[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023218954A1 - Terminal, radio communication method, and base station - Google Patents

Terminal, radio communication method, and base station Download PDF

Info

Publication number
WO2023218954A1
WO2023218954A1 PCT/JP2023/016384 JP2023016384W WO2023218954A1 WO 2023218954 A1 WO2023218954 A1 WO 2023218954A1 JP 2023016384 W JP2023016384 W JP 2023016384W WO 2023218954 A1 WO2023218954 A1 WO 2023218954A1
Authority
WO
WIPO (PCT)
Prior art keywords
coherent
information
transmission
srs
sri
Prior art date
Application number
PCT/JP2023/016384
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023218954A1 publication Critical patent/WO2023218954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 5G+ plus
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Rel. 15 NR supports uplink (UL) Multi Input Multi Output (MIMO) transmission up to four layers.
  • MIMO Multi Input Multi Output
  • future NR supporting UL transmission with a number of layers greater than 4 is being considered to achieve higher spectral efficiency.
  • Rel. Towards 18 NR transmission of up to 6 ranks using 6 antenna ports, transmission of up to 6 or 8 ranks using 8 antenna ports, etc. are being considered.
  • SRS Sounding Reference Signal
  • one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control UL transmission using more than four antenna ports.
  • a terminal includes a receiving unit that receives information regarding restrictions on combinations of SR resources that may be specified by a Sounding Reference Signal (SRS) resource indicator (SRI) field. and, based on the information, determine the size of the SRI field in a Downlink Control Information (DCI) format that schedules the transmission of a non-codebook uplink shared channel (Physical Uplink Shared Channel (PUSCH)). and a control section.
  • SRS Sounding Reference Signal
  • SRI resource indicator
  • DCI Downlink Control Information
  • UL transmission using more than four antenna ports can be appropriately controlled.
  • FIG. 1 shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for single layer (rank 1) transmission using four antenna ports when a transform precoder is disabled in NR.
  • FIG. 2 shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for two-layer (rank 2) transmission using four antenna ports when a transform precoder is disabled in NR.
  • FIG. 3 shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for three-layer (rank 3) transmission using four antenna ports when a transform precoder is disabled in NR.
  • FIG. 4 shows Rel.
  • FIG. 16 is a diagram showing an example of a table of a precoding matrix W for 4-layer (rank 4) transmission using 4 antenna ports when a transform precoder is disabled in NR.
  • FIG. 5A shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for single layer (rank 1) transmission using two antenna ports in NR.
  • FIG. 5B shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for two-layer (rank 2) transmission using two antenna ports when transform precoding is disabled in NR.
  • FIG. 6 shows Rel. 16 is a diagram illustrating an example of the correspondence between field values of precoding information and the number of layers, and the number of layers and TPMI in NR.
  • 11A and 11B are diagrams showing an example of an antenna layout of eight antenna ports.
  • 12A to 12C are diagrams showing an example of an antenna layout of eight antenna ports for explaining coherent information in the first embodiment.
  • FIG. 13 is a diagram illustrating an example of the correspondence between SRI fields and SRS resources in Embodiment 2.2.
  • FIG. 14 is a diagram illustrating an example of the correspondence between CGI fields and designated groups in Embodiment 3.2.
  • FIG. 15 is a diagram illustrating an example of the correspondence between CGI fields and designated group IDs in Embodiment 4.4.1.
  • FIG. 16 is a diagram illustrating an example of the correspondence between CGI fields and designated group IDs in Embodiment 4.4.2.
  • FIG. 17 is a diagram illustrating an example of the correspondence between the CGI field of Embodiment 4.4.3 and the group ID corresponding to the specified group ID and SRI field.
  • FIG. 18 is a diagram illustrating an example of the correspondence between CGI fields and designated group IDs in Embodiment 4.4.2.
  • FIG. 19 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 20 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 21 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 22 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 23 is a diagram illustrating an example of a vehicle according to an embodiment.
  • a terminal (user terminal, User Equipment (UE)) transmits information (SRS) used for transmitting a measurement reference signal (for example, a Sounding Reference Signal (SRS)).
  • SRS Signal Reference Signal
  • Configuration information eg, parameters in "SRS-Config" of the RRC control element
  • the UE transmits information about one or more SRS resource sets (SRS resource set information, e.g., "SRS-ResourceSet” of an RRC control element) and information about one or more SRS resources (SRS resource At least one of the RRC control element "SRS-Resource”) may be received.
  • SRS resource set information e.g., "SRS-ResourceSet” of an RRC control element
  • SRS resource At least one of the RRC control element "SRS-Resource” may be received.
  • One SRS resource set may be associated with a predetermined number of SRS resources (a predetermined number of SRS resources may be grouped).
  • Each SRS resource may be identified by an SRS resource indicator (SRI) or an SRS resource ID (Identifier).
  • the SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and information on SRS usage.
  • SRS-ResourceSetId SRS resource set ID
  • SRS-ResourceId SRS resource set ID
  • SRS resource type SRS resource type
  • the SRS resource types include periodic SRS (Periodic SRS (P-SRS)), semi-persistent SRS (SP-SRS), and aperiodic CSI (Aperiodic SRS (A-SRS)). It may also indicate either of the following.
  • the UE may transmit the P-SRS and SP-SRS periodically (or periodically after activation), and may transmit the A-SRS based on the SRS request of the DCI.
  • the usage is, for example, beam management (beamManagement), codebook (CB), noncodebook (noncodebook (CB)), NCB)), antenna switching, etc.
  • the SRS for codebook or non-codebook applications may be used to determine a precoder for SRI-based codebook-based or non-codebook-based Physical Uplink Shared Channel (PUSCH) transmissions.
  • PUSCH Physical Uplink Shared Channel
  • the UE transmits information based on the SRI, the Transmitted Rank Indicator (TRI), and the Transmitted Precoding Matrix Indicator (TPMI). Then, a precoder (precoding matrix) for PUSCH transmission may be determined. The UE may determine the precoder for PUSCH transmission based on the SRI in case of non-codebook-based transmission.
  • TRI Transmitted Rank Indicator
  • TPMI Transmitted Precoding Matrix Indicator
  • SRS resource information includes SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmission Comb, SRS resource mapping (e.g., time and/or frequency resource location, resource offset, resource period, repetition number, SRS (number of symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, SRS spatial relationship information, etc.
  • the spatial relationship information of the SRS may indicate spatial relationship information between the predetermined reference signal and the SRS.
  • the predetermined reference signal includes a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Channel State Information Reference Signal (CSI-RS), and an SRS (for example, another SRS).
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • CSI-RS Channel State Information Reference Signal
  • SRS for example, another SRS.
  • the SS/PBCH block may be called a synchronization signal block (SSB).
  • the SRS spatial relationship information may include at least one of an SSB index, a CSI-RS resource ID, and an SRS resource ID as an index of the predetermined reference signal.
  • the SSB index, SSB resource ID, and SSB Resource Indicator may be read interchangeably.
  • the CSI-RS index, CSI-RS resource ID, and CSI-RS Resource Indicator (CRI) may be read interchangeably.
  • the SRS index, SRS resource ID, and SRI may be read interchangeably.
  • the SRS spatial relationship information may include a serving cell index, a BWP index (BWP ID), etc. corresponding to the above-mentioned predetermined reference signal.
  • the UE When the UE configures SSB or CSI-RS and spatial relationship information regarding the SRS for a certain SRS resource, the UE sets a spatial domain filter (spatial domain reception filter) for reception of the SSB or CSI-RS.
  • the same spatial domain filter (spatial domain transmission filter) may be used to transmit the SRS resource.
  • the UE may assume that the UE receive beam for SSB or CSI-RS and the UE transmit beam for SRS are the same.
  • the UE When the UE configures spatial relationship information regarding another SRS (reference SRS) and the SRS (target SRS) for a certain SRS (target SRS) resource, the UE sets a spatial domain filter for transmission of the reference SRS.
  • the target SRS resource may be transmitted using the same spatial domain filter (Spatial domain transmission filter). That is, in this case, the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
  • the UE may determine the spatial relationship of the PUSCH scheduled by the DCI based on the value of a predetermined field (e.g., SRS resource identifier (SRI) field) in the DCI (e.g., DCI format 0_1). Specifically, the UE may use the spatial relationship information (for example, "spatialRelationInfo" of the RRC information element) of the SRS resource determined based on the value of the predetermined field (for example, SRI) for PUSCH transmission.
  • a predetermined field e.g., SRS resource identifier (SRI) field
  • SRI spatialRelationInfo
  • the UE when codebook-based transmission is used for PUSCH, the UE uses an SRS resource set whose usage is a codebook, which has up to two SRS resources, configured by RRC, and uses the up to two SRS resources.
  • One of the resources may be indicated by a DCI (1-bit SRI field).
  • the PUSCH transmission beam will be specified by the SRI field.
  • the UE may determine the TPMI and the number of layers (transmission rank) for the PUSCH based on the precoding information and the number of layers field (hereinafter also referred to as the precoding information field).
  • the UE selects the above TPMI, A precoder may be selected based on the number of layers or the like.
  • the UE uses an SRS resource set with a non-codebook usage that has up to 4 SRS resources, configured by RRC, and transmits the up to 4 SRS resources.
  • SRS resource set with a non-codebook usage that has up to 4 SRS resources, configured by RRC, and transmits the up to 4 SRS resources.
  • the UE may determine the number of layers (transmission rank) for the PUSCH based on the SRI field. For example, the UE may determine that the number of SRS resources specified by the SRI field is the same as the number of layers for PUSCH. Furthermore, the UE may calculate a precoder for the SRS resource.
  • the PUSCH transmission beam is configured according to the configured CSI-RS. It may be calculated based on (measurement of) the related CSI-RS. Otherwise, the PUSCH transmission beam may be specified by the SRI.
  • the UE may be configured to use codebook-based PUSCH transmission or non-codebook-based PUSCH transmission using an upper layer parameter "txConfig" that indicates the transmission scheme.
  • the parameter may indicate a value of "codebook” or "nonCodebook”.
  • codebook-based PUSCH (codebook-based PUSCH transmission, codebook-based transmission) may mean PUSCH when "codebook" is set as the transmission scheme in the UE.
  • non-codebook-based PUSCH (non-codebook-based PUSCH transmission, non-codebook-based transmission) may mean PUSCH when "non-codebook" is configured as a transmission scheme in the UE.
  • the UE may determine the precoder for PUSCH transmission based on SRI, TRI, TPMI, etc. for codebook (CB) based transmission.
  • SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI).
  • DCI downlink control information
  • the SRI may be specified by the SRS Resource Indicator field (SRI field) of the DCI, or by the parameter "srs-ResourceIndicator” included in the RRC information element "ConfiguredGrantConfig" of the configured grant PUSCH (configured grant PUSCH). It's okay.
  • TRI and TPMI may be specified by the DCI precoding information and number of layers field.
  • the precoding information and layer number fields are also referred to as precoding information fields for simplicity.
  • the UE may report UE capability information regarding the precoder type, and the base station may set the precoder type based on the UE capability information through upper layer signaling.
  • the UE capability information may be precoder type information used by the UE in PUSCH transmission (for example, it may be represented by the RRC parameter "pusch-TransCoherence").
  • the UE performs PUSCH transmission based on the precoder type information (e.g., RRC parameter “codebookSubset”) included in the PUSCH configuration information (e.g., “PUSCH-Config” information element of RRC signaling) notified by upper layer signaling.
  • the precoder to be used may also be determined.
  • the UE may be configured with a subset of PMI specified by the TPMI by codebookSubset.
  • the precoder type is one of fully coherent (full coherent, fully coherent), partially coherent, and non-coherent, or a combination of at least two of these (for example, It may be specified by a parameter such as "fullyAndPartialAndNonCoherent” or "partialAndNonCoherent”.
  • the RRC parameter "pusch-TransCoherence” indicating the UE capability may indicate full coherent (fullCoherent), partially coherent (partialCoherent), or non-coherent (nonCoherent).
  • the RRC parameter "codebookSubset” may indicate "fullyAndPartialAndNonCoherent", “partialAndNonCoherent”, or "nonCoherent”.
  • Completely coherent means that all antenna ports used for transmission are synchronized (the phases can be matched, the phase can be controlled for each coherent antenna port, a precoder can be applied appropriately to each coherent antenna port, etc.) (may also be expressed as ).
  • Partially coherent may mean that some of the antenna ports used for transmission are synchronized, but some of the antenna ports used for transmission are not synchronized with other ports.
  • Non-coherent may mean that each antenna port used for transmission is not synchronized.
  • a UE that supports fully coherent precoder types may be assumed to support partially coherent and non-coherent precoder types.
  • a UE that supports partially coherent precoder type may be assumed to support non-coherent precoder type.
  • precoder type, coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, etc. may be read interchangeably.
  • the UE uses a TPMI index obtained from multiple precoders (which may also be called precoding matrices, codebooks, etc.) for CB-based transmissions and from a DCI (e.g., DCI format 0_1, etc.) for scheduling UL transmissions.
  • precoders which may also be called precoding matrices, codebooks, etc.
  • DCI e.g., DCI format 0_1, etc.
  • a precoding matrix corresponding to the precoding matrix may be determined.
  • FIGS. 1-5 are diagrams illustrating an example of the association between codebook subsets and TPMI indexes.
  • FIG. 1 shows Rel. Table of precoding matrix W for single layer (rank 1) transmission using 4 antenna ports when transform precoding (also called transform precoder) is disabled in 16 NR Applies to. In FIG. 1, corresponding Ws are shown in ascending order of TPMI index from left to right (the same applies to FIGS. 2-5).
  • the correspondence relationship (which may be called a table) showing the TPMI index and the corresponding W as shown in FIGS. 1-5 is also called a codebook.
  • This part of the codebook is also called a codebook subset.
  • codebookSubset is fullyAndPartialAndNonCoherent
  • the UE is notified of any TPMI from 0 to 27 for single layer transmission.
  • the codebook subset is partialAndNonCoherent
  • the UE is configured with any TPMI from 0 to 11 for single layer transmission.
  • the codebook subset is non-Coherent
  • the UE is configured with any TPMI from 0 to 3 for single layer transmission.
  • Figures 2-4 are respectively Rel. This corresponds to a table of precoding matrix W for 2-4 layer (rank 2-4) transmission using 4 antenna ports in No. 16 NR when transform precoding is disabled.
  • the TPMI that the UE is notified of for two-layer transmission is from 0 to 21 (codebook subset complete and partial and non-coherent), from 0 to 13 (codebook subset is partial and non-coherent), and from 0 to 13 (codebook subset is partial and non-coherent). ) or from 0 to 5 (codebook subset is non-coherent).
  • the TPMI that the UE is notified of for three-layer transmission is from 0 to 6 (codebook subset complete and partial and non-coherent), from 0 to 2 (codebook subset is partial and non-coherent), from 0 to 2 (codebook subset is partial and non-coherent). ) or 0 (codebook subset is non-coherent).
  • the TPMI that the UE is notified for 4-layer transmission is from 0 to 4 (codebook subset complete and partial and non-coherent), from 0 to 2 (codebook subset is partial and non-coherent), from 0 to 2 (codebook subset is partial and non-coherent). ) or 0 (codebook subset is non-coherent).
  • FIG. 5A shows Rel. This corresponds to the table of precoding matrix W for single layer (rank 1) transmission using two antenna ports in 16 NR.
  • FIG. 5B shows Rel. This corresponds to a table of precoding matrix W for 2-layer (rank 2) transmission using 2 antenna ports when transform precoding is disabled in No. 16 NR.
  • the TPMI signaled by the UE for two-port single layer transmission is from 0 to 5 (codebook subsets are complete and partial and non-coherent) or from 0 to 1 (codebook subset is non-coherent).
  • the TPMI signaled to the UE for 2-port 2-layer transmission is from 0 to 2 (codebook subsets are complete and partial and non-coherent) or 0 (codebook subset is non-coherent).
  • a precoding matrix in which only one element in each column is not 0 may be called a non-coherent codebook.
  • a precoding matrix in which a certain number of elements per column (greater than one, but not all the elements in the column) are non-zero may be called a partially coherent codebook.
  • a precoding matrix whose elements are all non-zero for each column may be called a fully coherent codebook.
  • the non-coherent codebook and the partially coherent codebook may also be called antenna selection precoders, antenna port selection precoders, etc.
  • the non-coherent codebook non-coherent precoder
  • the partially coherent codebook partially coherent precoder
  • an x-port x is an integer greater than 1 selection precoder, an x-port port selection precoder, or the like.
  • a fully coherent codebook may also be called a non-antenna selection precoder, an all-port precoder, etc.
  • RRC parameter "codebookSubset” "partialAndNonCoherent”
  • RRC parameter "codebookSubset” “fullyAndPartialAndNonCoherent”
  • non-coherent precoder a non-coherent precoder, a partially coherent precoder, and a fully coherent precoder will also be simply referred to as an NC (non-coherent) precoder, a PC (partial coherent) precoder, and an FC (full coherent) precoder, respectively. write.
  • the UE may determine the TPMI and number of layers (transmission rank) for the PUSCH based on the precoding information field of the DCI (e.g., DCI format 0_1/0_2) that schedules the PUSCH. .
  • DCI DCI format 0_1/0_2
  • the number of bits in the precoding information field is determined by the settings of enable/disable of the transform precoder for PUSCH (e.g., upper layer parameter transformPrecoder), the setting of codebook subset for PUSCH (e.g., upper Layer parameter codebookSubset), maximum layer number setting for PUSCH (e.g. upper layer parameter maxRank), uplink full power transmission setting for PUSCH (e.g. upper layer parameter ul-FullPowerTransmission), antenna for PUSCH It may be determined (or may vary) based on the number of ports, etc.
  • the settings of enable/disable of the transform precoder for PUSCH e.g., upper layer parameter transformPrecoder
  • the setting of codebook subset for PUSCH e.g., upper Layer parameter codebookSubset
  • maximum layer number setting for PUSCH e.g. upper layer parameter maxRank
  • uplink full power transmission setting for PUSCH e.g. upper layer parameter ul-FullPowerTransmission
  • FIG. 6 shows Rel. 16 is a diagram illustrating an example of the correspondence between field values of precoding information and the number of layers, and the number of layers and TPMI in NR.
  • the correspondence relationship in this example is that the transform precoder is set to disabled, the maximum rank (maxRank) is set to 2, 3, or 4, and uplink full power transmission is not set or full power mode 2 (fullpowerMode2) is set.
  • the correspondence is for, but not limited to, four antenna ports when configured or set to full power. It should be noted that those skilled in the art will naturally understand that the illustrated "bit field mapped to index" indicates field values of precoding information and the number of layers.
  • the precoding information field is 6 bits when the UE is configured with fully coherent (fullyAndPartialAndNonCoherent) codebook subset, 5 bits when partially coherent (partialAndNonCoherent) codebook subset is configured, It is 4 bits if a non-Coherent codebook subset is set.
  • the number of layers and TPMI corresponding to the value of a certain precoding information field may be the same (common) regardless of the codebook subset set in the UE.
  • the precoding information field may be 0 bits for non-codebook-based PUSCH. Also, the precoding information field may be 0 bits for a codebook-based PUSCH with one antenna port.
  • N SRS is the number of SRS resources in the SRS resource set set by the list of SRS resource sets (srs-ResourceSetToAddModList) and associated with the non-codebook usage.
  • maxMIMO-Layers indicating the maximum number of Multi Input Multi Output (MIMO) layers
  • maxMIMO-Layers is set
  • L max is determined by that parameter. Given. Otherwise, L max is given by the maximum number of layers for PUSCH supported by the UE.
  • Rel. 15/16 NR supports uplink (UL) Multi Input Multi Output (MIMO) transmission up to 4 layers.
  • MIMO Multi Input Multi Output
  • Rel. 18 NR transmission of up to 6 ranks using 6 antenna ports, transmission of up to 6 or 8 ranks using 8 antenna ports, etc. are being considered.
  • FIGS. 11A and 11B are diagrams showing an example of an antenna layout of eight antenna ports.
  • FIG. 11A shows an example in which eight antennas are arranged one-dimensionally (1D)
  • FIG. 11B shows an example in which eight antennas are arranged two-dimensionally (2D).
  • FIG. 11A corresponds to an antenna configuration having four cross-polarized antennas lined up in the horizontal direction.
  • FIG. 11B corresponds to an antenna configuration with two cross-polarized antennas aligned horizontally and vertically.
  • the illustrated numbers may indicate the numbers of antenna ports corresponding to the antennas.
  • the antenna layout is not limited to these.
  • the number of panels in which the antennas are placed, the orientation of the panels, the coherency of each panel/antenna (fully coherent, partially coherent, non-coherent, etc.), antenna alignment in a particular direction (horizontal, vertical, etc.), polarization antenna configuration. (single polarization, cross-polarization, number of polarization planes, etc.) may differ from the example of FIGS. 11A and 11B.
  • Rel. 15 and Rel. for Rel. 16 UEs it is assumed that only one beam/panel is used for UL transmission at a given time, but Rel.
  • simultaneous UL transmission of multiple beams/multiple panels for example, PUSCH transmission
  • simultaneous PUSCH transmission of multiple beams/multiple panels may correspond to PUSCH transmission with a number of layers greater than 4, or may correspond to PUSCH transmission with a number of layers equal to or less than 4.
  • precoding matrices for UL transmission using more than four antenna ports are being considered.
  • a codebook for 8-port transmission (which may also be called an 8-transmission UL codebook (8 TX UL codebook)) is being considered.
  • the present inventors came up with a method for appropriately performing UL transmission using more than four antenna ports.
  • A/B and “at least one of A and B” may be read interchangeably. Furthermore, in the present disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages upper layer parameters, fields, Information Elements (IEs), settings, etc.
  • IEs Information Elements
  • CE Medium Access Control Element
  • update command activation/deactivation command, etc.
  • the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like.
  • Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
  • MIB master information block
  • SIB system information block
  • RMSI minimum system information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
  • DCI downlink control information
  • UCI uplink control information
  • an index an identifier (ID), an indicator, a resource ID, etc.
  • ID an identifier
  • indicator an indicator
  • resource ID a resource ID
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
  • a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described.
  • SRS resource indicator SRI
  • control resource set CONtrol REsource SET (CORESET)
  • Physical Downlink Shared Channel PDSCH
  • codeword CW
  • Transport Block Transport Block
  • RS reference signal
  • antenna antenna element, layer, transmission, port, antenna port (for example, demodulation reference signal (DMRS) port),
  • Antenna port group e.g. DMRS port group
  • group e.g.
