[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023219134A1 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
WO2023219134A1
WO2023219134A1 PCT/JP2023/017762 JP2023017762W WO2023219134A1 WO 2023219134 A1 WO2023219134 A1 WO 2023219134A1 JP 2023017762 W JP2023017762 W JP 2023017762W WO 2023219134 A1 WO2023219134 A1 WO 2023219134A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
electrode
wave device
bump
electrodes
Prior art date
Application number
PCT/JP2023/017762
Other languages
French (fr)
Japanese (ja)
Inventor
淳司 山内
直 山崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023219134A1 publication Critical patent/WO2023219134A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present disclosure relates to an acoustic wave device having a piezoelectric layer.
  • Patent Document 1 discloses an elastic wave device that uses plate waves.
  • the elastic wave device described in Patent Document 1 includes a support, a piezoelectric substrate, and an IDT electrode.
  • the support body is provided with a cavity.
  • the piezoelectric substrate is provided on the support body so as to overlap with the cavity.
  • the IDT electrode is provided on the piezoelectric substrate so as to overlap with the cavity.
  • a plate wave is excited by an IDT electrode.
  • An object of the present disclosure is to provide an elastic wave device that can suppress deterioration of characteristics.
  • An elastic wave device includes: a package board; an acoustic wave element bonded to the main surface of the package substrate via a plurality of conductive bumps and having one or more resonators and wiring electrically connected to the resonators;
  • the plurality of conductive bumps are one or more first bumps; a second bump surrounded by at least one of at least one of the first bump and at least one of the resonators when viewed from an orthogonal direction perpendicular to the main surface of the package substrate;
  • a conductive pattern electrically connected to the second bump is formed on the package substrate, Viewed from the orthogonal direction, the conductive pattern extends from the second bump, straddles at least one of the resonator and the wiring, and surrounds the second bump from the inside to the outside of the first bump and the resonator. It extends to
  • an elastic wave device that can suppress deterioration of characteristics.
  • Plan view showing the electrode structure on the piezoelectric layer A cross-sectional view of the portion along line AA in Figure 1A
  • a schematic front sectional view for explaining waves of the elastic wave device of the present disclosure A schematic diagram showing a bulk wave when a voltage is applied between the first electrode and the second electrode such that the second electrode has a higher potential than the first electrode.
  • a diagram showing resonance characteristics of an elastic wave device according to a first embodiment of the present disclosure A diagram showing the relationship between d/2p and the fractional band as a resonator of an elastic wave device
  • a plan view of another elastic wave device according to the first embodiment of the present disclosure A reference diagram showing an example of resonance characteristics of an elastic wave device.
  • a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band A diagram showing a map of the fractional band with respect to the Euler angles (0°, ⁇ , ⁇ ) of LiNbO3 when d/p is brought as close to 0 as possible
  • a partially cutaway perspective view for explaining an elastic wave device according to a first embodiment of the present disclosure Top view of multiple conventional elastic wave devices arranged in a grid pattern Graph showing power transmission loss versus frequency in a conventional elastic wave device Schematic plan view of multiple elastic wave devices arranged in a grid pattern
  • a schematic cross-sectional view of an elastic wave device according to a second embodiment of the present disclosure cut in the thickness direction Schematic plan view of acoustic wave element
  • Equivalent circuit diagram of the acoustic wave element in Figure 17 Schematic plan view showing a pair of comb-shaped electrodes
  • Graph showing power transmission loss versus frequency in an elastic wave device Graph showing power transmission loss versus frequency in an elastic wave device Graph showing the power passing loss with respect to the width of the second conductive pattern in the elastic wave device Graph showing the power passing loss with respect to the width of the second conductive pattern in the elastic wave device
  • Acoustic wave devices include a piezoelectric layer made of lithium niobate or lithium tantalate, and a first electrode and a second electrode facing each other in a direction crossing the thickness direction of the piezoelectric layer. and an electrode.
  • the elastic wave device of the first aspect utilizes a bulk wave in a thickness shear mode.
  • the first electrode and the second electrode are adjacent electrodes, the thickness of the piezoelectric layer is d, and the distance between the centers of the first electrode and the second electrode is p.
  • d/p is 0.5 or less.
  • Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave described above can be obtained.
  • An acoustic wave device includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode that face each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween.
  • FIG. 1A is a schematic perspective view showing the appearance of an acoustic wave device according to a first embodiment of the first and second aspects
  • FIG. 1B is a plan view showing an electrode structure on a piezoelectric layer.
  • FIG. 2 is a cross-sectional view of a portion taken along line AA in FIG. 1A.
  • the acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 .
  • the piezoelectric layer 2 may be made of LiTaO 3 .
  • the cut angle of LiNbO 3 and LiTaO 3 is a Z cut in this embodiment, it may be a rotational Y cut or an X cut.
  • the propagation directions of Y propagation and X propagation are ⁇ 30°.
  • the thickness of the piezoelectric layer 2 is not particularly limited, but is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear mode.
  • the piezoelectric layer 2 has first and second main surfaces 2a and 2b that face each other.
  • An electrode 3 and an electrode 4 are provided on the first main surface 2a.
  • electrode 3 is an example of a "first electrode”
  • electrode 4 is an example of a "second electrode”.
  • the plurality of electrodes 3 are a plurality of first electrode fingers connected to the first bus bar 5.
  • the plurality of electrodes 4 are a plurality of second electrode fingers connected to the second bus bar 6.
  • the plurality of electrodes 3 and the plurality of electrodes 4 are interposed with each other.
  • the electrode 3 and the electrode 4 have a rectangular shape and have a length direction.
  • the electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to this length direction.
  • These plurality of electrodes 3 and 4, the first bus bar 5, and the second bus bar 6 constitute an IDT (Interdigital Transducer) electrode.
  • the length direction of the electrodes 3 and 4 and the direction perpendicular to the length direction of the electrodes 3 and 4 are both directions that intersect the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2.
  • the length direction of the electrodes 3 and 4 may be replaced with the direction perpendicular to the length direction of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may extend in the direction in which the first bus bar 5 and the second bus bar 6 extend. In that case, the first bus bar 5 and the second bus bar 6 will extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B.
  • Electrode 3 and electrode 4 are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4.
  • electrode 3 and electrode 4 are adjacent to each other are arranged so as to be in direct contact with each other, but when electrode 3 and electrode 4 are arranged with a gap between them. refers to
  • the center-to-center distance between the electrodes 3 and 4, that is, the pitch, is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • the center-to-center distance between the electrodes 3 and 4 refers to the center of the width dimension of the electrode 3 in the direction orthogonal to the length direction of the electrode 3, and the width dimension of the electrode 4 in the direction orthogonal to the length direction of the electrode 4.
  • the distance between the center of is 1 It refers to the average value of the distance between the centers of adjacent electrodes 3 and 4 among 5 or more pairs of electrodes 3 and 4.
  • the width of the electrodes 3 and 4, that is, the dimension in the opposing direction of the electrodes 3 and 4 is preferably in the range of 150 nm or more and 1000 nm or less.
  • the distance between the centers of the electrodes 3 and 4 refers to the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the center of the dimension (width dimension) of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. This is the distance between the center of the dimension (width dimension).
  • the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2. This is not the case when a piezoelectric material having a different cut angle is used as the piezoelectric layer 2.
  • “orthogonal” is not limited to strictly orthogonal, but approximately orthogonal (for example, the angle between the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is 90° ⁇ 10°) But that's fine.
  • a support member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 in between.
  • the insulating layer 7 and the support member 8 have a frame-like shape, and have openings 7a and 8a, as shown in FIG. Thereby, a cavity 9 is formed.
  • the cavity 9 is provided so as not to hinder the vibration of the excitation region C of the piezoelectric layer 2. Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 in between, at a position that does not overlap with the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be laminated directly or indirectly on the second main surface 2b of the piezoelectric layer 2.
  • the insulating layer 7 is made of silicon oxide. However, other than silicon oxide, an appropriate insulating material such as silicon oxynitride or alumina can be used.
  • the support member 8 is made of Si. The plane orientation of the Si surface on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, Si has a high resistivity of 4 k ⁇ or more. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material.
  • Examples of materials for the support member 8 include aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and star.
  • Various ceramics such as tite and forsterite, dielectrics such as diamond and glass, semiconductors such as gallium nitride, etc. can be used.
  • the plurality of electrodes 3 and 4 and the first and second bus bars 5 and 6 are made of a suitable metal or alloy such as Al or AlCu alloy.
  • the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesive layer other than the Ti film may be used.
  • an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first bus bar 5 and the second bus bar 6. Thereby, it is possible to obtain resonance characteristics using the thickness shear mode bulk wave excited in the piezoelectric layer 2.
  • d/p 0. It is considered to be 5 or less. Therefore, the bulk wave in the thickness shear mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
  • the electrodes 3 and 4 are adjacent to each other.
  • the distance p between the centers of the electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
  • the elastic wave device 1 of this embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to achieve miniaturization, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides and has little propagation loss. Further, the reason why the reflector is not required is because the bulk wave in the thickness shear mode is used.
  • FIG. 3A is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional acoustic wave device.
  • a conventional elastic wave device is described in, for example, Japanese Patent Publication No. 2012-257019.
  • waves propagate in the piezoelectric film 201 as indicated by arrows.
  • the first main surface 201a and the second main surface 201b are opposite to each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. It is.
  • the X direction is the direction in which the electrode fingers of the IDT electrodes are lined up. As shown in FIG.
  • the wave propagates in the X direction as shown. Since it is a plate wave, the piezoelectric film 201 vibrates as a whole, but since the wave propagates in the X direction, reflectors are placed on both sides to obtain resonance characteristics. Therefore, wave propagation loss occurs, and when miniaturization is attempted, that is, when the number of logarithms of electrode fingers is reduced, the Q value decreases.
  • the vibration displacement is in the thickness-slip direction, so the waves are generated between the first principal surface 2a and the second principal surface of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Since resonance characteristics are obtained by the propagation of waves in the Z direction, a reflector is not required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
  • FIG. 4 schematically shows a bulk wave when a voltage is applied between electrode 3 and electrode 4 such that electrode 4 has a higher potential than electrode 3.
  • the first region 451 is a region of the excitation region C between a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2, and the first main surface 2a.
  • the second region 452 is a region of the excitation region C between the virtual plane VP1 and the second principal surface 2b.
  • the elastic wave device 1 As mentioned above, in the elastic wave device 1, at least one pair of electrodes consisting of the electrode 3 and the electrode 4 are arranged, but since the wave is not propagated in the X direction, the elastic wave device 1 is made up of the electrodes 3 and 4. There does not necessarily have to be a plurality of pairs of electrodes. That is, it is only necessary that at least one pair of electrodes be provided.
  • the electrode 3 is an electrode connected to a hot potential
  • the electrode 4 is an electrode connected to a ground potential.
  • the electrode 3 may be connected to the ground potential and the electrode 4 may be connected to the hot potential.
  • at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrode is provided.
  • FIG. 5 is a diagram showing the resonance characteristics of the elastic wave device according to the first embodiment of the present invention.
  • the design parameters of the elastic wave device 1 that obtained this resonance characteristic are as follows.
  • the logarithm of electrodes consisting of electrodes 3 and 4 21 pairs
  • center distance between electrodes 3 ⁇ m
  • width of electrodes 3 and 4 500 nm
  • d/p 0.133.
  • Insulating layer 7 silicon oxide film with a thickness of 1 ⁇ m.
  • Support member 8 Si.
  • the length of the excitation region C is a dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
  • the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 were all made equal in multiple pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
  • d/p is preferably 0.5 or less, as described above. is 0.24 or less. This will be explained with reference to FIG.
  • FIG. 6 is a diagram showing the relationship between d/2p and the fractional band of the resonator of the elastic wave device.
  • the at least one pair of electrodes may be one pair, and in the case of one pair of electrodes, the above p is the distance between the centers of adjacent electrodes 3 and 4. Furthermore, in the case of 1.5 or more pairs of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 may be set to p.
  • the thickness d of the piezoelectric layer if the piezoelectric layer 2 has thickness variations, a value obtained by averaging the thicknesses may be adopted.
  • FIG. 7 is a plan view of another elastic wave device according to the first embodiment of the present disclosure.
  • a pair of electrodes including an electrode 3 and an electrode 4 are provided on the first main surface 2a of the piezoelectric layer 2.
  • K in FIG. 7 is the intersection width.
  • the number of pairs of electrodes may be one. Even in this case, if the above-mentioned d/p is 0.5 or less, bulk waves in the thickness shear mode can be excited effectively.
  • the above-mentioned adjacent it is desirable that the metallization ratio MR of the electrodes 3 and 4 satisfies MR ⁇ 1.75(d/p)+0.075. That is, when viewed in the direction in which adjacent first electrode fingers and second electrode fingers are facing each other, the region where the plurality of first electrode fingers and the plurality of second electrode fingers overlap is excited. region (intersection region), and when the metallization ratio of the plurality of first electrode fingers and the plurality of second electrode fingers with respect to the excitation region is MR, MR ⁇ 1.75 (d/p) + 0.075. It is preferable to meet the requirements. In that case, spurious can be effectively reduced.
  • FIG. 8 is a reference diagram showing an example of the resonance characteristics of the elastic wave device 1.
  • a spurious signal indicated by arrow B appears between the resonant frequency and the anti-resonant frequency.
  • d/p 0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°).
  • the metallization ratio MR was set to 0.35.
  • the metallization ratio MR will be explained with reference to FIG. 1B.
  • the area surrounded by the dashed line C becomes the excitation region.
  • This excitation region is the region where the electrode 3 overlaps the electrode 4 when the electrode 3 and the electrode 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, that is, in a direction in which they face each other. and a region between electrodes 3 and 4 where electrodes 3 and 4 overlap.
  • the metallization ratio MR is the ratio of the area of the metallized portion to the area of the excitation region.
  • MR may be the ratio of the metallized portion included in all the excitation regions to the total area of the excitation regions.
  • FIG. 9 is a diagram showing the relationship between the fractional band and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious when a large number of elastic wave resonators are configured according to the present embodiment. be. Note that the specific band was adjusted by variously changing the thickness of the piezoelectric layer and the dimensions of the electrode. Further, although FIG. 9 shows the results when a Z-cut piezoelectric layer made of LiNbO 3 is used, the same tendency is obtained when piezoelectric layers with other cut angles are used.
  • the spurious is as large as 1.0.
  • the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more will affect the pass band even if the parameters that make up the fractional band are changed. Appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious signal indicated by arrow B appears within the band. Therefore, it is preferable that the fractional band is 17% or less. In this case, by adjusting the thickness of the piezoelectric layer 2, the dimensions of the electrodes 3 and 4, etc., the spurious can be reduced.
  • FIG. 10 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band.
  • various elastic wave devices having different d/2p and MR were constructed and the fractional bands were measured.
  • the hatched area on the right side of the broken line D in FIG. 10 is a region where the fractional band is 17% or less.
  • the fractional band can be reliably set to 17% or less.
  • FIG. 11 is a diagram showing a map of the fractional band with respect to Euler angles (0°, ⁇ , ⁇ ) of LiNbO 3 when d/p is brought as close to 0 as possible.
  • the hatched areas in FIG. 11 are areas where a fractional band of at least 5% can be obtained, and the range of the area can be approximated by the following equations (1), (2), and (3). ).
  • the fractional band can be made sufficiently wide, which is preferable.
  • FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the first embodiment of the present disclosure.
  • the elastic wave device 81 has a support substrate 82 .
  • the support substrate 82 is provided with an open recess on the upper surface.
  • a piezoelectric layer 83 is laminated on the support substrate 82 . Thereby, a cavity 9 is formed.
  • An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 .
  • Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction. In FIG. 12, the outer periphery of the cavity 9 is indicated by a broken line.
  • the IDT electrode 84 includes first and second bus bars 84a and 84b, an electrode 84c as a plurality of first electrode fingers, and an electrode 84d as a plurality of second electrode fingers.
  • the plurality of electrodes 84c are connected to the first bus bar 84a.
  • the plurality of electrodes 84d are connected to the second bus bar 84b.
  • the plurality of electrodes 84c and the plurality of electrodes 84d are interposed with each other.
  • the elastic wave device 81 by applying an alternating current electric field to the IDT electrode 84 on the cavity 9, a Lamb wave as a plate wave is excited. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristic due to the Lamb wave described above can be obtained.
  • the elastic wave device of the present disclosure may utilize plate waves.
  • FIG. 13 is a plan view of a plurality of conventional elastic wave devices arranged in a grid. That is, FIG. 13 is a plan view of a plurality of conventional elastic wave devices arranged in a grid pattern.
  • plan view means viewed from the stacking direction D11, which will be described later.
  • the elastic wave device 600 shown in FIG. 13 has a CSP (Chip Size Package) structure, and includes a package substrate and an acoustic wave element having one or more resonators.
  • FIG. 13 shows the package substrate of the acoustic wave device 600, and the acoustic wave element is not shown because it is provided below the package substrate (on the back side of the page).
  • the acoustic wave element and the package substrate are bonded to each other via conductive bumps (not shown). Thereby, the acoustic wave element and the package substrate are electrically connected to each other.
  • the acoustic wave devices 600 are arranged in a grid pattern when viewed from above, and are finally cut into individual pieces.
  • FIG. 13 depicts nine elastic wave devices 600 arranged in a grid.
  • the elastic wave device 600A located in the center is depicted in its entirety.
  • eight elastic wave devices 600 located around the elastic wave device 600A are partially illustrated.
  • Each of the nine elastic wave devices 600 has a conductive pattern 610.
  • Pattern 610 is provided on the package substrate.
  • a plurality of bumps are provided between the package substrate and the acoustic wave element.
  • Each pattern 610 is electrically connected to an acoustic wave element via a corresponding bump.
  • the elastic wave device 600A has three patterns 611, 612, and 613 as the pattern 610. Each pattern 611, 612, 613 is electrically connected to an acoustic wave element via a corresponding bump.
  • the elastic wave device 600A includes at least three bumps (a bump that connects the pattern 611 and the acoustic wave element, a bump that connects the pattern 612 and the acoustic wave element, and a bump that connects the pattern 613 and the acoustic wave element). (bumps connecting).
  • the elastic wave device 600 configured as described above has the following two problems.
  • the first problem is that there is room for further improvement in terms of improving the strength of the elastic wave device 600.
  • the bump is provided at a position that overlaps the outer edge of the elastic wave device 600 in plan view. Therefore, the strength of the elastic wave device 600 may be weakened at positions other than the outer edge of the elastic wave device 600 (positions where no bumps are provided) in a plan view.
  • the second problem is that the characteristics of the acoustic wave element may deteriorate. The details are explained below.
  • each of the plurality of patterns 610 provided on the package substrate is electrically connected to the acoustic wave element via the corresponding bump.
  • the potential of each bump may be different.
  • an excessive current may flow through the resonator between the two bumps, causing damage to the resonator (for example, electrostatic damage).
  • patterns of adjacent acoustic wave devices 600 are electrically connected to each other by conductive patterns 620 (hereinafter also referred to as tie bars 620). This is done to make the potential the same.
  • the pattern 611 is electrically connected to the adjacent elastic wave device 600B via tie bars 621.
  • the pattern 612 is electrically connected to the adjacent acoustic wave device 600B via a tie bar 622.
  • the pattern 613 is electrically connected to the adjacent elastic wave device 600C via a tie bar 623.
  • the tie bar 620 and the resonator may overlap in plan view, or the tie bar 620 and the resonator may overlap in plan view. and may be located close to each other. In these cases, there is a risk of charge coupling between the tie bar 620 and the resonator. When the tie bar 620 and the resonator are charge-coupled, parasitic capacitance is generated, which may cause deterioration of the characteristics of the acoustic wave device as described below.
  • FIG. 14 is a graph showing power passing loss (Attenuation) with respect to frequency (Frequency) in a conventional elastic wave device.
  • the passband of the characteristic L41 in the configuration in which the tie bar 620 is provided is worse than the passband in the characteristic L42 in the configuration in which the tie bar 620 is not provided.
  • the power passing loss of the characteristic L41 in the configuration in which the tie bar 620 is provided is greater than the power passing loss in the characteristic L42 in the configuration in which the tie bar 620 is not provided.
  • the bandwidth of the characteristic L43 in the configuration in which the tie bar 620 is provided is narrower than the bandwidth in the characteristic L44 in the configuration in which the tie bar 620 is not provided.
  • the strength can be improved. Furthermore, in the elastic wave device according to the second embodiment of the present disclosure, deterioration of the characteristics of the acoustic wave element can be reduced.
  • FIG. 15 is a schematic plan view of a plurality of elastic wave devices arranged in a grid.
