[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023219068A1 - 車両用電池診断システム - Google Patents

車両用電池診断システム Download PDF

Info

Publication number
WO2023219068A1
WO2023219068A1 PCT/JP2023/017350 JP2023017350W WO2023219068A1 WO 2023219068 A1 WO2023219068 A1 WO 2023219068A1 JP 2023017350 W JP2023017350 W JP 2023017350W WO 2023219068 A1 WO2023219068 A1 WO 2023219068A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
information
vehicle
diagnosis
unit
Prior art date
Application number
PCT/JP2023/017350
Other languages
English (en)
French (fr)
Inventor
知美 淺井
賢和 草野
信雄 山本
彰悟 鈴木
広康 鈴木
啓介 後藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2024520449A priority Critical patent/JPWO2023219068A1/ja
Publication of WO2023219068A1 publication Critical patent/WO2023219068A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a vehicle battery diagnostic system.
  • Patent Document 1 discloses a configuration for diagnosing the deterioration state of a plurality of battery units constituting a battery mounted on a vehicle. Based on this, a configuration is disclosed in which the remaining life of the battery unit is displayed on a plurality of screens so that a vehicle manufacturer, a dealer, a vehicle user, etc. can confirm the remaining life of the battery unit.
  • Patent Document 1 uses the battery voltage and resistance value of the battery unit in order to diagnose the deterioration state in a short time.
  • Vehicle information including how the vehicle is used, such as mileage, is not taken into account.
  • the accuracy of deterioration information was low, and the ability to diagnose remaining life was also poor. Therefore, there is room for improvement in diagnosing remaining life with high accuracy.
  • the present disclosure aims to provide a vehicle battery diagnostic system that can diagnose the lifespan of a battery installed in a vehicle with high accuracy.
  • One aspect of the present disclosure is a vehicle battery diagnostic system for diagnosing the remaining life of a battery installed in a vehicle, the system comprising: an information acquisition unit that acquires at least vehicle information of the vehicle and usage history information of the battery; A trained model acquisition unit that acquires a trained model created in advance using at least vehicle information of the vehicle in which the battery is installed and usage history information of the battery as explanatory variables and the remaining life of the battery as an objective variable. and, a remaining life diagnosis unit that diagnoses the remaining life of the battery based on the vehicle information and usage history information acquired by the information acquisition unit and the learned model; a diagnosis result output section that outputs the diagnosis results of the lifespan diagnosis section;
  • a vehicle battery diagnostic system comprising:
  • the remaining life of a battery installed in a vehicle is estimated based on at least information on the vehicle in which the battery is installed, information on the battery usage history, and a battery model created in advance. Diagnose. Thereby, the remaining life of the battery can be diagnosed with high accuracy and in a short time.
  • FIG. 1 is a block diagram showing the configuration of a vehicle battery diagnosis system in Embodiment 1
  • FIG. 2 is a conceptual diagram showing a learned model feature space in Embodiment 1
  • FIG. 3 is a conceptual diagram showing the relationship between recovered batteries, estimated rebuild orders, and inventory targets in Embodiment 1
  • FIG. 4 is a flow diagram of preliminary determination processing in Embodiment 1
  • FIG. 5 is a flow diagram of the pre-determination post-processing in Embodiment 1
  • FIG. 6 is a flow diagram of model update processing in the first embodiment
  • FIG. 7 is a flow diagram of inventory update processing in Embodiment 1
  • FIG. 8 is a flow diagram of remaining life diagnosis processing and rebuild processing in the first embodiment
  • FIG. 9 is a flow diagram of association processing in the first embodiment.
  • a vehicle battery diagnostic system 1 is for diagnosing the remaining life of a battery 11 mounted on a vehicle 10.
  • the vehicle battery diagnosis system 1 includes an information acquisition section 101, a trained model acquisition section 103, a remaining life diagnosis section 105, and a diagnosis result output section 106.
  • the information acquisition unit 101 acquires at least vehicle information of the vehicle and usage history information of the battery 11.
  • the trained model acquisition unit 103 uses at least the vehicle information of the vehicle 10 equipped with the battery 11 and the usage history information of the battery 11 as explanatory variables, and the remaining life of the battery 11 as an objective variable. Get a trained model.
  • the remaining life diagnosis unit 105 diagnoses the remaining life of the battery 11 based on the vehicle information and usage history information acquired by the information acquisition unit 101 and the learned model.
  • the diagnosis result output unit 106 outputs the diagnosis result of the remaining life diagnosis unit 105.
  • the vehicle battery diagnostic system 1 is constructed from a configuration provided by a dealer 100, a server 200, and a central repair shop 300, as shown in FIG.
  • the respective configurations are not necessarily limited to those provided in the dealer 100, the server 200, and the centralized repair shop 300 shown in FIG. It may be provided either way.
  • all the elements constituting the vehicle battery diagnosis system 1 are not limited to the dealer 100, the server 200, and the centralized repair shop 300, and may be provided on a terminal or cloud connected via a communication means. .
  • the battery 11 to be diagnosed by the vehicle battery diagnostic system 1 is installed in a vehicle 10 owned by a user.
  • the battery 11 is a rechargeable and dischargeable secondary battery, and includes a single cell and a plurality of cells. Further, a battery pack 12 is configured by electrically connecting a plurality of batteries 11 to each other. Each battery 11 constitutes a module that can be individually attached to and detached from the battery pack 12. Note that the type of battery 11 as a secondary battery is not limited, and any battery suitable for the vehicle 10 can be adopted.
  • the dealer 100 includes an information acquisition section 101, a diagnosis possibility determination section 102, a trained model acquisition section 103, a trained model extraction section 104, a remaining life diagnosis section 105, and a diagnosis result output section 106. , update necessity determination unit 107, storage necessity determination unit 108, association information acquisition unit 109, battery shipping unit 110, rebuild information request input unit 120, information transmission unit 121, information reception unit 122, information presentation unit 123, rebuild request It has a reception transmitting section 124, a receiving section 125, and an assembling section 126.
  • the battery shipping unit 110 can be configured by a shipping system (not shown)
  • the information presentation unit 123 can be configured by a display device (not shown)
  • the other configurations can be configured by a processing unit (not shown). can.
  • the information acquisition unit 101 acquires at least vehicle information of the vehicle 10 and usage history information of the battery 11. In the first embodiment, the information acquisition unit 101 further acquires the battery characteristics of the battery 11.
  • the vehicle information is information regarding the vehicle 10, and may include, for example, the model of the vehicle 10, the date of manufacture, the period of use, the mileage, the region of use, and the like. Note that the manufacturing date does not necessarily need to be specified to the day, but may be specified to the year or month. Vehicle information can be acquired from a storage device (not shown) provided in the vehicle 10.
  • the usage history information of the battery 11 includes charging/discharging of the battery 11, battery temperature, battery voltage, capacity, SOC (State of Charge), or the maximum value in a predetermined period such as the usage period of the device in which the battery 11 is installed. , minimum value, average value, cumulative value, etc.
  • the predetermined period may be any period up to the present, and may be the entire period from the time the secondary battery was manufactured until the present.
  • the usage history information of the battery 11 can be acquired from a BMU (Battery Management Unit) provided in the battery 11.
  • the battery characteristics of the battery 11 are information such as the current battery temperature, battery voltage, capacity, SOC, and internal resistance of the battery 11. These can also be acquired from the BMU provided in the battery 11.
  • the information acquisition unit 101 acquires the above-mentioned information from the battery 11 installed in the vehicle 10 brought to the dealer 100 by the user. Therefore, among the battery information acquired from the battery 11, the battery temperature and other battery information do not have the same value among the plurality of batteries 11 installed in the vehicle 10, but have different values. It usually contains.
  • the diagnosis possibility determination unit 102 determines whether the remaining life of the battery 11 can be diagnosed based on the above information acquired by the information acquisition unit 101. For example, if the SOC, voltage, or remaining capacity of the battery 11 is below a predetermined value, or if the internal resistance of the battery 11, the number of times of charging and discharging, the manufacturing date, period of use, or mileage of the vehicle 10 are greater than a predetermined value. In this case, the diagnosability determining unit 102 can determine that the battery 11 cannot be diagnosed.
  • the diagnosis possibility determination unit 102 determines that the above-mentioned information acquired by the information acquisition unit 101 is included in the range of validity of the learned model that is set in advance in the learned model acquired by the learned model acquisition unit 103 (described later). It is also possible to determine whether or not the battery 11 can be diagnosed based on whether or not the battery 11 can be diagnosed.
  • the range of validity of the learned model can be set, for example, based on the training data of each learned model.
  • the range in which the distance between data from each data center is within a predetermined reference value is defined as the valid range, and the above information acquired by the information acquisition unit 101 is If it is determined that any of the data distances from the respective data centers in the training data of the learned model is within a predetermined reference value, it is determined that diagnosis is possible; otherwise, it is determined that diagnosis is not possible. Can be done.
  • the judgment by the diagnosis possibility determining unit 102 may be made after the trained model extraction unit 104 extracts the trained model, or at the same time as the trained model extraction unit 104 extracts the trained model. can.
  • calculation load can be reduced by eliminating the battery 11 before performing the diagnosis described below. can be reduced.
  • a battery 11 determined to be undiagnosable can be discarded, or its parts can be recycled by disassembly or the like.
  • the trained model acquisition unit 103 acquires a trained model from the server 200, which will be described later.
  • the learned model uses the above-mentioned information acquired by the information acquisition unit 101 as an explanatory variable, and uses the remaining life of the battery 11 as an objective variable.
  • a trained model can be created by preparing training data and using machine learning. Note that the learned model can be updated as described later by operating the vehicle battery diagnosis system 1 of the first embodiment.
  • the trained model acquisition unit 103 can then acquire the updated and latest trained model. Note that a plurality of trained models can be prepared as described below, and in the first embodiment, the trained model acquisition unit 103 acquires a plurality of trained models.
  • the trained model extraction unit 104 extracts the optimal one from the plurality of trained models acquired by the trained model acquisition unit 103. Extraction can be performed based on the information acquired by the information acquisition unit 101. For example, if the battery temperature is lower than a predetermined reference value in the information acquired by the information acquisition unit 101, a learned model can be extracted according to the failure. Furthermore, for example, if the average value of the battery temperature history is lower than a predetermined reference value, or if the battery temperature history frequently occurs at low temperatures, it can be assumed that the battery 11 has been used in a cold region. , the trained model acquisition unit 103 can extract a trained model corresponding to this.
  • a learned model corresponding to the specific car model can be extracted.
  • learned models can be extracted according to the inter-data distance between the information acquired by the information acquisition unit 101 and each data center in the data group of training data of each learned model.
  • the remaining life diagnosis unit 105 diagnoses the remaining life of the battery 11 that has been determined to be diagnosable by the diagnosability determination unit 102 based on the above information acquired by the information acquisition unit 101 and the learned model.
  • the optimal trained model extracted by the trained model extraction unit 104 is used as the trained model. This allows the remaining life to be diagnosed with higher accuracy.
  • the diagnosis result of the remaining life diagnosis section 105 is stored in the information integration section 201 of the server 200, which will be described later. Note that information may be stored in the information integration unit 201 for each diagnosed battery 11, and the above-mentioned information acquired by the information acquisition unit 101 for the battery 11 may be stored together with the remaining life diagnosis result.
  • the diagnosis result output unit 106 outputs the diagnosis result by the remaining life diagnosis unit 105.
  • the form of output is not limited, and may be displayed on a display, printed on a document, or notified by voice. Further, the output content may include the remaining life and accompanying items. Furthermore, the output content may be different for users and dealers. For example, the remaining life of the battery 11 and accompanying detailed information may be displayed for the dealer, but only the necessity of replacing the battery 11 may be displayed for the user.
  • the update necessity determining unit 107 determines whether the battery 11 is necessary for updating a learned model stored in the server 200, which will be described later. Although the criteria used by the update necessity determining unit 107 are not limited, in the first embodiment, if any one of the following four criteria is satisfied, it is determined that the update is necessary.
  • the first update criterion is whether the above information acquired by the information acquisition unit 101 in the battery 11 is information belonging to an unlearned area in the latest trained model stored in the learned model storage unit 203 of the server 200. That's it.
  • the unlearned area is an unknown range other than the learning area Lt, which is a known range in the training data. It is determined whether it is in area L1.
  • the learning region Lt is within a predetermined distance from the center position Ct in the data space of the used training data in the latest trained model, and the other range is defined as the unlearning region L1.
  • the distance between data can be defined based on Mahalanobis distance, Euclidean distance, Manhattan distance, Chebyshev distance, etc.
  • the data density can be calculated, for example, as the number of existing data per unit area of the target data range in the data space.
  • the update necessity determination unit 107 determines that the trained model needs to be updated.
  • the storage necessity determination unit 108 determines whether the battery 11 needs to be stored for rebuilding at a centralized repair shop 300, which will be described later.
  • “rebuilding” refers to packaging used battery packs for reuse as used battery packs.
  • used assembled batteries are disassembled into modules or cells, stratified according to ranks given based on the degree of deterioration, etc., and stored in a storage warehouse. Rebuilding can be performed by extracting modules or cells according to the required rank from the storage, reassembling them, and packaging them.
