known technique in order to allow such pumping. The seawater pumped from a thousand meters deep is at an almost constant temperature all year round, which is around 5°C. The seawater circulation circuit 130 is therefore arranged to pump said seawater to a depth such that the temperature of said pumped seawater is of the order of 5°C at the inlet of said water circulation circuit. sea 130.
Le premier échangeur thermique 120 est en connexion fluidique avec le circuit fermé de fluide froid 110 et avec le circuit de circulation d’eau de merThe first heat exchanger 120 is in fluid connection with the closed cold fluid circuit 110 and with the seawater circulation circuit
130 afin de permettre un échange de calories entre l’eau de mer et le fluide froid circulant dans ledit circuit fermé 110, l’eau de mer se réchauffant tout en refroidissant le fluide froid. Le dimensionnement du premier échangeur thermique 120, de la pompe de circulation 112 et de la pompe d’eau de mer130 in order to allow an exchange of calories between the sea water and the cold fluid circulating in said closed circuit 110, the sea water heating up while cooling the cold fluid. The sizing of the first heat exchanger 120, the circulation pump 112 and the seawater pump
131 est réalisé afin de permettre un maintien de la température de fluide froid sortant du premier échangeur thermique 120 à une basse température, par exemple comprise entre 6°C et 10°C. En outre, afin de pouvoir continuer d’utiliser la basse température de l’eau de mer, le dimensionnement doit également prendre en compte que l’eau de mer sortant du premier échangeur thermique doit être à une température comprise entre 10°C et 14°C et préférentiellement 12°C. 131 is produced in order to allow the temperature of the cold fluid leaving the first heat exchanger 120 to be maintained at a low temperature, for example between 6°C and 10°C. Furthermore, in order to continue to use the low temperature of the sea water, the sizing must also take into account that the sea water leaving the first heat exchanger must be at a temperature between 10°C and 14 °C and preferably 12°C.
Le sous-système de génération de froid 100 correspond à un système SWAC de l’état de la technique. Toutefois, selon l’invention, l’eau de mer sortant du premier échangeur thermique est à une température plus basse qu’un système de l’état de la technique. The cold generation subsystem 100 corresponds to a state-of-the-art SWAC system. However, according to the invention, the seawater leaving the first heat exchanger is at a lower temperature than a state-of-the-art system.
Le sous-système de génération d’énergie électrique 200 comporte principalement un circuit fermé de fluide de travail 210, un circuit fermé de fluide caloporteur 220, un deuxième échangeur thermique 230, un troisième échangeur thermique 240 et un turbogénérateur 250. Le circuit fermé de fluide de travail 210 est en connexion fluidique avec le deuxième échangeur thermique 230, le troisième échangeur thermique 240 et le turbogénérateur 250. Une pompe 211 assure la circulation du fluide de travail à l’intérieur du circuit fermé de fluide de travail 210. Une telle pompe 211 est optionnelle si les deuxième et troisième échangeurs sont positionnés verticalement et
disposent d’une hauteur suffisante pour que la circulation se fasse naturellement sous l’action de la gravité. Dans ce premier exemple de réalisation, le fluide de travail est un fluide frigorigène ayant un point de vaporisation situé entre 70°C et 80°C à une pression de l’ordre de six à sept bars. A titre d’exemple, le fluide de travail peut être un chloro-trifluoropropène. Un chloro-trifluoropropène qui convient est vendu sous la marque Solstice® avec la référence zd(R-1233zd) par la société Honeywell. The electrical energy generation subsystem 200 mainly comprises a closed circuit of working fluid 210, a closed circuit of heat transfer fluid 220, a second heat exchanger 230, a third heat exchanger 240 and a turbogenerator 250. The closed circuit of working fluid 210 is in fluidic connection with the second heat exchanger 230, the third heat exchanger 240 and the turbogenerator 250. A pump 211 ensures the circulation of the working fluid inside the closed circuit of working fluid 210. Such pump 211 is optional if the second and third exchangers are positioned vertically and have sufficient height for circulation to occur naturally under the action of gravity. In this first embodiment, the working fluid is a refrigerant having a vaporization point located between 70°C and 80°C at a pressure of the order of six to seven bars. For example, the working fluid may be a chloro-trifluoropropene. A suitable chloro-trifluoropropene is sold under the Solstice® brand with the reference zd(R-1233zd) by the Honeywell company.
Le turbogénérateur 250 est principalement constitué d’une turbine reliée à un générateur électrique. La turbine reçoit le fluide de travail sous forme de vapeur sous pression provenant du troisième échangeur thermique 240. La vapeur sous pression entraîne la turbine qui entraîne le générateur électrique et produit ainsi de l’électricité. En traversant la turbine, la vapeur de fluide de travail perd de l’énergie, abaissant sa pression et sa température. The 250 turbogenerator mainly consists of a turbine connected to an electric generator. The turbine receives the working fluid in the form of pressurized steam coming from the third heat exchanger 240. The pressurized steam drives the turbine which drives the electric generator and thus produces electricity. As the working fluid vapor passes through the turbine, it loses energy, lowering its pressure and temperature.