  • CDM Code Division Multiplexing
  • reference signal group reference signal group
  • CORESET group Physical Uplink Control Channel (PUCCH) group
  • PUCCH resource group resource (e.g. reference signal resource, SRS resource), resource set (e.g. reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI (UL TCI state), unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc.
  • TCI state downlink Transmission Configuration Indication state
  • DL TCI state uplink TCI
  • UL TCI state uplink TCI
  • unified TCI state common TCI state
  • QCL quasi-co-location
  • QCL assumption QCL assumption
  • spatial relationship information identifier (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably.
  • “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
  • the number of layers of PUSCH transmission in the following embodiments may be greater than 4 or may be less than or equal to 4.
  • PUSCH transmission of two CWs in the present disclosure may be performed using four or fewer layers (for example, two).
  • the maximum number of layers is not limited to four or more, and may be less than four.
  • PUSCH transmission in the following embodiments may or may not be based on the use of multiple panels (it may be applied regardless of the panel).
  • the DCI in the following embodiments may be a DCI format that schedules PUSCH (for example, DCI format 0_1/0_2).
  • one or more UE coherent assumptions (UE coherent capabilities) and one or more codebook subset settings may be applied.
  • RRC parameters such as "pusch-TransCoherence” and “codebookSubset” may be used.
  • codebookSubset For example, for 8 ports, based on noncoherent, partialcoherent, fullcoherent, “partialAndNonCoherent”, “fullyAndPartialAndNonCoherent”, etc.
  • the UE may determine the TPMI index for the 8 transmitted UL codebook.
  • new RRC parameters may be used.
  • a UE may report capability information to the network (e.g., base station) indicating that it supports full/partial/non-coherent up to a certain number of ports, and may report capability information to the network (e.g., base station) indicating that it supports full/partial/non-coherent transmission up to a certain number of ports.
  • An RRC parameter may be set to indicate that full/partial/non-coherent codebook subsets are used for.
  • information indicating which ports are coherent (or which ports are used as coherent) for the 8 ports may be reported by the UE, or may be configured for the UE. good.
  • a UE that supports partial coherence may transmit information (included in the capability information) regarding which antenna port combinations are coherent. This information may be referred to as coherent information, coherent port information, etc.
  • the coherent port information may be a bitmap of the size of the number of ports, and may mean that ports corresponding to bits that are '1' (or '0') are coherent with each other, for example.
  • the coherent port information may be information regarding a coherent group.
  • the coherent group may include X (X is an integer of 1 or more) coherent ports.
  • the information regarding a coherent group may indicate that a certain coherent group includes X ports, or may indicate the port number (port index) of each of the X coherent ports included in a certain coherent group.
  • the UE may report UE capability information regarding one or more coherent groups to the network.
  • FIGS. 12A to 12C are diagrams showing an example of an antenna layout of eight antenna ports for explaining coherent information in the first embodiment.
  • FIG. 12A is similar to FIG. 11A, but consists of coherent group 1 consisting of mutually coherent antenna numbers 0, 1, 4 and 5, and mutually coherent antenna numbers 2, 3, 6 and 7.
  • a coherent group 2 is shown. The antenna included in coherent group 1 and the antenna included in coherent group 2 are not coherent with each other.
  • the UE may transmit capability information indicating that it supports full coherence for 4 or fewer ports and partially coherent for 5 or more ports.
  • the UE may transmit at least one of a bitmap "11001100” indicating coherent group 1 and a bitmap "11001100” indicating coherent group 2 as coherent port information.
  • the UE reports a value of 4, which is the number of ports included in the first coherent group (or being included in a coherent group with port numbers 0, 1, 4, and 5) as coherent port information.
  • a value of 4 which is the number of ports included in the second coherent group (or that port numbers 2, 3, 6, and 7 are included in another coherent group), may be reported.
  • one coherent group may be further divided into multiple coherent groups.
  • classifying coherent groups like this flexible control can be expected.
  • coherent group 1 is composed of mutually coherent antenna numbers 0, 1, 4, and 5
  • coherent group 2 is composed of mutually coherent antenna numbers 2 and 6, and mutually coherent antenna numbers 3 and 6 are coherent.
  • a coherent group 3 consisting of 7 is shown.
  • coherent group 1 is made up of antenna numbers 0 and 4 that are coherent with each other
  • coherent group 2 is made up of antenna numbers 1 and 5 that are coherent with each other
  • coherent group 2 is made up of antenna numbers 2 and 6 that are coherent with each other.
  • a coherent group 3 consisting of antenna numbers 3 and 7 which are coherent with each other is shown.
  • the case where the partially coherent UE has the capability of two 4-port coherent groups, as shown in FIG. 12A will also be referred to as case 1.
  • the case in which the partially coherent UE has the capability of one 4-port coherent group and two 2-port coherent groups, as shown in FIG. 12B is also referred to as case 2.
  • the case where the partially coherent UE has the capability of four 2-port coherent groups as shown in FIG. 12C is also referred to as case 3.
  • "having the ability to support a coherent group” may be interchangeably read as "having the ability to support a coherent group", "able to utilize a coherent group", etc.
  • the 8 transmission UL codebook for PUSCH in the first embodiment may be used if at least one of the following is satisfied: - When the transform precoder for PUSCH is set to be disabled for the UE, - If the number of ports for PUSCH/SRS (for CB-based PUSCH) is greater than 4 is configured by RRC for the UE, - If more than 4 ports for PUSCH/SRS (for CB-based PUSCH) are configured/activated/specified by RRC/MAC CE/DCI for the UE.
  • how many ports' precoding matrices are used may be semi-statically set by RRC.
  • the fallback (or switching) from the use of a precoding matrix with a number of ports greater than 4 to the use of a precoding matrix with a number of ports less than or equal to 4 is performed by the MAC CE/DCI. It may also be done on a regular basis.
  • the UE may use (reference) a common 8 transmission UL codebook regardless of the antenna layout (antenna configuration). Further, the UE may use (reference) different 8 transmission UL codebooks for each antenna layout (antenna configuration).
  • the UE may report UE capability information regarding antenna layout.
  • the base station may transmit, to the UE, information that specifies/identifies/configures the 8 transmission UL codebooks used by the UE, for example, based on the UE capability information.
  • the UE may determine which 8 transmission UL codebooks to use based on the reported UE capability information and the received information specifying/identifying/setting the 8 transmission UL codebooks.
  • coherent port information UE capability information regarding antenna layout, etc.
  • antenna capability information coherent port information, UE capability information regarding antenna layout, etc.
  • the restriction on the SRI instruction in the second embodiment may be notified to the UE from a network (NW) (for example, a base station) using RRC parameters/MAC CE/DCI.
  • NW network
  • restrictions on the SRI instruction in the second embodiment include the following embodiments 2.1 and 2.2. These may be applied in combination.
  • the NW configures the UE such that the SRI indication indicates only a specific number (e.g., X1/X2/..., where X1, X2, etc. are integers) of SRS resource combinations. You may. This setting may be performed, for example, via a bitmap indicating ranks X1/X2/....
  • the NW may configure only 6/7/8 combinations of SRS resources as indicated by the SRI instruction via a bitmap of “11100000”. This may mean that the NW only sets rank 6/7/8 indications based on high UL SINR.
  • the NW may be set using the above bitmap so that the scheduled rank does not exceed a certain value (for example, 2).
  • a certain value for example, 2.
  • the NW selects a limited set of supported combinations from the full set of each X combinations. may be set in the UE.
  • the NW may configure the UE that X1/X2/... SRS resources are subject to the same restriction of Y combinations, or may set the UE to be restricted to the same Y combinations of X1/X2/... different possible combinations according to a certain rule. It may be set if there are restrictions.
  • the rule may be, for example, a rule that selects the first/last/middle combination Y1/Y2/... among the possible combinations, or a rule that selects Z combinations among the possible combinations.
  • the rule may be such that one combination is selected for each combination.
  • the NW may explicitly configure possible combinations, prohibited combinations, etc. (for example, only some of the SRS resource combinations shown in FIGS. 7-10 may be supported/configured).
  • FIG. 13 is a diagram illustrating an example of the correspondence between SRI fields and SRS resources in Embodiment 2.2.
  • the NW may configure the number of SRS resource combinations (or the number of bits of the SRI field) and the limited supported combinations from the full set of each X combinations to the UE.
  • a possible combination of SRS resources may be called a combination group.
  • the correspondence between combination groups and SRS resources may be set by upper layer signaling.
  • an upper layer index (for example, a value of 0-3) may be set for each SRS resource.
  • a list of SRS resources may be set by an upper layer.
  • One list may indicate the SRS resources included in the combination group and may correspond to one code point of the SRI.
  • Lists 1-4 may correspond to SRS resources of groups 0-3, respectively.
  • the number of 1-port SRS resources specified by the SRI field may correspond to the number of layers specified for the PUSCH.
  • Embodiment 2.1/2.2 are based on the UE regarding restrictions on X (or X1/X2/%) or restrictions on possible combinations for a specific X (or X1/X2/). May be based on competency reports.
  • the size of the SRI field can be suitably suppressed.
  • the third embodiment concerns the restriction of SRI indication for NCB PUSCH for UEs with two 4-port coherent group capabilities, like case 1.
  • Restrictions on SRI instructions in the third embodiment follow reporting of antenna capability information.
  • the UE is reporting antenna capability information corresponding to case 1.
  • Embodiment 3.1 is an embodiment in which the maximum UL rank is limited to 4 for a UE capable of 8-port transmission.
  • the DCI notified to the UE may include an indicator field (hereinafter also simply referred to as a coherent group indicator (CGI) field) (e.g., 1 bit) indicating the selected coherent group.
  • CGI coherent group indicator
  • the DCI notified to the UE may not include the CGI field.
  • the UE may assume that the first (or second) coherent group is always selected.
  • the SRI indication only needs to consider the combination of four SRS resources within the selected coherent group. Since there are 15 combinations as described above, the SRI field can be expressed with 4 bits. In other words, the DCI only needs to include a 4-bit SRI field.
  • selecting an SRS resource/coherent group may mean that the SRS resource/coherent group is used for NCB PUSCH transmission (transmission of a certain layer).
  • Embodiment 3.2 is an embodiment in which the maximum UL rank is limited to 8 for a UE capable of 8-port transmission. In this case, a CGI field is required for the DCI.
  • the CGI field may be a 1-bit field indicating "1 coherent group ( ⁇ rank 4)" or "2 coherent groups (>rank 4)".
  • the UE may always assume that the first (or second) coherent group is selected.
  • the SRI indication may determine that the combination of four SRS resources in the selected coherent group is specified by the SRI field.
  • the UE determines that the four SRS resources included in the first (or second) coherent group are fully selected and the four SRS resources included in the second (or first) coherent group are fully selected. may be determined to be specified by the SRI field.
  • Embodiment 3.2 if the DCI includes a 1-bit CGI field, it only needs to include a 4-bit SRI field.
  • the CGI field is a 2-bit field indicating “1 coherent group ( ⁇ rank 4)” or “2 coherent groups (>rank 4)” and the ID of the coherent group indicated by the SRI indication. It may be a field.
  • the UE may determine that the first or second coherent group indicated by the coherent group ID is selected.
  • the SRI indication may determine that the combination of four SRS resources in the selected coherent group is specified by the SRI field.
  • the UE shall ensure that the 4 SRS resources included in the first or second coherent group indicated (or not indicated) by the coherent group ID are fully selected. It may be determined that a combination of four SRS resources included in the second (or first) coherent group that is not indicated (or indicated) by the ID is specified by the SRI field.
  • Embodiment 3.2 if the DCI includes a 2-bit CGI field, it only needs to include a 4-bit SRI field.
  • the DCI may include a 1 or 2-bit CGI field and a ceil (C(4,1)+...+C(4,z-4)) bit SRI field.
  • the CGI field may include information indicating at least one of the number of selected coherent groups, a corresponding selected coherent group ID, one indicated group ID for the SRI field, etc. .
  • the number of coherent groups to be selected may be implicitly notified by the number of coherent group IDs to be selected.
  • the association between each SRS resource and a coherent group of UEs may be configured by the NW, or may be determined according to predefined rules.
  • the NW will associate SRS resources #0-#3 with coherent group #0, and associate SRS resources #4-#7 with coherent group Setting information indicating that it is associated with #1 may be set (sent) to the UE.
  • the NW/UE assumes that the coherent groups and SRS resources are associated in ascending order (or descending order) according to the number of coherent antenna ports in each coherent group. You can assume that.
  • the SRS resource specified by the SRI field is the existing Rel.
  • the indexes are #0 to #3, but they may also be referred to in the third embodiment when interpreting the SRI field.
  • a value obtained by adding 4 to the index value in FIGS. 7-10 may be used as the SRS resource ID.
  • SRS indices #0 to #3 in FIGS. 7 to 10 may be replaced with indices of the first to fourth SRS resources included in the selected (designated) coherent group.
  • the specified SRS resources are #4, #4, #1, with #0, #2, and #3 in FIG. 10 replaced with group #1. 6 and #7.
  • FIG. 14 is a diagram illustrating an example of the correspondence between CGI fields and designated groups in Embodiment 3.2.
  • the SRI field indicates SRS resources of group #0.
  • the size of the SRI field of the DCI format for the UE can be appropriately determined in accordance with the antenna capability of the UE.
  • the fourth embodiment concerns the restriction of SRI indication for NCB PUSCH for a UE with two 4-port coherent group capabilities, such as case 3.
  • Restrictions on SRI instructions in the fourth embodiment follow reports of antenna capability information.
  • the UE is reporting antenna capability information corresponding to case 3.
  • the maximum UL rank is limited to Z (Z is an integer) for a UE capable of 8-port transmission.
  • Embodiment 4.1 is a case where Z ⁇ 2.
  • the DCI notified to the UE may include a CGI field (eg, 2 bits) indicating one of four groups.
  • the SRI field can be represented by 1 bit.
  • the DCI notified to the UE may not include the CGI field.
  • the UE may assume that the first (or second or third or fourth) coherent group is always selected.
  • the SRI indication only needs to consider the combination of two SRS resources within the selected coherent group.
  • the SRI field can be represented by 1 bit.
  • Embodiment 4.2 is a case where Z ⁇ 4.
  • the CGI field may be a 1-bit field indicating "1 coherent group ( ⁇ rank 2)" or "2 coherent groups (>rank 2)".
  • Coherent group IDs may not be specified, as the UE always assumes that coherent group IDs according to ascending or descending order are specified.
  • the UE may always assume that e.g. the first coherent group is selected.
  • the SRI indication may determine that the combination of two SRS resources in the selected coherent group is specified by the SRI field.
  • the UE may, for example, select two SRS resources included in the first coherent group completely, and a combination of two SRS resources included in the second coherent group is specified by the SRI field. You may judge that.
  • the CGI field includes the number of coherent groups “1 coherent group ( ⁇ rank 4)” or “2 coherent groups (>rank 4)” and the ID of the selected coherent group. It may also be a field that indicates.
  • the ID of the coherent group indicated by the SRI instruction is determined based on a predetermined rule, and therefore does not need to be notified.
  • the rules, SRI instructions, etc. may be similar to Embodiment 3.1.
  • the CGI field includes the number of coherent groups “1 coherent group ( ⁇ rank 4)” or “2 coherent groups (>rank 4)”, the ID of the selected coherent group, and the SRI. It may also be a field indicating the ID of the coherent group indicated by the instruction. Regarding the SRI instruction, it may be similar to Embodiment 3.2.
  • Embodiment 4.3 is a case where Z ⁇ 6.
  • Embodiment 4.2 may be the same as Embodiment 4.2 except that 1, 2, or 3 can be specified as the number of coherent groups, so duplicate explanation will not be repeated (that is, Embodiment 4.2.1-4. There are embodiments 4.3.1-4.3.3 similar to 2.3).
  • Embodiment 4.4 is a case where Z ⁇ 8.
  • Embodiment 4.2 may be the same as Embodiment 4.2 except that 1, 2, 3, or 4 can be specified as the number of coherent groups, so duplicate explanation will not be repeated (that is, Embodiment 4.2.1- There are embodiments 4.4.1-4.4.3 similar to 4.2.3).
  • the UE may determine at least one of the number of coherent groups, the coherent group ID to be selected, the coherent group ID corresponding to the SRI field, etc., based on the CGI field. good.
  • the SRI field may be able to specify two SRS resources in the corresponding coherent group ID.
  • the combinations of coherent group IDs that are allowed may be limited based on the NW settings, UE capabilities, etc. Such restrictions are also applicable to the third embodiment.
  • FIG. 15 is a diagram illustrating an example of the correspondence between CGI fields and specified group IDs in Embodiment 4.4.1.
  • the SRI field may indicate, for example, the SRS resource of the minimum/maximum group ID.
  • FIG. 16 is a diagram illustrating an example of the correspondence between CGI fields and specified group IDs in Embodiment 4.4.2.
  • the number of bits in the CGI field is relatively large because there are no restrictions on the combinations of coherent group IDs that are allowed.
  • FIG. 17 is a diagram showing an example of the correspondence between the CGI field of Embodiment 4.4.3 and the group ID corresponding to the specified group ID and SRI field.
  • the allowed combinations of coherent group IDs are limited so that the CGI field is 4 bits.
  • FIG. 18 is a diagram illustrating an example of the correspondence between CGI fields and specified group IDs in Embodiment 4.4.2.
  • the permissible combinations of coherent group IDs are limited so that the CGI field is 3 bits.
  • the size of the SRI field of the DCI format for the UE can be appropriately determined in accordance with the antenna capability of the UE.
  • the fifth embodiment relates to the restriction of SRI indication for NCB PUSCH for UEs with 4-port coherent group and 2-port coherent group capabilities, such as case 2.
  • Restrictions on SRI instructions in the fifth embodiment follow reports of antenna capability information.
  • the UE is reporting antenna capability information corresponding to case 2.
  • Embodiment 5.1 is a case where Z ⁇ 2.
  • the DCI notified to the UE may include a CGI field (eg, 2 bits) indicating one of three groups.
  • the SRI indication only needs to consider combinations of two or four SRS resources within the selected coherent group.
  • the DCI notified to the UE may not include the CGI field.
  • the UE may assume that a particular coherent group with 2 or 4 coherent ports is always selected.
  • the SRI indication only needs to consider combinations of two or four SRS resources within the selected coherent group.
  • Embodiment 5.2 is a case where Z ⁇ 4.
  • the CGI field may be a field indicating a coherent group having four coherent ports.
  • the CGI field may be a field indicating "1 coherent group” or "2 coherent groups” from a group with two coherent ports.
  • the CGI field may not be included in the DCI, the UE may always assume a coherent group with either four coherent ports, or a coherent group following ascending or descending order. It may always be assumed that the ID is selected.
  • Embodiment 5.3 is a case where Z ⁇ 6.
  • a coherent group ID selected from (or a coherent group ID specified in the SRI indication field) may be indicated.
  • an SRI indicates a combination of two or four SRS resources within a directed coherent group.
  • Embodiment 5.4 is a case where Z ⁇ 8.
  • an SRI indicates a combination of two or four SRS resources within a directed coherent group.
  • the UE may determine at least one of the number of coherent groups, the coherent group ID to be selected, the coherent group ID corresponding to the SRI field, etc., based on the CGI field. good.
  • the SRI field may be able to specify two or four SRS resources in the corresponding coherent group ID.
  • the combinations of coherent group IDs that are allowed may be limited based on the NW settings, UE capabilities, etc.
  • the size of the SRI field of the DCI format for the UE can be appropriately determined in accordance with the antenna capability of the UE.
  • the number "8" in the present disclosure may be read as any number greater than 4 (for example, 6, 10, 12, 16, ...), or any number less than or equal to 4 (for example, 1, 2, 3, and 4). Moreover, when this reading is performed, the arbitrary number based on 8 in the above-mentioned embodiment may be read as appropriate. Those skilled in the art will naturally understand that this replacement is included in the present disclosure. For example, when “8" is read as "6", an 8-port i-layer PC precoder is constructed by inserting 4 (or 6) rows of zero elements into the existing 4 (or 2) port PC/FC precoder. may be read as a 6-port i-layer PC precoder configured by inserting 2 (or 4) rows of zero elements.
  • the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , the capability may be for each frequency range (for example, FR1, FR2, FR3, FR4, FR5), or the capability may be for each subcarrier interval.
  • the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex).
  • the capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
  • the UE is configured with specific information related to the embodiment described above by upper layer signaling.
  • the specific information may include configuration information for a PUSCH with more than four antenna ports, information indicating that the precoder determination/selection/judgment method of at least one embodiment described above is used, a specific release (e.g. It may be any RRC parameter for Rel.18).
  • the UE may switch the 8-port PC precoder to be used based on the specific information received.
  • the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
  • a receiving unit that receives information regarding SR resource combination restrictions that may be specified by a Sounding Reference Signal (SRS) Resource Indicator (SRI) field; Control for determining the size of the SRI field in a Downlink Control Information (DCI) format that schedules a Physical Uplink Shared Channel (PUSCH) transmission of a non-codebook based on the information.
  • SRS Sounding Reference Signal
  • SRI Resource Indicator
  • DCI Downlink Control Information
  • PUSCH Physical Uplink Shared Channel
  • wireless communication system The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 19 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • RATs Radio Access Technologies
  • MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)).
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
  • the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
  • TDD time division duplex
  • FDD frequency division duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication).
  • wire for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a wireless access method may also be called a waveform.
  • other wireless access methods for example, other single carrier transmission methods, other multicarrier transmission methods
  • the UL and DL radio access methods may be used as the UL and DL radio access methods.
  • the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH downlink control channel
  • uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH physical uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, upper layer control information, etc. may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted via the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • PDCCH candidates PDCCH candidates
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • the PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted.
  • CSI channel state information
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • UCI Uplink Control Information including at least one of SR
  • a random access preamble for establishing a connection with a cell may be transmitted by PRACH.
  • downlinks, uplinks, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical” at the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation).
  • Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS).
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
  • DMRS Downlink Reference Signal
  • UL-RS uplink reference signals
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signals
  • UE-specific reference signal user terminal-specific reference signal
  • FIG. 20 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • the base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like.
  • the control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120.
  • the control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123.
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212.
  • the transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
  • the transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 1211 and an RF section 122.
  • the reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmitting/receiving unit 120 performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted.
  • a baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
  • IFFT Inverse Fast Fourier Transform
  • the transmitting/receiving unit 120 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
  • the transmitting/receiving section 120 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmitting/receiving unit 120 may perform measurements regarding the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured.