  • used battery packs do not necessarily need to be disassembled or separated into layers; instead, the board, wiring, and housing can be removed to form a battery stack, which is an assembly of battery cells and modules, and the battery stack can be reused as a new battery stack. You may rebuild the pack by using it as is.
  • the rebuild storage standard which is the determination standard in the storage necessity determination unit 108, is defined based on the inventory target received from the server 200, which will be described later.
  • the relationship between the number of collected batteries 11 and the value, for example, capacity, of the batteries 11 is indicated as collected battery B.
  • the relationship between the number of batteries that are estimated to be required for rebuilding within a predetermined period of time and the value rank can be expressed as estimated rebuild order Rb1.
  • the inventory target Rb2 is set as a number with a certain degree of margin corresponding to the estimated rebuild order Rb1.
  • the batteries 11 that fall under region B1 need to be stored for rebuilding, and the batteries 11 that do not fall under region B1 are determined that there is no need to store them.
  • the batteries 11 that correspond to the region B2 above the inventory target Rb2 on the page are determined to not need to be stored for rebuilding because they can become surplus inventory.
  • the estimated rebuilt order Rb1 will have a shape with multiple peaks in the graph showing the relationship between the value rank and the number of batteries. In some cases. For example, as in the example shown in FIG.
  • the estimated rebuild order Rb1 has two peaks, and correspondingly, the inventory target Rb2 also has two peaks.
  • the rebuild storage standard is defined based on the inventory target Rb2 as in the case of FIG. 3(a).
  • the batteries stored in the battery storage section 306 in the centralized repair shop 300 are ranked based on the diagnosis results of the batteries 11, and the inventory information indicates the number of batteries for each rank.
  • the above-mentioned rebuild storage standards also specify the number of batteries for each rank. In other words, the rebuild storage standards are defined based on the inventory status in the battery storage section 306 and the diagnosis results of the batteries 11.
  • the association information acquisition unit 109 compares the battery information acquired by the information acquisition unit 101 from the battery 11 installed in the vehicle with the battery information acquired from the battery 11 removed from the vehicle, and determines whether the two are the same. After confirming that they have been acquired from the battery 11, association information that is information obtained by associating these with the battery identification information of the battery 11 is acquired.
  • the form of the battery identification information is not limited, and may be a number, a symbol, a one-dimensional barcode, a two-dimensional barcode, or a combination thereof.
  • the battery information in the association information can be, for example, the battery voltage of the battery 11.
  • the association information acquisition unit 109 may acquire association information immediately after being removed from the vehicle 10, or may acquire association information at a timing after a predetermined period of time has passed after being removed from the vehicle 10.
  • the battery information in the association information can be corrected in consideration of changes in the battery information over time, and the association information can be acquired using the correction data.
  • the battery shipping unit 110 ships the battery 11 to a centralized repair shop 300, which will be described later.
  • the batteries 11 to be shipped are determined to be necessary for updating the learned model by the update necessity determining unit 107 described above, and those determined to be necessary for updating the trained model by the above-mentioned storage necessity determining unit 108. It has been determined.
  • the rebuild information request input unit 120 requests information regarding rebuilding the battery pack 12 of the vehicle 10 after the user confirms the output result of the diagnostic result output unit 106, for example, whether or not the battery 11 needs to be replaced. You can enter this if you want.
  • the information transmitter 121 transmits the input result to a centralized repair shop 300, which will be described later.
  • the information receiving section 122 receives rebuild information, which will be described later, transmitted from the central repair shop 300, and the information presenting section 123 presents the received contents to the user.
  • the information can be presented by displaying it on a display unit (not shown), printing it on a document, or giving a voice notification.
  • the rebuild information includes information such as the delivery date and cost in the case of rebuilding. Further, in addition to this, the delivery date and cost of parts necessary for replacing the battery 11 may be included.
  • the rebuild request reception/transmission unit 124 accepts the rebuild request and transmits the request to the centralized repair shop 300.
  • the receiving section 125 receives the rebuilt battery pack shipped from the central repair shop 300, and the assembling section 126 assembles it into the user's battery pack 12. Then, the battery pack 12 is mounted on the vehicle 10. Note that, if the user wishes to replace the battery with a new one instead of a rebuilt one, the rebuild request reception/transmission unit 124 can accept the request and allow the new product ordering unit 127 to order a new battery.
  • the server 200 is connected to a dealer 100 and a central repair shop 300 (described later) via a network line.
  • the server 200 can be provided on the cloud through an Internet line.
  • the server 200 includes an information integration section 201, a model update section 202, a learned model storage section 203, an inventory information acquisition section 204, and an inventory target creation section 205. These configurations can be configured by an arithmetic processing device (not shown).
  • the information integration unit 201 integrates the information acquired by the information acquisition unit 101 of the dealer 100, the diagnosis result of the remaining life diagnosis unit 105, and the diagnosis result of the battery diagnosis unit 305 at the central repair shop 300, which will be described later.
  • the model update unit 202 updates the learned model based on the information from the information integration unit 201.
  • the updated trained model is stored in the trained model storage unit 203.
  • the learned model can be a model created by machine learning using the information acquired by the information acquisition unit 101 as an explanatory variable and the remaining life as an objective variable.
  • the trained model can use a predictive model such as a regression formula, and can use, for example, linear regression, LASSO regression, Ridge regression, decision tree, support vector regression, or the like. Further, a neural network or XGBoost (eXtreme Gradient Boosting/gradient boosting regression tree) may be configured.
  • XGBoost eXtreme Gradient Boosting/gradient boosting regression tree
  • the inventory information acquisition unit 204 acquires inventory information of the batteries 11 stored as batteries 11 for rebuilding in the battery storage unit 306 of the central repair shop 300, which will be described later. Then, the inventory target creation unit 205 creates an inventory target based on the rebuild order prediction within a predetermined period.
  • the inventory target can be created, for example, as in the example shown in FIG.
  • the centralized repair shop 300 performs repairs upon receiving requests from a plurality of dealers 100.
  • the centralized repair shop 300 includes an information receiving section 301, a rebuild information creating section 302, an information transmitting section 303, an accepting section 304, a battery diagnosis section 305, a battery storage section 306, a rebuild section 307, and a rebuilt battery shipping section 308.
  • the information receiving section 301, the rebuild information creating section 302, the information transmitting section 303, the receiving section 304, and the battery diagnosis section 305 can be configured by an arithmetic processing device (not shown).
  • the information receiving unit 301 receives input information of a rebuild request transmitted from the information transmitting unit 121 of the dealer 100.
  • the rebuild information creation unit 302 creates rebuild information including the delivery date and cost of the rebuilt battery in accordance with the input information of the rebuild request.
  • the created rebuild information is transmitted to the dealer 100 by the information transmitting section 303 and received by the information receiving section 122.
  • the receiving unit 304 receives the battery 11 shipped by the battery shipping unit 110 of the dealer 100.
  • the accepted battery 11 is diagnosed by the battery diagnosis section 305.
  • the diagnosis by the battery diagnosis unit 305 is more detailed than the diagnosis by the remaining life diagnosis unit 105 of the dealer 100, and includes more diagnosis items. Further, in order to improve the diagnostic accuracy, it is also possible to perform the diagnosis after the temperature of the battery 11 is brought to a predetermined state. Therefore, it takes more time to obtain a diagnosis result than the diagnosis made by the remaining life diagnosis section 105 of the dealer 100.
  • the diagnosis method in the battery diagnosis section 305 is not limited, and any method that allows detailed diagnosis may be used.
  • the battery characteristics regarding the transition of the battery state over a predetermined voltage interval are acquired, and the degree of deterioration is determined based on the battery characteristics or a battery characteristic related value calculated based on the battery characteristics. It is possible to evaluate and rank the value of
  • the battery storage section 306 is composed of a warehouse where the batteries 11 can be stored.
  • the storage status of the batteries 11 in the battery storage unit 306, that is, inventory information including the number of stored batteries 11 and battery information of these batteries 11, is transmitted to the server 200 and acquired by the inventory information acquisition unit 204.
  • batteries are stored in the battery storage unit 306 in a predetermined ranking based on the diagnosis result by the battery diagnosis unit 305.
  • the inventory information described above also includes information on the number of batteries for each rank.
  • the rebuild unit 307 receives a rebuild request from the rebuild request receiving and transmitting unit 124 of the dealer 100, and rebuilds the battery according to the request. Then, the rebuilt battery, which is a rebuilt battery, is shipped to the dealer 100 by the rebuilt battery shipping section 308 and received by the receiving section 125.
  • step S1 shown in FIG. 4 the information acquisition unit 101 of the dealer 100 acquires vehicle information of the vehicle 10, usage history information of the battery 11, and voltage as battery characteristics of the battery 11. The acquired information is stored in the information accumulation unit 201 of the server 200.
  • step S2 the update necessity determination unit 107 determines whether the information acquired by the information acquisition unit 101 satisfies the first update criterion. If it is determined that the acquired information satisfies the first update criterion, that is, the acquired information is information belonging to the unlearned area L1 in the latest trained model stored in the learned model storage unit 203 of the server 200. If it is determined that there is, the process advances to Yes in step S2, and in step S3, it is determined that the association process is to be performed, and the preliminary determination process is ended.
  • step S2 if the update necessity determination unit 107 of the dealer 100 determines that the information acquired by the information acquisition unit 101 does not satisfy the first update criterion, the process advances to No in step S2, and step In S4, it is determined whether the information acquired by the information acquisition unit 101 satisfies any one of the second to fourth update criteria described above. If it is determined that the acquired information satisfies any one of the second to fourth update criteria, the process proceeds to step S4, Yes, and it is determined that the association process will be performed in step S3, and the preliminary determination process is performed. end.
  • step S4 determines whether the acquired information does not satisfy any of the second to fourth update criteria.
  • step S5 the storage necessity determination unit 108 of the dealer 100 determines whether the above-mentioned rebuild storage criteria are satisfied. If it is determined that the storage criteria for rebuilding is satisfied, the process advances to Yes in step S5, and in step S3 described above, it is determined that the association process is to be performed, and the preliminary determination process is ended.
  • step S5 determines whether the storage criteria for rebuilding is not satisfied. If it is determined in step S5 that the storage criteria for rebuilding is not satisfied, the process advances to No in step S5, and in step S6 it is determined that the disposal or recycling process is to be performed, and the preliminary determination process is ended.
  • the pre-determination post-processing includes parallel processing of steps S7 to S8, step S9, and step S10.
  • step S7 which is the first parallel process
  • step S8 it is shipped to the centralized repair shop 300.
  • step S9 which is the second parallel process
  • a recycling process is performed in which the battery 11 determined to be recycled in step S6 described above is removed from the vehicle, parts are taken out by disassembly, etc., and the parts are reused.
  • step S10 which is the third parallel process, the battery 11 determined to be discarded in step S6 described above is removed from the vehicle and discarded.
  • step S11 the centralized repair shop 300 receives from the dealer 100 a battery 11 that satisfies any one of the first to fourth update criteria. Thereafter, in step S12, the battery diagnosis section 305 of the centralized repair shop 300 performs a detailed diagnosis of the battery 11. The diagnosis results of the detailed diagnosis are stored in the information integration unit 201 of the server 200. In the first embodiment, the degree of deterioration of the battery 11 is calculated as a diagnosis result to diagnose the remaining life. Then, in step S13, the model update unit 202 updates the trained model based on the diagnosis result, and the model update process ends.
  • step S15 the central repair shop 300 receives the battery 11 that meets the rebuilt storage criteria from the dealer 100. Thereafter, in step S16, the batteries are stored in the battery storage section 306 of the centralized repair shop 300 as a rebuild inventory. Then, in step S17, the inventory information acquisition unit 204 of the server 200 acquires inventory information from the battery storage unit 306, and updates the inventory information. Based on the inventory information, the inventory target creation unit 205 creates an inventory target, updates the above-mentioned rebuild storage criteria, and ends the inventory update process.
  • the battery 11 shipped to the centralized repair shop 300 for the model update process shown in FIG. Those that meet the requirements may be stored in the battery storage unit 306 as a rebuild inventory as needed by applying the inventory update process shown in FIG.
  • step S15 the remaining life diagnosis section 105 performs a detailed diagnosis on the batteries 11 that meet the rebuilt storage standards that have been shipped to the centralized repair shop 300, and ranks the batteries 11 based on the detailed diagnosis results.
  • the battery may be stored in the battery storage unit 306 with the battery attached.
  • step S1 shown in FIG. 4 after the information acquisition unit 101 of the dealer 100 acquires the vehicle information of the vehicle 10, the usage history information of the battery 11, and the battery characteristics of the battery 11, as shown by reference numeral A, in step S20 of FIG. Proceed to.
  • step S20 based on the above information acquired by the information acquisition unit 101, the diagnosis possibility determination unit 102 determines whether the battery 11 can be diagnosed. If it is determined that the battery 11 is not diagnosable, the process advances to No in step S20, and the flow ends.
  • step S20 determines whether the battery 11 can be diagnosed. If it is determined in step S20 that the battery 11 can be diagnosed, the process advances to Yes in step S20. Then, in step S21, the trained model extraction unit 104 extracts the optimal trained model.