Le deuxième échangeur thermique 230 est également relié ou connecté, de manière fluidique en amont de celui-ci et en aval du premier échangeur thermique 120, au circuit de circulation d’eau de mer 130 afin de permettre un échange de calories entre l’eau de mer sortant dudit premier échangeur thermique 120 et le fluide de travail circulant dans ledit circuit fermé 210, l’eau de mer se réchauffant tout en refroidissant le fluide de travail. Le deuxième échangeur thermique 230 fonctionne en condenseur pour liquéfier le fluide de travail alors à l’état de vapeur par échange thermique avec l’eau de mer. Le dimensionnement du deuxième échangeur thermique 230 est réalisé afin de permettre une condensation du fluide de travail de l’état vapeur à une température de 90°C à un état liquide à 40°C tout en ne réchauffant l’eau de mer que de 10°C lors de l’échange thermique. Ainsi, l’eau de mer sortant du deuxième échangeur thermique 230 est à une température comprise entre 20°C et 24°C et préférentiellement 22°C. Un tel échange peut être atteint avec un volume de circulation de fluide de travail dix fois inférieur au volume de circulation d’eau de mer. La température de l’eau de mer à une profondeur de cinquante mètres dans une zone tropicale étant sensiblement constante aux alentours de 22°C, il est possible de rejeter l’eau de mer sortant du deuxième
échangeur thermique 230 à cette profondeur de cinquante mètres sans nuire à la flore ou à la faune marine. En variante ou en complément, l'eau de mer en sortie du deuxième échangeur thermique 230 conserve une température suffisamment basse pour être exploitée dans un dispositif tiers d'aquaculture pour la production d'espèces qui se développent dans une plage de températures de 12°C à 20°C ou dans un dispositif de refroidissement de processus industriels nécessitant de l'eau fraîche comme certains centres de données comportant de nombreux serveurs informatiques. Pour cela, le condenseur 230 peut être avantageusement en connexion fluidique, en aval de celui-ci, avec un tel dispositif tiers d'aquaculture ou de refroidissement de processus industriels. The second heat exchanger 230 is also connected or connected, fluidically upstream thereof and downstream of the first heat exchanger 120, to the seawater circulation circuit 130 in order to allow an exchange of calories between the water sea water leaving said first heat exchanger 120 and the working fluid circulating in said closed circuit 210, the sea water heating up while cooling the working fluid. The second heat exchanger 230 operates as a condenser to liquefy the working fluid then in the vapor state by heat exchange with sea water. The dimensioning of the second heat exchanger 230 is carried out in order to allow condensation of the working fluid of the vapor state at a temperature of 90°C to a liquid state at 40°C while only heating the seawater by 10°C during the heat exchange. Thus, the sea water leaving the second heat exchanger 230 is at a temperature between 20°C and 24°C and preferably 22°C. Such an exchange can be achieved with a circulation volume of working fluid ten times lower than the circulation volume of sea water. The temperature of sea water at a depth of fifty meters in a tropical zone being substantially constant at around 22°C, it is possible to reject the sea water leaving the second heat exchanger 230 at this depth of fifty meters without harming marine flora or fauna. Alternatively or in addition, the seawater leaving the second heat exchanger 230 maintains a sufficiently low temperature to be used in a third-party aquaculture device for the production of species which develop in a temperature range of 12° C to 20°C or in an industrial process cooling device requiring fresh water such as certain data centers with many computer servers. For this, the condenser 230 can advantageously be in fluid connection, downstream of it, with such a third-party aquaculture or industrial process cooling device.
Le troisième échangeur thermique 240 est également relié au circuit fermé de fluide caloporteur 220 afin de permettre un échange de calories entre le fluide de travail circulant dans ledit circuit fermé 210 et le fluide caloporteur circulant dans le circuit fermé de fluide caloporteur 220, le fluide de travail se réchauffant tout en refroidissant le fluide caloporteur. Le troisième échangeur thermique 240 fonctionne en évaporateur qui transforme le fluide de travail de l’état liquide à l’état vapeur par échange thermique avec le fluide caloporteur. Le dimensionnement du troisième échangeur thermique 240 est réalisé afin de transformer le fluide de travail en vapeur sous pression à une température de 150°C tout en ne refroidissant le fluide caloporteur que d’environ 20°C lors de l’échange thermique. Afin de réaliser un tel échange thermique, le fluide caloporteur doit rentrer dans le troisième échangeur thermique à une température d’environ 180°C et sortir dudit troisième échangeur à une température d’environ 160°C. Un tel échange peut être atteint avec un volume de circulation de fluide de travail vingt fois inférieur au volume de circulation de fluide caloporteur. The third heat exchanger 240 is also connected to the closed circuit of heat transfer fluid 220 in order to allow an exchange of calories between the working fluid circulating in said closed circuit 210 and the heat transfer fluid circulating in the closed circuit of heat transfer fluid 220, the heat transfer fluid work heating up while cooling the heat transfer fluid. The third heat exchanger 240 functions as an evaporator which transforms the working fluid from the liquid state to the vapor state by heat exchange with the heat transfer fluid. The dimensioning of the third heat exchanger 240 is carried out in order to transform the working fluid into steam under pressure at a temperature of 150°C while only cooling the heat transfer fluid by approximately 20°C during the heat exchange. In order to carry out such a heat exchange, the heat transfer fluid must enter the third heat exchanger at a temperature of approximately 180°C and exit said third exchanger at a temperature of approximately 160°C. Such an exchange can be achieved with a circulation volume of working fluid twenty times lower than the circulation volume of heat transfer fluid.