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit information regarding restrictions on combinations of SR resources that can be specified by a Sounding Reference Signal (SRS) resource indicator (SRI) field. Based on the restriction, the control unit 110 sets the SRI field in the Downlink Control Information (DCI) format that schedules the transmission of the non-codebook on the Physical Uplink Shared Channel (PUSCH). You may decide on the size.
  • SRS Sounding Reference Signal
  • SRI resource indicator
  • FIG. 21 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
  • the transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223.
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212.
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
  • the transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section.
  • the transmitting section may include a transmitting processing section 2211 and an RF section 222.
  • the reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
  • the transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing e.g. RLC retransmission control
  • MAC layer processing e.g. , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
  • DFT processing may be based on the settings of transform precoding.
  • the transmitting/receiving unit 220 transmits the above processing in order to transmit the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
  • the transmitting/receiving unit 220 may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
  • the transmitting/receiving unit 220 may perform measurements regarding the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement results may be output to the control unit 210.
  • the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the transmitting/receiving unit 220 may receive information regarding restrictions on combinations of SR resources that can be specified by a Sounding Reference Signal (SRS) resource indicator (SRI) field. Based on the information, the control unit 210 configures the SRI field in a Downlink Control Information (DCI) format that schedules transmission of a non-codebook on a Physical Uplink Shared Channel (PUSCH). You can also judge the size.
  • SRS Sounding Reference Signal
  • SRI Sounding Reference Signal
  • DCI Downlink Control Information
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 22 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be implemented using one or more chips.
  • Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • channel, symbol and signal may be interchanged.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI TTI in 3GPP Rel. 8-12
  • normal TTI long TTI
  • normal subframe normal subframe
  • long subframe slot
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
  • PRB Physical RB
  • SCG sub-carrier group
  • REG resource element group
  • PRB pair an RB. They may also be called pairs.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer.
  • Information, signals, etc. may be input and output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of prescribed information is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
  • the determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology such as infrared, microwave, etc.
  • Network may refer to devices (eg, base stations) included in the network.
  • precoding "precoding weight”
  • QCL quadsi-co-location
  • TCI state "Transmission Configuration Indication state
  • space space
  • spatial relation "spatial domain filter”
  • transmission power "phase rotation”
  • antenna port "antenna port group”
  • layer "number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable.
  • Base Station BS
  • Wireless base station Wireless base station
  • Fixed station NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • cell “sector,” “cell group,” “carrier,” “component carrier,” and the like
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)).
  • a base station subsystem e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)
  • RRH Remote Radio Communication services
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • a transmitting device may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon.
  • the mobile object may be a mobile object that autonomously travels based on a travel command.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • a vehicle for example, a car, an airplane, etc.
  • an unmanned moving object for example, a drone, a self-driving car, etc.
  • a robot manned or unmanned.
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 23 is a diagram illustrating an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
  • the drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49.
  • the electronic control section 49 may be called an electronic control unit (ECU).
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52.
  • air pressure signals of the front wheels 46/rear wheels 47 a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor.
  • 56 a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
  • the information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • LiDAR Light Detection and Ranging
  • GNSS Global Navigation Satellite System
  • HD High Definition
  • maps for example, autonomous vehicle (AV) maps, etc.
  • gyro systems e.g.,
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40.
  • Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the base station 10, user terminal 20, etc. described above.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
  • the communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the functions that the base station 10 described above has.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to inter-terminal communication (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be replaced with sidelink channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the functions that the user terminal 20 described above has.
  • the operations performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is an integer or decimal number, for example
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New Radio Access
  • FX Future Generation Radio Access
  • G Global System for Mobile Communications
  • CDMA2000 Ultra Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods.
  • the present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions. For example, “judgment” can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be “determining.”
  • judgment (decision) includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be “determining”, such as accessing data in memory (eg, accessing data in memory).
  • judgment is considered to mean “judging” resolving, selecting, choosing, establishing, comparing, etc. Good too.
  • judgment (decision) may be considered to be “judgment (decision)” of some action.
  • the "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements.
  • the coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • microwave when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • the i-th (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest” can be interpreted as “the i-th highest”). may be read interchangeably).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention properly controls UL transmissions with more than 4 antenna ports. A terminal according to an aspect of the present disclosure comprises: a reception unit that receives information regarding limits on combinations of SR resources that can be designated by means of a sounding reference signal (SRS) resource indicator (SRI) field; and a control unit that determines the size of the SRI field in downlink control information (DCI) format for scheduling non-codebook physical uplink shared channel (PUSCH) transmission on the basis of the information.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to a terminal, a wireless communication method, and a base station in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates, lower delays, etc. (Non-Patent Document 1). Additionally, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Releases (Rel.) 8 and 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (for example, also referred to as 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 or later) are also being considered. .
 Rel.15 NRでは、4レイヤまでの上りリンク(Uplink(UL))Multi Input Multi Output(MIMO)送信がサポートされる。将来のNRについて、より高いスペクトル効率を実現するために、4より大きいレイヤ数のUL送信をサポートすることが検討されている。例えば、Rel.18 NRに向けて、6アンテナポートを用いた最大6ランク送信、8アンテナポートを用いた最大6又は8ランク送信などが検討されている。 Rel. 15 NR supports uplink (UL) Multi Input Multi Output (MIMO) transmission up to four layers. For future NR, supporting UL transmission with a number of layers greater than 4 is being considered to achieve higher spectral efficiency. For example, Rel. Towards 18 NR, transmission of up to 6 ranks using 6 antenna ports, transmission of up to 6 or 8 ranks using 8 antenna ports, etc. are being considered.
 8レイヤまでの8ポート送信のノンコードブック上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信について、ノンコードブックのための8個の1ポートサウンディング参照信号(Sounding Reference Signal(SRS))リソースが設定されるケースにおいては、当該PUSCHをスケジューリングする下りリンク制御情報(Downlink Control Information(DCI))フォーマットに含まれるSRSリソース識別子(SRS Resource Indicator(SRI))フィールドのサイズは、8ビットとなる。 For non-codebook Physical Uplink Shared Channel (PUSCH) transmission of 8-port transmission up to 8 layers, eight 1-port Sounding Reference Signal (SRS) resources for non-codebook In the case where the PUSCH is set, the size of the SRS Resource Indicator (SRI) field included in the Downlink Control Information (DCI) format for scheduling the PUSCH is 8 bits.
 しかしながら、常に8つのSRSリソースを柔軟に指示することは、ノンコードブックPUSCHについてのSRIフィールドのサイズが通信オーバーヘッドとなる。DCIのサイズを適切に調整(制御)できることが好ましい。そうでなければ、通信スループットの増大が抑制されるおそれがある。 However, flexibly indicating eight SRS resources at all times results in communication overhead due to the size of the SRI field for non-codebook PUSCH. It is preferable to be able to appropriately adjust (control) the size of the DCI. Otherwise, the increase in communication throughput may be suppressed.
 そこで、本開示は、4より多いアンテナポートを用いるUL送信を適切に制御できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control UL transmission using more than four antenna ports.
 本開示の一態様に係る端末は、サウンディング参照信号(Sounding Reference Signal(SRS))リソースインディケーター(SRS Resource Indicator(SRI))フィールドによって指定され得るSRリソースの組み合わせの制限に関する情報を受信する受信部と、前記情報に基づいて、ノンコードブックの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信をスケジュールする下りリンク制御情報(Downlink Control Information(DCI))フォーマットにおける前記SRIフィールドのサイズを判断する制御部と、を有する。 A terminal according to an aspect of the present disclosure includes a receiving unit that receives information regarding restrictions on combinations of SR resources that may be specified by a Sounding Reference Signal (SRS) resource indicator (SRI) field. and, based on the information, determine the size of the SRI field in a Downlink Control Information (DCI) format that schedules the transmission of a non-codebook uplink shared channel (Physical Uplink Shared Channel (PUSCH)). and a control section.
 本開示の一態様によれば、4より多いアンテナポートを用いるUL送信を適切に制御できる。 According to one aspect of the present disclosure, UL transmission using more than four antenna ports can be appropriately controlled.
図1は、Rel.16 NRにおける、トランスフォームプリコーダが無効な場合の4アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルの一例を示す図である。FIG. 1 shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for single layer (rank 1) transmission using four antenna ports when a transform precoder is disabled in NR. 図2は、Rel.16 NRにおける、トランスフォームプリコーダが無効な場合の4アンテナポートを用いた2レイヤ(ランク2)送信用のプリコーディング行列Wのテーブルの一例を示す図である。FIG. 2 shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for two-layer (rank 2) transmission using four antenna ports when a transform precoder is disabled in NR. 図3は、Rel.16 NRにおける、トランスフォームプリコーダが無効な場合の4アンテナポートを用いた3レイヤ(ランク3)送信用のプリコーディング行列Wのテーブルの一例を示す図である。FIG. 3 shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for three-layer (rank 3) transmission using four antenna ports when a transform precoder is disabled in NR. 図4は、Rel.16 NRにおける、トランスフォームプリコーダが無効な場合の4アンテナポートを用いた4レイヤ(ランク4)送信用のプリコーディング行列Wのテーブルの一例を示す図である。FIG. 4 shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for 4-layer (rank 4) transmission using 4 antenna ports when a transform precoder is disabled in NR. 図5Aは、Rel.16 NRにおける、2アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルの一例を示す図である。図5Bは、Rel.16 NRにおける、トランスフォームプリコーディングが無効な場合の2アンテナポートを用いた2レイヤ(ランク2)送信用のプリコーディング行列Wのテーブルの一例を示す図である。FIG. 5A shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for single layer (rank 1) transmission using two antenna ports in NR. FIG. 5B shows Rel. 16 is a diagram showing an example of a table of a precoding matrix W for two-layer (rank 2) transmission using two antenna ports when transform precoding is disabled in NR. 図6は、Rel.16 NRにおける、プリコーディング情報及びレイヤ数のフィールド値と、レイヤ数及びTPMIとの対応関係の一例を示す図である。FIG. 6 shows Rel. 16 is a diagram illustrating an example of the correspondence between field values of precoding information and the number of layers, and the number of layers and TPMI in NR. 図7は、Lmax=1の場合のSRIフィールドインデックスと、1つ以上のSRIと、の関連付けの一例を示す図である。FIG. 7 is a diagram illustrating an example of association between an SRI field index and one or more SRIs when L max =1. 図8は、Lmax=2の場合のSRIフィールドインデックスと、1つ以上のSRIと、の関連付けの一例を示す図である。FIG. 8 is a diagram illustrating an example of the association between an SRI field index and one or more SRIs when L max =2. 図9は、Lmax=3の場合のSRIフィールドインデックスと、1つ以上のSRIと、の関連付けの一例を示す図である。FIG. 9 is a diagram illustrating an example of association between an SRI field index and one or more SRIs when L max =3. 図10は、Lmax=4の場合のSRIフィールドインデックスと、1つ以上のSRIと、の関連付けの一例を示す図である。FIG. 10 is a diagram illustrating an example of association between an SRI field index and one or more SRIs when L max =4. 図11A及び11Bは、8アンテナポートのアンテナレイアウトの一例を示す図である。11A and 11B are diagrams showing an example of an antenna layout of eight antenna ports. 図12A-12Cは、第1の実施形態のコヒーレント情報を説明するための、8アンテナポートのアンテナレイアウトの一例を示す図である。12A to 12C are diagrams showing an example of an antenna layout of eight antenna ports for explaining coherent information in the first embodiment. 図13は、実施形態2.2におけるSRIフィールドとSRSリソースの対応関係の一例を示す図である。FIG. 13 is a diagram illustrating an example of the correspondence between SRI fields and SRS resources in Embodiment 2.2. 図14は、実施形態3.2のCGIフィールドと、指定されるグループとの対応関係の一例を示す図である。FIG. 14 is a diagram illustrating an example of the correspondence between CGI fields and designated groups in Embodiment 3.2. 図15は、実施形態4.4.1のCGIフィールドと、指定されるグループIDとの対応関係の一例を示す図である。FIG. 15 is a diagram illustrating an example of the correspondence between CGI fields and designated group IDs in Embodiment 4.4.1. 図16は、実施形態4.4.2のCGIフィールドと、指定されるグループIDとの対応関係の一例を示す図である。FIG. 16 is a diagram illustrating an example of the correspondence between CGI fields and designated group IDs in Embodiment 4.4.2. 図17は、実施形態4.4.3のCGIフィールドと、指定されるグループID及びSRIフィールドに対応するグループIDとの対応関係の一例を示す図である。FIG. 17 is a diagram illustrating an example of the correspondence between the CGI field of Embodiment 4.4.3 and the group ID corresponding to the specified group ID and SRI field. 図18は、実施形態4.4.2のCGIフィールドと、指定されるグループIDとの対応関係の一例を示す図である。FIG. 18 is a diagram illustrating an example of the correspondence between CGI fields and designated group IDs in Embodiment 4.4.2. 図19は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 19 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図20は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 20 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図21は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 21 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図22は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 22 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図23は、一実施形態に係る車両の一例を示す図である。FIG. 23 is a diagram illustrating an example of a vehicle according to an embodiment.
(SRS、PUSCHの送信の制御)
 Rel.15 NRにおいて、端末(terminal、ユーザ端末(user terminal)、User Equipment(UE))は、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
(Control of SRS and PUSCH transmission)
Rel. 15 In NR, a terminal (user terminal, User Equipment (UE)) transmits information (SRS) used for transmitting a measurement reference signal (for example, a Sounding Reference Signal (SRS)). Configuration information (eg, parameters in "SRS-Config" of the RRC control element) may be received.
 具体的には、UEは、1つ又は複数のSRSリソースセットに関する情報(SRSリソースセット情報、例えば、RRC制御要素の「SRS-ResourceSet」)と、一つ又は複数のSRSリソースに関する情報(SRSリソース情報、例えば、RRC制御要素の「SRS-Resource」)との少なくとも1つを受信してもよい。 Specifically, the UE transmits information about one or more SRS resource sets (SRS resource set information, e.g., "SRS-ResourceSet" of an RRC control element) and information about one or more SRS resources (SRS resource At least one of the RRC control element "SRS-Resource") may be received.
 1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい(所定数のSRSリソースをグループ化してもよい)。各SRSリソースは、SRSリソース識別子(SRS Resource Indicator(SRI))又はSRSリソースID(Identifier)によって特定されてもよい。 One SRS resource set may be associated with a predetermined number of SRS resources (a predetermined number of SRS resources may be grouped). Each SRS resource may be identified by an SRS resource indicator (SRI) or an SRS resource ID (Identifier).
 SRSリソースセット情報は、SRSリソースセットID(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。 The SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and information on SRS usage.
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的CSI(Aperiodic SRS(A-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信し、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。 Here, the SRS resource types include periodic SRS (Periodic SRS (P-SRS)), semi-persistent SRS (SP-SRS), and aperiodic CSI (Aperiodic SRS (A-SRS)). It may also indicate either of the following. Note that the UE may transmit the P-SRS and SP-SRS periodically (or periodically after activation), and may transmit the A-SRS based on the SRS request of the DCI.
 また、用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブック(codebook(CB))、ノンコードブック(noncodebook(NCB))、アンテナスイッチングなどであってもよい。コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のプリコーダの決定に用いられてもよい。 In addition, the usage (RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse") is, for example, beam management (beamManagement), codebook (CB), noncodebook (noncodebook (CB)), NCB)), antenna switching, etc. The SRS for codebook or non-codebook applications may be used to determine a precoder for SRI-based codebook-based or non-codebook-based Physical Uplink Shared Channel (PUSCH) transmissions.
 例えば、UEは、コードブックベース送信(codebook-based transmission)の場合、SRI、送信ランクインディケーター(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列インディケーター(Transmitted Precoding Matrix Indicator(TPMI))に基づいて、PUSCH送信のためのプリコーダ(プリコーディング行列)を決定してもよい。UEは、ノンコードブックベース送信(non-codebook-based transmission)の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。 For example, in the case of codebook-based transmission, the UE transmits information based on the SRI, the Transmitted Rank Indicator (TRI), and the Transmitted Precoding Matrix Indicator (TPMI). Then, a precoder (precoding matrix) for PUSCH transmission may be determined. The UE may determine the precoder for PUSCH transmission based on the SRI in case of non-codebook-based transmission.
 SRSリソース情報は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、SRSの空間関係情報などを含んでもよい。 SRS resource information includes SRS resource ID (SRS-ResourceId), SRS port number, SRS port number, transmission Comb, SRS resource mapping (e.g., time and/or frequency resource location, resource offset, resource period, repetition number, SRS (number of symbols, SRS bandwidth, etc.), hopping related information, SRS resource type, sequence ID, SRS spatial relationship information, etc.
 SRSの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)は、所定の参照信号とSRSとの間の空間関係情報を示してもよい。当該所定の参照信号は、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))及びSRS(例えば別のSRS)の少なくとも1つであってもよい。SS/PBCHブロックは、同期信号ブロック(SSB)と呼ばれてもよい。 The spatial relationship information of the SRS (for example, "spatialRelationInfo" of the RRC information element) may indicate spatial relationship information between the predetermined reference signal and the SRS. The predetermined reference signal includes a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block, a Channel State Information Reference Signal (CSI-RS), and an SRS (for example, another SRS). The SS/PBCH block may be called a synchronization signal block (SSB).
 SRSの空間関係情報は、上記所定の参照信号のインデックスとして、SSBインデックス、CSI-RSリソースID、SRSリソースIDの少なくとも1つを含んでもよい。 The SRS spatial relationship information may include at least one of an SSB index, a CSI-RS resource ID, and an SRS resource ID as an index of the predetermined reference signal.
 なお、本開示において、SSBインデックス、SSBリソースID及びSSB Resource Indicator(SSBRI)は互いに読み替えられてもよい。また、CSI-RSインデックス、CSI-RSリソースID及びCSI-RS Resource Indicator(CRI)は互いに読み替えられてもよい。また、SRSインデックス、SRSリソースID及びSRIは互いに読み替えられてもよい。 Note that in this disclosure, the SSB index, SSB resource ID, and SSB Resource Indicator (SSBRI) may be read interchangeably. Further, the CSI-RS index, CSI-RS resource ID, and CSI-RS Resource Indicator (CRI) may be read interchangeably. Further, the SRS index, SRS resource ID, and SRI may be read interchangeably.
 SRSの空間関係情報は、上記所定の参照信号に対応するサービングセルインデックス、BWPインデックス(BWP ID)などを含んでもよい。 The SRS spatial relationship information may include a serving cell index, a BWP index (BWP ID), etc. corresponding to the above-mentioned predetermined reference signal.
 UEは、あるSRSリソースについて、SSB又はCSI-RSと、SRSとに関する空間関係情報を設定される場合には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタ(空間ドメイン受信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いて当該SRSリソースを送信してもよい。この場合、UEはSSB又はCSI-RSのUE受信ビームとSRSのUE送信ビームとが同じであると想定してもよい。 When the UE configures SSB or CSI-RS and spatial relationship information regarding the SRS for a certain SRS resource, the UE sets a spatial domain filter (spatial domain reception filter) for reception of the SSB or CSI-RS. The same spatial domain filter (spatial domain transmission filter) may be used to transmit the SRS resource. In this case, the UE may assume that the UE receive beam for SSB or CSI-RS and the UE transmit beam for SRS are the same.
 UEは、あるSRS(ターゲットSRS)リソースについて、別のSRS(参照SRS)と当該SRS(ターゲットSRS)とに関する空間関係情報を設定される場合には、当該参照SRSの送信のための空間ドメインフィルタ(空間ドメイン送信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いてターゲットSRSリソースを送信してもよい。つまり、この場合、UEは参照SRSのUE送信ビームとターゲットSRSのUE送信ビームとが同じであると想定してもよい。 When the UE configures spatial relationship information regarding another SRS (reference SRS) and the SRS (target SRS) for a certain SRS (target SRS) resource, the UE sets a spatial domain filter for transmission of the reference SRS. (Spatial domain transmission filter) The target SRS resource may be transmitted using the same spatial domain filter (Spatial domain transmission filter). That is, in this case, the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
 UEは、DCI(例えば、DCIフォーマット0_1)内の所定フィールド(例えば、SRSリソース識別子(SRI)フィールド)の値に基づいて、当該DCIによってスケジュールされるPUSCHの空間関係を決定してもよい。具体的には、UEは、当該所定フィールドの値(例えば、SRI)に基づいて決定されるSRSリソースの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)をPUSCH送信に用いてもよい。 The UE may determine the spatial relationship of the PUSCH scheduled by the DCI based on the value of a predetermined field (e.g., SRS resource identifier (SRI) field) in the DCI (e.g., DCI format 0_1). Specifically, the UE may use the spatial relationship information (for example, "spatialRelationInfo" of the RRC information element) of the SRS resource determined based on the value of the predetermined field (for example, SRI) for PUSCH transmission.
 Rel.15/16 NRでは、PUSCHに対し、コードブックベース送信を用いる場合、UEは、最大2個のSRSリソースを有する用途がコードブックのSRSリソースセットを、RRCによって設定され、当該最大2個のSRSリソースの1つをDCI(1ビットのSRIフィールド)によって指示されてもよい。PUSCHの送信ビームは、SRIフィールドによって指定されることになる。 Rel. 15/16 In NR, when codebook-based transmission is used for PUSCH, the UE uses an SRS resource set whose usage is a codebook, which has up to two SRS resources, configured by RRC, and uses the up to two SRS resources. One of the resources may be indicated by a DCI (1-bit SRI field). The PUSCH transmission beam will be specified by the SRI field.
 UEは、プリコーディング情報及びレイヤ数フィールド(以下、プリコーディング情報フィールドとも呼ぶ)に基づいて、PUSCHのためのTPMI及びレイヤ数(送信ランク)を判断してもよい。UEは、上記SRIフィールドによって指定されたSRSリソースのために設定された上位レイヤパラメータの「nrofSRS-Ports」によって示されるSRSポート数と同じポート数についての上りリンク用のコードブックから、上記TPMI、レイヤ数などに基づいてプリコーダを選択してもよい。 The UE may determine the TPMI and the number of layers (transmission rank) for the PUSCH based on the precoding information and the number of layers field (hereinafter also referred to as the precoding information field). The UE selects the above TPMI, A precoder may be selected based on the number of layers or the like.