  • step S22 the remaining life diagnosis unit 105 of the dealer 100 determines whether the battery 11 is connected to the battery 11 installed in the vehicle based on the above-mentioned information acquired by the information acquisition unit 101 and the above-mentioned optimal learned model. Diagnose the remaining lifespan of. Then, in step S23, the diagnosis result output unit 106 outputs the diagnosis result to a display unit (not shown) and also transmits it to the information integration unit 201 of the server 200.
  • step S24 the rebuild information request input unit 120 of the dealer 100 determines whether there is a request from the user for rebuild information that will be used as a basis for determining whether or not to order a rebuilt product. If there is a request for rebuild information, the process advances to Yes in step S24, and in step S25, rebuild information is created by the rebuild information creation unit 302 of the centralized repair shop 300, and the rebuild information is transmitted from the information transmission unit 303 to the dealer 100. do. Note that the rebuilt information also includes information on the delivery date and cost when using a new battery instead of a rebuilt product. Then, the information receiving section 122 of the dealer 100 receives the rebuild information, and the information presenting section 123 presents the rebuild information to the user. The user can decide whether or not to perform a rebuild by considering the delivery date and cost of the rebuilt battery included in the rebuild information.
  • step S26 the rebuild request receiving and transmitting unit 124 of the dealer 100 determines whether or not there is an input of a rebuild request indicating the user's intention to perform a rebuild.
  • the process advances to Yes in step S26, and the rebuild request is sent to the central repair shop 300.
  • the centralized repair shop 300 extracts the battery corresponding to the rebuild request from the plurality of batteries stored in the battery storage unit 306, and extracts the battery that corresponds to the rebuild request. and create a rebuilt battery.
  • a plurality of rebuilt batteries of various ranks may be created in advance by combining a plurality of batteries determined to be stored in the battery storage unit 306 and stored in the battery storage unit 306, and the rebuilt batteries may be rebuilt from the stored rebuilt batteries. You may extract those that meet your requirements. Thereafter, in step S28, the created or extracted rebuilt battery is shipped from the centralized repair shop 300 to the dealer 100 by the rebuilt battery shipping unit 308.
  • the assembly section 126 of the dealer 100 forms the battery pack 12 using the rebuilt battery and assembles it into the vehicle 10. This ends this processing flow.
  • step S26 if there is no input of a rebuild request from the user, the process advances to No in step S26, and in step S30, the rebuild request receiving and transmitting unit 124 determines whether or not the user wishes to replace the battery with a new one. do. If the user wishes to replace the battery with a new one, the process proceeds to step S30 (Yes), and in step S31, the new battery ordering section 127 of the dealer 100 orders a new battery from a battery manufacturer (not shown). After a new battery arrives at the dealer 100, it is received at a receiving section 125, and an assembling section 126 forms a battery pack 12 using the new battery and assembles it into the vehicle 10. This ends this processing flow. If the user does not wish to replace the battery with a new one in step S30, the process advances to No in step S30, and in step S32, it is determined not to replace the battery 11, and this process flow ends.
  • step S24 if there is no request for rebuild information from the user, the process proceeds to No in step S24, and in step S2 it is determined that the battery 11 is not to be replaced, and this processing flow is ended.
  • a battery stored in the battery storage unit 306 in response to a rebuild request from a user is used, but instead of this, a battery that is initially installed in the user's vehicle 10 and transmitted to the centralized repair shop 300 is used.
  • the battery 11 may be partially replaced and repaired, and then returned to the user as a rebuilt product.
  • step S7 shown in FIG. 4 the association process in step S7 shown in FIG. 4 will be described using FIG. 9.
  • step S22 shown in FIG. 8 the remaining life diagnosis section 105 of the dealer 100 diagnoses the remaining life of the battery 11 when the battery 11 is installed in the car, and sends the diagnosis result to the information integration section 201 of the server 200.
  • step S40 the association information acquisition unit 109 of the dealer 100 acquires battery identification information of the battery 11 removed from the vehicle 10.
  • step S41 the battery voltage of the battery 11 after being removed is directly measured and directly obtained as battery characteristics.
  • step S42 in order to take into account the change in battery voltage as a direct battery characteristic with the passage of time from when the battery 11 is removed from the vehicle 10 until the measurement of the battery voltage, the direct battery characteristic is determined according to the passage of time. Correct the battery voltage. Note that if the elapsed time is shorter than a predetermined reference value, the change in battery voltage caused by the elapsed time may be ignored and step S42 may not be performed.
  • step S43 the battery voltage before and after removal or correction is compared to determine whether the two match. If it is determined that the two match, the process advances to Yes in step S43, and in step S44, the information acquired before being removed from the vehicle 10 is associated with the information on the battery 11 after being removed. and end the flow.
  • step S43 if it is determined in step S43 that the battery voltages before and after removal or after correction do not match, it is determined that the information acquired before removal from the vehicle 10 does not match the information on the battery 11 after removal.
  • the process returns to step S41 without associating the two, and the battery voltage after removal is acquired again, and the battery voltage after removal is corrected in step S42.
  • step S43 the corrected battery voltage after removal is compared with the battery voltage before removal of a battery 11 different from the battery compared last time, and it is determined whether the two match. Based on the comparison result, step S44 or step S41 and subsequent steps are performed again as described above.
  • the association process in step S7 is performed at the dealer 100, but is not limited to this. You can also do this.
  • the remaining life of the battery 11 mounted on the vehicle 10 is determined based on at least information on the vehicle 10 on which the battery 11 is mounted, battery usage history information, and information on the battery usage history created in advance. Diagnose based on the trained model. Thereby, the remaining life of the battery 11 can be diagnosed with high accuracy and in a short time.
  • the battery 11 is provided with a diagnosis possibility determination unit 102 that determines whether or not the remaining life can be diagnosed, and the remaining life diagnosis unit 105 is configured to detect the battery 11 that has been determined to be diagnosable by the diagnosis possibility determination unit 102. Diagnose the remaining lifespan of. This makes it possible to avoid diagnosing the remaining life of the battery 11 for excessively degraded or damaged batteries, and improves the efficiency of arithmetic processing.
  • the trained model acquisition unit 103 acquires a plurality of trained models created in advance.
  • the learning model extraction unit 104 extracts at least one of the plurality of trained models acquired by the learned model acquisition unit 103 based on the information acquired by the information acquisition unit 101.
  • the remaining life diagnosis unit 105 uses the trained model extracted by the trained model extraction unit 104 as the trained model. Thereby, the remaining life diagnosis unit 105 can diagnose the remaining life based on the trained model in an optimal manner according to the information acquired by the information acquisition unit 101, so that the accuracy of diagnosis can be improved.
  • the first embodiment includes a model updating unit 202 that updates the learned model based on the information acquired by the information acquisition unit 101. Thereby, even if the tendency of deterioration of the battery 11 changes, the learned model is updated accordingly, so that the remaining life can be diagnosed with higher accuracy.
  • the first embodiment includes an update necessity determining unit 107 that determines whether the battery 11 is necessary for updating the trained model. Thereby, detailed diagnosis can be performed only on the batteries 11 necessary for updating, and the efficiency of arithmetic processing can be improved.
  • the update necessity determination unit 107 determines that the update necessity determination unit 107 determines whether the information acquired by the information acquisition unit is information belonging to a learning area in a trained model. If the distance between the data center calculated from the information within a predetermined period from the latest model update and the data center calculated from all the information in the learning area is greater than or equal to the reference value, then the learned model The difference between data distortion calculated from information belonging to the learning area within a predetermined period from the latest model update and data distortion calculated from all information in the learning area is greater than or equal to a reference value.
  • the difference between the data density calculated from information belonging to the learning area in the trained model and within a predetermined period since the latest model update, and the data density calculated from all information in the learning area. is greater than or equal to the reference value, and when at least one of the following is satisfied, it is determined that the learned model needs to be updated. Thereby, it is possible to optimize the extraction of batteries 11 necessary for updating the learned model, and it is possible to further improve the accuracy of the remaining life diagnosis.
  • the first embodiment includes a storage necessity determination unit 108 that determines whether or not the battery 11 should be stored in the battery 11 rebuild inventory. Thereby, it is possible to suppress the generation of surplus batteries stored for rebuilding.
  • the storage necessity determining unit 108 determines whether or not the battery 11 is necessary for rebuilding based on the inventory target calculated according to inventory information of batteries stored as inventory for rebuilding. do. As a result, it is possible to efficiently acquire and store batteries having battery characteristics that are insufficient in the inventory for rebuilding, and it is also possible to suppress having surplus inventory and optimize inventory management.
  • the batteries stored in the battery storage section 306 in the centralized repair shop 300 are ranked based on the diagnosis results of the batteries 11, and the inventory information includes the number of batteries for each rank.
  • the rebuilt storage criteria which is the standard for determining whether or not to store batteries in the rebuilt inventory, also defines the number of batteries for each rank.In other words, the rebuilt storage criteria determines the inventory status in the battery storage section 306. and the diagnosis result of the battery 11. As a result, battery inventory management can be performed taking into consideration the rank of the battery 11, and inventory management can be further optimized.
  • the information acquisition unit 101 further acquires the battery characteristics of the battery 11 as the above information. Thereby, the remaining life can be diagnosed taking into consideration the battery characteristics, so that the diagnostic accuracy can be further improved.
  • the information acquisition unit 101 compares the battery characteristics acquired from the battery 11 mounted on the vehicle 10 with the direct battery characteristics acquired by removing the battery 11 from the vehicle 10 and directly measuring it. It further includes an association information acquisition unit 109 that associates the information acquired by the information acquisition unit 101 with battery identification information of the battery 11. As a result, it is possible to guarantee that the information acquired while the battery 11 is mounted on the vehicle 10, where it is difficult to physically identify the battery 11, is the information about the battery 11, thereby preventing mix-up of batteries and diagnosing the battery 11. The reliability of results can be improved.
  • the association information acquisition unit 109 uses the battery characteristics obtained by directly measuring the battery 11 as the direct battery characteristics, from the time when the battery 11 is removed from the vehicle 10 to when the battery characteristics are directly measured. Use the corrected version based on . As a result, even when using battery characteristics acquired after time has elapsed since the battery was removed from the vehicle 10, it is possible to improve the accuracy of association, prevent mix-ups of batteries, and improve the reliability of diagnostic results. can do.
  • the vehicle battery diagnosis system 1 that can diagnose the remaining life of the battery 11 mounted on the vehicle 10 with high accuracy.
  • a vehicle battery diagnostic system equipped with [Section 2] comprising a diagnosis possibility determination unit (102) that determines whether the remaining life of the battery can be diagnosed; 2.
  • the trained model acquisition unit acquires the plurality of trained models created in advance, a trained model extraction unit (104) that extracts at least one of the plurality of trained models acquired by the trained model acquisition unit, based on the information acquired by the information acquisition unit; 3.
  • a model updating unit (202) that updates the learned model based on the information acquired by the information acquisition unit.
  • an update necessity determination unit (107) that determines whether the battery is necessary for updating the trained model.
  • the update necessity determination unit determines whether the information acquired by the information acquisition unit is When the information belongs to the unlearned area in the trained model, The distance between the data center, which is information belonging to the learning area in the trained model and is calculated from information within a predetermined period since the latest model update, and the data center, which is calculated from all information in the learning area, is When it is above the standard value, The reference value is the difference between the data distortion calculated from information belonging to the learning area in the trained model and within a predetermined period since the latest model update, and the data distortion calculated from all information in the learning area.
  • the vehicle battery diagnostic system according to item 5 wherein when at least one of the following conditions is satisfied, it is determined that the learned model needs to be updated.
  • the storage necessity determination unit determines whether or not the battery is necessary for rebuilding based on an inventory target calculated according to inventory information of the battery stored as inventory for rebuilding. vehicle battery diagnostic system.
  • [Section 9] 9. The vehicle battery diagnostic system according to any one of items 1 to 8, wherein the information acquisition unit further acquires battery characteristics of the battery.
  • the information acquisition unit compares the battery characteristics acquired from the battery mounted on the vehicle with the direct battery characteristics acquired by removing the battery from the vehicle and directly measuring it.
  • the vehicle battery diagnosis system according to item 9 further comprising an association information acquisition unit (109) that associates the information acquired by the battery with battery identification information of the battery.
  • the association information acquisition unit uses, as the direct battery characteristics, battery characteristics obtained by directly measuring the battery, corrected based on the elapsed time from when the battery is removed from the vehicle until directly measured. , the vehicle battery diagnostic system according to item 10 above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

