[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023210534A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2023210534A1
WO2023210534A1 PCT/JP2023/015964 JP2023015964W WO2023210534A1 WO 2023210534 A1 WO2023210534 A1 WO 2023210534A1 JP 2023015964 W JP2023015964 W JP 2023015964W WO 2023210534 A1 WO2023210534 A1 WO 2023210534A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
rear wheel
control device
control
degree
Prior art date
Application number
PCT/JP2023/015964
Other languages
English (en)
French (fr)
Inventor
寛生 阿部
亮 蜂須賀
俊輔 松尾
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2024517285A priority Critical patent/JPWO2023210534A1/ja
Publication of WO2023210534A1 publication Critical patent/WO2023210534A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention

Definitions

  • the present case relates to a vehicle control device that estimates the slipperiness of a rear wheel of a vehicle and controls the vehicle's actuator according to the estimation result.
  • Spin behavior is a behavior in which when a vehicle turns, the cornering force of the rear wheels decreases for some reason, causing the vehicle body to turn significantly inward.
  • Techniques for estimating the occurrence of such spin behavior are known.
  • the frequency transfer characteristic is calculated based on the lateral acceleration (lateral G) acting on the vehicle, the rotational angular velocity around the center of gravity of the vehicle (hereinafter referred to as "yaw rate"), and the vehicle body speed.
  • yaw rate the rotational angular velocity around the center of gravity of the vehicle
  • the system calculates the vehicle's rear wheel cornering power and determines whether the rear wheels are skidding. When rear wheel sideslip occurs, the value of rear wheel cornering power decreases significantly, so it is possible to determine the presence or absence of sideslip from the calculated value of rear wheel cornering power.
  • This project was devised in view of these issues, and aims to improve vehicle controllability by accurately estimating the decrease in cornering force of the rear wheels, or in other words, the value that represents the tendency of the rear wheels to slip. be one of the.
  • other purposes of the present invention are not limited to this purpose, but also to achieve functions and effects that are derived from each configuration shown in the detailed description of the invention and that cannot be obtained by conventional techniques. be.
  • the disclosed vehicle control device can be realized as the embodiments or application examples disclosed below, and solves at least part of the above problems.
  • the disclosed vehicle control device includes: a vehicle speed detection means for detecting the vehicle body speed of the vehicle; a yaw rate detection means for detecting the yaw rate of the vehicle; a lateral acceleration detection means for detecting the lateral acceleration of the vehicle;
  • the present invention is applied to the vehicle provided with longitudinal acceleration detection means for detecting longitudinal acceleration.
  • the control device includes a first estimator that estimates a specific coefficient that includes rear wheel cornering power of the vehicle among coefficients included in a transfer function of the product of the vehicle body speed and the yaw rate using the lateral acceleration as input.
  • a second estimating unit that estimates a rear wheel grip degree indicating the slipperiness of the rear wheel based on at least the specific coefficient and the longitudinal acceleration; and an actuator or a notification device of the vehicle according to the rear wheel grip degree.
  • the rear wheel cornering power is calculated from the transfer function in order to estimate the degree of rear wheel grip, which indicates the slipperiness of the rear wheels, based on the specific coefficient included in the transfer function and the longitudinal acceleration.
  • the actuator or the notification device of the vehicle is controlled according to the rear wheel grip degree estimated in this way, the controllability of the vehicle can be improved.
  • FIG. 1 is a diagram illustrating the configuration of a vehicle to which a control device according to an embodiment is applied.
  • FIG. 2 is a diagram for explaining a linear two-wheel model of a vehicle.
  • FIG. 2 is a block diagram showing processing performed by the control device in FIG. 1.
  • FIG. 2 is an example of a flowchart executed by the control device of FIG. 1.
  • FIG. 1 is a diagram illustrating the configuration of a vehicle to which a control device according to an embodiment is applied.
  • FIG. 2 is a diagram for explaining a linear two-wheel model of a vehicle.
  • FIG. 2 is a block diagram showing processing performed by the control device in FIG. 1.
  • FIG. 2 is an example of a flowchart executed by the control device of FIG. 1.
  • a vehicle control device as an embodiment will be described with reference to the drawings.
  • the embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques not specified in the embodiments below.
  • the configuration of each embodiment can be modified and implemented in various ways without departing from the spirit thereof. Further, they can be selected or combined as necessary.
  • the forward direction of the vehicle is defined as the front (front of the vehicle), and left and right are defined with the front as a reference.
  • the control device 10 of this embodiment is applied to the vehicle 1 illustrated in FIG. 1, and has a function of determining at least an index indicating the slipperiness of the rear wheels 2R of the vehicle 1 (rear wheel grip degree to be described later).
  • the control device 10 is one of the electronic control units (ECU, Electronic Control Unit) mounted on the vehicle 1, and is expressed as "ECU" in FIG. 1.
  • the control device 10 is equipped with a processor (microprocessor) such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory, and the like.
  • a processor is an arithmetic processing device that includes a control unit (control circuit), an arithmetic unit (arithmetic circuit), a cache memory (register group), etc. Further, ROM, RAM, and nonvolatile memory are memory devices in which programs and data being worked on are stored. The contents of the judgments and controls performed by the control device 10 are recorded and stored in memory as firmware or application programs, and when the program is executed, the contents of the program are developed in the memory space and executed by the processor.
  • the vehicle 1 is an engine car, an electric vehicle (EV), an electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), or a fuel cell vehicle (FCV), which is equipped with a drive source 3 such as an engine or an electric motor, for example. Fuel Cell Vehicle).
  • a brake device 4 is provided on the left and right front wheels 2FL, 2FR and the left and right rear wheels 2RL, 2RR of the vehicle 1, and each of the four wheels is brake-controlled independently.
  • the vehicle 1 also includes a power steering device 5 that assists the driver's steering operation, and an AFS 6 (Active Front Steering) that can actively control the steering amount (front wheel steering angle) of the front wheels 2F (2FL, 2FR).
  • AFS 6 Active Front Steering
  • ARS7 Active Rear Steering
  • the vehicle 1 of this embodiment is provided with an active suspension 8 and a notification device 9 that makes an announcement to the driver via display or voice.
  • These devices 3 to 9 are individually controlled by an on-vehicle control device (not shown).
  • a control device engine ECU or motor ECU
  • the vehicle 1 is equipped with an ECU and an ECU that controls the notification device 9.
  • the control device 10 controls the devices 3 to 9, it sends commands to these various ECUs, and the various ECUs control the corresponding devices 3 to 9.
  • the devices 3 to 8 that play the role of converting energy into mechanical displacement or stress can be called "actuators.”
  • a common ECU may have a function of controlling a plurality of devices 3 to 9.
  • the vehicle 1 is provided with a sensor for acquiring various information about the vehicle 1.
  • a vehicle speed sensor 21, a yaw rate sensor 22, a lateral acceleration sensor 23, and a longitudinal acceleration sensor 24 are provided, and each of the sensors 21 to 24 is connected to the control device 10.
  • the vehicle speed sensor 21 (vehicle speed detection means) is a sensor that detects the vehicle body speed V of the vehicle 1
  • the yaw rate sensor 22 (yaw rate detection means) detects the rotational angular velocity around the vertical axis passing through the center of gravity G of the vehicle 1 as a yaw rate r.
  • This is a sensor that detects as follows.
  • the positive direction of the vehicle body speed V is the direction from the center of gravity G to the front
  • the yaw rate r is the direction from the center of gravity G when the vehicle 1 is viewed from above. Counterclockwise is considered the positive direction.
  • the lateral acceleration sensor 23 (lateral acceleration detection means) and the longitudinal acceleration sensor 24 (longitudinal acceleration detection means) are sensors that respectively detect lateral acceleration A y and longitudinal acceleration A x at the center of gravity G of the vehicle 1.
  • the positive direction of the lateral acceleration A y is to the left from the center of gravity G
  • the positive direction of the longitudinal acceleration A x is toward the front from the center of gravity G. It is said that Information detected by each sensor 21 to 24 is sent to the control device 10.
  • the means for detecting the vehicle speed V is not limited to the vehicle speed sensor 21; for example, a wheel speed sensor that detects the angular velocity of each wheel 2 may be provided, and the vehicle speed V may be calculated from the detected value of the wheel speed sensor.
  • the means for detecting the yaw rate r, the means for detecting the lateral acceleration Ay , and the means for detecting the longitudinal acceleration Ax are not limited to the yaw rate sensor 22, the lateral acceleration sensor 23, and the longitudinal acceleration sensor 24.
  • the lateral acceleration A y can be estimated based on the steering angle and the vehicle speed V, or the estimated value or the value detected by the lateral acceleration sensor 23 can be corrected based on another sensor value . may be detected.
  • the yaw rate r and the longitudinal acceleration A x may be detected by correcting the values detected by the yaw rate sensor 22 and the longitudinal acceleration sensor 24 based on other sensor values.