 Rel.15/16 NRでは、PUSCHに対し、ノンコードブックベース送信を用いる場合、UEは、最大4個のSRSリソースを有する用途がノンコードブックのSRSリソースセットを、RRCによって設定され、当該最大4個のSRSリソースの1つ以上をDCI(2ビットのSRIフィールド)によって指示されてもよい。 Rel. 15/16 In NR, when non-codebook-based transmission is used for PUSCH, the UE uses an SRS resource set with a non-codebook usage that has up to 4 SRS resources, configured by RRC, and transmits the up to 4 SRS resources. may be indicated by a DCI (2-bit SRI field).
 UEは、上記SRIフィールドに基づいて、PUSCHのためのレイヤ数(送信ランク)を決定してもよい。例えば、UEは、上記SRIフィールドによって指定されるSRSリソースの数が、PUSCHのためのレイヤ数と同じであると判断してもよい。また、UEは、上記SRSリソースのプリコーダを算出してもよい。 The UE may determine the number of layers (transmission rank) for the PUSCH based on the SRI field. For example, the UE may determine that the number of SRS resources specified by the SRI field is the same as the number of layers for PUSCH. Furthermore, the UE may calculate a precoder for the SRS resource.
 当該SRSリソース(又は当該SRSリソースが属するSRSリソースセット)に関連するCSI-RS(associated CSI-RSと呼ばれてもよい)が上位レイヤで設定されている場合、PUSCHの送信ビームは当該設定された関連するCSI-RS(の測定)に基づいて算出されてもよい。そうでない場合、PUSCHの送信ビームはSRIによって指定されてもよい。 If the CSI-RS (also referred to as associated CSI-RS) associated with the relevant SRS resource (or the SRS resource set to which the relevant SRS resource belongs) is configured in the upper layer, the PUSCH transmission beam is configured according to the configured CSI-RS. It may be calculated based on (measurement of) the related CSI-RS. Otherwise, the PUSCH transmission beam may be specified by the SRI.
 なお、UEは、コードブックベースPUSCH送信を用いるかノンコードブックベースPUSCH送信を用いるかを、送信スキームを示す上位レイヤパラメータ「txConfig」によって設定されてもよい。当該パラメータは、「コードブック(codebook)」又は「ノンコードブック(nonCodebook)」の値を示してもよい。 Note that the UE may be configured to use codebook-based PUSCH transmission or non-codebook-based PUSCH transmission using an upper layer parameter "txConfig" that indicates the transmission scheme. The parameter may indicate a value of "codebook" or "nonCodebook".
 本開示において、コードブックベースPUSCH(コードブックベースPUSCH送信、コードブックベース送信)は、UEに送信スキームとして「コードブック」を設定された場合のPUSCHを意味してもよい。本開示において、ノンコードブックベースPUSCH(ノンコードブックベースPUSCH送信、ノンコードブックベース送信)は、UEに送信スキームとして「ノンコードブック」を設定された場合のPUSCHを意味してもよい。 In the present disclosure, codebook-based PUSCH (codebook-based PUSCH transmission, codebook-based transmission) may mean PUSCH when "codebook" is set as the transmission scheme in the UE. In the present disclosure, non-codebook-based PUSCH (non-codebook-based PUSCH transmission, non-codebook-based transmission) may mean PUSCH when "non-codebook" is configured as a transmission scheme in the UE.
(コードブック(CB)ベース送信におけるPUSCHプリコーダの決定)
 上述したように、UEは、コードブック(CB)ベース送信の場合、SRI、TRI、TPMIなどに基づいて、PUSCH送信のためのプリコーダを決定してもよい。
(Determination of PUSCH precoder in codebook (CB) based transmission)
As mentioned above, the UE may determine the precoder for PUSCH transmission based on SRI, TRI, TPMI, etc. for codebook (CB) based transmission.
 SRI、TRI、TPMIなどは、下りリンク制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラントPUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。 SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI). The SRI may be specified by the SRS Resource Indicator field (SRI field) of the DCI, or by the parameter "srs-ResourceIndicator" included in the RRC information element "ConfiguredGrantConfig" of the configured grant PUSCH (configured grant PUSCH). It's okay.
 TRI及びTPMIは、DCIのプリコーディング情報及びレイヤ数フィールド(”Precoding information and number of layers” field)によって指定されてもよい。プリコーディング情報及びレイヤ数フィールドは、簡単のため、プリコーディング情報フィールドとも呼ぶ。 TRI and TPMI may be specified by the DCI precoding information and number of layers field. The precoding information and layer number fields are also referred to as precoding information fields for simplicity.
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(例えば、RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。 The UE may report UE capability information regarding the precoder type, and the base station may set the precoder type based on the UE capability information through upper layer signaling. The UE capability information may be precoder type information used by the UE in PUSCH transmission (for example, it may be represented by the RRC parameter "pusch-TransCoherence").
 UEは、上位レイヤシグナリングによって通知されるPUSCH設定情報(例えば、RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(例えば、RRCパラメータ「codebookSubset」)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるPMIのサブセットを設定されてもよい。 The UE performs PUSCH transmission based on the precoder type information (e.g., RRC parameter “codebookSubset”) included in the PUSCH configuration information (e.g., “PUSCH-Config” information element of RRC signaling) notified by upper layer signaling. The precoder to be used may also be determined. The UE may be configured with a subset of PMI specified by the TPMI by codebookSubset.
 なお、プリコーダタイプは、完全コヒーレント(フルコヒーレント(full coherent)、fully coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。 Note that the precoder type is one of fully coherent (full coherent, fully coherent), partially coherent, and non-coherent, or a combination of at least two of these (for example, It may be specified by a parameter such as "fullyAndPartialAndNonCoherent" or "partialAndNonCoherent".
 例えば、UE能力を示すRRCパラメータ「pusch-TransCoherence」は、完全コヒーレント(fullCoherent)、部分コヒーレント(partialCoherent)又はノンコヒーレント(nonCoherent)を示してもよい。また、RRCパラメータ「codebookSubset」は、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」又は「ノンコヒーレント(nonCoherent)」を示してもよい。 For example, the RRC parameter "pusch-TransCoherence" indicating the UE capability may indicate full coherent (fullCoherent), partially coherent (partialCoherent), or non-coherent (nonCoherent). Further, the RRC parameter "codebookSubset" may indicate "fullyAndPartialAndNonCoherent", "partialAndNonCoherent", or "nonCoherent".
 完全コヒーレントは、送信に用いる全アンテナポートの同期がとれている(位相を合わせることができる、コヒーレントなアンテナポート毎に位相制御できる、コヒーレントなアンテナポート毎にプリコーダを適切にかけることができる、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートの一部のポート間は同期がとれているが、当該一部のポートと他のポートとは同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いる各アンテナポートの同期がとれないことを意味してもよい。 Completely coherent means that all antenna ports used for transmission are synchronized (the phases can be matched, the phase can be controlled for each coherent antenna port, a precoder can be applied appropriately to each coherent antenna port, etc.) (may also be expressed as ). Partially coherent may mean that some of the antenna ports used for transmission are synchronized, but some of the antenna ports used for transmission are not synchronized with other ports. Non-coherent may mean that each antenna port used for transmission is not synchronized.
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。 Note that a UE that supports fully coherent precoder types may be assumed to support partially coherent and non-coherent precoder types. A UE that supports partially coherent precoder type may be assumed to support non-coherent precoder type.
 本開示において、プリコーダタイプ、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどは、互いに読み替えられてもよい。 In the present disclosure, precoder type, coherency, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, etc. may be read interchangeably.
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCI(例えば、DCIフォーマット0_1。以下同様)から得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。 The UE uses a TPMI index obtained from multiple precoders (which may also be called precoding matrices, codebooks, etc.) for CB-based transmissions and from a DCI (e.g., DCI format 0_1, etc.) for scheduling UL transmissions. A precoding matrix corresponding to the precoding matrix may be determined.
 図1-5は、コードブックサブセットとTPMIインデックスとの関連付けの一例を示す図である。図1は、Rel.16 NRにおける、トランスフォームプリコーディング(transform precoding)(トランスフォームプリコーダと呼ばれてもよい)が無効な場合の4アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルに該当する。図1は、左から右へとTPMIインデックスの昇順に、対応するWが示されている(図2-5も同様である)。 FIGS. 1-5 are diagrams illustrating an example of the association between codebook subsets and TPMI indexes. FIG. 1 shows Rel. Table of precoding matrix W for single layer (rank 1) transmission using 4 antenna ports when transform precoding (also called transform precoder) is disabled in 16 NR Applies to. In FIG. 1, corresponding Ws are shown in ascending order of TPMI index from left to right (the same applies to FIGS. 2-5).
 図1-5に示すようなTPMIインデックスと対応するWを示す対応関係(テーブルと呼ばれてもよい)は、コードブックとも呼ばれる。このコードブックの一部が、コードブックサブセットとも呼ばれる。 The correspondence relationship (which may be called a table) showing the TPMI index and the corresponding W as shown in FIGS. 1-5 is also called a codebook. This part of the codebook is also called a codebook subset.
 図1において、コードブックサブセット(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から27までのいずれかのTPMIを通知される。また、コードブックサブセットが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から11までのいずれかのTPMIを設定される。コードブックサブセットが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から3までのいずれかのTPMIを設定される。 In FIG. 1, if the codebook subset (codebookSubset) is fullyAndPartialAndNonCoherent, the UE is notified of any TPMI from 0 to 27 for single layer transmission. Also, if the codebook subset is partialAndNonCoherent, the UE is configured with any TPMI from 0 to 11 for single layer transmission. If the codebook subset is non-Coherent, the UE is configured with any TPMI from 0 to 3 for single layer transmission.
 図2-4はそれぞれ、Rel.16 NRにおける、トランスフォームプリコーディングが無効な場合の4アンテナポートを用いた2-4レイヤ(ランク2-4)送信用のプリコーディング行列Wのテーブルに該当する。 Figures 2-4 are respectively Rel. This corresponds to a table of precoding matrix W for 2-4 layer (rank 2-4) transmission using 4 antenna ports in No. 16 NR when transform precoding is disabled.
 図2によれば、UEが2レイヤ送信に対して通知されるTPMIは、0から21まで(コードブックサブセットが完全及び部分及びノンコヒーレント)、0から13まで(コードブックサブセットが部分及びノンコヒーレント)又は0から5まで(コードブックサブセットがノンコヒーレント)である。 According to Fig. 2, the TPMI that the UE is notified of for two-layer transmission is from 0 to 21 (codebook subset complete and partial and non-coherent), from 0 to 13 (codebook subset is partial and non-coherent), and from 0 to 13 (codebook subset is partial and non-coherent). ) or from 0 to 5 (codebook subset is non-coherent).
 図3によれば、UEが3レイヤ送信に対して通知されるTPMIは、0から6まで(コードブックサブセットが完全及び部分及びノンコヒーレント)、0から2まで(コードブックサブセットが部分及びノンコヒーレント)又は0(コードブックサブセットがノンコヒーレント)である。 According to FIG. 3, the TPMI that the UE is notified of for three-layer transmission is from 0 to 6 (codebook subset complete and partial and non-coherent), from 0 to 2 (codebook subset is partial and non-coherent), from 0 to 2 (codebook subset is partial and non-coherent). ) or 0 (codebook subset is non-coherent).
 図4によれば、UEが4レイヤ送信に対して通知されるTPMIは、0から4まで(コードブックサブセットが完全及び部分及びノンコヒーレント)、0から2まで(コードブックサブセットが部分及びノンコヒーレント)又は0(コードブックサブセットがノンコヒーレント)である。 According to FIG. 4, the TPMI that the UE is notified for 4-layer transmission is from 0 to 4 (codebook subset complete and partial and non-coherent), from 0 to 2 (codebook subset is partial and non-coherent), from 0 to 2 (codebook subset is partial and non-coherent). ) or 0 (codebook subset is non-coherent).
 図5Aは、Rel.16 NRにおける、2アンテナポートを用いたシングルレイヤ(ランク1)送信用のプリコーディング行列Wのテーブルに該当する。図5Bは、Rel.16 NRにおける、トランスフォームプリコーディングが無効な場合の2アンテナポートを用いた2レイヤ(ランク2)送信用のプリコーディング行列Wのテーブルに該当する。 FIG. 5A shows Rel. This corresponds to the table of precoding matrix W for single layer (rank 1) transmission using two antenna ports in 16 NR. FIG. 5B shows Rel. This corresponds to a table of precoding matrix W for 2-layer (rank 2) transmission using 2 antenna ports when transform precoding is disabled in No. 16 NR.
 図5Aによれば、UEが2ポートシングルレイヤ送信に対して通知されるTPMIは、0から5まで(コードブックサブセットが完全及び部分及びノンコヒーレント)又は0から1まで(コードブックサブセットがノンコヒーレント)である。図5Bによれば、UEが2ポート2レイヤ送信に対して通知されるTPMIは、0から2まで(コードブックサブセットが完全及び部分及びノンコヒーレント)又は0(コードブックサブセットがノンコヒーレント)である。 According to FIG. 5A, the TPMI signaled by the UE for two-port single layer transmission is from 0 to 5 (codebook subsets are complete and partial and non-coherent) or from 0 to 1 (codebook subset is non-coherent). ). According to FIG. 5B, the TPMI signaled to the UE for 2-port 2-layer transmission is from 0 to 2 (codebook subsets are complete and partial and non-coherent) or 0 (codebook subset is non-coherent). .
 なお、列ごとに要素が1つだけ0でないプリコーディング行列は、ノンコヒーレントコードブックと呼ばれてもよい。列ごとに要素が特定の数(1つより大きいが、列における全ての要素数ではない)だけ0でないプリコーディング行列は、部分コヒーレントコードブックと呼ばれてもよい。列ごとに要素が全て0でないプリコーディング行列は、完全コヒーレントコードブックと呼ばれてもよい。 Note that a precoding matrix in which only one element in each column is not 0 may be called a non-coherent codebook. A precoding matrix in which a certain number of elements per column (greater than one, but not all the elements in the column) are non-zero may be called a partially coherent codebook. A precoding matrix whose elements are all non-zero for each column may be called a fully coherent codebook.
 ノンコヒーレントコードブック及び部分コヒーレントコードブックは、アンテナ選択プリコーダ(antenna selection precoder)、アンテナポート選択プリコーダなどと呼ばれてもよい。例えば、ノンコヒーレントコードブック(ノンコヒーレントプリコーダ)は、1ポート選択プリコーダ、1ポートのポート選択プリコーダ(1-port port selection precoder)などと呼ばれてもよい。また、部分コヒーレントコードブック(部分コヒーレントプリコーダ)は、xポート(xは1より大きい整数)選択プリコーダ、xポートのポート選択プリコーダなどと呼ばれてもよい。完全コヒーレントコードブックは、非アンテナ選択プリコーダ(non-antenna selection precoder)、全ポートプリコーダなどと呼ばれてもよい。 The non-coherent codebook and the partially coherent codebook may also be called antenna selection precoders, antenna port selection precoders, etc. For example, the non-coherent codebook (non-coherent precoder) may be called a 1-port selection precoder, a 1-port port selection precoder, or the like. Further, the partially coherent codebook (partially coherent precoder) may be called an x-port (x is an integer greater than 1) selection precoder, an x-port port selection precoder, or the like. A fully coherent codebook may also be called a non-antenna selection precoder, an all-port precoder, etc.
 なお、本開示において、部分コヒーレントコードブックは、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、ノンコヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=4から11のコードブック)に該当してもよい。 Note that in this disclosure, a partially coherent codebook is specified by a DCI for codebook-based transmission by a UE configured with a partially coherent codebook subset (e.g., RRC parameter "codebookSubset" = "partialAndNonCoherent"). Among the codebooks (precoding matrices) corresponding to TPMI, excluding the codebook corresponding to TPMI in which a UE configured with a non-coherent codebook subset (for example, RRC parameter "codebookSubset" = "nonCoherent") is specified. (In other words, in the case of single layer transmission with 4 antenna ports, a codebook of TPMI=4 to 11) may be applicable.
 なお、本開示において、完全コヒーレントコードブックは、完全コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「fullyAndPartialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=12から27のコードブック)に該当してもよい。 Note that in this disclosure, a fully coherent codebook is specified by the DCI for codebook-based transmission by a UE configured with a fully coherent codebook subset (e.g., RRC parameter "codebookSubset" = "fullyAndPartialAndNonCoherent"). Among the codebooks (precoding matrices) corresponding to TPMI, excluding the codebook corresponding to TPMI in which a UE configured with a partially coherent codebook subset (for example, RRC parameter "codebookSubset" = "partialAndNonCoherent") is specified. (that is, in the case of single layer transmission with 4 antenna ports, a codebook of TPMI=12 to 27) may be applicable.
 以下、本開示において、簡単のため、ノンコヒーレントプリコーダ、部分コヒーレントプリコーダ及び完全コヒーレントプリコーダを、それぞれ単に、NC(non coherent)プリコーダ、PC(partial coherent)プリコーダ及びFC(full coherent)プリコーダとも書く。 Hereinafter, in this disclosure, for the sake of simplicity, a non-coherent precoder, a partially coherent precoder, and a fully coherent precoder will also be simply referred to as an NC (non-coherent) precoder, a PC (partial coherent) precoder, and an FC (full coherent) precoder, respectively. write.
 また、以下、本開示において、簡単のため、nアンテナポート(nは整数)のiレイヤ(iは整数。シングルレイヤはi=1)送信のためのNC/PC/FCプリコーダを、単に、nポートiレイヤNC/PC/FCプリコーダ(n-port i-layer NC/PC/FC precoder)とも書く。 In addition, in the following, in this disclosure, for the sake of simplicity, the NC/PC/FC precoder for i-layer (i is an integer; i=1 for a single layer) transmission of n antenna ports (n is an integer) is simply referred to as n Also written as port i-layer NC/PC/FC precoder.
 なお、図5A及び5Bからわかるように、2アンテナポート送信のための部分コヒーレントプリコーダはないため、2アンテナポートについてはコードブックサブセットが部分及びノンコヒーレントである設定は適用されなくてもよい。 Note that as can be seen from FIGS. 5A and 5B, there is no partially coherent precoder for 2-antenna port transmission, so the setting in which the codebook subset is partially and non-coherent does not need to be applied for 2-antenna ports.
(プリコーディング情報フィールドのサイズ)
 上述したように、UEは、PUSCHをスケジュールするDCI(例えば、DCIフォーマット0_1/0_2)のプリコーディング情報フィールドに基づいて、当該PUSCHのためのTPMI及びレイヤ数(送信ランク)を判断してもよい。
(size of precoding information field)
As described above, the UE may determine the TPMI and number of layers (transmission rank) for the PUSCH based on the precoding information field of the DCI (e.g., DCI format 0_1/0_2) that schedules the PUSCH. .
 コードブックベースPUSCHに関して、プリコーディング情報フィールドのビット数は、PUSCHのためのトランスフォームプリコーダの有効無効の設定(例えば、上位レイヤパラメータtransformPrecoder)、PUSCHのためのコードブックサブセットの設定(例えば、上位レイヤパラメータcodebookSubset)、PUSCHのための最大レイヤ数の設定(例えば、上位レイヤパラメータmaxRank)、PUSCHのための上りリンクフルパワー送信の設定(例えば、上位レイヤパラメータul-FullPowerTransmission)、PUSCHのためのアンテナポート数などに基づいて判断されてもよい(変動してもよい)。 Regarding codebook-based PUSCH, the number of bits in the precoding information field is determined by the settings of enable/disable of the transform precoder for PUSCH (e.g., upper layer parameter transformPrecoder), the setting of codebook subset for PUSCH (e.g., upper Layer parameter codebookSubset), maximum layer number setting for PUSCH (e.g. upper layer parameter maxRank), uplink full power transmission setting for PUSCH (e.g. upper layer parameter ul-FullPowerTransmission), antenna for PUSCH It may be determined (or may vary) based on the number of ports, etc.
 図6は、Rel.16 NRにおける、プリコーディング情報及びレイヤ数のフィールド値と、レイヤ数及びTPMIとの対応関係の一例を示す図である。本例の対応関係は、トランスフォームプリコーダが無効に設定され、最大ランク(maxRank)が2、3又は4に設定され、かつ上りリンクフルパワー送信が設定されない又はフルパワーモード2(fullpowerMode2)に設定される又はフルパワー(fullpower)に設定される場合の、4アンテナポート用の対応関係であるが、これに限られない。なお、図示される「インデックスにマップされるビットフィールド」がプリコーディング情報及びレイヤ数のフィールド値を示すことは当業者であれば当然理解できる。 FIG. 6 shows Rel. 16 is a diagram illustrating an example of the correspondence between field values of precoding information and the number of layers, and the number of layers and TPMI in NR. The correspondence relationship in this example is that the transform precoder is set to disabled, the maximum rank (maxRank) is set to 2, 3, or 4, and uplink full power transmission is not set or full power mode 2 (fullpowerMode2) is set. The correspondence is for, but not limited to, four antenna ports when configured or set to full power. It should be noted that those skilled in the art will naturally understand that the illustrated "bit field mapped to index" indicates field values of precoding information and the number of layers.
 図6では、プリコーディング情報フィールドは、UEに完全コヒーレント(fullyAndPartialAndNonCoherent)のコードブックサブセットが設定される場合には6ビット、部分コヒーレント(partialAndNonCoherent)のコードブックサブセットが設定される場合には5ビット、ノンコヒーレント(nonCoherent)のコードブックサブセットが設定される場合には4ビットである。 In FIG. 6, the precoding information field is 6 bits when the UE is configured with fully coherent (fullyAndPartialAndNonCoherent) codebook subset, 5 bits when partially coherent (partialAndNonCoherent) codebook subset is configured, It is 4 bits if a non-Coherent codebook subset is set.
 なお、図6に示されるように、あるプリコーディング情報フィールドの値に対応するレイヤ数及びTPMIは、UEに設定されるコードブックサブセットに関わらず同じ(共通)であってもよい。例えば、図6において、プリコーディング情報フィールドの値=0-11が示すレイヤ数及びTPMIは、完全コヒーレント(fullyAndPartialAndNonCoherent)、部分コヒーレント(partialAndNonCoherent)及びノンコヒーレント(nonCoherent)のコードブックサブセットについて同じであってもよい。また、図6において、プリコーディング情報フィールドの値=0-31が示すレイヤ数及びTPMIは、完全コヒーレント(fullyAndPartialAndNonCoherent)及び部分コヒーレント(partialAndNonCoherent)のコードブックサブセットについて同じであってもよい。 Note that, as shown in FIG. 6, the number of layers and TPMI corresponding to the value of a certain precoding information field may be the same (common) regardless of the codebook subset set in the UE. For example, in FIG. 6, the number of layers and TPMI indicated by the precoding information field values = 0-11 are the same for fully coherent (fullyAndPartialAndNonCoherent), partially coherent (partialAndNonCoherent), and noncoherent (nonCoherent) codebook subsets. Good too. Further, in FIG. 6, the number of layers and TPMI indicated by the value of the precoding information field = 0-31 may be the same for fully coherent (fullyAndPartialAndNonCoherent) and partially coherent (partialAndNonCoherent) codebook subsets.