Dans ce premier exemple de réalisation, le circuit fermé de fluide caloporteur 220 comporte un élément chauffant 260 et une pompe de circulation 270. La capacité de chauffage de l’élément chauffant 260 et le débit de circulation du fluide caloporteur définissent la capacité de chauffage du
fluide caloporteur à l’intérieur du circuit fermé 220. Le débit de circulation de fluide caloporteur peut en outre être ajusté en fonction de la température dudit fluide caloporteur, une vitesse de circulation d’équilibre correspondant aux températures d’entrée et de sortie de l’évaporateur 240 indiquées au paragraphe précédent. Le fluide caloporteur est un fluide devant supporter une température élevée sans se dégrader et sans se vaporiser. Un tel fluide caloporteur peut être de l’eau sous pression qui nécessite des canalisations pouvant supporter une pression de cinquante bars afin que l’eau ne se transforme pas en vapeur. En variante, le fluide caloporteur peut être constitué d’un mélange d’isopropyle et de biphényle qui peut être utilisé à des températures de plus de 200°C à basse pression, tel que par exemple le fluide caloporteur commercialisé sous la marque Therminol®62 par la société Eastman. In this first embodiment, the closed circuit of heat transfer fluid 220 comprises a heating element 260 and a circulation pump 270. The heating capacity of the heating element 260 and the circulation flow rate of the heat transfer fluid define the heating capacity of the heat transfer fluid. heat transfer fluid inside the closed circuit 220. The circulation rate of heat transfer fluid can also be adjusted as a function of the temperature of said heat transfer fluid, an equilibrium circulation speed corresponding to the inlet and outlet temperatures of the heat transfer fluid. evaporator 240 indicated in the previous paragraph. The heat transfer fluid is a fluid that must withstand a high temperature without degrading or vaporizing. Such a heat transfer fluid can be water under pressure which requires pipes that can withstand a pressure of fifty bars so that the water does not turn into steam. Alternatively, the heat transfer fluid may consist of a mixture of isopropyl and biphenyl which can be used at temperatures of more than 200°C at low pressure, such as for example the heat transfer fluid sold under the brand Therminol®62 by the Eastman company.
Un exemple d’élément chauffant 260 est décrit plus en détail à l’aide de la figure 2 qui montre une vue de dessus dudit élément chauffant et de la figure 3 qui montre une vue selon la coupe A-A indiquée sur la figure 2. L’élément chauffant 260 comporte principalement une conduite 261 à l’intérieur de laquelle le fluide caloporteur circule. Pour rendre l’élément chauffant 260 plus compact, la conduite 261 peut être constituée d’une pluralité de sections droites en connexions fluidiques en parallèle et espacées entres elles. En variante, la conduite 261 pourrait également être repliée sur elle-même afin de former un serpentin comportant plusieurs sections droites espacée entre elles. Pour chaque section droite de la conduite 261 , l’élément chauffant 260 comporte un miroir cylindro-parabolique 262 situé sous ladite section droite afin de concentrer les rayons solaires sur ladite conduite 261. Le miroir cylindro-parabolique 262 peut être motorisé afin de tourner autour de la conduite en fonction de l’élévation du soleil. La surface de chaque miroir parabolique 262 est au moins dix fois supérieure à la surface projetée de la conduite 261 sur ledit miroir 262. En outre, la conduite 261 est préférentiellement réalisée en matériau fortement conducteur, par exemple de l’acier, et peinte dans une couleur qui tend à absorber les rayons infrarouges,
par exemple en noir mat. Afin d’éviter un transfert de chaleur avec l’air ambiant, la conduite 261 peut être placée dans une enceinte d’isolation 263 épousant la forme de la conduite 261 tout en étant espacée de ladite conduite 261 . L’enceinte d’isolation est constituée d’un matériau transparent aux rayons solaires. Ladite enceinte 263 est fermée hermétiquement et est réalisée préférentiellement en matériaux isolants. A titre d’exemple, l’enceinte d’isolation 263 est par exemple constituée de polycarbonate et se trouve espacée de la conduite 261 d’une distance d’au moins dix centimètres. Pour améliorer l’isolation, l’enceinte 263 peut être mise sous vide ou peut être remplie d’un gaz neutre transparent servant d’isolant thermique, tel que par exemple de l’argon. Une telle structure permet de chauffer le fluide caloporteur à une température pouvant dépasser les 200°C. Toutefois, l’élément chauffant est dimensionné pour que ce dernier puisse amener la température du fluide caloporteur à une température d’environ 180°C avec une circulation du fluide caloporteur en régime établi qui amène ledit fluide à l’élément chauffant à une température d’environ 160°C. An example of heating element 260 is described in more detail using Figure 2 which shows a top view of said heating element and Figure 3 which shows a view along section AA indicated in Figure 2. heating element 260 mainly comprises a pipe 261 inside which the heat transfer fluid circulates. To make the heating element 260 more compact, the pipe 261 can