  • the estimation section and the correction section (functional elements of the control device) can serve as each detection means.
  • the control device 10 of the present embodiment uses the information detected by the various sensors 21 to 24 to estimate the "rear wheel grip degree k rg " which is an index indicating the slipperiness of the rear wheels 2R of the vehicle 1, The actuator or notification device 9 is controlled accordingly.
  • the control device 10 may also have a function of determining the road surface condition while the vehicle 1 is traveling based on the rear wheel grip degree k rg . Examples of the road surface conditions determined here include dry paved roads, wet roads, snowy roads, frozen roads, gravel (unpaved roads), muddy roads, and the like.
  • the rear wheel grip degree k rg is a value that represents the degree of slipperiness (frictional force, rear wheel cornering power) of the rear wheel 2R of the vehicle 1.
  • the control device 10 includes a first estimation section 11, a second estimation section 12, and a control section 13 as functional elements for estimating the rear wheel grip degree k rg and controlling the actuator or the notification device 9 of the vehicle 1. Be prepared. Furthermore, the control device 10 of the present embodiment includes a determination unit 14 as a functional element for determining the road surface condition from the estimated rear wheel grip degree k rg . These elements are shown by classifying the functions of the control device 10 for convenience. Each of these elements can be written as an independent program, and can also be written as a composite program that combines a plurality of elements. A program corresponding to each element is stored in the memory or storage device of the control device 10 and executed by the processor.
  • the first estimating unit 11 specifies a coefficient that includes the rear wheel cornering power K r of the vehicle 1 among the coefficients included in the transfer function G(s) of the product of the vehicle body speed V and the yaw rate r using the lateral acceleration A y as input. This is to estimate the coefficients.
  • the transfer function G(s) is expressed by Equation 1 below. Note that a 1 , b 1 , and b 2 in Equation 1 are coefficients. In this way, the transfer function G(s) has a linear numerator and a quadratic denominator, with a steady gain of 1.
  • the vehicle 1 is modeled using a linear two-wheel model.
  • the linear two-wheel model is a mathematical model of the vehicle 1 that is linearized by considering the vehicle 1 as one rigid body and reducing the degree of freedom of movement.
  • the vehicle 1 is regarded as a rigid body having one front wheel 2F and one rear wheel 2R, and only plane motion in the lateral direction and yaw direction when the vehicle speed is constant is considered. Further, it is assumed that the cornering force generated by the wheels 2 is proportional to the sideslip angle.
  • Equation 2 The equation of motion in this two-wheel model is expressed by Equation 2 below.
  • m is the vehicle mass
  • is the slip angle at the center of gravity
  • I is the yaw moment of inertia
  • K f is the front wheel cornering power
  • ⁇ f is the front wheel slip angle (lateral slip angle of the front wheel 2F)
  • ⁇ r is the rear wheel slip angle (the side slip angle of the front wheel 2F).
  • L f is the distance in the longitudinal direction between the front axle and the center of gravity G
  • L r is the distance in the longitudinal direction between the rear axle and the center of gravity G.
  • Equation 3 assuming that the vehicle speed V is constant, the above equation 2 becomes linear with respect to the center of gravity slip angle ⁇ and the yaw rate r. Based on this assumption, when Equation 2 is rearranged by Laplace transform, the following Equation 4 is obtained. Note that L is the wheelbase (distance between the front and rear axles).
  • the coefficients a 1 and b 2 include the rear wheel cornering power K r . Furthermore, since m, L f , I, and L included in these coefficients a 1 and b 2 are predetermined vehicle specification values, changes in coefficients a 1 and b 2 are caused by rear wheel cornering power K. This occurs due to changes in r . Therefore, the first estimation unit 11 uses at least one of the coefficients a 1 and b 2 as a specific coefficient, and estimates the value of the specific coefficient by using a predetermined estimation method. Thereby, the first estimation unit 11 can indirectly estimate the change in the rear wheel cornering power K r .
  • the first estimation unit 11 of this embodiment estimates the denominator quadratic coefficient b 2 as a specific coefficient.
  • the predetermined estimation method include an estimation method using a Kalman filter and an iterative least squares method.
  • the detection means sensors 21 to 24
  • the deviation between the detected value (output measurement value) and the estimated output value estimated by applying the estimated state quantity before the one-time step to the mathematical model stored in the electronic control unit is multiplied by a predetermined gain.
  • the current state quantity estimated value (specific coefficient b 2 ) is estimated.
  • the first estimation unit 11 of this embodiment estimates the coefficient b 2 as a specific coefficient, but may also estimate the coefficient a 1 as a specific coefficient, or may estimate these two coefficients a 1 and b 2 as a specific coefficient. Alternatively, the weighted average of these two estimated values a 1 and b 2 may be taken.
  • the second estimation unit 12 estimates the rear wheel grip degree k rg based on at least the specific coefficient estimated by the first estimation unit 11 and the longitudinal acceleration A x detected by the longitudinal acceleration sensor 24. It is.
  • the second estimator 12 of this embodiment calculates the rear wheel grip degree k rg based on the specific coefficient b 2 estimated by the first estimator 11, as shown in FIG. 3 and Equations 5 and 6 below. It is determined as the reciprocal of the product of the acceleration A x and the rear axle load W r .
  • the rear axle load W r is a value obtained by adding the load movement amount ⁇ W x of the front and rear axles to the stationary rear axle load W r0 (fixed value) when the vehicle 1 is stationary.
  • the longitudinal acceleration A x is used in calculating the load movement amount ⁇ W x of the longitudinal axis.
  • h cg is the height of the center of gravity (fixed value).
  • the second estimation unit 12 of this embodiment calculates the rear axle load W r from the detected longitudinal acceleration A x and the vehicle specification value, and calculates the specific coefficient b 2 estimated by the first estimation unit 11.
  • the rear wheel grip degree k rg is estimated (calculated) from the rear axle load W r .
  • the second estimation section 12 sends the estimated rear wheel grip degree k rg to the control section 13 .
  • the control unit 13 controls the actuator or the notification device 9 of the vehicle 1 according to the rear wheel grip degree k rg estimated by the second estimation unit 12 .
  • the actuator controlled here is at least one of the drive source 3, brake device 4, power steering device 5, AFS 6, ARS 7, and active suspension 8, or all of them.
  • the control unit 13 controls the vehicle 1 because the smaller the rear wheel grip degree k rg (that is, the more likely the rear wheel 2R is to slip), the more likely the vehicle 1 is to spin (or the more likely it is to occur). Control the actuator to stabilize its behavior.
  • the control unit 13 compares the rear wheel grip degree k rg with a preset first threshold value, and controls the actuator to stabilize the behavior of the vehicle 1 when the rear wheel grip degree k rg is less than the first threshold value. may be controlled.
  • the control unit 13 controls the required torque required for the vehicle 1 and the driver's control.
  • the actuator is controlled according to pedal operation, vehicle speed V, etc. Control at this time is called normal control.
  • the normal control may be performed by the control device 10 or by another vehicle-mounted control device.
  • the control unit 13 can determine whether or not to perform the normal control, for example, based on whether the rear wheel grip degree k rg exceeds a preset second threshold value.
  • the second threshold is a larger value than the first threshold.
  • the control unit 13 of this embodiment includes a first control unit 13A that adjusts the control amount of at least one of the driving force and braking force of the vehicle 1 according to the rear wheel grip degree k rg .
  • the first control unit 13A sends a command to the control device of the driving source 3 to control the output (driving force) of the driving source 3.
  • the driving force may be adjusted by controlling the power transmission device.
  • the first control unit 13A sends a command to the control device of the brake device 4 to control the output (braking force) of the brake device 4. Since the brake device 4 can control each wheel 2 individually, more detailed adjustment is possible. Note that it is also possible to adjust the control amount of the braking force by controlling the drive source 3.
  • the first control unit 13A of this embodiment adjusts the control amount so as not to impede its implementation.
  • the first control unit 13A adjusts the control amount so as to limit the torque movement in the front, rear, left, and right directions, so that the rear wheel 2R is more likely to slip, depending on the rear wheel grip degree k rg . do. That is, in this case, the first control unit 13A adjusts the control amount of at least one of the driving force and the braking force so as to limit the torque movement with respect to the driving force and the braking force under normal control.
  • 13 A of 1st control parts may switch a control map, and may increase or suppress the control output calculated by normal control.
  • the control unit 13 of the present embodiment has a second control unit that adjusts the steering assist torque of the vehicle 1, the amount of steering of each wheel 2, and the control amount of at least one of the active suspensions 8 according to the rear wheel grip degree krg . It includes a control section 13B.
  • the second control section 13B sends a command to the control device of the power steering device 5 to control the output (steering assist torque) of the power steering device 5.
  • the second control unit 13B sends a command to the control devices of the AFS 6 and ARS 7, and controls the outputs (front wheel steering angle, rear wheel steering angle) of the AFS 6 and ARS 7.