 なお、プリコーディング情報フィールドは、ノンコードブックベースPUSCHに関しては0ビットであってもよい。また、プリコーディング情報フィールドは、1アンテナポートのコードブックベースPUSCHに関しては0ビットであってもよい。 Note that the precoding information field may be 0 bits for non-codebook-based PUSCH. Also, the precoding information field may be 0 bits for a codebook-based PUSCH with one antenna port.
(ノンコードブックベースPUSCHのためのSRIフィールドのサイズ)
 Rel.15/16 NRでは、送信設定(txConfig)がNCBである(PUSCH送信がNCBに基づく)場合、DCIフォーマット0_1/0_2内のSRIフィールドのサイズ(ビット数)は、以下の式1で表される。
 (式1)
  ceil(log(Σk=1 min{Lmax,NSRS}  C(NSRS,k)))
 ここで、C(NSRS,k)は、NSRS個からk個を選ぶ組み合わせの数であり、二項係数(binomial coefficients)とも呼ばれる。また、min(X,Y)はX及びYの最小値を返す関数である。また、ceil(x)はxの天井関数である。
(SRI field size for non-codebook-based PUSCH)
Rel. 15/16 In NR, when the transmission configuration (txConfig) is NCB (PUSCH transmission is based on NCB), the size (number of bits) of the SRI field in DCI format 0_1/0_2 is expressed by Equation 1 below. .
(Formula 1)
ceil(log 2k=1 min {Lmax, NSRS}  C( NSRS ,k)))
Here, C(N SRS , k) is the number of combinations in which k pieces are selected from N SRS pieces, and is also called binomial coefficients. Furthermore, min(X, Y) is a function that returns the minimum value of X and Y. Moreover, ceil(x) is a ceiling function of x.
 ここで、NSRSは、SRSリソースセットのリスト(srs-ResourceSetToAddModList)によって設定され、ノンコードブックの用途に関連付けられた、SRSリソースセット内のSRSリソース数である。もしUEが、最大Multi Input Multi Output(MIMO)レイヤ数を示す上位レイヤパラメータmaxMIMO-Layersを用いる動作をサポートし、且つ、上位レイヤパラメータmaxMIMO-Layersが設定された場合、Lmaxは、そのパラメータによって与えられる。そうでない場合、Lmaxは、UEによってサポートされるPUSCH用のレイヤの最大数によって与えられる。 Here, N SRS is the number of SRS resources in the SRS resource set set by the list of SRS resource sets (srs-ResourceSetToAddModList) and associated with the non-codebook usage. If the UE supports operation using the upper layer parameter maxMIMO-Layers indicating the maximum number of Multi Input Multi Output (MIMO) layers, and the upper layer parameter maxMIMO-Layers is set, L max is determined by that parameter. Given. Otherwise, L max is given by the maximum number of layers for PUSCH supported by the UE.
 NCBベースPUSCH送信に対し、SRIフィールドによって指示されたインデックス(SRIフィールドインデックス/SRIインデックス)と、1つ以上のSRI(SRSリソースID)と、の関連付けは、図7(Lmax=1の場合)/図8(Lmax=2の場合)/図9(Lmax=3の場合)/図10(Lmax=4の場合)に従う。 For NCB-based PUSCH transmission, the association between the index indicated by the SRI field (SRI field index/SRI index) and one or more SRIs (SRS resource IDs) is shown in FIG. 7 (when L max = 1) /FIG. 8 (when L max = 2) / FIG. 9 (when L max = 3) / FIG. 10 (when L max = 4).
(4より多いアンテナポートの送信)
 Rel.15/16 NRでは、4レイヤまでの上りリンク(Uplink(UL))Multi Input Multi Output(MIMO)送信がサポートされる。将来の無線通信システムについて、より高いスペクトル効率を実現するために、4より大きいレイヤ数のUL送信をサポートすることが検討されている。例えば、Rel.18 NRに向けて、6アンテナポートを用いた最大6ランク送信、8アンテナポートを用いた最大6又は8ランク送信などが検討されている。
(Transmission of more than 4 antenna ports)
Rel. 15/16 NR supports uplink (UL) Multi Input Multi Output (MIMO) transmission up to 4 layers. For future wireless communication systems, supporting UL transmission with a number of layers greater than four is being considered to achieve higher spectral efficiency. For example, Rel. 18 NR, transmission of up to 6 ranks using 6 antenna ports, transmission of up to 6 or 8 ranks using 8 antenna ports, etc. are being considered.
 図11A及び11Bは、8アンテナポートのアンテナレイアウトの一例を示す図である。図11Aは、8アンテナが1次元的(1 dimensional(1D))に配置される一例を示し、図11Bは、8アンテナが2次元的(2 dimensional(2D))に配置される一例を示す。図11Aは、水平方向に4つ並ぶ交差偏波アンテナを有するアンテナ構成に該当する。図11Bは、水平及び垂直方向に2つずつ並ぶ交差偏波アンテナを有するアンテナ構成に該当する。 FIGS. 11A and 11B are diagrams showing an example of an antenna layout of eight antenna ports. FIG. 11A shows an example in which eight antennas are arranged one-dimensionally (1D), and FIG. 11B shows an example in which eight antennas are arranged two-dimensionally (2D). FIG. 11A corresponds to an antenna configuration having four cross-polarized antennas lined up in the horizontal direction. FIG. 11B corresponds to an antenna configuration with two cross-polarized antennas aligned horizontally and vertically.
 なお、図示される番号は、アンテナに対応するアンテナポートの番号を示してもよい。 Note that the illustrated numbers may indicate the numbers of antenna ports corresponding to the antennas.
 なお、アンテナレイアウトはこれらに限定されない。例えば、アンテナが配置されるパネルの数、パネルの向き、各パネル/アンテナのコヒーレンシー(完全コヒーレント、部分コヒーレント、ノンコヒーレントなど)、特定の方向(水平、垂直など)のアンテナ配列、偏波アンテナ構成(単一偏波、交差偏波、偏波面の数など)は、図11A及び11Bの例と異なってもよい。 Note that the antenna layout is not limited to these. For example, the number of panels in which the antennas are placed, the orientation of the panels, the coherency of each panel/antenna (fully coherent, partially coherent, non-coherent, etc.), antenna alignment in a particular direction (horizontal, vertical, etc.), polarization antenna configuration. (single polarization, cross-polarization, number of polarization planes, etc.) may differ from the example of FIGS. 11A and 11B.
 また、Rel.15/16 NRでは、1つのPUSCHにおける1つのコードワード(Codeword(CW))の送信がサポートされていたところ、Rel.18 NRにむけて、UEが、1つのPUSCHにおける1つより多いCWを送信することが検討されている。例えば、ランク5-8のための2CW送信のサポート、ランク2-8のための2CW送信のサポートなどが検討されている。 Also, Rel. 15/16 In NR, transmission of one codeword (CW) on one PUSCH was supported, but Rel. Towards 18 NR, it is being considered that the UE transmits more than one CW on one PUSCH. For example, support for 2CW transmission for ranks 5-8, support for 2CW transmission for ranks 2-8, etc. are being considered.
 また、Rel.15及びRel.16のUEにおいては、ある時間においては1つのみのビーム/パネルがUL送信に用いられると想定されるが、Rel.17以降においては、ULのスループット及び信頼性(reliability)の改善のために、1以上のTRPに対して、複数ビーム/複数パネルの同時UL送信(例えば、PUSCH送信)が検討されている。なお、複数ビーム/複数パネルの同時PUSCH送信は、4より大きいレイヤ数のPUSCH送信に該当してもよいし、4以下のレイヤ数のPUSCH送信に該当してもよい。 Also, Rel. 15 and Rel. For Rel. 16 UEs, it is assumed that only one beam/panel is used for UL transmission at a given time, but Rel. In order to improve UL throughput and reliability, simultaneous UL transmission of multiple beams/multiple panels (for example, PUSCH transmission) for one or more TRPs is being considered. Note that simultaneous PUSCH transmission of multiple beams/multiple panels may correspond to PUSCH transmission with a number of layers greater than 4, or may correspond to PUSCH transmission with a number of layers equal to or less than 4.
 また、4より多いアンテナポート(4つより多い数のアンテナポート)を用いるUL送信についてのプリコーディング行列が検討されている。例えば、8ポート送信についてのコードブック(8送信ULコードブック(8 TX UL codebook)などと呼ばれてもよい)が検討されている。 Additionally, precoding matrices for UL transmission using more than four antenna ports are being considered. For example, a codebook for 8-port transmission (which may also be called an 8-transmission UL codebook (8 TX UL codebook)) is being considered.
 8レイヤまでの8ポート送信のNCB PUSCH送信(Lmax=8)について、ノンコードブックのためのNSRS=8個の1ポートSRSリソースが設定されるケースにおいては、上述の式1に従うと、DCIフォーマットに含まれるSRIフィールドのサイズは、ceil(log(C(8,1)+…+C(8,8)))=8ビットとなる。 For NCB PUSCH transmission of 8-port transmission up to 8 layers (L max =8), in the case where N SRS =8 1-port SRS resources for the non-codebook are configured, according to Equation 1 above: The size of the SRI field included in the DCI format is ceil(log 2 (C(8,1)+...+C(8,8)))=8 bits.
 しかしながら、常に8つのSRSリソースを柔軟に指示することは、NCB PUSCHについてのSRIフィールドのサイズが通信オーバーヘッドとなる。DCIのサイズを適切に調整(制御)できることが好ましい。そうでなければ、通信スループットの増大が抑制されるおそれがある。 However, flexibly indicating 8 SRS resources at any given time results in communication overhead due to the size of the SRI field for NCB PUSCH. It is preferable to be able to appropriately adjust (control) the size of the DCI. Otherwise, the increase in communication throughput may be suppressed.
 そこで、本発明者らは、4より多いアンテナポートを用いるUL送信を適切に行うための方法を着想した。 Therefore, the present inventors came up with a method for appropriately performing UL transmission using more than four antenna ports.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied singly or in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Furthermore, in the present disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In the present disclosure, "activate", "deactivate", "indicate", "select", "configure", "update", "determine", etc. may be read interchangeably. In this disclosure, supporting, controlling, being able to control, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, upper layer parameters, fields, Information Elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, the terms Medium Access Control Element (CE), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, etc., or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), or the like. Broadcast information includes, for example, a master information block (MIB), a system information block (SIB), a minimum system information (RMSI), and other system information ( Other System Information (OSI)) may also be used.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), etc.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, an index, an identifier (ID), an indicator, a resource ID, etc. may be read interchangeably. In this disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be used interchangeably.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナ、アンテナ素子、レイヤ、送信、ポート、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In this disclosure, a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, and a spatial relation information (SRI) are described. )), spatial relationship, SRS resource indicator (SRI), control resource set (CONtrol REsource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword (CW), transport Block (Transport Block (TB)), reference signal (RS), antenna, antenna element, layer, transmission, port, antenna port (for example, demodulation reference signal (DMRS) port), Antenna port group (e.g. DMRS port group), group (e.g. spatial relationship group, Code Division Multiplexing (CDM)) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g. reference signal resource, SRS resource), resource set (e.g. reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI (UL TCI state), unified TCI state, common TCI state, quasi-co-location (QCL), QCL assumption, etc. may be interpreted interchangeably. good.
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報」は、「空間関係情報のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。 Additionally, the spatial relationship information identifier (ID) (TCI status ID) and the spatial relationship information (TCI status) may be read interchangeably. “Spatial relationship information” may be interchangeably read as “a set of spatial relationship information”, “one or more pieces of spatial relationship information”, etc. TCI status and TCI may be read interchangeably.
 以下の実施形態において、「複数」及び「2つ」は互いに読み替えられてもよい。 In the following embodiments, "plurality" and "two" may be read interchangeably.
 以下の実施形態におけるPUSCH送信のレイヤ数は、4より大きくてもよいし、4以下でもよい。例えば、本開示における2つのCWのPUSCH送信は、4以下のレイヤ数(例えば、2)で行われてもよい。また、最大レイヤ数も、4以上に限られず、4未満が適用されてもよい。 The number of layers of PUSCH transmission in the following embodiments may be greater than 4 or may be less than or equal to 4. For example, PUSCH transmission of two CWs in the present disclosure may be performed using four or fewer layers (for example, two). Furthermore, the maximum number of layers is not limited to four or more, and may be less than four.
 また、以下の実施形態におけるPUSCH送信は、複数パネルを用いることを前提としてもよいし、前提としなくてもよい(パネルに関わらず適用されてもよい)。 Furthermore, PUSCH transmission in the following embodiments may or may not be based on the use of multiple panels (it may be applied regardless of the panel).
 以下の実施形態におけるDCIは、PUSCHをスケジューリングするDCIフォーマット(例えば、DCIフォーマット0_1/0_2)であってもよい。 The DCI in the following embodiments may be a DCI format that schedules PUSCH (for example, DCI format 0_1/0_2).
(無線通信方法)
<第1の実施形態>
 第1の実施形態は、8アンテナポートを用いるiレイヤ(iは、整数であり、例えばi=1、2、…、8)送信のための設定/能力に関する。
(Wireless communication method)
<First embodiment>
A first embodiment relates to a configuration/capability for i-layer (i is an integer, eg i=1, 2,..., 8) transmission with 8 antenna ports.
 8送信ULコードブックに対して、1つ以上のUEコヒーレント想定(UEコヒーレント能力)及び1つ以上のコードブックサブセットの設定が適用されてもよい。 For the 8 transmitted UL codebooks, one or more UE coherent assumptions (UE coherent capabilities) and one or more codebook subset settings may be applied.
 8ポートについて、既存のRRCパラメータ(又はUE能力)である「pusch-TransCoherence」、「codebookSubset」などが用いられてもよい。例えば、8ポートについて、ノンコヒーレント(nonCoherent)、部分コヒーレント(partialCoherent)、完全コヒーレント(fullCoherent)、「部分及びノンコヒーレント(partialAndNonCoherent)」、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」などに基づいて、UEは、8送信ULコードブックのためのTPMIインデックスを判断してもよい。 For 8 ports, existing RRC parameters (or UE capabilities) such as "pusch-TransCoherence" and "codebookSubset" may be used. For example, for 8 ports, based on noncoherent, partialcoherent, fullcoherent, "partialAndNonCoherent", "fullyAndPartialAndNonCoherent", etc. The UE may determine the TPMI index for the 8 transmitted UL codebook.
 8ポートについて、新たなRRCパラメータ(又はUE能力)が用いられてもよい。例えば、UEは、特定の数のポート以下の完全/部分/ノンコヒーレントをサポートすることを示す能力情報をネットワーク(例えば、基地局)に報告してもよいし、特定の数のポート以下の送信について完全/部分/ノンコヒーレントのコードブックサブセットを用いることを示すRRCパラメータを設定されてもよい。 For 8 ports, new RRC parameters (or UE capabilities) may be used. For example, a UE may report capability information to the network (e.g., base station) indicating that it supports full/partial/non-coherent up to a certain number of ports, and may report capability information to the network (e.g., base station) indicating that it supports full/partial/non-coherent transmission up to a certain number of ports. An RRC parameter may be set to indicate that full/partial/non-coherent codebook subsets are used for.
 また、8ポートについて、どのポートとどのポートがコヒーレントか(又は、どのポートとどのポートをコヒーレントとして用いるか)を示す情報が、UEから報告されてもよいし、UEに対して設定されてもよい。 Furthermore, information indicating which ports are coherent (or which ports are used as coherent) for the 8 ports may be reported by the UE, or may be configured for the UE. good.
 また、8ポートについて、部分コヒーレントをサポートする(部分コヒーレントの能力を持つ)UEは、どのアンテナポートの組み合わせがコヒーレントかに関する情報を(能力情報に含めて)送信してもよい。この情報は、コヒーレント情報、コヒーレントポート情報などと呼ばれてもよい。 Furthermore, for 8 ports, a UE that supports partial coherence (has partial coherent capability) may transmit information (included in the capability information) regarding which antenna port combinations are coherent. This information may be referred to as coherent information, coherent port information, etc.
 コヒーレントポート情報は、ポート数のサイズのビットマップであってもよく、例えば‘1’(又は‘0’)であるビットに対応するポートが、互いにコヒーレントであることを意味してもよい。 The coherent port information may be a bitmap of the size of the number of ports, and may mean that ports corresponding to bits that are '1' (or '0') are coherent with each other, for example.
 コヒーレントポート情報は、コヒーレントグループに関する情報であってもよい。ここでコヒーレントグループは、X個(Xは、1以上の整数)のコヒーレントなポートを含んでもよい。コヒーレントグループに関する情報は、あるコヒーレントグループがX個のポートを含むことを示してもよいし、あるコヒーレントグループに含まれるX個のコヒーレントなポートそれぞれのポート番号(ポートインデックス)を示してもよい。 The coherent port information may be information regarding a coherent group. Here, the coherent group may include X (X is an integer of 1 or more) coherent ports. The information regarding a coherent group may indicate that a certain coherent group includes X ports, or may indicate the port number (port index) of each of the X coherent ports included in a certain coherent group.
 UEは、1つ又は複数のコヒーレントグループに関するUE能力情報をネットワークに報告してもよい。 The UE may report UE capability information regarding one or more coherent groups to the network.
 図12A-12Cは、第1の実施形態のコヒーレント情報を説明するための、8アンテナポートのアンテナレイアウトの一例を示す図である。図12Aは、図11Aと類似しているが、互いにコヒーレントなアンテナ番号0、1、4及び5から構成されるコヒーレントグループ1と、互いにコヒーレントなアンテナ番号2、3、6及び7から構成されるコヒーレントグループ2と、が示される。コヒーレントグループ1に含まれるアンテナと、コヒーレントグループ2に含まれるアンテナと、は互いにコヒーレントではない。 FIGS. 12A to 12C are diagrams showing an example of an antenna layout of eight antenna ports for explaining coherent information in the first embodiment. FIG. 12A is similar to FIG. 11A, but consists of coherent group 1 consisting of mutually coherent antenna numbers 0, 1, 4 and 5, and mutually coherent antenna numbers 2, 3, 6 and 7. A coherent group 2 is shown. The antenna included in coherent group 1 and the antenna included in coherent group 2 are not coherent with each other.
 例えば、図12Aに関して、UEは、4以下のポートのフルコヒーレントをサポートし、5以上のポートの部分コヒーレントをサポートすることを示す能力情報を送信してもよい。 For example, with respect to FIG. 12A, the UE may transmit capability information indicating that it supports full coherence for 4 or fewer ports and partially coherent for 5 or more ports.
 図12Aに関して、UEは、コヒーレントポート情報として、コヒーレントグループ1を示す“11001100”というビットマップ及びコヒーレントグループ2を示す“11001100”というビットマップの少なくとも一方を送信してもよい。 Regarding FIG. 12A, the UE may transmit at least one of a bitmap "11001100" indicating coherent group 1 and a bitmap "11001100" indicating coherent group 2 as coherent port information.
 図12Aに関して、UEは、コヒーレントポート情報として、第1のコヒーレントグループに含まれるポートの数である4という値(又はポート番号0、1、4、5があるコヒーレントグループに含まれること)を報告してもよいし、第2のコヒーレントグループに含まれるポートの数である4という値(又はポート番号2、3、6、7が別のコヒーレントグループに含まれること)を報告してもよい。 Regarding FIG. 12A, the UE reports a value of 4, which is the number of ports included in the first coherent group (or being included in a coherent group with port numbers 0, 1, 4, and 5) as coherent port information. Alternatively, a value of 4, which is the number of ports included in the second coherent group (or that port numbers 2, 3, 6, and 7 are included in another coherent group), may be reported.
 なお、1つのコヒーレントグループがさらに複数のコヒーレントグループとして分けられてもよい。このようなコヒーレントグループの分類によって、柔軟な制御の実現が期待できる。 Note that one coherent group may be further divided into multiple coherent groups. By classifying coherent groups like this, flexible control can be expected.
 図12Bにおいては、互いにコヒーレントなアンテナ番号0、1、4及び5から構成されるコヒーレントグループ1と、互いにコヒーレントなアンテナ番号2及び6から構成されるコヒーレントグループ2と、互いにコヒーレントなアンテナ番号3及び7から構成されるコヒーレントグループ3と、が示される。 In FIG. 12B, coherent group 1 is composed of mutually coherent antenna numbers 0, 1, 4, and 5, coherent group 2 is composed of mutually coherent antenna numbers 2 and 6, and mutually coherent antenna numbers 3 and 6 are coherent. A coherent group 3 consisting of 7 is shown.
 図12Cにおいては、互いにコヒーレントなアンテナ番号0及び4から構成されるコヒーレントグループ1と、互いにコヒーレントなアンテナ番号1及び5から構成されるコヒーレントグループ2と、互いにコヒーレントなアンテナ番号2及び6から構成されるコヒーレントグループ3と、互いにコヒーレントなアンテナ番号3及び7から構成されるコヒーレントグループ4と、が示される。 In FIG. 12C, coherent group 1 is made up of antenna numbers 0 and 4 that are coherent with each other, coherent group 2 is made up of antenna numbers 1 and 5 that are coherent with each other, and coherent group 2 is made up of antenna numbers 2 and 6 that are coherent with each other. A coherent group 3 consisting of antenna numbers 3 and 7 which are coherent with each other is shown.
 なお、以降では、簡単のため、図12Aのような、部分コヒーレントUEが2つの4ポートコヒーレントグループの能力を有するケースをケース1とも呼ぶ。また、図12Bのような、部分コヒーレントUEが1つの4ポートコヒーレントグループと2つの2ポートコヒーレントグループの能力を有するケースをケース2とも呼ぶ。また、図12Cのような、部分コヒーレントUEが4つの2ポートコヒーレントグループの能力を有するケースをケース3とも呼ぶ。本開示において、「コヒーレントグループの能力を有する」は、「コヒーレントグループをサポートする能力を有する」、「コヒーレントグループを利用できる」などと互いに読み替えられてもよい。 Note that hereinafter, for simplicity, the case where the partially coherent UE has the capability of two 4-port coherent groups, as shown in FIG. 12A, will also be referred to as case 1. Further, the case in which the partially coherent UE has the capability of one 4-port coherent group and two 2-port coherent groups, as shown in FIG. 12B, is also referred to as case 2. Further, the case where the partially coherent UE has the capability of four 2-port coherent groups as shown in FIG. 12C is also referred to as case 3. In the present disclosure, "having the ability to support a coherent group" may be interchangeably read as "having the ability to support a coherent group", "able to utilize a coherent group", etc.