  • the elastic wave device 100 has a CSP (Chip Size Package) structure.
  • a plurality of elastic wave devices 100 are arranged in a grid pattern. Although nine elastic wave devices 100 (100A to 100I) are shown in FIG. 15, the number of elastic wave devices 100 is not limited to nine.
  • internal electrodes 330 that are not visible from the outside of the package substrate 300 are depicted for convenience.
  • Each of the plurality of elastic wave devices 100A to 100I has the same configuration. Therefore, in the following explanation, the configuration of the elastic wave device 100A will be explained, and the explanation of the elastic wave devices 100 (100B to 100I) other than the elastic wave device 100A will be omitted. Elastic wave devices 100 (100B to 100I) other than elastic wave device 100A will be mentioned as necessary.
  • FIG. 16 is a schematic cross-sectional view of the elastic wave device according to the second embodiment of the present disclosure, cut in the thickness direction. Note that since FIG. 16 is a schematic diagram, the position, size, number, etc. of each component (for example, the comb-shaped electrode 240) in FIG. 16 do not correspond one-to-one with other diagrams such as FIG. 15. .
  • the elastic wave device 100A includes an acoustic wave element 200 and a package substrate 300.
  • the acoustic wave element 200 is bonded to the package substrate 300 via a plurality of conductive bumps 400 at a portion, and directly bonded to the package substrate 300 at another portion.
  • the acoustic wave element 200 includes a support member consisting of a support substrate 210 and an intermediate (bonding) layer 220, a piezoelectric body 230, a pair of comb-shaped electrodes 240, wiring 250, an electrode 260, a dielectric film 270, and a sealing resin 280.
  • the support substrate 210, the bonding layer 220, the piezoelectric body 230, the pair of comb-shaped electrodes 240, the wiring 250, the electrodes 260, the dielectric film 270, and the sealing resin 280 are laminated in the lamination direction D11. has been done.
  • the stacking direction D11 is the thickness direction of the elastic wave device 100A.
  • the support member may include only the support substrate 210.
  • the bonding layer 220 is provided on the support substrate 210.
  • the piezoelectric body 230 is provided on the bonding layer 220.
  • the pair of comb-shaped electrodes 240 and the wiring 250 are provided on the piezoelectric body 230.
  • Electrode 260 is provided on wiring 250.
  • the dielectric film 270 is provided on the piezoelectric body 230 and the wiring 250 so as to cover the pair of comb-shaped electrodes 240 .
  • the sealing resin 280 is made of a resin such as polyimide or epoxy.
  • the sealing resin 280 includes the support substrate 210, the bonding layer 220, the piezoelectric body 230, the pair of comb-shaped electrodes 240, the wiring 250, and the electrode 260, except for the side to which the package substrate 300 is bonded. , and the dielectric film 270.
  • the sealing resin 280 is bonded to one main surface 300A of the package substrate 300.
  • the main surface 300A is an example of the main surface of the package substrate 300.
  • the support substrate 210 is made of silicon (Si)
  • the bonding layer 220 is made of silicon oxide (SiOx)
  • the piezoelectric body 230 is made of lithium niobate (LN, LiNbOx).
  • the materials constituting each of the support substrate 210, the bonding layer 220, and the piezoelectric body 230 are not limited to the above-mentioned materials.
  • the piezoelectric body 230 may be made of lithium tantalate (LiTaOx).
  • the bonding layer 220 has a recess 221.
  • the recessed portion 221 is recessed from the main surface 220A of the bonding layer 220 in the stacking direction D11.
  • the space defined by the recess 221 and the piezoelectric body 230 is the cavity 220B.
  • the recess 221 is provided in the bonding layer 220, but the recess 221 may be provided across the bonding layer 220 and the support substrate 210.
  • the piezoelectric body 230 has a membrane 231.
  • the membrane 231 is a portion of the piezoelectric body 230 that overlaps the cavity 220B when viewed from the stacking direction D11 (in other words, when viewed from above in the stacking direction D11).
  • the membrane 231 is a portion of the piezoelectric body 230 that is not in contact with the main surface 220A of the bonding layer 220 when viewed from above in the stacking direction D11.
  • the cavity 220B is a space defined by the recess 221 and the membrane 231.
  • the shape of the membrane 231 when viewed in plan in the stacking direction D11 depends on the shape of the cavity 220B.
  • the membrane 231 has a rectangular shape when viewed in plan in the stacking direction D11, but may have a shape other than a rectangle.
  • the pair of comb-shaped electrodes 240, the wiring 250, and the electrode 260 are made of a conductive material (for example, copper).
  • dielectric film 270 is made of silicon oxide (SiO2).
  • a pair of comb-shaped electrodes 240, wiring 250, and electrodes 260 are laminated on the opposite side of the piezoelectric body 230 to the bonding layer 220.
  • the pair of comb-shaped electrodes 240 are IDT (Interdigital Transdecer) electrodes. The configuration of the pair of comb-shaped electrodes 240 will be explained in detail later.
  • FIG. 17 is a schematic plan view of the acoustic wave element.
  • the elastic wave element 200 includes one or more resonators 290.
  • the acoustic wave element 200 includes 22 resonators 290.
  • Each of the plurality of resonators 290 includes a pair of comb-shaped electrodes 240, a piezoelectric body 230, and a portion of a dielectric film 270. Note that each of the plurality of resonators 290 may further include a part of a support member.
  • the piezoelectric body 230, the dielectric film 270, and a part of the support member are located in a region of the piezoelectric body 230 and the dielectric film 270 that overlaps with the pair of comb-shaped electrodes 240 when viewed in plan in the stacking direction D11, and in the region thereof. This is a portion located in the surrounding neighborhood area.
  • the wiring 250 is electrically connected to the resonator 290 and the electrode 260.
  • the wiring 250 electrically connects the plurality of resonators 290 to each other, and electrically connects the resonators 290 and the electrodes 260 to each other.
  • the wiring 250 is a patterned wiring formed on the piezoelectric body 230, but is not limited thereto.
  • the wiring 250 may be a wire or the like.
  • the electrode 260 is electrically connected to an external electrode 340 provided on one main surface 300A of the package substrate 300 via a bump 400.
  • FIG. 18 is an equivalent circuit diagram of the acoustic wave element of FIG. 17.
  • 22 resonators 290 are connected as shown in the equivalent circuit diagram shown in FIG. Eight of the 22 resonators 290 are arranged in series on a signal path 251 of the wiring 250 that connects the input terminal In and the output terminal Out. Fourteen of the twenty-two resonators 290 are arranged on a ground path 252 of the wiring 250 that connects the node 251A on the signal path 251 and the ground GND.
  • FIG. 19 is a schematic plan view showing a pair of comb-shaped electrodes.
  • the pair of comb-shaped electrodes 240 include a first busbar electrode 241 and a second busbar electrode 242 facing each other, and a plurality of first electrode fingers 243 connected to the first busbar electrode 241. It has a plurality of second electrode fingers 244 connected to the second bus bar electrode 242.
  • One of the pair of comb-shaped electrodes 240 includes a first busbar electrode 241 and a first electrode finger 243.
  • the other of the pair of comb-shaped electrodes 240 includes a second busbar electrode 242 and a second electrode finger 244.
  • the plurality of first electrode fingers 243 and the plurality of second electrode fingers 244 are inserted into each other. That is, the plurality of first electrode fingers 243 and the plurality of second electrode fingers 244 are arranged alternately. Adjacent first electrode fingers 243 and second electrode fingers 244 constitute a pair of electrode sets.
  • the first busbar electrode 241 corresponds to the electrode 5 of the first embodiment.
  • the second busbar electrode 242 corresponds to the electrode 6 of the first embodiment.
  • the first electrode finger 243 corresponds to the electrode 3 of the first embodiment.
  • the second electrode finger 244 corresponds to the electrode 4 of the first embodiment.
  • the pair of comb-shaped electrodes 240 When viewed in plan in the stacking direction D11, at least a portion of the pair of comb-shaped electrodes 240 is provided on the membrane 231. That is, the cavity 220B overlaps at least a portion of the pair of comb-shaped electrodes 240 in a plan view.
  • a part of the first busbar electrode 241, a part of the second busbar electrode 242, a part of the first electrode finger 243, and a second electrode finger 244 are provided on the membrane 231 (see FIG. 16).
  • the package substrate 300 includes three layers of base materials 311, 312, and 313, an interlayer connection conductor 320, an internal electrode 330, and an external electrode 340.
  • the package substrate 300 has a rectangular parallelepiped shape as a whole.
  • the package substrate 300 is formed by integrating base materials 311, 312, and 313 stacked in the stacking direction D11. That is, in the second embodiment, the package substrate 300 is an integrated structure of three base materials.
  • the stacking direction D11 is a direction perpendicular to one main surface 300A of the package substrate 300, and is an example of a perpendicular direction.
  • the number of base materials that constitute the package substrate 300 is not limited to three.
  • Each of the base materials 311, 312, and 313 is insulating and has a plate shape.
  • the base materials 311, 312, and 313 are made of, for example, resin such as polyimide or epoxy, ceramic, or the like.
  • the three layers of base materials 311, 312, and 313 are stacked in the stacking direction D11.
  • the base material 311 is provided on the acoustic wave element 200.
  • the base material 312 is provided on the base material 311.
  • the base material 313 is provided on the base material 312.
  • the interlayer connection conductor 320 is formed inside the package substrate 300.
  • Interlayer connection conductor 320 may be formed on at least one of base materials 311, 312, and 313.
  • three interlayer connection conductors 320 are formed on a base material 311, two interlayer connection conductors 320 are formed on a base material 312, and two interlayer connection conductors 320 are formed on a base material 313.
  • the interlayer connection conductor 320 is formed by filling conductive paste into through holes that penetrate the base materials 311, 312, and 313 in the stacking direction D11.
  • the conductive paste contains conductive powder, such as copper.
  • the conductive powder contained in the conductive paste is not limited to copper, and may be, for example, silver.
  • the interlayer connection conductor 320 since the through hole has a truncated conical shape, the interlayer connection conductor 320 has a truncated conical shape.
  • the shape of the through hole is not limited to a truncated cone shape, but may be, for example, a cylinder or a square prism.
  • the internal electrode 330 is formed inside the package substrate 300. Internal electrodes 330 may be formed on the surfaces of base materials 311, 312, and 313. Internal electrodes 330 are formed by printing conductive paste on the surfaces of base materials 311, 312, and 313. The conductive paste is made of copper or silver, for example. The internal electrode 330 is electrically connected to other internal electrodes 330 and external electrodes 340 via the interlayer connection conductor 320. In the second embodiment, part of the internal electrode 330 is a first conductive pattern 331 (tie bar 331) and a second conductive pattern 332 (tie bar 332), which will be described later.
  • the external electrode 340 is formed outside the package substrate 300. That is, the external electrode 340 is exposed to the outside of the package substrate 300. In the second embodiment, the external electrodes 340 are formed on one main surface 300A and the other main surface 300B of the package substrate 300.
  • the external electrode 340 is configured in the same manner as the internal electrode 330. That is, in the second embodiment, the external electrodes 340 are formed by printing conductive paste on one main surface 300A and the other main surface 300B of the package substrate 300.
  • the external electrode 340 is electrically connected to the internal electrode 330 via the interlayer connection conductor 320. Further, the external electrode 340 formed on one main surface 300A is electrically connected to the electrode 260 of the acoustic wave element 200 via the bump 400.
  • the external electrodes 340 are formed by printing conductive paste on the package substrate 300, but the present invention is not limited thereto.
  • the external electrode 340 may be a wire or the like.
  • the first conductive pattern 331 and the second conductive pattern 332, which will be described later, are part of the internal electrode 330 in the second embodiment, they are not limited thereto.
  • a first conductive pattern 331 and a second conductive pattern 332, which will be described later, may be part of the external electrode 340.
  • the plurality of bumps 400 are made of a conductive material such as solder.
  • the bump 400 electrically connects the electrode 260 of the acoustic wave element 200 and the external electrode 340 of the package substrate 300. That is, the bump 400 is electrically connected to the wiring 250 of the acoustic wave element 200 via the electrode 260.
  • the elastic wave device 100A includes a plurality of bumps 400.
  • the plurality of bumps 400 include one or more first bumps 410 and one or more second bumps 420.
  • the elastic wave device 100A includes eight first bumps 410 (411 to 418) and one second bump 420. That is, in the second embodiment, the elastic wave device 100A includes nine bumps 400.
  • the six first bumps 412, 413, 414, 416, 417, and 418 are connected to GND (reference potential). Further, the two first bumps 411 and 415 are connected to HOT (positive phase signal). Further, the second bump 420 is connected to FLOAT (independent potential).
  • the connection of each bump 400 is not limited to the above. For example, the second bump 420 may be connected to GND.
  • the second bump 420 When viewed in plan in the stacking direction D11, the second bump 420 is surrounded by a plurality of first bumps 410 (411 to 418).
  • the second bump 420 is located at the center of the acoustic wave element 200 when viewed from above in the stacking direction D11, and the eight first bumps 411 to 418 are located at the center when viewed from above in the stacking direction D11. It is located at the outer edge of the acoustic wave element 200.
  • the second bump 420 is surrounded by a plurality of resonators 290 when viewed in plan in the stacking direction D11.
  • the second bump 420 when viewed in plan in the stacking direction D11, the second bump 420 is surrounded by the plurality of first bumps 410 (411 to 418) and is surrounded by the plurality of resonators 290.
  • the second bump 420 only needs to be surrounded by at least one of the first bump 410 and the resonator 290 when viewed in plan in the stacking direction D11.
  • the resonator 290 may not surround the second bumps 420.
  • the plurality of resonators 290 may surround the second bumps 420 while the first bumps 410 may not surround the second bumps 420 when viewed in plan in the stacking direction D11.
  • one or more first bumps 410 and one or more resonators 290 may cooperate to surround the second bumps 420.
  • the plurality of first bumps 410 are arranged on the right side of the second bumps 420
  • the plurality of resonators 290 are arranged on the left side of the second bumps 420.
  • the first bump 410 and the plurality of resonators 290 may cooperate to surround the second bump 420.
  • each of the elastic wave devices 100 includes seven first conductive patterns 331 (331A to 331G) and one second conductive pattern 332. Note that the number of first conductive patterns 331 is not limited to seven, and the number of second conductive patterns 332 is not limited to one.
  • FIG. 20 is a schematic plan view of the acoustic wave element, the first conductive pattern, and the second conductive pattern.
  • FIG. 21 is a schematic perspective view of an acoustic wave element, a first conductive pattern, and a second conductive pattern.
  • the first conductive pattern 331A is electrically connected to the first bump 411.
  • the first conductive pattern 331B is electrically connected to the first bump 412.
  • the first conductive patterns 331C and 331D are electrically connected to the first bump 413.
  • the first conductive pattern 331E is electrically connected to the first bump 415.
  • the first conductive pattern 331F is electrically connected to the first bump 416.
  • the first conductive pattern 331G is electrically connected to the first bump 417.
  • the second conductive pattern 332 is electrically connected to the second bump 420. Note that the combination of electrical connection between each of the first conductive pattern 331 and the second conductive pattern 332 and the bump 400 is not limited to the above-mentioned combination.
  • the first conductive pattern 331 and the second conductive pattern 332 electrically connect two adjacent elastic wave devices 100 in the plurality of elastic wave devices 100 arranged in a grid.
  • the first conductive pattern 331A of the elastic wave device 100A is electrically connected to the first conductive pattern 331F of the elastic wave device 100B.
  • the first conductive pattern 331B of the elastic wave device 100A is electrically connected to the first conductive pattern 331E of the elastic wave device 100B.
  • the first conductive pattern 331C of the elastic wave device 100A is electrically connected to the second conductive pattern 332 of the elastic wave device 100D.
  • the first conductive pattern 331D of the elastic wave device 100A is electrically connected to the first conductive pattern 331G of the elastic wave device 100D.
  • the first conductive pattern 331E of the elastic wave device 100A is electrically connected to the first conductive pattern 331B of the elastic wave device 100F.
  • the first conductive pattern 331F of the elastic wave device 100A is electrically connected to the first conductive pattern 331A of the elastic wave device 100F.
  • the first conductive pattern 331G of the elastic wave device 100A is electrically connected to the first conductive pattern 331D of the elastic wave device 100H.
  • the second conductive pattern 332 of the elastic wave device 100A is electrically connected to the first conductive pattern 331C of the elastic wave device 100H. Note that the combination of electrical connections between the first conductive pattern 331 and the second conductive pattern 332 is not limited to the above-mentioned combination.
  • the second conductive pattern 332 includes a first portion 332A and a second portion 332B.
  • the first portion 332A is electrically connected to the second bump 420.
  • the first portion 332A extends from the second bump 420 toward the first bump 411.
  • the first portion 332A does not overlap the resonator 290 when viewed in plan in the stacking direction D11.
  • the second portion 332B is continuous with the first portion 332A.
  • the second portion 332B straddles the resonator 290 and the wiring 250.
  • the second portion 332B extends from the inside of the first bump 410 and the resonator 290 surrounding the second bump 420 to the outside of the first bump 410 and the resonator 290 surrounding the second bump 420. That is, when viewed in plan in the stacking direction D11, a portion of the second portion 332B overlaps with the resonator 290 and the wiring 250.
  • the second embodiment describes a configuration in which the second portion 332B straddles the resonator 290 and the wiring 250
  • the present invention is not limited to this.
  • the second portion 332B may straddle the resonator 290 but not the wiring 250. That is, when viewed in plan in the stacking direction D11, the second portion 332B may overlap the resonator 290 but not the wiring 250. Further, for example, contrary to the above, the second portion 332B may straddle the wiring 250 but not straddle the resonator 290.
  • the second portion 332B extends from the inside of the first bump 410 surrounding the second bump 420 and the resonator 290 to the outside, straddling at least one of the resonator 290 and the wiring 250.
  • the second conductive pattern 332 may include the second portion 332B but may not include the first portion 332A.
  • the second conductive pattern 332 composed of only the second portion 332B extends, for example, from the second bump 420 to the first bump 413 side (left side in the paper of FIG. 20) and straddles the resonator 290 and the wiring 250.
  • the width of the first portion 332A is drawn to be the same as the width of the second portion 332B
  • the width W of the second portion 332B is drawn larger than the width of the first portion 332A.
  • the width W of the second portion 332B may be smaller than the first portion 332A.
  • FIG. 22 is a graph showing power passing loss (Attenuation) with respect to frequency (Frequency) in an elastic wave device.
  • FIG. 23 is a graph showing power passing loss versus frequency in an elastic wave device.
  • each of L11, L21, and L31 shows the characteristics when the width W of the second portion 332B is 30 ⁇ m.
  • Each of L12, L22, and L32 shows the characteristics when the width W of the second portion 332B is 50 ⁇ m.
  • Each of L13, L23, and L33 shows the characteristics when the width W of the second portion 332B is 150 ⁇ m.
  • Each of L14, L24, and L34 shows the characteristics when the width W of the second portion 332B is 250 ⁇ m.
  • FIG. 24 is a graph showing the power passing loss with respect to the width of the second conductive pattern in the elastic wave device.
  • the measurements in Figure 24 are performed at a frequency of 4650 MHz.
  • the larger the width W of the second portion 332B the larger the power passing loss. Note that in FIG. 24, when the widths W are the same or substantially the same, there are variations in the plurality of measurement results, but this is because the position of the second portion 332B in each measurement result is different.
  • FIG. 25 is a graph showing the power passing loss with respect to the width of the second conductive pattern in the elastic wave device.
  • the measurements in Figure 25 are performed at a frequency of 4650 MHz.
  • the width W of the second portion 332B of the second conductive pattern 332 is 50 ⁇ m
  • the power passing loss is ⁇ 3.152 dB (see the broken line in FIG. 25).
  • the width W may be set to 150 ⁇ m or less, for example (see the dashed-dotted line in FIG. 25).
  • the width W of the second portion 332B of the second conductive pattern 332 is set to be 150 ⁇ m or less when viewed in plan in the stacking direction D11.
  • the width W of the first portion 332A in addition to the second portion 332B may also be 150 ⁇ m or less.
  • the width W is not limited to 150 ⁇ m or less.
  • the width W is the width W that can suppress the deterioration from the above-mentioned standard to 0.5 dB or less in FIG. 25 (in other words, the width W when the power passing loss is -3.6 dB in FIG. 25). It may be less than a certain 190 ⁇ m.
  • the elastic wave device 100 includes, in addition to the first bump 410 located at the outer edge of the acoustic wave element 200 when viewed from above in the stacking direction D11, an elastic wave device 410 when viewed from above in the stacking direction D11.