consist of a plurality of straight sections in fluidic connections in parallel and spaced apart from each other. Alternatively, the pipe 261 could also be folded on itself in order to form a serpentine comprising several straight sections spaced between them. For each straight section of the pipe 261, the heating element 260 comprises a cylindrical-parabolic mirror 262 located under said straight section in order to concentrate the solar rays on said pipe 261. The cylindrical-parabolic mirror 262 can be motorized in order to rotate around of driving depending on the elevation of the sun. The surface of each parabolic mirror 262 is at least ten times greater than the projected surface of the pipe 261 on said mirror 262. In addition, the pipe 261 is preferably made of highly conductive material, for example steel, and painted in a color that tends to absorb infrared rays, for example in matte black. In order to avoid heat transfer with the ambient air, the pipe 261 can be placed in an insulation enclosure 263 matching the shape of the pipe 261 while being spaced from said pipe 261. The insulation enclosure is made of a material transparent to solar rays. Said enclosure 263 is hermetically closed and is preferably made of insulating materials. For example, the insulation enclosure 263 is for example made of polycarbonate and is spaced from the pipe 261 by a distance of at least ten centimeters. To improve the insulation, the enclosure 263 can be placed under vacuum or can be filled with a transparent neutral gas serving as a thermal insulator, such as for example argon. Such a structure makes it possible to heat the heat transfer fluid to a temperature that can exceed 200°C. However, the heating element is dimensioned so that the latter can bring the temperature of the heat transfer fluid to a temperature of approximately 180° C. with circulation of the heat transfer fluid at steady state which brings said fluid to the heating element at a temperature of 'approximately 160°C.
Si l’on considère l’énergie nécessaire au pompage de l’eau de mer ainsi que l’énergie nécessaire à la circulation des différents fluides dans le système, le rendement entre l’énergie électrique produite et l’énergie nécessaire au fonctionnement du sous-système de production d’énergie électrique 200 est de l’ordre de 12%. En outre, le sous-système de génération de froid 100 est alimenté en eau de mer profonde sans qu’il soit nécessaire d’ajouter d’énergie de pompage. De plus, seules l’énergie de la mer et l’énergie solaire sont utilisées pour produire de l’énergie électrique et du froid. Toutefois, un tel système ne peut fonctionner que lorsque le soleil est levé et ne permet pas de produire de l’énergie électrique ni de générer du froid pendant la nuit. If we consider the energy necessary for pumping sea water as well as the energy necessary for the circulation of the different fluids in the system, the efficiency between the electrical energy produced and the energy necessary for the operation of the sub -electric energy production system 200 is of the order of 12%. Additionally, the cold generation subsystem 100 is supplied with deep seawater without the need for added pumping power. In addition, only sea and solar energy are used to produce electrical energy and cold. However, such a system can only operate when the sun is up and cannot produce electrical energy or generate cold during the night.
La figure 4 illustre un deuxième exemple de réalisation de l’invention permettant un fonctionnement optimal pendant la nuit tout en utilisant uniquement l’énergie solaire pour chauffer le fluide de travail. Le deuxième exemple de réalisation se différence du premier exemple de réalisation en remplaçant le circuit de fluide caloporteur 220 par un circuit de fluide
caloporteur intermédiaire 320 relié à un réservoir tampon 330 et comprenant une pompe de circulation 321. Le réservoir tampon 330 comporte deux serpentins de circulation de fluide circulant dans un fluide de stockage de chaleur, l’un des serpentins étant en connexion fluidique avec le circuit de fluide caloporteur intermédiaire 320, l’autre des serpentins étant en connexion fluidique avec un circuit de chauffage 340. Le circuit de chauffage 340 comporte un élément de chauffage 260 et une pompe de circulation 341. L’élément de chauffage 260 est par exemple conforme à celui décrit à l’aide des figures 2 et 3. Figure 4 illustrates a second embodiment of the invention allowing optimal operation during the night while using only solar energy to heat the working fluid. The second embodiment differs from the first embodiment by replacing the heat transfer fluid circuit 220 with a fluid circuit. intermediate heat transfer 320 connected to a buffer tank 330 and comprising a circulation pump 321. The buffer tank 330 comprises two fluid circulation coils circulating in a heat storage fluid, one of the coils being in fluid connection with the heat transfer circuit intermediate heat transfer fluid 320, the other of the coils being in fluid connection with a heating circuit 340. The heating circuit 340 comprises a heating element 260 and a circulation pump 341. The heating element 260 is for example in accordance with that described using Figures 2 and 3.