車両用電池診断システム(1)は、車両(10)に搭載された電池(11)の余寿命を診断するためのものである。車両用電池診断システム(1)は、情報取得部(101)、学習済みモデル取得部(103)、余寿命診断部(105)、診断結果出力部(106)を備える。情報取得部(101)は、少なくとも車両の車両情報及び電池(11)の使用履歴情報を取得する。学習済みモデル取得部(103)は、少なくとも電池(11)が搭載された車両(10)の車両情報と当該電池(11)の使用履歴情報とを説明変数とするとともに、当該電池(11)の余寿命を目的変数として予め作成された学習済みモデルを取得する。余寿命診断部(105)は、情報取得部(101)が取得した車両情報及び使用履歴情報と学習済みモデルとに基づいて電池(11)の余寿命を診断する。診断結果出力部(106)は余寿命診断部(105)の診断結果を出力する。

Description

車両用電池診断システム 関連出願の相互参照
 本出願は2022年5月13日に出願された日本出願番号2022-79294号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両用電池診断システムに関する。
 従来、車両に搭載された電池の寿命を診断して確認するための構成として、例えば、特許文献1には、車両に搭載された電池を構成する複数の電池ユニットの劣化状態を診断して、これに基づいて電池ユニットの余寿命を複数の画面に表示して、車両メーカ、ディーラ、車両ユーザなどがそれぞれ確認可能な構成が開示されている。
特開2010-111276号公報
 特許文献1に開示の構成では、短時間で劣化状態を診断するために、電池ユニットの電池電圧や抵抗値を用いているが、当該電池が搭載された車両が使用された地域、当該車両の走行距離などの車両の使われ方を含む車両情報は考慮されていない。そのため、劣化情報の精度が低く、余寿命の診断制度も低下していた。そのため、余寿命を高精度に診断するには改良の余地がある。
 本開示は、車両に搭載された電池の寿命を高精度に診断可能な車両用電池診断システムを提供しようとするものである。
 本開示の一態様は、車両に搭載された電池の余寿命を診断するための車両用電池診断システムであって、
 少なくとも上記車両の車両情報及び上記電池の使用履歴情報を取得する情報取得部と、
 少なくとも上記電池が搭載された上記車両の車両情報と上記電池の使用履歴情報とを説明変数とするとともに上記電池の余寿命を目的変数として予め作成された学習済みモデルを取得する学習済みモデル取得部と、
 上記情報取得部が取得した上記車両情報及び上記使用履歴情報と上記学習済みモデルとに基づいて、上記電池の余寿命を診断する余寿命診断部と、
 上記寿命診断部の診断結果を出力する診断結果出力部と、
を備える、車両用電池診断システムにある。
 上記車両用電池診断システムにおいては、車両に搭載された電池の余寿命を、少なくとも当該電池が搭載された車両の情報と当該電池使用履歴情報の情報と、予め作成された電池モデルとに基づいて診断する。これにより、電池の余寿命を高精度に短時間で診断することができる。
 以上のごとく、上記態様によれば、車両に搭載された電池の余寿命を高精度に診断可能な車両用電池診断システムを提供することができる。
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、車両用電池診断システムの構成を示すブロック図であり、 図2は、実施形態1における、学習済みモデル特徴量空間を示す概念図であり、 図3は、実施形態1における、回収電池、リビルト発注推定及び在庫目標の関係を示す概念図であり、 図4は、実施形態1における、事前判定処理のフロー図であり、 図5は、実施形態1における、事前判定後処理のフロー図であり、 図6は、実施形態1における、モデル更新処理のフロー図であり、 図7は、実施形態1における、在庫更新処理のフロー図であり、 図8は、実施形態1における、余寿命診断処理及びリビルト処理のフロー図であり、 図9は、実施形態1における、関連付け処理のフロー図である。
(実施形態1)
 上記車両用電池診断システムの実施形態について、図1~図9を用いて説明する。
 本実施形態1の車両用電池診断システム1は、車両10に搭載された電池11の余寿命を診断するためのものである。図1に示すように、車両用電池診断システム1は、情報取得部101、学習済みモデル取得部103、余寿命診断部105、診断結果出力部106を備える。
 情報取得部101は、少なくとも車両の車両情報及び電池11の使用履歴情報を取得する。
 学習済みモデル取得部103は、少なくとも電池11が搭載された車両10の車両情報と当該電池11の使用履歴情報とを説明変数とするとともに、当該電池11の余寿命を目的変数として予め作成された学習済みモデルを取得する。
 余寿命診断部105は、情報取得部101が取得した車両情報及び使用履歴情報と学習済みモデルとに基づいて、電池11の余寿命を診断する。
 診断結果出力部106は、余寿命診断部105の診断結果を出力する。
 以下、本実施形態の車両用電池診断システム1について、詳述する。
1.車両用電池診断システム1の構成
 本実施形態1では、車両用電池診断システム1は、図1に示すように、ディーラ100、サーバ200及び集中修理店300が備える構成から構築される。なお、それぞれの構成は必ずしも図1に示すディーラ100、サーバ200及び集中修理店300に備えられることに限定されるものではなく、それぞれに備えられる構成はディーラ100、サーバ200及び集中修理店300のいずれに備えられていてもよい。さらに、車両用電池診断システム1を構成するすべての要素は、ディーラ100、サーバ200及び集中修理店300に限定されず、通信手段を介して接続された端末やクラウド上に設けられていてもよい。
 そして、車両用電池診断システム1の診断対象である電池11は、ユーザの所有する車両10に搭載されている。当該電池11は、充放電可能な二次電池であって、単一のセルや複数のセルから構成されたものを含む。また、複数の電池11が互いに電気的に接続されることにより電池パック12を構成する。そして、各電池11は、電池パック12から個別に着脱可能なモジュールを構成している。なお、電池11は、二次電池としての種類は限定されず、車両10に適合したものを採用できる。
1-1.ディーラ100について
 図1に示すように、ディーラ100は、情報取得部101、診断可否判定部102、学習済みモデル取得部103、学習済みモデル抽出部104、余寿命診断部105、診断結果出力部106、更新要否判定部107、保管要否判定部108、関連付け情報取得部109、電池発送部110、リビルト情報要求入力部120、情報送信部121、情報受信部122、情報提示部123、リビルト要求受付送信部124、受入部125、組付け部126を有する。これらのうち、電池発送部110は図示しない発送システムにより構成することができ、情報提示部123は図示しない表示装置により構成することができ、その他の構成は図示しない演算処理装置により構成することができる。
 情報取得部101は、少なくとも車両10の車両情報と電池11の使用履歴情報を取得する。本実施形態1では、情報取得部101は、さらに、電池11の電池特性も取得する。まず、車両情報は、車両10に関する情報であって、例えば、車両10の車種、製造年月日、使用期間、走行距離、使用地域などを例示することができる。なお、製造年月日は必ずしも日まで特定されなくてよく、年又は月まででもよい。車両情報は車両10に設けられた図示しない記憶装置から取得することができる。
 また、電池11の使用履歴情報は、電池11の充放電、電池温度、電池電圧、容量、SOC(State of charge 充電状態)又は電池11が搭載された装置の使用期間などの所定期間における最大値、最小値、平均値、累積値などとすることができる。当該所定期間は、現在までの任意の期間とすることができ、当該二次電池が製造されてから現在までの全期間としてもよい。電池11の使用履歴情報は電池11に備えられたBMU(Battery Management Unite バッテリマネジメントユニット)から取得することができる。また、電池11の電池特性は、電池11の現在の電池温度、電池電圧、容量、SOC、内部抵抗などの情報である。これらも電池11に備えられたBMUから取得することができる。
 なお、通常、情報取得部101は、ユーザによりディーラ100に持ち込まれた車両10に搭載された状態の電池11から上述の情報を取得する。そのため、当該電池11から取得された電池情報のうち、電池温度やその他の電池情報は、車両10に搭載された複数の電池11間において同一の値となってはおらず、互いに異なる値のものを含んでいることが通常である。
 次に、診断可否判定部102は、情報取得部101が取得した上記情報に基づいて、当該電池11の余寿命の診断の可否を判定する。例えば、電池11のSOCや電圧や残容量が所定値以下である場合や、電池11の内部抵抗や充放電回数や車両10の製造年月日、使用期間や走行距離が所定値以上である場合には、診断可否判定部102は、当該電池11の診断不可と判定することができる。
 また、診断可否判定部102は、後述の学習済みモデル取得部103によって取得された学習済みモデルにおいて予め設定された当該学習済みモデルの成立範囲に、情報取得部101により取得された上記情報が含まれるか否かに基づいて、当該電池11の診断可否を判定することとしてもよい。学習済みモデルの成立範囲は、例えば、各学習済みモデルの訓練データに基づいて設定することができる。例えば、各学習済みモデルの訓練データのデータ集団において、それぞれのデータ中心とのデータ間距離が所定の基準値以内の範囲を成立範囲とするとし、情報取得部101が取得した上記情報が、複数の学習済みモデルの訓練データにおけるそれぞれのデータ中心とのデータ間距離のいずれかが所定の基準値以内にあると判断された場合は診断可能と判断し、そうでない場合は診断不可と判断することができる。なお、診断可否判定部102による当該診断の可否は、学習済みモデル抽出部104による学習済みモデルの抽出の後に行ったり、学習済みモデル抽出部104による学習済みモデルの抽出と同時に行ったりすることができる。
 診断可否判定部102により診断不可と判定された電池11は後述の診断をするまでもなく、再利用が不可であることが明白であるため、後述の診断をする前に排除することで演算負荷を低減することができる。診断不可と判定された電池11は破棄したり、分解等により部品のリサイクルを行ったりすることができる。
 学習済みモデル取得部103は、後述のサーバ200から学習済みモデルを取得する。当該学習済みモデルは、情報取得部101が取得する上述の情報を説明変数とし、電池11の余寿命を目的変数とするものである。学習済みモデルは教師データを用意して機械学習により作成することができる。なお、当該学習済みモデルは、本実施形態1の車両用電池診断システム1を運用することにより後述のように更新することができる。そして、学習済みモデル取得部103は、更新された最新の学習済みモデルを取得するようにすることができる。なお、学習済みモデルは後述のように複数用意することができ、本実施形態1では、学習済みモデル取得部103は、複数の学習済みモデルを取得する。
 学習済みモデル抽出部104は、学習済みモデル取得部103により取得された複数の学習済みモデルから最適なものを抽出する。抽出は、情報取得部101が取得した情報に基づいて行うことができる。例えば、情報取得部101が取得した情報において電池温度が所定基準値よりも低い場合にはれに応じた学習済みモデルを抽出することができる。また、例えば、電池温度の履歴の平均値などが所定の基準値よりも低い場合や、低温での電池温度の履歴の頻度が多い場合には、当該電池11は寒冷地で使用されたと予想でき、学習済みモデル取得部103によりこれに応じた学習済みモデルを抽出することができる。また、情報取得部101が取得した情報において、電池11が特定の車種である場合には、当該特定の車種に応じた学習済みモデルを抽出することができる。また、情報取得部101が取得した情報と各学習済みモデルの訓練データのデータ集団におけるそれぞれのデータ中心とのデータ間距離に応じて学習済みモデルを抽出することができる。
 余寿命診断部105は、診断可否判定部102により診断可能と判定された電池11について、情報取得部101が取得した上記情報と学習済みモデルとに基づいて、電池11の余寿命を診断する。本実施形態1では、学習済みモデルとして学習済みモデル抽出部104により抽出された最適な学習済みモデルを用いる。これにより、より高精度に余寿命を診断することができる。余寿命診断部105の診断結果を後述するサーバ200の情報積算部201に記憶される。なお、情報積算部201には、診断した電池11ごとに情報が記憶され、余寿命の診断結果とともに当該電池11において情報取得部101が取得した上記情報が記憶されることとしてもよい。
 診断結果出力部106は、余寿命診断部105による診断結果を出力する。出力する形態は限定されず、表示部に表示してもよいし、書面に印刷するものであってもよいし、音声で通知するものであってもよい。また、出力内容には、余寿命とともに付随する事項が含まれていてもよい。また、出力内容は、ユーザ向けとディーラ向けとで異なる内容であってもよい。例えば、ディーラ向けに電池11の余寿命とともに付随する詳細な情報を表示するが、ユーザ向けには電池11の交換の要否のみを表示することとしてもよい。
 更新要否判定部107は、当該電池11は後述するサーバ200において記憶された学習済みモデルの更新に必要か否かを判定する。更新要否判定部107における判定基準は限定されないが、本実施形態1では、以下の4つの基準のいずれか一つを満たす場合、上記更新が必要であると判定する。
 第1の更新基準は、電池11において情報取得部101が取得した上記情報が、サーバ200の学習済みモデル記憶部203に記憶された最新の学習済みモデルにおける未学習領域に属する情報であるか否かである。例えば、図2に示す学習済みモデルにおいて訓練データにおける特徴量Aと特徴量Bとで定義された特徴量空間において、訓練データにおける既知の範囲である学習領域Lt以外の未知の範囲である未学習領域L1にあるかを判定する。ここで、学習領域Ltは、最新の学習済みモデルにおいて使用済みの訓練データのデータ空間における中心位置Ctから所定距離の範囲内であり、それ以外の範囲を未学習領域L1とする。データ間の距離は、マハラノビス距離、ユークリッド距離、マンハッタン距離、チェビシェフ距離などに基づいて規定することができる。
 第2の更新基準は、学習済みモデルにおける学習領域Ltに属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ中心と、学習領域Ltにおける全情報から算出されるデータ中心とのデータ間距離が基準値以上であるか否かである。例えば、図2に示すように、最新の学習済みモデルにおいて直近に追加されたN=100個の訓練データのデータ範囲L2の当該データ空間におけるデータ中心C2と、最新の学習済みモデルにおける全訓練データのデータ中心Cとのデータ間距離Dが基準値以上であるか否かを判定する。
 第3の更新基準は、学習済みモデルにおける学習領域Ltに属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ歪みと、学習領域Ltにおける全情報から算出されるデータ歪みとの差分が基準値以上であるか否かである。例えば、図2に示すように、最新の学習済みモデルにおいて直近に追加されたN=100個の訓練データのデータ範囲L3の当該データ空間におけるデータ歪みと、学習領域Ltにおける全情報から算出されるデータ歪みとの差分が基準値以上であるか否かを判定する。データ歪みは、例えば、当該データ空間において、全訓練データのデータ中心Cとのデータ間距離Dが基準値以内となるデータ範囲の外形の変形度合に基づいて算出することができる。
 第4の更新基準は、学習済みモデルにおける学習領域Ltに属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ密度と、学習領域Ltにおける全情報から算出されるデータ密度との差分が基準値以上であるか否かである。例えば、図2に示すように、最新の学習済みモデルにおいて直近に追加されたN=100個の訓練データのデータ範囲L4a、L4bの当該データ空間におけるデータ密度と、学習領域Ltにおける全情報から算出されるデータ密度との差分が基準値以上であるか否かを判定する。データ密度は、例えば、当該データ空間における対象データ範囲の単位面積当たりのデータ存在数として算出することができる。