  • a second bump 420 is provided at the center of the wave element 200. That is, in the acoustic wave device 100, the acoustic wave element 200 and the package substrate 300 are connected by the bumps 400 not only at the outer edge but also at the center when viewed in plan in the stacking direction D11. Thereby, the elastic wave device 100 can have improved strength compared to an elastic wave device that does not include the second bump 420 located at the center.
  • the second conductive pattern 332 extending from the second bump 420 located at the center passes over the resonator 290 and wiring 250 more easily than the first conductive pattern 331 extending from the bump provided at the outer edge. Therefore, the characteristics of the acoustic wave element 200 described above are likely to deteriorate. Therefore, in the second embodiment, the width W of the second portion 332B of the second conductive pattern 332 is set to be 150 ⁇ m or less based on the measurement results described above. Thereby, deterioration of the characteristics of the acoustic wave element 200 can be reduced.
  • the elastic wave device of the present disclosure includes: a package board; an acoustic wave element bonded to the main surface of the package substrate via a plurality of conductive bumps and having one or more resonators and wiring electrically connected to the resonators;
  • the plurality of conductive bumps are one or more first bumps; a second bump surrounded by at least one of at least one of the first bump and at least one of the resonators when viewed from an orthogonal direction perpendicular to the main surface of the package substrate;
  • a conductive pattern electrically connected to the second bump is formed on the package substrate, Viewed from the orthogonal direction, the conductive pattern extends from the second bump, straddles at least one of the resonator and the wiring, and surrounds the second bump from the inside to the outside of the first bump and the resonator. It extends to
  • the width of the conductive pattern may be 150 ( ⁇ m) or less at a position overlapping with the resonator.
  • the resonator is A piezoelectric body, A pair of comb-shaped electrodes provided on the piezoelectric body may be provided.
  • the resonator may further include a support member laminated with the piezoelectric body,
  • the support member may have a cavity on the piezoelectric body side, and the cavity may overlap at least a portion of the pair of comb-shaped electrodes in a plan view.
  • the pair of comb-shaped electrodes may be IDT (Interdigital Transducer) electrodes
  • the IDT electrode may include a plurality of first electrode fingers included in one of the pair of comb-shaped electrodes, and a plurality of second electrode fingers included in the other of the pair of comb-shaped electrodes.
  • the plurality of first electrode fingers and the plurality of second electrode fingers may be arranged alternately.
  • d/p may be 0.5 or less.
  • the d/p may be 0.24 or less.
  • the piezoelectric material may be lithium niobate or lithium tantalate.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the lithium niobate or lithium tantalate may be within the range of the following formula (1), formula (2), or formula (3).
  • formula (1) formula (2), or formula (3).
  • formula (2) formula (3)
  • formula (3) formula (3)
  • ...Formula (1) (0° ⁇ 10°, 20° to 80°, 0° to 60° (1-( ⁇ -50) 2 /900) 1/2 ) or (0° ⁇ 10°, 20° to 80°, [180 °-60° (1-( ⁇ -50) 2 /900) 1/2 ] ⁇ 180°)
  • ...Formula (2) (0° ⁇ 10°, [180°-30° (1-( ⁇ -90) 2 /8100) 1/2 ] ⁇ 180°, arbitrary ⁇ ) ...Formula (3)
  • any one of the elastic wave devices (1) to (10) It may be configured such that a bulk wave in a thickness shear mode can be used as the main wave.
  • any one of the elastic wave devices (1) to (10) It may be configured such that a plate wave can be used as the main wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An elastic wave device according to the present disclosure comprises: a package substrate; and an elastic wave element that is bonded to a main surface of the package substrate with a plurality of electrically conductive bumps interposed therebetween, the elastic wave element having one or more resonators and wiring that is electrically connected to the resonators. The plurality of electrically conductive bumps comprise one or more first bumps, and a second bump that is surrounded by at least one of at least one first bump and at least one resonator as seen in an orthogonal direction that is orthogonal to the main surface of the package substrate. On the package substrate, there is formed an electrically conductive pattern that is electrically connected to the second bump. As seen in the orthogonal direction, the electrically conductive pattern extends from the second bump, across at least one of a resonator and the wiring, from the inside of the first bump and the resonator surrounding the second bump toward the outside.

Description

弾性波装置elastic wave device
 本開示は、圧電体層を有する弾性波装置に関する。 The present disclosure relates to an acoustic wave device having a piezoelectric layer.
 例えば、特許文献1には、板波を利用する弾性波装置が開示されている。特許文献1に記載の弾性波装置は、支持体と、圧電基板と、IDT電極とを備えている。支持体には、空洞部が設けられている。圧電基板は、支持体の上に空洞部と重なるように設けられている。IDT電極は、圧電基板の上に空洞部と重なるように設けられている。弾性波装置では、IDT電極により板波が励振される。 For example, Patent Document 1 discloses an elastic wave device that uses plate waves. The elastic wave device described in Patent Document 1 includes a support, a piezoelectric substrate, and an IDT electrode. The support body is provided with a cavity. The piezoelectric substrate is provided on the support body so as to overlap with the cavity. The IDT electrode is provided on the piezoelectric substrate so as to overlap with the cavity. In an elastic wave device, a plate wave is excited by an IDT electrode.
特開2012-257019号公報Japanese Patent Application Publication No. 2012-257019
 近年、特性の劣化を抑制できる弾性波装置が求められている。 In recent years, there has been a demand for elastic wave devices that can suppress deterioration of characteristics.
 本開示は、特性の劣化を抑制できる弾性波装置を提供することを目的とする。 An object of the present disclosure is to provide an elastic wave device that can suppress deterioration of characteristics.
 本開示の一態様の弾性波装置は、
 パッケージ基板と、
 複数の導電性バンプを介して前記パッケージ基板の主面に接合され、1つ以上の共振子及び前記共振子と電気的に接続された配線を有する弾性波素子と、を備え、
 複数の前記導電性バンプは、
 1つ以上の第1バンプと、
 前記パッケージ基板の主面と直交する直交方向から見て、少なくとも1つの前記第1バンプ及び少なくとも1つの前記共振子の少なくとも一方に囲まれた第2バンプと、を備え、
 前記パッケージ基板には、前記第2バンプと電気的に接続された導電パターンが形成されており、
 前記直交方向から見て、前記導電パターンは、前記第2バンプから延びて前記共振子及び前記配線の少なくとも一方を跨いで、前記第2バンプを囲む前記第1バンプ及び前記共振子の内側から外側へ延びている。
An elastic wave device according to one aspect of the present disclosure includes:
a package board;
an acoustic wave element bonded to the main surface of the package substrate via a plurality of conductive bumps and having one or more resonators and wiring electrically connected to the resonators;
The plurality of conductive bumps are
one or more first bumps;
a second bump surrounded by at least one of at least one of the first bump and at least one of the resonators when viewed from an orthogonal direction perpendicular to the main surface of the package substrate;
A conductive pattern electrically connected to the second bump is formed on the package substrate,
Viewed from the orthogonal direction, the conductive pattern extends from the second bump, straddles at least one of the resonator and the wiring, and surrounds the second bump from the inside to the outside of the first bump and the resonator. It extends to
 本開示によれば、特性の劣化を抑制できる弾性波装置を提供することができる。 According to the present disclosure, it is possible to provide an elastic wave device that can suppress deterioration of characteristics.
第1,第2の態様の弾性波装置の外観を示す略図的斜視図A schematic perspective view showing the appearance of the elastic wave device of the first and second aspects 圧電層上の電極構造を示す平面図Plan view showing the electrode structure on the piezoelectric layer 図1A中のA-A線に沿う部分の断面図A cross-sectional view of the portion along line AA in Figure 1A 従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図A schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional acoustic wave device. 本開示の弾性波装置の波を説明するための模式的正面断面図A schematic front sectional view for explaining waves of the elastic wave device of the present disclosure 第1の電極と第2の電極との間に、第2の電極が第1の電極よりも高電位となる電圧が印加された場合のバルク波を示す模式図A schematic diagram showing a bulk wave when a voltage is applied between the first electrode and the second electrode such that the second electrode has a higher potential than the first electrode. 本開示の第1の実施形態に係る弾性波装置の共振特性を示す図A diagram showing resonance characteristics of an elastic wave device according to a first embodiment of the present disclosure d/2pと、弾性波装置の共振子としての比帯域との関係を示す図A diagram showing the relationship between d/2p and the fractional band as a resonator of an elastic wave device 本開示の第1の実施形態に係る別の弾性波装置の平面図A plan view of another elastic wave device according to the first embodiment of the present disclosure 弾性波装置の共振特性の一例を示す参考図。A reference diagram showing an example of resonance characteristics of an elastic wave device. 多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図A diagram showing the relationship between the fractional band when a large number of elastic wave resonators are configured and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious. d/2pと、メタライゼーション比MRと、比帯域との関係を示す図A diagram showing the relationship between d/2p, metallization ratio MR, and fractional band d/pを限りなく0に近づけた場合のLiNbO3のオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図A diagram showing a map of the fractional band with respect to the Euler angles (0°, θ, ψ) of LiNbO3 when d/p is brought as close to 0 as possible 本開示の第1の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図A partially cutaway perspective view for explaining an elastic wave device according to a first embodiment of the present disclosure 格子状に並んだ複数の従来の弾性波装置の平面図Top view of multiple conventional elastic wave devices arranged in a grid pattern 従来の弾性波装置において周波数に対する電力の通過ロスを示すグラフGraph showing power transmission loss versus frequency in a conventional elastic wave device 格子状に並んだ複数の弾性波装置の模式平面図Schematic plan view of multiple elastic wave devices arranged in a grid pattern 本開示の第2の実施形態に係る弾性波装置を厚み方向に切断した模式断面図A schematic cross-sectional view of an elastic wave device according to a second embodiment of the present disclosure cut in the thickness direction 弾性波素子の模式平面図Schematic plan view of acoustic wave element 図17の弾性波素子の等価回路図Equivalent circuit diagram of the acoustic wave element in Figure 17 一対の櫛歯状電極を示す模式平面図Schematic plan view showing a pair of comb-shaped electrodes 弾性波素子と第1導電パターンと第2導電パターンとの模式平面図A schematic plan view of an acoustic wave element, a first conductive pattern, and a second conductive pattern. 弾性波素子と第1導電パターンと第2導電パターンとの模式斜視図A schematic perspective view of an acoustic wave element, a first conductive pattern, and a second conductive pattern. 弾性波装置において周波数に対する電力の通過ロスを示すグラフGraph showing power transmission loss versus frequency in an elastic wave device 弾性波装置において周波数に対する電力の通過ロスを示すグラフGraph showing power transmission loss versus frequency in an elastic wave device 弾性波装置において第2導電パターンの幅に対する電力の通過ロスを示すグラフGraph showing the power passing loss with respect to the width of the second conductive pattern in the elastic wave device 弾性波装置において第2導電パターンの幅に対する電力の通過ロスを示すグラフGraph showing the power passing loss with respect to the width of the second conductive pattern in the elastic wave device
 本開示における第1,第2,第3の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層の厚み方向に交差する方向において対向する第1電極及び第2電極とを備える。 Acoustic wave devices according to first, second, and third aspects of the present disclosure include a piezoelectric layer made of lithium niobate or lithium tantalate, and a first electrode and a second electrode facing each other in a direction crossing the thickness direction of the piezoelectric layer. and an electrode.
 第1の態様の弾性波装置では、厚み滑りモードのバルク波が利用されている。 The elastic wave device of the first aspect utilizes a bulk wave in a thickness shear mode.
 また、第2の態様の弾性波装置では、第1電極及び前記第2電極は隣り合う電極同士であり、圧電層の厚みをd、第1電極及び第2電極の中心間距離をpとした場合、d/pが0.5以下とされている。それによって、第1,第2の態様では、小型化を進めた場合であっても、Q値を高めることができる。 Further, in the acoustic wave device of the second aspect, the first electrode and the second electrode are adjacent electrodes, the thickness of the piezoelectric layer is d, and the distance between the centers of the first electrode and the second electrode is p. In this case, d/p is 0.5 or less. Thereby, in the first and second aspects, the Q value can be increased even when miniaturization is promoted.
 また、第3の態様の弾性波装置では、板波としてのラム波が利用される。そして、上記ラム波による共振特性を得ることができる。 Furthermore, in the third aspect of the elastic wave device, Lamb waves are used as plate waves. Then, resonance characteristics due to the Lamb wave described above can be obtained.
 本開示における第4の態様の弾性波装置は、ニオブ酸リチウムまたはタンタル酸リチウムからなる圧電層と、圧電層を挟んで圧電層の厚み方向に対向する上部電極及び下部電極とを備え、バルク波を利用する。 An acoustic wave device according to a fourth aspect of the present disclosure includes a piezoelectric layer made of lithium niobate or lithium tantalate, and an upper electrode and a lower electrode that face each other in the thickness direction of the piezoelectric layer with the piezoelectric layer interposed therebetween. Take advantage of.
 以下、図面を参照しつつ、第1~第4の態様の弾性波装置の具体的な実施形態を説明することにより、本開示を明らかにする。 Hereinafter, the present disclosure will be clarified by describing specific embodiments of the elastic wave devices of the first to fourth aspects with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be noted that each embodiment described in this specification is an illustrative example, and it is possible to partially replace or combine the configurations between different embodiments.
(第1の実施形態)
 図1Aは、第1,第2の態様についての第1の実施形態に係る弾性波装置の外観を示す略図的斜視図であり、図1Bは、圧電層上の電極構造を示す平面図であり、図2は、図1A中のA-A線に沿う部分の断面図である。
(First embodiment)
FIG. 1A is a schematic perspective view showing the appearance of an acoustic wave device according to a first embodiment of the first and second aspects, and FIG. 1B is a plan view showing an electrode structure on a piezoelectric layer. , FIG. 2 is a cross-sectional view of a portion taken along line AA in FIG. 1A.
 弾性波装置1は、LiNbOからなる圧電層2を有する。圧電層2は、LiTaOからなるものであってもよい。LiNbOやLiTaOのカット角は、本実施形態では、Zカットであるが、回転YカットやXカットであってもよい。好ましくは、Y伝搬及びX伝搬±30°の伝搬方位が好ましい。圧電層2の厚みは、特に限定されないが、厚み滑りモードを効果的に励振するには、50nm以上、1000nm以下が好ましい。 The acoustic wave device 1 has a piezoelectric layer 2 made of LiNbO 3 . The piezoelectric layer 2 may be made of LiTaO 3 . Although the cut angle of LiNbO 3 and LiTaO 3 is a Z cut in this embodiment, it may be a rotational Y cut or an X cut. Preferably, the propagation directions of Y propagation and X propagation are ±30°. The thickness of the piezoelectric layer 2 is not particularly limited, but is preferably 50 nm or more and 1000 nm or less in order to effectively excite the thickness shear mode.
 圧電層2は、対向し合う第1,第2の主面2a,2bを有する。第1の主面2a上に、電極3及び電極4が設けられている。ここで電極3が「第1電極」の一例であり、電極4が「第2電極」の一例である。図1A及び図1Bでは、複数の電極3が、第1のバスバー5に接続されている複数の第1の電極指である。複数の電極4は、第2のバスバー6に接続されている複数の第2の電極指である。複数の電極3及び複数の電極4は、互いに間挿し合っている。 The piezoelectric layer 2 has first and second main surfaces 2a and 2b that face each other. An electrode 3 and an electrode 4 are provided on the first main surface 2a. Here, electrode 3 is an example of a "first electrode", and electrode 4 is an example of a "second electrode". In FIGS. 1A and 1B, the plurality of electrodes 3 are a plurality of first electrode fingers connected to the first bus bar 5. In FIGS. The plurality of electrodes 4 are a plurality of second electrode fingers connected to the second bus bar 6. The plurality of electrodes 3 and the plurality of electrodes 4 are interposed with each other.
 電極3及び電極4は、矩形形状を有し、長さ方向を有する。この長さ方向と直交する方向において、電極3と、隣の電極4とが対向している。これら複数の電極3,4、及び第1のバスバー5,第2のバスバー6によりIDT(Interdigital Transducer)電極が構成されている。電極3,4の長さ方向、及び、電極3,4の長さ方向と直交する方向はいずれも、圧電層2の厚み方向に交差する方向である。このため、電極3と、隣の電極4とは、圧電層2の厚み方向に交差する方向において対向しているともいえる。 The electrode 3 and the electrode 4 have a rectangular shape and have a length direction. The electrode 3 and the adjacent electrode 4 face each other in a direction perpendicular to this length direction. These plurality of electrodes 3 and 4, the first bus bar 5, and the second bus bar 6 constitute an IDT (Interdigital Transducer) electrode. The length direction of the electrodes 3 and 4 and the direction perpendicular to the length direction of the electrodes 3 and 4 are both directions that intersect the thickness direction of the piezoelectric layer 2. Therefore, it can be said that the electrode 3 and the adjacent electrode 4 face each other in the direction intersecting the thickness direction of the piezoelectric layer 2.
 また、電極3,4の長さ方向が図1A及び図1Bに示す電極3,4の長さ方向に直交する方向と入れ替わってもよい。すなわち、図1A及び図1Bにおいて、第1のバスバー5及び第2のバスバー6が延びている方向に電極3,4を延ばしてもよい。その場合、第1のバスバー5及び第2のバスバー6は、図1A及び図1Bにおいて電極3,4が延びている方向に延びることとなる。 Furthermore, the length direction of the electrodes 3 and 4 may be replaced with the direction perpendicular to the length direction of the electrodes 3 and 4 shown in FIGS. 1A and 1B. That is, in FIGS. 1A and 1B, the electrodes 3 and 4 may extend in the direction in which the first bus bar 5 and the second bus bar 6 extend. In that case, the first bus bar 5 and the second bus bar 6 will extend in the direction in which the electrodes 3 and 4 extend in FIGS. 1A and 1B.
 そして、一方電位に接続される電極3と、他方電位に接続される電極4とが隣り合う1対の構造が、上記電極3,4の長さ方向と直交する方向に、複数対設けられている。ここで電極3と電極4とが隣り合うとは、電極3と電極4とが直接接触するように配置されている場合ではなく、電極3と電極4とが間隔を介して配置されている場合を指す。 A plurality of pairs of structures in which an electrode 3 connected to one potential and an electrode 4 connected to the other potential are adjacent to each other are provided in a direction perpendicular to the length direction of the electrodes 3 and 4. There is. Here, the expression "electrode 3 and electrode 4 are adjacent" does not mean that electrode 3 and electrode 4 are arranged so as to be in direct contact with each other, but when electrode 3 and electrode 4 are arranged with a gap between them. refers to
 また、電極3と電極4とが隣り合う場合、電極3と電極4との間には、他の電極3,4を含む、ホット電極やグランド電極に接続される電極は配置されない。この対数は、整数対である必要はなく、1.5対や2.5対などであってもよい。電極3,4間の中心間距離すなわちピッチは、1μm以上、10μm以下の範囲が好ましい。また、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の幅寸法の中心と、電極4の長さ方向と直交する方向における電極4の幅寸法の中心とを結んだ距離となる。さらに、電極3,4の少なくとも一方が複数本ある場合(電極3,4を一対の電極組とし、1.5対以上の電極組がある場合)、電極3,4の中心間距離は、1.5対以上の電極3,4のうち隣り合う電極3,4それぞれの中心間距離の平均値を指す。また、電極3,4の幅、すなわち電極3,4の対向方向の寸法は、150nm以上、1000nm以下の範囲が好ましい。なお、電極3,4間の中心間距離とは、電極3の長さ方向と直交する方向における電極3の寸法(幅寸法)の中心と、電極4の長さ方向と直交する方向における電極4の寸法(幅寸法)の中心とを結んだ距離となる。 Further, when the electrode 3 and the electrode 4 are adjacent to each other, no electrode connected to the hot electrode or the ground electrode, including the other electrodes 3 and 4, is arranged between the electrode 3 and the electrode 4. This logarithm does not need to be an integer pair, and may be 1.5 pairs, 2.5 pairs, or the like. The center-to-center distance between the electrodes 3 and 4, that is, the pitch, is preferably in the range of 1 μm or more and 10 μm or less. In addition, the center-to-center distance between the electrodes 3 and 4 refers to the center of the width dimension of the electrode 3 in the direction orthogonal to the length direction of the electrode 3, and the width dimension of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. It is the distance between the center of Furthermore, when there is a plurality of at least one of the electrodes 3 and 4 ( electrodes 3 and 4 are a pair of electrode sets, and there are 1.5 or more pairs of electrode sets), the distance between the centers of the electrodes 3 and 4 is 1 It refers to the average value of the distance between the centers of adjacent electrodes 3 and 4 among 5 or more pairs of electrodes 3 and 4. Further, the width of the electrodes 3 and 4, that is, the dimension in the opposing direction of the electrodes 3 and 4, is preferably in the range of 150 nm or more and 1000 nm or less. Note that the distance between the centers of the electrodes 3 and 4 refers to the distance between the center of the dimension (width dimension) of the electrode 3 in the direction orthogonal to the length direction of the electrode 3 and the center of the dimension (width dimension) of the electrode 4 in the direction orthogonal to the length direction of the electrode 4. This is the distance between the center of the dimension (width dimension).
