WO2023218647A1 - 車両点検方法及び車両点検システム - Google Patents
車両点検方法及び車両点検システム Download PDFInfo
- Publication number
- WO2023218647A1 WO2023218647A1 PCT/JP2022/020241 JP2022020241W WO2023218647A1 WO 2023218647 A1 WO2023218647 A1 WO 2023218647A1 JP 2022020241 W JP2022020241 W JP 2022020241W WO 2023218647 A1 WO2023218647 A1 WO 2023218647A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- virtual image
- image
- virtual
- inspection method
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000012544 monitoring process Methods 0.000 claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims description 10
- 230000002265 prevention Effects 0.000 claims description 7
- 238000010998 test method Methods 0.000 claims description 7
- 230000003044 adaptive effect Effects 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000012360 testing method Methods 0.000 description 122
- 230000006870 function Effects 0.000 description 33
- 230000015654 memory Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
Definitions
- the present invention relates to a vehicle inspection method and a vehicle inspection system.
- Driving support devices are known that support vehicle driving by automatically controlling at least one of the steering angle and vehicle speed of the vehicle.
- Patent Document 1 listed below describes a vehicle driving support device that detects obstacles based on images captured by a camera and automatically applies the brakes.
- a vehicle inspection method for a vehicle that includes a controller that automatically controls vehicle speed based on forward monitoring images.
- the wheels of the vehicle are supported by a vehicle support device, the vehicle speed signal of the vehicle supported by the vehicle support device is acquired, and a virtual image of the environment seen in front of the vehicle is synchronized with the vehicle speed signal.
- the virtual image is displayed in the same way as a camera mounted on a vehicle that generates a forward monitoring image shoots a virtual image.
- FIG. 1 is a schematic configuration diagram of an example of a vehicle inspection system according to an embodiment.
- FIG. 2 is a schematic diagram of the configuration of a video display device attached to a camera. It is a flow chart of an example of the vehicle inspection method of an embodiment.
- FIG. 1 is a schematic configuration diagram of an example of a vehicle inspection system according to an embodiment.
- the vehicle inspection system 1 is a system that inspects the driving support device 11 of the vehicle 10 to be inspected.
- the driving support device 11 includes a camera 12 and a controller 13.
- the controller 13 is an electronic control unit that provides driving support for the test vehicle 10.
- the controller 13 uses a forward looking image generated by capturing the environment in front of the test vehicle 10 by the camera 12 and various vehicle information obtained from the test vehicle 10 by the vehicle sensor 14. , executes driving support control that automatically controls at least the vehicle speed of the test vehicle 10.
- the controller 13 includes an electronic circuit having a processor 13a and peripheral components such as a storage device 13b.
- the processor 13a may be, for example, a CPU or an MPU.
- the storage device 13b may include a semiconductor storage device, a magnetic storage device, an optical storage device, or the like.
- the storage device 13b may include registers, cache memory, and memories such as ROM and RAM used as main storage devices.
- the functions of the controller 13 described below are realized, for example, by the processor 13a executing a computer program stored in the storage device 13b.
- the vehicle sensor 14 includes, for example, a vehicle speed sensor that detects the vehicle speed of the test vehicle 10, a wheel speed sensor that detects the rotational speed of the wheels of the test vehicle 10, and a wheel speed sensor that detects the acceleration and deceleration of the test vehicle 10 in three axial directions.
- a 3-axis acceleration sensor that detects the steering angle of the steering wheel
- a steering angle sensor that detects the turning angle of the steered wheels
- a yaw rate sensor that detects the yaw rate of the test vehicle 10
- a yaw rate sensor that detects the yaw rate of the test vehicle 10.
- It includes an accelerator sensor that detects the accelerator opening and a brake sensor that detects the amount of brake operation by the occupant.
- the driving support control by the controller 13 may include, for example, automatic brake control that operates the brake device 15 in response to an obstacle in front of the test vehicle 10 to automatically decelerate or stop the test vehicle 10.
- the driving support control by the controller 13 may include constant speed driving control that controls the driving force source 16 that generates the driving force of the test vehicle 10 and the brake device 15 to make the test vehicle 10 run at a constant speed. good.
- the driving support control by the controller 13 controls the driving force source 16 and the brake device 15 to maintain the inter-vehicle distance between the test vehicle 10 and the preceding vehicle at a target inter-vehicle distance depending on the vehicle speed. It may also include control.
- the driving support control by the controller 13 may include driving support control that automatically controls the steering angle of the test vehicle 10 to support driving of the vehicle.
- driving support control that automatically controls the steering angle of the test vehicle 10 to support driving of the vehicle.
- lane deviation prevention control may be included to control the steering angle of the tested vehicle 10 so that the tested vehicle 10 does not deviate from the driving lane.
- the driving support functions of the driving support device 11 that execute automatic brake control, constant speed driving control, inter-vehicle distance control, and lane departure prevention control will be referred to as "automatic brake function,”"constant speed driving function,” and “vehicle distance control,” respectively.
- the vehicle inspection system 1 includes at least a vehicle support device 20, a video generation device 30, and a video display device 40.
- the vehicle support device 20 may be, for example, a chassis dynamo or a free roller.
- the vehicle support device 20 includes rollers 21a and 21b that support the front wheels 17F of the test vehicle 10, and rollers 21c and 21d that support the rear wheels 17R.
- the rollers 21a to 21d are rotatably supported by bearings at the base of the vehicle support device 20.
- the direction of the rotation axes of the rollers 21a to 21d is parallel to the vehicle width direction of the test vehicle 10 when the test vehicle 10 is placed on the vehicle support device 20.
- the vehicle support device 20 includes a vehicle speed sensor 22 that detects the vehicle speed of the test vehicle 10.
- the vehicle speed sensor 22 detects the vehicle speed of the test vehicle 10 based on the rotational speed of the roller that supports the drive wheel of the test vehicle 10 among the rollers 21a to 21d.
- Vehicle speed sensor 22 generates vehicle speed information representing the vehicle speed of test vehicle 10 and outputs it to video generation device 30 . Note that since the wheels 17F and 17R are supported by rotatable rollers 21a to 21d, the actual longitudinal position of the vehicle body of the test vehicle 10 does not change even if the drive wheels of the test vehicle 10 rotate.
- the vehicle speed information output by the vehicle speed sensor 22 does not indicate the actual vehicle speed of the test vehicle 10, but is information that simulates the vehicle speed calculated based on the wheel speed of the test vehicle 10.
- vehicle speed information about the tested vehicle 10 refers to information that simulates the vehicle speed calculated based on the wheel speed of the tested vehicle 10, rather than information on the actual vehicle speed of the tested vehicle 10. Alternatively, it is used to mean vehicle speed information calculated based on the wheel speed of the test vehicle 10 or information equivalent thereto.
- the vehicle speed information of the test vehicle 10 may be acquired from the controller 13 of the driving support device 11.
- the controller 13 may output information on the vehicle speed detected by the vehicle speed sensor of the vehicle sensor 14 to the video generation device 30 as the vehicle speed information of the test vehicle 10.
- the controller 13 may output information on a target vehicle speed set as a target vehicle speed of the test vehicle 10 in automatic brake control, constant speed driving control, and inter-vehicle distance control to the image generation device 30.
- the vehicle speed sensor 22 can be omitted.
- the image generation device 30 is an electronic control unit that generates a virtual image (i.e., a simulation image) of the environment seen in front of the test vehicle 10.
- a virtual image i.e., a simulation image
- Video generation device 30 includes an electronic circuit having a processor 31 and peripheral components such as a storage device 32.
- the processor 31 may be, for example, a CPU or an MPU.
- the storage device 32 may include a semiconductor storage device, a magnetic storage device, an optical storage device, or the like.
- the storage device 32 may include memory such as registers, cache memory, ROM and RAM used as main storage.
- the functions of the video generation device 30 described below are realized, for example, by the processor 31 executing a computer program stored in the storage device 32.
- the video generation device 30 generates a virtual video based on the vehicle speed information of the test vehicle 10 acquired from the vehicle speed sensor 22 or the controller 13 so that the viewpoint of the virtual video changes in synchronization with the vehicle speed of the test vehicle 10. . That is, when the vehicle speed of the test vehicle 10 indicated by the vehicle speed information is greater than 0, the virtual image is generated such that the amount of movement of the test vehicle 10 according to the vehicle speed is equal to the amount of movement of the viewpoint of the virtual image. .
- the video generation device 30 may generate a computer graphics (CG) video as a virtual video.
- CG computer graphics
- a virtual image generated as a CG image may be referred to as a "CG virtual image.”
- the image generation device 30 When generating a CG virtual image, the image generation device 30 generates objects in the virtual space (for example, obstacles such as other vehicles and people, traffic lights, traffic signs, and road surface displays (for example, lane boundaries, stop lines, road markings).
- the position of the virtual object or the tested vehicle 10 in the virtual space is referred to as a "virtual position.”
- the image generation device 30 uses the virtual object as a virtual object that changes over time. Calculate the virtual position of.
- the image generation device 30 calculates the relative positional relationship between the virtual position of the test vehicle 10 and the virtual position of the virtual object, and generates a CG virtual image of the environment seen in front of the test vehicle 10 based on the calculated relative positional relationship.
- Generate video For example, the video generation device 30 may generate a CG virtual video according to a predefined test method.
- the image generation device 30 may generate a CG virtual image in which an obstacle (for example, another vehicle, a person, etc.) moving in front of the test vehicle 10 appears according to a scenario defined by a predefined test method.
- the predefined test method may be, for example, a test method defined by the New Car Assessment Program (NCAP). The method may be such that an obstacle appears when it is detected that the test vehicle 10 is traveling within a vehicle speed range specified for the test speed of the scenario and the accelerator opening is constant. .
- NCAP New Car Assessment Program
- the video generation device 30 may generate a virtual video whose viewpoint changes in synchronization with the vehicle speed of the test vehicle 10, based on a real video obtained by photographing an actual environment.
- the video generation device 30 reads the real video and position information that records the shooting point where the real video was shot, the moving speed of the shooting device, and the like.
- the video generation device 30 may read recorded information from a drive recorder.
- the information recorded by the drive recorder includes forward monitoring images taken by a camera mounted on a running vehicle (for example, the test vehicle 10 or other vehicles), the vehicle speed at each point in time when the forward monitoring images were taken, and GPS information. It includes information recording the vehicle's position measured by a positioning device such as.
- the video generation device 30 controls the playback speed of the actual video based on the vehicle speed information of the test vehicle 10 acquired from the vehicle speed sensor 22 or the controller 13 and the recorded information of the drive recorder, so as to improve the speed of the test vehicle 10.
- a virtual image may be generated in which the position of the viewpoint changes in synchronization with the vehicle speed.
- the video display device 40 displays the virtual video generated by the video generation device 30.
- the video display device 40 may include, for example, a screen placed in front of the test vehicle 10 and a projection device that projects a virtual video onto the screen. Further, the video display device 40 may be a display monitor device that is disposed in front of the test vehicle 10 and displays a virtual video.
- the relative positional relationship between the screen or display monitor device and the vehicle support device 20 in the vertical direction and the vehicle width direction of the test vehicle 10 is determined by checking that the vanishing point of the virtual image displayed on the screen or display monitor device is the camera. It is preferable to align it so that it is located on the optical axis of 12.
- the relative positional relationship in the longitudinal direction between the screen or display monitor device and the vehicle support device 20 can be determined by It is preferable to align the partial images in the captured image so that the angle of view of the partial image is equal to the angle of view of the camera 12 itself.
- the relative angle in the front and rear direction is adjusted so that the four corners of the virtual image and the four corners of the photographable range of the camera It is preferable to align the positional relationship.
- a virtual image displayed on the screen or display monitor device is photographed by the camera 12, and a still image or a still image output from the camera 12 is used.
- Positioning may be performed based on the moving image so as to satisfy the conditions of the relative positional relationship in each of the directions described above.
- the height from the road surface, the imaging angle with respect to the traveling direction, and the possible imaging range of the camera 12 for each vehicle type are stored in advance in the database, and the viewpoint of the virtual image is set when the tested vehicle 10 takes an image on the road.
- the height, angle, and longitudinal position of the screen or display monitor device may be automatically adjusted by acquiring information according to the vehicle type of the test vehicle 10 from the database so that the relative positional relationship is similar to that of the viewpoint.
- Video display device 40 may include a video display device that can be attached to camera 12.
- FIG. 2 is a schematic diagram of the configuration of a video display device attached to the camera 12.
- the image display device 40 in FIG. 2 includes a display element 41 that displays a virtual image, and an optical system 42 that forms a virtual image VI of the display image of the display element 41 in front of the objective lens LO of the camera 12. It is detachably attached to the camera 12 using a fixing device. By attaching the video display device 40 itself to the camera 12, even if an inspection is performed with the headlights 18 of the vehicle to be inspected 10 turned on, the light from the headlights 18 will not be reflected on the image display surface of the video display device 40.
- the camera 12 By reflecting the light, it is possible to prevent the camera 12 from being unable to capture a virtual image, and to prevent the forward monitoring image generated by capturing a virtual image with the camera 12 from deteriorating.
- the camera 12 when displaying a virtual image on the image display device 40 that can be attached to the camera 12, the camera 12 is attached so that the operator (inspector, inspector) who inspects the test vehicle 10 can visually view the same virtual image in real time.
- the same virtual image may be displayed on both the image display device 40 that can be attached to the computer and the display monitor device for the operator.
- FIG. 3 is a flowchart of an example of a vehicle inspection method when inspecting the automatic brake function.
- the test vehicle 10 is placed on the vehicle support device 20, which is a chassis dynamometer or a free roller, and the test vehicle 10 is driven with the wheels 17F and 17R supported by the rollers 21a to 21d.
- the wheels 17F and 17R are supported by rotatable rollers 21a to 21d, only the drive wheels of the test vehicle 10 rotate, and the actual longitudinal position of the test vehicle 10 does not change.
- the expression "to drive the test vehicle 10" is used to mean driving the drive wheels of the test vehicle 10 on the vehicle support device 20.
- step S2 the video generation device 30 acquires vehicle speed information of the test vehicle 10 from the vehicle speed sensor 22 or the controller 13.
- the video generation device 30 generates a virtual video of the environment visible in front of the test vehicle 10.
- the video generation device 30 may generate a captured image in which an obstacle (for example, another vehicle, a person, etc.) appears in front of the vehicle to be inspected 10, for example.
- the image generation device 30 changes the viewpoint of the virtual image in synchronization with the vehicle speed of the test vehicle 10 based on the vehicle speed information of the test vehicle 10 . That is, when the vehicle speed of the test vehicle 10 is higher than 0, a virtual image is generated in which the obstacle approaches the viewpoint of the virtual image over time.
- the video display device 40 (for example, a display monitor device placed in front of the test vehicle 10) displays the virtual video generated by the video generation device 30.
- step S5 the camera 12 captures the virtual image displayed by the image display device 40 to generate a forward monitoring image.
- the controller 13 recognizes the image of the obstacle in the forward monitoring image (that is, the image of the obstacle in the virtual image) by executing image recognition processing on the forward monitoring image. For example, the controller 13 can recognize images of obstacles using existing methods such as pattern matching.
- the controller 13 executes automatic brake control in response to the recognized obstacle. That is, the brake device 15 of the test vehicle 10 is operated, and the vehicle speed of the test vehicle 10 running on the vehicle support device 20 is reduced by the braking force, and the test vehicle 10 is brought to a stop.
- the obstacle in the virtual image approaches the viewpoint of the virtual image over time in synchronization with the vehicle speed of the test vehicle 10, which decreases due to the braking force.
- test vehicle 10 it is checked whether the test vehicle 10 can stop at a position in front of the obstacle in the virtual image. For example, when the image generation device 30 generates a CG virtual image, it is checked whether the test vehicle 10 can stop at a position in front of an obstacle in the virtual space. Whether or not the vehicle was able to stop in front of the obstacle may be determined or confirmed by, for example, an operator (inspector, inspector) who inspects the vehicle 10 to be inspected. The operator may check whether the test vehicle 10 can stop at a position in front of the obstacle by visually observing the CG virtual image displayed on the image display device 40.
- the vehicle inspection system 1 may include a diagnostic device 50 that diagnoses the inspection results of the driving support device 11.
- the diagnostic device 50 is an electronic control unit that diagnoses the inspection results of the driving support device 11 by the vehicle inspection system 1.
- Diagnostic device 50 includes an electronic circuit having a processor 51 and peripheral components such as a storage device 52.
- the processor 51 may be, for example, a CPU or an MPU.
- the storage device 52 may include a semiconductor storage device, a magnetic storage device, an optical storage device, or the like.
- the storage device 52 may include memory such as registers, cache memory, ROM and RAM used as main storage.
- the functions of the diagnostic device 50 described below are realized, for example, by the processor 51 executing a computer program stored in the storage device 52.
- the diagnostic device 50 acquires the vehicle speed information of the tested vehicle 10 from the vehicle speed sensor 22 or the controller 13, and receives the obstacles in the virtual space and the virtual position of the tested vehicle 10 from the image generation device 30.
- the diagnostic device 50 checks whether the test vehicle 10 can stop at a position in front of an obstacle in the virtual space. For example, whether or not the tested vehicle 10 can stop before the relative positional relationship between the virtual position of the obstacle and the virtual position of the tested vehicle 10 reaches a positional relationship where the obstacle and the tested vehicle 10 come into contact (vehicle speed Check whether the signal indicates 0 or not.
- the vehicle speed signal of the tested vehicle 10 indicates 0 before the relative positional relationship between the virtual position of the obstacle and the virtual position of the tested vehicle 10 reaches a positional relationship where the obstacle and the tested vehicle 10 come into contact. , it is determined that the test vehicle 10 has stopped without contacting an obstacle. Further, if a delay occurs between the appearance of the obstacle and the time when the controller 13 recognizes the obstacle, or the time when the brake device 15 operates to cause the test vehicle 10 to decelerate, the delay may occur. The test vehicle 10 approaches the obstacle more than when the obstacle does not occur. Furthermore, when the braking force generated by the brake device 15 is small, the distance the test vehicle 10 travels before it stops becomes longer, and the test vehicle 10 approaches the obstacle more.
- the tested vehicle 10 stops in front of the obstacle. It is determined that it did not. That is, it is determined that the obstacle in the virtual image and the test vehicle 10 have come into contact.
- the image generation device 30 When it is determined that the test vehicle 10 has come into contact with the obstacle in the virtual image, the image generation device 30 generates an image including an animation or an alert display indicating the contact, and the image display device 40 generates the image. The video generated by the device 30 is displayed.
- a virtual video based on such real video may be displayed on the video display device 40.
- the test vehicle 10 it may be checked whether the test vehicle 10 can stop at a position in front of the obstacle.
- the vehicle speed information of the test vehicle 10 becomes 0 and the vehicle speed becomes virtual.
- step S3 When checking the constant speed driving function, in step S3, a virtual image of the environment seen in front of the vehicle traveling on the road is generated.
- the image generation device 30 may generate a CG virtual image, or may generate a virtual image based on an actual image captured by a drive recorder while the vehicle is driving.
- step S5 the vehicle speed information of the test vehicle 10 is acquired, and it is determined whether the vehicle speed information of the test vehicle 10 is less than or equal to the speed limit indicated by the speed limit sign in the virtual image, or whether it is set in advance for the test vehicle 10. Check whether the speed is below the upper limit.
- step S3 When checking the inter-vehicle distance control function, in step S3, a CG virtual image of the environment seen in front of a vehicle traveling on the road following the preceding vehicle is generated.
- step S5 it is checked whether the inter-vehicle distance between the test vehicle 10 and the preceding vehicle is appropriate.
- the diagnostic device 50 checks whether the inter-vehicle distance between the test vehicle 10 and the preceding vehicle in the virtual space is a target inter-vehicle distance set according to the vehicle speed of the test vehicle 10. good.
- an operator (inspector, inspector) inspecting the test vehicle 10 may visually view the CG virtual image and determine whether the distance between the vehicle and the preceding vehicle is appropriate.
- step S3 When checking the lane departure prevention function, in step S3, a virtual image of the environment seen in front of a vehicle traveling on a road with a curvature greater than 0 is generated.
- the image generation device 30 may generate a CG virtual image, or may generate a virtual image based on an actual image captured by a drive recorder while the vehicle is driving.
- step S5 a steering angle command signal for the steering angle of the test vehicle 10 is obtained from the controller 13. Note that the steering actuator of the test vehicle 10 is disabled in advance so that the steered wheels of the test vehicle 10 are not actually steered on the chassis dynamo or free rollers. Based on the steering angle command signal obtained from the controller 13, it is checked whether the steered wheels are steered in a direction that prevents the test vehicle 10 from deviating from the lane.
- the image generation device 30 may generate a CG virtual image that simulates the steering of the test vehicle 10.
- the image generation device 30 acquires the steering angle command signal of the tested vehicle 10 from the controller 13, and based on the vehicle speed information and the steering angle command signal of the tested vehicle 10, the vehicle body of the tested vehicle 10 in the virtual space is The yaw angle of the vehicle is calculated, and a CG virtual image of the environment seen in front of the vehicle is generated based on the calculated yaw angle.
- the automatic high beam function of the test vehicle 10 may be checked.
- the auto high beam function detects the light from the headlights of an oncoming vehicle using an illuminance sensor attached to any position (for example, a side mirror) on the vehicle body of the test vehicle 10, and detects the high beam of the headlights 18 of the test vehicle 10. This function automatically switches between low beam and low beam.
- a virtual image of passing an oncoming vehicle at night is displayed, and if there is an oncoming vehicle, the headlights 18 will switch to low beam, and if there is no oncoming vehicle, the headlights 18 will be switched to low beam.
- the adaptive light function of the vehicle 10 under test may be checked.
- the adaptive light function detects other vehicles and pedestrians in front of the test vehicle 10 from the front monitoring image of the camera 12, and automatically changes the optical axis of the headlight 18 of the test vehicle 10 from other vehicles and pedestrians. It is a function to deflect.
- a virtual image of other vehicles and pedestrians appearing in front of the test vehicle 10 is displayed, and the optical axis of the headlight 18 of the test vehicle 10 is directed from other vehicles and pedestrians. Check whether the direction of the headlights 18 is automatically controlled so as to deviate from the vehicle.
- the virtual image may be presented to the camera 12 by the image display device described above (ie, the image display device attachable to the camera 12).
- the vehicle inspection system 1 inspects a test vehicle 10 that includes a controller 13 that automatically controls vehicle speed based on a forward monitoring image.
- the vehicle inspection system 1 acquires a vehicle support device 20 that supports the wheels of the test vehicle 10 and a vehicle speed signal of the test vehicle 10 supported by the vehicle support device 20, and detects the environment visible in front of the test vehicle 10.
- a video generation device 30 that generates a virtual video so that the virtual video is synchronized with a vehicle speed signal, and a camera 12 mounted on the test vehicle 10 that generates a forward monitoring video capture the virtual video.
- a video display device 40 for displaying images is provided.
- the vehicle support device 20 may be, for example, a chassis dynamo or a free roller.
- the repair of the driving support device 11 that automatically controls the vehicle speed to support the driving of the test vehicle 10 is completed, it is possible to determine whether the repaired driving support device 11 can demonstrate its original performance. You can check it. For example, at least one of the automatic braking function, constant speed driving function, inter-vehicle distance control function, lane departure prevention function, auto high beam function, or adaptive light function realized by the controller 13 of the test vehicle 10 may be inspected.
- the vehicle inspection system 1 may acquire a vehicle speed signal from the vehicle support device 20 or the vehicle to be inspected 10. This makes it possible to generate a virtual image that synchronizes the vehicle speed signal of the test vehicle 10.
- (3) In checking the automatic brake function when the vehicle speed is higher than 0, an image of an obstacle in front of the test vehicle 10 approaching the test vehicle 10 is generated as a virtual video, and the test is performed in front of the obstacle. It may be determined whether the vehicle 10 stops. This makes it possible to check whether the automatic braking function of the test vehicle 10 can exhibit its original performance.
- the video generation device 30 may generate a virtual video according to a predefined test method. This allows inspection to be carried out in accordance with a predefined test method.
- (5) Obtain a steering command signal for the steering angle of the test vehicle 10 from the controller 13, calculate the yaw angle of the test vehicle 10 based on the steering command signal and the vehicle speed signal, and create a virtual image according to the calculated yaw angle.
- a video may also be generated. Thereby, the driving support device 11 that automatically controls the steering angle based on the forward monitoring image can be inspected.
- the video display device 40 may display the virtual video on a display monitor device placed in front of the test vehicle 10, or may project the virtual video onto a screen located in front of the test vehicle 10. Thereby, the driving support device 11 that supports driving of the test vehicle 10 can be inspected based on the forward monitoring image generated by photographing the virtual image.
- An image display device 40 having a display element and an optical system that forms a virtual image of the display image of the display element in front of the objective lens of the camera 12 is attached to the camera 12, and the image display device 40 displays a virtual image. May be displayed.
- the camera 12 of the test vehicle 10 can generate a forward monitoring image that captures a virtual image.
- the camera 12 may not be able to capture a virtual image, or the forward monitoring image generated by capturing a virtual image with the camera 12 may can be prevented from deteriorating.
- SYMBOLS 1...Vehicle inspection system 10...Test vehicle, 11...Driving support device, 12...Camera, 13...Controller, 13a, 31, 51...Processor, 13b, 32, 52...Storage device, 14...Vehicle sensor, 15... Brake device, 16... Driving power source, 17F... Front wheel, 17R... Rear wheel, 18... Headlight, 20... Vehicle support device, 21a to 21d... Roller, 22... Vehicle speed sensor, 30... Image generating device, 40... Image Display device, 41...Display element, 42...Optical system, 50...Diagnostic device, LO...Objective lens
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
前方監視映像に基づいて車速を自動的に制御するコントローラを備える車両の車両点検方法では、車両支持装置により車両の車輪を支持し(S1)、車両支持装置に支持された車両の車速信号を取得し(S2)、車両から前方に見える環境の仮想映像を、当該仮想映像が車速信号に同期するように生成し(S3)、車両に搭載されて前方監視映像を生成するカメラが仮想映像を撮影するように仮想映像を表示する(S4)。
Description
本発明は、車両点検方法及び車両点検システムに関する。
車両の操舵角や車速の少なくとも1つを自動的に制御して車両の運転を支援する運転支援装置が知られている。例えば、下記特許文献1には、カメラによる撮像画像に基づいて障害物を検知し、自動的にブレーキを作動させる車両用運転支援装置が記載されている。
従来、上記のような運転支援装置の修理が完了した場合に故障箇所がないことやシステムが正常であることを確認していたが、修理された運転支援装置が本来の性能を発揮できるか否かは確認していなかった。
本発明は、車両の少なくとも車速を自動的に制御して車両の運転を支援する運転支援装置の修理が完了した場合に、修理した運転支援装置が本来の性能を発揮できるか否かを確認することを目的とする。
本発明は、車両の少なくとも車速を自動的に制御して車両の運転を支援する運転支援装置の修理が完了した場合に、修理した運転支援装置が本来の性能を発揮できるか否かを確認することを目的とする。
本発明の一態様によれば、前方監視映像に基づいて車速を自動的に制御するコントローラを備える車両の車両点検方法が与えられる。車両点検方法では、車両支持装置により車両の車輪を支持し、車両支持装置に支持された車両の車速信号を取得し、車両から前方に見える環境の仮想映像を、当該仮想映像が車速信号に同期するように生成し、車両に搭載されて前方監視映像を生成するカメラが仮想映像を撮影するように仮想映像を表示する。
本発明によれば、車両の少なくとも車速を自動的に制御して車両の運転を支援する運転支援装置の修理が完了した場合に、修理した運転支援装置が本来の性能を発揮できるか否かを確認できる。
本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
(構成)
図1は、実施形態の車両点検システムの一例の概略構成図である。車両点検システム1は、被検車両10の運転支援装置11を点検するシステムである。
運転支援装置11は、カメラ12とコントローラ13とを備える。コントローラ13は、被検車両10の運転支援を行う電子制御ユニットである。コントローラ13は、カメラ12が被検車両10の前方の環境を撮影して生成した前方監視映像(forward looking image)と、車両センサ14により被検車両10から得られる様々な車両情報とに基づいて、少なくとも被検車両10の車速を自動的に制御する運転支援制御を実行する。
コントローラ13は、プロセッサ13aと、記憶装置13b等の周辺部品とを有する電子回路を含む。プロセッサ13aは、例えばCPUやMPUであってよい。
記憶装置13bは、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置13bは、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等のメモリを含んでよい。
以下に説明するコントローラ13の機能は、例えばプロセッサ13aが、記憶装置13bに格納されたコンピュータプログラムを実行することにより実現される。
図1は、実施形態の車両点検システムの一例の概略構成図である。車両点検システム1は、被検車両10の運転支援装置11を点検するシステムである。
運転支援装置11は、カメラ12とコントローラ13とを備える。コントローラ13は、被検車両10の運転支援を行う電子制御ユニットである。コントローラ13は、カメラ12が被検車両10の前方の環境を撮影して生成した前方監視映像(forward looking image)と、車両センサ14により被検車両10から得られる様々な車両情報とに基づいて、少なくとも被検車両10の車速を自動的に制御する運転支援制御を実行する。
コントローラ13は、プロセッサ13aと、記憶装置13b等の周辺部品とを有する電子回路を含む。プロセッサ13aは、例えばCPUやMPUであってよい。
記憶装置13bは、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置13bは、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等のメモリを含んでよい。
以下に説明するコントローラ13の機能は、例えばプロセッサ13aが、記憶装置13bに格納されたコンピュータプログラムを実行することにより実現される。
車両センサ14には、例えば被検車両10の車速を検出する車速センサ、被検車両10の車輪の回転速度を検出する車輪速センサ、被検車両10の3軸方向の加速度及び減速度を検出する3軸加速度センサ、ステアリングホイールの操舵角を検出する操舵角センサ、操向輪の転舵角を検出する転舵角センサ、被検車両10のヨーレートを検出するヨーレートセンサ、被検車両10のアクセル開度を検出するアクセルセンサと、乗員によるブレーキ操作量を検出するブレーキセンサが含まれる。
コントローラ13による運転支援制御は、例えば被検車両10の前方の障害物に反応してブレーキ装置15を作動させて被検車両10を自動的に減速又は停止させる自動ブレーキ制御を含んでよい。
また例えばコントローラ13による運転支援制御は、被検車両10の駆動力を発生する駆動力源16とブレーキ装置15とを制御して被検車両10を一定速度で走行させる定速走行制御を含んでもよい。
また例えばコントローラ13による運転支援制御は、駆動力源16とブレーキ装置15とを制御して、被検車両10と先行車両との間の車間距離を車速に応じた目標車間距離に維持する車間距離制御を含んでもよい。
また例えばコントローラ13による運転支援制御は、被検車両10の駆動力を発生する駆動力源16とブレーキ装置15とを制御して被検車両10を一定速度で走行させる定速走行制御を含んでもよい。
また例えばコントローラ13による運転支援制御は、駆動力源16とブレーキ装置15とを制御して、被検車両10と先行車両との間の車間距離を車速に応じた目標車間距離に維持する車間距離制御を含んでもよい。
さらにコントローラ13による運転支援制御は、被検車両10の操舵角を自動的に制御して車両の運転を支援する運転支援制御を含んでもよい。例えば被検車両10が走行車線から逸脱しないように被検車両10の操舵角を制御する車線逸脱防止制御を含んでもよい。
自動ブレーキ制御、定速走行制御、車間距離制御及び車線逸脱防止制御を実行する運転支援装置11の運転支援機能を、以下の説明においてそれぞれ「自動ブレーキ機能」、「定速走行機能」、「車間距離制御機能」及び「車線逸脱防止機能」と表記することがある。
自動ブレーキ制御、定速走行制御、車間距離制御及び車線逸脱防止制御を実行する運転支援装置11の運転支援機能を、以下の説明においてそれぞれ「自動ブレーキ機能」、「定速走行機能」、「車間距離制御機能」及び「車線逸脱防止機能」と表記することがある。
車両点検システム1は、車両支持装置20と、映像生成装置30と、映像表示装置40とを少なくとも備える。
車両支持装置20は、例えばシャシダイナモ又はフリーローラであってよい。車両支持装置20は、被検車両10の前輪17Fを支持するローラ21a及び21bと、後輪17Rを支持するローラ21c及び21dを備える。ローラ21a~21dは車両支持装置20の基部の軸受けに回転自在に支持される。ローラ21a~21dの回転軸の方向は、被検車両10を車両支持装置20に載置した状態で被検車両10の車幅方向と平行である。
車両支持装置20は、例えばシャシダイナモ又はフリーローラであってよい。車両支持装置20は、被検車両10の前輪17Fを支持するローラ21a及び21bと、後輪17Rを支持するローラ21c及び21dを備える。ローラ21a~21dは車両支持装置20の基部の軸受けに回転自在に支持される。ローラ21a~21dの回転軸の方向は、被検車両10を車両支持装置20に載置した状態で被検車両10の車幅方向と平行である。
車両支持装置20は、被検車両10の車速を検出する車速センサ22を備える。車速センサ22は、ローラ21a~21dのうち被検車両10の駆動輪を支持するローラの回転速度に基づいて被検車両10の車速を検出する。車速センサ22は、被検車両10の車速を表す車速情報を生成して映像生成装置30へ出力する。
なお、車輪17F及び17Rは回転自在なローラ21a~21dによって支持されているので、被検車両10の駆動輪が回転しても被検車両10の車体の実際の前後方向の位置は変化しない。したがって、車速センサ22が出力する車速情報は被検車両10の実際の車速を示しておらず、被検車両10の車輪速に基づいて算出される車速を模擬した情報である。
本明細書にける「被検車両10を車速情報」の表現は、被検車両10の実際の車速の情報ではなく、被検車両10の車輪速に基づいて算出される車速を模擬した情報、又は被検車両10の車輪速に基づいて算出される車速の情報もしくはこれと等価な情報の意味で用いられる。
なお、車輪17F及び17Rは回転自在なローラ21a~21dによって支持されているので、被検車両10の駆動輪が回転しても被検車両10の車体の実際の前後方向の位置は変化しない。したがって、車速センサ22が出力する車速情報は被検車両10の実際の車速を示しておらず、被検車両10の車輪速に基づいて算出される車速を模擬した情報である。
本明細書にける「被検車両10を車速情報」の表現は、被検車両10の実際の車速の情報ではなく、被検車両10の車輪速に基づいて算出される車速を模擬した情報、又は被検車両10の車輪速に基づいて算出される車速の情報もしくはこれと等価な情報の意味で用いられる。
なお、被検車両10の車速情報を運転支援装置11のコントローラ13から取得してもよい。例えばコントローラ13は、車両センサ14の車速センサが検出した車速の情報を被検車両10の車速情報として映像生成装置30へ出力してもよい。また例えばコントローラ13は、自動ブレーキ制御、定速走行制御、車間距離制御において被検車両10の車速の目標として設定した目標車速の情報を映像生成装置30へ出力してもよい。被検車両10の車速情報をコントローラ13から取得する場合には、車速センサ22を省略できる。
映像生成装置30は、被検車両10から前方に見える環境の仮想映像(すなわちシミュレーション映像)を生成する電子制御ユニットである。以下の説明において、映像生成装置30が生成する仮想映像を単に「仮想映像」と表記する。
映像生成装置30は、プロセッサ31と、記憶装置32等の周辺部品とを有する電子回路を含む。プロセッサ31は、例えばCPUやMPUであってよい。
記憶装置32は、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置32は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等のメモリを含んでよい。
以下に説明する映像生成装置30の機能は、例えばプロセッサ31が、記憶装置32に格納されたコンピュータプログラムを実行することにより実現される。
映像生成装置30は、プロセッサ31と、記憶装置32等の周辺部品とを有する電子回路を含む。プロセッサ31は、例えばCPUやMPUであってよい。
記憶装置32は、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置32は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等のメモリを含んでよい。
以下に説明する映像生成装置30の機能は、例えばプロセッサ31が、記憶装置32に格納されたコンピュータプログラムを実行することにより実現される。
映像生成装置30は、車速センサ22又はコントローラ13から取得した被検車両10の車速情報に基づいて、被検車両10の車速と同期して仮想映像の視点が変化するように仮想映像を生成する。すなわち、車速情報が示す被検車両10の車速が0よりも大きい場合に、車速に応じた被検車両10の移動量と仮想映像の視点の移動量がと等しくなるように仮想映像を生成する。
例えば映像生成装置30は、コンピュータグラフィクス(CG:Computer Graphics)映像を仮想映像として生成してよい。以下の説明においてCG映像として生成された仮想映像を「CG仮想映像」と表記することがある。
CG仮想映像を生成する場合、映像生成装置30は仮想空間内に物体(例えば、他車両や人などの障害物や、信号機、交通標識、路面の表示(例えば車線境界線や停止線、道路標示、建造物)を配置するとともに、被検車両10の車速情報に基づいて仮想空間における被検車両10の位置を算出する。以下の説明において、CG仮想映像において仮想的に配置される物体を「仮想物体」と表記し、仮想物体や被検車両10の仮想空間における位置を「仮想位置」と表記する。仮想物体として移動物体を配置する場合、映像生成装置30は時間経過とともに変化する仮想物体の仮想位置を算出する。
CG仮想映像を生成する場合、映像生成装置30は仮想空間内に物体(例えば、他車両や人などの障害物や、信号機、交通標識、路面の表示(例えば車線境界線や停止線、道路標示、建造物)を配置するとともに、被検車両10の車速情報に基づいて仮想空間における被検車両10の位置を算出する。以下の説明において、CG仮想映像において仮想的に配置される物体を「仮想物体」と表記し、仮想物体や被検車両10の仮想空間における位置を「仮想位置」と表記する。仮想物体として移動物体を配置する場合、映像生成装置30は時間経過とともに変化する仮想物体の仮想位置を算出する。
映像生成装置30は、被検車両10の仮想位置と仮想物体の仮想位置との間の相対位置関係を算出し、算出した相対位置関係に基づいて被検車両10から前方に見える環境のCG仮想映像を生成する。
例えば映像生成装置30は、予め規定された試験方法に則ってCG仮想映像を生成してよい。例えば映像生成装置30は、予め規定された試験方法で定められたシナリオに従って被検車両10の前方に移動する障害物(例えば他車両や人など)が出現するCG仮想映像を生成してよい。予め規定された試験方法は、例えば新車アセスメントプログラム(NCAP:New Car Assessment Programme)等で定められた試験方法であってよい。被検車両10がシナリオの試験速度に対して規定された車速範囲内で走行しており、かつ、アクセル開度が一定であると検知された場合に、障害物を出現させる方法であってよい。
例えば映像生成装置30は、予め規定された試験方法に則ってCG仮想映像を生成してよい。例えば映像生成装置30は、予め規定された試験方法で定められたシナリオに従って被検車両10の前方に移動する障害物(例えば他車両や人など)が出現するCG仮想映像を生成してよい。予め規定された試験方法は、例えば新車アセスメントプログラム(NCAP:New Car Assessment Programme)等で定められた試験方法であってよい。被検車両10がシナリオの試験速度に対して規定された車速範囲内で走行しており、かつ、アクセル開度が一定であると検知された場合に、障害物を出現させる方法であってよい。
また例えば映像生成装置30は、実際の環境を撮影して得られた実映像に基づいて、被検車両10の車速と同期して視点が変化する仮想映像を生成してもよい。
この場合、例えば映像生成装置30は、実映像と、実映像が撮影された撮影地点や撮影装置の移動速度などを記録した位置情報とを読み込む。例えば映像生成装置30は、ドライブレコーダの記録情報を読み込んでよい。
ドライブレコーダの記録情報は、走行する車両(例えば被検車両10や他車両)に搭載されたカメラにより撮影された前方監視映像と、前方監視映像を撮影した各々の時点における車両の車速と、GPSなどの測位装置により測定された車両の位置とを記録した情報を含んでいる。
映像生成装置30は、車速センサ22又はコントローラ13から取得した被検車両10の車速情報と、ドライブレコーダの記録情報と、に基づいて実映像の再生速度を制御することにより、被検車両10の車速と同期して視点の位置が変化する仮想映像を生成してよい。
この場合、例えば映像生成装置30は、実映像と、実映像が撮影された撮影地点や撮影装置の移動速度などを記録した位置情報とを読み込む。例えば映像生成装置30は、ドライブレコーダの記録情報を読み込んでよい。
ドライブレコーダの記録情報は、走行する車両(例えば被検車両10や他車両)に搭載されたカメラにより撮影された前方監視映像と、前方監視映像を撮影した各々の時点における車両の車速と、GPSなどの測位装置により測定された車両の位置とを記録した情報を含んでいる。
映像生成装置30は、車速センサ22又はコントローラ13から取得した被検車両10の車速情報と、ドライブレコーダの記録情報と、に基づいて実映像の再生速度を制御することにより、被検車両10の車速と同期して視点の位置が変化する仮想映像を生成してよい。
映像表示装置40は、映像生成装置30が生成した仮想映像を表示する。映像表示装置40は、例えば被検車両10の前方に配置されたスクリーンと、スクリーンに仮想映像を投影する投影装置を備えてもよい。また、映像表示装置40は、被検車両10の前方に配置されて仮想映像を表示するディスプレイモニタ装置であってもよい。
このとき、スクリーン又はディスプレイモニタ装置と車両支持装置20との間の上下方向と被検車両10の車幅方向における相対位置関係を、スクリーン又はディスプレイモニタ装置に表示される仮想映像の消失点がカメラ12の光軸上に位置するように位置合わせすることが好ましい。
このとき、スクリーン又はディスプレイモニタ装置と車両支持装置20との間の上下方向と被検車両10の車幅方向における相対位置関係を、スクリーン又はディスプレイモニタ装置に表示される仮想映像の消失点がカメラ12の光軸上に位置するように位置合わせすることが好ましい。
また、スクリーン又はディスプレイモニタ装置と車両支持装置20と間の前後方向における相対位置関係を、スクリーン又はディスプレイモニタ装置に表示された仮想映像をカメラ12で撮影したときに、仮想映像のうちカメラ12の撮像画像に映る範囲の部分画像の画角が、カメラ12自体の画角と等しくなるように位置合わせすることが好ましい。
例えば、仮想映像の画角及びアスペクト比とカメラ12の画角及びアスペクト比とが等しい場合には、仮想映像の四隅とカメラ12の撮影可能範囲の四隅とが一致するように、前後方向における相対位置関係を位置合わせすることが好ましい。
スクリーン又はディスプレイモニタ装置と車両支持装置20との間の位置合わせの際には、例えばスクリーン又はディスプレイモニタ装置に表示された仮想映像をカメラ12にて撮影し、カメラ12から出力される静止画像や動画に基づいて、上記の各方向における相対位置関係の条件を満足するように位置合わせを実施してもよい。
また、予め車種ごとのカメラ12の、路面からの高さ、進行方向に対する撮像角度、撮影可能範囲をデータベースに記憶しておき、仮想映像の視点が、被検車両10が道路上で撮像する際の視点と同様の相対位置関係になるよう、被検車両10の車種に応じた情報をデータベースから取得しスクリーン又はディスプレイモニタ装置の高さ、角度、前後方向の位置を自動調整してもよい。
例えば、仮想映像の画角及びアスペクト比とカメラ12の画角及びアスペクト比とが等しい場合には、仮想映像の四隅とカメラ12の撮影可能範囲の四隅とが一致するように、前後方向における相対位置関係を位置合わせすることが好ましい。
スクリーン又はディスプレイモニタ装置と車両支持装置20との間の位置合わせの際には、例えばスクリーン又はディスプレイモニタ装置に表示された仮想映像をカメラ12にて撮影し、カメラ12から出力される静止画像や動画に基づいて、上記の各方向における相対位置関係の条件を満足するように位置合わせを実施してもよい。
また、予め車種ごとのカメラ12の、路面からの高さ、進行方向に対する撮像角度、撮影可能範囲をデータベースに記憶しておき、仮想映像の視点が、被検車両10が道路上で撮像する際の視点と同様の相対位置関係になるよう、被検車両10の車種に応じた情報をデータベースから取得しスクリーン又はディスプレイモニタ装置の高さ、角度、前後方向の位置を自動調整してもよい。
映像表示装置40は、カメラ12に取り付け可能な映像表示装置を含んでもよい。図2は、カメラ12に装着する映像表示装置の構成の模式図である。
図2の映像表示装置40は、仮想映像を表示する表示素子41と、カメラ12の対物レンズLOの前方に表示素子41の表示画像の虚像VIを結像する光学系42とを備え、不図示の固定具によってカメラ12に着脱自在に取り付けられる。
映像表示装置40自体をカメラ12に取り付けることによって、被検車両10の前照灯18を点灯させた状態で点検を実施しても、前照灯18の光が映像表示装置40の画像表示面に反射することによって、カメラ12が仮想映像を撮影できなくなったり、またカメラ12で仮想映像を撮影して生成した前方監視映像が劣化するのを防止できる。
なお、カメラ12に取り付け可能な映像表示装置40に仮想映像を表示する場合、被検車両10を点検するオペレータ(点検員、検査員)が同一の仮想映像をリアルタイムで目視できるように、カメラ12に取り付け可能な映像表示装置40とオペレータ用のディスプレイモニタ装置の両方に同一の仮想映像を表示してもよい。
図2の映像表示装置40は、仮想映像を表示する表示素子41と、カメラ12の対物レンズLOの前方に表示素子41の表示画像の虚像VIを結像する光学系42とを備え、不図示の固定具によってカメラ12に着脱自在に取り付けられる。
映像表示装置40自体をカメラ12に取り付けることによって、被検車両10の前照灯18を点灯させた状態で点検を実施しても、前照灯18の光が映像表示装置40の画像表示面に反射することによって、カメラ12が仮想映像を撮影できなくなったり、またカメラ12で仮想映像を撮影して生成した前方監視映像が劣化するのを防止できる。
なお、カメラ12に取り付け可能な映像表示装置40に仮想映像を表示する場合、被検車両10を点検するオペレータ(点検員、検査員)が同一の仮想映像をリアルタイムで目視できるように、カメラ12に取り付け可能な映像表示装置40とオペレータ用のディスプレイモニタ装置の両方に同一の仮想映像を表示してもよい。
(車両点検方法)
上記の車両点検システム1を用いた車両点検方法について説明する。図3は、自動ブレーキ機能を点検する場合における車両点検方法の一例のフローチャートである。
ステップS1においてシャシダイナモ又はフリーローラである車両支持装置20の上に被検車両10を載置し、ローラ21a~21dにより車輪17F及び17Rを支持した状態で被検車両10を走行させる。このとき、車輪17F及び17Rは回転自在なローラ21a~21dによって支持されているので、被検車両10の駆動輪が回転するだけで被検車両10の実際の前後方向の位置は変化しない。本明細書において「被検車両10を走行させる」の表現は、車両支持装置20の上に被検車両10の駆動輪を駆動する意味で用いられている。
上記の車両点検システム1を用いた車両点検方法について説明する。図3は、自動ブレーキ機能を点検する場合における車両点検方法の一例のフローチャートである。
ステップS1においてシャシダイナモ又はフリーローラである車両支持装置20の上に被検車両10を載置し、ローラ21a~21dにより車輪17F及び17Rを支持した状態で被検車両10を走行させる。このとき、車輪17F及び17Rは回転自在なローラ21a~21dによって支持されているので、被検車両10の駆動輪が回転するだけで被検車両10の実際の前後方向の位置は変化しない。本明細書において「被検車両10を走行させる」の表現は、車両支持装置20の上に被検車両10の駆動輪を駆動する意味で用いられている。
ステップS2において映像生成装置30は、車速センサ22又はコントローラ13から被検車両10の車速情報を取得する。
ステップS3において映像生成装置30は、被検車両10から前方に見える環境の仮想映像を生成する。自動ブレーキ機能を点検する場合、映像生成装置30は、例えば被検車両10の前方に障害物(例えば、他車両や人など)が飛び出してくる撮像画像を生成してよい。映像生成装置30は、被検車両10の車速情報に基づいて被検車両10の車速と同期して仮想映像の視点を変化させる。すなわち、被検車両10の車速が0よりも高い場合に障害物が時間経過と共に仮想映像の視点に向かって接近する仮想映像を生成する。
ステップS4において映像表示装置40(例えば被検車両10の前方に配置されたディスプレイモニタ装置)は、映像生成装置30が生成した仮想映像を表示する。
ステップS3において映像生成装置30は、被検車両10から前方に見える環境の仮想映像を生成する。自動ブレーキ機能を点検する場合、映像生成装置30は、例えば被検車両10の前方に障害物(例えば、他車両や人など)が飛び出してくる撮像画像を生成してよい。映像生成装置30は、被検車両10の車速情報に基づいて被検車両10の車速と同期して仮想映像の視点を変化させる。すなわち、被検車両10の車速が0よりも高い場合に障害物が時間経過と共に仮想映像の視点に向かって接近する仮想映像を生成する。
ステップS4において映像表示装置40(例えば被検車両10の前方に配置されたディスプレイモニタ装置)は、映像生成装置30が生成した仮想映像を表示する。
ステップS5においてカメラ12は、映像表示装置40によって表示された仮想映像を撮影して前方監視映像を生成する。コントローラ13は、前方監視映像上で画像認識処理を実行することにより前方監視映像内の障害物の映像(すなわち仮想映像内の障害物の映像)を認識する。例えばコントローラ13は、パターンマッチングなど既存の方法によって障害物の映像を認識できる。
コントローラ13は、認識した障害物に反応して自動ブレーキ制御を実行する。すなわち、被検車両10のブレーキ装置15を作動させて、制動力によって車両支持装置20の上で走行している被検車両10の車速を減少させ、停止させる。仮想映像における障害物は、制動力により減少する被検車両10の車速に同期して、時間経過と共に仮想映像の視点に向かって接近する。
コントローラ13は、認識した障害物に反応して自動ブレーキ制御を実行する。すなわち、被検車両10のブレーキ装置15を作動させて、制動力によって車両支持装置20の上で走行している被検車両10の車速を減少させ、停止させる。仮想映像における障害物は、制動力により減少する被検車両10の車速に同期して、時間経過と共に仮想映像の視点に向かって接近する。
そして仮想映像内の障害物よりも手前の位置で被検車両10が停止できるか否かを点検する。
例えば、映像生成装置30がCG仮想映像を生成する場合には、仮想空間において、障害物の手前の位置で被検車両10が停止できるか否かを点検する。障害物よりも手前の位置で停止できたか否かは、例えば被検車両10を点検するオペレータ(点検員、検査員)が判断又は確認してよい。オペレータは、映像表示装置40に表示されるCG仮想映像を目視することにより障害物の手前の位置で被検車両10が停止できるか否かを点検してよい。
例えば、映像生成装置30がCG仮想映像を生成する場合には、仮想空間において、障害物の手前の位置で被検車両10が停止できるか否かを点検する。障害物よりも手前の位置で停止できたか否かは、例えば被検車両10を点検するオペレータ(点検員、検査員)が判断又は確認してよい。オペレータは、映像表示装置40に表示されるCG仮想映像を目視することにより障害物の手前の位置で被検車両10が停止できるか否かを点検してよい。
また、車両点検システム1は、運転支援装置11の点検結果を診断する診断装置50を備えてもよい。
診断装置50は、車両点検システム1による運転支援装置11の点検結果を診断する電子制御ユニットである。診断装置50は、プロセッサ51と、記憶装置52等の周辺部品とを有する電子回路を含む。プロセッサ51は、例えばCPUやMPUであってよい。
記憶装置52は、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置52は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等のメモリを含んでよい。
以下に説明する診断装置50の機能は、例えばプロセッサ51が、記憶装置52に格納されたコンピュータプログラムを実行することにより実現される。
診断装置50は、車両点検システム1による運転支援装置11の点検結果を診断する電子制御ユニットである。診断装置50は、プロセッサ51と、記憶装置52等の周辺部品とを有する電子回路を含む。プロセッサ51は、例えばCPUやMPUであってよい。
記憶装置52は、半導体記憶装置や、磁気記憶装置、光学記憶装置等を備えてよい。記憶装置52は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等のメモリを含んでよい。
以下に説明する診断装置50の機能は、例えばプロセッサ51が、記憶装置52に格納されたコンピュータプログラムを実行することにより実現される。
診断装置50は、車速センサ22又はコントローラ13から被検車両10の車速情報を取得するとともに、映像生成装置30から仮想空間における障害物と被検車両10の仮想位置を受信する。診断装置50は、仮想空間において、障害物の手前の位置で被検車両10が停止できるか否かを点検する。例えば、障害物の仮想位置と被検車両10の仮想位置の相対位置関係が、障害物と被検車両10とが接触する位置関係になる前に被検車両10が停止できるか否か(車速信号が0を示すか否か)を点検する。障害物の仮想位置と被検車両10の仮想位置の相対位置関係が、障害物と被検車両10とが接触する位置関係になる前に、被検車両10の車速信号が0を示した場合、被検車両10は障害物と接触せずに停止したと判定する。また、コントローラ13が障害物の出現から障害物を認識するまでの間、または、ブレーキ装置15が作動して被検車両10に減速度を生じさせるまでの間に遅れが生じた場合、遅れが生じない場合と比べ、被検車両10はより障害物に接近する。また、ブレーキ装置15が生じる制動力が小さい場合、被検車両10が停止するまでに走行する距離は長くなり、より障害物に接近する。そして、障害物の仮想位置と被検車両10の仮想位置の相対位置関係が、障害物と被検車両10とが接触する位置関係になった場合、被検車両10は障害物の手前で停止しなかったと判定する。すなわち、仮想映像の障害物と被検車両10が接触したと判定する。
仮想映像の障害物と被検車両10が接触したと判定された場合、映像生成装置30は、接触したことを示すアニメーション、またはアラート表示を含む映像を生成し、映像表示装置40は、映像生成装置30が生成した映像を表示する。
また例えば、ドライブレコーダによって車両が障害物に接触したシーンや接触直前に停止したシーンを撮影した実映像を利用可能な場合には、このような実映像に基づく仮想映像を映像表示装置40によって表示し、障害物よりも手前の位置で被検車両10が停止できるか否かを点検してもよい。
この場合には、例えば映像表示装置40に表示されるシーンが、車両が障害物に接触したシーンや接触直前に停止したシーンに至る前に、被検車両10の車速情報が0となって仮想映像が静止するか否かを確認することによって、障害物よりも手前の位置で被検車両10が停止できるか否かを点検できる。
この場合には、例えば映像表示装置40に表示されるシーンが、車両が障害物に接触したシーンや接触直前に停止したシーンに至る前に、被検車両10の車速情報が0となって仮想映像が静止するか否かを確認することによって、障害物よりも手前の位置で被検車両10が停止できるか否かを点検できる。
以下では、自動ブレーキ機能以外の運転支援機能を点検する場合の例について説明する。
定速走行機能を点検する場合には、ステップS3において、道路を走行している車両から前方に見える環境の仮想映像を生成する。映像生成装置30は、CG仮想映像を生成してもよく、走行中にドライブレコーダが撮影した実映像に基づいて仮想映像を生成してもよい。
ステップS5において被検車両10の車速情報を取得し、被検車両10の車速情報が、仮想映像中の速度制限標識が示す制限速度以下であるか否か、又は予め被検車両10に設定した上限速度以下であるか否かを点検する。
定速走行機能を点検する場合には、ステップS3において、道路を走行している車両から前方に見える環境の仮想映像を生成する。映像生成装置30は、CG仮想映像を生成してもよく、走行中にドライブレコーダが撮影した実映像に基づいて仮想映像を生成してもよい。
ステップS5において被検車両10の車速情報を取得し、被検車両10の車速情報が、仮想映像中の速度制限標識が示す制限速度以下であるか否か、又は予め被検車両10に設定した上限速度以下であるか否かを点検する。
車間距離制御機能を点検する場合には、ステップS3において、先行車両に続いて道路を走行している車両から前方に見える環境のCG仮想映像を生成する。
ステップS5において、被検車両10と先行車両との間の車間距離が適正であるか否かを点検する。例えば、診断装置50は、仮想空間における被検車両10と先行車両との間の車間距離が、被検車両10の車速に応じて設定された目標車間距離となっているか否かを点検してよい。
また、被検車両10を点検するオペレータ(点検員、検査員)がCG仮想映像を目視して、先行車両との間の車間距離が適正であるか否かを判断してもよい。
ステップS5において、被検車両10と先行車両との間の車間距離が適正であるか否かを点検する。例えば、診断装置50は、仮想空間における被検車両10と先行車両との間の車間距離が、被検車両10の車速に応じて設定された目標車間距離となっているか否かを点検してよい。
また、被検車両10を点検するオペレータ(点検員、検査員)がCG仮想映像を目視して、先行車両との間の車間距離が適正であるか否かを判断してもよい。
車線逸脱防止機能を点検する場合には、ステップS3において、曲率が0より大きい道路を走行している車両から前方に見える環境の仮想映像を生成する。映像生成装置30は、CG仮想映像を生成してもよく、走行中にドライブレコーダが撮影した実映像に基づいて仮想映像を生成してもよい。
ステップS5において、被検車両10の操舵角の操舵角指令信号をコントローラ13から取得する。なお、被検車両10の転舵輪がシャシダイナモ又はフリーローラの上で実際に転舵されないように、被検車両10の操舵アクチュエータを予め無効にしておく。
コントローラ13から取得した操舵角指令信号に基づいて、車線からの被検車両10の逸脱を防ぐ方向に転舵輪が転舵されているか否かを点検する。
ステップS5において、被検車両10の操舵角の操舵角指令信号をコントローラ13から取得する。なお、被検車両10の転舵輪がシャシダイナモ又はフリーローラの上で実際に転舵されないように、被検車両10の操舵アクチュエータを予め無効にしておく。
コントローラ13から取得した操舵角指令信号に基づいて、車線からの被検車両10の逸脱を防ぐ方向に転舵輪が転舵されているか否かを点検する。
なお、CG仮想映像を用いて車線逸脱防止機能を点検する場合に、映像生成装置30は、被検車両10の操舵を模擬したCG仮想映像を生成してもよい。
この場合に映像生成装置30は、被検車両10の操舵角指令信号をコントローラ13から取得し、被検車両10の車速情報と操舵角指令信号とに基づいて仮想空間における被検車両10の車体のヨー角を算出し、算出したヨー角に基づいて車両から前方に見える環境のCG仮想映像を生成する。
この場合に映像生成装置30は、被検車両10の操舵角指令信号をコントローラ13から取得し、被検車両10の車速情報と操舵角指令信号とに基づいて仮想空間における被検車両10の車体のヨー角を算出し、算出したヨー角に基づいて車両から前方に見える環境のCG仮想映像を生成する。
なお、上記の運転支援機能に加えて、被検車両10のオートハイビーム機能を点検してもよい。オートハイビーム機能は、被検車両10の車体いずれかの位置(例えばサイドミラー)に取り付けられた照度センサにより対向車両の前照灯の光を検出し、被検車両10の前照灯18のハイビームとロービームを自動的に切り替える機能である。
オートハイビーム機能を点検する場合には、例えば、夜間に対向車両とすれ違う仮想映像を表示し、対向車両がある場合には前照灯18がロービームに切り替わり、対向車両がない場合には前照灯18がハイビームに切り替わるか否かを点検する。このとき、予め前照灯18を覆うことによって前照灯18の光が映像表示装置40のディスプレイモニタ装置やスクリーンの画像表示面に反射するのを防止してもよい。
オートハイビーム機能を点検する場合には、例えば、夜間に対向車両とすれ違う仮想映像を表示し、対向車両がある場合には前照灯18がロービームに切り替わり、対向車両がない場合には前照灯18がハイビームに切り替わるか否かを点検する。このとき、予め前照灯18を覆うことによって前照灯18の光が映像表示装置40のディスプレイモニタ装置やスクリーンの画像表示面に反射するのを防止してもよい。
また、被検車両10のアダプティブライト機能を点検してもよい。アダプティブライト機能は、カメラ12の前方監視映像から被検車両10の前方の他車両や歩行者を検出し、被検車両10の前照灯18の光軸を他車両や歩行者から自動的に逸らす機能である。
オートハイビーム機能を点検する場合には、被検車両10の前方に他車両や歩行者が出現する仮想映像を表示し、被検車両10の前照灯18の光軸が他車両や歩行者から逸れるように、前照灯18の向きが自動的に制御されているか否かを点検する。このとき、前照灯18の光によってカメラ12が仮想映像を撮影できなくなったり、またカメラ12で仮想映像を撮影して生成した前方監視映像が劣化するのを防止するために、図2を参照して説明した映像表示装置(すなわちカメラ12に取り付け可能な映像表示装置)によって仮想映像をカメラ12に提示してもよい。
オートハイビーム機能を点検する場合には、被検車両10の前方に他車両や歩行者が出現する仮想映像を表示し、被検車両10の前照灯18の光軸が他車両や歩行者から逸れるように、前照灯18の向きが自動的に制御されているか否かを点検する。このとき、前照灯18の光によってカメラ12が仮想映像を撮影できなくなったり、またカメラ12で仮想映像を撮影して生成した前方監視映像が劣化するのを防止するために、図2を参照して説明した映像表示装置(すなわちカメラ12に取り付け可能な映像表示装置)によって仮想映像をカメラ12に提示してもよい。
(実施形態の効果)
(1)車両点検システム1は、前方監視映像に基づいて車速を自動的に制御するコントローラ13を備える被検車両10を点検する。車両点検システム1は、被検車両10の車輪を支持する車両支持装置20と、車両支持装置20に支持された被検車両10の車速信号を取得し、被検車両10から前方に見える環境の仮想映像を、当該仮想映像が車速信号に同期するように生成する映像生成装置30と、被検車両10に搭載されて前方監視映像を生成するカメラ12が仮想映像を撮影するように仮想映像を表示する映像表示装置40と、を備える。
車両支持装置20は、例えばシャシダイナモ又はフリーローラであってよい。
(1)車両点検システム1は、前方監視映像に基づいて車速を自動的に制御するコントローラ13を備える被検車両10を点検する。車両点検システム1は、被検車両10の車輪を支持する車両支持装置20と、車両支持装置20に支持された被検車両10の車速信号を取得し、被検車両10から前方に見える環境の仮想映像を、当該仮想映像が車速信号に同期するように生成する映像生成装置30と、被検車両10に搭載されて前方監視映像を生成するカメラ12が仮想映像を撮影するように仮想映像を表示する映像表示装置40と、を備える。
車両支持装置20は、例えばシャシダイナモ又はフリーローラであってよい。
これにより、少なくとも車速を自動的に制御して被検車両10の運転を支援する運転支援装置11の修理が完了した場合に、修理した運転支援装置11が本来の性能を発揮できるか否かを確認できる。
例えば、被検車両10が備えるコントローラ13によって実現される自動ブレーキ機能、定速走行機能、車間距離制御機能、車線逸脱防止機能、オートハイビーム機能又はアダプティブライト機能の少なくとも1つを点検してよい。
例えば、被検車両10が備えるコントローラ13によって実現される自動ブレーキ機能、定速走行機能、車間距離制御機能、車線逸脱防止機能、オートハイビーム機能又はアダプティブライト機能の少なくとも1つを点検してよい。
(2)車両点検システム1は、車両支持装置20又は被検車両10から車速信号を取得してよい。
これにより被検車両10の車速信号を同期する仮想映像を生成できる。
(3)自動ブレーキ機能の点検において、車速が0よりも高い場合に被検車両10の前方の障害物が被検車両10に接近する映像を仮想映像として生成し、障害物の手前で被検車両10が停止するか否かを判定してよい。
これにより被検車両10の自動ブレーキ機能が本来の性能を発揮できるか否かを点検できる。
これにより被検車両10の車速信号を同期する仮想映像を生成できる。
(3)自動ブレーキ機能の点検において、車速が0よりも高い場合に被検車両10の前方の障害物が被検車両10に接近する映像を仮想映像として生成し、障害物の手前で被検車両10が停止するか否かを判定してよい。
これにより被検車両10の自動ブレーキ機能が本来の性能を発揮できるか否かを点検できる。
(4)映像生成装置30は、予め規定された試験方法に則った仮想映像を生成してもよい。
これにより、予め規定された試験方法に則った点検を実施できる。
(5)被検車両10の操舵角の操舵指令信号をコントローラ13から取得し、操舵指令信号と車速信号とに基づいて被検車両10のヨー角を算出し、算出したヨー角に応じた仮想映像を生成してもよい。
これにより、前方監視映像に基づいて操舵角を自動的に制御する運転支援装置11を点検できる。
これにより、予め規定された試験方法に則った点検を実施できる。
(5)被検車両10の操舵角の操舵指令信号をコントローラ13から取得し、操舵指令信号と車速信号とに基づいて被検車両10のヨー角を算出し、算出したヨー角に応じた仮想映像を生成してもよい。
これにより、前方監視映像に基づいて操舵角を自動的に制御する運転支援装置11を点検できる。
(6)映像表示装置40は、被検車両10の前方に配置されたディスプレイモニタ装置に仮想映像を表示するか、被検車両10の前方に配置されたスクリーンに仮想映像を投影してよい。
これにより、仮想映像を撮影して生成した前方監視映像に基づいて被検車両10の運転を支援する運転支援装置11を点検できる。
これにより、仮想映像を撮影して生成した前方監視映像に基づいて被検車両10の運転を支援する運転支援装置11を点検できる。
(7)表示素子と、カメラ12の対物レンズの前方に表示素子の表示画像の虚像を結像する光学系と、を有する映像表示装置40をカメラ12に取り付け、映像表示装置40により仮想映像を表示してもよい。
これにより、被検車両10のカメラ12は、仮想映像を撮影した前方監視映像を生成できる。また、被検車両10の前照灯18を点灯させた状態で点検を実施しても、カメラ12が仮想映像を撮影できなくなったり、またカメラ12で仮想映像を撮影して生成した前方監視映像が劣化するのを防止できる。
これにより、被検車両10のカメラ12は、仮想映像を撮影した前方監視映像を生成できる。また、被検車両10の前照灯18を点灯させた状態で点検を実施しても、カメラ12が仮想映像を撮影できなくなったり、またカメラ12で仮想映像を撮影して生成した前方監視映像が劣化するのを防止できる。
ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。
1…車両点検システム、10…被検車両、11…運転支援装置、12…カメラ、13…コントローラ、13a、31、51…プロセッサ、13b、32、52…記憶装置、14…車両センサ、15…ブレーキ装置、16…駆動力源、17F…前輪、17R…後輪、18…前照灯、20…車両支持装置、21a~21d…ローラ、22…車速センサ、30…映像生成装置、40…映像表示装置、41…表示素子、42…光学系、50…診断装置、LO…対物レンズ
Claims (10)
- 前方監視映像に基づいて車速を自動的に制御するコントローラを備える車両の車両点検方法であって、
車両支持装置により前記車両の車輪を支持し、
前記車両支持装置に支持された前記車両の車速信号を取得し、
前記車両から前方に見える環境の仮想映像を、当該仮想映像が前記車速信号に同期するように生成し、
前記車両に搭載されて前記前方監視映像を生成するカメラが前記仮想映像を撮影するように前記仮想映像を表示する、
ことを特徴とする車両点検方法。 - 前記車両支持装置は、シャシダイナモ又はフリーローラであることを特徴とする請求項1に記載の車両点検方法。
- 前記車両支持装置又は前記車両から前記車速信号を取得することを特徴とする請求項1に記載の車両点検方法。
- 前記車両が備える前記コントローラによって実現される自動ブレーキ機能、定速走行機能、車間距離制御機能、車線逸脱防止機能、オートハイビーム機能又はアダプティブライト機能の少なくとも1つを点検することを特徴とする請求項1に記載の車両点検方法。
- 前記自動ブレーキ機能の点検において、前記車速が0よりも高い場合に前記車両の前方の障害物が前記車両に接近する映像を前記仮想映像として生成し、障害物の手前で前記車両が停止するか否かを判定することを特徴とする請求項4に記載の車両点検方法。
- 予め規定された試験方法に則って前記仮想映像を生成することを特徴とする請求項1に記載の車両点検方法。
- 前記車両の操舵角の操舵角指令信号を前記コントローラから取得し、
前記操舵角指令信号と前記車速信号とに基づいて前記車両のヨー角を算出し、算出した前記ヨー角に応じた前記仮想映像を生成する、
ことを特徴とする請求項1に記載の車両点検方法。 - 前記車両の前方に配置されたディスプレイモニタ装置に前記仮想映像を表示するか、前記車両の前方に配置されたスクリーンに前記仮想映像を投影することを特徴とする請求項1に記載の車両点検方法。
- 表示素子と、前記カメラの対物レンズの前方に前記表示素子の表示画像の虚像を結像する光学系と、を有する表示装置を前記カメラに取り付け、
前記表示装置により前記仮想映像を表示する、
ことを特徴とする請求項1に記載の車両点検方法。 - 前方監視映像に基づいて車速を自動的に制御するコントローラを備える車両の車両点検システムであって、
前記車両の車輪を支持する車両支持装置と、
前記車両支持装置に支持された前記車両の車速信号を取得し、前記車両から前方に見える環境の仮想映像を、当該仮想映像が前記車速信号に同期するように生成する映像生成装置と、
前記車両に搭載されて前記前方監視映像を生成するカメラが前記仮想映像を撮影するように前記仮想映像を表示する映像表示装置と、
を備えることを特徴とする車両点検システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/020241 WO2023218647A1 (ja) | 2022-05-13 | 2022-05-13 | 車両点検方法及び車両点検システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/020241 WO2023218647A1 (ja) | 2022-05-13 | 2022-05-13 | 車両点検方法及び車両点検システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023218647A1 true WO2023218647A1 (ja) | 2023-11-16 |
Family
ID=88730138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/020241 WO2023218647A1 (ja) | 2022-05-13 | 2022-05-13 | 車両点検方法及び車両点検システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023218647A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020059496A1 (ja) * | 2018-09-21 | 2020-03-26 | 本田技研工業株式会社 | 車両検査システム |
WO2020059497A1 (ja) * | 2018-09-21 | 2020-03-26 | 本田技研工業株式会社 | 車両検査システム |
-
2022
- 2022-05-13 WO PCT/JP2022/020241 patent/WO2023218647A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020059496A1 (ja) * | 2018-09-21 | 2020-03-26 | 本田技研工業株式会社 | 車両検査システム |
WO2020059497A1 (ja) * | 2018-09-21 | 2020-03-26 | 本田技研工業株式会社 | 車両検査システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7052174B2 (ja) | 将来経路を推定するシステム及び方法 | |
CN101404122B (zh) | 驾驶支援装置以及驾驶支援方法 | |
JP6866440B2 (ja) | 物体識別方法、装置、機器、車両及び媒体 | |
CN101207802B (zh) | 驾驶支援方法和驾驶支援装置 | |
US6373378B1 (en) | Arrangement for visualizing the illumination of a zone in front of a vehicle by a headlight | |
CN1810547A (zh) | 用于车辆的信息提供设备 | |
WO2014141526A1 (ja) | 車両用危険場面再現装置、およびその使用方法 | |
JP2016055674A (ja) | 車両用表示装置 | |
JP6724885B2 (ja) | 虚像表示装置 | |
JP2004189223A (ja) | 車両用ヘッドランプの方向を制御するためのシステムおよびその方法 | |
WO2020012879A1 (ja) | ヘッドアップディスプレイ | |
JP2002354467A (ja) | 車両周囲情報表示装置 | |
JP2004356845A (ja) | 移動体周辺監視装置 | |
WO2023218647A1 (ja) | 車両点検方法及び車両点検システム | |
WO2022218140A1 (zh) | 驾驶辅助方法、存储介质以及车辆 | |
JP3900415B2 (ja) | 車両周辺画像処理装置,プログラム及び記録媒体 | |
JP3464368B2 (ja) | 車両用後側方監視装置 | |
JP3997945B2 (ja) | 周辺画像表示装置 | |
JP4857159B2 (ja) | 車両運転支援装置 | |
CN112339771B (zh) | 一种泊车过程展示方法、装置及车辆 | |
CN114425991B (zh) | 图像处理方法、介质、设备及图像处理系统 | |
JP3019684B2 (ja) | 自動車の走行制御装置 | |
WO2019131296A1 (ja) | ヘッドアップディスプレイ装置 | |
JP5470182B2 (ja) | 車両用危険場面再現装置 | |
JP2019029922A (ja) | 遠隔操作装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22940954 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024520219 Country of ref document: JP Kind code of ref document: A |