 更新要否判定部107は、情報取得部101が取得した情報が以上の第1~第4の更新基準のいずれかに該当する場合には、学習済みモデルの更新が必要であると判定する。
 保管要否判定部108は、電池11が後述の集中修理店300においてリビルト用に保管する必要があるか否かを判定する。なお、リビルトとは、使用済みの組電池を、中古の電池パックとして再利用するためにパック化することをいう。例えば、集中修理店300にて、使用済みの組電池をモジュール単位、又は、セル単位に分解し、劣化度等に基づいて付与されたランクに応じて層別して保管庫に保管しておき、再度必要ランクに応じたモジュール又はセルを保管庫から抽出して再組付けしてパック化することによりリビルトを行うことができる。なお、使用済みの組電池は必ずしも分解・層別が必要ではなく、基板や結線や筐体をとり除いて電池セルやモジュールの集合体である電池スタックの状態にして、当該電池スタックを新たなパックにそのまま使用することによりリビルトを行ってもよい。
 保管要否判定部108における判定基準であるリビルト用保管基準は、後述するサーバ200より受信する在庫目標に基づいて規定される。例えば、図3(a)に示す例では、回収される電池11の個数と当該電池11の価値、例えば、容量との関係は回収電池Bのように示される。そして、今後所定期間内にリビルトのために必要であると推定される電池の個数と価値ランクとの関係はリビルト発注推定Rb1で示すことができる。当該リビルト発注推定Rb1に対応してある程度の余裕度をもった数として在庫目標Rb2が設定される。そして、在庫目標Rb2と回収電池Bとの関係において、在庫目標Rb2と回収電池Bと横軸とで囲まれた領域B1に該当するか否かが保管要否判定部108におけるリビルト用保管基準となる。
 当該リビルト用保管基準に基づいて、領域B1に該当する電池11はリビルト用に保管の必要があると判定され、領域B1に該当しない電池11は保管の必要がないと判定される。特に、図3(a)において、回収電池Bのうち、在庫目標Rb2よりも紙面上側の領域B2に該当する電池11は、余剰在庫となりうることからリビルト用に保管する必要はないと判定される。なお、リビルト発注推定Rb1は、電池11の用途が複数存在する場合には、これに応じてリビルト発注推定Rb1は価値ランクと電池個数との関係を示すグラフにおいて、複数のピークを有する形状となる場合もある。例えば、図3(b)に示す例のように、リビルト発注推定Rb1は2つのピークを有し、これに対応して在庫目標Rb2も2つのピークを有する。この場合もリビルト用保管基準は、図3(a)の場合と同様に当該在庫目標Rb2に基づいて規定される。
 後述するように、本実施形態1では、集中修理店300における電池保管部306に保管された電池は、電池11の診断結果に基づいてランク付けされており、在庫情報はランクごとの電池数を含む。これに基づいて、上記リビルト用保管基準もランクごとの電池数を規定するものとしている。換言すると、リビルト用保管基準は、電池保管部306における在庫状況と電池11の診断結果とに基づいて規定されている。
 関連付け情報取得部109は、情報取得部101が車両に搭載された状態の電池11から取得した電池情報と、車両から取り外した状態の電池11から取得した電池情報とを比較して両者が同一の電池11から取得されたものであることを確認したうえで、これらを電池11の電池識別情報と関連付けしてなる情報である関連付け情報を取得する。電池識別情報の形態は限定されず、番号、記号、1次元バーコード、2次元バーコードやこれらを組み合わせたものとすることができる。
 関連付け情報における電池情報は、例えば、電池11の電池電圧とすることができる。関連付け情報取得部109は、車両10から取り外した直後のタイミングで関連付け情報を取得することとしてもよいし、車両10から取り外してから所定期間経過したタイミングで関連付け情報を取得することとしてもよい。所定期間経過したタイミングで関連付け情報を取得する場合は、当該時間経過による電池情報の変化を考慮して関連付け情報における電池情報を補正し、当該補正データを用いて関連付け情報を取得することができる。
 電池発送部110は、後述する集中修理店300に電池11を発送する。当該発送される電池11は上述の更新要否判定部107において学習済みモデルの更新に必要であると判定されたものと、上述の保管要否判定部108においてリビルト用に保管が必要であると判定されたものである。
 次に、リビルト情報要求入力部120は、ユーザが診断結果出力部106の出力結果、例えば、電池11の交換の要否について確認したうえで、車両10の電池パック12のリビルトに関する情報を希望する場合にこれを入力することができる。リビルト情報要求が入力されると、情報送信部121により後述の集中修理店300に当該入力結果が送信される。そして、情報受信部122により、集中修理店300から送信された後述のリビルト情報を受信して、受信内容を情報提示部123によりユーザに提示する。当該情報の提示は、図示しない表示部への表示や書面への印刷、音声での通知により行うことができる。なお、当該リビルト情報には、リビルトを行う場合の納期やコストなどの情報が含まれている。また、これに加えて、電池11の交換に必要な部品の納期やコストを含んでいてもよい。
 リビルト要求受付送信部124は、ユーザがリビルト情報を確認したうえで、リビルト電池パックを要求する場合に、リビルト要求を受け入れて当該要求を集中修理店300に送信する。受入部125は、集中修理店300から発送されたリビルト電池パックを受け入れ、組付け部126がこれをユーザの電池パック12に組み込む。そして、電池パック12を車両10に搭載する。なお、リビルト要求受付送信部124は、ユーザがリビルト品ではなく新品の電池への交換を希望する場合は当該希望を受け入れて、新品発注部127により新品の発注を行うことができる。
1-2.サーバ200について
 図1に示すように、サーバ200は、ディーラ100と後述の集中修理店300とネットワーク回線を介して接続されている。サーバ200はインターネット回線を通じてクラウド上に設けることができる。サーバ200は、情報積算部201、モデル更新部202、学習済みモデル記憶部203、在庫情報取得部204、在庫目標作成部205を備える。これらの構成は図示しない演算処理装置により構成することができる。
 情報積算部201は、ディーラ100の情報取得部101が取得した情報及び余寿命診断部105の診断結果と、後述の集中修理店300における電池診断部305の診断結果が積算される。
 モデル更新部202は、情報積算部201の情報に基づいて学習済みモデルを更新する。更新された学習済みモデルは学習済みモデル記憶部203に記憶される。当該学習済みモデルは、情報取得部101により取得される情報を説明変数とし、余寿命を目的変数として機械学習により作成されるモデルとすることができる。学習済みモデルは、回帰式などの予測モデルを利用することができ、例えば、線形回帰、LASSO回帰、Ridge回帰、決定木、サポートベクター回帰などを利用することができる。また、ニューラルネットワークやXGBoost(eXtreme Gradient Boosting / 勾配ブースティング回帰木)を構成していてもよい。
 在庫情報取得部204は、後述の集中修理店300における電池保管部306にリビルト用の電池11として保管された電池11の在庫情報を取得する。そして、在庫目標作成部205は、所定期間内におけるリビルト発注予測に基づいて在庫目標を作成する。在庫目標は例えば、図3に示す例のように作成することができる。
1-3.集中修理店300について
 集中修理店300は、複数のディーラ100から依頼を受けて修理を行う。集中修理店300は、情報受信部301、リビルト情報作成部302、情報送信部303、受入部304、電池診断部305、電池保管部306、リビルト部307、リビルト電池発送部308を備える。これらのうち、情報受信部301、リビルト情報作成部302、情報送信部303、受入部304及び電池診断部305は図示しない演算処理装置により構成することができる。
 情報受信部301は、ディーラ100の情報送信部121から送信されたリビルト要求の入力情報を受信する。リビルト情報作成部302は、リビルト要求の入力情報に応じて、リビルト電池の納期及びコストを含むリビルト情報を作成する。作成されたリビルト情報は情報送信部303によりディーラ100に向けて送信され情報受信部122に受信される。
 受入部304は、ディーラ100の電池発送部110により発送された電池11を受け入れる。受け入れられた電池11は、電池診断部305により診断がなされる。電池診断部305による診断は、ディーラ100の余寿命診断部105での診断よりも詳細な診断であって、より多くの診断項目を備える。また、診断精度を向上するために、電池11の温度を所定の状態にしたうえで診断を行うことも可能である。そのため、ディーラ100の余寿命診断部105での診断よりも診断結果を得るのに時間を要することとなる。電池診断部305における診断方法は限定されず、詳細な診断が可能な方法であればよい。例えば、電池11について、所定の電圧区間にわたる電池状態の推移に関する電池特性を取得し、当該電池特性又は電池特性に基づいて算出された電池特性関係値に基づいて劣化度を判定して、電池11の価値評価をしてランク付けを行うことができる。
 電池保管部306は電池11が保管可能な倉庫により構成される。電池保管部306における電池11の保管状況、即ち、保管された電池11の数とこれらの電池11の電池情報などを含む在庫情報は、サーバ200に送信されて在庫情報取得部204により取得される。本実施形態1では、電池保管部306において電池は、電池診断部305による診断結果に基づいて所定のランク付けなされた状態で保管されている。そして、上述の在庫情報は当該ランクごとの電池数の情報も含む。
 リビルト部307は、ディーラ100のリビルト要求受付送信部124からリビルト要求を受信して、当該要求に応じた電池をリビルトする。そして、リビルトされた電池であるリビルト電池は、リビルト電池発送部308によりディーラ100に発送され受入部125により受け入れられる。
2.車両用電池診断システム1の制御フロー
2-1.事前判定処理
 次に、車両用電池診断システム1の制御フローについて、まず、図4に示す事前判定処理を説明する。事前判定処理では、図4に示すステップS1において、ディーラ100の情報取得部101により、車両10の車両情報、電池11の使用履歴情報及び電池11の電池特性として電圧を取得する。取得した情報は、サーバ200の情報積算部201に格納する。
 その後、ステップS2において、更新要否判定部107により、情報取得部101で取得した情報が、第1の更新基準を満たすか否かを判定する。上記取得情報が第1の更新基準を満たすと判定された場合、すなわち、上記取得情報がサーバ200の学習済みモデル記憶部203に記憶された最新の学習済みモデルにおける未学習領域L1に属する情報であると判定された場合は、ステップS2のYesに進み、ステップS3において関連付け処理を行うとの判定をして事前判定処理を終了する。
 一方、ステップS2において、ディーラ100の更新要否判定部107により、情報取得部101で取得した情報が、第1の更新基準を満たさないと判定された場合は、ステップS2のNoに進み、ステップS4において、情報取得部101で取得した情報が、上述の第2~4の更新基準のいずれか一つを満たすか否かを判定する。上記取得情報が第2~4の更新基準のいずれか一つを満たすと判定された場合は、ステップS4のYesに進み、上述のステップS3において関連付け処理を行うとの判定をして事前判定処理を終了する。
 また、ステップS4において、上記取得情報が第2~4の更新基準のいずれも満たさないと判定された場合は、ステップS4のNoに進む。そして、ステップS5において、ディーラ100の保管要否判定部108により、上述のリビルト用保管基準を満たすか否かを判定する。リビルト用保管基準を満たすと判定された場合は、ステップS5のYesに進み、上述のステップS3において関連付け処理を行うとの判定をして事前判定処理を終了する。
 一方、ステップS5において、リビルト用保管基準を満たさないと判定された場合は、ステップS5のNoに進み、ステップS6において廃棄又はリサイクル処理を行うと判定し事前判定処理を終了する。
2-2.事前判定後処理
 次に、車両用電池診断システム1の制御フローにおける事前判定後処理について説明する。図5に示すように、事前判定後処理は、ステップS7~S8、ステップS9及びステップS10の並列処理を行う。第1の並列処理であるステップS7では、上述のステップS3において関連付け処理を行うと判定した電池11を車両から取り外した後、後述する関連付け処理を行う。その後、ステップS8において集中修理店300に発送する。第2の並列処理であるステップS9では、上述のステップS6においてリサイクルを行うと判定した電池11を車両から取り外して分解等により部品を取り出し、当該部品の再利用をするリサイクル処理を行う。また、第3の並列処理であるステップS10では、上述のステップS6において廃棄を行うと判定した電池11を車両から取り外し、廃棄する。
2-3.モデル更新処理
 次に、車両用電池診断システム1の制御フローにおけるモデル更新処理について説明する。図6に示すように、モデル更新処理は、まず、ステップS11において、集中修理店300において、第1~4の更新基準のいずれかを満たす電池11をディーラ100から受け入れる。その後、ステップS12において、集中修理店300の電池診断部305により、電池11の詳細診断を行う。詳細診断の診断結果はサーバ200の情報積算部201に格納する。本実施形態1では、診断結果として電池11の劣化度を算出して余寿命を診断する。そして、ステップS13において、モデル更新部202により、当該診断結果に基づいて学習済みモデルを更新し、モデル更新処理を終了する。
2-4.在庫更新処理
 次に、車両用電池診断システム1の制御フローにおける在庫更新処理について説明する。図7に示すように、モデル更新処理は、まず、ステップS15において、集中修理店300において、リビルト用保管基準を満たす電池11をディーラ100から受け入れる。その後、ステップS16おいて、集中修理店300の電池保管部306にリビルト用在庫として保管する。そして、ステップS17において、サーバ200の在庫情報取得部204が電池保管部306から在庫情報を取得して、在庫情報を更新する。在庫目標作成部205は当該在庫情報に基づいて、在庫目標作成部205が在庫目標を作成し上述のリビルト用保管基準を更新し、在庫更新処理を終了する。
 なお、図6に示すモデル更新処理のために集中修理店300に発送された電池11についても、図4に示すステップS5のリビルト用保管基準を満たすか否かを判定してリビルト用保管基準を満たすものは、図7に示す在庫更新処理を適用して必要に応じてリビルト用在庫のために電池保管部306に保管するようにしてもよい。
 また、ステップS15において、集中修理店300に発送されたリビルト用保管基準を満たす電池11についても、余寿命診断部105による詳細な診断を行って、当該詳細な診断結果に基づいて電池11をランク付けした状態で電池保管部306に保管するようにしてもよい。
2-5.余寿命診断処理及びリビルト処理
 以下に、車両用電池診断システム1の制御フローにおける余寿命診断処理及びリビルト処理について説明する。図4に示すステップS1において、ディーラ100の情報取得部101が車両10の車両情報、電池11の使用履歴情報及び電池11の電池特性を取得した後、符号Aで示すように図8のステップS20に進む。
 そして、ステップS20において、情報取得部101が取得した上記情報に基づいて、診断可否判定部102により、電池11の診断の可否を判定する。電池11が診断可能でないと判定された場合は、ステップS20のNoに進み、当該フローを終了する。
 一方、ステップS20において、電池11が診断可能であると判定された場合は、ステップS20のYesに進む。そして、ステップS21において、学習済みモデル抽出部104により、最適な学習済みモデルを抽出する。
 その後、ステップS22において、ディーラ100の余寿命診断部105により、情報取得部101が取得した上記情報と、上記最適な学習済みモデルとに基づいて、電池11を車に搭載された状態の電池11の余寿命を診断する。そして、ステップS23において、診断結果出力部106により診断結果を図示しない表示部に出力するとともにサーバ200の情報積算部201に送信する。
 その後、ステップS24において、ディーラ100のリビルト情報要求入力部120により、ユーザからリビルト品の発注を行うか否かの判断材料となるリビルト情報の要求があるか否かを判定する。リビルト情報の要求があった場合は、ステップS24のYesに進み、ステップS25において、集中修理店300のリビルト情報作成部302によりリビルト情報を作成し、情報送信部303からディーラ100にリビルト情報を送信する。なお、リビルト情報には、リビルト品に替えて新品の電池を用いる際の納期やコストの情報も含む。そして、ディーラ100の情報受信部122でリビルト情報を受信し、情報提示部123においてユーザにリビルト情報を提示する。ユーザは、リビルト情報に含まれるリビルト電池の納期やコストなどを考慮してリビルトを行うか否か判断することができる。
 そして、ステップS26において、ディーラ100のリビルト要求受付送信部124により、ユーザからリビルトを行う旨の意向であるリビルト要求の入力があるか否かを判定する。ユーザからリビルト要求の入力があったステップS26のYesに進み、集中修理店300にリビルト要求を送信する。集中修理店300のリビルト部307においてリビルト要求を受信すると、ステップS27において、集中修理店300にて電池保管部306に保管された複数の電池からリビルト要求に応じた電池を抽出し、これをもとにリビルト電池を作成する。または、電池保管部306に保管するように判定された複数の電池を組み合わせて種々のランクのリビルト電池を予め複数作成して電池保管部306に保管しておき、当該保管されたリビルト電池からリビルト要求に適合したものを抽出してもよい。その後、ステップS28において、作成又は抽出されたリビルト電池はリビルト電池発送部308により集中修理店300からディーラ100に向けて発送される。
 そして、ディーラ100では、受入部125によりリビルト電池が受け入れられた後、ステップS29において、ディーラ100の組付け部126によりリビルト電池を用いて電池パック12を形成して車両10に組み付ける。これにより、この処理フローを終了する。
 一方、ステップS26において、ユーザからリビルト要求の入力がない場合はステップS26のNoに進み、ステップS30において、ユーザから新品電池への交換の希望があるか否かをリビルト要求受付送信部124において判定する。ユーザから新品電池への交換の希望がある場合は、ステップS30のYesに進み、ステップS31において、ディーラ100の新品発注部127により、図示しない電池メーカに新品の電池の発注を行う。ディーラ100に新品の電池が届いた後、受入部125にて受け入れて、組付け部126により新品の電池を用いて電池パック12を形成して車両10に組み付ける。これにより、この処理フローを終了する。また、ステップS30において、ユーザから新品電池への交換の希望がない場合は、ステップS30のNoに進み、ステップS32において電池11の交換をしないと判断してこの処理フローを終了する。
 また、ステップS24において、ユーザからリビルト情報の要求がない場合は、ステップS24のNoに進み、ステップS2において電池11の交換をしないと判断してこの処理フローを終了する。
 なお、本実施形態1では、ユーザからリビルト要求に応じて電池保管部306に保管された電池を用いたがこれに替えて、ユーザの車両10に当初搭載されて、集中修理店300に送信して電池11の一部を交換修理することでリビルト品としてユーザに返送することとしてもよい。
2-6.関連付け処理
 次に図4に示すステップS7における関連付け処理について図9を用いて説明する。まず、図8に示すステップS22において、ディーラ100の余寿命診断部105により、電池11を車に搭載された状態の電池11の余寿命を診断し、診断結果をサーバ200の情報積算部201に記憶した後、符号Bで示すように図9のステップS40に進む。そして、ステップS40において、ディーラ100の関連付け情報取得部109において、車両10から取り外された電池11の電池識別情報を取得する。
 そして、ステップS41において、取り外した後の電池11の電池電圧を直接測定して直接電池特性として取得する。その後、ステップS42において、電池11を車両10から取り外してから電池電圧の測定までの時間経過に伴う直接電池特性としての電池電圧の変化を考慮するため、当該時間経過に応じて直接電池特性としての電池電圧の補正を行う。なお、当該時間経過が所定の基準値よりも短い場合は、当該時間経過に伴う電池電圧の変化は無視して当該ステップS42を実施しないこととしてもよい。
 その後、ステップS43において、取り外し前と取り外し後又は補正後の電池電圧を比較し、両者が一致しているか否かを判定する。両者が一致していると判定された場合は、ステップS43のYesに進み、ステップS44において、車両10から取り外す前に取得した情報が取り外し後の電池11の情報に一致するものであるとの関連付けをし、当該フローを終了する。
 一方、ステップS43において、取り外し前と取り外し後又は補正後の電池電圧が一致していないと判定された場合は、車両10から取り外す前に取得した情報が取り外し後の電池11の情報に一致しないとして両者を関連付けせずにステップS41に戻り、再度取り外し後の電池電圧を取得し、ステップS42において取り外し後の電池電圧の補正を行う。そして、ステップS43において、当該取り外し後の補正済み電池電圧と、前回比較した電池とは別の電池11における取り外し前の電池電圧とを比較し、両者が一致しているか否かを判定する。当該比較結果に基づいて、上述の通りステップS44又は再度ステップS41以降を行う。
 なお、本実施形態では、ステップS7における関連付け処理は、ディーラ100において行うこととしたが、これに限らず、電池11をディーラ100から集中修理店300に発送した後、集中修理店300において行うようにしてもよい。
 次に、本実施形態1の車両用電池診断システム1における作用効果について、詳述する。本実施形態1の車両用電池診断システム1では、車両10に搭載された電池11の余寿命を、少なくとも電池11が搭載された車両10の情報と電池使用履歴情報の情報と、予め作成された学習済みモデルとに基づいて診断する。これにより、電池11の余寿命を高精度に短時間で診断することができる。
 また、本実施形態1では、電池11について、余寿命の診断の可否を判定する診断可否判定部102を備え、余寿命診断部105は、診断可否判定部102により診断可と判定された電池11の余寿命を診断する。これにより、過度に劣化した電池や破損した電池について電池11の余寿命の診断を行わないようにすることができ、演算処理の効率を向上できる。
 また、本実施形態1では、学習済みモデル取得部103は、予め作成された複数の学習済みモデルを取得する。そして、情報取得部101が取得した情報に基づいて、学習済みモデル取得部103が取得した複数の学習済みモデルから少なくとも一つを抽出する学習済みモデル抽出部104を備える。さらに、余寿命診断部105は学習済みモデルとして学習済みモデル抽出部104が抽出した学習済みモデルを用いる。これにより、余寿命診断部105は、情報取得部101が取得した情報に応じた最適に学習済みモデルに基づいて余寿命の診断を行うことができるため、診断精度の向上が図られる。
 また、本実施形態1では、情報取得部101が取得した情報に基づいて、学習済みモデルを更新するモデル更新部202を備える。これにより、電池11の劣化の傾向が変化した場合でもこれに合わせて学習済みモデルが更新されるため、より高精度に余寿命の診断を行うことができる。
 また、本実施形態1では、電池11が学習済みモデルの更新に必要か否かを判定する更新要否判定部107を備える。これにより、更新に必要な電池11のみ詳細な診断を行うようにすることでき、演算処理の効率を向上できる。
 また、本実施形態1では、更新要否判定部107は、上記情報取得部が取得した情報が、学習済みモデルにおける未学習領域に属する情報であるとき、学習済みモデルにおける学習領域に属する情報であって、最新の上記モデル更新から所定期間内の情報から算出されるデータ中心と、上記学習領域における全情報から算出されるデータ中心とのデータ間距離が基準値以上であるとき、学習済みモデルにおける学習領域に属する情報であって、最新の上記モデル更新から所定期間内の情報から算出されるデータ歪みと、上記学習領域における全情報から算出されるデータ歪みとの差分が基準値以上であるとき、及び、学習済みモデルにおける学習領域に属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ密度と、上記学習領域における全情報から算出されるデータ密度との差分が基準値以上であるとき、の少なくとも一つを満たすとき、上記学習済みモデルの更新が必要であると判定する。これにより、学習済みモデルの更新に必要な電池11の抽出を最適化することができ、余寿命の診断の高精度化を一層図ることができる。
 また、本実施形態1では、電池11が電池11のリビルト用在庫に保管すべきか否かを判定する保管要否判定部108を備える。これにより、リビルト用保管された電池に余剰が発生することを抑制することができる。
 また、本実施形態1では、保管要否判定部108は、リビルト用在庫として保管された電池の在庫情報に応じて算出された在庫目標に基づいて、電池11がリビルトに必要か否かを判定する。これにより、リビルト用在庫に不足する電池特性を有する電池を効率的に取得して保管できるとともに、余剰の在庫を抱えることを抑制でき在庫管理の最適化を図ることができる。
 さらに、本実施形態1では、集中修理店300における電池保管部306に保管された電池は、電池11の診断結果に基づいてランク付けされており、在庫情報はランクごとの電池数を含む。そして、リビルト用在庫に保管すべきか否かを判定する基準であるリビルト用保管基準もランクごとの電池数を規定するものとしており、換言すると、リビルト用保管基準は、電池保管部306における在庫状況と電池11の診断結果とに基づいて規定されている。その結果、電池11のランクも考慮して電池の在庫管理を行うことができ、在庫管理の最適化を一層図ることができる。
 また、本実施形態1では、情報取得部101は、上記情報として電池11の電池特性をさらに取得する。これにより、電池特性を考慮して余寿命の診断を行うことができるため、診断精度の向上を一層図ることができる。
 また、本実施形態1では、情報取得部101が車両10に搭載された状態の電池11から取得した電池特性と、電池11を車両10から取り外して直接測定して取得した直接電池特性とを比較して、情報取得部101が取得した情報と電池11の電池識別情報とを関連付けする関連付け情報取得部109をさらに有する。これにより、電池11を物理的に特定することが難しい車両10に搭載された状態で取得した情報が、当該電池11の情報であることを保証することができ、電池の取り違えを防止して診断結果の信頼性を向上することができる。
 また、本実施形態1では、関連付け情報取得部109は、直接電池特性として、電池11を直接測定して取得した電池特性を、電池11を車両10から取り外した時から直接測定するまでの時間経過に基づいて補正したもの用いる。これにより、車両10から取り外した時から時間が経過してから取得した電池特性を利用する場合でも、関連付けの精度を向上することができ、電池の取り違えを防止して診断結果の信頼性を向上することができる。
 以上のごとく、本実施形態1によれば、車両10に搭載された電池11の余寿命を高精度に診断可能な車両用電池診断システム1を提供することができる。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
 本開示の特徴を以下の通り示す。
[項1]
 車両(10)に搭載された電池の余寿命を診断するための車両用電池診断システム(1)であって、
 少なくとも上記車両の車両情報及び上記電池の使用履歴情報を取得する情報取得部(101)と、
 少なくとも上記電池が搭載された上記車両の車両情報と上記電池の使用履歴情報とを説明変数とするとともに上記電池の余寿命を目的変数として予め作成された学習済みモデルを取得する学習済みモデル取得部(103)と、
 上記情報取得部が取得した上記車両情報及び上記使用履歴情報と上記学習済みモデルとに基づいて、上記電池の余寿命を診断する余寿命診断部(105)と、
 上記余寿命診断部の診断結果を出力する診断結果出力部(106)と、
を備える、車両用電池診断システム。
[項2]
 上記電池の余寿命の診断の可否を判定する診断可否判定部(102)を備え、
 上記余寿命診断部は、上記診断可否判定部により診断可と判定された上記電池の余寿命を診断する、上記項1に記載の車両用電池診断システム。
[項3]
 上記学習済みモデル取得部は、予め作成された複数の上記学習済みモデルを取得し、
 上記情報取得部が取得した情報に基づいて、上記学習済みモデル取得部が取得した複数の上記学習済みモデルから少なくとも一つを抽出する学習済みモデル抽出部(104)を備え、
 上記余寿命診断部は上記学習済みモデルとして上記学習済みモデル抽出部が抽出した上記学習済みモデルを用いる、上記項1又は2に記載の車両用電池診断システム。
[項4]
 上記情報取得部が取得した情報に基づいて、上記学習済みモデルを更新するモデル更新部(202)を備える、請求項1~3のいずれか一項に記載の車両用電池診断システム。
[項5]
 上記電池が上記学習済みモデルの更新に必要か否かを判定する更新要否判定部(107)を備える、上記項4に記載の車両用電池診断システム。
[項6]
 上記更新要否判定部は、上記情報取得部が取得した情報が、
 上記学習済みモデルにおける未学習領域に属する情報であるとき、
 上記学習済みモデルにおける学習領域に属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ中心と、上記学習領域における全情報から算出されるデータ中心とのデータ間距離が基準値以上であるとき、
 上記学習済みモデルにおける学習領域に属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ歪みと、上記学習領域における全情報から算出されるデータ歪みとの差分が基準値以上であるとき、及び
 上記学習済みモデルにおける学習領域に属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ密度と、上記学習領域における全情報から算出されるデータ密度との差分が基準値以上であるとき、
の少なくとも一つを満たすとき、上記学習済みモデルの更新が必要であると判定する、上記項5に記載の車両用電池診断システム。
[項7]
 上記電池が電池のリビルト用在庫に保管すべきか否かを判定する保管要否判定部(108)を備える、上記項1~6のいずれか一項に記載の車両用電池診断システム。
[項8]
 上記保管要否判定部は、上記リビルト用在庫として保管された電池の在庫情報に応じて算出された在庫目標に基づいて、上記電池がリビルトに必要か否かを判定する、上記項7に記載の車両用電池診断システム。
[項9]
 上記情報取得部は、上記電池の電池特性をさらに取得する、上記項1~8のいずれか一項に記載の車両用電池診断システム。
[項10]
 上記情報取得部が上記車両に搭載された状態の上記電池から取得した上記電池特性と、当該電池を上記車両から取り外して直接測定して取得した直接電池特性とを比較して、上記情報取得部が取得した情報と上記電池の電池識別情報とを関連付けする関連付け情報取得部(109)をさらに有する、上記項9に記載の車両用電池診断システム。
[項11]
 上記関連付け情報取得部は、上記直接電池特性として、上記電池を直接測定して取得した電池特性を、上記電池を上記車両から取り外した時から直接測定するまでの時間経過に基づいて補正したもの用いる、上記項10に記載の車両用電池診断システム。
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形形態や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (11)