 また、本実施形態では、Zカットの圧電層を用いているため、電極3,4の長さ方向と直交する方向は、圧電層2の分極方向に直交する方向となる。圧電層2として他のカット角の圧電体を用いた場合には、この限りでない。ここにおいて、「直交」とは、厳密に直交する場合のみに限定されず、略直交(電極3,4の長さ方向と直交する方向と分極方向とのなす角度が例えば90°±10°)でもよい。 Furthermore, in this embodiment, since a Z-cut piezoelectric layer is used, the direction perpendicular to the length direction of the electrodes 3 and 4 is the direction perpendicular to the polarization direction of the piezoelectric layer 2. This is not the case when a piezoelectric material having a different cut angle is used as the piezoelectric layer 2. Here, "orthogonal" is not limited to strictly orthogonal, but approximately orthogonal (for example, the angle between the direction orthogonal to the length direction of the electrodes 3 and 4 and the polarization direction is 90°±10°) But that's fine.
 圧電層2の第2の主面2b側には、絶縁層7を介して支持部材8が積層されている。絶縁層7及び支持部材8は、枠状の形状を有し、図2に示すように、開口部7a,8aを有する。それによって、空洞部9が形成されている。空洞部9は、圧電層2の励振領域Cの振動を妨げないために設けられている。従って、上記支持部材8は、少なくとも1対の電極3,4が設けられている部分と重ならない位置において、第2の主面2bに絶縁層7を介して積層されている。なお、絶縁層7は設けられずともよい。従って、支持部材8は、圧電層2の第2の主面2bに直接または間接に積層され得る。 A support member 8 is laminated on the second main surface 2b side of the piezoelectric layer 2 with an insulating layer 7 in between. The insulating layer 7 and the support member 8 have a frame-like shape, and have openings 7a and 8a, as shown in FIG. Thereby, a cavity 9 is formed. The cavity 9 is provided so as not to hinder the vibration of the excitation region C of the piezoelectric layer 2. Therefore, the support member 8 is laminated on the second main surface 2b with the insulating layer 7 in between, at a position that does not overlap with the portion where at least one pair of electrodes 3 and 4 are provided. Note that the insulating layer 7 may not be provided. Therefore, the support member 8 can be laminated directly or indirectly on the second main surface 2b of the piezoelectric layer 2.
 絶縁層7は、酸化ケイ素からなる。もっとも、酸化ケイ素の他、酸窒化ケイ素、アルミナなどの適宜の絶縁性材料を用いることができる。支持部材8は、Siからなる。Siの圧電層2側の面における面方位は(100)や(110)であってもよく、(111)であってもよい。好ましくは、抵抗率4kΩ以上の高抵抗のSiが望ましい。もっとも、支持部材8についても適宜の絶縁性材料や半導体材料を用いて構成することができる。支持部材8の材料としては、例えば、酸化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、水晶などの圧電体、アルミナ、マグネシア、サファイア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライトなどの各種セラミック、ダイヤモンド、ガラスなどの誘電体、窒化ガリウムなどの半導体などを用いることができる。 The insulating layer 7 is made of silicon oxide. However, other than silicon oxide, an appropriate insulating material such as silicon oxynitride or alumina can be used. The support member 8 is made of Si. The plane orientation of the Si surface on the piezoelectric layer 2 side may be (100), (110), or (111). Preferably, Si has a high resistivity of 4 kΩ or more. However, the support member 8 can also be constructed using an appropriate insulating material or semiconductor material. Examples of materials for the support member 8 include aluminum oxide, lithium tantalate, lithium niobate, piezoelectric materials such as crystal, alumina, magnesia, sapphire, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, and star. Various ceramics such as tite and forsterite, dielectrics such as diamond and glass, semiconductors such as gallium nitride, etc. can be used.
 上記複数の電極3,4及び第1,第2のバスバー5,6は、Al、AlCu合金などの適宜の金属もしくは合金からなる。本実施形態では、電極3,4及び第1,第2のバスバー5,6は、Ti膜上にAl膜を積層した構造を有する。なお、Ti膜以外の密着層を用いてもよい。 The plurality of electrodes 3 and 4 and the first and second bus bars 5 and 6 are made of a suitable metal or alloy such as Al or AlCu alloy. In this embodiment, the electrodes 3 and 4 and the first and second bus bars 5 and 6 have a structure in which an Al film is laminated on a Ti film. Note that an adhesive layer other than the Ti film may be used.
 駆動に際しては、複数の電極3と、複数の電極4との間に交流電圧を印加する。より具体的には、第1のバスバー5と第2のバスバー6との間に交流電圧を印加する。それによって、圧電層2において励振される厚み滑りモードのバルク波を利用した、共振特性を得ることが可能とされている。 During driving, an AC voltage is applied between the plurality of electrodes 3 and the plurality of electrodes 4. More specifically, an AC voltage is applied between the first bus bar 5 and the second bus bar 6. Thereby, it is possible to obtain resonance characteristics using the thickness shear mode bulk wave excited in the piezoelectric layer 2.
 また、弾性波装置1では、圧電層2の厚みをd、複数対の電極3,4のうちいずれかの隣り合う電極3,4の中心間距離をpとした場合、d/pは0.5以下とされている。そのため、上記厚み滑りモードのバルク波が効果的に励振され、良好な共振特性を得ることができる。より好ましくは、d/pは0.24以下であり、その場合には、より一層良好な共振特性を得ることができる。 Further, in the acoustic wave device 1, when the thickness of the piezoelectric layer 2 is d, and the distance between the centers of any adjacent electrodes 3, 4 among the plurality of pairs of electrodes 3, 4 is p, d/p is 0. It is considered to be 5 or less. Therefore, the bulk wave in the thickness shear mode is effectively excited, and good resonance characteristics can be obtained. More preferably, d/p is 0.24 or less, in which case even better resonance characteristics can be obtained.
 なお、本実施形態のように電極3,4の少なくとも一方が複数本ある場合、すなわち、電極3,4を1対の電極組と、電極3,4が1.5対以上ある場合、隣り合う電極3,4の中心間距離pは、各隣り合う電極3,4の中心間距離の平均距離となる。 In addition, when there is a plurality of at least one of the electrodes 3 and 4 as in the present embodiment, that is, when there are one pair of electrodes 3 and 4 and 1.5 or more pairs of electrodes 3 and 4, the electrodes 3 and 4 are adjacent to each other. The distance p between the centers of the electrodes 3 and 4 is the average distance between the centers of the adjacent electrodes 3 and 4.
 本実施形態の弾性波装置1では、上記構成を備えるため、小型化を図ろうとして、電極3,4の対数を小さくしたとしても、Q値の低下が生じ難い。これは、両側に反射器を必要としない共振器であり、伝搬ロスが少ないためである。また、上記反射器を必要としないのは、厚み滑りモードのバルク波を利用していることによる。 Since the elastic wave device 1 of this embodiment has the above configuration, even if the logarithm of the electrodes 3 and 4 is reduced in an attempt to achieve miniaturization, the Q value is unlikely to decrease. This is because the resonator does not require reflectors on both sides and has little propagation loss. Further, the reason why the reflector is not required is because the bulk wave in the thickness shear mode is used.
 従来の弾性波装置で利用したラム波と、上記厚み滑りモードのバルク波の相違を、図3A及び図3Bを参照して説明する。 The difference between the Lamb waves used in conventional elastic wave devices and the thickness-shear mode bulk waves will be explained with reference to FIGS. 3A and 3B.
 図3Aは、従来の弾性波装置の圧電膜を伝搬するラム波を説明するための模式的正面断面図である。従来の弾性波装置については、例えば、日本公開特許公報 特開2012-257019号公報に記載されている。図3Aに示すように、従来の弾性波装置においては、圧電膜201中を矢印で示すように波が伝搬する。ここで、圧電膜201では、第1の主面201aと、第2の主面201bとが対向しており、第1の主面201aと第2の主面201bとを結ぶ厚み方向がZ方向である。X方向は、IDT電極の電極指が並んでいる方向である。図3Aに示すように、ラム波では、波が図示のように、X方向に伝搬していく。板波であるため、圧電膜201が全体として振動するものの、波はX方向に伝搬するため、両側に反射器を配置して、共振特性を得ている。そのため、波の伝搬ロスが生じ、小型化を図った場合、すなわち電極指の対数を少なくした場合、Q値が低下する。 FIG. 3A is a schematic front sectional view for explaining Lamb waves propagating through a piezoelectric film of a conventional acoustic wave device. A conventional elastic wave device is described in, for example, Japanese Patent Publication No. 2012-257019. As shown in FIG. 3A, in the conventional acoustic wave device, waves propagate in the piezoelectric film 201 as indicated by arrows. Here, in the piezoelectric film 201, the first main surface 201a and the second main surface 201b are opposite to each other, and the thickness direction connecting the first main surface 201a and the second main surface 201b is the Z direction. It is. The X direction is the direction in which the electrode fingers of the IDT electrodes are lined up. As shown in FIG. 3A, in the Lamb wave, the wave propagates in the X direction as shown. Since it is a plate wave, the piezoelectric film 201 vibrates as a whole, but since the wave propagates in the X direction, reflectors are placed on both sides to obtain resonance characteristics. Therefore, wave propagation loss occurs, and when miniaturization is attempted, that is, when the number of logarithms of electrode fingers is reduced, the Q value decreases.
 これに対して、図3Bに示すように、本実施形態の弾性波装置1では、振動変位は厚み滑り方向であるから、波は、圧電層2の第1の主面2aと第2の主面2bとを結ぶ方向、すなわちZ方向にほぼ伝搬し、共振する。すなわち、波のX方向成分がZ方向成分に比べて著しく小さい。そして、このZ方向の波の伝搬により共振特性が得られるため、反射器を必要としない。よって、反射器に伝搬する際の伝搬損失は生じない。従って、小型化を進めようとして、電極3,4からなる電極対の対数を減らしたとしても、Q値の低下が生じ難い。 On the other hand, as shown in FIG. 3B, in the elastic wave device 1 of this embodiment, the vibration displacement is in the thickness-slip direction, so the waves are generated between the first principal surface 2a and the second principal surface of the piezoelectric layer 2. It propagates almost in the direction connecting the surface 2b, that is, in the Z direction, and resonates. That is, the X-direction component of the wave is significantly smaller than the Z-direction component. Since resonance characteristics are obtained by the propagation of waves in the Z direction, a reflector is not required. Therefore, no propagation loss occurs when propagating to the reflector. Therefore, even if the number of electrode pairs consisting of electrodes 3 and 4 is reduced in an attempt to promote miniaturization, the Q value is unlikely to decrease.
 なお、厚み滑りモードのバルク波の振幅方向は、図4に示すように、圧電層2の励振領域Cに含まれる第1領域451と、励振領域Cに含まれる第2領域452とで逆になる。図4は、電極3と電極4との間に、電極4が電極3よりも高電位となる電圧が印加された場合のバルク波を模式的に示してある。第1領域451は、励振領域Cのうち、圧電層2の厚み方向に直交し圧電層2を2分する仮想平面VP1と、第1の主面2aとの間の領域である。第2領域452は、励振領域Cのうち、仮想平面VP1と、第2の主面2bとの間の領域である。 Note that, as shown in FIG. 4, the amplitude direction of the bulk wave in the thickness shear mode is reversed between the first region 451 included in the excitation region C of the piezoelectric layer 2 and the second region 452 included in the excitation region C. Become. FIG. 4 schematically shows a bulk wave when a voltage is applied between electrode 3 and electrode 4 such that electrode 4 has a higher potential than electrode 3. In FIG. The first region 451 is a region of the excitation region C between a virtual plane VP1 that is perpendicular to the thickness direction of the piezoelectric layer 2 and bisects the piezoelectric layer 2, and the first main surface 2a. The second region 452 is a region of the excitation region C between the virtual plane VP1 and the second principal surface 2b.
 上記のように、弾性波装置1では、電極3と電極4とからなる少なくとも1対の電極が配置されているが、X方向に波を伝搬させるものではないため、この電極3,4からなる電極対の対数は複数対ある必要は必ずしもない。すなわち、少なくとも1対の電極が設けられてさえおればよい。 As mentioned above, in the elastic wave device 1, at least one pair of electrodes consisting of the electrode 3 and the electrode 4 are arranged, but since the wave is not propagated in the X direction, the elastic wave device 1 is made up of the electrodes 3 and 4. There does not necessarily have to be a plurality of pairs of electrodes. That is, it is only necessary that at least one pair of electrodes be provided.
 例えば、上記電極3がホット電位に接続される電極であり、電極4がグラウンド電位に接続される電極である。もっとも、電極3がグラウンド電位に、電極4がホット電位に接続されてもよい。本実施形態では、少なくとも1対の電極は、上記のように、ホット電位に接続される電極またはグラウンド電位に接続される電極であり、浮き電極は設けられていない。 For example, the electrode 3 is an electrode connected to a hot potential, and the electrode 4 is an electrode connected to a ground potential. However, the electrode 3 may be connected to the ground potential and the electrode 4 may be connected to the hot potential. In this embodiment, at least one pair of electrodes is an electrode connected to a hot potential or an electrode connected to a ground potential, as described above, and no floating electrode is provided.
 図5は、本発明の第1の実施形態に係る弾性波装置の共振特性を示す図である。なお、この共振特性を得た弾性波装置1の設計パラメータは以下の通りである。
 圧電層2:オイラー角(0°,0°,90°)のLiNbO、厚み=400nm。 電極3と電極4の長さ方向と直交する方向に視たときに、電極3と電極4とが重なっている領域、すなわち励振領域Cの長さ=40μm、電極3,4からなる電極の対数=21対、電極間中心距離=3μm、電極3,4の幅=500nm、d/p=0.133。
 絶縁層7:1μmの厚みの酸化ケイ素膜。
 支持部材8:Si。
FIG. 5 is a diagram showing the resonance characteristics of the elastic wave device according to the first embodiment of the present invention. Note that the design parameters of the elastic wave device 1 that obtained this resonance characteristic are as follows.
Piezoelectric layer 2: LiNbO 3 with Euler angles (0°, 0°, 90°), thickness = 400 nm. When viewed in a direction perpendicular to the length direction of electrodes 3 and 4, the area where electrodes 3 and 4 overlap, that is, the length of excitation area C = 40 μm, the logarithm of electrodes consisting of electrodes 3 and 4 = 21 pairs, center distance between electrodes = 3 μm, width of electrodes 3 and 4 = 500 nm, d/p = 0.133.
Insulating layer 7: silicon oxide film with a thickness of 1 μm.
Support member 8: Si.
 なお、励振領域Cの長さとは、励振領域Cの電極3,4の長さ方向に沿う寸法である。 Note that the length of the excitation region C is a dimension along the length direction of the electrodes 3 and 4 of the excitation region C.
 本実施形態では、電極3,4からなる電極対の電極間距離は、複数対において全て等しくした。すなわち、電極3と電極4とを等ピッチで配置した。 In this embodiment, the inter-electrode distances of the electrode pairs consisting of the electrodes 3 and 4 were all made equal in multiple pairs. That is, the electrodes 3 and 4 were arranged at equal pitches.
 図5から明らかなように、反射器を有しないにもかかわらず、比帯域が12.5%である良好な共振特性が得られている。 As is clear from FIG. 5, good resonance characteristics with a fractional band of 12.5% are obtained despite not having a reflector.
 ところで、上記圧電層2の厚みをd、電極3と電極4との電極の中心間距離をpとした場合、前述したように、本実施形態では、d/pは0.5以下、より好ましくは0.24以下である。これを、図6を参照して説明する。 By the way, when the thickness of the piezoelectric layer 2 is d, and the center-to-center distance between the electrodes 3 and 4 is p, in this embodiment, d/p is preferably 0.5 or less, as described above. is 0.24 or less. This will be explained with reference to FIG.
 図5に示した共振特性を得た弾性波装置と同様に、但しd/2pを変化させ、複数の弾性波装置を得た。図6は、このd/2pと、弾性波装置の共振子としての比帯域との関係を示す図である。 A plurality of elastic wave devices were obtained in the same way as the elastic wave devices that obtained the resonance characteristics shown in FIG. 5, except that d/2p was varied. FIG. 6 is a diagram showing the relationship between d/2p and the fractional band of the resonator of the elastic wave device.
 図6から明らかなように、d/2pが0.25を超えると、すなわちd/p>0.5では、d/pを調整しても、比帯域は5%未満である。これに対して、d/2p≦0.25、すなわちd/p≦0.5の場合には、その範囲内でd/pを変化させれば、比帯域を5%以上とすることができ、すなわち高い結合係数を有する共振子を構成することができる。また、d/2pが0.12以下の場合、すなわちd/pが0.24以下の場合には、比帯域を7%以上と高めることができる。加えて、d/pをこの範囲内で調整すれば、より一層比帯域の広い共振子を得ることができ、より一層高い結合係数を有する共振子を実現することができる。従って、本開示の第2の態様の弾性波装置のように、d/pを0.5以下とすることにより、上記厚み滑りモードのバルク波を利用した、高い結合係数を有する共振子を構成し得ることがわかる。 As is clear from FIG. 6, when d/2p exceeds 0.25, that is, when d/p>0.5, the fractional band is less than 5% even if d/p is adjusted. On the other hand, if d/2p≦0.25, that is, d/p≦0.5, the fractional bandwidth can be increased to 5% or more by changing d/p within that range. In other words, a resonator having a high coupling coefficient can be constructed. Further, when d/2p is 0.12 or less, that is, when d/p is 0.24 or less, the fractional band can be increased to 7% or more. In addition, by adjusting d/p within this range, it is possible to obtain a resonator with an even wider specific band, and it is possible to realize a resonator with an even higher coupling coefficient. Therefore, as in the elastic wave device of the second aspect of the present disclosure, by setting d/p to 0.5 or less, a resonator having a high coupling coefficient that utilizes the bulk wave of the thickness shear mode is configured. I know what I can do.
 なお、前述したように、少なくとも1対の電極は、1対でもよく、上記pは、1対の電極の場合、隣り合う電極3,4の中心間距離とする。また、1.5対以上の電極の場合には、隣り合う電極3,4の中心間距離の平均距離をpとすればよい。 Note that, as described above, the at least one pair of electrodes may be one pair, and in the case of one pair of electrodes, the above p is the distance between the centers of adjacent electrodes 3 and 4. Furthermore, in the case of 1.5 or more pairs of electrodes, the average distance between the centers of adjacent electrodes 3 and 4 may be set to p.
 また、圧電層の厚みdについても、圧電層2が厚みばらつきを有する場合、その厚みを平均化した値を採用すればよい。 Also, regarding the thickness d of the piezoelectric layer, if the piezoelectric layer 2 has thickness variations, a value obtained by averaging the thicknesses may be adopted.
 図7は、本開示の第1の実施形態に係る別の弾性波装置の平面図である。弾性波装置31では、圧電層2の第1の主面2a上において、電極3と電極4とを有する1対の電極が設けられている。なお、図7中のKが交差幅となる。前述したように、本発明の弾性波装置31では、電極の対数は1対であってもよい。この場合においても、上記d/pが0.5以下であれば、厚み滑りモードのバルク波を効果的に励振することができる。 FIG. 7 is a plan view of another elastic wave device according to the first embodiment of the present disclosure. In the acoustic wave device 31, a pair of electrodes including an electrode 3 and an electrode 4 are provided on the first main surface 2a of the piezoelectric layer 2. Note that K in FIG. 7 is the intersection width. As described above, in the acoustic wave device 31 of the present invention, the number of pairs of electrodes may be one. Even in this case, if the above-mentioned d/p is 0.5 or less, bulk waves in the thickness shear mode can be excited effectively.