  • the second control unit 13B sends a command to the control device of the active suspension 8, and controls energy sources such as oil pressure, pneumatic pressure, and an electric motor.
  • the steering assist torque of the vehicle 1, the amount of steering of each wheel 2, and the active suspension 8 are all the same as the driving force and braking force during normal driving without side slipping of the rear wheels 2R (that is, during normal control). It is controlled according to the steering operation by the driver, the vehicle speed V, etc.
  • the second control unit 13B of this embodiment does not inhibit normal control when it is performed.
  • the second control unit 13B controls, depending on the rear wheel grip degree k rg , the more easily the rear wheel 2R slips, the more maneuverability is ensured while suppressing the side slip of the rear wheel 2R.
  • the control amount of at least one of the steering assist torque, the steering amount, and the active suspension 8 is adjusted so that the steering assist torque, the steering amount, and the active suspension 8 are controlled.
  • the second control part 13B may switch a control map, and may increase or suppress the control output calculated by normal control.
  • the combination of control by the first control unit 13A and control by the second control unit 13B is arbitrary.
  • a configuration may be adopted in which both the driving force and the braking force are controlled by the first control section 13A, and the steering assist torque, the steering amount, and the active suspension 8 are all controlled by the second control section 13B.
  • a configuration may be adopted in which only the braking force is controlled by the first control section 13A, and only the steering assist torque is controlled by the second control section 13B.
  • a configuration may be adopted in which both the driving force and the braking force are controlled by the first control section 13A, and the control by the second control section 13B is not performed. In this way, by using two or more types of control in combination, the degree of freedom in control increases and more precise vehicle motion control becomes possible.
  • the control unit 13 controls the notification device 9 to inform the driver of the skidding state of the vehicle 1. You may make an announcement.
  • the third threshold is a value smaller than the second threshold, and may be the same as or different from the first threshold.
  • the determining unit 14 determines the road surface condition on which the vehicle 1 is traveling based on the rear wheel grip degree k rg estimated by the second estimating unit 12 . In this determination, for example, a previously stored correspondence relationship between the rear wheel grip degree k rg and the road surface condition can be used. As an example, the determining unit 14 determines that the road is a dry paved road when the rear wheel grip degree k rg is equal to or greater than the first predetermined value, and the rear wheel grip degree k rg is less than the first predetermined value, and If the road is equal to or greater than a second predetermined value smaller than the first predetermined value, it is determined that the road is wet.
  • the determination unit 14 determines that the road is covered with snow when the rear wheel grip degree k rg is less than the second predetermined value and is equal to or greater than a third predetermined value smaller than the second predetermined value. Further, the determination unit 14 determines that the road surface is frozen when the rear wheel grip degree k rg is less than a third predetermined value. Similar determinations may be made for other road conditions (unpaved roads, muddy roads, etc.).
  • control unit 13 may control the notification device 9 in accordance with the rear wheel grip degree k rg estimated by the second estimating unit 12 instead of or in addition to controlling the actuator described above.
  • control unit 13 may announce the result of the determination of the road surface condition by the determination unit 14 to the driver by voice or display.
  • FIG. 4 shows an example of a flowchart executed in the control device 10 described above. This flowchart is executed at a predetermined calculation cycle, for example, when the main power source of the vehicle 1 is on.
  • step S1 information on various sensors 21 to 24 is acquired.
  • step S2 the first estimating unit 11 estimates the specific coefficient b 2 included in the transfer function G(s) of Equation 1 above.
  • step S3 the second estimation unit 12 calculates the rear axle load W r (step S3) and estimates (calculates) the rear wheel grip degree k rg (step S4).
  • the actuator or notification device 9 is controlled by the control section 13 (first control section 13A, second control section 13B) according to the rear wheel grip degree k rg , and this flowchart is returned.
  • the rear wheel grip degree k rg based on the specific coefficients a 1 and b 2 including the rear wheel cornering power K r indicates the slipperiness of the rear wheel 2R, and is a parameter that can express the friction state between the rear wheel 2R and the road surface. .
  • the above-described control device 10 focuses on the fact that the change in the rear wheel cornering power K r can be determined from the change in the specific coefficients a 1 and b 2 included in the transfer function G(s) . 2 is estimated using three detected values (lateral acceleration A y , yaw rate r, and vehicle speed V).
  • the rear wheel grip degree k rg is estimated based on the specific coefficients a 1 and b 2 and the longitudinal acceleration A x .
  • the present control device 10 compared to the conventional method of calculating the rear wheel cornering power K r from the transfer function G(s), it is possible to reduce the uncertainty due to fewer calculation processes, and improve the estimation. Accuracy can be increased.
  • the information on the longitudinal acceleration A x is taken into consideration, it is possible to estimate the rear wheel grip degree k rg according to the driving condition, and from this point as well, the estimation accuracy can be improved.
  • control device 10 controls the actuator or notification device 9 of the vehicle 1 according to the rear wheel grip degree k rg based on the specific coefficients a 1 , b 2 and the longitudinal acceleration A x .
  • Controllability can be improved. This can contribute to improving, for example, suppression control of spin behavior, which is one type of vehicle motion control.
  • the control amount of at least one of the driving force and braking force of the vehicle 1 is adjusted according to the rear wheel grip degree k rg .
  • the control amount of at least one of the driving force and braking force is adjusted by increasing or decreasing according to the slipperiness (size of frictional force) of the rear wheel 2R (for example, when the rear wheel 2R is slippery, the torque movement in the front, rear, left, and right directions is adjusted). Therefore, it is possible to contribute to improving the suppression control of spin behavior, and for example, it is possible to realize a desired behavior.
  • the control amount of at least one of the steering assist torque of the vehicle 1, the amount of turning of each wheel 2, and the active suspension 8 is adjusted according to the rear wheel grip degree k rg . Therefore, maneuverability can be ensured by increasing or decreasing the control amount of the steering assist torque and the steering amount in accordance with the slipperiness (size of frictional force) of the rear wheels 2R. Furthermore, the grounding state of the wheels 2 can also be controlled by adjusting the control amount (hydraulic pressure or air pressure) of the active suspension 8. These can contribute to improving the suppression control of spin behavior, and for example, can realize a desired behavior.
  • the rear wheel grip degree k rg is estimated using the above equations 5 and 6, so it is possible to estimate the rear wheel grip degree k rg according to the driving condition by simple calculation. can.
  • the denominator quadratic coefficient b 2 of the above equations 1 and 4 is used as the specific coefficient. This is because the inventors have found that, in estimation using a Kalman filter, for example, the coefficient b 2 yields a value closer to the true state. Therefore, by using this coefficient b 2 as a specific coefficient, the accuracy of estimating the rear wheel grip degree k rg can be further improved.
  • control device 10 The configuration of the control device 10 described above is an example, and is not limited to the configuration described above.
  • the control unit 13 is provided with two functions, the first control unit 13A and the second control unit 13B, but these functions do not need to be separated.
  • the above six control targets (driving force, braking force, steering assist torque, steering amount, active suspension 8, and notification device 9) may be controlled independently, or may be used together or in combination. good.
  • the determination unit 14 determines the road surface condition, but this determination may be omitted. Furthermore, the method for determining the rear axle load W r is not limited to the above method. In the embodiment described above, the second-order denominator coefficient b 2 is estimated as the specific coefficient, but the first-order denominator coefficient a 1 may be estimated as the specific coefficient. Note that the method for estimating the rear wheel grip degree k rg is not limited to the above method, and may be based on at least the specific coefficient and the longitudinal acceleration A x .
  • the configuration of the vehicle 1 to which the control device 10 is applied is also one example, and is not limited to the above-mentioned configuration.
  • the ASC active stability control
  • the ASC may be activated in accordance with the rear wheel grip degree k rg estimated by the control device 10 described above.
  • the AFS 6 and ARS 7 may be omitted from the vehicle 1 described above, or a drive source 3 (for example, an in-wheel motor) may be provided for each wheel 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両(1)の車体速(V),ヨーレイト(r),横加速度(Ay),前後加速度(Ax)をそれぞれ検出する検出手段(21~24)が設けられた車両(1)の制御装置(10)であって、横加速度(Ay)を入力とした車体速(V)及びヨーレイト(r)の積の伝達関数に含まれる係数のうち、車両(1)の後輪コーナリングパワー(Kr)が含まれる特定係数を推定する第一推定部(11)と、少なくとも特定係数及び前後加速度(Ax)に基づいて、後輪(2R)のすべりやすさを示す後輪グリップ度合い(krg)を推定する第二推定部(12)と、後輪グリップ度合い(krg)に応じて車両(1)のアクチュエータ(3~8)又は報知装置(9)を制御する制御部(13)と、を備える。