Le troisième échangeur thermique 240 est relié au circuit de fluide caloporteur intermédiaire 320 afin de permettre un échange de calories entre le fluide de travail circulant dans ledit circuit fermé 210 et un premier fluide caloporteur circulant dans le circuit de fluide caloporteur intermédiaire 320, le fluide de travail se réchauffant tout en refroidissant le premier fluide caloporteur. Le troisième échangeur thermique 240 fonctionne en évaporateur qui transforme le fluide de travail de l’état liquide à l’état vapeur par échange thermique avec le fluide caloporteur. Cependant, dans ce deuxième exemple de réalisation, le dimensionnement du troisième échangeur thermique 240 est réalisé afin de transformer le fluide de travail en vapeur sous pression à une température de 80°C à 90°C tout en ne refroidissant le premier fluide caloporteur que d’environ 20°C à 30°C lors de l’échange thermique. Afin de réaliser un tel échange thermique, le premier fluide caloporteur doit rentrer dans le troisième échangeur thermique à une température d’environ 100°C à 120°C et sortir dudit troisième échangeur à une température d’environ 80°C à 90°C. La régulation de la température du premier fluide caloporteur se fait en ajustant le débit de la pompe de circulation 321 en fonction de la température du fluide de stockage. Le volume de circulation de fluide de travail peut varier entre deux et cinq fois le volume de circulation du premier fluide caloporteur. The third heat exchanger 240 is connected to the intermediate heat transfer fluid circuit 320 in order to allow an exchange of calories between the working fluid circulating in said closed circuit 210 and a first heat transfer fluid circulating in the intermediate heat transfer fluid circuit 320, the heat transfer fluid work heating up while cooling the first heat transfer fluid. The third heat exchanger 240 functions as an evaporator which transforms the working fluid from the liquid state to the vapor state by heat exchange with the heat transfer fluid. However, in this second embodiment, the dimensioning of the third heat exchanger 240 is carried out in order to transform the working fluid into steam under pressure at a temperature of 80°C to 90°C while only cooling the first heat transfer fluid by 'approximately 20°C to 30°C during heat exchange. In order to carry out such a heat exchange, the first heat transfer fluid must enter the third heat exchanger at a temperature of approximately 100°C to 120°C and exit said third exchanger at a temperature of approximately 80°C to 90°C. . The temperature of the first heat transfer fluid is regulated by adjusting the flow rate of the circulation pump 321 as a function of the temperature of the storage fluid. The circulation volume of the working fluid can vary between two and five times the circulation volume of the first heat transfer fluid.
Dans ce deuxième exemple de réalisation, le fluide de travail est un fluide frigorigène ayant un point de vaporisation aux alentours de 50°C à une pression de l’ordre de treize bars. A titre d’exemple, le fluide de travail peut
être un tetrafluoropropène. Un tetrafluoropropène qui convient est vendu sous la marque Solstice® avec la référence yf(R-1234yf) par la société Honeywell. Le principe de génération d’énergie électrique est le même que dans le premier exemple de réalisation sauf à utiliser une source chaude à une température inférieure. In this second embodiment, the working fluid is a refrigerant having a vaporization point around 50°C at a pressure of around thirteen bars. For example, the working fluid can be a tetrafluoropropene. A suitable tetrafluoropropene is sold under the Solstice® brand with the reference yf (R-1234yf) by the Honeywell company. The principle of generating electrical energy is the same as in the first embodiment except using a hot source at a lower temperature.
Le chauffage du premier fluide caloporteur est réalisé par le passage du premier fluide caloporteur dans le réservoir tampon 330 qui prend de la chaleur provenant du fluide de stockage. Le fluide de stockage est réchauffé par le circuit de chauffage 340 contenant un deuxième fluide caloporteur. Le chauffage du deuxième fluide caloporteur est réalisé par l’élément chauffant 260. Le débit de circulation du deuxième fluide caloporteur définit la capacité de chauffage du fluide de stockage à l’aide du deuxième fluide caloporteur par le circuit de chauffage 340. Le débit de circulation du deuxième fluide caloporteur peut en outre être ajusté en fonction de la température dudit deuxième fluide caloporteur et du fluide de stockage. Typiquement, lorsque le soleil fournit de l’énergie, le deuxième fluide caloporteur peut atteindre une température d’environ 180°C à l’entrée du serpentin du réservoir tampon 330 de sorte à pouvoir amener la température du fluide de stockage à une température égale ou légèrement supérieure à 120°C pendant la journée. Le réservoir tampon 330 doit contenir une quantité de fluide de stockage suffisante pour pouvoir conserver une température supérieure à 100°C pendant toute la nuit afin de pouvoir réchauffer le premier fluide caloporteur et ainsi de permettre la production d’énergie électrique en continu. A cet effet, le fluide de stockage doit avoir une très forte capacité de stockage thermique. Heating of the first heat transfer fluid is carried out by passing the first heat transfer fluid into the buffer tank 330 which takes heat from the storage fluid. The storage fluid is heated by the heating circuit 340 containing a second heat transfer fluid. Heating of the second heat transfer fluid is carried out by the heating element 260. The circulation flow rate of the second heat transfer fluid defines the heating capacity of the storage fluid using the second heat transfer fluid by the heating circuit 340. The flow rate of circulation of the second heat transfer fluid can also be adjusted as a function of the temperature of said second heat transfer fluid and of the storage fluid. Typically, when the sun provides energy, the second heat transfer fluid can reach a temperature of approximately 180° C. at the entrance to the coil of the buffer tank 330 so as to be able to bring the temperature of the storage fluid to an equal temperature. or slightly above 120°C during the day. The buffer tank 330 must contain a sufficient quantity of storage fluid to be able to maintain a temperature above 100°C throughout the night in order to be able to heat the first heat transfer fluid and thus allow the continuous production of electrical energy. For this purpose, the storage fluid must have a very high thermal storage capacity.