 弾性波装置1では、好ましくは、複数の電極3,4において、いずれかの隣り合う電極3,4が対向している方向に視たときに重なっている領域である励振領域に対する、上記隣り合う電極3,4のメタライゼーション比MRが、MR≦1.75(d/p)+0.075を満たすことが望ましい。即ち、隣り合う複数の第1電極指と複数の第2電極指とが対向している方向に視たときに複数の第1電極指と複数の第2電極指とが重なっている領域が励振領域(交差領域)であり、励振領域に対する、複数の第1電極指及び複数の第2電極指のメタライゼーション比をMRとしたときに、MR≦1.75(d/p)+0.075を満たすことが好ましい。その場合には、スプリアスを効果的に小さくすることができる。 In the elastic wave device 1, preferably, in the plurality of electrodes 3, 4, the above-mentioned adjacent It is desirable that the metallization ratio MR of the electrodes 3 and 4 satisfies MR≦1.75(d/p)+0.075. That is, when viewed in the direction in which adjacent first electrode fingers and second electrode fingers are facing each other, the region where the plurality of first electrode fingers and the plurality of second electrode fingers overlap is excited. region (intersection region), and when the metallization ratio of the plurality of first electrode fingers and the plurality of second electrode fingers with respect to the excitation region is MR, MR≦1.75 (d/p) + 0.075. It is preferable to meet the requirements. In that case, spurious can be effectively reduced.
 これを、図8及び図9を参照して説明する。図8は、上記弾性波装置1の共振特性の一例を示す参考図である。矢印Bで示すスプリアスが、共振周波数と反共振周波数との間に現れている。なお、d/p=0.08として、かつLiNbOのオイラー角(0°,0°,90°)とした。また、上記メタライゼーション比MR=0.35とした。 This will be explained with reference to FIGS. 8 and 9. FIG. 8 is a reference diagram showing an example of the resonance characteristics of the elastic wave device 1. As shown in FIG. A spurious signal indicated by arrow B appears between the resonant frequency and the anti-resonant frequency. Note that d/p=0.08 and the Euler angles of LiNbO 3 (0°, 0°, 90°). Further, the metallization ratio MR was set to 0.35.
 メタライゼーション比MRを、図1Bを参照して説明する。図1Bの電極構造において、1対の電極3,4に着目した場合、この1対の電極3,4のみが設けられるとする。この場合、一点鎖線Cで囲まれた部分が励振領域となる。この励振領域とは、電極3と電極4とを、電極3,4の長さ方向と直交する方向すなわち対向方向に視たときに電極3における電極4と重なり合っている領域、電極4における電極3と重なり合っている領域、及び、電極3と電極4との間の領域における電極3と電極4とが重なり合っている領域である。そして、この励振領域の面積に対する、励振領域C内の電極3,4の面積が、メタライゼーション比MRとなる。すなわち、メタライゼーション比MRは、メタライゼーション部分の面積の励振領域の面積に対する比である。 The metallization ratio MR will be explained with reference to FIG. 1B. In the electrode structure of FIG. 1B, when focusing on a pair of electrodes 3 and 4, it is assumed that only this pair of electrodes 3 and 4 are provided. In this case, the area surrounded by the dashed line C becomes the excitation region. This excitation region is the region where the electrode 3 overlaps the electrode 4 when the electrode 3 and the electrode 4 are viewed in a direction perpendicular to the length direction of the electrodes 3 and 4, that is, in a direction in which they face each other. and a region between electrodes 3 and 4 where electrodes 3 and 4 overlap. Then, the area of the electrodes 3 and 4 in the excitation region C with respect to the area of this excitation region becomes the metallization ratio MR. That is, the metallization ratio MR is the ratio of the area of the metallized portion to the area of the excitation region.
 なお、複数対の電極が設けられている場合、励振領域の面積の合計に対する全励振領域に含まれているメタライゼーション部分の割合をMRとすればよい。 Note that when multiple pairs of electrodes are provided, MR may be the ratio of the metallized portion included in all the excitation regions to the total area of the excitation regions.
 図9は本実施形態に従って、多数の弾性波共振子を構成した場合の比帯域と、スプリアスの大きさとしての180度で規格化されたスプリアスのインピーダンスの位相回転量との関係を示す図である。なお、比帯域については、圧電層の膜厚や電極の寸法を種々変更し、調整した。また、図9は、ZカットのLiNbOからなる圧電層を用いた場合の結果であるが、他のカット角の圧電層を用いた場合においても、同様の傾向となる。 FIG. 9 is a diagram showing the relationship between the fractional band and the amount of phase rotation of spurious impedance normalized by 180 degrees as the magnitude of spurious when a large number of elastic wave resonators are configured according to the present embodiment. be. Note that the specific band was adjusted by variously changing the thickness of the piezoelectric layer and the dimensions of the electrode. Further, although FIG. 9 shows the results when a Z-cut piezoelectric layer made of LiNbO 3 is used, the same tendency is obtained when piezoelectric layers with other cut angles are used.
 図9中の楕円Jで囲まれている領域では、スプリアスが1.0と大きくなっている。図9から明らかなように、比帯域が0.17を超えると、すなわち17%を超えると、スプリアスレベルが1以上の大きなスプリアスが、比帯域を構成するパラメータを変化させたとしても、通過帯域内に現れる。すなわち、図8に示す共振特性のように、矢印Bで示す大きなスプリアスが帯域内に現れる。よって、比帯域は17%以下であることが好ましい。この場合には、圧電層2の膜厚や電極3,4の寸法などを調整することにより、スプリアスを小さくすることができる。 In the area surrounded by the ellipse J in FIG. 9, the spurious is as large as 1.0. As is clear from FIG. 9, when the fractional band exceeds 0.17, that is, exceeds 17%, a large spurious with a spurious level of 1 or more will affect the pass band even if the parameters that make up the fractional band are changed. Appear within. That is, as in the resonance characteristics shown in FIG. 8, a large spurious signal indicated by arrow B appears within the band. Therefore, it is preferable that the fractional band is 17% or less. In this case, by adjusting the thickness of the piezoelectric layer 2, the dimensions of the electrodes 3 and 4, etc., the spurious can be reduced.
 図10は、d/2pと、メタライゼーション比MRと、比帯域との関係を示す図である。上記弾性波装置において、d/2pと、MRが異なる様々な弾性波装置を構成し、比帯域を測定した。図10の破線Dの右側のハッチングを付して示した部分が、比帯域が17%以下の領域である。このハッチングを付した領域と、付していない領域との境界は、MR=3.5(d/2p)+0.075で表される。すなわち、MR=1.75(d/p)+0.075である。従って、好ましくは、MR≦1.75(d/p)+0.075である。その場合には、比帯域を17%以下としやすい。より好ましくは、図10中の一点鎖線D1で示すMR=3.5(d/2p)+0.05の右側の領域である。すなわち、MR≦1.75(d/p)+0.05であれば、比帯域を確実に17%以下にすることができる。 FIG. 10 is a diagram showing the relationship between d/2p, metallization ratio MR, and fractional band. Among the above elastic wave devices, various elastic wave devices having different d/2p and MR were constructed and the fractional bands were measured. The hatched area on the right side of the broken line D in FIG. 10 is a region where the fractional band is 17% or less. The boundary between the hatched area and the unhatched area is expressed as MR=3.5(d/2p)+0.075. That is, MR=1.75(d/p)+0.075. Therefore, preferably MR≦1.75 (d/p)+0.075. In that case, it is easy to set the fractional band to 17% or less. More preferably, it is the region to the right of MR=3.5(d/2p)+0.05 indicated by the dashed line D1 in FIG. That is, if MR≦1.75(d/p)+0.05, the fractional band can be reliably set to 17% or less.
 図11は、d/pを限りなく0に近づけた場合のLiNbOのオイラー角(0°,θ,ψ)に対する比帯域のマップを示す図である。図11のハッチングを付して示した部分が、少なくとも5%以上の比帯域が得られる領域であり、当該領域の範囲を近似すると、下記の式(1)、式(2)及び式(3)で表される範囲となる。 FIG. 11 is a diagram showing a map of the fractional band with respect to Euler angles (0°, θ, ψ) of LiNbO 3 when d/p is brought as close to 0 as possible. The hatched areas in FIG. 11 are areas where a fractional band of at least 5% can be obtained, and the range of the area can be approximated by the following equations (1), (2), and (3). ).
 (0°±10°,0°~20°,任意のψ)  …式(1) (0°±10°, 0° to 20°, arbitrary ψ)...Formula (1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2) (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) ...Formula (2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3) (0°±10°, [180°-30° (1-(ψ-90) 2 /8100) 1/2 ] ~ 180°, arbitrary ψ) ...Formula (3)
 従って、上記式(1)、式(2)または式(3)のオイラー角範囲の場合、比帯域を十分に広くすることができ、好ましい。 Therefore, in the case of the Euler angle range of the above formula (1), formula (2), or formula (3), the fractional band can be made sufficiently wide, which is preferable.
 図12は、本開示の第1の実施形態に係る弾性波装置を説明するための部分切り欠き斜視図である。弾性波装置81は、支持基板82を有する。支持基板82には、上面に開いた凹部が設けられている。支持基板82上に圧電層83が積層されている。それによって、空洞部9が構成されている。この空洞部9の上方において圧電層83上に、IDT電極84が設けられている。IDT電極84の弾性波伝搬方向両側に、反射器85,86が設けられている。図12において、空洞部9の外周縁を破線で示す。ここでは、IDT電極84は、第1,第2のバスバー84a,84bと、複数本の第1の電極指としての電極84c及び複数本の第2の電極指としての電極84dとを有する。複数本の電極84cは、第1のバスバー84aに接続されている。複数本の電極84dは、第2のバスバー84bに接続されている。複数本の電極84cと、複数本の電極84dとは間挿し合っている。 FIG. 12 is a partially cutaway perspective view for explaining the elastic wave device according to the first embodiment of the present disclosure. The elastic wave device 81 has a support substrate 82 . The support substrate 82 is provided with an open recess on the upper surface. A piezoelectric layer 83 is laminated on the support substrate 82 . Thereby, a cavity 9 is formed. An IDT electrode 84 is provided on the piezoelectric layer 83 above the cavity 9 . Reflectors 85 and 86 are provided on both sides of the IDT electrode 84 in the elastic wave propagation direction. In FIG. 12, the outer periphery of the cavity 9 is indicated by a broken line. Here, the IDT electrode 84 includes first and second bus bars 84a and 84b, an electrode 84c as a plurality of first electrode fingers, and an electrode 84d as a plurality of second electrode fingers. The plurality of electrodes 84c are connected to the first bus bar 84a. The plurality of electrodes 84d are connected to the second bus bar 84b. The plurality of electrodes 84c and the plurality of electrodes 84d are interposed with each other.
 弾性波装置81では、上記空洞部9上のIDT電極84に、交流電界を印加することにより、板波としてのラム波が励振される。そして、反射器85,86が両側に設けられているため、上記ラム波による共振特性を得ることができる。 In the elastic wave device 81, by applying an alternating current electric field to the IDT electrode 84 on the cavity 9, a Lamb wave as a plate wave is excited. Since the reflectors 85 and 86 are provided on both sides, the resonance characteristic due to the Lamb wave described above can be obtained.
 このように、本開示の弾性波装置は、板波を利用するものであってもよい。 In this way, the elastic wave device of the present disclosure may utilize plate waves.
(第2の実施形態)
 第2の実施形態の弾性波装置について説明する。第2の実施形態においては、第1の実施形態と重複する内容については適宜、説明を省略する。第2の実施形態においては、第1の実施形態で説明した内容を適用することができる。
(Second embodiment)
An elastic wave device according to a second embodiment will be described. In the second embodiment, descriptions of contents that overlap with those in the first embodiment will be omitted as appropriate. In the second embodiment, the contents described in the first embodiment can be applied.
 従来の弾性波装置の課題について説明する。図13は、格子状に並んだ複数の従来の弾性波装置の平面図である。つまり、図13は、格子状に並んだ複数の従来の弾性波装置を平面視した図である。ここで、平面視は、後述する積層方向D11から見ての意味である。 Problems with conventional elastic wave devices will be explained. FIG. 13 is a plan view of a plurality of conventional elastic wave devices arranged in a grid. That is, FIG. 13 is a plan view of a plurality of conventional elastic wave devices arranged in a grid pattern. Here, "planar view" means viewed from the stacking direction D11, which will be described later.
 図13に示す弾性波装置600は、CSP(Chip Size Package)構造であり、パッケージ基板と、1つ以上の共振子を有する弾性波素子とを備える。図13には、弾性波装置600のうちのパッケージ基板が示されており、弾性波素子はパッケージ基板の下方(紙面奥側)に設けられているため示されていない。弾性波素子とパッケージ基板とは、導電性のバンプ(不図示)を介して互いに接合されている。これにより、弾性波素子とパッケージ基板とは、互いに電気的に接続されている。 The elastic wave device 600 shown in FIG. 13 has a CSP (Chip Size Package) structure, and includes a package substrate and an acoustic wave element having one or more resonators. FIG. 13 shows the package substrate of the acoustic wave device 600, and the acoustic wave element is not shown because it is provided below the package substrate (on the back side of the page). The acoustic wave element and the package substrate are bonded to each other via conductive bumps (not shown). Thereby, the acoustic wave element and the package substrate are electrically connected to each other.
 製造時等において、弾性波装置600は、平面視で格子状に並んだ状態とされ、最終的に切断されて個別化される。図13には、格子状に並んだ9つの弾性波装置600が描かれている。9つの弾性波装置600のうち、中央に位置する弾性波装置600Aは、その全体が描かれている。9つの弾性波装置600のうち、弾性波装置600Aの周囲に位置する8つの弾性波装置600は、その一部が描かれている。 During manufacturing, etc., the acoustic wave devices 600 are arranged in a grid pattern when viewed from above, and are finally cut into individual pieces. FIG. 13 depicts nine elastic wave devices 600 arranged in a grid. Among the nine elastic wave devices 600, the elastic wave device 600A located in the center is depicted in its entirety. Among the nine elastic wave devices 600, eight elastic wave devices 600 located around the elastic wave device 600A are partially illustrated.
 9つの弾性波装置600の各々は、導電性のパターン610を有する。パターン610は、パッケージ基板に設けられている。パッケージ基板と弾性波素子との間には、複数のバンプが設けられている。各パターン610は、対応するバンプを介して弾性波素子と電気的に接続されている。以下、図13に描かれた9つの弾性波装置600のうちの弾性波装置600Aを例として、詳細が説明される。 Each of the nine elastic wave devices 600 has a conductive pattern 610. Pattern 610 is provided on the package substrate. A plurality of bumps are provided between the package substrate and the acoustic wave element. Each pattern 610 is electrically connected to an acoustic wave element via a corresponding bump. Hereinafter, details will be explained using the elastic wave device 600A among the nine elastic wave devices 600 depicted in FIG. 13 as an example.
 弾性波装置600Aは、パターン610として3つのパターン611、612、613を有する。各パターン611、612、613は、対応するバンプを介して弾性波素子と電気的に接続されている。図13に示す構成において、弾性波装置600Aは、少なくとも3つのバンプ(パターン611と弾性波素子とを接続するバンプ、パターン612と弾性波素子とを接続するバンプ、及びパターン613と弾性波素子とを接続するバンプ)を有する。 The elastic wave device 600A has three patterns 611, 612, and 613 as the pattern 610. Each pattern 611, 612, 613 is electrically connected to an acoustic wave element via a corresponding bump. In the configuration shown in FIG. 13, the elastic wave device 600A includes at least three bumps (a bump that connects the pattern 611 and the acoustic wave element, a bump that connects the pattern 612 and the acoustic wave element, and a bump that connects the pattern 613 and the acoustic wave element). (bumps connecting).
 以上のように構成された弾性波装置600では、以下の2つの課題がある。 The elastic wave device 600 configured as described above has the following two problems.
 第1の課題は、弾性波装置600の強度の向上の点において更なる改良の余地があることである。 The first problem is that there is room for further improvement in terms of improving the strength of the elastic wave device 600.
 通常、バンプは、平面視で、弾性波装置600の外縁部と重なる位置に設けられている。そのため、平面視における弾性波装置600の外縁部以外の位置(バンプが設けられていない位置)において、弾性波装置600の強度が弱くなるおそれがある。 Typically, the bump is provided at a position that overlaps the outer edge of the elastic wave device 600 in plan view. Therefore, the strength of the elastic wave device 600 may be weakened at positions other than the outer edge of the elastic wave device 600 (positions where no bumps are provided) in a plan view.
 第2の課題は、弾性波素子の特性の劣化が生じるおそれがあることである。以下に詳述する。 The second problem is that the characteristics of the acoustic wave element may deteriorate. The details are explained below.
 前述したように、パッケージ基板に設けられた複数のパターン610の各々は、対応するバンプを介して弾性波素子と電気的に接続されている。この場合、各バンプの電位は異なり得る。異なる電位の2つのバンプ間に電圧が印加された場合、当該2つのバンプ間にある共振子に過度の電流が流れて共振子が破損(例えば静電破壊)するおそれがある。前記のような共振子の破損を防止するため、図13に示すように、隣り合う弾性波装置600のパターン同士を導電性の導電パターン620(以下、タイバー620とも称する。)で電気的に接続して同電位とすることが行われている。 As described above, each of the plurality of patterns 610 provided on the package substrate is electrically connected to the acoustic wave element via the corresponding bump. In this case, the potential of each bump may be different. When a voltage is applied between two bumps having different potentials, an excessive current may flow through the resonator between the two bumps, causing damage to the resonator (for example, electrostatic damage). In order to prevent damage to the resonator as described above, as shown in FIG. 13, patterns of adjacent acoustic wave devices 600 are electrically connected to each other by conductive patterns 620 (hereinafter also referred to as tie bars 620). This is done to make the potential the same.
 弾性波装置600Aの場合、パターン611は、タイバー621を介して隣接する弾性波装置600Bと電気的に接続されている。パターン612は、タイバー622を介して隣接する弾性波装置600Bと電気的に接続されている。パターン613は、タイバー623を介して隣接する弾性波装置600Cと電気的に接続されている。 In the case of the elastic wave device 600A, the pattern 611 is electrically connected to the adjacent elastic wave device 600B via tie bars 621. The pattern 612 is electrically connected to the adjacent acoustic wave device 600B via a tie bar 622. The pattern 613 is electrically connected to the adjacent elastic wave device 600C via a tie bar 623.
 弾性波装置600においてタイバー620が設けられる位置や、弾性波素子において共振子が設けられる位置によっては、平面視でタイバー620と共振子とが重なる場合がある、または平面視でタイバー620と共振子とが近い位置となる場合がある。これらの場合、タイバー620と共振子とが電荷結合するおそれがある。タイバー620と共振子とが電荷結合すると、寄生容量が発生し、以下で説明するような弾性波素子の特性の劣化を引き起こすおそれがある。 Depending on the position where the tie bar 620 is provided in the acoustic wave device 600 or the position where the resonator is provided in the acoustic wave element, the tie bar 620 and the resonator may overlap in plan view, or the tie bar 620 and the resonator may overlap in plan view. and may be located close to each other. In these cases, there is a risk of charge coupling between the tie bar 620 and the resonator. When the tie bar 620 and the resonator are charge-coupled, parasitic capacitance is generated, which may cause deterioration of the characteristics of the acoustic wave device as described below.
 図14は、従来の弾性波装置において周波数(Frequency)に対する電力の通過ロス(Attenuation)を示すグラフである。図14に示すように、タイバー620が設けられている構成の特性L41の通過帯域は、タイバー620が設けられていない構成の特性L42の通過帯域より劣化している。言い換えると、タイバー620が設けられている構成の特性L41の電力の通過ロスは、タイバー620が設けられていない構成の特性L42の電力の通過ロスより大きくなっている。また、タイバー620が設けられている構成の特性L43の帯域幅は、タイバー620が設けられていない構成の特性L44の帯域幅より狭くなっている。 FIG. 14 is a graph showing power passing loss (Attenuation) with respect to frequency (Frequency) in a conventional elastic wave device. As shown in FIG. 14, the passband of the characteristic L41 in the configuration in which the tie bar 620 is provided is worse than the passband in the characteristic L42 in the configuration in which the tie bar 620 is not provided. In other words, the power passing loss of the characteristic L41 in the configuration in which the tie bar 620 is provided is greater than the power passing loss in the characteristic L42 in the configuration in which the tie bar 620 is not provided. Furthermore, the bandwidth of the characteristic L43 in the configuration in which the tie bar 620 is provided is narrower than the bandwidth in the characteristic L44 in the configuration in which the tie bar 620 is not provided.
 本開示の第2の実施形態の弾性波装置では、強度を向上させることができる。また、本開示の第2の実施形態の弾性波装置では、弾性波素子の特性の劣化を低減することができる。 In the elastic wave device of the second embodiment of the present disclosure, the strength can be improved. Furthermore, in the elastic wave device according to the second embodiment of the present disclosure, deterioration of the characteristics of the acoustic wave element can be reduced.
 以下、第2の実施形態の弾性波装置100の構成が説明される。 Hereinafter, the configuration of the elastic wave device 100 of the second embodiment will be explained.