 第1の実施形態におけるPUSCHのための8送信ULコードブックは、以下の少なくとも1つが満たされる場合に用いられてもよい:
・UEに対して、PUSCHのためのトランスフォームプリコーダが無効に設定される場合、
・UEに対して、RRCによって、PUSCH/SRSのための(CBベースPUSCHのための)4より多いポート数が設定される場合、
・UEに対して、RRC/MAC CE/DCIによって、PUSCH/SRSのための(CBベースPUSCHのための)4より多いポート数が設定/アクティベート/指定される場合。
The 8 transmission UL codebook for PUSCH in the first embodiment may be used if at least one of the following is satisfied:
- When the transform precoder for PUSCH is set to be disabled for the UE,
- If the number of ports for PUSCH/SRS (for CB-based PUSCH) is greater than 4 is configured by RRC for the UE,
- If more than 4 ports for PUSCH/SRS (for CB-based PUSCH) are configured/activated/specified by RRC/MAC CE/DCI for the UE.
 上記から分かるように、第1の実施形態において、何ポートのプリコーディング行列が用いられるかはRRCによって準静的に設定されてもよい。また、第1の実施形態において、4より大きいポート数のプリコーディング行列の利用から4以下のポート数のプリコーディング行列の利用へのフォールバック(又はスイッチング、切り替え)は、MAC CE/DCIによって動的に行われてもよい。 As can be seen from the above, in the first embodiment, how many ports' precoding matrices are used may be semi-statically set by RRC. In addition, in the first embodiment, the fallback (or switching) from the use of a precoding matrix with a number of ports greater than 4 to the use of a precoding matrix with a number of ports less than or equal to 4 is performed by the MAC CE/DCI. It may also be done on a regular basis.
 なお、UEは、アンテナレイアウト(アンテナ構成)に関わらず、共通の8送信ULコードブックを利用(参照)してもよい。また、UEは、アンテナレイアウト(アンテナ構成)ごとに、異なる8送信ULコードブックを利用(参照)してもよい。 Note that the UE may use (reference) a common 8 transmission UL codebook regardless of the antenna layout (antenna configuration). Further, the UE may use (reference) different 8 transmission UL codebooks for each antenna layout (antenna configuration).
 UEは、アンテナレイアウトに関するUE能力情報を報告してもよい。基地局は、例えば当該UE能力情報に基づいて、UEが利用する8送信ULコードブックを指定/特定/設定する情報を、当該UEに送信してもよい。UEは、報告した上記UE能力情報及び受信した上記8送信ULコードブックを指定/特定/設定する情報に基づいて、利用する8送信ULコードブックを判断してもよい。 The UE may report UE capability information regarding antenna layout. The base station may transmit, to the UE, information that specifies/identifies/configures the 8 transmission UL codebooks used by the UE, for example, based on the UE capability information. The UE may determine which 8 transmission UL codebooks to use based on the reported UE capability information and the received information specifying/identifying/setting the 8 transmission UL codebooks.
 本開示において、コヒーレントポート情報、アンテナレイアウトに関するUE能力情報などは、アンテナ能力情報と呼ばれてもよい。 In this disclosure, coherent port information, UE capability information regarding antenna layout, etc. may be referred to as antenna capability information.
 以上説明した第1の実施形態によれば、8送信ULコードブックを適切に利用できる。 According to the first embodiment described above, it is possible to appropriately utilize the 8-transmission UL codebook.
<第2の実施形態>
 第2の実施形態は、ノンコードブックのためのNSRS=8個の1ポートSRSリソースが設定されるケースにおける、NCB PUSCHについてのSRI指示の制限に関する。
<Second embodiment>
The second embodiment relates to the restriction of SRI indication for NCB PUSCH in the case where N SRS =8 1-port SRS resources for non-codebook are configured.
 第2の実施形態におけるSRI指示の制限は、RRCパラメータ/MAC CE/DCIによって、ネットワーク(Network(NW))(例えば、基地局)からUEに通知されてもよい。 The restriction on the SRI instruction in the second embodiment may be notified to the UE from a network (NW) (for example, a base station) using RRC parameters/MAC CE/DCI.
 第2の実施形態におけるSRI指示の制限は例えば以下の実施形態2.1、2.2がある。これらは組み合わせて適用されてもよい。 For example, restrictions on the SRI instruction in the second embodiment include the following embodiments 2.1 and 2.2. These may be applied in combination.
[実施形態2.1]
 実施形態2.1において、NWは、SRI指示が特定の数(例えば、X1/X2/…。ここでX1、X2などは整数)のSRSリソースの組み合わせのみを示すように、UEに対して設定してもよい。この設定は、例えば、ランクX1/X2/…を示すビットマップを介して行われてもよい。
[Embodiment 2.1]
In embodiment 2.1, the NW configures the UE such that the SRI indication indicates only a specific number (e.g., X1/X2/..., where X1, X2, etc. are integers) of SRS resource combinations. You may. This setting may be performed, for example, via a bitmap indicating ranks X1/X2/....
 例えば、NWは、“11100000”のビットマップを介して、6/7/8個の数のSRSリソースの組み合わせのみをSRI指示が示すように設定してもよい。これは、NWが、高いUL SINRに基づいてランク6/7/8の指示のみを設定することを意味してもよい。この場合、SRIフィールドのサイズは、ceil(log(C(8,6)+C(8,7)+C(8,8)))=6ビットとなる。 For example, the NW may configure only 6/7/8 combinations of SRS resources as indicated by the SRI instruction via a bitmap of “11100000”. This may mean that the NW only sets rank 6/7/8 indications based on high UL SINR. In this case, the size of the SRI field is ceil(log 2 (C(8,6)+C(8,7)+C(8,8)))=6 bits.
 なお、NWは、スケジュールされるランクがある値(例えば、2)を超えないように上記ビットマップを用いて設定してもよい。ランク2までの場合、SRIフィールドのサイズは、ceil(log(C(8,1)+C(8,2)))=6ビットとなる。 Note that the NW may be set using the above bitmap so that the scheduled rank does not exceed a certain value (for example, 2). For up to rank 2, the size of the SRI field is ceil(log 2 (C(8,1)+C(8,2)))=6 bits.
[実施形態2.2]
 実施形態2.2において、X(X=1、2、3、…、8)個のSRSリソースの組み合わせに対して、NWは、各Xの組み合わせのフルセットから、サポートされる限定的な組み合わせをUEに設定してもよい。
[Embodiment 2.2]
In embodiment 2.2, for X (X=1, 2, 3, ..., 8) combinations of SRS resources, the NW selects a limited set of supported combinations from the full set of each X combinations. may be set in the UE.
 例えば、X1=2のSRSリソースの組み合わせの場合、C(8,2)=28通りの可能性があるが、NWはそのうちのY1(例えば、Y1=4)個に組み合わせを限定する設定を行ってもよい。 For example, in the case of a combination of SRS resources with X1 = 2, there are C(8, 2) = 28 possibilities, but the NW is configured to limit the combinations to Y1 (for example, Y1 = 4) of them. It's okay.
 X2=4のSRSリソースの組み合わせの場合、C(8,4)=70通りの可能性があるが、NWはそのうちのY2(例えば、Y2=10)個に組み合わせを限定する設定を行ってもよい。 In the case of combinations of SRS resources with X2 = 4, there are C (8, 4) = 70 possibilities, but even if the NW is configured to limit the combinations to Y2 (for example, Y2 = 10) of them, good.
 実施形態2.2の制限によれば、SRIフィールドのサイズは、ceil(log(Σk=1 min{Lmax,NSRS}  Yk))ビットに低減できる。 According to the limitations of Embodiment 2.2, the size of the SRI field is ceil(log 2k=1 min {Lmax, NSRS}  Yk)) bits.
 NWは、X1/X2/…個のSRSリソースについて、同じY個の組み合わせの制限を受けるとUEに対して設定してもよいし、ある規則に従って異なるY1/Y2/…個の可能な組み合わせの制限を受けると設定してもよい。ここで、当該規則は、例えば、可能な組み合わせのうちの最初/最後/真ん中のY1/Y2/…の組み合わせが選択されるルールであってもよいし、可能な組み合わせのうちのZ個の組み合わせごとに1つの組み合わせが選択されるルールであってもよい。 The NW may configure the UE that X1/X2/... SRS resources are subject to the same restriction of Y combinations, or may set the UE to be restricted to the same Y combinations of X1/X2/... different possible combinations according to a certain rule. It may be set if there are restrictions. Here, the rule may be, for example, a rule that selects the first/last/middle combination Y1/Y2/... among the possible combinations, or a rule that selects Z combinations among the possible combinations. The rule may be such that one combination is selected for each combination.
 NWは、可能な組み合わせ、禁止される組み合わせなどについて、明示的に設定してもよい(例えば、図7-10に示したSRSリソースの組み合わせの一部のみがサポート/設定されてもよい)。 The NW may explicitly configure possible combinations, prohibited combinations, etc. (for example, only some of the SRS resource combinations shown in FIGS. 7-10 may be supported/configured).
 図13は、実施形態2.2におけるSRIフィールドとSRSリソースの対応関係の一例を示す図である。 FIG. 13 is a diagram illustrating an example of the correspondence between SRI fields and SRS resources in Embodiment 2.2.
 上述したとおり、NWは、SRSリソースの組み合わせの数(又はSRIフィールドのビット数)と、各Xの組み合わせのフルセットからのサポートされる限定的な組み合わせをUEに設定してもよい。図13では、NWは、SRSリソースの組み合わせの数=4(又はSRIフィールドのビット数=2)を設定したケースが示されている。 As mentioned above, the NW may configure the number of SRS resource combinations (or the number of bits of the SRI field) and the limited supported combinations from the full set of each X combinations to the UE. In FIG. 13, a case is shown in which the number of SRS resource combinations = 4 (or the number of bits of the SRI field = 2) is set in the NW.
 可能なSRSリソースの組み合わせは、組み合わせグループ(コンビネーショングループ)と呼ばれてもよい。 A possible combination of SRS resources may be called a combination group.
 組み合わせグループとSRSリソースとの対応関係は、上位レイヤシグナリングによって設定されてもよい。例えば、SRSリソースごとに、上位レイヤのインデックス(値は例えば0-3)が設定されてもよい。当該インデックス=0のSRSリソースは、グループ0のSRSリソース(例えば、図13のSRI=0に対応)に該当してもよい。 The correspondence between combination groups and SRS resources may be set by upper layer signaling. For example, an upper layer index (for example, a value of 0-3) may be set for each SRS resource. The SRS resource with the index=0 may correspond to the SRS resource of group 0 (for example, corresponding to SRI=0 in FIG. 13).
 また、上位レイヤによってSRSリソースのリストが設定されてもよい。1つのリストは、組み合わせグループに含まれるSRSリソースを示してもよく、SRIの1つのコードポイントに対応してもよい。第1-4のリストは、それぞれグループ0-3のSRSリソースに該当してもよい。 Additionally, a list of SRS resources may be set by an upper layer. One list may indicate the SRS resources included in the combination group and may correspond to one code point of the SRI. Lists 1-4 may correspond to SRS resources of groups 0-3, respectively.
 なお、NCB PUSCHにおいては、SRIフィールドによって指定される1ポートSRSリソースの数が、PUSCHのための指示されるレイヤ数に対応してもよい。 Note that in the NCB PUSCH, the number of 1-port SRS resources specified by the SRI field may correspond to the number of layers specified for the PUSCH.
 なお、実施形態2.1/2.2におけるNWの設定は、X(又はX1/X2/…)の制限、又は、特定のX(又はX1/X2/…)に対する可能な組み合わせの制限に関するUE能力報告に基づいてもよい。 Note that the NW settings in Embodiment 2.1/2.2 are based on the UE regarding restrictions on X (or X1/X2/...) or restrictions on possible combinations for a specific X (or X1/X2/...). May be based on competency reports.
 以上説明した第2の実施形態によれば、SRIフィールドのサイズを好適に抑制できる。 According to the second embodiment described above, the size of the SRI field can be suitably suppressed.
<第3の実施形態>
 第3の実施形態は、ケース1のような、2つの4ポートコヒーレントグループの能力を有するUEのための、NCB PUSCHについてのSRI指示の制限に関する。
<Third embodiment>
The third embodiment concerns the restriction of SRI indication for NCB PUSCH for UEs with two 4-port coherent group capabilities, like case 1.
 なお、本開示において、「…の能力を有する」は、「…の能力をサポートする/報告する」と互いに読み替えられてもよい。 Note that in this disclosure, "having the ability to..." may be interchanged with "supporting/reporting the ability to...".
 第3の実施形態におけるSRI指示の制限は、アンテナ能力情報の報告に従う。第3の実施形態では、UEは、ケース1に対応するアンテナ能力情報を報告している。 Restrictions on SRI instructions in the third embodiment follow reporting of antenna capability information. In the third embodiment, the UE is reporting antenna capability information corresponding to case 1.
[実施形態3.1]
 実施形態3.1は、8ポート送信可能なUEについて、最大ULランクが4に制限される場合の実施形態である。
[Embodiment 3.1]
Embodiment 3.1 is an embodiment in which the maximum UL rank is limited to 4 for a UE capable of 8-port transmission.
 実施形態3.1において、UEに通知されるDCIは、選択されるコヒーレントグループを示すインディケーターフィールド(以下、単にコヒーレントグループインディケーター(CGI)フィールドとも呼ぶ)(例えば、1ビット)を含んでもよい。この場合、SRI指示は、選択されるコヒーレントグループ内の4つのSRSリソースの組み合わせのみを考慮すればよい。この組み合わせは、C(4,1)+C(4,2)+C(4,3)+C(4,4)=15通りであるため、SRIフィールドは4ビットで表現され得る。つまり、DCIは1ビットのCGIフィールドと4ビットのSRIフィールドを含めばよい。 In embodiment 3.1, the DCI notified to the UE may include an indicator field (hereinafter also simply referred to as a coherent group indicator (CGI) field) (e.g., 1 bit) indicating the selected coherent group. . In this case, the SRI indication only needs to consider the combination of four SRS resources within the selected coherent group. Since this combination is C(4,1)+C(4,2)+C(4,3)+C(4,4)=15, the SRI field can be expressed with 4 bits. That is, the DCI only needs to include a 1-bit CGI field and a 4-bit SRI field.
 実施形態3.1において、UEに通知されるDCIは、CGIフィールドを含まなくてもよい。この場合、UEは、常に第1(又は第2)のコヒーレントグループが選択されると想定してもよい。SRI指示は、選択されるコヒーレントグループ内の4つのSRSリソースの組み合わせのみを考慮すればよい。この組み合わせは、既に述べたように15通りであるため、SRIフィールドは4ビットで表現され得る。つまり、DCIは4ビットのSRIフィールドを含めばよい。 In Embodiment 3.1, the DCI notified to the UE may not include the CGI field. In this case, the UE may assume that the first (or second) coherent group is always selected. The SRI indication only needs to consider the combination of four SRS resources within the selected coherent group. Since there are 15 combinations as described above, the SRI field can be expressed with 4 bits. In other words, the DCI only needs to include a 4-bit SRI field.
 なお、最大ULランクがz(z<=4)に限定される場合には、上記の組み合わせを単にC(4,1)+…+C(4,z)で読み替えればよい。 Note that if the maximum UL rank is limited to z (z<=4), the above combination may simply be read as C(4,1)+...+C(4,z).
 なお、本開示において、SRSリソース/コヒーレントグループが選択されることは、SRSリソース/コヒーレントグループがNCB PUSCH送信の(あるレイヤの送信の)ために用いられることを意味してもよい。 Note that in this disclosure, selecting an SRS resource/coherent group may mean that the SRS resource/coherent group is used for NCB PUSCH transmission (transmission of a certain layer).
[実施形態3.2]
 実施形態3.2は、8ポート送信可能なUEについて、最大ULランクが8に制限される場合の実施形態である。この場合、CGIフィールドがDCIに必要である。
[Embodiment 3.2]
Embodiment 3.2 is an embodiment in which the maximum UL rank is limited to 8 for a UE capable of 8-port transmission. In this case, a CGI field is required for the DCI.
 実施形態3.2において、CGIフィールドは、「1コヒーレントグループ(≦ランク4)」又は「2コヒーレントグループ(>ランク4)」を示す1ビットのフィールドであってもよい。 In Embodiment 3.2, the CGI field may be a 1-bit field indicating "1 coherent group (≦rank 4)" or "2 coherent groups (>rank 4)".
 前者が指示される場合、UEは、常に第1(又は第2)のコヒーレントグループが選択されると想定してもよい。この場合、SRI指示は、選択されるコヒーレントグループ内の4つのSRSリソースの組み合わせがSRIフィールドによって指定されると判断してもよい。 If the former is indicated, the UE may always assume that the first (or second) coherent group is selected. In this case, the SRI indication may determine that the combination of four SRS resources in the selected coherent group is specified by the SRI field.
 後者が指示される場合、UEは、第1(又は第2)のコヒーレントグループに含まれる4つのSRSリソースが完全に選択され、第2(又は第1)のコヒーレントグループに含まれる4つのSRSリソースの組み合わせがSRIフィールドによって指定されると判断してもよい。 If the latter is indicated, the UE determines that the four SRS resources included in the first (or second) coherent group are fully selected and the four SRS resources included in the second (or first) coherent group are fully selected. may be determined to be specified by the SRI field.
 したがって、実施形態3.2においてDCIが1ビットのCGIフィールドを含む場合、4ビットのSRIフィールドを含めばよい。 Therefore, in Embodiment 3.2, if the DCI includes a 1-bit CGI field, it only needs to include a 4-bit SRI field.
 実施形態3.2において、CGIフィールドは、「1コヒーレントグループ(≦ランク4)」又は「2コヒーレントグループ(>ランク4)」と、SRI指示によって示されるコヒーレントグループのIDと、を示す2ビットのフィールドであってもよい。 In embodiment 3.2, the CGI field is a 2-bit field indicating “1 coherent group (≦rank 4)” or “2 coherent groups (>rank 4)” and the ID of the coherent group indicated by the SRI indication. It may be a field.
 「1コヒーレントグループ(≦ランク4)」が指示される場合、UEは、コヒーレントグループのIDによって示される第1又は第2のコヒーレントグループが選択されると判断してもよい。この場合、SRI指示は、選択されるコヒーレントグループ内の4つのSRSリソースの組み合わせがSRIフィールドによって指定されると判断してもよい。 If “1 coherent group (≦rank 4)” is indicated, the UE may determine that the first or second coherent group indicated by the coherent group ID is selected. In this case, the SRI indication may determine that the combination of four SRS resources in the selected coherent group is specified by the SRI field.
 「2コヒーレントグループ(>ランク4)」が指示される場合、UEは、コヒーレントグループのIDによって示される(又は示されない)第1又は第2のコヒーレントグループに含まれる4つのSRSリソースが完全に選択され、当該IDによって示されない(又は示される)第2(又は第1)のコヒーレントグループに含まれる4つのSRSリソースの組み合わせがSRIフィールドによって指定されると判断してもよい。 If “2 coherent groups (>rank 4)” is indicated, the UE shall ensure that the 4 SRS resources included in the first or second coherent group indicated (or not indicated) by the coherent group ID are fully selected. It may be determined that a combination of four SRS resources included in the second (or first) coherent group that is not indicated (or indicated) by the ID is specified by the SRI field.
 したがって、実施形態3.2においてDCIが2ビットのCGIフィールドを含む場合、4ビットのSRIフィールドを含めばよい。 Therefore, in Embodiment 3.2, if the DCI includes a 2-bit CGI field, it only needs to include a 4-bit SRI field.
 なお、最大ULランクがz(4<z<=8)に限定される場合には、上記の4つのSRSリソースの組み合わせをz-4個のSRSリソースの組み合わせ(C(4,1)+…+C(4,z-4))で読み替えればよい。この場合、DCIには1又は2ビットのCGIフィールドと、ceil(C(4,1)+…+C(4,z-4))ビットのSRIフィールドを含めばよい。 Note that when the maximum UL rank is limited to z (4<z<=8), the combination of the above four SRS resources is changed to the combination of z-4 SRS resources (C(4,1)+... +C(4,z-4)). In this case, the DCI may include a 1 or 2-bit CGI field and a ceil (C(4,1)+...+C(4,z-4)) bit SRI field.
 なお、CGIフィールドには、選択されるコヒーレントグループの数、対応する選択されるコヒーレントグループID、SRIフィールドのための1つの指示されるグループIDなどの少なくとも1つを示す情報が含まれてもよい。 Note that the CGI field may include information indicating at least one of the number of selected coherent groups, a corresponding selected coherent group ID, one indicated group ID for the SRI field, etc. .
 なお、選択されるコヒーレントグループの数は、選択されるコヒーレントグループIDの数によって暗示的に通知されてもよい。 Note that the number of coherent groups to be selected may be implicitly notified by the number of coherent group IDs to be selected.
[第3の実施形態の補足]
 各SRSリソースとUEのコヒーレントグループとの関連付けは、NWによって設定されてもよいし、予め定義されるルールに従って決定されてもよい。
[Supplementary information on the third embodiment]
The association between each SRS resource and a coherent group of UEs may be configured by the NW, or may be determined according to predefined rules.
 例えば、ノンコードブックのための8個の1ポートSRSリソースが設定される場合、NWは、SRSリソース#0-#3がコヒーレントグループ#0に関連付けられ、SRSリソース#4-#7がコヒーレントグループ#1に関連付けられることを示す設定情報を、UEに設定(送信)してもよい。 For example, if eight 1-port SRS resources for a non-codebook are configured, the NW will associate SRS resources #0-#3 with coherent group #0, and associate SRS resources #4-#7 with coherent group Setting information indicating that it is associated with #1 may be set (sent) to the UE.
 ノンコードブックのための8個の1ポートSRSリソースが設定される場合、NW/UEは、各コヒーレントグループにおけるコヒーレントなアンテナポート数に従って、コヒーレントグループ及びSRSリソースが昇順(又は降順)に関連付けられると想定してもよい。 When 8 1-port SRS resources for a non-codebook are configured, the NW/UE assumes that the coherent groups and SRS resources are associated in ascending order (or descending order) according to the number of coherent antenna ports in each coherent group. You can assume that.