A titre d’exemple, le fluide de stockage peut être de l’eau mise sous pression, par exemple entre douze et quatorze bars et les premier et deuxième fluides caloporteurs peuvent être un mélange d’isopropyle et de biphényle restant à basse pression. Pour pouvoir maintenir la température dans le réservoir tampon entre 100°C et 120°C, il convient de définir le volume du fluide de stockage en fonction du débit du premier fluide puis de définir le débit du deuxième fluide.
Le sous-système de génération d’énergie électrique 200 de ce deuxième exemple de réalisation utilisant une source chaude ayant une température plus basse que dans le premier exemple de réalisation, le rendement peut être compris entre 6% et 10%. Toutefois ce deuxième exemple permet un usage continu indépendamment du jour ou de la nuit. For example, the storage fluid can be water put under pressure, for example between twelve and fourteen bars and the first and second heat transfer fluids can be a mixture of isopropyl and biphenyl remaining at low pressure. To be able to maintain the temperature in the buffer tank between 100°C and 120°C, it is necessary to define the volume of the storage fluid as a function of the flow rate of the first fluid then to define the flow rate of the second fluid. The electrical energy generation subsystem 200 of this second embodiment using a hot source having a lower temperature than in the first embodiment, the efficiency can be between 6% and 10%. However, this second example allows continuous use regardless of day or night.
De nombreuses variantes sont possibles. Il est notamment possible de dimensionner différemment les différents éléments des exemples de réalisation. Notamment, il est possible d’utiliser un réservoir tampon de plus faible dimension si l’on souhaite produire une quantité d’énergie électrique plus faible pendant la nuit que ce qu’il est possible de produire pendant la journée. Également, les températures de circulation des différents fluides correspondent à un mode de fonctionnement préféré et peuvent être changées en fonction de choix de réalisation correspondant à des rendements différents. Le fluide de travail, le fluide caloporteur et le fluide de stockage sont donnés à titre d’exemple et d’autres fluides peuvent être utilisés en fonction des températures de fonctionnement souhaitées par l’homme du métier. Ainsi, l’homme du métier pourra modifier le dimensionnement en fonction de ses besoins.
Many variations are possible. In particular, it is possible to dimension the different elements of the exemplary embodiments differently. In particular, it is possible to use a smaller buffer tank if one wishes to produce a lower quantity of electrical energy during the night than what can be produced during the day. Also, the circulation temperatures of the different fluids correspond to a preferred mode of operation and can be changed according to implementation choices corresponding to different efficiencies. The working fluid, the heat transfer fluid and the storage fluid are given as an example and other fluids can be used depending on the operating temperatures desired by those skilled in the art. Thus, those skilled in the art will be able to modify the sizing according to their needs.
Claims
REVENDICATIONS Système de génération de froid et de production d’énergie électrique qui comporte : CLAIMS Cold generation and electrical energy production system which includes:
- un élément chauffant solaire (260) agencé pour chauffer un premier fluide caloporteur circulant dans un circuit fermé (220, 340) de fluide caloporteur comportant une pompe de circulation (270) ; - a solar heating element (260) arranged to heat a first heat transfer fluid circulating in a closed circuit (220, 340) of heat transfer fluid comprising a circulation pump (270);
- un sous-système de génération d’énergie électrique (200) comprenant un circuit fermé (210) de fluide de travail comportant une pompe de circulation (211 ), en connexion fluidique avec : a. un évaporateur (240) de sorte que ce dernier chauffe ledit fluide de travail pour obtenir de la vapeur sous pression, ledit évaporateur (240) étant un premier échangeur thermique en connexion fluidique avec un circuit fermé de fluide caloporteur pour transférer de l’énergie calorifique dudit fluide caloporteur au fluide de travail ; b. un turbogénérateur (250) transformant ladite vapeur sous pression en énergie électrique ; c. un condenseur (230) de sorte que ce dernier refroidisse ladite vapeur sous pression après son passage dans le turbogénérateur (250) liquéfiant le fluide de travail en amont de l’évaporateur (240) ; - an electrical energy generation subsystem (200) comprising a closed circuit (210) of working fluid comprising a circulation pump (211), in fluid connection with: a. an evaporator (240) so that the latter heats said working fluid to obtain steam under pressure, said evaporator (240) being a first heat exchanger in fluid connection with a closed circuit of heat transfer fluid to transfer heat energy from said heat transfer fluid to the working fluid; b. a turbogenerator (250) transforming said steam under pressure into electrical energy; vs. a condenser (230) so that the latter cools said steam under pressure after its passage through the turbogenerator (250) liquefying the working fluid upstream of the evaporator (240);