  1.  車両(10)に搭載された電池の余寿命を診断するための車両用電池診断システム(1)であって、
     少なくとも上記車両の車両情報及び上記電池の使用履歴情報を取得する情報取得部(101)と、
     少なくとも上記電池が搭載された上記車両の車両情報と上記電池の使用履歴情報とを説明変数とするとともに上記電池の余寿命を目的変数として予め作成された学習済みモデルを取得する学習済みモデル取得部(103)と、
     上記情報取得部が取得した上記車両情報及び上記使用履歴情報と上記学習済みモデルとに基づいて、上記電池の余寿命を診断する余寿命診断部(105)と、
     上記余寿命診断部の診断結果を出力する診断結果出力部(106)と、
    を備える、車両用電池診断システム。
  2.  上記電池の余寿命の診断の可否を判定する診断可否判定部(102)を備え、
     上記余寿命診断部は、上記診断可否判定部により診断可と判定された上記電池の余寿命を診断する、請求項1に記載の車両用電池診断システム。
  3.  上記学習済みモデル取得部は、予め作成された複数の上記学習済みモデルを取得し、
     上記情報取得部が取得した情報に基づいて、上記学習済みモデル取得部が取得した複数の上記学習済みモデルから少なくとも一つを抽出する学習済みモデル抽出部(104)を備え、
     上記余寿命診断部は上記学習済みモデルとして上記学習済みモデル抽出部が抽出した上記学習済みモデルを用いる、請求項1又は2に記載の車両用電池診断システム。
  4.  上記情報取得部が取得した情報に基づいて、上記学習済みモデルを更新するモデル更新部(202)を備える、請求項1又は2に記載の車両用電池診断システム。
  5.  上記電池が上記学習済みモデルの更新に必要か否かを判定する更新要否判定部(107)を備える、請求項4に記載の車両用電池診断システム。
  6.  上記更新要否判定部は、上記情報取得部が取得した情報が、
     上記学習済みモデルにおける未学習領域に属する情報であるとき、
     上記学習済みモデルにおける学習領域に属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ中心と、上記学習領域における全情報から算出されるデータ中心とのデータ間距離が基準値以上であるとき、
     上記学習済みモデルにおける学習領域に属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ歪みと、上記学習領域における全情報から算出されるデータ歪みとの差分が基準値以上であるとき、及び
     上記学習済みモデルにおける学習領域に属する情報であって、最新のモデル更新から所定期間内の情報から算出されるデータ密度と、上記学習領域における全情報から算出されるデータ密度との差分が基準値以上であるとき、
    の少なくとも一つを満たすとき、上記学習済みモデルの更新が必要であると判定する、請求項5に記載の車両用電池診断システム。
  7.  上記電池が電池のリビルト用在庫に保管すべきか否かを判定する保管要否判定部(108)を備える、請求項1又は2に記載の車両用電池診断システム。
  8.  上記保管要否判定部は、上記リビルト用在庫として保管された電池の在庫情報に応じて算出された在庫目標に基づいて、上記電池がリビルトに必要か否かを判定する、請求項7に記載の車両用電池診断システム。
  9.  上記情報取得部は、上記電池の電池特性をさらに取得する、請求項1又は2に記載の車両用電池診断システム。
  10.  上記情報取得部が上記車両に搭載された状態の上記電池から取得した上記電池特性と、当該電池を上記車両から取り外して直接測定して取得した直接電池特性とを比較して、上記情報取得部が取得した情報と上記電池の電池識別情報とを関連付けする関連付け情報取得部(109)をさらに有する、請求項9に記載の車両用電池診断システム。
  11.  上記関連付け情報取得部は、上記直接電池特性として、上記電池を直接測定して取得した電池特性を、上記電池を上記車両から取り外した時から直接測定するまでの時間経過に基づいて補正したもの用いる、請求項10に記載の車両用電池診断システム。
PCT/JP2023/017350 2022-05-13 2023-05-09 車両用電池診断システム WO2023219068A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024520449A JPWO2023219068A1 (ja) 2022-05-13 2023-05-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022079294 2022-05-13
JP2022-079294 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023219068A1 true WO2023219068A1 (ja) 2023-11-16