Description

車両の制御装置
 本件は、車両の後輪のすべりやすさを推定し、推定結果に応じて車両のアクチュエータを制御する車両の制御装置に関する。
 従来、車両運動制御の一つとして、車両のスピン挙動の抑制が実施されている。スピン挙動とは、車両旋回時に、なんらかの原因で後輪のコーナリングフォースが低下することにより、車体が大幅に内向きに回ってしまう挙動である。このようなスピン挙動の発生を推定する技術が知られている。例えば特許文献1では、車両に作用する横加速度(横G)と、車両の重心回りの回転角速度(以下、「ヨーレイト」という)と車体速とに基づいて周波数伝達特性を算出し、これに基づいて車両の後輪コーナリングパワーを算出して、後輪の横すべりを判定している。後輪の横すべりが発生すると、後輪コーナリングパワーの値が大幅に減少することから、算出した後輪コーナリングパワーの値から、横すべりの有無を判定可能である。
特開2010-202046号公報
 上記の特許文献1のように、後輪コーナリングパワーを算出することで後輪の横すべり判定は可能であるが、後輪コーナリングパワーを算出するまでの過程で、不確かさ(推定誤差や算出誤差)が含まれうる。横すべりの有無の判定や、車両のスピン挙動の抑制制御といった制御に際し、判定や制御に用いる値(特許文献1での後輪コーナリングパワーに相当する値)の誤差をできるだけ抑えて、推定精度を高めることは重要である。
 本件は、このような課題に鑑み案出されたもので、後輪のコーナリングフォースの低下、すなわち、後輪のすべりやすさを表す値を精度よく推定し、車両の制御性を高めることを目的の一つとする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。
 開示の車両の制御装置は、以下に開示する態様又は適用例として実現でき、上記の課題の少なくとも一部を解決する。
 開示の車両の制御装置は、車両の車体速を検出する車体速検出手段と、前記車両のヨーレイトを検出するヨーレイト検出手段と、前記車両の横加速度を検出する横加速度検出手段と、前記車両の前後加速度を検出する前後加速度検出手段とが設けられた前記車両に適用される。前記制御装置は、前記横加速度を入力とした前記車体速及び前記ヨーレイトの積の伝達関数に含まれる係数のうち、前記車両の後輪コーナリングパワーが含まれる特定係数を推定する第一推定部と、少なくとも前記特定係数及び前記前後加速度に基づいて、後輪のすべりやすさを示す後輪グリップ度合いを推定する第二推定部と、前記後輪グリップ度合いに応じて前記車両のアクチュエータ又は報知装置を制御する制御部と、を備える。
 開示の車両の制御装置によれば、伝達関数に含まれる特定係数及び前後加速度に基づいて、後輪のすべりやすさを示す後輪グリップ度合いを推定するため、伝達関数から後輪コーナリングパワーを算出する従来手法と比較して、計算過程が少ない分、不確かさを減らすことができ、推定精度を高めることができる。また、このように推定された後輪グリップ度合いに応じて車両のアクチュエータ又は報知装置を制御するため、車両の制御性を高めることができる。
実施形態に係る制御装置が適用された車両の構成を説明する図である。 車両の線形二輪モデルを説明するための図である。 図1の制御装置で実施される処理を示すブロック図である。 図1の制御装置で実施されるフローチャート例である。
 図面を参照して、実施形態としての車両の制御装置について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。各実施形態の構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。以下の説明では、車両の前進方向を前方(車両前方)とし、前方を基準に左右を定める。
[1.装置構成]
 本実施形態の制御装置10は、図1に例示する車両1に適用され、少なくとも車両1の後輪2Rのすべりやすさを示す指標(後述する後輪グリップ度合い)を判定する機能を持つ。制御装置10は、車両1に搭載される電子制御装置(ECU,Electronic Control Unit)の一つであり、図1では「ECU」と表現している。制御装置10には、例えばCPU(Central Processing Unit),MPU(Micro Processing Unit)等のプロセッサ(マイクロプロセッサ)やROM(Read Only Memory),RAM(Random Access Memory),不揮発メモリ等が実装される。
 プロセッサは、制御ユニット(制御回路)や演算ユニット(演算回路),キャッシュメモリ(レジスタ群)等を内蔵する演算処理装置である。また、ROM,RAM及び不揮発メモリは、プログラムや作業中のデータが格納されるメモリ装置である。制御装置10で実施される判定や制御の内容は、ファームウェアやアプリケーションプログラムとしてメモリに記録,保存されており、プログラムの実行時にはプログラムの内容がメモリ空間内に展開されて、プロセッサによって実行される。
 車両1は、例えばエンジンや電動モータといった駆動源3を備えた、エンジン車や電動車両(EV;Electric Vehicle,HEV;Hybrid Electric Vehicle,PHEV;Plug-in Hybrid Electric Vehicle)や燃料電池車両(FCV;Fuel Cell Vehicle)である。車両1の左右の前輪2FL,2FR及び左右の後輪2RL,2RRには、ブレーキ装置4が設けられ、四輪のそれぞれが独立してブレーキ制御される。また、車両1には、ドライバの操舵操作をアシストするパワーステアリング装置5と、前輪2F(2FL,2FR)の転舵量(前輪舵角)をアクティブに制御可能なAFS6(Active Front Steering)と、後輪2R(2RL,2RR)の転舵量(後輪舵角)をアクティブに制御可能なARS7(Active Rear Steering)とが設けられる。さらに、本実施形態の車両1には、アクティブサスペンション8と、ドライバに表示や音声でアナウンスする報知装置9が設けられる。
 これらの装置3~9は、図示しない車載制御装置により個別制御される。例えば、駆動源3を制御する制御装置(エンジンECUやモータECU),ブレーキ装置4を制御するブレーキECU,パワーステアリング装置5を制御するECU,AFS6及びARS7を制御するECU,アクティブサスペンション8を制御するECU,報知装置9を制御するECUが車両1には搭載される。本実施形態では、制御装置10が装置3~9を制御する場合には、これら各種ECUに指令を送出し、各種ECUが対応する装置3~9を制御する。装置3~9のうち、エネルギーを機械的な変位や応力に変換する役割を果たす装置3~8は「アクチュエータ」と呼んでも差し支えない。なお、共通のECUに複数の装置3~9を制御する機能を持たせてもよい。