- un circuit de circulation d’eau de mer (130) comportant une pompe d’eau de mer (131 ) en connexion fluidique avec un deuxième échangeur thermique (120) ; caractérisé en ce que : - a seawater circulation circuit (130) comprising a seawater pump (131) in fluid connection with a second heat exchanger (120); characterized in that:
- le circuit de circulation d’eau de mer (130) est agencé pour pomper ladite eau de mer à une profondeur telle que la température de ladite
eau de mer pompée soit de l’ordre de 5°C en entrée dudit circuit de circulation d’eau de mer (130) ; - the seawater circulation circuit (130) is arranged to pump said seawater to a depth such that the temperature of said pumped seawater is of the order of 5°C at the inlet of said seawater circulation circuit (130);
- le système comporte en outre un sous-système de génération de froid (100) comprenant un circuit fermé de fluide froid (110) comportant une pompe de circulation (131 ), en connexion fluidique avec le deuxième échangeur thermique (120) de sorte que ce dernier refroidisse le fluide froid avec l’eau de mer du circuit de circulation d’eau de mer (130) ; - the system further comprises a cold generation subsystem (100) comprising a closed cold fluid circuit (110) comprising a circulation pump (131), in fluid connection with the second heat exchanger (120) so that the latter cools the cold fluid with seawater from the seawater circulation circuit (130);
- le condenseur (230) est un troisième échangeur thermique en connexion fluidique avec le circuit de circulation d’eau de mer (130) en aval du deuxième échangeur thermique(120), afin de refroidir le fluide de travail à partir de l’eau de mer contenue dans ledit circuit de circulation d’eau de mer (130) après que celle-ci a été réchauffée par ledit deuxième échangeur thermique (120). Système selon la revendication 1 , dans lequel le circuit fermé de fluide caloporteur en connexion fluidique avec l’évaporateur (240) pour transférer de l’énergie calorifique dudit fluide caloporteur au fluide de travail est le circuit fermé (220) du premier fluide caloporteur chauffé par l’élément chauffant solaire (260). Système selon la revendication 1 , dans lequel le circuit fermé de fluide caloporteur en connexion fluidique avec l’évaporateur (240) pour transférer de l’énergie calorifique dudit fluide caloporteur au fluide de travail est un circuit fermé (320) d’un deuxième fluide caloporteur comportant une pompe de circulation (321 ), en connexion fluidique avec un réservoir tampon (330) empli d’un troisième fluide caloporteur de stockage, ledit réservoir tampon (330) étant également en connexion fluidique avec le circuit fermé (340) du premier fluide caloporteur chauffé
par l’élément chauffant solaire (260), ledit deuxième fluide caloporteur étant ainsi chauffé par échange thermique avec le troisième fluide caloporteur, ce dernier étant chauffé par échange thermique avec le premier fluide caloporteur. - the condenser (230) is a third heat exchanger in fluid connection with the seawater circulation circuit (130) downstream of the second heat exchanger (120), in order to cool the working fluid from the water of sea contained in said seawater circulation circuit (130) after it has been heated by said second heat exchanger (120). System according to claim 1, in which the closed circuit of heat transfer fluid in fluid connection with the evaporator (240) for transferring heat energy from said heat transfer fluid to the working fluid is the closed circuit (220) of the first heated heat transfer fluid by the solar heating element (260). System according to claim 1, in which the closed circuit of heat transfer fluid in fluid connection with the evaporator (240) for transferring heat energy from said heat transfer fluid to the working fluid is a closed circuit (320) of a second fluid heat transfer fluid comprising a circulation pump (321), in fluid connection with a buffer tank (330) filled with a third storage heat transfer fluid, said buffer tank (330) also being in fluid connection with the closed circuit (340) of the first heated heat transfer fluid by the solar heating element (260), said second heat transfer fluid thus being heated by heat exchange with the third heat transfer fluid, the latter being heated by heat exchange with the first heat transfer fluid.
4. Système selon l’une quelconque des revendications précédentes, dans lequel le premier fluide caloporteur est chauffé dans une conduite de chauffage (261 ) dans laquelle circule ledit premier fluide caloporteur et sur laquelle des rayons solaires sont concentrés à l’aide d’au moins un miroir cylindro-parabolique (262). 4. System according to any one of the preceding claims, in which the first heat transfer fluid is heated in a heating pipe (261) in which said first heat transfer fluid circulates and on which solar rays are concentrated using minus a parabolic cylindrical mirror (262).
5. Système selon l’une des revendications précédentes, dans lequel le fluide de travail est un fluide frigorigène. 6. Système selon l’une quelconque des revendications précédentes, pour lequel le condenseur (230) est en connexion fluidique, en aval de celui-ci, avec un dispositif tiers d'aquaculture ou de refroidissement de processus industriels.