 なお、本開示において、これらの関連付けは、ケース1/2/3のいずれにも適用されてもよい。 Note that in the present disclosure, these associations may be applied to any of Cases 1/2/3.
 なお、SRIフィールドによって指定されるSRSリソースは、図7-10に示した既存のRel.15/16 NRではインデックスが#0-#3までとなっているが、第3の実施形態においてもSRIフィールドの解釈に参照されてもよい。この場合、コヒーレントグループとSRSリソースとの関連付けによっては、図7-10のインデックスの値に+4した値がSRSリソースIDとして利用されてもよい。言い換えると、図7-10のSRSインデックス#0-#3は、選択(指定)されるコヒーレントグループに含まれる第1-第4のSRSリソースのインデックスで読み替えられてもよい。 Note that the SRS resource specified by the SRI field is the existing Rel. In 15/16 NR, the indexes are #0 to #3, but they may also be referred to in the third embodiment when interpreting the SRI field. In this case, depending on the association between the coherent group and the SRS resource, a value obtained by adding 4 to the index value in FIGS. 7-10 may be used as the SRS resource ID. In other words, SRS indices #0 to #3 in FIGS. 7 to 10 may be replaced with indices of the first to fourth SRS resources included in the selected (designated) coherent group.
 例えば、SRSリソース#0-#3がコヒーレントグループ#0(グループID#0)に関連付けられ、SRSリソース#4-#7がコヒーレントグループ#1(グループID#1)に関連付けられる場合を考える。UEに対して実施形態3.1におけるDCI(1ビットのCGIフィールドと4ビットのSRIフィールドを含む)が通知されたとする。 For example, consider a case where SRS resources #0-#3 are associated with coherent group #0 (group ID #0), and SRS resources #4-#7 are associated with coherent group #1 (group ID #1). Assume that the DCI (including a 1-bit CGI field and 4-bit SRI field) in Embodiment 3.1 is notified to the UE.
 CGIフィールドがグループ#1を示す場合であって、SRIフィールドが12を示す場合、指定されるSRSリソースは、図10における#0、#2及び#3をグループ#1に読み替えた#4、#6及び#7である。 When the CGI field indicates group #1 and the SRI field indicates 12, the specified SRS resources are #4, #4, #1, with #0, #2, and #3 in FIG. 10 replaced with group #1. 6 and #7.
 図14は、実施形態3.2のCGIフィールドと、指定されるグループとの対応関係の一例を示す図である。CGIフィールド=00又は10の場合、SRIフィールドはグループ#0のSRSリソースを示す。 FIG. 14 is a diagram illustrating an example of the correspondence between CGI fields and designated groups in Embodiment 3.2. When the CGI field=00 or 10, the SRI field indicates SRS resources of group #0.
 CGIフィールド=10の場合、グループ#1に対応するSRSリソース#4-#7が完全に選択され、SRIフィールドによってグループ#0に対応するSRSリソース#0-#3が選択される(図10がそのまま参照されてもよい)。 When the CGI field = 10, SRS resources #4-#7 corresponding to group #1 are completely selected, and SRS resources #0-#3 corresponding to group #0 are selected by the SRI field (Figure 10 shows may be referred to as is).
 以上説明した第3の実施形態によれば、UEのアンテナ能力に対応して、当該UEへのDCIフォーマットのSRIフィールドなどのサイズを適切に決定できる。 According to the third embodiment described above, the size of the SRI field of the DCI format for the UE can be appropriately determined in accordance with the antenna capability of the UE.
<第4の実施形態>
 第4の実施形態は、ケース3のような、2つの4ポートコヒーレントグループの能力を有するUEのための、NCB PUSCHについてのSRI指示の制限に関する。
<Fourth embodiment>
The fourth embodiment concerns the restriction of SRI indication for NCB PUSCH for a UE with two 4-port coherent group capabilities, such as case 3.
 第4の実施形態におけるSRI指示の制限は、アンテナ能力情報の報告に従う。第4の実施形態では、UEは、ケース3に対応するアンテナ能力情報を報告している。 Restrictions on SRI instructions in the fourth embodiment follow reports of antenna capability information. In the fourth embodiment, the UE is reporting antenna capability information corresponding to case 3.
 以下、8ポート送信可能なUEについて、最大ULランクがZ(Zは整数)に制限される場合の実施形態を説明する。 Hereinafter, an embodiment will be described in which the maximum UL rank is limited to Z (Z is an integer) for a UE capable of 8-port transmission.
[実施形態4.1]
 実施形態4.1は、Z≦2の場合である。
[Embodiment 4.1]
Embodiment 4.1 is a case where Z≦2.
 実施形態4.1.1において、UEに通知されるDCIは、4つのグループから1つを示すCGIフィールド(例えば、2ビット)を含んでもよい。この場合、SRI指示は、選択されるコヒーレントグループ内の2つのSRSリソースの組み合わせのみを考慮すればよいため、SRIフィールドは1ビットで表現され得る。 In embodiment 4.1.1, the DCI notified to the UE may include a CGI field (eg, 2 bits) indicating one of four groups. In this case, since the SRI indication only needs to consider the combination of two SRS resources within the selected coherent group, the SRI field can be represented by 1 bit.
 実施形態4.1.2において、UEに通知されるDCIは、CGIフィールドを含まなくてもよい。この場合、UEは、常に第1(又は第2又は第3又は第4)のコヒーレントグループが選択されると想定してもよい。SRI指示は、選択されるコヒーレントグループ内の2つのSRSリソースの組み合わせのみを考慮すればよい。SRIフィールドは1ビットで表現され得る。 In Embodiment 4.1.2, the DCI notified to the UE may not include the CGI field. In this case, the UE may assume that the first (or second or third or fourth) coherent group is always selected. The SRI indication only needs to consider the combination of two SRS resources within the selected coherent group. The SRI field can be represented by 1 bit.
[実施形態4.2]
 実施形態4.2は、Z≦4の場合である。
[Embodiment 4.2]
Embodiment 4.2 is a case where Z≦4.
 実施形態4.2.1において、CGIフィールドは、「1コヒーレントグループ(≦ランク2)」又は「2コヒーレントグループ(>ランク2)」を示す1ビットのフィールドであってもよい。UEは、昇順又は降順に従うコヒーレントグループIDが指定されると常に想定するため、コヒーレントグループIDは指定されなくてもよい。 In Embodiment 4.2.1, the CGI field may be a 1-bit field indicating "1 coherent group (≦rank 2)" or "2 coherent groups (>rank 2)". Coherent group IDs may not be specified, as the UE always assumes that coherent group IDs according to ascending or descending order are specified.
 前者が指示される場合、UEは、常に例えば第1のコヒーレントグループが選択されると想定してもよい。この場合、SRI指示は、選択されるコヒーレントグループ内の2つのSRSリソースの組み合わせがSRIフィールドによって指定されると判断してもよい。 If the former is indicated, the UE may always assume that e.g. the first coherent group is selected. In this case, the SRI indication may determine that the combination of two SRS resources in the selected coherent group is specified by the SRI field.
 後者が指示される場合、UEは、例えば第1のコヒーレントグループに含まれる2つのSRSリソースが完全に選択され、第2のコヒーレントグループに含まれる2つのSRSリソースの組み合わせがSRIフィールドによって指定されると判断してもよい。 If the latter is indicated, the UE may, for example, select two SRS resources included in the first coherent group completely, and a combination of two SRS resources included in the second coherent group is specified by the SRI field. You may judge that.
 実施形態4.2.2において、CGIフィールドは、コヒーレントグループの数「1コヒーレントグループ(≦ランク4)」又は「2コヒーレントグループ(>ランク4)」と、選択されるコヒーレントグループのIDと、を示すフィールドであってもよい。SRI指示によって示されるコヒーレントグループのIDは、予め定められるルールに基づいて判断されるため、通知される必要はない。当該ルール、SRI指示などに関しては実施形態3.1と類似してもよい。 In embodiment 4.2.2, the CGI field includes the number of coherent groups “1 coherent group (≦rank 4)” or “2 coherent groups (>rank 4)” and the ID of the selected coherent group. It may also be a field that indicates. The ID of the coherent group indicated by the SRI instruction is determined based on a predetermined rule, and therefore does not need to be notified. The rules, SRI instructions, etc. may be similar to Embodiment 3.1.
 実施形態4.2.3において、CGIフィールドは、コヒーレントグループの数「1コヒーレントグループ(≦ランク4)」又は「2コヒーレントグループ(>ランク4)」と、選択されるコヒーレントグループのIDと、SRI指示によって示されるコヒーレントグループのIDと、を示すフィールドであってもよい。SRI指示に関しては実施形態3.2と類似してもよい。 In embodiment 4.2.3, the CGI field includes the number of coherent groups “1 coherent group (≦rank 4)” or “2 coherent groups (>rank 4)”, the ID of the selected coherent group, and the SRI. It may also be a field indicating the ID of the coherent group indicated by the instruction. Regarding the SRI instruction, it may be similar to Embodiment 3.2.
[実施形態4.3]
 実施形態4.3は、Z≦6の場合である。
[Embodiment 4.3]
Embodiment 4.3 is a case where Z≦6.
 コヒーレントグループの数として1、2又は3が指定可能なこと以外は、実施形態4.2と同様であってもよいため、重複する説明は繰り返さない(つまり実施形態4.2.1-4.2.3と類似する実施形態4.3.1-4.3.3がある)。 Embodiment 4.2 may be the same as Embodiment 4.2 except that 1, 2, or 3 can be specified as the number of coherent groups, so duplicate explanation will not be repeated (that is, Embodiment 4.2.1-4. There are embodiments 4.3.1-4.3.3 similar to 2.3).
[実施形態4.4]
 実施形態4.4は、Z≦8の場合である。
[Embodiment 4.4]
Embodiment 4.4 is a case where Z≦8.
 コヒーレントグループの数として1、2、3又は4が指定可能なこと以外は、実施形態4.2と同様であってもよいため、重複する説明は繰り返さない(つまり実施形態4.2.1-4.2.3と類似する実施形態4.4.1-4.4.3がある)。 Embodiment 4.2 may be the same as Embodiment 4.2 except that 1, 2, 3, or 4 can be specified as the number of coherent groups, so duplicate explanation will not be repeated (that is, Embodiment 4.2.1- There are embodiments 4.4.1-4.4.3 similar to 4.2.3).
 以上説明したように、第4の実施形態では、UEは、CGIフィールドによって、コヒーレントグループの数、選択されるコヒーレントグループID、SRIフィールドに対応するコヒーレントグループIDなどの少なくとも1つを判断してもよい。SRIフィールドは、対応するコヒーレントグループIDにおける2つのSRSリソースを指定可能であってもよい。 As described above, in the fourth embodiment, the UE may determine at least one of the number of coherent groups, the coherent group ID to be selected, the coherent group ID corresponding to the SRI field, etc., based on the CGI field. good. The SRI field may be able to specify two SRS resources in the corresponding coherent group ID.
 なお、CGIフィールドのオーバーヘッドを低減するために、許容されるコヒーレントグループIDの組み合わせが、NWの設定、UE能力などに基づいて制限されてもよい。このような制限は、第3の実施形態にも適用可能である。 Note that in order to reduce the overhead of the CGI field, the combinations of coherent group IDs that are allowed may be limited based on the NW settings, UE capabilities, etc. Such restrictions are also applicable to the third embodiment.
 図15は、実施形態4.4.1のCGIフィールドと、指定されるグループIDとの対応関係の一例を示す図である。SRIフィールドは、例えば、最小/最大のグループIDのSRSリソースを示してもよい。 FIG. 15 is a diagram illustrating an example of the correspondence between CGI fields and specified group IDs in Embodiment 4.4.1. The SRI field may indicate, for example, the SRS resource of the minimum/maximum group ID.
 図16は、実施形態4.4.2のCGIフィールドと、指定されるグループIDとの対応関係の一例を示す図である。本例は、許容されるコヒーレントグループIDの組み合わせが制限されていないため、CGIフィールドのビット数が比較的大きい。 FIG. 16 is a diagram illustrating an example of the correspondence between CGI fields and specified group IDs in Embodiment 4.4.2. In this example, the number of bits in the CGI field is relatively large because there are no restrictions on the combinations of coherent group IDs that are allowed.
 図17は、実施形態4.4.3のCGIフィールドと、指定されるグループID及びSRIフィールドに対応するグループIDとの対応関係の一例を示す図である。本例は、許容されるコヒーレントグループIDの組み合わせが、CGIフィールドが4ビットになるように制限されている。 FIG. 17 is a diagram showing an example of the correspondence between the CGI field of Embodiment 4.4.3 and the group ID corresponding to the specified group ID and SRI field. In this example, the allowed combinations of coherent group IDs are limited so that the CGI field is 4 bits.
 図18は、実施形態4.4.2のCGIフィールドと、指定されるグループIDとの対応関係の一例を示す図である。本例は、許容されるコヒーレントグループIDの組み合わせが、CGIフィールドが3ビットになるように制限されている。 FIG. 18 is a diagram illustrating an example of the correspondence between CGI fields and specified group IDs in Embodiment 4.4.2. In this example, the permissible combinations of coherent group IDs are limited so that the CGI field is 3 bits.
 以上説明した第4の実施形態によれば、UEのアンテナ能力に対応して、当該UEへのDCIフォーマットのSRIフィールドなどのサイズを適切に決定できる。 According to the fourth embodiment described above, the size of the SRI field of the DCI format for the UE can be appropriately determined in accordance with the antenna capability of the UE.
<第5の実施形態>
 第5の実施形態は、ケース2のような、4ポートコヒーレントグループ及び2ポートコヒーレントグループの能力を有するUEのための、NCB PUSCHについてのSRI指示の制限に関する。
<Fifth embodiment>
The fifth embodiment relates to the restriction of SRI indication for NCB PUSCH for UEs with 4-port coherent group and 2-port coherent group capabilities, such as case 2.
 第5の実施形態におけるSRI指示の制限は、アンテナ能力情報の報告に従う。第5の実施形態では、UEは、ケース2に対応するアンテナ能力情報を報告している。 Restrictions on SRI instructions in the fifth embodiment follow reports of antenna capability information. In the fifth embodiment, the UE is reporting antenna capability information corresponding to case 2.
 以下、8ポート送信可能なUEについて、最大ULランクがZ(Zは整数)に制限される場合の実施形態を説明する。なお、これまでの実施形態に類似する点については繰り返し説明しない。 Hereinafter, an embodiment will be described in which the maximum UL rank is limited to Z (Z is an integer) for a UE capable of 8-port transmission. Note that points similar to the previous embodiments will not be repeatedly described.
[実施形態5.1]
 実施形態5.1は、Z≦2の場合である。
[Embodiment 5.1]
Embodiment 5.1 is a case where Z≦2.
 実施形態5.1.1において、UEに通知されるDCIは、3つのグループから1つを示すCGIフィールド(例えば、2ビット)を含んでもよい。この場合、SRI指示は、選択されるコヒーレントグループ内の2つ又は4つのSRSリソースの組み合わせのみを考慮すればよい。 In embodiment 5.1.1, the DCI notified to the UE may include a CGI field (eg, 2 bits) indicating one of three groups. In this case, the SRI indication only needs to consider combinations of two or four SRS resources within the selected coherent group.
 実施形態5.1.2において、UEに通知されるDCIは、CGIフィールドを含まなくてもよい。この場合、UEは、常に2つ又は4つのコヒーレントポートを有する特定のコヒーレントグループが選択されると想定してもよい。SRI指示は、選択されるコヒーレントグループ内の2つ又は4つのSRSリソースの組み合わせのみを考慮すればよい。 In Embodiment 5.1.2, the DCI notified to the UE may not include the CGI field. In this case, the UE may assume that a particular coherent group with 2 or 4 coherent ports is always selected. The SRI indication only needs to consider combinations of two or four SRS resources within the selected coherent group.
[実施形態5.2]
 実施形態5.2は、Z≦4の場合である。
[Embodiment 5.2]
Embodiment 5.2 is a case where Z≦4.
 実施形態5.2.1において、CGIフィールドは、4つのコヒーレントポートを有するコヒーレントグループを示すフィールドであってもよい。CGIフィールドは、「1コヒーレントグループ」又は2つのコヒーレントポートを有するグループからの「2コヒーレントグループ」を示すフィールドであってもよい。 In embodiment 5.2.1, the CGI field may be a field indicating a coherent group having four coherent ports. The CGI field may be a field indicating "1 coherent group" or "2 coherent groups" from a group with two coherent ports.
 実施形態5.2.2において、CGIフィールドはDCIに含まれなくてもよい、UEは、いずれかの4つのコヒーレントポートを有するコヒーレントグループを常に想定してもよいし、昇順又は降順に従うコヒーレントグループIDが選択されると常に想定してもよい。 In embodiment 5.2.2, the CGI field may not be included in the DCI, the UE may always assume a coherent group with either four coherent ports, or a coherent group following ascending or descending order. It may always be assumed that the ID is selected.
[実施形態5.3]
 実施形態5.3は、Z≦6の場合である。
[Embodiment 5.3]
Embodiment 5.3 is a case where Z≦6.
 実施形態5.3.1において、CGIフィールドは、「1つのコヒーレントグループ(<= rank4)」または「2つのコヒーレントグループ(<=rank6、>rank4)」を示すフィールドであってもよい。UEは、グループごとのコヒーレントポート番号と同様に、常に昇順または降順に従って、指示されたコヒーレントグループIDを想定するため、コヒーレントグループIDの指示は不要である。例えば、「2つのコヒーレントグループ」が指示された場合、4つのコヒーレントポートを有するコヒーレントグループが完全に選択されたと仮定し、SRIフィールドは2つのポートを有する第1のコヒーレントグループ内の2つのSRSリソースの組み合わせを示す。 In Embodiment 5.3.1, the CGI field may be a field indicating "one coherent group (<= rank 4)" or "two coherent groups (<= rank 6, > rank 4)". Since the UE always assumes the indicated coherent group ID in ascending or descending order as well as the coherent port number for each group, the instruction of the coherent group ID is not necessary. For example, if "2 coherent groups" is indicated, assuming that a coherent group with 4 coherent ports is fully selected, the SRI field will contain two SRS resources in the first coherent group with 2 ports. Shows the combination of
 実施形態5.3.2において、CGIフィールドは、「1つのコヒーレントグループ(<= rank4)」または「2つのコヒーレントグループ(<=rank6、>rank4)」と、2つのコヒーレントポートを有する2つのグループから選択したコヒーレントグループID(又はSRI指示フィールドに対して指示したコヒーレントグループID)と、を示してもよい。実施形態3.2と同様に、SRIは指示されたコヒーレントグループ内の2つまたは4つのSRSリソースの組合せを示す。 In embodiment 5.3.2, the CGI field is "one coherent group (<= rank4)" or "two coherent groups (<= rank6, > rank4)" and two groups with two coherent ports. A coherent group ID selected from (or a coherent group ID specified in the SRI indication field) may be indicated. Similar to embodiment 3.2, an SRI indicates a combination of two or four SRS resources within a directed coherent group.
[実施形態5.4]
 実施形態5.4は、Z≦8の場合である。
[Embodiment 5.4]
Embodiment 5.4 is a case where Z≦8.
 実施形態5.4.1において、CGIフィールドは、「1つのコヒーレントグループ(<= rank4)」または「2つのコヒーレントグループ(<= rank6、> rank4)」または「3つのコヒーレントグループ(<=rank8、> rank6)」を示す指示(例えば、2ビット)でもよい。そして、UEは、グループごとのコヒーレントポート番号と同様に、昇順または降順に従って、常に指示されたコヒーレントグループIDを想定するため、コヒーレントグループIDの指示は不要である。例:「3コヒーレントグループ」が指示された場合、4ポートグループと、ルールに従って最初の2ポートグループが完全に選択されたとみなされ、SRIフィールドは、最後の2ポートコヒーレントグループ内の2つのSRSリソースの組み合わせを示す。 In embodiment 5.4.1, the CGI field is "1 coherent group (<= rank 4)" or "2 coherent groups (<= rank 6, > rank 4)" or "3 coherent groups (<= rank 8, > rank 6)” (for example, 2 bits). Since the UE always assumes the instructed coherent group ID in ascending or descending order, similar to the coherent port number for each group, the instruction of the coherent group ID is not necessary. Example: If "3 coherent groups" is specified, 4 port groups and the first 2 port groups are considered fully selected according to the rules, and the SRI field is the 2 SRS resources in the last 2 port coherent groups. Shows the combination of
 実施形態5.4.2において、CGIフィールドは、「1コヒーレントグループ(<= rank4)」、「2コヒーレントグループ(<= rank6、> rank4)」、「3コヒーレントグループ(<= rank8、> rank6)」、および各ケースで対応する選択コヒーレントグループID(又はSRIフィールドによって指示されるコヒーレントグループID)が存在することが可能である。実施形態3.2と同様に、SRIは、指示されたコヒーレントグループ内の2つまたは4つのSRSリソースの組合せを示す。 In embodiment 5.4.2, the CGI fields are "1 coherent group (<= rank 4)", "2 coherent group (<= rank 6, > rank 4)", "3 coherent group (<= rank 8, > rank 6)" ”, and in each case a corresponding selected coherent group ID (or coherent group ID indicated by the SRI field). Similar to embodiment 3.2, an SRI indicates a combination of two or four SRS resources within a directed coherent group.
 以上説明したように、第5の実施形態では、UEは、CGIフィールドによって、コヒーレントグループの数、選択されるコヒーレントグループID、SRIフィールドに対応するコヒーレントグループIDなどの少なくとも1つを判断してもよい。SRIフィールドは、対応するコヒーレントグループIDにおける2つ又は4つのSRSリソースを指定可能であってもよい。 As described above, in the fifth embodiment, the UE may determine at least one of the number of coherent groups, the coherent group ID to be selected, the coherent group ID corresponding to the SRI field, etc., based on the CGI field. good. The SRI field may be able to specify two or four SRS resources in the corresponding coherent group ID.
 なお、CGIフィールドのオーバーヘッドを低減するために、許容されるコヒーレントグループIDの組み合わせが、NWの設定、UE能力などに基づいて制限されてもよい。 Note that in order to reduce the overhead of the CGI field, the combinations of coherent group IDs that are allowed may be limited based on the NW settings, UE capabilities, etc.