 図15は、格子状に並んだ複数の弾性波装置の模式平面図である。 FIG. 15 is a schematic plan view of a plurality of elastic wave devices arranged in a grid.
 第2の実施形態において、弾性波装置100は、CSP(Chip Size Package)構造である。第2の実施形態において、図15に示すように、複数の弾性波装置100が格子状に並んでいる。図15には、9つの弾性波装置100(100A~100I)が示されているが、弾性波装置100の数は9つに限らない。図15では、パッケージ基板300の外部からは見えない内部電極330が、便宜上、描かれている。 In the second embodiment, the elastic wave device 100 has a CSP (Chip Size Package) structure. In the second embodiment, as shown in FIG. 15, a plurality of elastic wave devices 100 are arranged in a grid pattern. Although nine elastic wave devices 100 (100A to 100I) are shown in FIG. 15, the number of elastic wave devices 100 is not limited to nine. In FIG. 15, internal electrodes 330 that are not visible from the outside of the package substrate 300 are depicted for convenience.
 複数の弾性波装置100A~100Iの各々は、同構成である。そのため、以下の説明では、弾性波装置100Aの構成が説明され、弾性波装置100A以外の弾性波装置100(100B~100I)の説明は省略される。弾性波装置100A以外の弾性波装置100(100B~100I)については、必要に応じて言及される。g Each of the plurality of elastic wave devices 100A to 100I has the same configuration. Therefore, in the following explanation, the configuration of the elastic wave device 100A will be explained, and the explanation of the elastic wave devices 100 (100B to 100I) other than the elastic wave device 100A will be omitted. Elastic wave devices 100 (100B to 100I) other than elastic wave device 100A will be mentioned as necessary. g
 図16は、本開示の第2の実施形態に係る弾性波装置を厚み方向に切断した模式断面図である。なお、図16は模式図であるため、図16の各構成要素(例えば櫛歯状電極240)の位置、大きさ、数等は、図15等の他の図と一対一に対応されていない。 FIG. 16 is a schematic cross-sectional view of the elastic wave device according to the second embodiment of the present disclosure, cut in the thickness direction. Note that since FIG. 16 is a schematic diagram, the position, size, number, etc. of each component (for example, the comb-shaped electrode 240) in FIG. 16 do not correspond one-to-one with other diagrams such as FIG. 15. .
 図16に示すように、弾性波装置100Aは、弾性波素子200と、パッケージ基板300とを備える。弾性波素子200は、一部において複数の導電性のバンプ400を介してパッケージ基板300と接合されており、別の一部において直接的にパッケージ基板300と接合されている。 As shown in FIG. 16, the elastic wave device 100A includes an acoustic wave element 200 and a package substrate 300. The acoustic wave element 200 is bonded to the package substrate 300 via a plurality of conductive bumps 400 at a portion, and directly bonded to the package substrate 300 at another portion.
 弾性波素子200は、支持基板210及び中間(接合)層220からなる支持部材と、圧電体230と、一対の櫛歯状電極240と、配線250と、電極260と、誘電体膜270と、封止樹脂280とを備える。支持基板210と、接合層220と、圧電体230と、一対の櫛歯状電極240と、配線250と、電極260と、誘電体膜270と、封止樹脂280とは、積層方向D11に積層されている。積層方向D11は、弾性波装置100Aの厚み方向である。なお、支持部材は、支持基板210のみで構成されていてもよい。 The acoustic wave element 200 includes a support member consisting of a support substrate 210 and an intermediate (bonding) layer 220, a piezoelectric body 230, a pair of comb-shaped electrodes 240, wiring 250, an electrode 260, a dielectric film 270, and a sealing resin 280. The support substrate 210, the bonding layer 220, the piezoelectric body 230, the pair of comb-shaped electrodes 240, the wiring 250, the electrodes 260, the dielectric film 270, and the sealing resin 280 are laminated in the lamination direction D11. has been done. The stacking direction D11 is the thickness direction of the elastic wave device 100A. Note that the support member may include only the support substrate 210.
 接合層220は、支持基板210上に設けられている。圧電体230は、接合層220上に設けられている。一対の櫛歯状電極240と配線250とは、圧電体230上に設けられている。電極260は、配線250上に設けられている。誘電体膜270は、圧電体230上及び配線250上に、一対の櫛歯状電極240を覆うように設けられている。 The bonding layer 220 is provided on the support substrate 210. The piezoelectric body 230 is provided on the bonding layer 220. The pair of comb-shaped electrodes 240 and the wiring 250 are provided on the piezoelectric body 230. Electrode 260 is provided on wiring 250. The dielectric film 270 is provided on the piezoelectric body 230 and the wiring 250 so as to cover the pair of comb-shaped electrodes 240 .
 封止樹脂280は、例えばポリイミド、エポキシ等の樹脂で構成されている。封止樹脂280は、パッケージ基板300が接合されている側を除いて、支持基板210と、接合層220と、圧電体230と、一対の櫛歯状電極240と、配線250と、電極260と、誘電体膜270とを覆っている。封止樹脂280は、パッケージ基板300の一方主面300Aと接合されている。一方主面300Aは、パッケージ基板300の主面の一例である。 The sealing resin 280 is made of a resin such as polyimide or epoxy. The sealing resin 280 includes the support substrate 210, the bonding layer 220, the piezoelectric body 230, the pair of comb-shaped electrodes 240, the wiring 250, and the electrode 260, except for the side to which the package substrate 300 is bonded. , and the dielectric film 270. The sealing resin 280 is bonded to one main surface 300A of the package substrate 300. On the other hand, the main surface 300A is an example of the main surface of the package substrate 300.
 第2の実施形態において、支持基板210はシリコン(Si)で構成されており、接合層220は酸化シリコン(SiOx)で構成されており、圧電体230はニオブ酸リチウム(LN、LiNbOx)で構成されている。なお、支持基板210、接合層220、及び圧電体230の各々を構成する材料は、前述した各材料に限らない。例えば、圧電体230はタンタル酸リチウム(LiTaOx)で構成されていてもよい。 In the second embodiment, the support substrate 210 is made of silicon (Si), the bonding layer 220 is made of silicon oxide (SiOx), and the piezoelectric body 230 is made of lithium niobate (LN, LiNbOx). has been done. Note that the materials constituting each of the support substrate 210, the bonding layer 220, and the piezoelectric body 230 are not limited to the above-mentioned materials. For example, the piezoelectric body 230 may be made of lithium tantalate (LiTaOx).
 接合層220は、凹部221を有する。凹部221は、接合層220の主面220Aから積層方向D11に凹んでいる。凹部221と圧電体230とによって区画された空間が、空洞部220Bである。第2の実施形態では、凹部221は接合層220に設けられているが、凹部221は接合層220及び支持基板210に亘って設けられていてもよい。 The bonding layer 220 has a recess 221. The recessed portion 221 is recessed from the main surface 220A of the bonding layer 220 in the stacking direction D11. The space defined by the recess 221 and the piezoelectric body 230 is the cavity 220B. In the second embodiment, the recess 221 is provided in the bonding layer 220, but the recess 221 may be provided across the bonding layer 220 and the support substrate 210.
 圧電体230は、メンブレン231を有する。メンブレン231は、圧電体230のうち、積層方向D11から見て(言い換えると積層方向D11に平面視して)空洞部220Bと重なる部分である。言い換えると、メンブレン231は、圧電体230のうち、積層方向D11に平面視して接合層220の主面220Aと接触していない部分である。空洞部220Bは、凹部221とメンブレン231とによって区画された空間である。 The piezoelectric body 230 has a membrane 231. The membrane 231 is a portion of the piezoelectric body 230 that overlaps the cavity 220B when viewed from the stacking direction D11 (in other words, when viewed from above in the stacking direction D11). In other words, the membrane 231 is a portion of the piezoelectric body 230 that is not in contact with the main surface 220A of the bonding layer 220 when viewed from above in the stacking direction D11. The cavity 220B is a space defined by the recess 221 and the membrane 231.
 積層方向D11に平面視したときのメンブレン231の形状は、空洞部220Bの形状に依存する。第2の実施形態において、積層方向D11に平面視したときのメンブレン231の形状は、長方形であるが、長方形以外の形状であってもよい。 The shape of the membrane 231 when viewed in plan in the stacking direction D11 depends on the shape of the cavity 220B. In the second embodiment, the membrane 231 has a rectangular shape when viewed in plan in the stacking direction D11, but may have a shape other than a rectangle.
 一対の櫛歯状電極240、配線250、及び電極260は、導電性の材料(例えば銅)で構成されている。第2の実施形態において、誘電体膜270は、酸化シリコン(SiO2)で構成されている。 The pair of comb-shaped electrodes 240, the wiring 250, and the electrode 260 are made of a conductive material (for example, copper). In the second embodiment, dielectric film 270 is made of silicon oxide (SiO2).
 一対の櫛歯状電極240、配線250、及び電極260は、圧電体230における接合層220と反対側に積層されている。第2の実施形態において、一対の櫛歯状電極240は、IDT(Interdigital Transdecer)電極である。一対の櫛歯状電極240の構成は、後に詳細に説明される。 A pair of comb-shaped electrodes 240, wiring 250, and electrodes 260 are laminated on the opposite side of the piezoelectric body 230 to the bonding layer 220. In the second embodiment, the pair of comb-shaped electrodes 240 are IDT (Interdigital Transdecer) electrodes. The configuration of the pair of comb-shaped electrodes 240 will be explained in detail later.
 図17は、弾性波素子の模式平面図である。 FIG. 17 is a schematic plan view of the acoustic wave element.
 図17に示すように、弾性波素子200は、1つ以上の共振子290を備える。第2の実施形態において、弾性波素子200は、22個の共振子290を備える。複数の共振子290の各々は、一対の櫛歯状電極240と、圧電体230及び誘電体膜270の一部とを備える。なお、複数の共振子290の各々は、支持部材の一部を更に備えていてもよい。圧電体230、誘電体膜270、及び支持部材の一部は、圧電体230及び誘電体膜270のうち、積層方向D11に平面視して一対の櫛歯状電極240と重なる領域および当該領域の周辺の近傍領域に位置する部分である。 As shown in FIG. 17, the elastic wave element 200 includes one or more resonators 290. In the second embodiment, the acoustic wave element 200 includes 22 resonators 290. Each of the plurality of resonators 290 includes a pair of comb-shaped electrodes 240, a piezoelectric body 230, and a portion of a dielectric film 270. Note that each of the plurality of resonators 290 may further include a part of a support member. The piezoelectric body 230, the dielectric film 270, and a part of the support member are located in a region of the piezoelectric body 230 and the dielectric film 270 that overlaps with the pair of comb-shaped electrodes 240 when viewed in plan in the stacking direction D11, and in the region thereof. This is a portion located in the surrounding neighborhood area.
 図16及び図17に示すように、配線250は、共振子290及び電極260と電気的に接続されている。これにより、配線250は、複数の共振子290を互いに電気的に接続し、共振子290と電極260とを互いに電気的に接続している。なお、第2の実施形態において、配線250は圧電体230上に形成されたパターン配線であるが、これに限らない。例えば、配線250は、ワイヤ等であってもよい。 As shown in FIGS. 16 and 17, the wiring 250 is electrically connected to the resonator 290 and the electrode 260. Thereby, the wiring 250 electrically connects the plurality of resonators 290 to each other, and electrically connects the resonators 290 and the electrodes 260 to each other. Note that in the second embodiment, the wiring 250 is a patterned wiring formed on the piezoelectric body 230, but is not limited thereto. For example, the wiring 250 may be a wire or the like.
 電極260は、バンプ400を介してパッケージ基板300の一方主面300Aに設けられた外部電極340と電気的に接続されている。 The electrode 260 is electrically connected to an external electrode 340 provided on one main surface 300A of the package substrate 300 via a bump 400.
 図18は、図17の弾性波素子の等価回路図である。 FIG. 18 is an equivalent circuit diagram of the acoustic wave element of FIG. 17.
 第2の実施形態において、22個の共振子290は、図18に示す等価回路図のように接続されている。22個の共振子290のうちの8個は、配線250のうち、入力端子Inと出力端子Outとを結ぶ信号経路251に直列に配置されている。22個の共振子290のうちの14個は、配線250のうち、信号経路251上のノード251AとグランドGNDとを結ぶグランド経路252に配置されている。 In the second embodiment, 22 resonators 290 are connected as shown in the equivalent circuit diagram shown in FIG. Eight of the 22 resonators 290 are arranged in series on a signal path 251 of the wiring 250 that connects the input terminal In and the output terminal Out. Fourteen of the twenty-two resonators 290 are arranged on a ground path 252 of the wiring 250 that connects the node 251A on the signal path 251 and the ground GND.
 以下、一対の櫛歯状電極240の構成が説明される。図19は、一対の櫛歯状電極を示す模式平面図である。 Hereinafter, the configuration of the pair of comb-shaped electrodes 240 will be explained. FIG. 19 is a schematic plan view showing a pair of comb-shaped electrodes.
 図19に示すように、一対の櫛歯状電極240は、互いに対向する第1バスバー電極241及び第2バスバー電極242と、第1バスバー電極241に接続される複数の第1電極指243と、第2バスバー電極242に接続される複数の第2電極指244とを有する。一対の櫛歯状電極240の一方は、第1バスバー電極241と第1電極指243とを備える。一対の櫛歯状電極240の他方は、第2バスバー電極242と第2電極指244とを備える。複数の第1電極指243と複数の第2電極指244とは互いに間挿し合っている。つまり、複数の第1電極指243と複数の第2電極指244とは、交互に並んでいる。隣り合う第1電極指243と第2電極指244とは一対の電極組を構成している。 As shown in FIG. 19, the pair of comb-shaped electrodes 240 include a first busbar electrode 241 and a second busbar electrode 242 facing each other, and a plurality of first electrode fingers 243 connected to the first busbar electrode 241. It has a plurality of second electrode fingers 244 connected to the second bus bar electrode 242. One of the pair of comb-shaped electrodes 240 includes a first busbar electrode 241 and a first electrode finger 243. The other of the pair of comb-shaped electrodes 240 includes a second busbar electrode 242 and a second electrode finger 244. The plurality of first electrode fingers 243 and the plurality of second electrode fingers 244 are inserted into each other. That is, the plurality of first electrode fingers 243 and the plurality of second electrode fingers 244 are arranged alternately. Adjacent first electrode fingers 243 and second electrode fingers 244 constitute a pair of electrode sets.
 第1バスバー電極241は、第1の実施形態の電極5に対応している。第2バスバー電極242は、第1の実施形態の電極6に対応している。第1電極指243は、第1の実施形態の電極3に対応している。第2電極指244は、第1の実施形態の電極4に対応している。 The first busbar electrode 241 corresponds to the electrode 5 of the first embodiment. The second busbar electrode 242 corresponds to the electrode 6 of the first embodiment. The first electrode finger 243 corresponds to the electrode 3 of the first embodiment. The second electrode finger 244 corresponds to the electrode 4 of the first embodiment.
 積層方向D11に平面視して、一対の櫛歯状電極240の少なくとも一部は、メンブレン231上に設けられている。つまり、空洞部220Bは、一対の櫛歯状電極240の少なくとも一部と平面視で重なる。第2の実施形態では、積層方向D11に平面視して、一対の櫛歯状電極240のうち、第1バスバー電極241の一部、第2バスバー電極242の一部、第1電極指243、及び第2電極指244が、メンブレン231上に設けられている(図16参照)。 When viewed in plan in the stacking direction D11, at least a portion of the pair of comb-shaped electrodes 240 is provided on the membrane 231. That is, the cavity 220B overlaps at least a portion of the pair of comb-shaped electrodes 240 in a plan view. In the second embodiment, when viewed in plan in the stacking direction D11, among the pair of comb-shaped electrodes 240, a part of the first busbar electrode 241, a part of the second busbar electrode 242, a part of the first electrode finger 243, and a second electrode finger 244 are provided on the membrane 231 (see FIG. 16).
 図16に示すように、パッケージ基板300は、3層の基材311、312、313と、層間接続導体320と、内部電極330と、外部電極340とを備える。 As shown in FIG. 16, the package substrate 300 includes three layers of base materials 311, 312, and 313, an interlayer connection conductor 320, an internal electrode 330, and an external electrode 340.
 パッケージ基板300は、全体として直方体形状である。第2の実施形態において、パッケージ基板300は、積層方向D11に積層された基材311、312、313が一体化されたものである。つまり、第2の実施形態において、パッケージ基板300は、3つの基材が一体化されたものである。積層方向D11は、パッケージ基板300の一方主面300Aと直交する方向であり、直交方向の一例である。パッケージ基板300を構成する基材の数は3つに限らない。基材311、312、313の各々は、絶縁性であり、板状である。第2の実施形態において、基材311、312、313は、例えばポリイミド、エポキシなどの樹脂、セラミック等で構成されている。 The package substrate 300 has a rectangular parallelepiped shape as a whole. In the second embodiment, the package substrate 300 is formed by integrating base materials 311, 312, and 313 stacked in the stacking direction D11. That is, in the second embodiment, the package substrate 300 is an integrated structure of three base materials. The stacking direction D11 is a direction perpendicular to one main surface 300A of the package substrate 300, and is an example of a perpendicular direction. The number of base materials that constitute the package substrate 300 is not limited to three. Each of the base materials 311, 312, and 313 is insulating and has a plate shape. In the second embodiment, the base materials 311, 312, and 313 are made of, for example, resin such as polyimide or epoxy, ceramic, or the like.
 3層の基材311、312、313は、積層方向D11に積層されている。基材311は、弾性波素子200上に設けられている。基材312は、基材311上に設けられている。基材313は、基材312上に設けられている。 The three layers of base materials 311, 312, and 313 are stacked in the stacking direction D11. The base material 311 is provided on the acoustic wave element 200. The base material 312 is provided on the base material 311. The base material 313 is provided on the base material 312.
 層間接続導体320は、パッケージ基板300の内部に形成されている。層間接続導体320は、基材311、312、313の少なくとも1つに形成され得る。図16では、3つの層間接続導体320が基材311に形成され、2つの層間接続導体320が基材312に形成され、2つの層間接続導体320が基材313に形成されている。 The interlayer connection conductor 320 is formed inside the package substrate 300. Interlayer connection conductor 320 may be formed on at least one of base materials 311, 312, and 313. In FIG. 16, three interlayer connection conductors 320 are formed on a base material 311, two interlayer connection conductors 320 are formed on a base material 312, and two interlayer connection conductors 320 are formed on a base material 313.
 層間接続導体320は、基材311、312、313を積層方向D11に貫通する貫通孔に、導電性のペーストが充填されたものである。導電性のペーストは、例えば銅等の導電性粉末を含んでいる。導電性のペーストが含む導電性粉末は、銅に限らず、例えば銀でもよい。第2の実施形態では、貫通孔は円錐台形状であるため、層間接続導体320は円錐台形状である。貫通孔の形状は、円錐台形状に限らず、例えば円柱や四角柱等の形状であってもよい。 The interlayer connection conductor 320 is formed by filling conductive paste into through holes that penetrate the base materials 311, 312, and 313 in the stacking direction D11. The conductive paste contains conductive powder, such as copper. The conductive powder contained in the conductive paste is not limited to copper, and may be, for example, silver. In the second embodiment, since the through hole has a truncated conical shape, the interlayer connection conductor 320 has a truncated conical shape. The shape of the through hole is not limited to a truncated cone shape, but may be, for example, a cylinder or a square prism.
 内部電極330は、パッケージ基板300の内部に形成されている。内部電極330は、基材311、312、313の表面に形成され得る。内部電極330は、基材311、312、313の表面に導電性のペーストを印刷することによって形成される。導電性のペーストは、例えば銅や銀で構成されている。内部電極330は、層間接続導体320を介して他の内部電極330や外部電極340と電気的に接続されている。第2の実施形態において、内部電極330の一部は、後述する第1導電パターン331(タイバー331)及び第2導電パターン332(タイバー332)である。 The internal electrode 330 is formed inside the package substrate 300. Internal electrodes 330 may be formed on the surfaces of base materials 311, 312, and 313. Internal electrodes 330 are formed by printing conductive paste on the surfaces of base materials 311, 312, and 313. The conductive paste is made of copper or silver, for example. The internal electrode 330 is electrically connected to other internal electrodes 330 and external electrodes 340 via the interlayer connection conductor 320. In the second embodiment, part of the internal electrode 330 is a first conductive pattern 331 (tie bar 331) and a second conductive pattern 332 (tie bar 332), which will be described later.
 外部電極340は、パッケージ基板300の外部に形成されている。つまり、外部電極340は、パッケージ基板300の外部に露出している。第2の実施形態では、外部電極340は、パッケージ基板300の一方主面300Aと他方主面300Bとに形成されている。 The external electrode 340 is formed outside the package substrate 300. That is, the external electrode 340 is exposed to the outside of the package substrate 300. In the second embodiment, the external electrodes 340 are formed on one main surface 300A and the other main surface 300B of the package substrate 300.
 外部電極340は、内部電極330と同様にして構成されている。つまり、第2の実施形態では、外部電極340は、パッケージ基板300の一方主面300Aと他方主面300Bとに導電性のペーストを印刷することによって形成される。 The external electrode 340 is configured in the same manner as the internal electrode 330. That is, in the second embodiment, the external electrodes 340 are formed by printing conductive paste on one main surface 300A and the other main surface 300B of the package substrate 300.
 前述したように、外部電極340は層間接続導体320を介して内部電極330と電気的に接続されている。また、一方主面300Aに形成された外部電極340は、バンプ400を介して弾性波素子200の電極260と電気的に接続されている。 As described above, the external electrode 340 is electrically connected to the internal electrode 330 via the interlayer connection conductor 320. Further, the external electrode 340 formed on one main surface 300A is electrically connected to the electrode 260 of the acoustic wave element 200 via the bump 400.
 なお、第2の実施形態において、外部電極340はパッケージ基板300に導電性のペーストを印刷することによって形成されるが、これに限らない。例えば、外部電極340は、ワイヤ等であってもよい。また、後述する第1導電パターン331及び第2導電パターン332は、第2の実施形態では内部電極330の一部であるが、これに限らない。例えば、後述する第1導電パターン331及び第2導電パターン332は、外部電極340の一部であってもよい。 Note that in the second embodiment, the external electrodes 340 are formed by printing conductive paste on the package substrate 300, but the present invention is not limited thereto. For example, the external electrode 340 may be a wire or the like. Furthermore, although the first conductive pattern 331 and the second conductive pattern 332, which will be described later, are part of the internal electrode 330 in the second embodiment, they are not limited thereto. For example, a first conductive pattern 331 and a second conductive pattern 332, which will be described later, may be part of the external electrode 340.
 複数のバンプ400は、半田等の導電性材料で構成されている。バンプ400は、弾性波素子200の電極260とパッケージ基板300の外部電極340とを電気的に接続している。つまり、バンプ400は、電極260を介して弾性波素子200の配線250と電気的に接続されている。 The plurality of bumps 400 are made of a conductive material such as solder. The bump 400 electrically connects the electrode 260 of the acoustic wave element 200 and the external electrode 340 of the package substrate 300. That is, the bump 400 is electrically connected to the wiring 250 of the acoustic wave element 200 via the electrode 260.
 弾性波装置100Aは、複数のバンプ400を備えている。複数のバンプ400は、1つ以上の第1バンプ410と、1つ以上の第2バンプ420とを備える。 The elastic wave device 100A includes a plurality of bumps 400. The plurality of bumps 400 include one or more first bumps 410 and one or more second bumps 420.
 図17に示すように、第2の実施形態において、弾性波装置100Aは、8つの第1バンプ410(411~418)と、1つの第2バンプ420とを備える。つまり、第2の実施形態において、弾性波装置100Aは、9つのバンプ400を備える。 As shown in FIG. 17, in the second embodiment, the elastic wave device 100A includes eight first bumps 410 (411 to 418) and one second bump 420. That is, in the second embodiment, the elastic wave device 100A includes nine bumps 400.
 第2の実施形態において、6つの第1バンプ412、413、414、416、417、418は、GND(基準電位)に接続されている。また、2つの第1バンプ411、415は、HOT(正相の信号)に接続されている。また、第2バンプ420は、FLOAT(独立した電位)に接続されている。しかし、各バンプ400の接続は、前記に限らない。例えば、第2バンプ420がGNDに接続されていてもよい。 In the second embodiment, the six first bumps 412, 413, 414, 416, 417, and 418 are connected to GND (reference potential). Further, the two first bumps 411 and 415 are connected to HOT (positive phase signal). Further, the second bump 420 is connected to FLOAT (independent potential). However, the connection of each bump 400 is not limited to the above. For example, the second bump 420 may be connected to GND.
 積層方向D11に平面視して、第2バンプ420は、複数の第1バンプ410(411~418)に囲まれている。第2の実施形態において、第2バンプ420は、積層方向D11に平面視して弾性波素子200の中央部に位置し、8つの第1バンプ411~418は、積層方向D11に平面視して弾性波素子200の外縁部に位置している。 When viewed in plan in the stacking direction D11, the second bump 420 is surrounded by a plurality of first bumps 410 (411 to 418). In the second embodiment, the second bump 420 is located at the center of the acoustic wave element 200 when viewed from above in the stacking direction D11, and the eight first bumps 411 to 418 are located at the center when viewed from above in the stacking direction D11. It is located at the outer edge of the acoustic wave element 200.
 積層方向D11に平面視して、第2バンプ420は、複数の共振子290に囲まれている。 The second bump 420 is surrounded by a plurality of resonators 290 when viewed in plan in the stacking direction D11.
 つまり、積層方向D11に平面視して、第2バンプ420は、複数の第1バンプ410(411~418)に囲まれるとともに、複数の共振子290に囲まれている。 In other words, when viewed in plan in the stacking direction D11, the second bump 420 is surrounded by the plurality of first bumps 410 (411 to 418) and is surrounded by the plurality of resonators 290.
 なお、積層方向D11に平面視して、第2バンプ420は、第1バンプ410と共振子290との少なくとも一方に囲まれていればよい。例えば、積層方向D11に平面視して、複数の第1バンプ410が第2バンプ420を囲む一方で、共振子290は第2バンプ420を囲んでいなくてもよい。前記とは逆に、積層方向D11に平面視して、複数の共振子290が第2バンプ420を囲む一方で、第1バンプ410は第2バンプ420を囲んでいなくてもよい。 Note that the second bump 420 only needs to be surrounded by at least one of the first bump 410 and the resonator 290 when viewed in plan in the stacking direction D11. For example, while the plurality of first bumps 410 surround the second bumps 420 when viewed in plan in the stacking direction D11, the resonator 290 may not surround the second bumps 420. Contrary to the above, the plurality of resonators 290 may surround the second bumps 420 while the first bumps 410 may not surround the second bumps 420 when viewed in plan in the stacking direction D11.
 積層方向D11に平面視して、1つ以上の第1バンプ410と1つ以上の共振子290とが協働して第2バンプ420を囲んでいてもよい。例えば、積層方向D11に平面視して、複数の第1バンプ410が第2バンプ420の右側に配置され、複数の共振子290が第2バンプ420の左側に配置されることによって、複数の第1バンプ410と複数の共振子290とが協働して第2バンプ420を囲んでいてもよい。 When viewed in plan in the stacking direction D11, one or more first bumps 410 and one or more resonators 290 may cooperate to surround the second bumps 420. For example, when viewed in plan in the stacking direction D11, the plurality of first bumps 410 are arranged on the right side of the second bumps 420, and the plurality of resonators 290 are arranged on the left side of the second bumps 420. The first bump 410 and the plurality of resonators 290 may cooperate to surround the second bump 420.
 前述したように、パッケージ基板300が備える内部電極330(図16参照)の一部は、第1導電パターン331及び第2導電パターン332である。第2導電パターン332は、導電パターンの一例である。第2の実施形態において、弾性波装置100の各々は、7つの第1導電パターン331(331A~331G)と、1つの第2導電パターン332とを備える。なお、第1導電パターン331の数は7つに限らず、第2導電パターン332の数は1つに限らない。 As described above, part of the internal electrode 330 (see FIG. 16) included in the package substrate 300 is the first conductive pattern 331 and the second conductive pattern 332. The second conductive pattern 332 is an example of a conductive pattern. In the second embodiment, each of the elastic wave devices 100 includes seven first conductive patterns 331 (331A to 331G) and one second conductive pattern 332. Note that the number of first conductive patterns 331 is not limited to seven, and the number of second conductive patterns 332 is not limited to one.
 図20は、弾性波素子と第1導電パターンと第2導電パターンとの模式平面図である。図21は、弾性波素子と第1導電パターンと第2導電パターンとの模式斜視図である。 FIG. 20 is a schematic plan view of the acoustic wave element, the first conductive pattern, and the second conductive pattern. FIG. 21 is a schematic perspective view of an acoustic wave element, a first conductive pattern, and a second conductive pattern.
 図20及び図21に示すように、第1導電パターン331Aは、第1バンプ411と電気的に接続されている。第1導電パターン331Bは、第1バンプ412と電気的に接続されている。第1導電パターン331C、331Dは、第1バンプ413と電気的に接続されている。第1導電パターン331Eは、第1バンプ415と電気的に接続されている。第1導電パターン331Fは、第1バンプ416と電気的に接続されている。第1導電パターン331Gは、第1バンプ417と電気的に接続されている。第2導電パターン332は、第2バンプ420と電気的に接続されている。なお、第1導電パターン331及び第2導電パターン332の各々とバンプ400との電気的な接続の組み合わせは、前記の組み合わせに限らない。 As shown in FIGS. 20 and 21, the first conductive pattern 331A is electrically connected to the first bump 411. The first conductive pattern 331B is electrically connected to the first bump 412. The first conductive patterns 331C and 331D are electrically connected to the first bump 413. The first conductive pattern 331E is electrically connected to the first bump 415. The first conductive pattern 331F is electrically connected to the first bump 416. The first conductive pattern 331G is electrically connected to the first bump 417. The second conductive pattern 332 is electrically connected to the second bump 420. Note that the combination of electrical connection between each of the first conductive pattern 331 and the second conductive pattern 332 and the bump 400 is not limited to the above-mentioned combination.
 図15に示すように、第1導電パターン331及び第2導電パターン332は、格子状に並んだ複数の弾性波装置100において、隣り合う2つの弾性波装置100間を電気的に接続する。 As shown in FIG. 15, the first conductive pattern 331 and the second conductive pattern 332 electrically connect two adjacent elastic wave devices 100 in the plurality of elastic wave devices 100 arranged in a grid.
 以下、弾性波装置100Aと、弾性波装置100Aに隣接する弾性波装置100B、100D、100F、100Hとの間における第1導電パターン331及び第2導電パターン332の電気的な接続が説明される。 Hereinafter, the electrical connection of the first conductive pattern 331 and the second conductive pattern 332 between the elastic wave device 100A and the elastic wave devices 100B, 100D, 100F, and 100H adjacent to the elastic wave device 100A will be explained.
 弾性波装置100Aの第1導電パターン331Aは、弾性波装置100Bの第1導電パターン331Fと電気的に接続されている。弾性波装置100Aの第1導電パターン331Bは、弾性波装置100Bの第1導電パターン331Eと電気的に接続されている。弾性波装置100Aの第1導電パターン331Cは、弾性波装置100Dの第2導電パターン332と電気的に接続されている。弾性波装置100Aの第1導電パターン331Dは、弾性波装置100Dの第1導電パターン331Gと電気的に接続されている。弾性波装置100Aの第1導電パターン331Eは、弾性波装置100Fの第1導電パターン331Bと電気的に接続されている。弾性波装置100Aの第1導電パターン331Fは、弾性波装置100Fの第1導電パターン331Aと電気的に接続されている。弾性波装置100Aの第1導電パターン331Gは、弾性波装置100Hの第1導電パターン331Dと電気的に接続されている。弾性波装置100Aの第2導電パターン332は、弾性波装置100Hの第1導電パターン331Cと電気的に接続されている。なお、第1導電パターン331及び第2導電パターン332の各々の電気的な接続の組み合わせは、前記の組み合わせに限らない。 The first conductive pattern 331A of the elastic wave device 100A is electrically connected to the first conductive pattern 331F of the elastic wave device 100B. The first conductive pattern 331B of the elastic wave device 100A is electrically connected to the first conductive pattern 331E of the elastic wave device 100B. The first conductive pattern 331C of the elastic wave device 100A is electrically connected to the second conductive pattern 332 of the elastic wave device 100D. The first conductive pattern 331D of the elastic wave device 100A is electrically connected to the first conductive pattern 331G of the elastic wave device 100D. The first conductive pattern 331E of the elastic wave device 100A is electrically connected to the first conductive pattern 331B of the elastic wave device 100F. The first conductive pattern 331F of the elastic wave device 100A is electrically connected to the first conductive pattern 331A of the elastic wave device 100F. The first conductive pattern 331G of the elastic wave device 100A is electrically connected to the first conductive pattern 331D of the elastic wave device 100H. The second conductive pattern 332 of the elastic wave device 100A is electrically connected to the first conductive pattern 331C of the elastic wave device 100H. Note that the combination of electrical connections between the first conductive pattern 331 and the second conductive pattern 332 is not limited to the above-mentioned combination.
 図20及び図21に示すように、第2の実施形態において、第2導電パターン332は、第1部分332Aと、第2部分332Bとを備える。 As shown in FIGS. 20 and 21, in the second embodiment, the second conductive pattern 332 includes a first portion 332A and a second portion 332B.
 第1部分332Aは、第2バンプ420と電気的に接続されている。第2の実施形態において、第1部分332Aは、第2バンプ420から第1バンプ411へ向けて延びている。第1部分332Aは、積層方向D11に平面視して、共振子290と重なっていない。 The first portion 332A is electrically connected to the second bump 420. In the second embodiment, the first portion 332A extends from the second bump 420 toward the first bump 411. The first portion 332A does not overlap the resonator 290 when viewed in plan in the stacking direction D11.
 第2部分332Bは、第1部分332Aと連続している。第2部分332Bは、共振子290及び配線250を跨いでいる。これにより、第2部分332Bは、第2バンプ420を囲む第1バンプ410及び共振子290の内側から、第2バンプ420を囲む第1バンプ410及び共振子290の外側へ延びている。つまり、積層方向D11に平面視して、第2部分332Bの一部は、共振子290及び配線250と重なっている。 The second portion 332B is continuous with the first portion 332A. The second portion 332B straddles the resonator 290 and the wiring 250. Thereby, the second portion 332B extends from the inside of the first bump 410 and the resonator 290 surrounding the second bump 420 to the outside of the first bump 410 and the resonator 290 surrounding the second bump 420. That is, when viewed in plan in the stacking direction D11, a portion of the second portion 332B overlaps with the resonator 290 and the wiring 250.
 なお、第2の実施形態では、第2部分332Bが共振子290及び配線250を跨いでいる構成が説明されているが、これに限らない。例えば、第2部分332Bは共振子290を跨ぐ一方で配線250を跨いでいなくてもよい。つまり、積層方向D11に平面視して、第2部分332Bは、共振子290と重なっている一方で配線250と重なっていなくてもよい。また、例えば、前記とは逆に、第2部分332Bは配線250を跨ぐ一方で共振子290を跨いでいなくてもよい。以上より、第2部分332Bは、共振子290及び配線250の少なくとも一方を跨いで、第2バンプ420を囲む第1バンプ410及び共振子290の内側から外側へ延びている。 Although the second embodiment describes a configuration in which the second portion 332B straddles the resonator 290 and the wiring 250, the present invention is not limited to this. For example, the second portion 332B may straddle the resonator 290 but not the wiring 250. That is, when viewed in plan in the stacking direction D11, the second portion 332B may overlap the resonator 290 but not the wiring 250. Further, for example, contrary to the above, the second portion 332B may straddle the wiring 250 but not straddle the resonator 290. As described above, the second portion 332B extends from the inside of the first bump 410 surrounding the second bump 420 and the resonator 290 to the outside, straddling at least one of the resonator 290 and the wiring 250.
 第2の実施形態では、第2導電パターン332が第1部分332Aと第2部分332Bとを備える構成が説明されたが、これに限らない。例えば、第2導電パターン332は、第2部分332Bを備える一方で第1部分332Aを備えていなくてもよい。この場合、第2部分332Bのみで構成される第2導電パターン332は、例えば、第2バンプ420から第1バンプ413側(図20の紙面左側)へ延びて共振子290及び配線250を跨ぐ。また、図20では、第1部分332Aの幅が第2部分332Bの幅と同一に描かれており、図21では、第2部分332Bの幅Wが第1部分332Aの幅より大きく描かれているが、これに限らない。例えば、第2部分332Bの幅Wが第1部分332Aより小さくてもよい。 In the second embodiment, a configuration in which the second conductive pattern 332 includes the first portion 332A and the second portion 332B has been described, but the present invention is not limited to this. For example, the second conductive pattern 332 may include the second portion 332B but may not include the first portion 332A. In this case, the second conductive pattern 332 composed of only the second portion 332B extends, for example, from the second bump 420 to the first bump 413 side (left side in the paper of FIG. 20) and straddles the resonator 290 and the wiring 250. Further, in FIG. 20, the width of the first portion 332A is drawn to be the same as the width of the second portion 332B, and in FIG. 21, the width W of the second portion 332B is drawn larger than the width of the first portion 332A. Yes, but not limited to this. For example, the width W of the second portion 332B may be smaller than the first portion 332A.
 積層方向D11に平面視して、第2導電パターン332の幅W(図21参照)が大きい程、第2導電パターン332の第2部分332Bが共振子290及び配線250と重なる面積が増加する。 When viewed in plan in the stacking direction D11, the larger the width W (see FIG. 21) of the second conductive pattern 332, the larger the area where the second portion 332B of the second conductive pattern 332 overlaps with the resonator 290 and the wiring 250.
 以下に、図22~図25を参照しつつ、第2導電パターン332の第2部分332Bの幅Wを様々に変えた場合における電力の通過ロスが説明される。図22及び図23の「S21」は、電力の通過ロスが図18の等価回路図における入力端子Inから出力端子Outへの電力の通過ロスであることを示している。なお、図22~図25では、第2部分332Bの幅Wを変える一方で第1部分332Aの幅は一定であるが、第2部分332B及び第1部分332Aの双方の幅を変えた場合であっても、以下で説明する測定結果と同傾向の測定結果が得られる。 Below, with reference to FIGS. 22 to 25, the power passing loss when the width W of the second portion 332B of the second conductive pattern 332 is varied will be explained. “S21” in FIGS. 22 and 23 indicates that the power passing loss is the power passing loss from the input terminal In to the output terminal Out in the equivalent circuit diagram of FIG. Note that in FIGS. 22 to 25, the width W of the second portion 332B is changed while the width of the first portion 332A is constant; however, when the widths of both the second portion 332B and the first portion 332A are changed, Even if there is, a measurement result with the same tendency as the measurement result described below can be obtained.
 図22は、弾性波装置において周波数(Frequency)に対する電力の通過ロス(Attenuation)を示すグラフである。図23は、弾性波装置において周波数に対する電力の通過ロスを示すグラフである。 FIG. 22 is a graph showing power passing loss (Attenuation) with respect to frequency (Frequency) in an elastic wave device. FIG. 23 is a graph showing power passing loss versus frequency in an elastic wave device.
 図22及び図23において、L11、L21、L31の各々は、第2部分332Bの幅Wが30μmである場合の特性を示す。L12、L22、L32の各々は、第2部分332Bの幅Wが50μmである場合の特性を示す。L13、L23、L33の各々は、第2部分332Bの幅Wが150μmである場合の特性を示す。L14、L24、L34の各々は、第2部分332Bの幅Wが250μmである場合の特性を示す。 In FIGS. 22 and 23, each of L11, L21, and L31 shows the characteristics when the width W of the second portion 332B is 30 μm. Each of L12, L22, and L32 shows the characteristics when the width W of the second portion 332B is 50 μm. Each of L13, L23, and L33 shows the characteristics when the width W of the second portion 332B is 150 μm. Each of L14, L24, and L34 shows the characteristics when the width W of the second portion 332B is 250 μm.
 図22及び図23に示すように、第2部分332Bの幅Wが大きい程、電力の通過ロスは大きくなっており、帯域幅は狭くなっている。 As shown in FIGS. 22 and 23, the larger the width W of the second portion 332B, the larger the power passing loss and the narrower the bandwidth.
 図24は、弾性波装置において第2導電パターンの幅に対する電力の通過ロスを示すグラフである。図24における測定は、4650MHzの周波数で実行されている。図24に示すように、第2部分332Bの幅Wが大きい程、電力の通過ロスは大きくなっている。なお、図24において、幅Wが同一または略同一である場合において複数の測定結果にばらつきがあるが、これは、各測定結果の第2部分332Bの位置が異なるためである。 FIG. 24 is a graph showing the power passing loss with respect to the width of the second conductive pattern in the elastic wave device. The measurements in Figure 24 are performed at a frequency of 4650 MHz. As shown in FIG. 24, the larger the width W of the second portion 332B, the larger the power passing loss. Note that in FIG. 24, when the widths W are the same or substantially the same, there are variations in the plurality of measurement results, but this is because the position of the second portion 332B in each measurement result is different.