5. System according to one of the preceding claims, in which the working fluid is a refrigerant. 6. System according to any one of the preceding claims, for which the condenser (230) is in fluid connection, downstream thereof, with a third-party aquaculture or industrial process cooling device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2204639A FR3135514B1 (en) | 2022-05-16 | 2022-05-16 | System for generating cold and supplying electrical energy from sea water and the sun |
FRFR2204639 | 2022-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023222971A1 true WO2023222971A1 (en) | 2023-11-23 |
Family
ID=82320002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2023/050696 WO2023222971A1 (en) | 2022-05-16 | 2023-05-15 | System for generating cold and for supplying electrical power from seawater and the sun |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3135514B1 (en) |
WO (1) | WO2023222971A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2071184A1 (en) | 2007-12-10 | 2009-06-17 | Bold River | Facility for producing electricity from solar energy |
EP2096305A1 (en) | 2008-02-27 | 2009-09-02 | Sophia Antipolis Energie Developpement | Facility for generating electricity from solar energy |
US20110048006A1 (en) | 2009-09-03 | 2011-03-03 | Cap Daniel P | Solar desalinization plant |
-
2022
- 2022-05-16 FR FR2204639A patent/FR3135514B1/en active Active
-
2023
- 2023-05-15 WO PCT/FR2023/050696 patent/WO2023222971A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2071184A1 (en) | 2007-12-10 | 2009-06-17 | Bold River | Facility for producing electricity from solar energy |
EP2096305A1 (en) | 2008-02-27 | 2009-09-02 | Sophia Antipolis Energie Developpement | Facility for generating electricity from solar energy |
US20110048006A1 (en) | 2009-09-03 | 2011-03-03 | Cap Daniel P | Solar desalinization plant |
Also Published As
Publication number | Publication date |
---|---|
FR3135514A1 (en) | 2023-11-17 |
FR3135514B1 (en) | 2024-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2379848B1 (en) | Electricity generation device with several heat pumps in series | |
EP2326801B1 (en) | Cogeneration device | |
EP2096305A1 (en) | Facility for generating electricity from solar energy | |
EP2396607A2 (en) | Solar collector, and power-generating plant including such solar collectors | |
EP0148756A2 (en) | System for the revaluation of low-level thermal energy using phenomena of evaporation, and solution of two fluids being in equilibrium of vapour pressure at different temperatures | |
FR2924746A1 (en) | INSTALLATION FOR THE PRODUCTION OF ELECTRICITY FROM SOLAR ENERGY. | |
FR2968297A1 (en) | System for production of exploitable water and electricity, comprises a machine ditherme, an open hydraulic circuit, a conduit, a pipe, a condenser, a closed hydraulic circuit, pumps and/or solenoid valves, and a post-treatment device | |
EP3748137B1 (en) | System for co-producing electrical energy and cold thermal energy and associated method | |
WO2023222971A1 (en) | System for generating cold and for supplying electrical power from seawater and the sun | |
EP2855861B1 (en) | Coupling of a turbopump for molten salts | |
FR2999830B1 (en) | ELEMENT FOR THE TREATMENT OF IMPROVED SOLAR RADIATION AND A SOLAR FOLLOWER AND A SOLAR POWER PLANT EQUIPPED WITH SUCH ELEMENT | |
FR2934890A1 (en) | Thermodynamic heat pump installation for heating room, has secondary compressor in which secondary heat transfer fluid is reheated by compression before ceding fluid by condensing calories of secondary fluid accumulated by compression | |
WO2023233116A1 (en) | Autonomous device for cooling an industrial process, in particular for a data processing centre, and data processing centre using the device | |
FR2998356A1 (en) | CONVERSION GROUP FOR A THERMAL SOLAR ELECTRIC POWER PLANT AND A THERMAL SOLAR ELECTRIC POWER PLANT COMPRISING AT LEAST ONE SUCH CONVERSION GROUP | |
EP0213038A1 (en) | Heat exchange device with circulation of two fluids in independent circuits | |
EP3044521B1 (en) | Solar energy system for domestic hot water production and cooling | |
EP3555469A1 (en) | Energy generating station | |
FR2482205A1 (en) | Electric power station using solar energy - which heats molten salt eutectic circulating through steam generator, so steam is obtd. to drive turbo:alternator | |
FR2890650A1 (en) | Desalinization of seawater by vacuum vaporization, comprises obtaining vaporization of water by a thermodynamic unit with a frigorific group or a heat pump | |
WO2015186107A1 (en) | Facility for converting heat into mechanical energy with optimised cooling by a system for recovering and storing a portion of the heat energy of the working fluid | |
EP4336124A1 (en) | System and method for transferring thermal energy | |
EP2318785A2 (en) | Magnetocaloric thermal generator | |
FR2628510A1 (en) | Solar-powdered generating unit using turbine and converter - has converter output producing line supply, whilst turbine exhaust is condensed for solar re-heating to sustain cycle | |
WO2009112700A2 (en) | Method and device for cooling using water from subsea depths as a cold source | |
FR2500883A1 (en) | Gas engine and compressed gas power system - uses stored solar heat energy and atmospheric fluids e.g. air or water to increase power output |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23729816 Country of ref document: EP Kind code of ref document: A1 |