 以上説明した第5の実施形態によれば、UEのアンテナ能力に対応して、当該UEへのDCIフォーマットのSRIフィールドなどのサイズを適切に決定できる。 According to the fifth embodiment described above, the size of the SRI field of the DCI format for the UE can be appropriately determined in accordance with the antenna capability of the UE.
<補足>
 なお、本開示における「8」という数は、4より大きい任意の数(例えば、6、10、12、16、…)で読み替えられてもよいし、4以下の任意の数(例えば、1、2、3、4)で読み替えられてもよい。また、この読み替えが行われる場合、上述の実施形態において8を前提とする任意の数は、適宜読み替えられてもよい。当業者であればこの読み替えは本開示に記載されていると当然理解できる。例えば、「8」が「6」に読み替えられる場合、既存の4(又は2)ポートのPC/FCプリコーダに4(又は6)行のゼロ要素を挿入して構成される8ポートiレイヤPCプリコーダは、2(又は4)行のゼロ要素を挿入して構成される6ポートiレイヤPCプリコーダに読み替えられてもよい。
<Supplement>
Note that the number "8" in the present disclosure may be read as any number greater than 4 (for example, 6, 10, 12, 16, ...), or any number less than or equal to 4 (for example, 1, 2, 3, and 4). Moreover, when this reading is performed, the arbitrary number based on 8 in the above-mentioned embodiment may be read as appropriate. Those skilled in the art will naturally understand that this replacement is included in the present disclosure. For example, when "8" is read as "6", an 8-port i-layer PC precoder is constructed by inserting 4 (or 6) rows of zero elements into the existing 4 (or 2) port PC/FC precoder. may be read as a 6-port i-layer PC precoder configured by inserting 2 (or 4) rows of zero elements.
 なお、上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 Note that at least one of the embodiments described above may be applied only to UEs that have reported or support a specific UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての処理/動作/制御/情報をサポートすること、
 ・4より多いアンテナポートを用いるPUSCH送信をサポートすること、
 ・8ポートmレイヤNC/PC/FCプリコーダ(m=1、2、…)をサポートすること、
 ・既存の2/4ポートNC/PC/FCプリコーダに基づく8ポートPCプリコーダ(の決定)をサポートすること、
 ・コヒーレントポート、
 ・コヒーレントグループ、
 ・8ポートPCプリコーダのベースとして利用できる(サポートする)既存の2/4ポートPC/FCプリコーダ。
The particular UE capability may indicate at least one of the following:
- supporting processing/operation/control/information for at least one of the above embodiments;
- supporting PUSCH transmission with more than 4 antenna ports;
・Supporting 8-port m-layer NC/PC/FC precoder (m=1, 2,...);
Supporting (determination of) an 8-port PC precoder based on the existing 2/4-port NC/PC/FC precoder;
・Coherent port,
・Coherent group,
- Existing 2/4 port PC/FC precoder that can be used (supported) as a base for the 8 port PC precoder.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、BWP)ごとの能力であってもよいし、周波数レンジ(例えば、FR1、FR2、FR3、FR4、FR5)ごとの能力であってもよいし、サブキャリア間隔ごとの能力であってもよい。 Further, the above-mentioned specific UE capability may be a capability that is applied across all frequencies (commonly regardless of frequency), or may be a capability for each frequency (for example, cell, band, BWP). , the capability may be for each frequency range (for example, FR1, FR2, FR3, FR4, FR5), or the capability may be for each subcarrier interval.
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capability may be a capability that is applied across all duplex schemes (commonly regardless of the duplex scheme), or may be a capability that is applied across all duplex schemes (for example, Time Division Duplex). The capability may be for each frequency division duplex (TDD)) or frequency division duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、4より多いアンテナポートを用いるPUSCHのための設定情報、上述の少なくとも1つの実施形態のプリコーダ決定/選択/判断方法を用いることを示す情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。 Also, at least one of the embodiments described above may be applied when the UE is configured with specific information related to the embodiment described above by upper layer signaling. For example, the specific information may include configuration information for a PUSCH with more than four antenna ports, information indicating that the precoder determination/selection/judgment method of at least one embodiment described above is used, a specific release (e.g. It may be any RRC parameter for Rel.18).
 UEは、受信した上記特定の情報に基づいて、利用する8ポートPCプリコーダを切り替えてもよい。 The UE may switch the 8-port PC precoder to be used based on the specific information received.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。 If the UE does not support at least one of the specific UE capabilities or is not configured with the specific information, for example, Rel. 15/16 operations may be applied.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 サウンディング参照信号(Sounding Reference Signal(SRS))リソースインディケーター(SRS Resource Indicator(SRI))フィールドによって指定され得るSRリソースの組み合わせの制限に関する情報を受信する受信部と、
 前記情報に基づいて、ノンコードブックの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信をスケジュールする下りリンク制御情報(Downlink Control Information(DCI))フォーマットにおける前記SRIフィールドのサイズを判断する制御部と、を有する端末。
(Additional note)
Regarding one embodiment of the present disclosure, the following invention will be added.
[Additional note 1]
a receiving unit that receives information regarding SR resource combination restrictions that may be specified by a Sounding Reference Signal (SRS) Resource Indicator (SRI) field;
Control for determining the size of the SRI field in a Downlink Control Information (DCI) format that schedules a Physical Uplink Shared Channel (PUSCH) transmission of a non-codebook based on the information. A terminal having a section and a terminal.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
The configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図19は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 19 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Additionally, the wireless communication system 1 may support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC has dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)).
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) where both the MN and SN are NR base stations (gNB)). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 with relatively wide coverage, and base stations 12 (12a-12c) that are located within the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. You may prepare. User terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when base stations 11 and 12 are not distinguished, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and FR1 may correspond to a higher frequency band than FR2, for example.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may communicate using at least one of time division duplex (TDD) and frequency division duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber, X2 interface, etc. compliant with Common Public Radio Interface (CPRI)) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which is an upper station, is an Integrated Access Backhaul (IAB) donor, and base station 12, which is a relay station, is an IAB donor. May also be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM)-based wireless access method may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A wireless access method may also be called a waveform. Note that in the wireless communication system 1, other wireless access methods (for example, other single carrier transmission methods, other multicarrier transmission methods) may be used as the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, the downlink channels include a physical downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (physical broadcast channel (PBCH)), and a downlink control channel (physical downlink control). Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the wireless communication system 1, uplink channels include a physical uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), and a random access channel. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, upper layer control information, etc. may be transmitted by PUSCH. Furthermore, a Master Information Block (MIB) may be transmitted via the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (DCI) that includes scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CONtrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH allows channel state information (CSI), delivery confirmation information (for example, may be called Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and scheduling request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlinks, uplinks, etc. may be expressed without adding "link". Furthermore, various channels may be expressed without adding "Physical" at the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called an SS/PBCH block, SS Block (SSB), etc. Note that SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, measurement reference signals (Sounding Reference Signal (SRS)), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS). good. Note that DMRS may be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図20は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 20 is a diagram illustrating an example of the configuration of a base station according to an embodiment. The base station 10 includes a control section 110, a transmitting/receiving section 120, a transmitting/receiving antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), and the like. The control unit 110 may control transmission and reception, measurement, etc. using the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140. The control unit 110 may generate data, control information, a sequence, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 120. The control unit 110 may perform communication channel call processing (setting, release, etc.), status management of the base station 10, radio resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121, a radio frequency (RF) section 122, and a measuring section 123. The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212. The transmitter/receiver unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, etc., which are explained based on common understanding in the technical field related to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmitting/receiving section 120 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 1211 and an RF section 122. The reception section may include a reception processing section 1212, an RF section 122, and a measurement section 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 120 (transmission processing unit 1211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, and discrete Fourier transform (DFT) on the bit string to be transmitted. A baseband signal may be output by performing transmission processing such as processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 120 (RF section 122) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmitting/receiving unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) processing (if necessary), applying reception processing such as filter processing, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data etc. may also be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may perform measurements regarding the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR) )) , signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), etc. may be measured. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) between devices included in the core network 30, other base stations 10, etc., and transmits and receives user data (user plane data) for the user terminal 20, control plane It is also possible to acquire and transmit data.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140.
 なお、送受信部120は、サウンディング参照信号(Sounding Reference Signal(SRS))リソースインディケーター(SRS Resource Indicator(SRI))フィールドによって指定され得るSRリソースの組み合わせの制限に関する情報を送信してもよい。制御部110は、前記制限に基づいて、ノンコードブックの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信をスケジュールする下りリンク制御情報(Downlink Control Information(DCI))フォーマットにおける前記SRIフィールドのサイズを決定してもよい。 Note that the transmitting/receiving unit 120 may transmit information regarding restrictions on combinations of SR resources that can be specified by a Sounding Reference Signal (SRS) resource indicator (SRI) field. Based on the restriction, the control unit 110 sets the SRI field in the Downlink Control Information (DCI) format that schedules the transmission of the non-codebook on the Physical Uplink Shared Channel (PUSCH). You may decide on the size.
(ユーザ端末)
 図21は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 21 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control section 210, a transmitting/receiving section 220, and a transmitting/receiving antenna 230. Note that one or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows functional blocks that are characteristic of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which will be explained based on common recognition in the technical field related to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transmitting/receiving unit 220 and the transmitting/receiving antenna 230, measurement, and the like. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as a signal, and may transfer the generated data to the transmitting/receiving unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221, an RF section 222, and a measuring section 223. The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212. The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field related to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmitting/receiving section 220 may be configured as an integrated transmitting/receiving section, or may be configured from a transmitting section and a receiving section. The transmitting section may include a transmitting processing section 2211 and an RF section 222. The reception section may include a reception processing section 2212, an RF section 222, and a measurement section 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna, such as an array antenna, as described based on common recognition in the technical field related to the present disclosure.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transmitter/receiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 220 may form at least one of a transmitting beam and a receiving beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (e.g. RLC retransmission control), MAC layer processing (e.g. , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel encoding (which may include error correction encoding), modulation, mapping, filter processing, DFT processing (as necessary), and IFFT processing on the bit string to be transmitted. , precoding, digital-to-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmitting/receiving unit 220 (transmission processing unit 2211) performs the above processing in order to transmit the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or if not, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation, filter processing, amplification, etc. on the baseband signal in a radio frequency band, and may transmit the signal in the radio frequency band via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filter processing, demodulation into a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, and decoding (error correction) on the acquired baseband signal. (which may include decoding), MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to obtain user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving unit 220 (measuring unit 223) may perform measurements regarding the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement results may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitting unit and receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 なお、送受信部220は、サウンディング参照信号(Sounding Reference Signal(SRS))リソースインディケーター(SRS Resource Indicator(SRI))フィールドによって指定され得るSRリソースの組み合わせの制限に関する情報を受信してもよい。制御部210は、前記情報に基づいて、ノンコードブックの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信をスケジュールする下りリンク制御情報(Downlink Control Information(DCI))フォーマットにおける前記SRIフィールドのサイズを判断してもよい。 Note that the transmitting/receiving unit 220 may receive information regarding restrictions on combinations of SR resources that can be specified by a Sounding Reference Signal (SRS) resource indicator (SRI) field. Based on the information, the control unit 210 configures the SRI field in a Downlink Control Information (DCI) format that schedules transmission of a non-codebook on a Physical Uplink Shared Channel (PUSCH). You can also judge the size.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagram used to explain the above embodiment shows blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, functions include judgment, decision, judgement, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図22は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 22 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in this disclosure, words such as apparatus, circuit, device, section, unit, etc. can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, the processing may be performed by one processor, or the processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Note that the processor 1001 may be implemented using one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20 is performed by, for example, loading predetermined software (program) onto hardware such as a processor 1001 and a memory 1002, so that the processor 1001 performs calculations and communicates via the communication device 1004. This is achieved by controlling at least one of reading and writing data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) that includes interfaces with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a portion of the above-mentioned control unit 110 (210), transmitting/receiving unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may also be realized in the same way.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and includes at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. It may be composed of one. Memory 1002 may be called a register, cache, main memory, or the like. The memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM), etc.), a digital versatile disk, removable disk, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium. It may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be configured to include. For example, the above-described transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and user terminal 20 also include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modified example)
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal may be interchanged. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be called a pilot, pilot signal, etc. depending on the applicable standard. Further, a component carrier (CC) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, and radio frame configuration. , a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. Furthermore, a slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Additionally, an RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include a physical resource block (Physical RB (PRB)), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, and an RB. They may also be called pairs.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (also called partial bandwidth, etc.) refers to a subset of consecutive common resource blocks (RB) for a certain numerology in a certain carrier. Good too. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be configured within one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, The number of subcarriers, the number of symbols within a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various names assigned to these various channels and information elements are not in any way exclusive designations. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Additionally, information, signals, etc. may be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layer. Information, signals, etc. may be input and output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof It may be carried out by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like. Further, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, notification of prescribed information (for example, notification of "X") is not limited to explicit notification, but may be made implicitly (for example, by not notifying the prescribed information or by providing other information) (by notification).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value expressed by 1 bit (0 or 1), or by a boolean value expressed by true or false. , may be performed by numerical comparison (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (such as infrared, microwave, etc.) to , a server, or other remote source, these wired and/or wireless technologies are included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may refer to devices (eg, base stations) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, "precoding", "precoder", "weight (precoding weight)", "quasi-co-location (QCL)", "Transmission Configuration Indication state (TCI state)", "space "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. can be used.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "Base Station (BS)", "Wireless base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "cell," "sector," "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is connected to a base station subsystem (e.g., an indoor small base station (Remote Radio Communication services can also be provided by the Head (RRH)). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In the present disclosure, a base station transmitting information to a terminal may be interchanged with the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" are used interchangeably. can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, and the moving speed is arbitrary, and naturally includes cases where the moving body is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , including, but not limited to, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and items mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図23は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 23 is a diagram illustrating an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, (including a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service section 59, and a communication module 60. Be prepared.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 includes a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (for example, an input/output (IO) port) 63. Signals from various sensors 50-58 provided in the vehicle are input to the electronic control unit 49. The electronic control section 49 may be called an electronic control unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheel 46/rear wheel 47 obtained by the rotation speed sensor 51, and a signal obtained by the air pressure sensor 52. air pressure signals of the front wheels 46/rear wheels 47, a vehicle speed signal acquired by the vehicle speed sensor 53, an acceleration signal acquired by the acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by the accelerator pedal sensor 55, and a brake pedal sensor. 56, a shift lever 45 operation signal obtained by the shift lever sensor 57, and an object detection sensor 58 for detecting obstacles, vehicles, pedestrians, etc. There are signals etc.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service department 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It consists of one or more ECUs that control the The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (for example, Global Navigation Satellite System (GNSS), etc.), and map information (for example, High Definition (HD)). maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMUs), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial Intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving burden, as well as one or more devices that control these devices. It consists of an ECU. Further, the driving support system section 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 communicates via the communication port 63 with a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, which are included in the vehicle 40. Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the base station 10, user terminal 20, etc. described above. Further, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (it may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above that are input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 49, various sensors 50-58, information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60). may be called.
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices into a memory 62 that can be used by the microprocessor 61. Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, and left and right rear wheels provided in the vehicle 40. 47, axle 48, various sensors 50-58, etc. may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions that the base station 10 described above has. Further, words such as "uplink" and "downlink" may be replaced with words corresponding to inter-terminal communication (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be replaced with sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station 10 may have the functions that the user terminal 20 described above has.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, the operations performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (e.g. It is clear that this can be performed by a Mobility Management Entity (MME), a Serving-Gateway (S-GW), etc. (though not limited thereto), or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is an integer or decimal number, for example)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New Radio Access (NX), Future Generation Radio Access (FX), Global System for Mobile Communications ), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods. The present invention may be applied to systems to be used, next-generation systems expanded, modified, created, or defined based on these systems. Furthermore, a combination of multiple systems (for example, a combination of LTE or LTE-A and 5G) may be applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" can mean judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry ( For example, searching in a table, database, or other data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (e.g., receiving information), transmitting (e.g., sending information), input (input), output (output), access ( may be considered to be "determining", such as accessing data in memory (eg, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment" is considered to mean "judging" resolving, selecting, choosing, establishing, comparing, etc. Good too. In other words, "judgment (decision)" may be considered to be "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Furthermore, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power (the It may also mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected", "coupled", or any variations thereof refer to any connection or coupling, direct or indirect, between two or more elements. can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be connected using one or more electrical wires, cables, printed electrical connections, etc., as well as in the radio frequency domain, microwave can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the light (both visible and invisible) range.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising". It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In the present disclosure, "less than or equal to", "less than", "more than", "more than", "equal to", etc. may be read interchangeably. In addition, in this disclosure, "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. The words are not limited to the original, comparative, and superlative, and may be interpreted interchangeably. In addition, in this disclosure, words meaning "good", "bad", "large", "small", "high", "low", "early", "slow", "wide", "narrow", etc. may be interpreted as an expression with "the i-th" (i is any integer), not only in the elementary, comparative, and superlative, but also interchangeably (for example, "the highest" can be interpreted as "the i-th highest"). may be read interchangeably).
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, "of", "for", "regarding", "related to", "associated with", etc. are used to refer to each other. It may be read differently.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear for those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the invention as determined based on the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and does not have any limiting meaning on the invention according to the present disclosure.
 本出願は、2022年5月10日出願の特願2022-77817に基づく。この内容は、すべてここに含めておく。 This application is based on Japanese Patent Application No. 2022-77817 filed on May 10, 2022. Include all of this content here.

Claims (3)

  1.  サウンディング参照信号(Sounding Reference Signal(SRS))リソースインディケーター(SRS Resource Indicator(SRI))フィールドによって指定され得るSRリソースの組み合わせの制限に関する情報を受信する受信部と、
     前記情報に基づいて、ノンコードブックの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信をスケジュールする下りリンク制御情報(Downlink Control Information(DCI))フォーマットにおける前記SRIフィールドのサイズを判断する制御部と、を有する端末。
    a receiving unit that receives information regarding SR resource combination restrictions that may be specified by a Sounding Reference Signal (SRS) Resource Indicator (SRI) field;
    Control for determining the size of the SRI field in a Downlink Control Information (DCI) format that schedules a Physical Uplink Shared Channel (PUSCH) transmission of a non-codebook based on the information. A terminal having a section and a terminal.
  2.  サウンディング参照信号(Sounding Reference Signal(SRS))リソースインディケーター(SRS Resource Indicator(SRI))フィールドによって指定され得るSRリソースの組み合わせの制限に関する情報を受信するステップと、
     前記情報に基づいて、ノンコードブックの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信をスケジュールする下りリンク制御情報(Downlink Control Information(DCI))フォーマットにおける前記SRIフィールドのサイズを判断するステップと、を有する端末の無線通信方法。
    receiving information regarding SR resource combination limits that may be specified by a Sounding Reference Signal (SRS) Resource Indicator (SRI) field;
    Determining, based on the information, the size of the SRI field in a Downlink Control Information (DCI) format that schedules a Physical Uplink Shared Channel (PUSCH) transmission of a non-codebook. A wireless communication method for a terminal having the following.
  3.  サウンディング参照信号(Sounding Reference Signal(SRS))リソースインディケーター(SRS Resource Indicator(SRI))フィールドによって指定され得るSRリソースの組み合わせの制限に関する情報を送信する送信部と、
     前記制限に基づいて、ノンコードブックの上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))送信をスケジュールする下りリンク制御情報(Downlink Control Information(DCI))フォーマットにおける前記SRIフィールドのサイズを決定する制御部と、を有する基地局。
    a transmitter configured to transmit information regarding SR resource combination limitations that may be specified by a Sounding Reference Signal (SRS) Resource Indicator (SRI) field;
    A control that determines the size of the SRI field in a Downlink Control Information (DCI) format that schedules a Physical Uplink Shared Channel (PUSCH) transmission of a non-codebook based on the restriction. A base station having a unit and a base station.
PCT/JP2023/016384 2022-05-10 2023-04-26 Terminal, radio communication method, and base station WO2023218954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022077817 2022-05-10
JP2022-077817 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023218954A1 true WO2023218954A1 (en) 2023-11-16

Family

ID=88730336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016384 WO2023218954A1 (en) 2022-05-10 2023-04-26 Terminal, radio communication method, and base station

Country Status (1)

Country Link
WO (1) WO2023218954A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149265A1 (en) * 2020-01-24 2021-07-29 株式会社Nttドコモ Terminal, wireless communication method, and base station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149265A1 (en) * 2020-01-24 2021-07-29 株式会社Nttドコモ Terminal, wireless communication method, and base station

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on enhancement for 8Tx UL transmission", 3GPP TSG RAN WG1 #109-E R1-2204791, 30 April 2022 (2022-04-30), XP052144053 *
NTT DOCOMO, INC.: "Discussion on 8TX UL transmission", 3GPP TSG RAN WG1 #109-E R1-2204373, 29 April 2022 (2022-04-29), XP052153501 *

Similar Documents

Publication Publication Date Title
WO2023218954A1 (en) Terminal, radio communication method, and base station
WO2024009476A1 (en) Terminal, radio communication method, and base station
WO2023210004A1 (en) Terminal, radio communication method, and base station
WO2023181414A1 (en) Terminal, wireless communication method, and base station
WO2024009492A1 (en) Terminal, wireless communication method, and base station
WO2023195163A1 (en) Terminal, radio communication method, and base station
WO2023181366A1 (en) Terminal, radio communication method, and base station
WO2024029043A1 (en) Terminal, wireless communication method, and base station
WO2024029044A1 (en) Terminal, wireless communication method, and base station
WO2024034133A1 (en) Terminal, wireless communication method, and base station
WO2023248432A1 (en) Terminal, wireless communication method, and base station
WO2024042993A1 (en) Terminal, wireless communication method, and base station
WO2023248433A1 (en) Terminal, wireless communication method, and base station
WO2023223989A1 (en) Terminal, radio communication method, and base station
WO2023175785A1 (en) Terminal, wireless communication method, and base station
WO2024166364A1 (en) Terminal, wireless communication method, and base station
WO2024029029A1 (en) Terminal, wireless communication method, and base station
WO2024034070A1 (en) Terminal, wireless communication method, and base station
WO2024028941A1 (en) Terminal, wireless communication method, and base station
WO2023209991A1 (en) Terminal, wireless communication method, and base station
WO2023203728A1 (en) Terminal, radio communication method, and base station
WO2023209990A1 (en) Terminal, wireless communication method, and base station
WO2024042953A1 (en) Terminal, wireless communication method, and base station
WO2023209752A1 (en) Terminal, radio communication method, and base station
WO2024171309A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803433

Country of ref document: EP

Kind code of ref document: A1