 図25は、弾性波装置において第2導電パターンの幅に対する電力の通過ロスを示すグラフである。図25における測定は、4650MHzの周波数で実行されている。 FIG. 25 is a graph showing the power passing loss with respect to the width of the second conductive pattern in the elastic wave device. The measurements in Figure 25 are performed at a frequency of 4650 MHz.
 図25に示すように、第2導電パターン332の第2部分332Bの幅Wが50μmの場合、電力の通過ロスは-3.152dBとなる(図25の破線参照)。-3.152dBの電力の通過ロスを基準として、当該基準からの劣化を0.5dB以下に抑えるには、幅Wは、例えば150μm以下とすればよい(図25の一点鎖線参照)。 As shown in FIG. 25, when the width W of the second portion 332B of the second conductive pattern 332 is 50 μm, the power passing loss is −3.152 dB (see the broken line in FIG. 25). In order to suppress the deterioration from the standard to 0.5 dB or less based on the power passing loss of −3.152 dB, the width W may be set to 150 μm or less, for example (see the dashed-dotted line in FIG. 25).
 以上の測定結果に基づいて、第2の実施形態では、積層方向D11に平面視して、第2導電パターン332の第2部分332Bの幅Wは、150μm以下とされている。もちろん、第2部分332Bに加えて第1部分332Aの幅Wも、150μm以下とされてもよい。なお、幅Wは、150μm以下に限らない。例えば、幅Wは、図25において前記の基準からの劣化を0.5dB以下に抑えることができる幅W(言い換えると図25において電力の通過ロスが-3.6dBであるときの幅W)である190μm以下であってもよい。 Based on the above measurement results, in the second embodiment, the width W of the second portion 332B of the second conductive pattern 332 is set to be 150 μm or less when viewed in plan in the stacking direction D11. Of course, the width W of the first portion 332A in addition to the second portion 332B may also be 150 μm or less. Note that the width W is not limited to 150 μm or less. For example, the width W is the width W that can suppress the deterioration from the above-mentioned standard to 0.5 dB or less in FIG. 25 (in other words, the width W when the power passing loss is -3.6 dB in FIG. 25). It may be less than a certain 190 μm.
 第2の実施形態によれば、弾性波装置100は、積層方向D11に平面視して弾性波素子200の外縁部に位置する第1バンプ410に加えて、積層方向D11に平面視して弾性波素子200の中央部に位置する第2バンプ420を備える。つまり、弾性波装置100では、弾性波素子200とパッケージ基板300とは、積層方向D11に平面視して外縁部だけでなく中央部においてもバンプ400によって接続されている。これにより、弾性波装置100は、中央部に位置する第2バンプ420を備えていない弾性波装置よりも強度を向上することができる。 According to the second embodiment, the elastic wave device 100 includes, in addition to the first bump 410 located at the outer edge of the acoustic wave element 200 when viewed from above in the stacking direction D11, an elastic wave device 410 when viewed from above in the stacking direction D11. A second bump 420 is provided at the center of the wave element 200. That is, in the acoustic wave device 100, the acoustic wave element 200 and the package substrate 300 are connected by the bumps 400 not only at the outer edge but also at the center when viewed in plan in the stacking direction D11. Thereby, the elastic wave device 100 can have improved strength compared to an elastic wave device that does not include the second bump 420 located at the center.
 中央部に位置する第2バンプ420から延びる第2導電パターン332は、外縁部に設けられたバンプから延びる第1導電パターン331よりも、共振子290や配線250上を通過し易い。そのため、前述した弾性波素子200の特性の劣化が生じやすい。そこで、第2の実施形態では、前述した測定結果に基づいて、第2導電パターン332の第2部分332Bの幅Wが、150μm以下とされている。これにより、弾性波素子200の特性の劣化を低減することができる。 The second conductive pattern 332 extending from the second bump 420 located at the center passes over the resonator 290 and wiring 250 more easily than the first conductive pattern 331 extending from the bump provided at the outer edge. Therefore, the characteristics of the acoustic wave element 200 described above are likely to deteriorate. Therefore, in the second embodiment, the width W of the second portion 332B of the second conductive pattern 332 is set to be 150 μm or less based on the measurement results described above. Thereby, deterioration of the characteristics of the acoustic wave element 200 can be reduced.
(実施形態の概要)
 (1) 本開示の弾性波装置は、
 パッケージ基板と、
 複数の導電性バンプを介して前記パッケージ基板の主面に接合され、1つ以上の共振子及び前記共振子と電気的に接続された配線を有する弾性波素子と、を備え、
 複数の前記導電性バンプは、
 1つ以上の第1バンプと、
 前記パッケージ基板の主面と直交する直交方向から見て、少なくとも1つの前記第1バンプ及び少なくとも1つの前記共振子の少なくとも一方に囲まれた第2バンプと、を備え、
 前記パッケージ基板には、前記第2バンプと電気的に接続された導電パターンが形成されており、
 前記直交方向から見て、前記導電パターンは、前記第2バンプから延びて前記共振子及び前記配線の少なくとも一方を跨いで、前記第2バンプを囲む前記第1バンプ及び前記共振子の内側から外側へ延びている。
(Summary of embodiment)
(1) The elastic wave device of the present disclosure includes:
a package board;
an acoustic wave element bonded to the main surface of the package substrate via a plurality of conductive bumps and having one or more resonators and wiring electrically connected to the resonators;
The plurality of conductive bumps are
one or more first bumps;
a second bump surrounded by at least one of at least one of the first bump and at least one of the resonators when viewed from an orthogonal direction perpendicular to the main surface of the package substrate;
A conductive pattern electrically connected to the second bump is formed on the package substrate,
Viewed from the orthogonal direction, the conductive pattern extends from the second bump, straddles at least one of the resonator and the wiring, and surrounds the second bump from the inside to the outside of the first bump and the resonator. It extends to
 (2) (1)の弾性波装置において、
 前記直交方向から見て、前記導電パターンの幅は、前記共振子と重なる位置において150(μm)以下であってもよい。
(2) In the elastic wave device of (1),
When viewed from the orthogonal direction, the width of the conductive pattern may be 150 (μm) or less at a position overlapping with the resonator.
 (3) (1)または(2)の弾性波装置において、
 前記共振子は、
 圧電体と、
 前記圧電体に設けられた一対の櫛歯状電極と、を備えていてもよい。
(3) In the elastic wave device of (1) or (2),
The resonator is
A piezoelectric body,
A pair of comb-shaped electrodes provided on the piezoelectric body may be provided.
 (4) (3)の弾性波装置において、
 前記共振子は、前記圧電体と積層される支持部材をさらに有していてもよく、
 前記支持部材は、前記圧電体側に空洞部を有し、前記空洞部は前記一対の櫛歯状電極の少なくとも一部と平面視で重なっていてもよい。
(4) In the elastic wave device of (3),
The resonator may further include a support member laminated with the piezoelectric body,
The support member may have a cavity on the piezoelectric body side, and the cavity may overlap at least a portion of the pair of comb-shaped electrodes in a plan view.
 (5) (3)または(4)の弾性波装置において、
 前記一対の櫛歯状電極がIDT(Interdigital Transducer)電極であってもよく、
 前記IDT電極は、前記一対の櫛歯状電極の一方に含まれる複数の第1電極指と、前記一対の櫛歯状電極の他方に含まれる複数の第2電極指とを備えていてもよく、
 複数の前記第1電極指と複数の前記第2電極指とは、交互に並んでいてもよい。
(5) In the elastic wave device of (3) or (4),
The pair of comb-shaped electrodes may be IDT (Interdigital Transducer) electrodes,
The IDT electrode may include a plurality of first electrode fingers included in one of the pair of comb-shaped electrodes, and a plurality of second electrode fingers included in the other of the pair of comb-shaped electrodes. ,
The plurality of first electrode fingers and the plurality of second electrode fingers may be arranged alternately.
 (6) (5)の弾性波装置において、
 前記圧電体の膜厚をd、隣り合う前記第1電極指と前記第2電極指との間の中心間距離をpとする場合、d/pが0.5以下であってもよい。
(6) In the elastic wave device of (5),
When the film thickness of the piezoelectric body is d, and the center-to-center distance between the adjacent first electrode finger and the second electrode finger is p, d/p may be 0.5 or less.
 (7) (6)の弾性波装置において、
 前記d/pが0.24以下であってもよい。
(7) In the elastic wave device of (6),
The d/p may be 0.24 or less.
 (8) (5)から(7)のいずれか1つの弾性波装置において、
 前記圧電体の膜厚をd、隣り合う前記第1電極指と前記第2電極指との間の中心間距離をpとする場合において、
 複数の前記第1電極指と複数の前記第2電極指とが並ぶ方向に沿って見て、前記第1電極指と前記第2電極指とが重なり合っている領域である励振領域の面積に対する、前記励振領域内の前記第1電極指の面積と前記第2電極指の面積との合計面積の割合であるメタライゼーション比をMRとする場合、MRが以下の式を満たしていてもよい。
 MR≦1.75×(d/p)+0.075
(8) In any one of the elastic wave devices (5) to (7),
When the film thickness of the piezoelectric body is d, and the center-to-center distance between the adjacent first electrode finger and the second electrode finger is p,
With respect to the area of the excitation region, which is the region where the first electrode fingers and the second electrode fingers overlap, when viewed along the direction in which the plurality of first electrode fingers and the plurality of second electrode fingers are arranged, When MR is a metallization ratio that is a ratio of the total area of the first electrode finger and the second electrode finger in the excitation region, MR may satisfy the following formula.
MR≦1.75×(d/p)+0.075
 (9) (3)から(8)のいずれか1つの弾性波装置において、
 前記圧電体は、ニオブ酸リチウムまたはタンタル酸リチウムであってもよい。
(9) In any one of the elastic wave devices (3) to (8),
The piezoelectric material may be lithium niobate or lithium tantalate.
 (10) (9)の弾性波装置において、
 前記ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にあってもよい。
 (0°±10°,0°~20°,任意のψ)  …式(1)
 (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
 (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
(10) In the elastic wave device of (9),
The Euler angles (φ, θ, ψ) of the lithium niobate or lithium tantalate may be within the range of the following formula (1), formula (2), or formula (3).
(0°±10°, 0° to 20°, arbitrary ψ) ...Formula (1)
(0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) ...Formula (2)
(0°±10°, [180°-30° (1-(ψ-90) 2 /8100) 1/2 ] ~ 180°, arbitrary ψ) ...Formula (3)
 (11) (1)から(10)のいずれか1つの弾性波装置において、
 主要波として、厚み滑りモードのバルク波を利用可能に構成されていてもよい。
(11) In any one of the elastic wave devices (1) to (10),
It may be configured such that a bulk wave in a thickness shear mode can be used as the main wave.
 (12) (1)から(10)のいずれか1つの弾性波装置において、
 主要波として、板波を利用可能に構成されていてもよい。
(12) In any one of the elastic wave devices (1) to (10),
It may be configured such that a plate wave can be used as the main wave.

Claims (12)

  1.  パッケージ基板と、
     複数の導電性バンプを介して前記パッケージ基板の主面に接合され、1つ以上の共振子及び前記共振子と電気的に接続された配線を有する弾性波素子と、を備え、
     複数の前記導電性バンプは、
     1つ以上の第1バンプと、
     前記パッケージ基板の主面と直交する直交方向から見て、少なくとも1つの前記第1バンプ及び少なくとも1つの前記共振子の少なくとも一方に囲まれた第2バンプと、を備え、
     前記パッケージ基板には、前記第2バンプと電気的に接続された導電パターンが形成されており、
     前記直交方向から見て、前記導電パターンは、前記第2バンプから延びて前記共振子及び前記配線の少なくとも一方を跨いで、前記第2バンプを囲む前記第1バンプ及び前記共振子の内側から外側へ延びている弾性波装置。
    a package board;
    an acoustic wave element bonded to the main surface of the package substrate via a plurality of conductive bumps and having one or more resonators and wiring electrically connected to the resonators;
    The plurality of conductive bumps are
    one or more first bumps;
    a second bump surrounded by at least one of at least one of the first bump and at least one of the resonators when viewed from an orthogonal direction perpendicular to the main surface of the package substrate;
    A conductive pattern electrically connected to the second bump is formed on the package substrate,
    Viewed from the orthogonal direction, the conductive pattern extends from the second bump, straddles at least one of the resonator and the wiring, and surrounds the second bump from the inside to the outside of the first bump and the resonator. An elastic wave device extending to.
  2.  前記直交方向から見て、前記導電パターンの幅は、前記共振子と重なる位置において150(μm)以下である請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the width of the conductive pattern is 150 (μm) or less at a position overlapping the resonator when viewed from the orthogonal direction.
  3.  前記共振子は、
     圧電体と、
     前記圧電体に設けられた一対の櫛歯状電極と、を備える請求項1または2に記載の弾性波装置。
    The resonator is
    A piezoelectric body,
    The elastic wave device according to claim 1 or 2, further comprising a pair of comb-shaped electrodes provided on the piezoelectric body.
  4.  前記共振子は、前記圧電体と積層される支持部材をさらに有し、
     前記支持部材は、前記圧電体側に空洞部を有し、前記空洞部は前記一対の櫛歯状電極の少なくとも一部と平面視で重なる、請求項3に記載の弾性波装置。
    The resonator further includes a support member laminated with the piezoelectric body,
    The acoustic wave device according to claim 3, wherein the support member has a cavity on the piezoelectric body side, and the cavity overlaps at least a portion of the pair of comb-shaped electrodes in a plan view.
  5.  前記一対の櫛歯状電極がIDT(Interdigital Transducer)電極であり、
     前記IDT電極は、前記一対の櫛歯状電極の一方に含まれる複数の第1電極指と、前記一対の櫛歯状電極の他方に含まれる複数の第2電極指とを備え、
     複数の前記第1電極指と複数の前記第2電極指とは、交互に並んでいる請求項3または4に記載の弾性波装置。
    The pair of comb-shaped electrodes are IDT (Interdigital Transducer) electrodes,
    The IDT electrode includes a plurality of first electrode fingers included in one of the pair of comb-shaped electrodes, and a plurality of second electrode fingers included in the other of the pair of comb-shaped electrodes,
    The elastic wave device according to claim 3 or 4, wherein the plurality of first electrode fingers and the plurality of second electrode fingers are arranged alternately.
  6.  前記圧電体の膜厚をd、隣り合う前記第1電極指と前記第2電極指との間の中心間距離をpとする場合、d/pが0.5以下である請求項5に記載の弾性波装置。 According to claim 5, where d is the film thickness of the piezoelectric body and p is the center-to-center distance between the adjacent first electrode fingers and the second electrode fingers, d/p is 0.5 or less. elastic wave device.
  7.  前記d/pが0.24以下である、請求項6に記載の弾性波装置。 The elastic wave device according to claim 6, wherein the d/p is 0.24 or less.
  8.  前記圧電体の膜厚をd、隣り合う前記第1電極指と前記第2電極指との間の中心間距離をpとする場合において、
     複数の前記第1電極指と複数の前記第2電極指とが並ぶ方向に沿って見て、前記第1電極指と前記第2電極指とが重なり合っている領域である励振領域の面積に対する、前記励振領域内の前記第1電極指の面積と前記第2電極指の面積との合計面積の割合であるメタライゼーション比をMRとする場合、MRが以下の式を満たす、請求項5から7のいずれか1項に記載の弾性波装置。
     MR≦1.75×(d/p)+0.075
    When the film thickness of the piezoelectric body is d, and the center-to-center distance between the adjacent first electrode finger and the second electrode finger is p,
    With respect to the area of the excitation region, which is the region where the first electrode fingers and the second electrode fingers overlap, when viewed along the direction in which the plurality of first electrode fingers and the plurality of second electrode fingers are arranged, Claims 5 to 7, where MR is a metallization ratio that is a ratio of the total area of the first electrode finger and the second electrode finger in the excitation region, MR satisfies the following formula: The elastic wave device according to any one of the above.
    MR≦1.75×(d/p)+0.075
  9.  前記圧電体は、ニオブ酸リチウムまたはタンタル酸リチウムである請求項3から8のいずれか1項に記載の弾性波装置。 The acoustic wave device according to any one of claims 3 to 8, wherein the piezoelectric material is lithium niobate or lithium tantalate.
  10.  前記ニオブ酸リチウムまたはタンタル酸リチウムのオイラー角(φ,θ,ψ)が、以下の式(1)、式(2)または式(3)の範囲にある、請求項9に記載の弾性波装置。
     (0°±10°,0°~20°,任意のψ)  …式(1)
     (0°±10°,20°~80°,0°~60°(1-(θ-50)/900)1/2) または (0°±10°,20°~80°,[180°-60°(1-(θ-50)/900)1/2]~180°)  …式(2)
     (0°±10°,[180°-30°(1-(ψ-90)/8100)1/2]~180°,任意のψ)  …式(3)
    The elastic wave device according to claim 9, wherein the Euler angles (φ, θ, ψ) of the lithium niobate or lithium tantalate are in the range of the following formula (1), formula (2), or formula (3). .
    (0°±10°, 0° to 20°, arbitrary ψ) ...Formula (1)
    (0°±10°, 20° to 80°, 0° to 60° (1-(θ-50) 2 /900) 1/2 ) or (0°±10°, 20° to 80°, [180 °-60° (1-(θ-50) 2 /900) 1/2 ] ~ 180°) ...Formula (2)
    (0°±10°, [180°-30° (1-(ψ-90) 2 /8100) 1/2 ] ~ 180°, arbitrary ψ) ...Formula (3)
  11.  主要波として、厚み滑りモードのバルク波を利用可能に構成されている、請求項1から10のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 10, wherein the elastic wave device is configured to be able to utilize a thickness-shear mode bulk wave as the main wave.
  12.  主要波として、板波を利用可能に構成されている、請求項1から10のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 10, configured to be able to use a plate wave as a main wave.
PCT/JP2023/017762 2022-05-13 2023-05-11 Elastic wave device WO2023219134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263341842P 2022-05-13 2022-05-13
US63/341,842 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023219134A1 true WO2023219134A1 (en) 2023-11-16

Family

ID=88730298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017762 WO2023219134A1 (en) 2022-05-13 2023-05-11 Elastic wave device

Country Status (1)

Country Link
WO (1) WO2023219134A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116628A (en) * 2005-10-24 2007-05-10 Kyocera Corp Surface acoustic-wave device and communication apparatus
JP2010245722A (en) * 2009-04-03 2010-10-28 Seiko Epson Corp Surface acoustic wave element and surface acoustic wave device using the same
JP2014013991A (en) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd Lamb wave device and manufacturing method of the same
US20210044277A1 (en) * 2018-06-15 2021-02-11 Resonant Inc. Transversely-excited film bulk acoustic resonator package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116628A (en) * 2005-10-24 2007-05-10 Kyocera Corp Surface acoustic-wave device and communication apparatus
JP2010245722A (en) * 2009-04-03 2010-10-28 Seiko Epson Corp Surface acoustic wave element and surface acoustic wave device using the same
JP2014013991A (en) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd Lamb wave device and manufacturing method of the same
US20210044277A1 (en) * 2018-06-15 2021-02-11 Resonant Inc. Transversely-excited film bulk acoustic resonator package

Similar Documents

Publication Publication Date Title
US20240154596A1 (en) Acoustic wave device and filter device
WO2023223906A1 (en) Elastic wave element
WO2023219134A1 (en) Elastic wave device
WO2024029609A1 (en) Elastic wave device
WO2023210762A1 (en) Acoustic wave element
US20240014799A1 (en) Acoustic wave device
US20240030893A1 (en) Acoustic wave device
WO2023210764A1 (en) Acoustic wave element and acoustic wave device
US20230361749A1 (en) Acoustic wave device and method for manufacturing acoustic wave device
US20240030885A1 (en) Acoustic wave device
US20240030890A1 (en) Acoustic wave device
WO2023145878A1 (en) Elastic wave device
WO2024038831A1 (en) Elastic wave device
US20240186979A1 (en) Acoustic wave device and method of manufacturing acoustic wave device
WO2023195409A1 (en) Elastic wave device and production method for elastic wave device
WO2023191070A1 (en) Elastic wave device
US20240014796A1 (en) Acoustic wave device
WO2023204272A1 (en) Elastic wave device
WO2023219167A1 (en) Elastic wave device
US20230327633A1 (en) Acoustic wave device
WO2024043343A1 (en) Acoustic wave device
WO2023190721A1 (en) Elastic wave device
US20240007076A1 (en) Acoustic wave device
US20240297634A1 (en) Acoustic wave device
US20240030886A1 (en) Acoustic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803608

Country of ref document: EP

Kind code of ref document: A1