 車両1には、車両1の各種情報を取得するためのセンサが設けられる。図1に示す例では、車速センサ21と、ヨーレイトセンサ22と、横加速度センサ23と、前後加速度センサ24とが設けられ、各センサ21~24が制御装置10に接続されている。車速センサ21(車体速検出手段)は、車両1の車体速Vを検出するセンサであり、ヨーレイトセンサ22(ヨーレイト検出手段)は、車両1の重心Gを通る鉛直軸回りの回転角速度をヨーレイトrとして検出するセンサである。本実施形態では、図1中に太矢印で示すように、車体速Vは、重心Gから前方に向かう方向が正の方向とされ、ヨーレイトrは、車両1を上からみたときに重心Gの反時計回りが正の方向とされる。
 横加速度センサ23(横加速度検出手段)及び前後加速度センサ24(前後加速度検出手段)は、車両1の重心Gにおける、横加速度Ay及び前後加速度Axをそれぞれ検出するセンサである。本実施形態では、図1中に太矢印で示すように、横加速度Ayは、重心Gから左向きが正の方向とされ、前後加速度Axは、重心Gから前方に向かう方向が正の方向とされる。各センサ21~24で検出された情報は、制御装置10に送出される。
 なお、車体速Vを検出する手段は車速センサ21に限られず、例えば、各車輪2の角速度を検出する車輪速センサを設け、車輪速センサの検出値から車体速Vを算出してもよい。同様に、ヨーレイトrを検出する手段,横加速度Ayを検出する手段,前後加速度Axを検出する手段は、ヨーレイトセンサ22,横加速度センサ23,前後加速度センサ24に限られない。例えば、舵角や車体速Vに基づいて横加速度Ayを推定したり、当該推定した値や横加速度センサ23で検出した値を別のセンサ値に基づき補正したりすることで横加速度Ayを検出してもよい。同様に、ヨーレイトセンサ22で検出した値,前後加速度センサ24で検出した値を、別のセンサ値に基づき補正することでヨーレイトr,前後加速度Axを検出してもよい。このような場合には、推定部や補正部(制御装置の機能要素)が各検出手段となりうる。
[2.制御構成]
 本実施形態の制御装置10は、各種センサ21~24で検出された情報を用いて、車両1の後輪2Rのすべりやすさを示す指標である「後輪グリップ度合いkrg」を推定し、これに応じてアクチュエータ又は報知装置9を制御する。なお、制御装置10は、後輪グリップ度合いkrgに基づいて、車両1の走行中の路面状況を判定する機能を併せ持つものでもよい。ここで判定される路面状況としては、例えば、乾燥舗装路,ウェット路,積雪路,凍結路面,グラベル(未舗装路),泥濘路などが挙げられる。
 後輪グリップ度合いkrgとは、車両1の後輪2Rのすべりやすさ(摩擦力,後輪コーナリングパワー)の大きさを表す値であり、すべりやすいほど小さな値となり、すべりにくいほど大きな値となる。すなわち、後輪グリップ度合いkrgと後輪2Rのすべりやすさとは負の相関関係を持つ。本実施形態の制御装置10は路面状況の判定機能を持つことから、制御装置10には、後輪グリップ度合いkrgと路面状況との対応関係が予め記憶されている。
 制御装置10は、上記の後輪グリップ度合いkrgを推定し、車両1のアクチュエータ又は報知装置9を制御するための機能要素として、第一推定部11,第二推定部12,制御部13を備える。また、本実施形態の制御装置10は、推定された後輪グリップ度合いkrgから路面状況を判定するための機能要素として、判定部14を備える。これらの要素は、制御装置10の機能を便宜的に分類して示したものである。これらの要素は、独立したプログラムとして各々を記述することができるとともに、複数の要素を合体させた複合プログラムとして記述することもできる。各要素に相当するプログラムは、制御装置10のメモリや記憶装置に記憶され、プロセッサで実行される。
 第一推定部11は、横加速度Ayを入力とした車体速V及びヨーレイトrの積の伝達関数G(s)に含まれる係数のうち、車両1の後輪コーナリングパワーKrが含まれる特定係数を推定するものである。ここで、伝達関数G(s)は、下記の式1で表現される。なお、式1中のa1,b1,b2は係数である。このように、伝達関数G(s)は、定常ゲインを1とする、分子一次、分母二次の式になる。
Figure JPOXMLDOC01-appb-M000005
 ここで、図2に示すように、車両1を線形二輪モデルによりモデル化して考える。なお、線形二輪モデルとは、車両1を一つの剛体とみなし、運動の自由度を減らして線形化した車両1の数理モデルである。ここでは、車両1を、前輪2Fと後輪2Rを一輪ずつ備えた剛体とみなし、車速一定としたときの横方向及びヨー方向の平面運動のみを考慮する。また、車輪2で発生するコーナリングフォースは、横滑り角に比例すると仮定する。
 この二輪モデルにおける運動方程式は下記の式2で表現される。なお、mは車両質量,βは重心スリップ角,Iはヨー慣性モーメント,Kfは前輪コーナリングパワー,βfは前輪スリップ角(前輪2Fの横すべり角),βrは後輪スリップ角(後輪2Rの横すべり角),Lfは前車軸と重心Gとの前後方向の距離,Lは後車軸と重心Gとの前後方向の距離である。
Figure JPOXMLDOC01-appb-M000006
 ここで、前輪2F及び後輪2Rのスリップ角βf,βrは、下記の式3で表現される。なお、δは車両1の操舵角である。
Figure JPOXMLDOC01-appb-M000007
 上記の式3において、車体速Vを一定であると仮定すると、上記の式2は重心スリップ角β及びヨーレイトrについて線形となる。この仮定のもと、式2をラプラス変換して整理すると、下記の式4となる。なお、Lはホイールベース(前後車軸の距離)である。
Figure JPOXMLDOC01-appb-M000008
 上記の式4から明らかなように、係数a1,b1,b2のうち、係数a1及びb2には後輪コーナリングパワーKrが含まれる。また、これらの係数a1及びb2に含まれるm,Lf,I,Lは、予め決まっている車両諸元値であることから、係数a1及びb2の変化は後輪コーナリングパワーKrの変化に起因して起こる。したがって、第一推定部11は、係数a1及びb2の少なくとも一方を特定係数とし、所定の推定方法を用いることで特定係数の値を推定する。これにより、第一推定部11は、間接的に後輪コーナリングパワーKrの変化を推定できる。
 本実施形態の第一推定部11は、分母二次の係数b2を特定係数として推定する。なお、所定の推定方法としては、例えば、カルマンフィルタを用いた推定方法や逐次最小二乗法が挙げられる。これらの推定方法では、状態量推定にあたって、ワンタイムステップ前の状態量推定値を電子制御装置に記憶された数理モデルに適用して推定した状態量推定値に、検出手段(センサ21~24)で検出された値(出力計測値)と、ワンタイムステップ前の状態量推定値を電子制御装置に記憶された数理モデルに適用して推定した出力推定値との偏差に、所定のゲインを乗じた値を加算することで、現時点での状態量推定値(特定係数b2)が推定される。
 本発明者らによれば、分母二次の係数b2を特定係数として推定した方が、分子一次の係数a1を特定係数として推定するよりも精度が高いことが判明した。そのため、本実施形態の第一推定部11は、係数b2を特定係数として推定するが、係数a1を特定係数として推定してもよいし、これら二つの係数a1及びb2を特定係数としてそれぞれ推定し、これら二つの推定値a1,b2の加重平均をとってもよい。