Family

ID=88730546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017350 WO2023219068A1 (ja) 2022-05-13 2023-05-09 車両用電池診断システム

Country Status (2)

Country Link
JP (1) JPWO2023219068A1 (ja)
WO (1) WO2023219068A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069693A (ja) * 2009-09-25 2011-04-07 Toyota Motor Corp 情報管理システムおよび情報管理方法
JP2022052373A (ja) * 2020-09-23 2022-04-04 株式会社Gsユアサ 情報処理装置、情報処理方法、及びコンピュータプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069693A (ja) * 2009-09-25 2011-04-07 Toyota Motor Corp 情報管理システムおよび情報管理方法
JP2022052373A (ja) * 2020-09-23 2022-04-04 株式会社Gsユアサ 情報処理装置、情報処理方法、及びコンピュータプログラム

Also Published As

Publication number Publication date
JPWO2023219068A1 (ja) 2023-11-16

Similar Documents

Publication Publication Date Title
CN111414477B (zh) 车辆故障自动诊断方法、装置以及设备
US9035791B2 (en) Data collection method and data collection system
CN104488004A (zh) 用于提供车辆维修信息的方法和系统
US20230011148A1 (en) System and method of monitoring battery
US10753981B2 (en) Battery ecosystem system and method
WO2023219068A1 (ja) 車両用電池診断システム
US11561260B2 (en) Used secondary battery module management system server, used secondary battery module management system external terminal, and used secondary battery module management system
JP7030926B1 (ja) 情報処理方法、情報処理装置及び情報処理システム
CN114399059A (zh) 信息处理方法和信息处理装置
CN113222185A (zh) 联网车队中的车辆动力传动系统分析
JP7170104B1 (ja) 情報処理方法、プログラム及び情報処理装置
JP2023020688A (ja) 情報処理方法、プログラム及び情報処理装置
JP7516469B2 (ja) 情報処理方法及び情報処理装置
US11803822B2 (en) Information management apparatus
WO2021149673A1 (ja) 判定装置、劣化判定システム、作業支援装置、劣化判定方法、及びコンピュータプログラム
JP7228635B2 (ja) 情報処理方法、プログラム及び情報処理装置
JP7231686B2 (ja) 情報処理方法及び情報処理装置
JP7249385B2 (ja) 情報処理方法、プログラム及び情報処理装置
JP2022111030A (ja) 使用済み二次電池モジュール管理システム用サーバ及び外部端末、並びに使用済み二次電池モジュール管理システム
CN117150275B (zh) 机器学习模型构建方法、电池健康度预测方法以及装置
KR102722871B1 (ko) E-모빌리티 배터리 관리 시스템 및 방법
CN117217937A (zh) 基于电池使用行为的保险定价方法、装置、设备及介质
CN117895105A (zh) 一种锂电池全寿命周期管理系统、方法及应用
Rezvanizaniani Probabilistic Based Classification Techniques for Improved Prognostics Using Time Series Data
KR20240123576A (ko) 진단 모델 관리 장치 및 이를 포함하는 배터리 진단 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024520449

Country of ref document: JP

Kind code of ref document: A