 第二推定部12は、少なくとも、第一推定部11で推定された特定係数、及び、前後加速度センサ24で検出された前後加速度Axに基づいて上記の後輪グリップ度合いkrgを推定するものである。本実施形態の第二推定部12は、後輪グリップ度合いkrgを、図3及び下記の式5,式6で示すように、第一推定部11で推定された特定係数b2と、前後加速度Axから求められる後軸荷重Wrとの積の逆数として求める。
Figure JPOXMLDOC01-appb-M000009
 式6で示すように、後軸荷重Wrは、車両1の静止状態での静止後軸荷重Wr0(固定値)に前後軸の荷重移動量ΔWxを加算した値である。前後軸の荷重移動量ΔWxの算出において前後加速度Axが用いられる。なお、hcgは重心高(固定値)である。
 つまり、本実施形態の第二推定部12は、検出された前後加速度Axと車両諸元値とから後軸荷重Wrを求め、第一推定部11で推定された特定係数b2と求めた後軸荷重Wrとから後輪グリップ度合いkrgを推定(算出)する。第二推定部12は、推定した後輪グリップ度合いkrgを制御部13に送る。
 制御部13は、第二推定部12で推定された後輪グリップ度合いkrgに応じて車両1のアクチュエータ又は報知装置9を制御するものである。ここで制御されるアクチュエータは、上記の駆動源3,ブレーキ装置4,パワーステアリング装置5,AFS6,ARS7,アクティブサスペンション8の少なくとも一つであり、全てであってもよい。制御部13は、後輪グリップ度合いkrgが小さい(すなわち、後輪2Rがすべりやすい)ほど、車両1のスピン挙動が発生している(または発生しやすい状況である)ことから、車両1の挙動を安定させるようにアクチュエータを制御する。なお、制御部13は、後輪グリップ度合いkrgを予め設定された第一閾値と比較して、後輪グリップ度合いkrgが第一閾値を下回る場合に、車両1の挙動を安定させるようアクチュエータを制御してもよい。
 反対に、制御部13は、後輪グリップ度合いkrgが大きい場合(後輪2Rの横すべりが生じていない正常な走行状態である場合)には、車両1に要求される要求トルク,運転者によるペダル操作,車体速Vなどに応じてアクチュエータを制御する。このときの制御を通常制御と呼ぶ。通常制御は、制御装置10が実施してもよいし、他の車載制御装置が実施してもよい。通常制御を実施するか否かの判定は、例えば制御部13が、後輪グリップ度合いkrgが予め設定された第二閾値を越えるか否かによって判断可能である。ここでは、他の車載制御装置が通常制御を実施するものとする。なお、第二閾値は第一閾値よりも大きな値である。
 本実施形態の制御部13は、後輪グリップ度合いkrgに応じて、車両1の駆動力及び制動力の少なくとも一方の制御量を調整する第一制御部13Aを含む。第一制御部13Aは、駆動力の制御量を調整する場合、駆動源3の制御装置に指令を送出し、駆動源3の出力(駆動力)を制御する。なお、車両1が動力伝達装置を備えている場合には、動力伝達装置を制御して駆動力を調整してもよい。また、第一制御部13Aは、制動力の制御量を調整する場合、ブレーキ装置4の制御装置に指令を送出し、ブレーキ装置4の出力(制動力)を制御する。ブレーキ装置4であれば、各車輪2を個別に制御可能であることから、より細やかな調整が可能となる。なお、駆動源3を制御することで制動力の制御量を調整することも可能である。
 本実施形態の第一制御部13Aは、通常制御が実施される場合には、その実施を阻害しないよう、制御量を調整する。
 一方、通常制御が実施されない場合には、第一制御部13Aは、後輪グリップ度合いkrgに応じて、後輪2Rがすべりやすいほど、前後左右のトルク移動を制限するよう、制御量を調整する。つまりこの場合、第一制御部13Aは、通常制御での駆動力及び制動力に対し、トルク移動を制限するように、駆動力及び制動力の少なくとも一方の制御量を調整する。なお、当該調整において、第一制御部13Aは、制御マップを切り替えてもよいし、通常制御で算出される制御出力を増加させたり抑制したりしてもよい。
 本実施形態の制御部13は、後輪グリップ度合いkrgに応じて、車両1の操舵アシストトルク及び各車輪2の転舵量並びにアクティブサスペンション8の少なくとも何れか一つの制御量を調整する第二制御部13Bを含む。第二制御部13Bは、操舵アシストトルクを制御する場合、パワーステアリング装置5の制御装置に指令を送出し、パワーステアリング装置5の出力(操舵アシストトルク)を制御する。また、第二制御部13Bは、転舵量を制御する場合、AFS6及びARS7の制御装置に指令を送出し、AFS6及びARS7の出力(前輪舵角,後輪舵角)を制御する。また、第二制御部13Bは、アクティブサスペンション8を制御する場合、アクティブサスペンション8の制御装置に指令を送出し、油圧,空気圧,電動モータ等のエネルギー源を制御する。
 車両1の操舵アシストトルク,各車輪2の転舵量,アクティブサスペンション8はいずれも、駆動力及び制動力と同様、後輪2Rの横すべりが生じていない正常な走行時(すなわち、通常制御時)には、運転者によるステアリング操作や車体速Vなどに応じて制御される。本実施形態の第二制御部13Bは、通常制御が実施される場合には、その実施を阻害しない。
 一方、通常制御が実施されない場合には、第二制御部13Bは、後輪グリップ度合いkrgに応じて、後輪2Rがすべりやすいほど、後輪2Rの横すべりを抑制しつつ操縦性が確保されるよう、操舵アシストトルク,転舵量及びアクティブサスペンション8の少なくとも何れか一つの制御量を調整する。なお、当該調整において、第二制御部13Bは、制御マップを切り替えてもよいし、通常制御で算出される制御出力を増加させたり抑制したりしてもよい。
 第一制御部13Aによる制御と、第二制御部13Bによる制御との組み合わせは任意である。例えば、第一制御部13Aにより駆動力及び制動力が共に制御され、第二制御部13Bにより操舵アシストトルク、及び、転舵量、並びに、アクティブサスペンション8が全て制御される構成としてもよいし、第一制御部13Aにより制動力だけが制御され、第二制御部13Bにより操舵アシストトルクだけが制御される構成であってもよい。あるいは、第一制御部13Aにより駆動力及び制動力が共に制御され、第二制御部13Bによる制御は行われない構成としてもよい。このように、二つ以上の制御を併用することで、制御の自由度が増し、より精密な車両運動制御が可能となる。
 なお、制御部13は、第二推定部12で推定された後輪グリップ度合いkrgが所定の第三閾値よりも小さい場合に、報知装置9を制御して、ドライバに車両1の横すべり状態をアナウンスしてもよい。第三閾値は、上記の第二閾値よりも小さい値であり、第一閾値と同一であってもよいし、異なる値でもよい。
 判定部14は、第二推定部12で推定された後輪グリップ度合いkrgに基づいて、車両1が走行中の路面状況を判定する。この判定では、例えば予め記憶された後輪グリップ度合いkrgと路面状況との対応関係を用いることができる。一例として、判定部14は、後輪グリップ度合いkrgが第一所定値以上である場合に乾燥舗装路であると判定し、後輪グリップ度合いkrgが第一所定値未満であり、且つ、第一所定値よりも小さな第二所定値以上である場合に、ウェット路と判定する。また、判定部14は、後輪グリップ度合いkrgが第二定値未満であり、且つ、第二所定値よりも小さな第三所定値以上である場合に、積雪路と判定する。さらに、判定部14は、後輪グリップ度合いkrgが第三所定値未満である場合に、凍結路面と判定する。その他の路面状況(未舗装路や泥濘路等)についても、同様に判定してよい。
 また、制御部13は、上記のアクチュエータの制御に代えて又は加えて、第二推定部12で推定された後輪グリップ度合いkrgに応じて報知装置9を制御してよい。例えば、制御部13は、判定部14による路面状況の判定結果をドライバに音声又は表示によりアナウンスしてもよい。
[3.フローチャート]
 図4に、上述した制御装置10において実施されるフローチャート例を示す。このフローチャートは、例えば、車両1の主電源がオンの場合に所定の演算周期で実施される。まず、ステップS1において、各種センサ21~24の情報が取得される。ステップS2では、第一推定部11により、上記の式1の伝達関数G(s)に含まれる特定係数b2が推定される。次いで、第二推定部12により、後軸荷重Wrが算出されるとともに(ステップS3)、後輪グリップ度合いkrgが推定(算出)される(ステップS4)。ステップS5では、制御部13(第一制御部13A,第二制御部13B)により、後輪グリップ度合いkrgに応じてアクチュエータ又は報知装置9が制御され、このフローチャートをリターンする。
[4.作用,効果]
 後輪コーナリングパワーKrを含む特定係数a1,b2に基づく後輪グリップ度合いkrgは、後輪2Rのすべりやすさを示し、後輪2Rと路面間の摩擦状態を表現できるパラメータである。上述した制御装置10では、伝達関数G(s)に含まれる特定係数a1,b2の変化から後輪コーナリングパワーKrの変化を知ることができる点に着目し、特定係数a1,b2を、三つの検出値(横加速度Ay,ヨーレイトr,車体速V)を用いて推定する。さらに、この特定係数a1,b2と前後加速度Axとに基づき後輪グリップ度合いkrgを推定する。このように、本制御装置10であれば、伝達関数G(s)から後輪コーナリングパワーKrを算出する従来手法と比較して、計算過程が少ない分、不確かさを減らすことができ、推定精度を高めることができる。また、前後加速度Axの情報が加味されるため、走行状態に応じた後輪グリップ度合いkrgを推定することができ、この点からも推定精度を高められる。
 加えて、上述した制御装置10では、特定係数a1,b2及び前後加速度Axに基づく後輪グリップ度合いkrgに応じて、車両1のアクチュエータ又は報知装置9を制御するため、車両1の制御性を高めることができる。これにより、例えば、車両運動制御の一つであるスピン挙動の抑制制御の向上に寄与することができる。
 上述した制御装置10では、後輪グリップ度合いkrgに応じて、車両1の駆動力及び制動力の少なくとも一方の制御量が調整される。このため、後輪2Rのすべりやすさ(摩擦力の大きさ)に合わせて駆動力及び制動力の少なくとも一方の制御量を増やしたり減らしたり調整する(例えば、すべりやすいときには前後左右のトルク移動を抑制する)ことができるため、スピン挙動の抑制制御の向上により寄与でき、例えば狙いの挙動を実現することができる。
 また、上述した制御装置10では、後輪グリップ度合いkrgに応じて、車両1の操舵アシストトルク,各車輪2の転舵量,アクティブサスペンション8の少なくとも何れか一つの制御量が調整される。このため、後輪2Rのすべりやすさ(摩擦力の大きさ)に合わせて操舵アシストトルク及び転舵量の制御量を増やしたり減らしたり調整することで操縦性を確保できるようになる。また、アクティブサスペンション8の制御量(油圧や空気圧)を調整することでも、車輪2の接地状態を制御できる。これらにより、スピン挙動の抑制制御の向上により寄与でき、例えば狙いの挙動を実現することができる。
 上述した制御装置10では、上記の式5及び式6を使って後輪グリップ度合いkrgが推定されるため、簡素な計算で、走行状態に応じた後輪グリップ度合いkrgを推定することができる。
 また、上述した制御装置10では、特定係数として、上記の式1及び式4の分母二次の係数b2を用いる。これは、例えばカルマンフィルタを用いた推定において、係数b2の方が真の状態に近い値が出ることが発明者らにより判明したからである。したがって、この係数b2を特定係数として用いることで、後輪グリップ度合いkrg推定精度をより高めることができる。
[5.その他]
 上述した制御装置10の構成は一例であって、上述したものに限られない。例えば、上記の制御装置10には、制御部13に、第一制御部13A及び第二制御部13Bの二つの機能が設けられているが、これらの機能を分けなくてもよい。また、上記の六つの制御対象(駆動力,制動力,操舵アシストトルク,転舵量,アクティブサスペンション8,報知装置9)は、単独で制御してもよいし、併用したり組合せたりしてもよい。
 上記の制御装置10では、判定部14により路面状況の判定が実施されているが、当該判定は省略してもよい。また、後軸荷重Wrの求め方も上記の方法に限られない。
 上記実施形態では、特定係数として、分母二次の係数b2を推定したが、分母一次の係数a1を特定係数として推定してもよい。なお、後輪グリップ度合いkrgの推定手法は上記のものに限られず、少なくとも特定係数と前後加速度Axとに基づいていればよい。
 また、制御装置10が適用される車両1の構成も一例であって、上述したものに限られない。例えば、車両1に横滑り防止装置(ASC;Active Stability Control)が備えられている場合、上記の制御装置10で推定された後輪グリップ度合いkrgに応じて、ASCを作動させてもよい。また、上記の車両1からAFS6及びARS7を省略してもよいし、車輪2ごとに駆動源3(例えばインホイールモータ)が設けられていてもよい。
 1 車両
 2 車輪
 2FL 左前輪(前輪,車輪)
 2FR 右前輪(前輪,車輪)
 2RL 左後輪(後輪,車輪)
 2RR 右後輪(後輪,車輪)
 3 駆動源(アクチュエータ)
 4 ブレーキ装置(アクチュエータ)
 5 パワーステアリング装置(アクチュエータ)
 6 AFS(アクチュエータ)
 7 ARS(アクチュエータ)
 8 アクティブサスペンション(アクチュエータ)
 9 報知装置
 10 制御装置
 11 第一推定部
 12 第二推定部
 13 制御部
 13A 第一制御部
 13B 第二制御部
 14 判定部
 21 車速センサ(車体速検出手段)
 22 ヨーレイトセンサ(ヨーレイト検出手段)
 23 横加速度センサ(横加速度検出手段)
 24 前後加速度センサ(前後加速度検出手段)
 Ax 前後加速度
 Ay 横加速度
 a1 係数(特定係数)
 b1 係数
 b2 係数(特定係数)
 G 重心
 G(s) 伝達関数
 I ヨー慣性モーメント
 krg 後輪グリップ度合い
 Kr 後輪コーナリングパワー
 L ホイールベース(前後車軸の距離)
 Lf 前車軸と重心Gとの前後方向の距離
 L 後車軸と重心Gとの前後方向の距離
 m 車両質量
 r ヨーレイト
 V 車体速
 Wr 後軸荷重
 Wr0 静止後軸荷重
 β 重心スリップ角
 βf 前輪スリップ角
 βr 後輪スリップ角
 δ 操舵角

Claims (9)

  1.  車両の車体速を検出する車体速検出手段と、前記車両のヨーレイトを検出するヨーレイト検出手段と、前記車両の横加速度を検出する横加速度検出手段と、前記車両の前後加速度を検出する前後加速度検出手段とが設けられた前記車両の制御装置であって、
     前記横加速度を入力とした前記車体速及び前記ヨーレイトの積の伝達関数に含まれる係数のうち、前記車両の後輪コーナリングパワーが含まれる特定係数を推定する第一推定部と、
     少なくとも前記特定係数及び前記前後加速度に基づいて、後輪のすべりやすさを示す後輪グリップ度合いを推定する第二推定部と、
     前記後輪グリップ度合いに応じて前記車両のアクチュエータ又は報知装置を制御する制御部と、を備えた
    ことを特徴とする、車両の制御装置。
  2.  前記制御部には、前記後輪グリップ度合いに応じて前記車両の駆動力及び制動力の少なくとも一方の制御量を調整する第一制御部が含まれる
    ことを特徴とする、請求項1記載の車両の制御装置。
  3.  前記制御部には、前記後輪グリップ度合いに応じて、前記車両の操舵アシストトルク及び各車輪の転舵量並びにアクティブサスペンションの少なくとも何れか一つの制御量を調整する第二制御部が含まれる
    ことを特徴とする、請求項1又は2記載の車両の制御装置。
  4.  前記第二推定部は、前記車両の静止状態での静止後軸荷重と前記前後加速度とに基づいて前記車両の後軸荷重を求め、前記特定係数及び前記後軸荷重の積の逆数を前記後輪グリップ度合いとして求める
    ことを特徴とする、請求項1又は2記載の車両の制御装置。
  5.  前記第二推定部は、前記車両の静止状態での静止後軸荷重と前記前後加速度とに基づいて前記車両の後軸荷重を求め、前記特定係数及び前記後軸荷重の積の逆数を前記後輪グリップ度合いとして求める
    ことを特徴とする、請求項3記載の車両の制御装置。
  6.  前記第一推定部は、下記の式1で表現される前記伝達関数の分母二次の係数b2を前記特定係数として推定し、
     前記第二推定部は、下記の式2により前記後輪グリップ度合いを推定する
    ことを特徴とする、請求項1又は2記載の車両の制御装置。
    Figure JPOXMLDOC01-appb-M000001
  7.  前記第一推定部は、下記の式1で表現される前記伝達関数の分母二次の係数b2を前記特定係数として推定し、
     前記第二推定部は、下記の式2により前記後輪グリップ度合いを推定する
    ことを特徴とする、請求項3記載の車両の制御装置。
    Figure JPOXMLDOC01-appb-M000002
  8.  前記第一推定部は、下記の式1で表現される前記伝達関数の分母二次の係数b2を前記特定係数として推定し、
     前記第二推定部は、下記の式2により前記後輪グリップ度合いを推定する
    ことを特徴とする、請求項4記載の車両の制御装置。
    Figure JPOXMLDOC01-appb-M000003
  9.  前記第一推定部は、下記の式1で表現される前記伝達関数の分母二次の係数b2を前記特定係数として推定し、
     前記第二推定部は、下記の式2により前記後輪グリップ度合いを推定する
    ことを特徴とする、請求項5記載の車両の制御装置。
    Figure JPOXMLDOC01-appb-M000004
PCT/JP2023/015964 2022-04-28 2023-04-21 車両の制御装置 WO2023210534A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024517285A JPWO2023210534A1 (ja) 2022-04-28 2023-04-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-074224 2022-04-28
JP2022074224 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210534A1 true WO2023210534A1 (ja) 2023-11-02

Family

ID=88518832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015964 WO2023210534A1 (ja) 2022-04-28 2023-04-21 車両の制御装置

Country Status (2)

Country Link
JP (1) JPWO2023210534A1 (ja)
WO (1) WO2023210534A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003312465A (ja) * 2002-04-23 2003-11-06 Aisin Seiki Co Ltd 車輪のグリップ度推定装置、及び該装置を備えた車両の運動制御装置
JP2004074842A (ja) * 2002-08-12 2004-03-11 Toyota Central Res & Dev Lab Inc 路面摩擦状態推定装置
JP2004352046A (ja) * 2003-05-28 2004-12-16 Toyota Central Res & Dev Lab Inc タイヤグリップ度推定装置及び方法、走行状態制御方法
JP2005008062A (ja) * 2003-06-19 2005-01-13 Toyota Central Res & Dev Lab Inc タイヤグリップ度推定装置
JP2008024233A (ja) * 2006-07-24 2008-02-07 Hitachi Ltd 車両横すべり角演算装置
JP2010202046A (ja) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd 車両状態推定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003312465A (ja) * 2002-04-23 2003-11-06 Aisin Seiki Co Ltd 車輪のグリップ度推定装置、及び該装置を備えた車両の運動制御装置
JP2004074842A (ja) * 2002-08-12 2004-03-11 Toyota Central Res & Dev Lab Inc 路面摩擦状態推定装置
JP2004352046A (ja) * 2003-05-28 2004-12-16 Toyota Central Res & Dev Lab Inc タイヤグリップ度推定装置及び方法、走行状態制御方法
JP2005008062A (ja) * 2003-06-19 2005-01-13 Toyota Central Res & Dev Lab Inc タイヤグリップ度推定装置
JP2008024233A (ja) * 2006-07-24 2008-02-07 Hitachi Ltd 車両横すべり角演算装置
JP2010202046A (ja) * 2009-03-03 2010-09-16 Nissan Motor Co Ltd 車両状態推定装置

Also Published As

Publication number Publication date
JPWO2023210534A1 (ja) 2023-11-02

Similar Documents

Publication Publication Date Title
US8244432B2 (en) Road-surface friction-coefficient estimating device
JP3539722B2 (ja) 車両の路面摩擦係数推定装置
CN102282052B (zh) 车辆状态估计装置
US7617036B2 (en) Method and system for determining the velocity of an automobile
JP6377162B2 (ja) ビークル制御システムと方法
JP2004130965A (ja) 路面状態推定装置、及び該装置を備えた車両の運動制御装置
JP2004130964A (ja) 路面状態推定装置、及び該装置を備えた車両の運動制御装置
CN111483467B (zh) 一种车辆控制方法及装置
JP2002087310A (ja) 横方向力の測定に基づいた車両軌道へのアクション
KR20080105032A (ko) 차량 특성 결정 방법
AU2016201638A1 (en) Vibration control device and vibration control system
US8340881B2 (en) Method and system for assessing vehicle movement
CN104908548A (zh) 车辆状态推定装置、车辆控制装置及车辆状态推定方法
CN116198517A (zh) 用于e-awd和e-lsd的监督控制
JP2016141163A (ja) 車両状態判定装置
CN116061934A (zh) 用于管理底盘和传动系致动器的架构和基于模型预测控制的方法
JP5211995B2 (ja) 車両用減速制御装置及びその方法
US20230137189A1 (en) Method for controlling traveling of vehicle
JP3271956B2 (ja) 車両の路面摩擦係数推定装置
JP5180610B2 (ja) 車両の駆動力制御装置
JP5154397B2 (ja) 車両運動制御装置
US20060069480A1 (en) Apparatus and method for controlling vehicular motion
WO2023210534A1 (ja) 車両の制御装置
JP3817922B2 (ja) 車輌の運動制御装置
JP4358070B2 (ja) 車体スリップ角推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024517285

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE