[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023210219A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2023210219A1
WO2023210219A1 PCT/JP2023/011503 JP2023011503W WO2023210219A1 WO 2023210219 A1 WO2023210219 A1 WO 2023210219A1 JP 2023011503 W JP2023011503 W JP 2023011503W WO 2023210219 A1 WO2023210219 A1 WO 2023210219A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
subject
diagnosis result
machine learning
learning model
Prior art date
Application number
PCT/JP2023/011503
Other languages
French (fr)
Japanese (ja)
Inventor
敬 長野
錦涛 黄
良夫 齋藤
康弘 村井
達朗 馬場
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2023210219A1 publication Critical patent/WO2023210219A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and a program.
  • This application claims priority based on Japanese Patent Application No. 2022-074671 filed in Japan on April 28, 2022, the contents of which are incorporated herein.
  • a herbal medicine doctor diagnoses the symptoms of multiple subjects based on a database that includes information that associates the symptoms of the subjects with the history of prescriptions of Chinese herbal medicine to the subjects.
  • An information processing device is known that outputs information indicating a prescription for a Chinese herbal medicine that is associated with the symptoms of a target subject (see Patent Document 1).
  • the symptoms of the target test subject described in Patent Document 1 include headache, dizziness, menopausal disorder, etc., and are based on the physical or mental state of the test subject as diagnosed by a Chinese herbalist. That's true. Therefore, in the information processing device described in Patent Document 1, a Chinese herbalist diagnoses symptoms based on diagnostic methods such as interview, facial examination, tongue examination, abdominal examination, and pulse examination, and displays the diagnosis results. It is necessary to input information into the information processing device. For this reason, the information processing device may not be able to sufficiently reduce the effort required for a Chinese herbalist to prescribe a Chinese herbal medicine to a target subject.
  • the present disclosure has been made in consideration of such circumstances, and provides an information processing device, an information processing method, and a program that can reduce the effort required for a Chinese medicine doctor to prescribe a Chinese medicine to a first subject.
  • the challenge is to provide the following.
  • One aspect of the present disclosure provides a Chinese herbal medicine candidate to be prescribed to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to a pulse wave waveform of the first subject.
  • the information processing device includes a prescription candidate output unit that outputs output information including Chinese herbal medicine candidate information indicating.
  • one aspect of the present disclosure provides a Chinese herbal medicine prescribed to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to a pulse wave waveform of the first subject.
  • This information processing method includes a prescription candidate output step of outputting output information including Chinese herbal medicine candidate information indicating candidates.
  • one aspect of the present disclosure is to cause a computer to prescribe a prescription to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to a pulse wave waveform of the first subject.
  • This is a program for executing a prescription candidate output step of outputting output information including Chinese herbal medicine candidate information indicating Chinese herbal medicine candidates.
  • FIG. 1 is a diagram illustrating an example of the configuration of an information processing system 1 including an information processing device 20.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of an information processing device 20.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of an information processing device 20.
  • FIG. 2 is a diagram illustrating an example of the flow of processing in which the information processing device 20 generates waveform information.
  • FIG. 4 is a diagram illustrating an example of a process flow in which the information processing device 20 causes the first machine learning model to learn first correspondence information and causes the second machine learning model to learn second correspondence information. It is a figure which shows an example of the waveform shown by the waveform information at the time of learning matched with the target subject identification information selected in step S220.
  • FIG. 3 is a diagram showing an example of a time-frequency spectrum image.
  • FIG. 7 is an image diagram visualizing an example of the process of step S270.
  • FIG. 2 is a diagram illustrating an example of the flow of processing in which the information processing device 20 receives diagnosis result information. It is a figure which shows an example of information reception image PCT1.
  • FIG. 6 is a diagram showing an example of how six drop-down menus are displayed.
  • 2 is a diagram illustrating an example of a process flow in which the information processing device 20 outputs Chinese herbal medicine candidate information.
  • FIG. It is a figure which shows an example of the likelihood for each of several options contained in a diagnostic item like floating veins.
  • FIG. 12 is an image diagram visualizing a flow in which the second machine learning model identifies one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3. It is a figure which shows an example of information reception image PCT2. 3 is a diagram illustrating an example of a flow in which a time-frequency spectrum image is generated by the information processing device 20 based on waveform information indicating the waveform of a pulse wave detected by a pressure variable arterial wave detection method.
  • pulse examination is known as a diagnostic method in Chinese medicine.
  • Pulse diagnosis is based on the idea that the characteristics that appear in the pulse wave according to the state of the organ is based on the idea that the characteristics that appear in the pulse wave according to the state of the organ are diagnosed.
  • the types of characteristics that appear in pulse waves depending on the state of an organ will be simply referred to as pulse types.
  • As a method for classifying pulse types according to the state of an organ for example, 28 diseased pulses is known, which classifies the characteristics appearing in a pulse wave into 28 types according to the state of an organ.
  • each of the 28 types of veins is divided into six veins called floating veins, sinking veins, slow veins, few veins, virtual veins, and real veins. classified as one of the species.
  • these six vein types will be referred to as six major vein types.
  • the category of floating veins includes six vein types: floating veins, kou veins (the Chinese character with a crown above the hole), hong veins, leather veins, wet veins, and scatter veins.
  • the category of sink veins includes four vein types: sink veins, dip veins, weak veins, and dungeon veins.
  • the category of slow reticular pulse includes five types of pulses: slow pulse, slow pulse, astringent pulse, conjunctival pulse, and venous vein.
  • the category of reticular pulses includes three types of pulses: reticular pulses, arterial pulses, and facilitatory pulses.
  • the category of ischemic veins includes four types of veins: ischemic veins, short veins, veinlets, and microvenules.
  • the category of real veins includes six vein types: real vein, long vein, chordal vein, tense vein, smooth vein, and major vein.
  • the Chinese medicine doctor diagnosed the characteristics of the subject's pulse wave and determined the main disease by assigning a diagnostic name to the eight-pronged pulse, which is the most frequently seen in the pulse wave among the 28 diseased pulses.
  • a Chinese herbalist's pulse diagnosis is directly linked to herbal medicine prescriptions.
  • the effects of Chinese medicine prescribed by Chinese herbalists are based on statistics.
  • the qualitative diagnostic method of Chinese medicine is a relative diagnosis based on the subjectivity of the examiner, which captures the imbalance from the normal state of each patient. is considered basic. For this reason, it is considered appropriate to use statistical methods to accumulate data on the diagnostic results of Chinese herbalists with advanced experience and create a mathematical model.
  • diagnosis itself by Chinese herbalists includes diagnostic bias, there is currently insufficient understanding of the statistical methods involved.
  • pulse diagnosis which plays a large role in Chinese medicine diagnosis, it is necessary to accurately acquire waveform information indicating the waveform of the pulse wave, to remove noise from the acquired waveform information, and to extract feature values from multiple continuous waveform information.
  • pulse diagnosis which plays a large role in Chinese medicine diagnosis, it is necessary to accurately acquire waveform information indicating the waveform of the pulse wave, to remove noise from the acquired waveform information, and to extract feature values from multiple continuous waveform information.
  • pulse diagnosis which plays a large role in Chinese medicine diagnosis, it is necessary to accurately acquire waveform information indicating the waveform of the pulse wave, to remove noise from the acquired waveform information
  • Reference 1 describes a wristwatch-type 24-hour wearable pulse wave monitoring device.
  • This 24-hour wearable pulse wave monitoring device is a device that performs health management based on exercise and heart rate.
  • Reference 2 describes a device that detects indicators representing the characteristics of blood pressure waveforms and determines the prescription of Western medical drugs such as Ca antagonists and ⁇ -blockers based on systolic blood pressure and AI (Augmentation Index) values. .
  • Reference 3 describes a device that estimates blood sugar levels by using the correlation between the AI value of blood pressure waveforms and postprandial blood sugar levels.
  • this information processing device is based on a database that includes information for each of a plurality of subjects, in which the symptoms of the subject are associated with the history of prescriptions of Chinese herbal medicines to the subject. Then, the Chinese herbal medicine doctor outputs information indicating the prescription of the Chinese herbal medicine that is associated with the symptoms of the target subject whose symptoms are to be diagnosed.
  • the symptoms of the target test subject described in Patent Document 1 include headache, dizziness, menopausal disorder, etc., and are based on the physical or mental state of the test subject as diagnosed by a Chinese herbalist. That's true. Therefore, in the information processing device described in Patent Document 1, a Chinese herbalist diagnoses symptoms based on diagnostic methods such as interview, facial examination, tongue examination, abdominal examination, and pulse examination, and displays the diagnosis results. It is necessary to input information into the information processing device. For this reason, the information processing device may not be able to sufficiently reduce the effort required for a Chinese herbalist to prescribe a Chinese herbal medicine to a target subject.
  • the information processing apparatus provides a prescription for a first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to the waveform of the pulse wave of the first subject.
  • a prescription candidate output unit is provided that outputs output information including Chinese herbal medicine candidate information indicating Chinese herbal medicine candidates.
  • the information processing device can automate the process from pulse diagnosis to prescription of Chinese medicine.
  • the information processing device can reduce the effort required for the Chinese medicine doctor to prescribe the Chinese medicine to the first subject.
  • the configuration of the information processing apparatus according to the embodiment will be described using the information processing apparatus 20 as an example of the information processing apparatus according to the embodiment.
  • the subject's symptoms refer to the subject's physical or mental state diagnosed by a Chinese herbalist. Therefore, in the embodiment, the symptoms of a certain subject do not include the subject's pulse wave and the waveform of the pulse wave.
  • FIG. 1 is a diagram showing an example of the configuration of an information processing system 1 including an information processing device 20.
  • the three-dimensional coordinate system TC is a three-dimensional orthogonal coordinate system that indicates the direction in the drawing in which the three-dimensional coordinate system TC is drawn.
  • the X-axis in the three-dimensional coordinate system TC will be simply referred to as the X-axis.
  • the Y-axis in the three-dimensional coordinate system TC will be simply referred to as the Y-axis.
  • the Z axis in the three-dimensional coordinate system TC will be simply referred to as the Z axis in the following description.
  • the positive direction of the Z-axis will be referred to as an upward direction
  • the negative direction of the Z-axis will be referred to as a downward direction.
  • the information processing system 1 includes a pulse wave detection device 10 and an information processing device 20 that is an example of an information processing device according to an embodiment.
  • the pulse wave detection device 10 detects the pulse wave of the subject.
  • the subject may be any person whose pulse wave is detected by the pulse wave detection device 10.
  • the pulse wave detection device 10 may have any configuration as long as it is capable of detecting the pulse wave of the subject.
  • the pulse wave detection device 10 includes a first member 11 on which one arm of a subject can be placed and fixed, and a first member 11 that can be placed in contact with one arm of the subject fixed by the first member 11.
  • the device includes a pulse wave sensor 12 that detects a pulse wave of a subject, and a second member 13 that supports the pulse wave sensor 12.
  • the first member 11 is, for example, a table on which one arm of the subject can be placed and fixed. Note that the first member 11 may be configured to be able to move the relative position of one arm of the subject with respect to the pulse wave sensor 12 along a horizontal plane; The configuration may be such that it is impossible to do so.
  • the pulse wave sensor 12 may be any sensor as long as it is capable of detecting the pulse wave of the subject.
  • the pulse wave sensor 12 may be a sensor using MEMS (Micro Electro Mechanical Systems) that can detect pulse waves as pressure fluctuations. ) Pressure sensors, etc.
  • the pulse wave sensor 12 is communicably connected to the information processing device 20 by wire or wirelessly. Therefore, the pulse wave sensor 12 detects the pressure of the pulse wave and outputs an electrical signal corresponding to the detected pressure to the information processing device 20.
  • the information processing device 20 can generate waveform information indicating the waveform of the subject's pulse wave within the measurement period based on the electrical signal acquired from the pulse wave sensor 12 within the predetermined measurement period. .
  • the second member 13 may have any configuration as long as it can support the pulse wave sensor 12. Further, the second member 13 may have a configuration in which the position of the pulse wave sensor 12 in the vertical direction (that is, the height of the pulse wave sensor 12) can be adjusted, and it is not necessary to adjust the position. It may be a possible configuration.
  • the information processing device 20 acquires an electrical signal from the pulse wave sensor 12 within a measurement period specified by the user in accordance with an operation received from the user.
  • the information processing device 20 generates waveform information indicating the waveform of the subject's pulse wave based on the electrical signal acquired from the pulse wave sensor 12 during the measurement period.
  • the information processing device 20 stores the generated waveform information.
  • the information processing device 20 calculates a time-frequency spectrum according to the waveform indicated by the waveform information.
  • the information processing device 20 identifies candidates for Chinese herbal medicines to be prescribed to the subject based on the time-frequency spectrum image showing the calculated time-frequency spectrum.
  • the information processing device 20 After specifying the Chinese herbal medicine candidate, the information processing device 20 generates output information including Chinese herbal medicine candidate information indicating the identified Chinese herbal medicine candidate. After generating the output information, the information processing device 20 outputs the generated output information. Thereby, the information processing device 20 can reduce the effort required for a Chinese medicine doctor to prescribe a Chinese medicine to a subject.
  • the information processing device 20 uses, for example, a first machine learning model that has learned the first correspondence information in advance, a second machine learning model that has learned the second correspondence information in advance, and the generated time-frequency spectrum image. Identify candidates for Chinese herbal medicines to be prescribed to the subject based on the
  • the first correspondence information is information in which a time-frequency spectrum image corresponding to the waveform of the pulse wave of the subject is associated with diagnosis result information indicating the diagnosis result of the subject by the Chinese medicine doctor.
  • the first machine learning model is a machine learning model that has learned the first correspondence information.
  • the first machine learning model generates a diagnosis result that indicates a likely diagnosis result for the subject by a Chinese herbalist when a time-frequency spectrum image corresponding to the pulse wave waveform of a certain subject is input. Output information.
  • the second correspondence information includes, for each subject, diagnosis result information indicating the diagnosis result of the subject by the herbalist doctor, and herbal medicine information indicating each of one or more herbal medicines prescribed to the subject by the herbalist doctor.
  • the second machine learning model is a machine learning model that has learned the second correspondence information.
  • the second machine learning model selects one or more Chinese medicines that are likely to be prescribed as one or more Chinese medicines to be prescribed to the subject corresponding to the diagnosis result information.
  • Chinese herbal medicine candidate information indicating each of the Chinese herbal medicine candidates is output.
  • the information processing device 20 uses the first machine learning model and the second machine learning model to identify candidates for Chinese herbal medicines to be prescribed to the subject.
  • the information processing device 20 can output Chinese herbal medicine candidate information indicating one or more Chinese herbal medicine candidates to be prescribed to the subject, excluding at least part of the subjectivity of the Chinese medicine doctor.
  • the information processing device 20 can reduce the time and effort required for a Chinese herbalist to prescribe Chinese medicine to a subject, and can also prescribe Chinese herbal medicine to a subject without being influenced by the experience of the herbalist. Prescriptions can be made with high precision. Note that details of the time-frequency spectrum image and the diagnosis result information will be described later.
  • the information processing device 20 is, for example, an information processing device such as a notebook PC (Personal Computer), a desktop PC, a workstation, a tablet PC, a multifunctional mobile phone terminal (smartphone), a mobile phone terminal, a PDA (Personal Digital Assistant), etc. However, it is not limited to these.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the information processing device 20. As shown in FIG.
  • the information processing device 20 includes, for example, a processor 21, a storage section 22, an input reception section 23, a communication section 24, and a display section 25. Further, the information processing device 20 communicates with the pulse wave detection device 10 via the communication unit 24. These components are communicatively connected to each other via a bus.
  • the processor 21 is, for example, a CPU (Central Processing Unit). Note that the processor 21 may be another processor such as an FPGA (Field Programmable Gate Array) instead of the CPU.
  • the processor 21 executes various programs stored in the storage unit 22. Note that the processor 21 may be configured by a CPU included in one information processing device (in this example, the information processing device 20), or may be configured by CPUs included in a plurality of information processing devices.
  • the storage unit 22 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the storage unit 22 may be an external storage device connected to a digital input/output port such as a USB (Universal Serial Bus), instead of being built into the information processing device 20.
  • the storage unit 22 stores various information, various programs, etc. processed by the information processing device 20.
  • the storage unit 22 stores the above-mentioned waveform information, the first machine learning model, the second machine learning model, and the like.
  • the storage unit 22 may be configured by one storage device or may be configured by a plurality of storage devices. Further, the plurality of storage devices may include a storage device provided in an information processing device separate from the information processing device 20.
  • the input reception unit 23 is an input device such as a keyboard, mouse, touch pad, etc. Note that the input receiving section 23 may be a touch panel configured integrally with the display section 25.
  • the communication unit 24 includes, for example, a digital input/output port such as a USB, an Ethernet (registered trademark) port, a communication antenna, and the like.
  • the display unit 25 is, for example, a display panel such as a liquid crystal display panel or an organic EL (Electro Luminescence) display panel.
  • a display panel such as a liquid crystal display panel or an organic EL (Electro Luminescence) display panel.
  • FIG. 3 is a diagram showing an example of the functional configuration of the information processing device 20. As shown in FIG. 3
  • the information processing device 20 includes a storage section 22, an input reception section 23, a communication section 24, a display section 25, and a control section 26.
  • the control unit 26 controls the entire information processing device 20.
  • the control unit 26 includes an acquisition unit 261, a reception unit 262, a calculation unit 263, a prescription candidate output unit 264, a first learning unit 265, a second learning unit 266, a display control unit 267, and a generation unit 268. Equipped with These functional units included in the control unit 26 are realized, for example, by the processor 21 executing various programs stored in the storage unit 22. Further, some or all of the functional units may be a hardware functional unit such as an LSI (Large Scale Integration) or an ASIC (Application Specific Integrated Circuit).
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • the acquisition unit 261 acquires the electrical signal output from the pulse wave sensor 12.
  • the reception unit 262 receives various information from the user.
  • the calculation unit 263 calculates various values calculated by the information processing device 20. For example, the calculation unit 263 calculates, based on certain waveform information, a time-frequency spectrum corresponding to a waveform indicated by the waveform information.
  • the prescription candidate output unit 264 generates the above-mentioned output information and outputs the generated output information. For example, the prescription candidate output unit 264 outputs the generated output information to the storage unit 22, and causes the storage unit 22 to store the output information.
  • the first learning unit 265 causes the first machine learning model to learn the first correspondence information.
  • the second learning unit 266 causes the second machine learning model to learn the second correspondence information.
  • the display control unit 267 generates various images.
  • the display control unit 267 causes the display unit 25 to display the generated image.
  • the generation unit 268 generates waveform information indicating the waveform of the subject's pulse wave based on the electrical signal acquired by the acquisition unit 261. Further, the generation unit 268 generates a time-frequency spectrum image showing the time-frequency spectrum calculated by the calculation unit 263.
  • FIG. 4 is a diagram illustrating an example of a process flow in which the information processing device 20 generates waveform information.
  • the information processing apparatus 20 receives a first operation that causes the information processing apparatus 20 to start the process of generating waveform information at a timing before the process of step S110 shown in FIG. 4 is performed. I will explain the case where there is.
  • the information processing device 20 receives an operation that specifies a period from the timing at which the first operation is received until the first time specified by the user has elapsed as the measurement period.
  • the first time is, for example, one minute, but may alternatively be shorter than one minute or longer than one minute.
  • the pulse wave detection device 10 starts detecting the pulse wave of the subject S1 at the timing.
  • the pulse wave sensor 12 starts outputting the above-mentioned electrical signal to the information processing device 20.
  • the information processing device 20 receives patient identification information for identifying the patient S1 at the timing.
  • the acquisition unit 261 After receiving the first operation, acquires an electrical signal from the pulse wave sensor 12 at a predetermined sampling period within the measurement period until the first time elapses (step S110). Note that in the embodiment, the process of converting this electrical signal from an analog signal to a digital signal is a known process, and therefore a description thereof will be omitted.
  • the sampling period is, for example, 0.002 seconds, but instead may be a period shorter than 0.002 seconds or a period longer than 0.002 seconds.
  • the acquisition unit 261 causes the storage unit 22 to store information indicating the electrical signal acquired within the measurement period in this manner.
  • the generation unit 268 generates waveform information indicating the waveform of the pulse wave of the subject S1 within the measurement period based on the information indicating the electrical signal stored in the storage unit 22 in step S110 (step S120 ).
  • the method for generating the waveform information based on the information may be a known method or a method to be developed in the future.
  • the information processing device 20 may be configured to perform the process in step S120 in parallel with the process in step S110.
  • the generation unit 268 causes the storage unit 22 to store the waveform information generated in step S120 (step S130). At this time, the generation unit 268 causes the storage unit 22 to store the subject identification information received in advance (that is, the subject identification information identifying the subject S1) in association with the waveform information. After the process of step S130 is performed, the generation unit 268 ends the process of the flowchart shown in FIG. 4.
  • the information processing device 20 can cause the storage unit 22 to store waveform information for each subject.
  • FIG. 5 is a diagram illustrating an example of a process flow in which the information processing device 20 causes the first machine learning model to learn the first correspondence information and causes the second machine learning model to learn the second correspondence information.
  • N pieces of waveform information generated by the process of the flowchart shown in FIG. 4 are stored in the storage unit 22 at a timing before the process of step S210 shown in FIG. 5 is performed.
  • N may be any integer greater than or equal to 1.
  • These N pieces of waveform information are waveform information for each of the N subjects. Therefore, for convenience of explanation, each of these N subjects will be referred to as a learning subject in the following description. Further, for convenience of explanation, the waveform information for each of the N learning subjects will be referred to as learning waveform information in the following description. That is, below, as an example, a case will be described in which learning waveform information indicating the waveform of the pulse wave of each of N learning subjects is stored in the storage unit 22 at the timing. Further, below, as an example, a case will be described in which N pieces of diagnosis result information are stored in the storage unit 22 at the timing.
  • the diagnosis result information regarding a certain study subject is information indicating the diagnosis result of the study subject by a Chinese herbalist.
  • diagnostic result information regarding a certain learning subject is associated with subject identification information that identifies the learning subject.
  • N pieces of Chinese herbal medicine information are stored in the storage unit 22 at the timing.
  • These N pieces of Chinese herbal medicine information are Chinese herbal medicine information for each of the N learning subjects.
  • the Chinese herbal medicine information for a certain learning subject is information indicating each of one or more Chinese herbal medicines that a Chinese medicine doctor has prescribed to the learning subject.
  • Chinese herbal medicine information regarding a certain study subject is associated with subject identification information that identifies the study subject.
  • the control unit 26 reads each of the N pieces of learning waveform information stored in advance in the storage unit 22 from the storage unit 22 (step S210). In addition, in FIG. 5, the process of step S210 is shown as "waveform information reading".
  • control unit 26 selects one piece of subject identification information associated with each of the N pieces of learning waveform information read out in step S210 as target subject identification information, and The processes of steps S230 to S270 are repeated for each examiner identification information (step S220).
  • the process of step S220 is shown by "each subject identification information.”
  • the first learning unit 265 refers to the N pieces of diagnostic result information stored in the storage unit 22 and identifies the target patient identified in step S220. Diagnosis result information associated with the information is read from the storage unit 22 (step S230).
  • the diagnosis result information regarding a certain study subject is information indicating the diagnosis result of the study subject by a Chinese medicine doctor. More specifically, the diagnosis result information is information indicating the results of the Chinese medicine doctor's diagnosis of the study subject (for example, the results of pulse diagnosis, etc.) for each of the M diagnosis items. M may be any integer as long as it is 1 or more. Therefore, each of the M diagnosis items includes a plurality of options that can be selected as the diagnosis result. Information indicating a diagnosis result for a certain diagnostic item among the M diagnostic items is represented by a vector having as components variables associated with each of a plurality of options included in the diagnostic item.
  • the diagnosis result information is represented by the direct sum of vectors indicating the diagnosis results of each of the M diagnosis items. For example, if a certain diagnostic item among M diagnostic items includes three options X1 to X3, and if X1 is selected by the Chinese herbalist as the diagnosis result of the diagnostic item, The information indicating the result has variables associated with each of X1 to X3 as components, 1 is assigned to the variable associated with X1, and 0 is assigned to the variables associated with each of X2 and X3. This is the vector being assigned. Diagnosis result information indicating the diagnosis results of each of the M diagnosis items is represented by the direct sum of these six vectors.
  • the M diagnostic items are six major vein types in the 28 diseased veins, namely, floating veins, sinking veins, slow veins, few veins, ischemic veins, and real veins.
  • M is 6.
  • the options that can be selected by the Chinese herbalist include the multiple options included in Floating Vein, Kui Vein (the Chinese character with a grass crown above the hole), Hong Vein, Lea vein, Wet Vein, There are six types of veins.
  • the plurality of options included in the sink vein as options that can be selected by the Chinese herbalist as a diagnosis result are four pulse types: sink vein, dip vein, weak vein, and dead vein.
  • the plurality of options included in the slow reticular pulse as options that can be selected by the Chinese herbalist as a diagnosis result are five pulse types: slow pulse, bradycardia, astringent pulse, tubercles, and grand veins.
  • the plurality of options included in the number of pulses as options that can be selected by the Chinese herbalist as a diagnosis result are three pulse types: the number of pulses, the arterial, and the accelerated pulse.
  • the plurality of options included in the ischemic pulse as options that can be selected by the Chinese herbalist as a diagnosis result are four pulse types: ischemic pulse, short vein, arteriole, and microvenule.
  • the plurality of options included in the real reticular vein as options that can be selected by the Chinese herbalist as a diagnosis result are six pulse types: real pulse, long pulse, chordal pulse, tense pulse, smooth pulse, and large vein.
  • the information showing the diagnosis result of a test subject's floating veins is: floating veins, go veins (kanji with a crown above the hole), hong veins, leather veins, wet veins, and scattered veins.
  • This is a vector having variables associated with each as components. For example, in the variable associated with floating veins among the components of the vector, if floating veins are selected by the Chinese herbalist as the diagnosis result for the floating veins, 1 is assigned.
  • the variables associated with each of the components koume (kanji with a grass crown above the hole), ko vein, leather vein, wet vein, and san vein are set to 0. It has been assigned.
  • certain diagnosis result information is represented by the direct sum of vectors indicating the diagnosis results for each of the six major vein types. That is, in the embodiment, the dimension of a vector representing certain diagnostic result information is 28 dimensions.
  • a combination of pulse types associated with each of the six components to which one of the components of a vector representing certain diagnostic result information is assigned will be referred to as a target pulse type set. do. That is, the diagnosis result information is information indicating the target pulse type set.
  • diagnosis result information information about the subject at the time of learning, information indicating the detection position of the pulse wave of the subject at the time of learning, and information indicating the past illness of the subject at the time of learning are associated with the diagnosis result information.
  • the information regarding the learning subject includes, for example, information indicating the gender of the learning subject, information indicating the age of the learning subject, and height of the learning subject. information, and information indicating the weight of the subject at the time of learning.
  • the first learning unit 265 refers to the N pieces of Chinese herbal medicine information stored in the storage unit 22 and extracts the Chinese herbal medicine information associated with the target patient identification information selected in step S220 from the storage unit 22. Read out (step S240).
  • the calculation unit 263 selects the learning waveform information associated with the target subject identification information selected in step S220 from the learning waveform information read out in step S210, and selects the learning waveform information associated with the target subject identification information selected in step S220.
  • a time-frequency spectrum is calculated according to the waveform indicated by the waveform information.
  • the generation unit 268 generates a time-frequency spectrum image indicating the time-frequency spectrum calculated by the calculation unit 263 (step S250).
  • a time-frequency spectrum image showing a time-frequency spectrum corresponding to a waveform indicated by the learning waveform information will be referred to as a learning time-frequency spectrum image.
  • FIG. 6 is a diagram illustrating an example of a waveform indicated by the learning waveform information associated with the target subject identification information selected in step S220.
  • the vertical axis of the graph shown in FIG. 6 indicates the signal amplitude of the pulse wave. Further, the horizontal axis of the graph indicates elapsed time.
  • the curve plotted on the graph indicates the waveform.
  • the calculation unit 263 removes frequency components equal to or higher than a predetermined frequency from the waveform indicated by the learning waveform information.
  • the calculation unit 263 removes the frequency component using a bandpass filter.
  • the information processing device 20 may be configured to accept a predetermined frequency from a user, or may be configured to accept a predetermined frequency by another method.
  • the calculation unit 263 calculates a time-frequency spectrum based on information indicating the waveform after removing the frequency component.
  • the calculation unit 263 calculates a time-frequency spectrum by STFT (Short Time Fourier Transform).
  • the generation unit 268 then generates a time-frequency spectrum image showing the time-frequency spectrum calculated by the calculation unit 263.
  • the time-frequency spectral image is, for example, a contour map in which spectral intensity is plotted as a function of time and frequency.
  • FIG. 7 is a diagram showing an example of a time-frequency spectrum image.
  • the contour map shown in FIG. 7 is an example of a time-frequency spectrum image for 5 seconds.
  • the horizontal axis of the contour map indicates time.
  • the vertical axis of the contour map indicates frequency.
  • Each of the plurality of curves plotted on the contour map is a contour line regarding spectral intensity.
  • the first learning unit 265 After the process of step S250 is performed, the first learning unit 265 generates first correspondence information (step S260). More specifically, the first learning unit 265 generates, as first correspondence information, information that associates the learning time-frequency spectrum image generated in step S250 with the diagnosis result information read out in step S230.
  • the second learning unit 266 generates second correspondence information (step S270). More specifically, the second learning unit 266 generates, as second correspondence information, information that associates the diagnosis result information read in step S230 with the herbal medicine information read in step S240.
  • the second learning unit 266 stores the generated second correspondence information in a second database stored in the storage unit 22 in advance. That is, the second database is a database that stores N pieces of second correspondence information generated in the repeated processing of steps S220 to S270 shown in FIG. Further, the second database is a database with a two-dimensional table structure of n1 ⁇ m1. That is, the second database shows a two-dimensional table of n1 ⁇ m1. n1 is the number of pulse type combinations that can be selected as the target pulse type set.
  • n1 is the number of types of Chinese medicine that the information processing device 20 can handle.
  • the second learning unit 266 adds 1 to the value assigned to the field where the target vein type set and each of the one or more herbal medicines indicated by the herbal medicine information cross on the two-dimensional table.
  • the second correspondence information obtained is stored in the second database. Note that 0 is assigned as an initial value to each field on the two-dimensional table.
  • FIG. 8 is an image diagram visualizing an example of the process of step S270.
  • step S270 After the process of step S270 is performed, the control unit 26 moves to step S220 and selects the next target subject identification information. Note that if there is no unselected subject identification information in step S220, the control unit 26 ends the repetitive processing of steps S220 to S270.
  • step S280 the first learning unit 265 causes the first machine learning model to learn the N pieces of first correspondence information stored in the first database in the iterative process.
  • step S280 the process of step S280 will be explained.
  • the first learning unit 265 trains the first machine learning model for each of the M diagnostic items. Thereby, the first learning unit 265 can acquire the coefficient sequence of the learned first machine learning model from the learned first machine learning model for each of the M diagnostic items.
  • the M diagnostic items were each of the six major vein types, as described above.
  • the first learning unit 265 learns the first machine learning model for each of the floating network, sinking network, slow network, few network, imaginary network, and real network. For example, when learning the first machine learning model for floating net veins, the first learning unit 265 calculates vectors indicating the diagnosis results of floating net veins and correspondences to these vectors from each of the N pieces of first correspondence information. The attached time-frequency spectrum image is extracted.
  • the first learning unit 265 uses the time-frequency spectrum image associated with the vector as an input, and causes the first machine learning model to learn using the output as a vector.
  • the first machine learning model that has learned such inputs and outputs is able to identify pulse types included in the category of floating veins when a time-frequency spectrum image corresponding to the waveform of a pulse wave of a certain subject is input.
  • a vector indicating the type of pulse that is estimated to appear most strongly in the pulse wave of the subject is output as information indicating the diagnosis result regarding floating veins.
  • the first machine learning model is a CNN (Convolutional Neural Network) for deep learning.
  • the input time-frequency spectrum image is downsized by a kernel filter and nonlinear processing with one output, and finally becomes one-dimensional data. Compressed.
  • the weights and biases of the first machine learning model are determined based on the distribution state of this one-dimensional data based on the number of multiple options included in the diagnostic item (in this case, the number of vein types included in the category of floating veins). It is optimized so that it can be distinguished accurately to the number of 6).
  • the first learning unit 265 calculates the coefficient string of the first machine learning model after learning for each of the M diagnostic items. can be obtained from the first machine learning model after learning.
  • the coefficient sequence of a certain first machine learning model is a combination of weights and biases of the first machine learning model.
  • the coefficient sequence of the first machine learning model after learning about floating veins will be referred to as a first coefficient sequence.
  • the coefficient sequence of the first machine learning model after learning about the sinking vein will be referred to as a second coefficient sequence in the following description.
  • the coefficient sequence of the first machine learning model after learning about the slow network pulse will be referred to as a third coefficient sequence.
  • the coefficient sequence of the first machine learning model after learning about the number network will be referred to as a fourth coefficient sequence.
  • the coefficient sequence of the first machine learning model after learning about the imaginary network will be referred to as the fifth coefficient sequence.
  • the coefficient sequence of the first machine learning model after learning about the real network will be referred to as the sixth coefficient sequence. Note that when acquiring each of the first to sixth coefficient sequences, the first learning unit 265 prepares a first machine learning model for each diagnostic item, and performs learning of the first machine learning model for each diagnostic item. The learning may be performed in parallel, or a single first machine learning model may be prepared and the learning of the first machine learning model may be performed sequentially for each diagnostic item.
  • the first learning unit 265 After acquiring each of the first coefficient sequence to the sixth coefficient sequence in step S280, the first learning unit 265 causes the storage unit 22 to store coefficient sequence information indicating each of the first coefficient sequence to the sixth coefficient sequence. Thereby, the information processing device 20 can quickly reproduce the first machine learning model after learning about the floating network based on the first coefficient sequence and the first machine learning model, for example.
  • the second learning unit 266 causes the second machine learning model to learn the second database (that is, the second correspondence information) generated in the repeated processing of steps S220 to S270 (step S290). More specifically, when diagnosis result information indicating a target pulse type set for a certain subject is input, the second learning unit 266 selects one or more Chinese herbal medicines that are likely to be prescribed to the subject. The second database is trained by the second machine learning model so as to output Chinese herbal medicine candidate information indicating each of the Chinese herbal medicine candidates to be prescribed to the subject.
  • the machine learning model used as the second machine learning model may be any type of machine learning model as long as it can realize such an input/output relationship.
  • the information processing device 20 can make the first machine learning model learn the first correspondence information, and can make the second machine learning model learn the second correspondence information.
  • FIG. 9 is a diagram illustrating an example of the flow of processing in which the information processing device 20 receives diagnosis result information.
  • the information processing device 20 receives diagnosis result information regarding the subject S2, who is one of the N learning subjects described above.
  • a case will be described below in which the Chinese medicine doctor diagnoses the subject S2 at a timing before the process of step S310 shown in FIG. 9 is performed.
  • the information processing device 20 receives a second operation that causes the information processing device 20 to start accepting diagnosis result information at the timing.
  • the display control unit 267 After the information processing device 20 receives the second operation, the display control unit 267 generates the information reception image PCT1 (step S310).
  • the information reception image PCT1 is an image in which the information processing device 20 receives diagnosis result information.
  • FIG. 10 is a diagram showing an example of the information reception image PCT1.
  • the information reception image PCT1 includes, for example, eight images, the first reception image G1 to the eighth reception image G8. Note that the information reception image PCT1 may include other images in addition to these eight images.
  • the first reception image G1 is a GUI that receives patient identification information.
  • the first reception image G1 includes, for example, an input field into which patient identification information is input.
  • the second reception image G2 is a GUI that receives information indicating the gender of the subject.
  • the second reception image G2 includes two radio buttons, for example, one that accepts information indicating that the gender of the examinee is male, and the other that accepts information that the gender of the examinee is female. Contains radio buttons.
  • the third reception image G3 is a GUI that accepts information indicating the age of the subject.
  • the third reception image G3 includes, for example, an input field into which information indicating the age of the subject is input.
  • the fourth reception image G4 is a GUI that receives information indicating the height of the subject.
  • the fourth reception image G4 includes, for example, an input field into which information indicating the height of the subject is input.
  • the fifth reception image G5 is a GUI that receives information indicating the subject's weight.
  • the fifth reception image G5 includes, for example, an input field into which information indicating the subject's weight is input.
  • the sixth reception image G6 is a GUI that receives information indicating the detection position of the subject's pulse wave.
  • the sixth reception image G6 includes, for example, a radio button that accepts information indicating that the arm in which the pulse wave was detected is the left arm among both arms of the subject, A radio button that accepts information indicating that the arm where the test subject's pulse wave was detected is the right arm, a radio button that accepts information that the position where the test subject's pulse wave was detected is the right arm, and a radio button that accepts information that the test subject's pulse wave was detected at the position where the test subject's pulse wave was detected.
  • the seventh reception image G7 is a GUI that receives information indicating the subject's past illnesses.
  • the seventh reception image G7 includes, for example, an input field into which information indicating a medical history of the subject is input.
  • the eighth reception image G8 is a GUI that receives diagnosis result information.
  • the eighth reception image G8 includes, for example, six images, reception image G81 to reception image G86.
  • the reception image G81 is a GUI that accepts one of the six vein types included in the category of floating veins.
  • a drop-down menu L81 in which information indicating each of the six pulse types is listed is displayed.
  • the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the six pulse types listed in the drop-down menu L81.
  • the display of the drop-down menu L81 disappears and the reception image G81
  • the information selected in the drop-down menu L81 is displayed in the display field.
  • the reception image G82 is a GUI that accepts one of the four vein types included in the category of sedimentary veins.
  • a drop-down menu L82 in which information indicating each of the four pulse types is listed is displayed.
  • the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the four pulse types listed in the drop-down menu L82.
  • the display of the drop-down menu L82 disappears and the reception image G82 The information selected in the drop-down menu L82 is displayed in the display field.
  • the reception image G83 is a GUI that accepts one of the five pulse types included in the category of slow retinal pulse.
  • a drop-down menu L83 in which information indicating each of the five pulse types is listed is displayed.
  • the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the five pulse types listed in the drop-down menu L83.
  • information reception image PCT1 when an operation is performed to select any of the information indicating each of the five pulse types listed in drop-down menu L83, the display of drop-down menu L83 disappears and reception image G83 The information selected in the drop-down menu L83 is displayed in the display field.
  • the reception image G84 is a GUI that accepts one of the three types of pulses included in the category of multiple veins.
  • a drop-down menu L84 in which information indicating each of the three pulse types is listed is displayed.
  • the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the three pulse types listed in the drop-down menu L84.
  • the display of the drop-down menu L84 disappears and the reception image G84 The information selected in the drop-down menu L84 is displayed in the display field.
  • the reception image G85 is a GUI that accepts one of the four pulse types included in the category of ischemic pulse.
  • a drop-down menu L85 in which information indicating each of the four pulse types is listed is displayed.
  • the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the four pulse types listed in the drop-down menu L85.
  • the display of the drop-down menu L85 disappears and the reception image G85 The information selected in the drop-down menu L85 is displayed in the display field.
  • the reception image G86 is a GUI that accepts one of the six vein types included in the category of real veins.
  • a drop-down menu L86 is displayed in which information indicating each of the six pulse types is listed.
  • the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the six pulse types listed in the drop-down menu L86.
  • the display of the drop-down menu L86 disappears and the reception image G86 The information selected in the drop-down menu L86 is displayed in the display field.
  • FIG. 11 is a diagram showing an example of how each of the six drop-down menus described above is displayed.
  • the information reception image PCT1 may have a configuration that does not include some or all of the second reception image G2 to the seventh reception image G7.
  • step S310 After the process of step S310 is performed, the display control unit 267 displays the information reception image PCT1 generated in step S310 on the display unit 25 (step S320).
  • the receiving unit 262 waits until the information processing device 20 receives an operation via the information receiving image PCT1 displayed on the display unit 25 in step S320 (step S330).
  • the reception unit 262 receives the diagnosis result information via the information acceptance image PCT1. It is determined whether the operation to end the reception was accepted in step S330 (step S340).
  • Step S370 the processing is, for example, processing in which the information processing device 20 receives diagnosis result information via the eighth reception image G8. That is, through the process of step S370, the information processing device 20 receives various types of information included in the diagnosis result information regarding the subject S2.
  • the process corresponding to the operation received in step S330 may be any process as long as it can be performed according to the operation received via the information reception image PCT1.
  • the reception unit 262 moves to step S330 and waits again until the information processing device 20 accepts the operation via the information reception image PCT1 displayed on the display unit 25 in step S320. .
  • the receiving unit 262 determines that the operation to end the reception of diagnosis result information via the information receiving image PCT1 has been received in step S330 (step S340-YES)
  • the receiving unit 262 receives the receiving images G81 to G81 of the information receiving image PCT1.
  • the target vein type set is specified based on the information received through each G86.
  • the reception unit 262 generates diagnostic result information indicating the specified target pulse type group (step S350).
  • the reception unit 262 associates the generated diagnosis result information with the information received via each of the first reception image G1 to seventh reception image G7 of the information reception image PCT1.
  • the reception unit 262 stores the diagnosis result information generated in step S350 in the storage unit 22 (step S360), and ends the process of the flowchart shown in FIG.
  • the information processing device 20 can receive diagnosis result information.
  • FIG. 12 is a diagram showing an example of a process flow in which the information processing device 20 outputs Chinese herbal medicine candidate information.
  • the first waveform information generated by the process of the flowchart shown in FIG. 4 is stored in the storage unit 22 at a timing before the process of step S410 shown in FIG. 12 is performed. Let me explain the case.
  • the first waveform information is waveform information indicating the waveform of the pulse wave of the subject S3.
  • the third operation for causing the information processing device 20 to start the process of outputting the Chinese herbal medicine candidate information, and the test subject identifying the subject to whom the Chinese herbal medicine candidate information is to be provided.
  • the information processing device 20 receives patient identification information that identifies the patient S3 as the identification information.
  • coefficient string information is stored in the storage unit 22 by the process of the flowchart shown in FIG. 5 at the timing.
  • step S410 After the information processing device 20 receives the third operation and the subject identification information, the calculation unit 263 reads the first waveform information from the storage unit 22 based on the received subject identification information (step S410). In FIG. 12, the process of step S410 is shown as "waveform information reading".
  • the calculation unit 263 calculates a time-frequency spectrum according to the waveform indicated by the first waveform information read in step S410. Then, the generation unit 268 generates a time-frequency spectrum image indicating the time-frequency spectrum calculated by the calculation unit 263 (step S420).
  • the prescription candidate output unit 264 reads out coefficient string information stored in advance in the storage unit 22 from the storage unit 22. Then, the prescription candidate output unit 264 determines whether or not the patient is to be examined based on each of the first to sixth coefficient sequences indicated by the read coefficient sequence information and the time-frequency spectrum image generated by the generation unit 268 in step S420. Candidates for Chinese herbal medicine to be prescribed in S3 are identified (step S430). In FIG. 12, the process of step S430 is shown as "Identification of Chinese medicine candidate.” Here, the process of step S430 will be explained.
  • the prescription candidate output unit 264 performs learning about floating veins based on the first coefficient sequence among the first to sixth coefficient sequences indicated by the read coefficient sequence information and the first machine learning model.
  • the following first machine learning model is reproduced.
  • the prescription candidate output unit 264 inputs the time-frequency spectrum image generated by the generation unit 268 in step S420 as an input to the reproduced first machine learning model.
  • the first machine learning model into which the time-frequency spectrum image is input calculates the likelihood indicating the likelihood of each of the six options included in the floating mesh vein as a diagnosis result of the floating mesh vein, and A vector indicating the option with the highest calculated likelihood is output as a vector indicating the diagnosis result of floating net veins for person S3.
  • the prescription candidate output unit 264 acquires the vector output from the first machine learning model.
  • the prescription candidate output unit 264 performs such processing for each of the first to sixth coefficient sequences. Thereby, the prescription candidate output unit 264 can acquire vectors indicating the diagnosis results of each of the six major vein types for the subject S3 from the first machine learning model. Then, the prescription candidate output unit 264 generates the direct sum of the six vectors outputted by the first machine learning model as diagnosis result information regarding the subject S3.
  • the vector indicating the diagnosis result information regarding the subject S3 will be referred to as a vector Y.
  • each of the 28 components of the vector Y is indicated by y1 to y28.
  • the components included in the vector indicating the diagnosis result of floating net vein are y1 to y6, the components included in the vector indicating the diagnosis result of sinking net vein are y7 to y10, and the components included in the vector indicating the diagnosis result of slow net vein are y1 to y6.
  • the components included in the vector shown are y11 to y15, the components included in the vector showing the diagnosis result of imaginary network are y16 to y18, and the components included in the vector showing the diagnosis result of imaginary network are y19 to y22. , and the components included in the vector indicating the diagnosis result of the real network are y23 to y28.
  • the prescription candidate output unit 264 inputs the vector Y output from the first machine learning model to the second machine learning model as an input.
  • the second machine learning model receives the diagnosis result information output by the first machine learning model, it estimates that one or more Chinese herbal medicines are likely to be prescribed to the subject corresponding to the diagnosis result information.
  • Chinese herbal medicine candidate information indicating each of one or more Chinese herbal medicine candidates is output. Therefore, when the second machine learning model receives the vector Y output from the first machine learning model, it selects one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3. Outputs Chinese herbal medicine candidate information indicating each of the following.
  • the second machine learning model calculates the second Among the fields associated with the target pulse type set indicated by the vector Y in the two-dimensional table indicated by the second database, one or more fields to which a value equal to or greater than a predetermined first threshold is assigned are each identified. Then, the second machine learning model selects the Chinese herbal medicines associated with each of the identified one or more fields as one or more Chinese herbal medicine candidates that are estimated to be plausible as the one or more Chinese medicines to be prescribed to the subject S3. Identify.
  • the first threshold value may be any value as long as it is greater than zero.
  • the first threshold value is determined, for example, based on prior experimental results or the like, so as to increase the accuracy of identifying one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3.
  • the second machine learning model After identifying one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3, the second machine learning model generates Chinese herbal medicine candidate information indicating each of the identified one or more Chinese medicine candidates.
  • FIG. 14 is an image diagram visualizing the flow in which the second machine learning model identifies one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3.
  • the prescription candidate output unit 264 After the second machine learning model outputs one or more Chinese herbal medicine candidate information, the prescription candidate output unit 264 outputs the Chinese herbal medicine candidate indicated by each of the one or more Chinese medicine candidate information outputted by the second machine learning model to the patient.
  • One or more Chinese herbal medicines that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to person S3 are identified as candidates.
  • the prescription candidate output unit 264 identifies the one or more Chinese herbal medicine candidates in step S430.
  • the prescription candidate output unit 264 After the process of step S430 is performed, the prescription candidate output unit 264 generates output information including herbal medicine candidate information indicating each of the one or more herbal medicine candidates identified in step S430.
  • the output information may include any information in addition to the herbal medicine candidate information indicating each of the one or more herbal medicine candidates.
  • the prescription candidate output unit 264 outputs the generated output information to the display control unit 267.
  • the display control unit 267 generates, for example, an image including the output information output from the prescription candidate output unit 264.
  • the display control unit 267 displays the generated image on the display unit 25 (step S440), and ends the process of the flowchart shown in FIG. 12.
  • the process of step S440 is shown by "Chinese medicine candidate information display".
  • the information processing device 20 generates output information including Chinese herbal medicine candidate information indicating candidates for Chinese herbal medicine to be prescribed to the subject S3 based on the first waveform information indicating the waveform of the pulse wave of the subject S3. Output.
  • the information processing device 20 can identify candidates for Chinese herbal medicines to be prescribed to the subject S3 without having the Chinese herbalist perform a pulse diagnosis of the subject S3.
  • the information processing device 20 can reduce the effort required for the Chinese medicine doctor to prescribe Chinese medicine to the subject S3. Further, thereby, the information processing device 20 can efficiently suppress variations in treatment results depending on the skill level of the Chinese medicine doctor.
  • the diagnosis result information for a certain subject includes information indicating the diagnosis result of at least one of an interview, a facial examination, a tongue examination, and an abdominal examination of the subject by a Chinese medicine doctor.
  • the diagnosis result information for a certain subject includes information indicating the diagnosis result of an interview of the subject by a Chinese medicine doctor.
  • the diagnostic result information for a certain subject includes, for example, information about the subject, information indicating the detection position of the subject's pulse wave, and information indicating the subject's past diseases. ing.
  • each of the information regarding the subject, the information indicating the detection position of the subject's pulse wave, and the information indicating the subject's past illness indicates the diagnosis result of the interview of the subject by the Chinese medicine doctor.
  • the vector Y described above includes 10 components y29 to y38 in addition to the 28 components y1 to y28 described above.
  • y29 is a variable to which 1 is assigned when the gender of the subject is male, and 0 is assigned when the gender of the subject is female.
  • y30 is a variable to which 1 is assigned when the gender of the subject is female, and 0 is assigned when the gender of the subject is male.
  • y31 is a variable to which the age of the subject is substituted.
  • y32 is a variable to which the height of the subject is substituted.
  • y33 is a variable to which the subject's weight is substituted.
  • y34 is 1 if the arm from which the pulse wave was detected is the left arm, and y34 is 1 if the arm from which the pulse wave was detected is the left arm; This is a variable to which 0 is assigned if it is a right arm.
  • y34 is a variable to which 0 is substituted when the right arm is the one in which the pulse wave has been detected out of both arms of the subject.
  • y35 is a variable to which 1 is substituted when the position where the pulse wave of the subject is detected is Sun, and 0 is substituted when the position where the pulse wave of the subject is detected is Seki or Shaku.
  • y36 is a variable to which 1 is substituted when the position where the pulse wave of the subject is detected is Seki, and 0 is substituted when the position where the pulse wave of the subject is detected is Sun or Shaku.
  • y37 is a variable to which 1 is assigned when the position where the pulse wave of the subject is detected is shaku, and 0 is assigned when the position where the pulse wave of the subject is detected is sun or seki.
  • y38 is a variable to which 1 is assigned when the subject has a pre-existing disease, and 0 is substituted when the subject does not have a pre-existing disease. Note that the vector Y according to the first modification of the embodiment may include a portion of y29 to y38.
  • step S350 shown in FIG. 10 the reception unit 262 identifies the target pulse type group based on the information received through each of the reception images G81 to G86 of the information reception image PCT1. Then, the reception unit 262 generates, as diagnosis result information, information including diagnosis result information indicating the specified target pulse type set and information received via each of the second reception image G2 to seventh reception image G7. do. At this time, the reception unit 262 associates the generated diagnosis result information with the patient identification information received via the first reception image G1 of the information reception image PCT1.
  • the aforementioned second database is a database with a two-dimensional table structure of (n1 ⁇ n2) ⁇ m1.
  • n2 is the number of combinations of 10 values assigned to each of y29 to y38.
  • the information processing device 20 can obtain information indicating the target pulse type set of a certain subject, information regarding the subject, information indicating the detection position of the subject's pulse wave, and past medical conditions of the subject. Based on the combination of information shown, output information including Chinese herbal medicine candidate information indicating candidates for Chinese medicine prescribed to the subject can be output.
  • the information processing device 20 can increase the accuracy of identifying candidates for Chinese herbal medicines to be prescribed to the subject, and reduce the effort required for the Chinese herbalist to prescribe Chinese medicines to the subject S3. It can definitely be reduced.
  • the first machine learning model performs error correction processing in step S430 shown in FIG. 12.
  • the prescription candidate output unit 264 generates a formula based on the first coefficient sequence of the first to sixth coefficient sequences indicated by the coefficient sequence information read in step S430 and the first machine learning model. , reproduce the first machine learning model after learning about floating veins. Then, the prescription candidate output unit 264 inputs the time-frequency spectrum image generated by the generation unit 268 in step S420 as an input to the reproduced first machine learning model.
  • the first machine learning model to which the time-frequency spectrum image is input calculates a likelihood indicating the likelihood of each of the six options included in the floating mesh vein as a diagnosis result of the floating mesh vein.
  • the first machine learning model performs error processing if all six calculated likelihoods are less than a predetermined threshold.
  • the error processing is, for example, a process of replacing these six likelihoods with the average value of these six likelihoods.
  • the first machine learning model outputs a vector in which 1 is substituted for all components as a vector indicating the diagnosis result of floating web veins for the subject S3.
  • the first machine learning model uses the vector as a vector indicating the diagnosis result of floating veins for the subject S3.
  • a vector indicating the option with the highest calculated likelihood is output.
  • the prescription candidate output unit 264 acquires the vector output from the first machine learning model.
  • the prescription candidate output unit 264 performs such processing for each of the first to sixth coefficient sequences.
  • the prescription candidate output unit 264 outputs the formula shown in FIG. End the flowchart processing.
  • the display control unit 267 causes the display unit 25 to display information indicating that an error has occurred, as well as information prompting to reacquire the waveform information indicating the waveform of the pulse wave of the subject S3.
  • the above error processing may be replaced with other processing such as setting an error flag and not storing the error flag.
  • the prescription candidate output unit 264 outputs the formula as shown in FIG. The processing in the flowchart may be continued without ending.
  • n1 of the two-dimensional table indicated by the second database is not the number of pulse type combinations that can be selected as the target pulse type set, but the number of pulse type combinations that can be selected as a combination of six or more pulse types from among the 28 diseased vein types. Replaced by the number of vein type combinations. Further, in this case, the diagnosis result information is replaced with information indicating a combination of six or more pulse types, that is, a vector indicating a combination of six or more pulse types. By performing these replacements, even in this case, the information processing device 20 can continue the processing of the flowchart shown in FIG. 12 without ending it.
  • the first machine learning model outputs the vector Z indicating the likelihood calculated for each of the 28 diseased pulses together with the vector Y in step S430 shown in FIG. 12 as diagnosis result information. It may be a configuration.
  • the prescription candidate output unit 264 inputs the vector Y output from the first machine learning model to the second machine learning model, thereby outputting one or more Chinese herbal medicines output from the second machine learning model. Based on the combination of candidates and the vector Z output from the first machine learning model, the values of each field of the two-dimensional table indicated by the second correspondence information are updated.
  • the prescription candidate output unit 264 outputs the likelihood indicated by the vector Z to the value of the field where each of the 28 disease veins and the one or more herbal medicine candidates cross each other on the two-dimensional table. Add degrees. For example, the prescription candidate output unit 264 adds the likelihood of floatation among the likelihoods indicated by the vector Z to the value of the field where floatation and the one or more Chinese medicine candidates cross each other. As a result, the information processing device 20 decreases the accuracy of identifying one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3 due to variations in the diagnostic accuracy of the Chinese medicine doctor's vein type. You can prevent it from happening.
  • the first machine learning model is configured to estimate at least one of the factor ranking and the degree of contribution of the Chinese medicine prescription determining factors for each of the six major vein types obtained by analyzing the second correspondence information.
  • the first machine learning model can, for example, multiply the likelihood calculated for each of the six major vein types by a weight based on at least one of the estimated factor rank and the contribution.
  • this weight is a weight normalized so that the weights multiplied by the likelihoods calculated for each of the six major vein types add up to 1.
  • the first machine learning model determines the weight to be multiplied by the likelihood of each of the six options included in the floating net based on at least one of the factor ranking and the contribution degree estimated for the floating net.
  • the weight becomes larger as each of the factor ranking and the degree of contribution become larger.
  • the first machine learning model multiplies the likelihood of each of the six options included in the floating network by the determined weight.
  • the information processing device 20 decreases the accuracy of identifying one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3 due to variations in the diagnostic accuracy of the Chinese medicine doctor's vein type. It is possible to more reliably prevent this from happening.
  • the M diagnostic items are each of the six diagnostic items in the Japanese pulse diagnosis method, instead of the 28 diseased pulses.
  • M is 6.
  • these six diagnostic items are the strength between floating pulses and sinking pulses, the strength between several pulses and slow pulses, the strength between large and small veins, and the strength between ischemic pulses and real pulses.
  • the strength is the strength between the pulses, the strength between the tense and slow pulses, and the strength between the smooth and astringent pulses.
  • floating veins and sinking veins have an opposing relationship.
  • Chinese herbalists who use the Japanese pulse diagnosis method diagnose whether floating pulses or sinking pulses appear more strongly in the subject's pulse wave. This is a diagnosis of the strength between floating veins and sinking veins.
  • slow pulse and slow pulse, large pulse and small pulse, ischemic pulse and real pulse, tense pulse and brady pulse, and smooth pulse and astringent pulse are opposed to each other.
  • strength between floating pulse and sinking pulse strength between several pulses and slow pulse, strength and weakness between large and small pulses, and weak and weak pulses between ischemic and real pulses.
  • the strength between the two, the strength between the tense and slow pulses, and the strength between the smooth and astringent pulses are each diagnosed as six diagnostic items.
  • each of these six diagnostic items is diagnosed by the Chinese herbalist as one of five levels from level 1 to level 5.
  • a plurality of options included in a certain diagnostic item among these six diagnostic items are levels 1 to 5, respectively.
  • the strength between the floating veins and the sinking veins indicates that the lower the level value, the stronger the floating veins, and the higher the level value, the stronger the sinking veins.
  • the strength between the several pulses and the slow pulse indicates that the lower the level value is, the stronger the several pulses are, and the higher the level value is, the stronger the slow pulse is.
  • the strength between the large vein and the small vein the lower the level value, the stronger the large vein, and the higher the level value, the stronger the small vein.
  • the strength between the ischemic pulse and the real pulse indicates that the lower the level value is, the stronger the isty pulse is, and the higher the level value is, the stronger the real pulse is.
  • information indicating a diagnosis result regarding the strength of a floating pulse and a sinking pulse of a certain learning subject is a vector having variables associated with each of levels 1 to 5 as components.
  • the diagnosis result information according to the fourth modification of the embodiment is represented by the direct sum of vectors indicating the diagnosis results for each of these six diagnosis items. That is, in the fourth modification of the embodiment, the dimension of a vector representing certain diagnostic result information is 30 dimensions. In a fourth modification of the embodiment, the diagnosis result information indicates a target level group instead of a target pulse type group.
  • the information processing device 20 receives diagnosis result information indicating such a target level group via the information reception image PCT2 instead of the information reception image PCT1 shown in FIG. Therefore, the display control unit 267 generates the information reception image PCT2 in step S310 shown in FIG.
  • FIG. 15 is a diagram showing an example of the information reception image PCT2.
  • the information reception image PCT2 includes a ninth reception image G9 together with the first reception image G1 to the seventh reception image G7.
  • the information reception image PCT2 may include other images in addition to these images. Further, since the first reception image G1 to the seventh reception image G7 have already been explained, their explanation will be omitted.
  • the ninth reception image G9 is a GUI that receives diagnosis result information.
  • the ninth reception image G9 includes, for example, six images, reception image G91 to reception image G96.
  • the reception image G91 is a GUI that accepts the value of the strength level between the floating vein and the sinking vein.
  • five radio buttons are arranged in a line between information indicating a floating vein and information indicating a sinking vein. These five radio buttons are arranged in order from the radio button closest to the information indicating floating veins to the information indicating sinking veins: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5.
  • the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the floating vein and the sinking vein. For example, when receiving an operation to select a radio button associated with level 1 in the reception image G91, the information processing device 20 accepts level 1 as the value of the level of strength between floating veins and sinking veins. .
  • the reception image G92 is a GUI that accepts the value of the strength level between the slow pulse and the slow pulse.
  • five radio buttons are arranged in a line between information indicating a slow pulse and information indicating a slow pulse. These five radio buttons are arranged in order from the radio button closest to the information indicating slow pulse to the information indicating slow pulse: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5.
  • information indicating that the radio button has been selected is superimposed on the radio button selected by the operation.
  • the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of intensity between the slow pulse and the slow pulse. For example, when receiving an operation to select a radio button associated with level 1 in the reception image G92, the information processing device 20 accepts level 1 as the strength level value between multiple pulses and slow pulses. .
  • the reception image G93 is a GUI that accepts the value of the strength level between the large vein and the small vein.
  • five radio buttons are arranged in a line between information indicating large veins and information indicating small veins. These five radio buttons are arranged in order from the radio button closest to the information indicating the large vein to the information indicating the small vein: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5.
  • the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the large and small veins. For example, when receiving an operation to select a radio button associated with level 1 in the reception image G93, the information processing device 20 accepts level 1 as the value of the level of strength between the large and small veins. .
  • the reception image G94 is a GUI that accepts the value of the strength level between the ischemic pulse and the real pulse.
  • five radio buttons are arranged in a line between information indicating an ischemic pulse and information indicating a real pulse. These five radio buttons are arranged in order from the radio button closest to the information indicating the ischemic pulse to the information indicating the actual pulse: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5.
  • information indicating that the radio button has been selected is superimposed on the radio button selected by the operation.
  • the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the ischemic pulse and the real pulse. For example, when receiving an operation to select a radio button associated with level 1 in the reception image G94, the information processing device 20 accepts level 1 as the value of the level of strength between the ischemic pulse and the real pulse. .
  • the reception image G95 is a GUI that accepts the value of the level of strength between systolic and bradycardia.
  • five radio buttons are arranged in a line between information indicating a tense heartbeat and information indicating a slow heartbeat. These five radio buttons are arranged in order from the radio button closest to the information indicating rapid pulse to the information indicating brady pulse: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5.
  • information indicating that the radio button has been selected is superimposed on the radio button selected by the operation.
  • the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the strong and weak pulses. For example, when the information processing device 20 receives an operation to select a radio button associated with level 1 in the reception image G95, it accepts level 1 as the value of the level of strength between tense and slow pulses. .
  • the reception image G96 is a GUI that accepts the value of the strength level between the smooth vein and the astringent vein.
  • five radio buttons are arranged in a line between information indicating smooth pulse and information indicating slow pulse. These five radio buttons are arranged in order from the radio button closest to the information indicating smooth pulse to the information indicating difficult pulse: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5.
  • information indicating that the radio button has been selected is superimposed on the radio button selected by the operation.
  • the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the smooth pulse and the astringent pulse. For example, when receiving an operation to select a radio button associated with level 1 in reception image G96, the information processing device 20 accepts level 1 as the value of the level of strength between smooth pulse and astringent pulse. .
  • the information processing device 20 can receive the diagnosis result information according to the fourth modification of the embodiment via the information reception image PCT2 having such a configuration. Then, the information processing device 20 performs the process of the flowchart shown in FIG. 5 using the diagnosis result information received via the information reception image PCT2 having such a configuration, thereby obtaining the first result as in the embodiment. First correspondence information and second correspondence information are generated, and a first machine learning model is trained based on the generated first correspondence information, and a second machine learning model is trained based on the generated second correspondence information, respectively. As a result, the information processing device 20 can perform the process shown in the flowchart shown in FIG. 12 similarly to the embodiment, reducing the effort required for the Chinese herbalist to prescribe the Chinese herbal medicine to the first subject. I can do it.
  • n1 in the second database in which the second correspondence information according to the fourth modification of the embodiment is stored is the number of combinations of level values that can be selected as the target level set.
  • n1 is the strength between floating veins and sinking veins, the strength between several pulses and slow pulses, the strength between large veins and small veins, the strength and weakness between weak pulses and real pulses, and tension. Since the number of levels included in each of the strength between the pulse and slow pulse and the strength between smooth pulse and astringent pulse is 5, the number is 15,625.
  • Modification 5 of the embodiment is a modification of Modification 4 of the embodiment.
  • the first learning unit 265 analyzes each of the N pieces of diagnosis result information read out in step S230 shown in FIG. Correct by weight vector.
  • the storage unit 22 stores correction filters for each Chinese medicine doctor.
  • each of the N pieces of diagnosis result information stored in the storage unit 22 is associated with Chinese herbalist identification information that identifies the Chinese herbalist who diagnosed the diagnosis result indicated by each piece of diagnostic result information.
  • a Chinese medicine doctor's correction filter is based on the strength between floating pulses and sinking pulses, the strength between several pulses and slow pulses, the strength between large and small pulses, and the strength between imaginary pulses and real pulses. It has weight vectors associated with each of the strength and weakness, the strength between tense and slow pulses, and the strength between smooth and astringent pulses.
  • the weight vector associated with the strength between floating veins and sinking veins is a vector that corrects a vector indicating the diagnosis result by the Chinese medicine doctor regarding the strength between floating veins and sinking veins.
  • the weight vector has different magnitudes, which are multiplied by each of the five variables that the vector indicating the diagnosis result by the herbalist doctor regarding the strength between floating veins and sinking veins has as a component.
  • This is a vector having five weights as components.
  • the vector indicating the diagnosis result by the Chinese herbalist about the strength between the floating vein and the sinking vein is the vector indicating the diagnosis result by the Chinese herbalist about the strength between the floating vein and the sinking vein, It is corrected by the Hadamard product of the weight vectors associated with the strengths and weaknesses between and the sedimentation veins.
  • the Hadamard product is a product of each component of a matrix, and is sometimes called a Schur product or the like.
  • the Hadamard product of the vector and the weight vector is the Hadamard product of matrices with 5 rows and 1 column.
  • the value of the variable to which 1 is substituted is corrected in the vector indicating the diagnosis result by the Chinese medicine doctor regarding the strength between the floating vein and the sinking vein.
  • These circumstances include the strength between slow and slow pulses, the strength between large and small pulses, the strength between ischemic and real pulses, the strength between tense and slow pulses, The same applies to the strength of the smooth vein and the astringent vein.
  • the first learning unit 265 corrects the vector indicated by the diagnosis result information based on the specified correction filter.
  • the first learning unit 265 then generates, as first correspondence information, information in which the corrected vector is associated with the learning time-frequency spectrum image generated in step S250.
  • the second learning unit 266 generates second correspondence information that associates the corrected vector with each of the one or more Chinese medicines indicated by the Chinese medicine information read in step S240, and uses the generated second correspondence information.
  • the second learning unit 266 identifies the aforementioned target level set based on the corrected vector, and each of the identified target level set and the one or more Chinese medicine candidates crosses in the second database.
  • the value of the non-zero variable among the variables included in the vector is added to the value of the field.
  • the information processing device 20 can reduce variations in diagnosis due to the subjectivity of the Chinese medicine doctor regarding the second database.
  • the information processing device 20 can more reliably reduce the effort required for the Chinese medicine doctor to prescribe the Chinese medicine to the first subject.
  • Modification 6 of the embodiment is a modification of Modification 4 of the embodiment.
  • the second machine learning model has a herbal medicine contraindication filter.
  • the herbal medicine contraindication filter is a filter that prevents one or more herbal medicine candidates indicated by the herbal medicine candidate information outputted from the second machine learning model from including a combination of contraindicated herbal medicines.
  • the second machine learning model uses the herbal medicine contraindication filter. For example, when a vector indicating diagnostic result information for a certain subject is input, the second machine learning model combines the input vector and a second database learned in advance (i.e., second correspondence information). Based on this, among the fields associated with the target level set indicated by the vector in the two-dimensional table indicated by the second database, each of one or more fields to which a value equal to or greater than a predetermined first threshold is assigned is identified. . The value of a certain field among these one or more fields is treated as a likelihood indicating the likelihood that the herbal medicine associated with the field is the herbal medicine to be prescribed to the subject.
  • the Chinese herbal medicine contraindication filter selects these one or more fields as target fields one by one in descending order of assigned likelihood. Then, the herbal medicine contraindication filter performs the following processing for each selected target field.
  • the herbal medicine contraindication filter specifies fields associated with each of one or more herbal medicines that are contraindicated in combination with the herbal medicine associated with the selected target field as contraindication fields, and filters one or more fields other than the target field and the contraindication field. Specify as another field. Then, the Chinese herbal medicine contraindication filter multiplies the value of the target field by 1, the value of the contraindication field by -1, and the values of other fields by 0.
  • the herbal medicine contraindication filter performs such processing for each selected target field, and finally displays the combination of herbal medicines associated with each of the one or more fields to which a positive value has been assigned to the subject.
  • the second machine learning model identifies a combination of one or more Chinese herbal medicine candidates that is estimated to be plausible as one or more Chinese herbal medicines to be prescribed, and does not include any contraindicated combination of Chinese herbal medicines. be able to.
  • the Chinese herbal medicine contraindication filter is a filter that excludes combinations of Chinese herbal medicines that are contraindicated from among one or more Chinese medicine candidates indicated by the Chinese medicine candidate information.
  • the pulse wave waveform of the subject S3 is measured by the pulse wave sensor 12 that detects the pulse wave waveform of the subject S3 within a predetermined measurement time. This is a waveform detected by the pulse wave sensor 12 under a situation where the pressure applied to S3 is not constant. Even in this case, the information processing device 20 can accurately identify Chinese herbal medicine candidates to be prescribed to the subject. This means that even if the way the pulse wave sensor 12 is pressed against the subject changes each time a pulse diagnosis is performed, an appropriate Chinese herbal medicine can be prescribed to the subject.
  • the storage unit 22 of the information processing device 20 stores waveform information indicating a waveform detected by the following pressure-variable arterial wave detection method through the process shown in the flowchart shown in FIG. .
  • the waveform of the pulse wave of the subject is determined by applying pressure to the subject against the pulse wave sensor 12 that detects the waveform of the subject's pulse wave within a predetermined measurement time. is detected by the pulse wave sensor 12 while changing the pulse wave.
  • the pulse wave detection device 10 includes, for example, a first member 11 configured to be able to move one arm of the subject in the vertical direction using an actuator or the like, and a pulse wave sensor 12 that can move the pulse wave sensor 12 in the vertical direction using the actuator or the like.
  • This configuration includes at least one of the second member 13 and the second member 13 that can be configured to Thereby, the pulse wave detection device 10 can, for example, cause the pulse wave sensor 12 to detect the pressure of the pulse wave while intermittently or continuously increasing the pressure with which the pulse wave sensor 12 is pressed against the subject. .
  • the pulse wave detection device 10 applies pulse wave pressure to the pulse wave sensor 12 while continuously increasing the pressure with which the pulse wave sensor 12 is pressed against the subject in the range of 40 gf to 300 gf. The case of detection will be explained.
  • the pulse wave detection device 10 may have a configuration in which the pulse wave sensor 12 detects the pressure of the pulse wave while intermittently or continuously lowering the pressure with which the pulse wave sensor 12 is pressed against the subject. .
  • FIG. 16 is a diagram showing an example of a flow in which a time-frequency spectrum image is generated by the information processing device 20 based on waveform information indicating the waveform of a pulse wave detected by the pressure variable arterial wave detection method.
  • the waveform WP1 shown in FIG. 16 shows an example of the waveform of a pulse wave detected by the pressure variable arterial wave detection method.
  • the information processing device 20 acquires, from the pulse wave sensor 12, an electrical signal corresponding to the pressure of the pulse wave detected by the pressure variable arterial wave detection method. Then, the information processing device 20 generates waveform information indicating the waveform of the subject's pulse wave within the measurement period, based on the electrical signal thus acquired during the measurement period.
  • step S250 shown in FIG. 5 the information processing device 20 generates a time-frequency spectrum image based on the waveform information generated in this way.
  • the information processing device 20 removes frequency components equal to or higher than a predetermined frequency from the waveform indicated by the waveform information using a band-pass filter, and provides information indicating the waveform after removing the frequency components.
  • the time-frequency spectrum is calculated by STFT based on .
  • the information processing device 20 can generate a time-frequency spectrum image showing the calculated time-frequency spectrum.
  • Image WP2 shown in FIG. 16 shows an example of the time-frequency spectrum image generated in this way.
  • the information processing device 20 generates, as first correspondence information, information in which the time-frequency spectrum image generated in this manner is associated with the diagnosis result information received through the processing of the flowchart shown in FIG.
  • the first machine learning model is caused to learn the first correspondence information. Therefore, the first machine learning model is trained to output appropriate diagnosis result information according to the time-frequency spectrum image according to the seventh modification of the embodiment.
  • the information processing device 20 detects that the pulse wave sensor 12 detects the pulse wave of the subject S3 within the predetermined measurement time. Even if the waveform is detected by the pulse wave sensor 12 in a situation where the pressure applied to the test subject S3 is not constant, it is possible to accurately identify a candidate for a Chinese herbal medicine that is suitable as a Chinese medicine to be prescribed to the subject S3. In other words, the information processing device 20 can eliminate ambiguity caused by the amount of pressure applied during a pulse diagnosis by a Chinese herbalist doctor, and can accurately identify candidates for Chinese herbal medicines that are appropriate as the Chinese herbal medicines to be prescribed to the subject S3. .
  • the method of classifying pulse types according to the state of the organ explained above may be other classification methods such as 38 diseased pulses instead of 28 diseased pulses.
  • the aforementioned target vein type set may be a combination of seven or more vein types.
  • the overall flow of the processing performed by the information processing device 20 is the same as the flow described above.
  • the first subject is An information processing device (in the example described above, the information processing device 20) includes a prescription candidate output unit that outputs output information including Chinese herbal medicine candidate information indicating candidates for Chinese herbal medicines to be prescribed to an examiner.
  • a calculation unit (calculation unit 263 in the example described above) that calculates the first time-frequency spectrum based on first waveform information indicating the pulse wave waveform of the first subject as a first waveform.
  • the information processing device further comprising: a generation unit (generation unit 268 in the example described above) that generates the first time-frequency spectrum image based on the first time-frequency spectrum.
  • the calculation unit removes a frequency component equal to or higher than a predetermined frequency from the first waveform, and generates information indicating the first waveform after removing the frequency component as the first waveform information. , the information processing device according to [2], wherein the first time-frequency spectrum is calculated based on the generated first waveform information.
  • the prescription candidate output unit generates candidates for Chinese herbal medicine to be prescribed to the first subject based on the first machine learning model, the second machine learning model, and the first time-frequency spectrum image. and the first machine learning model has a second time-frequency spectrum that indicates a second time-frequency spectrum corresponding to a pulse wave waveform of a second subject (in the example described above, the subject during learning).
  • a machine learning model that has learned first correspondence information in which an image is associated with second diagnosis result information indicating a diagnosis result of the second subject by a Chinese medicine doctor, and the second machine learning model is is a machine learning model that has learned second correspondence information in which the second diagnosis result information and Chinese herbal medicine information are associated with each other, and the Chinese herbal medicine information is the one that the Chinese medicine doctor prescribed to the second subject.
  • the information processing device according to [2] or [3], wherein the information indicates each of one or more Chinese herbal medicines.
  • the calculation unit calculates the second time-frequency spectrum based on second waveform information indicating the pulse wave waveform of the second subject as a second waveform, and the generation unit
  • the information processing device generates the second time-frequency spectrum image based on the time-frequency spectrum, and includes a reception unit (in the example described above, which receives the second diagnosis result information and the one or more Chinese herbal medicine information).
  • a reception unit 262 generates, as the first correspondence information, information in which the second time-frequency spectrum image generated by the generation unit and the second diagnosis result information received by the reception unit are associated; a first learning unit (in the example described above, the first learning unit 265) that causes the first machine learning model to learn the first correspondence information, and the second diagnosis result information received by the reception unit; a second learning unit that generates information that is associated with the one or more Chinese herbal medicine information received by the reception unit as the second correspondence information, and causes the second machine learning model to learn the generated second correspondence information;
  • the information processing device according to [4], further comprising a second learning section 266).
  • the second diagnosis result information includes a herbalist's information regarding the predetermined first diagnosis item (in the example explained above, for example, floating veins, strength and weakness between floating veins and sinking veins, etc.) information indicating the diagnosis result of the second subject (in the example explained above, for example, floating pulse, level 1, etc.) and a predetermined second diagnosis item (in the example explained above, for example, information indicating the diagnosis result of the second subject by the Chinese herbalist (in the example explained above, for example, sinking pulse, level 2, etc.)
  • the first learning section includes information indicating the diagnosis result of the second subject by the Chinese medicine doctor regarding the first diagnosis item, and the second learning section.
  • the first machine learning model learns the time-frequency spectrum image, and obtains a coefficient sequence of the first machine learning model for the first diagnosis item as a first coefficient sequence, and based on the first correspondence information, , causing the first machine learning model to learn information indicating the diagnosis result of the second subject by the Chinese medicine doctor regarding the second diagnosis item and the second time-frequency spectrum image, and determining the second diagnosis item.
  • the prescription candidate output unit obtains the coefficient sequence of the first machine learning model for information indicating a plausible diagnosis result of the first subject by the Chinese herbalist regarding the first diagnostic item based on the first time-frequency spectrum image; and causing the first machine learning model to output first diagnosis result information including information indicating a plausible diagnosis result as a diagnosis result of the first subject, and the first diagnosis caused to be output by the first machine learning model.
  • the information processing device which identifies candidates for Chinese herbal medicine to be prescribed to the first subject based on the result information and the second machine learning model.
  • Each of the first diagnostic item and the second diagnostic item is one of floating network, sinking network, slow network, few network, virtual network, and real network in the 28 diseased veins.
  • the first diagnosis item includes a plurality of first options selectable as a diagnosis result
  • the second diagnosis item includes a plurality of second options selectable as a diagnosis result.
  • the first machine learning model is configured to calculate the likelihood of each of the plurality of first options as a diagnosis result by a Chinese herbalist based on the first coefficient sequence and the first time-frequency spectrum image. Based on the calculated likelihood, information indicating a likely diagnosis result of the first subject by the Chinese medicine doctor regarding the first diagnosis item is estimated, and the second coefficient sequence and , a likelihood indicating the likelihood of each of the plurality of second options as a diagnosis result by a Chinese herbalist is calculated based on the first time-frequency spectrum image, and based on the calculated likelihood, the second diagnosis is made.
  • the information processing device according to [7], which estimates information indicating a plausible diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the item.
  • the first diagnostic item and the second diagnostic item each include the strength between floating pulse and sinking pulse, the strength between few pulses and slow pulse, and the strength between large vein and slow pulse in Japanese pulse diagnosis method. It is either the strength between small veins, the strength between ischemic pulse and real pulse, the strength between tense and slow pulse, or the strength between smooth pulse and astringent pulse, and is different from each other.
  • the first diagnosis item includes a plurality of first options selectable as a diagnosis result
  • the second diagnosis item includes a plurality of second options selectable as a diagnosis result.
  • the first machine learning model is configured to perform a diagnosis by a Chinese herbalist of each of the plurality of first options based on the first coefficient sequence, the first machine learning model, and the first time-frequency spectrum image.
  • a likelihood indicating the likelihood of the result is calculated, and based on the calculated likelihood, information indicating a likely diagnosis result as a diagnosis result of the first subject by the Chinese herbalist regarding the first diagnosis item is estimated.
  • the first machine learning model generates a first vector as information indicating a plausible diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the first diagnosis item, and 1 vector is corrected by a Hadamard product with a weight vector associated with the first diagnostic item, and a plausible diagnosis result is indicated as a diagnosis result of the first subject by the Chinese herbalist regarding the second diagnostic item.
  • a second vector is generated as information, the generated second vector is corrected by a Hadamard product with a weight vector associated with the second diagnostic item, and the first vector after the correction and the first vector after the correction are obtained.
  • the information processing device according to [10], which outputs the first diagnosis result information including the second vector.
  • the first machine learning model is configured such that if the likelihoods for each of the plurality of first options are all less than a predetermined threshold, or the likelihood for each of the plurality of second options is The information processing device according to [11], which performs error processing when all of the values are less than the threshold values.
  • the first machine learning model determines at least one of the factor ranking and the degree of contribution of the Chinese herbal medicine prescription determining factors for each of the first diagnostic item and the second diagnostic item, based on the second correspondence information.
  • the likelihood for each of the plurality of first options is multiplied by the first weight based on the estimated at least one
  • the second weight based on the estimated at least one is multiplied by the likelihood for each of the plurality of second options.
  • the prescription candidate output unit multiplies the likelihood for each of the plurality of first options, the first weight, the likelihood for each of the plurality of second options, and the second weight,
  • the information processing device according to [11], wherein the second correspondence information is updated based on the Chinese herbal medicine candidate information output from the second machine learning model.
  • the waveform of the pulse wave of the first subject is determined by pressing a sensor that detects the waveform of the pulse wave of the first subject against the first subject within a predetermined measurement time.
  • the information processing device according to any one of [1] to [15], wherein the waveform is detected by the sensor while changing pressure.
  • a Chinese herbal medicine candidate indicating a Chinese herbal medicine candidate to be prescribed to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to the waveform of the pulse wave of the first subject.
  • An information processing method comprising a prescription candidate output step of outputting output information including information.
  • a computer is configured to select candidates for Chinese herbal medicines to be prescribed to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to the waveform of the pulse wave of the first subject.
  • a program for realizing the functions of arbitrary components in the apparatus described above may be recorded on a computer-readable recording medium, and the program may be read and executed by a computer system.
  • the device is, for example, the pulse wave detection device 10, the information processing device 20, etc.
  • the "computer system” herein includes hardware such as an OS (Operating System) and peripheral devices.
  • “computer-readable recording media” refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD (Compact Disk)-ROMs, and storage devices such as hard disks built into computer systems.
  • “computer-readable recording media” refers to volatile memory inside a computer system that serves as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. This also includes those that hold time programs.
  • the above program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the "transmission medium” that transmits the program refers to a medium that has a function of transmitting information, such as a network such as the Internet or a communication line such as a telephone line.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions.
  • the above-mentioned program may be a so-called difference file or difference program that can realize the above-described functions in combination with a program already recorded in the computer system.
  • SYMBOLS 1 Information processing system, 10... Pulse wave detection device, 11... First member, 12... Pulse wave sensor, 13... Second member, 20... Information processing device, 21... Processor, 22... Storage unit, 23... Input reception Department, 24...Communication section, 25...Display section, 26...Control section, 261...Acquisition section, 262...Reception section, 263...Calculation section, 264...Prescription candidate output section, 265...First learning section, 266...Second Learning section, 267... Display control section, 268... Generation section, TC... Three-dimensional coordinate system

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Image Analysis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

This information processing device comprises a prescription candidate output unit that, on the basis of a first time frequency spectrum image indicating a first time frequency spectrum corresponding to a waveform of a pulse wave of a first subject, outputs output information including Chinese medicine candidate information which indicates a candidate of a Chinese medicine to be prescribed to the first subject.

Description

情報処理装置、情報処理方法、及びプログラムInformation processing device, information processing method, and program
 本開示は、情報処理装置、情報処理方法、及びプログラムに関する。
 本願は、2022年04月28日に、日本に出願された特願2022-074671号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to an information processing device, an information processing method, and a program.
This application claims priority based on Japanese Patent Application No. 2022-074671 filed in Japan on April 28, 2022, the contents of which are incorporated herein.
 患者への医者による薬の処方を補助する技術についての研究、開発が行われている。 Research and development is being conducted on technology that assists doctors in prescribing medicines to patients.
 これに関し、複数の被検者毎に、被検者が有する症状と、被検者への漢方薬の処方の履歴とが対応付けられた情報を含むデータベースに基づいて、漢方医が症状を診断する対象となる対象被検者の症状に対応付けられた漢方薬の処方を示す情報を出力する情報処理装置が知られている(特許文献1参照)。 In this regard, a herbal medicine doctor diagnoses the symptoms of multiple subjects based on a database that includes information that associates the symptoms of the subjects with the history of prescriptions of Chinese herbal medicine to the subjects. An information processing device is known that outputs information indicating a prescription for a Chinese herbal medicine that is associated with the symptoms of a target subject (see Patent Document 1).
特開2016-139268号公報Japanese Patent Application Publication No. 2016-139268
 ここで、特許文献1に記載された対象被検者の症状は、頭痛、目眩、更年期障害等のことであり、漢方医により診断された被検者の身体又は被検者の精神の状態のことである。このため、特許文献1に記載されたような情報処理装置では、問診、顔診、舌診、腹診、脈診等の診断法に基づいて漢方医が症状を診断し、その診断結果を示す情報を当該情報処理装置に入力する必要がある。このため、当該情報処理装置は、漢方医が対象被検者へ漢方薬を処方するのに要する手間を十分に軽減することができない場合があった。 Here, the symptoms of the target test subject described in Patent Document 1 include headache, dizziness, menopausal disorder, etc., and are based on the physical or mental state of the test subject as diagnosed by a Chinese herbalist. That's true. Therefore, in the information processing device described in Patent Document 1, a Chinese herbalist diagnoses symptoms based on diagnostic methods such as interview, facial examination, tongue examination, abdominal examination, and pulse examination, and displays the diagnosis results. It is necessary to input information into the information processing device. For this reason, the information processing device may not be able to sufficiently reduce the effort required for a Chinese herbalist to prescribe a Chinese herbal medicine to a target subject.
 本開示は、このような事情を考慮してなされたもので、漢方医が第1被検者へ漢方薬を処方するのに要する手間を軽減することができる情報処理装置、情報処理方法、及びプログラムを提供することを課題とする。 The present disclosure has been made in consideration of such circumstances, and provides an information processing device, an information processing method, and a program that can reduce the effort required for a Chinese medicine doctor to prescribe a Chinese medicine to a first subject. The challenge is to provide the following.
 本開示の一態様は、第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力部を備える、情報処理装置である。 One aspect of the present disclosure provides a Chinese herbal medicine candidate to be prescribed to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to a pulse wave waveform of the first subject. The information processing device includes a prescription candidate output unit that outputs output information including Chinese herbal medicine candidate information indicating.
 また、本開示の一態様は、第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力ステップを有する、情報処理方法である。 Further, one aspect of the present disclosure provides a Chinese herbal medicine prescribed to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to a pulse wave waveform of the first subject. This information processing method includes a prescription candidate output step of outputting output information including Chinese herbal medicine candidate information indicating candidates.
 また、本開示の一態様は、コンピュータに、第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力ステップ、を実行させるためのプログラムである。 Further, one aspect of the present disclosure is to cause a computer to prescribe a prescription to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to a pulse wave waveform of the first subject. This is a program for executing a prescription candidate output step of outputting output information including Chinese herbal medicine candidate information indicating Chinese herbal medicine candidates.
 本開示によれば、漢方医が第1被検者へ漢方薬を処方するのに要する手間を軽減することができる。 According to the present disclosure, it is possible to reduce the effort required for a Chinese herbalist to prescribe a Chinese herbal medicine to the first subject.
情報処理装置20を備える情報処理システム1の構成の一例を示す図である。1 is a diagram illustrating an example of the configuration of an information processing system 1 including an information processing device 20. FIG. 情報処理装置20のハードウェア構成の一例を示す図である。2 is a diagram illustrating an example of a hardware configuration of an information processing device 20. FIG. 情報処理装置20の機能構成の一例を示す図である。2 is a diagram illustrating an example of a functional configuration of an information processing device 20. FIG. 情報処理装置20が波形情報を生成する処理の流れの一例を示す図である。2 is a diagram illustrating an example of the flow of processing in which the information processing device 20 generates waveform information. FIG. 情報処理装置20が第1機械学習モデルに第1対応情報を学習させ、且つ、第2機械学習モデルに第2対応情報を学習させる処理の流れの一例を示す図である。FIG. 4 is a diagram illustrating an example of a process flow in which the information processing device 20 causes the first machine learning model to learn first correspondence information and causes the second machine learning model to learn second correspondence information. ステップS220において選択された対象被検者識別情報に対応付けられた学習時波形情報が示す波形の一例を示す図である。It is a figure which shows an example of the waveform shown by the waveform information at the time of learning matched with the target subject identification information selected in step S220. 時間周波数スペクトル画像の一例を示す図である。FIG. 3 is a diagram showing an example of a time-frequency spectrum image. ステップS270の処理の一例を可視化したイメージ図である。FIG. 7 is an image diagram visualizing an example of the process of step S270. 情報処理装置20が診断結果情報を受け付ける処理の流れの一例を示す図である。FIG. 2 is a diagram illustrating an example of the flow of processing in which the information processing device 20 receives diagnosis result information. 情報受付画像PCT1の一例を示す図である。It is a figure which shows an example of information reception image PCT1. 6つのドロップダウンメニューのそれぞれが表示されている様子の一例を示す図である。FIG. 6 is a diagram showing an example of how six drop-down menus are displayed. 情報処理装置20が漢方薬候補情報を出力する処理の流れの一例を示す図である。2 is a diagram illustrating an example of a process flow in which the information processing device 20 outputs Chinese herbal medicine candidate information. FIG. 浮網脈のような診断項目に含まれる複数の選択肢毎の尤度の一例を示す図である。It is a figure which shows an example of the likelihood for each of several options contained in a diagnostic item like floating veins. 第2機械学習モデルが、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補を特定する流れを可視化したイメージ図である。FIG. 12 is an image diagram visualizing a flow in which the second machine learning model identifies one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3. 情報受付画像PCT2の一例を示す図である。It is a figure which shows an example of information reception image PCT2. 圧力変動脈波検出方法によって検出された脈波の波形を示す波形情報に基づいて、情報処理装置20により時間周波数スペクトル画像が生成される流れの一例を示す図である。3 is a diagram illustrating an example of a flow in which a time-frequency spectrum image is generated by the information processing device 20 based on waveform information indicating the waveform of a pulse wave detected by a pressure variable arterial wave detection method. FIG.
 <実施形態>
 以下、本開示の実施形態について、図面を参照して説明する。
<Embodiment>
Embodiments of the present disclosure will be described below with reference to the drawings.
 <情報処理装置の概要>
 まず、本実施形態に係る情報処理装置の概要について説明する。
<Overview of information processing device>
First, an overview of the information processing apparatus according to this embodiment will be explained.
 現在、西洋医学は、科学との適合性から主流となっている。しかしながら、世界には、伝統医学として、例えば、ギリシャ医学、アラビア医学(ユニナ医学)、インド医学(アーユルベーダ)、チベット医学、モンゴル医学、中医学(中国伝統医学)、韓医学、和漢医学(漢方医学)等が存在する。また、日本では、中医学に由来する鍼灸/薬膳/漢方薬を用いる狭義の東洋医学が漢方医学と呼ばれている。これらの漢方医学は、日本において独自の発展を遂げてきた。そして、日本では、近年の西洋医学だけではなく、相補・代替医療に対する見直しが進んでいる。このため、日本では、ホメオパシー、自然療法、アロマテラピー等にも注目が集まっている。そして、日本の医療現場では、漢方医学を含めた統合医療として、西洋薬と漢方薬との併用が進んでおり、およそ9割の医師が漢方薬を処方している。 Currently, Western medicine has become mainstream because of its compatibility with science. However, there are many traditional medicines in the world, such as Greek medicine, Arabic medicine (Unina medicine), Indian medicine (Ayurveda), Tibetan medicine, Mongolian medicine, Chinese medicine (traditional Chinese medicine), Korean medicine, and Japanese and Chinese medicine (herbal medicine). ) etc. exist. Furthermore, in Japan, oriental medicine in a narrow sense that uses acupuncture, medicinal meals, and herbal medicine derived from Chinese medicine is called Kampo medicine. These Chinese herbal medicines have achieved unique development in Japan. In Japan, in recent years, not only Western medicine but also complementary and alternative medicine have been reconsidered. For this reason, homeopathy, natural therapy, aromatherapy, etc. are also attracting attention in Japan. In Japan's medical practice, Western medicine and Chinese herbal medicine are increasingly being used together as part of integrated medicine, including herbal medicine, with approximately 90% of doctors prescribing Chinese herbal medicine.
 ここで、日本では、漢方薬について、数百種類の漢方生薬と、医療用漢方製剤(厚労省認可製剤)148種類と、若干の煎じ薬とのそれぞれに健康保険適用が認められている。また、日本では、健康保険適用が認められているこれらの漢方薬に加えて、非健康保険適用のOTC(Over The Counter)医薬品(薬局・薬店において処方箋なしで購入が可能な医薬品)、漢方専門の病院の自由診療漢方薬も流通している。 In Japan, several hundred types of herbal medicines, 148 types of medicinal herbal preparations (preparations approved by the Ministry of Health, Labor and Welfare), and some decoctions are each covered by health insurance in Japan. Additionally, in Japan, in addition to these herbal medicines that are covered by health insurance, there are also OTC (over-the-counter) medicines (medicines that can be purchased without a prescription at pharmacies and drugstores) that are not covered by health insurance, and medicines that specialize in herbal medicine. Chinese herbal medicine is also available for free consultation at hospitals.
 漢方医学の診断法には、問診、顔診、舌診、腹診等の他に脈診が知られている。脈診は、臓器の状態に応じた特徴が脈波に表れるという思想に基づいて、臓器の状態に応じて脈波に現れている特徴の診断を行うことである。以下では、説明の便宜上、臓器の状態に応じて脈波に現れる特徴の種類を、単に脈種と称して説明する。臓器の状態に応じた脈種の分類方法としては、例えば、臓器の状態に応じて脈波に現れる特徴を28種類に分類する病脈28脈が知られている。そして、この病脈28脈では、28種類に細かく分類された脈種のそれぞれは、浮網脈、沈網脈、遅網脈、数網脈、虚網脈、実網脈と呼ばれる6つの脈種のいずれかに分類される。以下では、説明の便宜上、これら6つの脈種を、6大脈種と称して説明する。浮網脈の範疇には、浮脈、こう脈(孔の上に草冠を付した漢字)、洪脈、革脈、濡脈、散脈の6つの脈種が含まれている。沈網脈の範疇には、沈脈、伏脈、弱脈、牢脈の4つの脈種が含まれている。遅網脈の範疇には、遅脈、緩脈、渋脈、結脈、代脈の5つの脈種が含まれている。数網脈の範疇には、数脈、動脈、促脈の3つの脈種が含まれている。虚網脈の範疇には、虚脈、短脈、細脈、微脈の4つの脈種が含まれている。実網脈の範疇には、実脈、長脈、弦脈、緊脈、滑脈、大脈の6つの脈種が含まれている。 In addition to medical history, facial examination, tongue examination, abdominal examination, etc., pulse examination is known as a diagnostic method in Chinese medicine. Pulse diagnosis is based on the idea that the characteristics that appear in the pulse wave according to the state of the organ is based on the idea that the characteristics that appear in the pulse wave according to the state of the organ are diagnosed. In the following, for convenience of explanation, the types of characteristics that appear in pulse waves depending on the state of an organ will be simply referred to as pulse types. As a method for classifying pulse types according to the state of an organ, for example, 28 diseased pulses is known, which classifies the characteristics appearing in a pulse wave into 28 types according to the state of an organ. In these 28 diseased veins, each of the 28 types of veins is divided into six veins called floating veins, sinking veins, slow veins, few veins, virtual veins, and real veins. classified as one of the species. In the following, for convenience of explanation, these six vein types will be referred to as six major vein types. The category of floating veins includes six vein types: floating veins, kou veins (the Chinese character with a crown above the hole), hong veins, leather veins, wet veins, and scatter veins. The category of sink veins includes four vein types: sink veins, dip veins, weak veins, and dungeon veins. The category of slow reticular pulse includes five types of pulses: slow pulse, slow pulse, astringent pulse, conjunctival pulse, and venous vein. The category of reticular pulses includes three types of pulses: reticular pulses, arterial pulses, and facilitatory pulses. The category of ischemic veins includes four types of veins: ischemic veins, short veins, veinlets, and microvenules. The category of real veins includes six vein types: real vein, long vein, chordal vein, tense vein, smooth vein, and major vein.
 漢方医は、例えば、被検者の脈波の特徴を診断し、病脈28脈のうち当該脈波に表れる頻度が高い八祖脈の診断名を付けることで主病を判別し、判別した主病に対応する種類の漢方薬の処方を行う。すなわち、漢方医の脈診は、漢方薬の処方に直結している。そして、漢方医によって処方される漢方薬の効果は、統計学に基づいたものとなっている。 For example, the Chinese medicine doctor diagnosed the characteristics of the subject's pulse wave and determined the main disease by assigning a diagnostic name to the eight-pronged pulse, which is the most frequently seen in the pulse wave among the 28 diseased pulses. Prescribe the type of herbal medicine that corresponds to the main disease. In other words, a Chinese herbalist's pulse diagnosis is directly linked to herbal medicine prescriptions. The effects of Chinese medicine prescribed by Chinese herbalists are based on statistics.
 漢方医による診断に関連する情報は、例えば、以下の参考となるウェブサイトに詳しく解説されているため、本明細書では、これ以上の詳細な説明を省略する。
・参考となるウェブサイト1:厚生労働省ホームページ/「統合医療」のあり方に関する検討会、https://www.mhlw.go.jp/stf/shingi/other-isei_127369.html
・参考となるウェブサイト2:一般社団法人 日本東洋医学会ホームページ/漢方の診察、http://www.jsom.or.jp/universally/examination/index.html
Information related to diagnosis by a Chinese herbalist is explained in detail on, for example, the following reference website, and therefore further detailed explanation will be omitted in this specification.
・Reference website 1: Ministry of Health, Labor and Welfare homepage/Study group on the state of “integrated medicine”, https://www.mhlw.go.jp/stf/shingi/other-isei_127369.html
・Reference website 2: Japan Oriental Medicine Society homepage/Chinese medicine examination, http://www.jsom.or.jp/universally/examination/index.html
 現在、西洋医学と漢方医学とによる統合医療を進める上での課題として、漢方医学の定性的診断法と、規格化し難い統計とに基づく漢方薬の処方の現状が存在する。 Currently, one of the challenges in promoting integrated medical care using Western medicine and Chinese herbal medicine is the current situation in which Chinese herbal medicines are prescribed based on the qualitative diagnostic methods of herbal medicine and statistics that are difficult to standardize.
 漢方医学の定性的診断法は、疾患の種類の細分化と病理的解明とを基本とする科学的な西洋医学と異なり、患者個々人の正常状態からのバランス崩れを捉える検者主観による相対的診断が基本と考えられている。このため、高度な経験知を有する漢方医の診断結果を、統計的手法を用いてデータ蓄積し、数学モデル化するアプローチが適していると考えられる。しかしながら、漢方医の診断そのものに診断バイアスが含まれることに加えて、その統計的手法についても、現状では理解が不十分である。このため、漢方診断で大きな比重を占める脈診について、脈波の波形を示す波形情報を精度よく取得すること、取得された波形情報からノイズを除去すること、連続する複数の波形情報から特徴量を抽出すること、関連情報(例えば、問診、顔診、舌診、腹診等の診断結果)を取得すること等によって構成されたデータベースに基づく自動判定が現れることに期待が集まっている。 Unlike scientific Western medicine, which is based on the subdivision of disease types and pathological elucidation, the qualitative diagnostic method of Chinese medicine is a relative diagnosis based on the subjectivity of the examiner, which captures the imbalance from the normal state of each patient. is considered basic. For this reason, it is considered appropriate to use statistical methods to accumulate data on the diagnostic results of Chinese herbalists with advanced experience and create a mathematical model. However, in addition to the fact that the diagnosis itself by Chinese herbalists includes diagnostic bias, there is currently insufficient understanding of the statistical methods involved. For this reason, regarding pulse diagnosis, which plays a large role in Chinese medicine diagnosis, it is necessary to accurately acquire waveform information indicating the waveform of the pulse wave, to remove noise from the acquired waveform information, and to extract feature values from multiple continuous waveform information. There are high expectations for the emergence of automatic judgment based on a database constructed by extracting relevant information and obtaining related information (for example, the results of medical interviews, facial examinations, tongue examinations, abdominal examinations, etc.).
 一方、規格化し難い統計は、漢方薬の緩く長期的な改善効果の性質から、プラセボ効果と区別がつきにくい点が背景にあり、腕の良い漢方医の経験を基にした診断/処方の統計的なデータ蓄積とモデル化のアプローチが適していると考えられているが、未だに理解が不十分である。 On the other hand, statistics that are difficult to standardize are difficult to distinguish from the placebo effect due to the slow and long-term improvement effect of herbal medicine. Although advanced data accumulation and modeling approaches are considered suitable, they are still poorly understood.
 脈波診断の参考文献として、以下の参考文献1~参考文献3の3つ文献が挙げられる。 As references for pulse wave diagnosis, the following three documents are listed: References 1 to 3.
 参考文献1:特開2009-011585号公報
 参考文献2:特開2004-195204号公報
 参考文献3:特開2020-108819号公報
Reference 1: JP 2009-011585 Reference 2: JP 2004-195204 Reference 3: JP 2020-108819
 参考文献1には、腕時計型の24時間ウェアラブル脈波モニタリング装置が記載されている。この24時間ウェアラブル脈波モニタリング装置は、運動と心拍数とに基づく健康管理を行う装置である。 Reference 1 describes a wristwatch-type 24-hour wearable pulse wave monitoring device. This 24-hour wearable pulse wave monitoring device is a device that performs health management based on exercise and heart rate.
 参考文献2には、血圧波形の特徴を表す指標を検出し、最高血圧とAI(Augmentation Index)値によりCa拮抗薬、β遮断薬等の西洋医学薬の処方を判定する装置が記載されている。 Reference 2 describes a device that detects indicators representing the characteristics of blood pressure waveforms and determines the prescription of Western medical drugs such as Ca antagonists and β-blockers based on systolic blood pressure and AI (Augmentation Index) values. .
 参考文献3には、血圧波形のAI値と食後の血糖値との相関関係を利用し、血糖値を推定する装置が記載されている。 Reference 3 describes a device that estimates blood sugar levels by using the correlation between the AI value of blood pressure waveforms and postprandial blood sugar levels.
 以上のように、参考文献1~参考文献3のそれぞれに記載された装置は、脈波の自動診断解析により体調モニタリング、西洋薬の処方、血糖値の推定等を自動的に行っているものの、脈波の自動解析から自動的に漢方薬を処方することを行うには至っていない。 As mentioned above, although the devices described in each of References 1 to 3 automatically monitor physical condition, prescribe Western medicine, estimate blood sugar level, etc. by automatic diagnostic analysis of pulse waves, It has not yet been possible to automatically prescribe Chinese medicine from automatic pulse wave analysis.
 一方、脈波の診断結果を基に漢方薬の処方を行う先行技術として、漢方薬の処方を記載した電子カルテから疾患診断名と処方薬とを自然言語処理AI(Artificial Intelligence)に学習させる取り組み、漢方弁証論治に基づく漢方薬の処方用回転盤による診断名と処方薬との早見表等が挙げられる。 On the other hand, as a prior art technology for prescribing Chinese herbal medicine based on pulse wave diagnosis results, there is an effort to have a natural language processing AI (Artificial Intelligence) learn disease diagnosis names and prescription drugs from electronic medical records containing Chinese herbal medicine prescriptions. Examples include a quick reference table of diagnosis names and prescription drugs based on a Chinese medicine prescription wheel based on dialectic theory.
 そして、近年、漢方薬の処方の自動化に関して、統計的学習による推定モデルを利用した情報処理装置が登場している。この情報処理装置の詳細については、先行技術文献として挙げた特許文献1に記載がある。すなわち、この情報処理装置は、前述した通り、複数の被検者毎に、被検者が有する症状と、被検者への漢方薬の処方の履歴とが対応付けられた情報を含むデータベースに基づいて、漢方医が症状を診断する対象となる対象被検者の症状に対応付けられた漢方薬の処方を示す情報を出力する。 In recent years, information processing devices that utilize estimation models based on statistical learning have appeared with regard to automating the prescription of Chinese herbal medicines. Details of this information processing device are described in Patent Document 1 cited as a prior art document. That is, as described above, this information processing device is based on a database that includes information for each of a plurality of subjects, in which the symptoms of the subject are associated with the history of prescriptions of Chinese herbal medicines to the subject. Then, the Chinese herbal medicine doctor outputs information indicating the prescription of the Chinese herbal medicine that is associated with the symptoms of the target subject whose symptoms are to be diagnosed.
 ここで、特許文献1に記載された対象被検者の症状は、頭痛、目眩、更年期障害等のことであり、漢方医により診断された被検者の身体又は被検者の精神の状態のことである。このため、特許文献1に記載されたような情報処理装置では、問診、顔診、舌診、腹診、脈診等の診断法に基づいて漢方医が症状を診断し、その診断結果を示す情報を当該情報処理装置に入力する必要がある。このため、当該情報処理装置は、漢方医が対象被検者へ漢方薬を処方するのに要する手間を十分に軽減することができない場合があった。 Here, the symptoms of the target test subject described in Patent Document 1 include headache, dizziness, menopausal disorder, etc., and are based on the physical or mental state of the test subject as diagnosed by a Chinese herbalist. That's true. Therefore, in the information processing device described in Patent Document 1, a Chinese herbalist diagnoses symptoms based on diagnostic methods such as interview, facial examination, tongue examination, abdominal examination, and pulse examination, and displays the diagnosis results. It is necessary to input information into the information processing device. For this reason, the information processing device may not be able to sufficiently reduce the effort required for a Chinese herbalist to prescribe a Chinese herbal medicine to a target subject.
 そこで、実施形態に係る情報処理装置は、第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力部を備える。 Therefore, the information processing apparatus according to the embodiment provides a prescription for a first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to the waveform of the pulse wave of the first subject. A prescription candidate output unit is provided that outputs output information including Chinese herbal medicine candidate information indicating Chinese herbal medicine candidates.
 これにより、実施形態に係る情報処理装置は、脈診から漢方薬の処方に至るまでの工程を自動化することができる。その結果、当該情報処理装置は、漢方医が第1被検者へ漢方薬を処方するのに要する手間を軽減することができる。 Thereby, the information processing device according to the embodiment can automate the process from pulse diagnosis to prescription of Chinese medicine. As a result, the information processing device can reduce the effort required for the Chinese medicine doctor to prescribe the Chinese medicine to the first subject.
 以下では、実施形態に係る情報処理装置の構成と、当該情報処理装置が行う処理とについて、詳しく説明する。 Below, the configuration of the information processing device according to the embodiment and the processing performed by the information processing device will be described in detail.
 <情報処理装置の構成>
 以下、実施形態に係る情報処理装置の一例として情報処理装置20を例に挙げて、実施形態に係る情報処理装置の構成について説明する。なお、実施形態では、被検者の症状は、漢方医により診断された被検者の身体又は被検者の精神の状態のことである。このため、実施形態では、ある被検者の症状には、当該被検者の脈波、及びその脈波の波形が含まれていない。
<Configuration of information processing device>
Hereinafter, the configuration of the information processing apparatus according to the embodiment will be described using the information processing apparatus 20 as an example of the information processing apparatus according to the embodiment. Note that, in the embodiment, the subject's symptoms refer to the subject's physical or mental state diagnosed by a Chinese herbalist. Therefore, in the embodiment, the symptoms of a certain subject do not include the subject's pulse wave and the waveform of the pulse wave.
 図1は、情報処理装置20を備える情報処理システム1の構成の一例を示す図である。ここで、三次元座標系TCは、三次元座標系TCが描かれた図における方向を示す三次元直交座標系である。以下では、説明の便宜上、三次元座標系TCにおけるX軸を、単にX軸と称して説明する。また、以下では、説明の便宜上、三次元座標系TCにおけるY軸を、単にY軸と称して説明する。また、以下では、説明の便宜上、三次元座標系TCにおけるZ軸を、単にZ軸と称して説明する。また、以下では、説明の便宜上、Z軸の正方向を上又は上方向と称し、Z軸の負方向を下又は下方向と称して説明する。 FIG. 1 is a diagram showing an example of the configuration of an information processing system 1 including an information processing device 20. Here, the three-dimensional coordinate system TC is a three-dimensional orthogonal coordinate system that indicates the direction in the drawing in which the three-dimensional coordinate system TC is drawn. In the following, for convenience of explanation, the X-axis in the three-dimensional coordinate system TC will be simply referred to as the X-axis. Furthermore, for convenience of explanation, the Y-axis in the three-dimensional coordinate system TC will be simply referred to as the Y-axis. Further, for convenience of explanation, the Z axis in the three-dimensional coordinate system TC will be simply referred to as the Z axis in the following description. In addition, for convenience of explanation, the positive direction of the Z-axis will be referred to as an upward direction, and the negative direction of the Z-axis will be referred to as a downward direction.
 情報処理システム1は、脈波検出装置10と、実施形態に係る情報処理装置の一例である情報処理装置20を備える。 The information processing system 1 includes a pulse wave detection device 10 and an information processing device 20 that is an example of an information processing device according to an embodiment.
 脈波検出装置10は、被検者の脈波を検出する。ここで、実施形態において、被検者は、脈波検出装置10により脈波を検出される対象となる人であれば、如何なる人であってもよい。 The pulse wave detection device 10 detects the pulse wave of the subject. Here, in the embodiment, the subject may be any person whose pulse wave is detected by the pulse wave detection device 10.
 脈波検出装置10は、被検者の脈波を検出することが可能な構成であれば、如何なる構成であってもよい。図1に示した例では、脈波検出装置10は、被検者の片腕を乗せて固定することができる第1部材11と、第1部材11によって固定された被検者の片腕に接触させて、被検者の脈波を検出する脈波センサ12と、脈波センサ12を支持する第2部材13を備えている。 The pulse wave detection device 10 may have any configuration as long as it is capable of detecting the pulse wave of the subject. In the example shown in FIG. 1, the pulse wave detection device 10 includes a first member 11 on which one arm of a subject can be placed and fixed, and a first member 11 that can be placed in contact with one arm of the subject fixed by the first member 11. The device includes a pulse wave sensor 12 that detects a pulse wave of a subject, and a second member 13 that supports the pulse wave sensor 12.
 第1部材11は、例えば、被検者の片腕を乗せて固定することが可能な台である。なお、第1部材11は、脈波センサ12に対する被検者の片腕の相対的な位置を、水平面に沿って移動させることが可能な構成であってもよく、当該位置を水平面に沿って移動させることが不可能な構成であってもよい。 The first member 11 is, for example, a table on which one arm of the subject can be placed and fixed. Note that the first member 11 may be configured to be able to move the relative position of one arm of the subject with respect to the pulse wave sensor 12 along a horizontal plane; The configuration may be such that it is impossible to do so.
 脈波センサ12は、被検者の脈波を検出することが可能なセンサであれば、如何なるセンサであってもよく、例えば、脈波を圧力の変動として検出可能なMEMS(Micro Electro Mechanical Systems)圧力センサ等である。脈波センサ12は、有線又は無線によって情報処理装置20と通信可能に接続されている。このため、脈波センサ12は、脈波の圧力を検出し、検出した圧力に応じた電気信号を情報処理装置20に出力する。その結果、情報処理装置20は、所定の測定期間内において脈波センサ12から取得した電気信号に基づいて、測定期間内における被検者の脈波の波形を示す波形情報を生成することができる。 The pulse wave sensor 12 may be any sensor as long as it is capable of detecting the pulse wave of the subject. For example, the pulse wave sensor 12 may be a sensor using MEMS (Micro Electro Mechanical Systems) that can detect pulse waves as pressure fluctuations. ) Pressure sensors, etc. The pulse wave sensor 12 is communicably connected to the information processing device 20 by wire or wirelessly. Therefore, the pulse wave sensor 12 detects the pressure of the pulse wave and outputs an electrical signal corresponding to the detected pressure to the information processing device 20. As a result, the information processing device 20 can generate waveform information indicating the waveform of the subject's pulse wave within the measurement period based on the electrical signal acquired from the pulse wave sensor 12 within the predetermined measurement period. .
 第2部材13は、脈波センサ12を支持することが可能な構成であれば、如何なる構成であってもよい。また、第2部材13は、脈波センサ12の上下方向における位置(すなわち、脈波センサ12の高さ)を調整することが可能な構成であってもよく、当該位置を調整することが不可能な構成であってもよい。 The second member 13 may have any configuration as long as it can support the pulse wave sensor 12. Further, the second member 13 may have a configuration in which the position of the pulse wave sensor 12 in the vertical direction (that is, the height of the pulse wave sensor 12) can be adjusted, and it is not necessary to adjust the position. It may be a possible configuration.
 情報処理装置20は、ユーザから受け付けた操作に応じて、ユーザにより指定された測定期間内において、脈波センサ12から電気信号を取得する。情報処理装置20は、脈波センサ12から測定期間内に取得した電気信号に基づいて、被検者の脈波の波形を示す波形情報を生成する。情報処理装置20は、生成した波形情報を記憶する。 The information processing device 20 acquires an electrical signal from the pulse wave sensor 12 within a measurement period specified by the user in accordance with an operation received from the user. The information processing device 20 generates waveform information indicating the waveform of the subject's pulse wave based on the electrical signal acquired from the pulse wave sensor 12 during the measurement period. The information processing device 20 stores the generated waveform information.
 情報処理装置20は、記憶した波形情報に基づいて、当該波形情報が示す波形に応じた時間周波数スペクトルを算出する。情報処理装置20は、算出した時間周波数スペクトルを示す時間周波数スペクトル画像に基づいて、被検者に処方される漢方薬の候補を特定する。漢方薬の候補を特定した後、情報処理装置20は、特定した漢方薬の候補を示す漢方薬候補情報を含む出力情報を生成する。出力情報を生成した後、情報処理装置20は、生成した出力情報を出力する。これにより、情報処理装置20は、漢方医が被検者へ漢方薬を処方するのに要する手間を軽減することができる。 Based on the stored waveform information, the information processing device 20 calculates a time-frequency spectrum according to the waveform indicated by the waveform information. The information processing device 20 identifies candidates for Chinese herbal medicines to be prescribed to the subject based on the time-frequency spectrum image showing the calculated time-frequency spectrum. After specifying the Chinese herbal medicine candidate, the information processing device 20 generates output information including Chinese herbal medicine candidate information indicating the identified Chinese herbal medicine candidate. After generating the output information, the information processing device 20 outputs the generated output information. Thereby, the information processing device 20 can reduce the effort required for a Chinese medicine doctor to prescribe a Chinese medicine to a subject.
 ここで、情報処理装置20は、例えば、第1対応情報を予め学習させた第1機械学習モデルと、第2対応情報を予め学習させた第2機械学習モデルと、生成した時間周波数スペクトル画像とに基づいて、被検者に処方される漢方薬の候補を特定する。第1対応情報は、被検者の脈波の波形に応じた時間周波数スペクトル画像と、漢方医による被検者の診断結果を示す診断結果情報とが対応付けられた情報のことである。第1機械学習モデルは、第1対応情報を学習させた機械学習のモデルのことである。第1機械学習モデルは、ある被検者の脈波の波形に応じた時間周波数スペクトル画像を入力すると、漢方医による当該被検者の診断結果として尤もらしいと推定される診断結果を示す診断結果情報を出力する。一方、第2対応情報は、被検者毎に、漢方医による被検者の診断結果を示す診断結果情報と、漢方医が被検者に処方した1以上の漢方薬のそれぞれを示す漢方薬情報とが対応付けられた情報のことである。第2機械学習モデルは、第2対応情報を学習させた機械学習のモデルである。第2機械学習モデルは、第1機械学習モデルにより出力された診断結果情報を入力すると、当該診断結果情報に対応する被検者に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補のそれぞれを示す漢方薬候補情報を出力する。このように、情報処理装置20は、第1機械学習モデルと第2機械学習モデルとを用いて、被検者に処方される漢方薬の候補を特定する。これにより、情報処理装置20は、漢方医の主観の少なくとも一部を排除して、被検者に処方する1以上の漢方薬の候補を示す漢方薬候補情報を出力することができる。その結果、情報処理装置20は、漢方医が被検者へ漢方薬を処方するのに要する手間を軽減することができるとともに、漢方医の経験に左右されることなく、被検者への漢方薬の処方を精度よく行うことができる。なお、時間周波数スペクトル画像と、診断結果情報とのそれぞれの詳細については、後述する。 Here, the information processing device 20 uses, for example, a first machine learning model that has learned the first correspondence information in advance, a second machine learning model that has learned the second correspondence information in advance, and the generated time-frequency spectrum image. Identify candidates for Chinese herbal medicines to be prescribed to the subject based on the The first correspondence information is information in which a time-frequency spectrum image corresponding to the waveform of the pulse wave of the subject is associated with diagnosis result information indicating the diagnosis result of the subject by the Chinese medicine doctor. The first machine learning model is a machine learning model that has learned the first correspondence information. The first machine learning model generates a diagnosis result that indicates a likely diagnosis result for the subject by a Chinese herbalist when a time-frequency spectrum image corresponding to the pulse wave waveform of a certain subject is input. Output information. On the other hand, the second correspondence information includes, for each subject, diagnosis result information indicating the diagnosis result of the subject by the herbalist doctor, and herbal medicine information indicating each of one or more herbal medicines prescribed to the subject by the herbalist doctor. This is the information that is associated with. The second machine learning model is a machine learning model that has learned the second correspondence information. When inputting the diagnosis result information output by the first machine learning model, the second machine learning model selects one or more Chinese medicines that are likely to be prescribed as one or more Chinese medicines to be prescribed to the subject corresponding to the diagnosis result information. Chinese herbal medicine candidate information indicating each of the Chinese herbal medicine candidates is output. In this way, the information processing device 20 uses the first machine learning model and the second machine learning model to identify candidates for Chinese herbal medicines to be prescribed to the subject. Thereby, the information processing device 20 can output Chinese herbal medicine candidate information indicating one or more Chinese herbal medicine candidates to be prescribed to the subject, excluding at least part of the subjectivity of the Chinese medicine doctor. As a result, the information processing device 20 can reduce the time and effort required for a Chinese herbalist to prescribe Chinese medicine to a subject, and can also prescribe Chinese herbal medicine to a subject without being influenced by the experience of the herbalist. Prescriptions can be made with high precision. Note that details of the time-frequency spectrum image and the diagnosis result information will be described later.
 情報処理装置20は、例えば、ノートPC(Personal Computer)、デスクトップPC、ワークステーション、タブレットPC、多機能携帯電話端末(スマートフォン)、携帯電話端末、PDA(Personal Digital Assistant)等の情報処理装置であるが、これらに限られるわけではない。 The information processing device 20 is, for example, an information processing device such as a notebook PC (Personal Computer), a desktop PC, a workstation, a tablet PC, a multifunctional mobile phone terminal (smartphone), a mobile phone terminal, a PDA (Personal Digital Assistant), etc. However, it is not limited to these.
 <情報処理装置のハードウェア構成>
 以下、図2を参照し、情報処理装置20のハードウェア構成について説明する。図2は、情報処理装置20のハードウェア構成の一例を示す図である。
<Hardware configuration of information processing device>
The hardware configuration of the information processing device 20 will be described below with reference to FIG. 2. FIG. 2 is a diagram showing an example of the hardware configuration of the information processing device 20. As shown in FIG.
 情報処理装置20は、例えば、プロセッサ21と、記憶部22と、入力受付部23と、通信部24と、表示部25を備える。また、情報処理装置20は、通信部24を介して脈波検出装置10と通信を行う。これらの構成要素は、バスを介して相互に通信可能に接続されている。 The information processing device 20 includes, for example, a processor 21, a storage section 22, an input reception section 23, a communication section 24, and a display section 25. Further, the information processing device 20 communicates with the pulse wave detection device 10 via the communication unit 24. These components are communicatively connected to each other via a bus.
 プロセッサ21は、例えば、CPU(Central Processing Unit)である。なお、プロセッサ21は、CPUに代えて、FPGA(Field Programmable Gate Array)等の他のプロセッサであってもよい。プロセッサ21は、記憶部22に格納された各種のプログラムを実行する。なお、プロセッサ21は、1つの情報処理装置(この一例において、情報処理装置20)が備えるCPUによって構成されてもよく、複数の情報処理装置が備えるCPUによって構成されてもよい。 The processor 21 is, for example, a CPU (Central Processing Unit). Note that the processor 21 may be another processor such as an FPGA (Field Programmable Gate Array) instead of the CPU. The processor 21 executes various programs stored in the storage unit 22. Note that the processor 21 may be configured by a CPU included in one information processing device (in this example, the information processing device 20), or may be configured by CPUs included in a plurality of information processing devices.
 記憶部22は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)等を含む。なお、記憶部22は、情報処理装置20に内蔵されるものに代えて、USB(Universal Serial Bus)等のデジタル入出力ポート等によって接続された外付け型の記憶装置であってもよい。記憶部22は、情報処理装置20が処理する各種の情報、各種のプログラム等を記憶する。例えば、記憶部22は、前述の波形情報、第1機械学習モデル、第2機械学習モデル等を記憶する。なお、記憶部22は、1つの記憶装置によって構成されてもよく、複数の記憶装置によって構成されてもよい。また、当該複数の記憶装置には、情報処理装置20と別体の情報処理装置が備える記憶装置が含まれる構成であってもよい。 The storage unit 22 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read Only Memory), and a RAM (Random Access Memory). Note that the storage unit 22 may be an external storage device connected to a digital input/output port such as a USB (Universal Serial Bus), instead of being built into the information processing device 20. The storage unit 22 stores various information, various programs, etc. processed by the information processing device 20. For example, the storage unit 22 stores the above-mentioned waveform information, the first machine learning model, the second machine learning model, and the like. Note that the storage unit 22 may be configured by one storage device or may be configured by a plurality of storage devices. Further, the plurality of storage devices may include a storage device provided in an information processing device separate from the information processing device 20.
 入力受付部23は、キーボード、マウス、タッチパッド等の入力装置である。なお、入力受付部23は、表示部25と一体に構成されたタッチパネルであってもよい。 The input reception unit 23 is an input device such as a keyboard, mouse, touch pad, etc. Note that the input receiving section 23 may be a touch panel configured integrally with the display section 25.
 通信部24は、例えば、USB等のデジタル入出力ポートやイーサネット(登録商標)ポート、通信用のアンテナ等を含んで構成される。 The communication unit 24 includes, for example, a digital input/output port such as a USB, an Ethernet (registered trademark) port, a communication antenna, and the like.
 表示部25は、例えば、液晶ディスプレイパネル、有機EL(ElectroLuminescence)ディスプレイパネル等のディスプレイパネルである。 The display unit 25 is, for example, a display panel such as a liquid crystal display panel or an organic EL (Electro Luminescence) display panel.
 <情報処理装置の機能構成>
 以下、図3を参照し、情報処理装置20の機能構成について説明する。図3は、情報処理装置20の機能構成の一例を示す図である。
<Functional configuration of information processing device>
The functional configuration of the information processing device 20 will be described below with reference to FIG. 3. FIG. 3 is a diagram showing an example of the functional configuration of the information processing device 20. As shown in FIG.
 情報処理装置20は、記憶部22と、入力受付部23と、通信部24と、表示部25と、制御部26を備える。 The information processing device 20 includes a storage section 22, an input reception section 23, a communication section 24, a display section 25, and a control section 26.
 制御部26は、情報処理装置20の全体を制御する。制御部26は、取得部261と、受付部262と、算出部263と、処方候補出力部264と、第1学習部265と、第2学習部266と、表示制御部267と、生成部268を備える。制御部26が備えるこれらの機能部は、例えば、プロセッサ21が、記憶部22に記憶された各種のプログラムを実行することにより実現される。また、当該機能部のうちの一部又は全部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。 The control unit 26 controls the entire information processing device 20. The control unit 26 includes an acquisition unit 261, a reception unit 262, a calculation unit 263, a prescription candidate output unit 264, a first learning unit 265, a second learning unit 266, a display control unit 267, and a generation unit 268. Equipped with These functional units included in the control unit 26 are realized, for example, by the processor 21 executing various programs stored in the storage unit 22. Further, some or all of the functional units may be a hardware functional unit such as an LSI (Large Scale Integration) or an ASIC (Application Specific Integrated Circuit).
 取得部261は、脈波センサ12から出力される電気信号を取得する。 The acquisition unit 261 acquires the electrical signal output from the pulse wave sensor 12.
 受付部262は、ユーザから各種の情報を受け付ける。 The reception unit 262 receives various information from the user.
 算出部263は、情報処理装置20が算出する各種の値を算出する。例えば、算出部263は、ある波形情報に基づいて、当該波形情報が示す波形に応じた時間周波数スペクトルを算出する。 The calculation unit 263 calculates various values calculated by the information processing device 20. For example, the calculation unit 263 calculates, based on certain waveform information, a time-frequency spectrum corresponding to a waveform indicated by the waveform information.
 処方候補出力部264は、前述の出力情報を生成し、生成した出力情報を出力する。例えば、処方候補出力部264は、生成した出力情報を記憶部22に出力し、記憶部22に当該出力情報を記憶させる。 The prescription candidate output unit 264 generates the above-mentioned output information and outputs the generated output information. For example, the prescription candidate output unit 264 outputs the generated output information to the storage unit 22, and causes the storage unit 22 to store the output information.
 第1学習部265は、第1機械学習モデルへ第1対応情報を学習させる。 The first learning unit 265 causes the first machine learning model to learn the first correspondence information.
 第2学習部266は、第2機械学習モデルへ第2対応情報を学習させる。 The second learning unit 266 causes the second machine learning model to learn the second correspondence information.
 表示制御部267は、各種の画像を生成する。表示制御部267は、生成した画像を表示部25に表示させる。 The display control unit 267 generates various images. The display control unit 267 causes the display unit 25 to display the generated image.
 生成部268は、取得部261により取得された電気信号に基づいて、被検者の脈波の波形を示す波形情報を生成する。また、生成部268は、算出部263が算出した時間周波数スペクトルを示す時間周波数スペクトル画像を生成する。 The generation unit 268 generates waveform information indicating the waveform of the subject's pulse wave based on the electrical signal acquired by the acquisition unit 261. Further, the generation unit 268 generates a time-frequency spectrum image showing the time-frequency spectrum calculated by the calculation unit 263.
 <情報処理装置が波形情報を生成する処理>
 以下、図4を参照し、情報処理装置20が波形情報を生成する処理について説明する。図4は、情報処理装置20が波形情報を生成する処理の流れの一例を示す図である。以下では、一例として、図4に示したステップS110の処理が行われるよりも前のタイミングにおいて、波形情報を生成する処理を情報処理装置20に開始させる第1操作を情報処理装置20が受け付けている場合について説明する。また、以下では、一例として、当該タイミングにおいて、第1操作を受け付けたタイミングから、ユーザにより指定された第1時間が経過するまでの期間を、測定期間として指定する操作を情報処理装置20が受け付けている場合について説明する。第1時間は、例えば、1分であるが、これに代えて、1分より短い時間であってもよく、1分より長い時間であってもよい。また、以下では、一例として、当該タイミングにおいて、脈波検出装置10によって被検者S1の脈波の検出が開始されている場合について説明する。ここで、脈波センサ12は、脈波検出装置10による被検者S1の脈波の検出が開始されると、前述の電気信号を情報処理装置20に出力し始める。また、以下では、一例として、当該タイミングにおいて、被検者S1を識別する被検者識別情報を情報処理装置20が受け付けている場合について説明する。
<Processing in which the information processing device generates waveform information>
Hereinafter, with reference to FIG. 4, a process in which the information processing device 20 generates waveform information will be described. FIG. 4 is a diagram illustrating an example of a process flow in which the information processing device 20 generates waveform information. In the following, as an example, the information processing apparatus 20 receives a first operation that causes the information processing apparatus 20 to start the process of generating waveform information at a timing before the process of step S110 shown in FIG. 4 is performed. I will explain the case where there is. In addition, in the following, as an example, the information processing device 20 receives an operation that specifies a period from the timing at which the first operation is received until the first time specified by the user has elapsed as the measurement period. I will explain the case when The first time is, for example, one minute, but may alternatively be shorter than one minute or longer than one minute. Moreover, below, as an example, a case will be described in which the pulse wave detection device 10 starts detecting the pulse wave of the subject S1 at the timing. Here, when the pulse wave detection device 10 starts detecting the pulse wave of the subject S1, the pulse wave sensor 12 starts outputting the above-mentioned electrical signal to the information processing device 20. Moreover, below, as an example, a case will be described in which the information processing device 20 receives patient identification information for identifying the patient S1 at the timing.
 第1操作を受け付けた後、取得部261は、第1時間が経過するまでの測定期間内において、所定のサンプリング周期で脈波センサ12から電気信号を取得する(ステップS110)。なお、実施形態では、この電気信号をアナログ信号からデジタル信号へ変換する処理については、既知の処理であるため、説明を省略する。ここで、サンプリング周期は、例えば、0.002秒であるが、これに代えて、0.002秒より短い周期であってもよく、0.002秒より長い周期であってもよい。取得部261は、このようにして測定期間内に取得した電気信号を示す情報を、記憶部22に記憶させる。 After receiving the first operation, the acquisition unit 261 acquires an electrical signal from the pulse wave sensor 12 at a predetermined sampling period within the measurement period until the first time elapses (step S110). Note that in the embodiment, the process of converting this electrical signal from an analog signal to a digital signal is a known process, and therefore a description thereof will be omitted. Here, the sampling period is, for example, 0.002 seconds, but instead may be a period shorter than 0.002 seconds or a period longer than 0.002 seconds. The acquisition unit 261 causes the storage unit 22 to store information indicating the electrical signal acquired within the measurement period in this manner.
 次に、生成部268は、ステップS110において記憶部22に記憶された電気信号を示す情報に基づいて、測定期間内における被検者S1の脈波の波形を示す波形情報を生成する(ステップS120)。ここで、当該情報に基づいて当該波形情報を生成する方法は、既知の方法であってもよく、これから開発される方法であってもよい。また、情報処理装置20は、ステップS120の処理を、ステップS110の処理と並列に行う構成であってもよい。 Next, the generation unit 268 generates waveform information indicating the waveform of the pulse wave of the subject S1 within the measurement period based on the information indicating the electrical signal stored in the storage unit 22 in step S110 (step S120 ). Here, the method for generating the waveform information based on the information may be a known method or a method to be developed in the future. Further, the information processing device 20 may be configured to perform the process in step S120 in parallel with the process in step S110.
 次に、生成部268は、ステップS120において生成した波形情報を記憶部22に記憶させる(ステップS130)。この際、生成部268は、予め受け付けた被検者識別情報(すなわち、被検者S1を識別する被検者識別情報)を当該波形情報に対応付けて記憶部22に記憶させる。ステップS130の処理が行われた後、生成部268は、図4に示したフローチャートの処理を終了する。 Next, the generation unit 268 causes the storage unit 22 to store the waveform information generated in step S120 (step S130). At this time, the generation unit 268 causes the storage unit 22 to store the subject identification information received in advance (that is, the subject identification information identifying the subject S1) in association with the waveform information. After the process of step S130 is performed, the generation unit 268 ends the process of the flowchart shown in FIG. 4.
 このようにして、情報処理装置20は、被検者毎の波形情報を記憶部22に記憶させることができる。 In this way, the information processing device 20 can cause the storage unit 22 to store waveform information for each subject.
 <情報処理装置が第1機械学習モデルに第1対応情報を学習させ、且つ、第2機械学習モデルに第2対応情報を学習させる処理>
 以下、図5を参照し、情報処理装置20が第1機械学習モデルに第1対応情報を学習させ、且つ、第2機械学習モデルに第2対応情報を学習させる処理について説明する。図5は、情報処理装置20が第1機械学習モデルに第1対応情報を学習させ、且つ、第2機械学習モデルに第2対応情報を学習させる処理の流れの一例を示す図である。以下では、一例として、図5に示したステップS210の処理が行われるよりも前のタイミングにおいて、図4に示したフローチャートの処理によって生成されたN個の波形情報が記憶部22に記憶されている場合について説明する。Nは、1以上の整数であれば、如何なる整数であってもよい。これらN個の波形情報は、N人の被検者それぞれについての波形情報である。そこで、以下では、説明の便宜上、これらN人の被検者のそれぞれを、学習時被検者と称して説明する。また、以下では、説明の便宜上、N人の学習時被検者それぞれについての波形情報を、学習時波形情報と称して説明する。すなわち、以下では、一例として、当該タイミングにおいて、N人の学習時被検者それぞれの脈波の波形を示す学習時波形情報が記憶部22に記憶されている場合について説明する。また、以下では、一例として、当該タイミングにおいて、N個の診断結果情報が記憶部22に記憶されている場合について説明する。これらN個の診断結果情報は、N人の学習時被検者それぞれについての診断結果情報である。ある学習時被検者についての診断結果情報は、漢方医による当該学習時被検者の診断結果を示す情報のことである。この場合、ある学習時被検者についての診断結果情報には、当該学習時被検者を識別する被検者識別情報が対応付けられている。また、以下では、一例として、当該タイミングにおいて、N個の漢方薬情報が記憶部22に記憶されている場合について説明する。これらN個の漢方薬情報は、N人の学習時被検者それぞれについての漢方薬情報である。ある学習時被検者についての漢方薬情報は、漢方医が当該学習時被検者に処方した1以上の漢方薬のそれぞれを示す情報である。この場合、ある学習時被検者についての漢方薬情報には、当該学習時被検者を識別する被検者識別情報が対応付けられている。
<Processing in which the information processing device causes the first machine learning model to learn the first correspondence information and causes the second machine learning model to learn the second correspondence information>
Hereinafter, with reference to FIG. 5, a process in which the information processing device 20 causes the first machine learning model to learn the first correspondence information and causes the second machine learning model to learn the second correspondence information will be described. FIG. 5 is a diagram illustrating an example of a process flow in which the information processing device 20 causes the first machine learning model to learn the first correspondence information and causes the second machine learning model to learn the second correspondence information. In the following, as an example, N pieces of waveform information generated by the process of the flowchart shown in FIG. 4 are stored in the storage unit 22 at a timing before the process of step S210 shown in FIG. 5 is performed. I will explain the case where there is. N may be any integer greater than or equal to 1. These N pieces of waveform information are waveform information for each of the N subjects. Therefore, for convenience of explanation, each of these N subjects will be referred to as a learning subject in the following description. Further, for convenience of explanation, the waveform information for each of the N learning subjects will be referred to as learning waveform information in the following description. That is, below, as an example, a case will be described in which learning waveform information indicating the waveform of the pulse wave of each of N learning subjects is stored in the storage unit 22 at the timing. Further, below, as an example, a case will be described in which N pieces of diagnosis result information are stored in the storage unit 22 at the timing. These N pieces of diagnostic result information are diagnostic result information for each of the N learning subjects. The diagnosis result information regarding a certain study subject is information indicating the diagnosis result of the study subject by a Chinese herbalist. In this case, diagnostic result information regarding a certain learning subject is associated with subject identification information that identifies the learning subject. Further, below, as an example, a case will be described in which N pieces of Chinese herbal medicine information are stored in the storage unit 22 at the timing. These N pieces of Chinese herbal medicine information are Chinese herbal medicine information for each of the N learning subjects. The Chinese herbal medicine information for a certain learning subject is information indicating each of one or more Chinese herbal medicines that a Chinese medicine doctor has prescribed to the learning subject. In this case, Chinese herbal medicine information regarding a certain study subject is associated with subject identification information that identifies the study subject.
 制御部26は、記憶部22に予め記憶されたN個の学習時波形情報のそれぞれを記憶部22から読み出す(ステップS210)。なお、図5では、ステップS210の処理を「波形情報読出」によって示している。 The control unit 26 reads each of the N pieces of learning waveform information stored in advance in the storage unit 22 from the storage unit 22 (step S210). In addition, in FIG. 5, the process of step S210 is shown as "waveform information reading".
 次に、制御部26は、ステップS210において読み出したN個の学習時波形情報のそれぞれに対応付けられた被検者識別情報を対象被検者識別情報として1つずつ選択し、選択した対象被検者識別情報毎に、ステップS230~ステップS270の処理を繰り返し行う(ステップS220)。なお、図5では、ステップS220の処理を「被検者識別情報毎」によって示している。 Next, the control unit 26 selects one piece of subject identification information associated with each of the N pieces of learning waveform information read out in step S210 as target subject identification information, and The processes of steps S230 to S270 are repeated for each examiner identification information (step S220). In addition, in FIG. 5, the process of step S220 is shown by "each subject identification information."
 ステップS220において対象被検者識別情報が選択された後、第1学習部265は、記憶部22に記憶されたN個の診断結果情報を参照し、ステップS220において選択された対象被検者識別情報に対応付けられた診断結果情報を記憶部22から読み出す(ステップS230)。 After the target patient identification information is selected in step S220, the first learning unit 265 refers to the N pieces of diagnostic result information stored in the storage unit 22 and identifies the target patient identified in step S220. Diagnosis result information associated with the information is read from the storage unit 22 (step S230).
 ここで、診断結果情報について説明する。ある学習時被検者についての診断結果情報は、前述した通り、漢方医による当該学習時被検者の診断結果を示す情報のことである。より具体的には、当該診断結果情報は、M個の診断項目のそれぞれについて漢方医が当該学習時被検者を診断した結果(例えば、脈診を行った結果等)を示す情報である。Mは、1以上の整数であれば、如何なる整数であってもよい。このため、M個の診断項目のそれぞれには、診断結果として選択可能な複数の選択肢が含まれている。M個の診断項目のうちのある診断項目についての診断結果を示す情報は、当該診断項目に含まれている複数の選択肢のそれぞれに対応付けられた変数を成分として有するベクトルによって表される。このため、当該診断結果情報は、M個の診断項目それぞれの診断結果を示すベクトルの直和によって表される。例えば、M個の診断項目のうちのある診断項目にX1~X3の3つの選択肢が含まれている場合、且つ、当該診断項目の診断結果としてX1が漢方医により選択されている場合、当該診断結果を示す情報は、X1~X3のそれぞれに対応付けられた変数を成分として有し、X1に対応付けられた変数に1が代入され、X2及びX3のそれぞれに対応付けられた変数に0が代入されているベクトルである。そして、M個の診断項目それぞれの診断結果を示す診断結果情報は、このような6つのベクトルの直和によって表される。 Here, the diagnosis result information will be explained. As described above, the diagnosis result information regarding a certain study subject is information indicating the diagnosis result of the study subject by a Chinese medicine doctor. More specifically, the diagnosis result information is information indicating the results of the Chinese medicine doctor's diagnosis of the study subject (for example, the results of pulse diagnosis, etc.) for each of the M diagnosis items. M may be any integer as long as it is 1 or more. Therefore, each of the M diagnosis items includes a plurality of options that can be selected as the diagnosis result. Information indicating a diagnosis result for a certain diagnostic item among the M diagnostic items is represented by a vector having as components variables associated with each of a plurality of options included in the diagnostic item. Therefore, the diagnosis result information is represented by the direct sum of vectors indicating the diagnosis results of each of the M diagnosis items. For example, if a certain diagnostic item among M diagnostic items includes three options X1 to X3, and if X1 is selected by the Chinese herbalist as the diagnosis result of the diagnostic item, The information indicating the result has variables associated with each of X1 to X3 as components, 1 is assigned to the variable associated with X1, and 0 is assigned to the variables associated with each of X2 and X3. This is the vector being assigned. Diagnosis result information indicating the diagnosis results of each of the M diagnosis items is represented by the direct sum of these six vectors.
 実施形態では、M個の診断項目は、病脈28脈における6大脈種、すなわち、浮網脈、沈網脈、遅網脈、数網脈、虚網脈、実網脈である。この場合、Mは、6である。そして、診断結果として漢方医により選択可能な選択肢として浮網脈に含まれる複数の選択肢は、浮脈、こう脈(孔の上に草冠を付した漢字)、洪脈、革脈、濡脈、散脈の6つの脈種である。また、診断結果として漢方医により選択可能な選択肢として沈網脈に含まれる複数の選択肢は、沈脈、伏脈、弱脈、牢脈の4つの脈種である。また、診断結果として漢方医により選択可能な選択肢として遅網脈に含まれる複数の選択肢は、遅脈、緩脈、渋脈、結脈、代脈の5つの脈種である。また、診断結果として漢方医により選択可能な選択肢として数網脈に含まれる複数の選択肢は、数脈、動脈、促脈の3つの脈種である。また、診断結果として漢方医により選択可能な選択肢として虚網脈に含まれる複数の選択肢は、虚脈、短脈、細脈、微脈の4つの脈種である。また、診断結果として漢方医により選択可能な選択肢として実網脈に含まれる複数の選択肢は、実脈、長脈、弦脈、緊脈、滑脈、大脈の6つの脈種である。例えば、ある学習時被検者の浮網脈についての診断結果を示す情報は、浮脈、こう脈(孔の上に草冠を付した漢字)、洪脈、革脈、濡脈、散脈のそれぞれに対応付けられた変数を成分として有するベクトルである。そして、例えば、当該ベクトルが有する成分のうち浮脈に対応付けられた変数には、当該浮網脈の診断結果として浮脈が漢方医により選択されている場合、1が代入されている。また、この場合、当該ベクトルが有する成分のうちこう脈(孔の上に草冠を付した漢字)、洪脈、革脈、濡脈、散脈のそれぞれに対応付けられた変数には、0が代入されている。ここで、ある診断結果情報は、6大脈種それぞれについての診断結果を示すベクトルの直和によって表される。すなわち、実施形態において、ある診断結果情報を表すベクトルの次元は、28次元である。なお、以下では、説明の便宜上、ある診断結果情報を表すベクトルが有する成分のうち1が代入されている6つの成分それぞれに対応付けられた脈種の組み合わせを、対象脈種組と称して説明する。すなわち、診断結果情報は、対象脈種組を示す情報である。なお、この診断結果情報には、他の情報が対応付けられていてもよい。以下では、一例として、診断結果情報に、当該学習時被検者に関する情報、当該学習時被検者の脈波の検出位置を示す情報、当該学習時被検者の既往症を示す情報が対応付けられている場合について説明する。ここで、当該学習時被検者に関する情報には、例えば、当該学習時被検者の性別を示す情報、当該学習時被検者の年齢を示す情報、当該学習時被検者の身長を示す情報、当該学習時被検者の体重を示す情報が含まれている。 In the embodiment, the M diagnostic items are six major vein types in the 28 diseased veins, namely, floating veins, sinking veins, slow veins, few veins, ischemic veins, and real veins. In this case, M is 6. As a result of the diagnosis, the options that can be selected by the Chinese herbalist include the multiple options included in Floating Vein, Kui Vein (the Chinese character with a grass crown above the hole), Hong Vein, Lea vein, Wet Vein, There are six types of veins. Further, the plurality of options included in the sink vein as options that can be selected by the Chinese herbalist as a diagnosis result are four pulse types: sink vein, dip vein, weak vein, and dead vein. In addition, the plurality of options included in the slow reticular pulse as options that can be selected by the Chinese herbalist as a diagnosis result are five pulse types: slow pulse, bradycardia, astringent pulse, tubercles, and grand veins. Further, the plurality of options included in the number of pulses as options that can be selected by the Chinese herbalist as a diagnosis result are three pulse types: the number of pulses, the arterial, and the accelerated pulse. Furthermore, the plurality of options included in the ischemic pulse as options that can be selected by the Chinese herbalist as a diagnosis result are four pulse types: ischemic pulse, short vein, arteriole, and microvenule. Further, the plurality of options included in the real reticular vein as options that can be selected by the Chinese herbalist as a diagnosis result are six pulse types: real pulse, long pulse, chordal pulse, tense pulse, smooth pulse, and large vein. For example, during a certain learning session, the information showing the diagnosis result of a test subject's floating veins is: floating veins, go veins (kanji with a crown above the hole), hong veins, leather veins, wet veins, and scattered veins. This is a vector having variables associated with each as components. For example, in the variable associated with floating veins among the components of the vector, if floating veins are selected by the Chinese herbalist as the diagnosis result for the floating veins, 1 is assigned. In addition, in this case, among the components included in the vector, the variables associated with each of the components koume (kanji with a grass crown above the hole), ko vein, leather vein, wet vein, and san vein are set to 0. It has been assigned. Here, certain diagnosis result information is represented by the direct sum of vectors indicating the diagnosis results for each of the six major vein types. That is, in the embodiment, the dimension of a vector representing certain diagnostic result information is 28 dimensions. In the following, for convenience of explanation, a combination of pulse types associated with each of the six components to which one of the components of a vector representing certain diagnostic result information is assigned will be referred to as a target pulse type set. do. That is, the diagnosis result information is information indicating the target pulse type set. Note that other information may be associated with this diagnosis result information. In the following, as an example, information about the subject at the time of learning, information indicating the detection position of the pulse wave of the subject at the time of learning, and information indicating the past illness of the subject at the time of learning are associated with the diagnosis result information. We will explain the case where Here, the information regarding the learning subject includes, for example, information indicating the gender of the learning subject, information indicating the age of the learning subject, and height of the learning subject. information, and information indicating the weight of the subject at the time of learning.
 次に、第1学習部265は、記憶部22に記憶されたN個の漢方薬情報を参照し、ステップS220において選択された対象被検者識別情報に対応付けられた漢方薬情報を記憶部22から読み出す(ステップS240)。 Next, the first learning unit 265 refers to the N pieces of Chinese herbal medicine information stored in the storage unit 22 and extracts the Chinese herbal medicine information associated with the target patient identification information selected in step S220 from the storage unit 22. Read out (step S240).
 次に、算出部263は、ステップS210において読み出した学習時波形情報の中から、ステップS220において選択された対象被検者識別情報に対応付けられた学習時波形情報を選択し、選択した学習時波形情報が示す波形に応じた時間周波数スペクトルを算出する。そして、生成部268は、算出部263が算出した当該時間周波数スペクトルを示す時間周波数スペクトル画像を生成する(ステップS250)。以下では、説明の便宜上、学習時波形情報が示す波形に応じた時間周波数スペクトルを示す時間周波数スペクトル画像を、学習時時間周波数スペクトル画像と称して説明する。 Next, the calculation unit 263 selects the learning waveform information associated with the target subject identification information selected in step S220 from the learning waveform information read out in step S210, and selects the learning waveform information associated with the target subject identification information selected in step S220. A time-frequency spectrum is calculated according to the waveform indicated by the waveform information. Then, the generation unit 268 generates a time-frequency spectrum image indicating the time-frequency spectrum calculated by the calculation unit 263 (step S250). In the following, for convenience of explanation, a time-frequency spectrum image showing a time-frequency spectrum corresponding to a waveform indicated by the learning waveform information will be referred to as a learning time-frequency spectrum image.
 ここで、時間周波数スペクトル画像について説明する。図6は、ステップS220において選択された対象被検者識別情報に対応付けられた学習時波形情報が示す波形の一例を示す図である。図6に示したグラフの縦軸は、脈波の信号振幅を示す。また、当該グラフの横軸は、経過時間を示す。当該グラフ上にプロットされた曲線は、当該波形を示す。算出部263は、当該学習時波形情報が示す波形から、予め決められた周波数以上の周波数成分を除去する。算出部263は、当該周波数成分の除去を、バンドパスフィルタを用いて行う。情報処理装置20は、予め決められた周波数をユーザから受け付ける構成であってもよく、他の方法により予め決められた周波数を受け付ける構成であってもよい。算出部263は、当該周波数成分を除去した後の当該波形を示す情報に基づいて、時間周波数スペクトルを算出する。算出部263は、STFT(Short Time Fourier Transform;短時間フーリエ変換)によって、時間周波数スペクトルを算出する。そして、生成部268は、算出部263が算出した時間周波数スペクトルを示す時間周波数スペクトル画像を生成する。当該時間周波数スペクトル画像は、例えば、スペクトル強度が時間と周波数との関数としてプロットされた等高線図である。図7は、時間周波数スペクトル画像の一例を示す図である。図7に示した等高線図は、5秒間の時間周波数スペクトル画像の一例である。当該等高線図の横軸は、時間を示す。当該等高線図の縦軸は、周波数を示す。そして、当該等高線図上にプロットされた複数の曲線のそれぞれは、スペクトル強度についての等高線である。 Here, the time-frequency spectrum image will be explained. FIG. 6 is a diagram illustrating an example of a waveform indicated by the learning waveform information associated with the target subject identification information selected in step S220. The vertical axis of the graph shown in FIG. 6 indicates the signal amplitude of the pulse wave. Further, the horizontal axis of the graph indicates elapsed time. The curve plotted on the graph indicates the waveform. The calculation unit 263 removes frequency components equal to or higher than a predetermined frequency from the waveform indicated by the learning waveform information. The calculation unit 263 removes the frequency component using a bandpass filter. The information processing device 20 may be configured to accept a predetermined frequency from a user, or may be configured to accept a predetermined frequency by another method. The calculation unit 263 calculates a time-frequency spectrum based on information indicating the waveform after removing the frequency component. The calculation unit 263 calculates a time-frequency spectrum by STFT (Short Time Fourier Transform). The generation unit 268 then generates a time-frequency spectrum image showing the time-frequency spectrum calculated by the calculation unit 263. The time-frequency spectral image is, for example, a contour map in which spectral intensity is plotted as a function of time and frequency. FIG. 7 is a diagram showing an example of a time-frequency spectrum image. The contour map shown in FIG. 7 is an example of a time-frequency spectrum image for 5 seconds. The horizontal axis of the contour map indicates time. The vertical axis of the contour map indicates frequency. Each of the plurality of curves plotted on the contour map is a contour line regarding spectral intensity.
 ステップS250の処理が行われた後、第1学習部265は、第1対応情報を生成する(ステップS260)。より具体的には、第1学習部265は、ステップS250において生成した学習時時間周波数スペクトル画像と、ステップS230において読み出した診断結果情報とを対応付けた情報を、第1対応情報として生成する。 After the process of step S250 is performed, the first learning unit 265 generates first correspondence information (step S260). More specifically, the first learning unit 265 generates, as first correspondence information, information that associates the learning time-frequency spectrum image generated in step S250 with the diagnosis result information read out in step S230.
 次に、第2学習部266は、第2対応情報を生成する(ステップS270)。より具体的には、第2学習部266は、ステップS230において読み出した診断結果情報と、ステップS240において読み出した漢方薬情報とを対応付けた情報を、第2対応情報として生成する。第2学習部266は、生成した第2対応情報を、記憶部22に予め記憶された第2データベースに記憶する。すなわち、第2データベースは、図5に示したステップS220~ステップS270の繰り返し処理において生成されるN個の第2対応情報を格納するデータベースである。また、第2データベースは、n1×m1の二次元テーブル構造のデータベースである。すなわち、第2データベースは、n1×m1の二次元テーブルを示す。n1は、対象脈種組として選択可能な脈種の組み合わせの数である。そして、n1は、浮網脈の範疇に含まれる脈種の数が6、沈網脈の範疇に含まれる脈種の数が4、遅網脈の範疇に含まれる脈種の数が5、数網脈の範疇に含まれる脈種の数が3、虚網脈の範疇に含まれる脈種の数が4、実網脈の範疇に含まれる脈種の数が6であるため、8640である。また、m1は、情報処理装置20が取り扱うことが可能な漢方薬の種類の数である。第2学習部266は、当該対象脈種組と、当該漢方薬情報が示す1以上の漢方薬のそれぞれとが当該二次元テーブル上でクロスしたフィールドに割り当てられた値に1を加算することにより、生成した第2対応情報を第2データベースに格納する。なお、当該二次元テーブル上の各フィールドには、初期値として、0が割り当てられている。また、図8は、ステップS270の処理の一例を可視化したイメージ図である。 Next, the second learning unit 266 generates second correspondence information (step S270). More specifically, the second learning unit 266 generates, as second correspondence information, information that associates the diagnosis result information read in step S230 with the herbal medicine information read in step S240. The second learning unit 266 stores the generated second correspondence information in a second database stored in the storage unit 22 in advance. That is, the second database is a database that stores N pieces of second correspondence information generated in the repeated processing of steps S220 to S270 shown in FIG. Further, the second database is a database with a two-dimensional table structure of n1×m1. That is, the second database shows a two-dimensional table of n1×m1. n1 is the number of pulse type combinations that can be selected as the target pulse type set. For n1, the number of vein types included in the category of floating veins is 6, the number of vein types included in the category of sinking veins is 4, the number of vein types included in the category of slow veins is 5, Since the number of pulse types included in the category of phantom veins is 3, the number of vein types included in the category of virtual veins is 4, and the number of pulse types included in the category of real veins is 6, 8640 be. Furthermore, m1 is the number of types of Chinese medicine that the information processing device 20 can handle. The second learning unit 266 adds 1 to the value assigned to the field where the target vein type set and each of the one or more herbal medicines indicated by the herbal medicine information cross on the two-dimensional table. The second correspondence information obtained is stored in the second database. Note that 0 is assigned as an initial value to each field on the two-dimensional table. Moreover, FIG. 8 is an image diagram visualizing an example of the process of step S270.
 ステップS270の処理が行われた後、制御部26は、ステップS220に遷移し、次の対象被検者識別情報を選択する。なお、制御部26は、ステップS220において未選択の被検者識別情報が存在しない場合、ステップS220~ステップS270の繰り返し処理を終了する。 After the process of step S270 is performed, the control unit 26 moves to step S220 and selects the next target subject identification information. Note that if there is no unselected subject identification information in step S220, the control unit 26 ends the repetitive processing of steps S220 to S270.
 ステップS220~ステップS270の繰り返し処理が終了した後、第1学習部265は、当該繰り返し処理において第1データベースに格納したN個の第1対応情報を、第1機械学習モデルに学習させる(ステップS280)。ここで、ステップS280の処理について説明する。 After the iterative process from step S220 to step S270 is completed, the first learning unit 265 causes the first machine learning model to learn the N pieces of first correspondence information stored in the first database in the iterative process (step S280 ). Here, the process of step S280 will be explained.
 ステップS280において、第1学習部265は、M個の診断項目毎に、第1機械学習モデルを学習させる。これにより、第1学習部265は、M個の診断項目毎に、学習後の第1機械学習モデルの係数列を、学習後の第1機械学習モデルから取得することができる。実施形態では、M個の診断項目は、前述した通り、6大脈種のそれぞれであった。この場合、第1学習部265は、浮網脈、沈網脈、遅網脈、数網脈、虚網脈、実網脈のそれぞれ毎に、第1機械学習モデルを学習させる。例えば、第1学習部265は、浮網脈について第1機械学習モデルを学習させる場合、N個の第1対応情報のそれぞれから、浮網脈の診断結果を示すベクトルと、これらのベクトルに対応付けられた時間周波数スペクトル画像とを抽出する。そして、当該場合、第1学習部265は、抽出したベクトル毎に、入力をベクトルに対応付けられた時間周波数スペクトル画像とし、出力をベクトルとして第1機械学習モデルに学習させる。このような入力と出力とを学習させた第1機械学習モデルは、ある被検者の脈波の波形に応じた時間周波数スペクトル画像が入力されると、浮網脈の範疇に含まれる脈種のうち当該被検者の脈波に最も強く現れていると推定される脈種を示すベクトルを、浮網脈についての診断結果を示す情報として出力する。ここで、第1機械学習モデルは、深層学習用のCNN(Convolutional Neural Network;畳み込みニューラルネットワーク)である。そして、このような入力と出力との第1機械学習モデルへの学習では、入力される時間周波数スペクトル画像は、カーネルフィルタと1出力の非線形処理とでサイズダウンされ、最終的に1次元データに圧縮される。そして、当該学習において、第1機械学習モデルの重み及びバイアスは、この1次元データの分布状態が、診断項目に含まれる複数の選択肢の数(この場合、浮網脈の範疇に含まれる脈種の数、すなわち、6)程度に精度よく区別できるように、最適化される。このような第1機械学習モデルへの学習を6大脈種のそれぞれ毎に行うことにより、第1学習部265は、M個の診断項目毎に、学習後の第1機械学習モデルの係数列を、学習後の第1機械学習モデルから取得することができる。ここで、ある第1機械学習モデルの係数列は、当該第1機械学習モデルの重み及びバイアスの組み合わせのことである。以下では、説明の便宜上、浮網脈についての学習後の第1機械学習モデルの係数列を、第1係数列と称して説明する。また、以下では、説明の便宜上、沈網脈についての学習後の第1機械学習モデルの係数列を、第2係数列と称して説明する。また、以下では、説明の便宜上、遅網脈についての学習後の第1機械学習モデルの係数列を、第3係数列と称して説明する。また、以下では、説明の便宜上、数網脈についての学習後の第1機械学習モデルの係数列を、第4係数列と称して説明する。また、以下では、説明の便宜上、虚網脈についての学習後の第1機械学習モデルの係数列を、第5係数列と称して説明する。また、以下では、説明の便宜上、実網脈についての学習後の第1機械学習モデルの係数列を、第6係数列と称して説明する。なお、第1学習部265は、第1係数列~第6係数列のそれぞれを取得する際、診断項目毎に第1機械学習モデルを用意し、診断項目毎に第1機械学習モデルの学習を並列に行ってもよく、単一の第1機械学習モデルを用意し、診断項目毎に順に第1機械学習モデルの学習を行ってもよい。第1学習部265は、ステップS280において第1係数列~第6係数列のそれぞれを取得した後、第1係数列~第6係数列のそれぞれを示す係数列情報を記憶部22に記憶させる。これにより、情報処理装置20は、例えば、第1係数列と第1機械学習モデルとに基づいて、浮網脈についての学習後の第1機械学習モデルを後から迅速に再現することができる。 In step S280, the first learning unit 265 trains the first machine learning model for each of the M diagnostic items. Thereby, the first learning unit 265 can acquire the coefficient sequence of the learned first machine learning model from the learned first machine learning model for each of the M diagnostic items. In the embodiment, the M diagnostic items were each of the six major vein types, as described above. In this case, the first learning unit 265 learns the first machine learning model for each of the floating network, sinking network, slow network, few network, imaginary network, and real network. For example, when learning the first machine learning model for floating net veins, the first learning unit 265 calculates vectors indicating the diagnosis results of floating net veins and correspondences to these vectors from each of the N pieces of first correspondence information. The attached time-frequency spectrum image is extracted. In this case, for each extracted vector, the first learning unit 265 uses the time-frequency spectrum image associated with the vector as an input, and causes the first machine learning model to learn using the output as a vector. The first machine learning model that has learned such inputs and outputs is able to identify pulse types included in the category of floating veins when a time-frequency spectrum image corresponding to the waveform of a pulse wave of a certain subject is input. A vector indicating the type of pulse that is estimated to appear most strongly in the pulse wave of the subject is output as information indicating the diagnosis result regarding floating veins. Here, the first machine learning model is a CNN (Convolutional Neural Network) for deep learning. In training the first machine learning model with such inputs and outputs, the input time-frequency spectrum image is downsized by a kernel filter and nonlinear processing with one output, and finally becomes one-dimensional data. Compressed. In this learning, the weights and biases of the first machine learning model are determined based on the distribution state of this one-dimensional data based on the number of multiple options included in the diagnostic item (in this case, the number of vein types included in the category of floating veins). It is optimized so that it can be distinguished accurately to the number of 6). By performing such learning on the first machine learning model for each of the six major vein types, the first learning unit 265 calculates the coefficient string of the first machine learning model after learning for each of the M diagnostic items. can be obtained from the first machine learning model after learning. Here, the coefficient sequence of a certain first machine learning model is a combination of weights and biases of the first machine learning model. In the following, for convenience of explanation, the coefficient sequence of the first machine learning model after learning about floating veins will be referred to as a first coefficient sequence. Furthermore, for convenience of explanation, the coefficient sequence of the first machine learning model after learning about the sinking vein will be referred to as a second coefficient sequence in the following description. Further, in the following description, for convenience of explanation, the coefficient sequence of the first machine learning model after learning about the slow network pulse will be referred to as a third coefficient sequence. Furthermore, for convenience of explanation, the coefficient sequence of the first machine learning model after learning about the number network will be referred to as a fourth coefficient sequence. Furthermore, for convenience of explanation, the coefficient sequence of the first machine learning model after learning about the imaginary network will be referred to as the fifth coefficient sequence. Furthermore, for convenience of explanation, the coefficient sequence of the first machine learning model after learning about the real network will be referred to as the sixth coefficient sequence. Note that when acquiring each of the first to sixth coefficient sequences, the first learning unit 265 prepares a first machine learning model for each diagnostic item, and performs learning of the first machine learning model for each diagnostic item. The learning may be performed in parallel, or a single first machine learning model may be prepared and the learning of the first machine learning model may be performed sequentially for each diagnostic item. After acquiring each of the first coefficient sequence to the sixth coefficient sequence in step S280, the first learning unit 265 causes the storage unit 22 to store coefficient sequence information indicating each of the first coefficient sequence to the sixth coefficient sequence. Thereby, the information processing device 20 can quickly reproduce the first machine learning model after learning about the floating network based on the first coefficient sequence and the first machine learning model, for example.
 次に、第2学習部266は、ステップS220~ステップS270の繰り返し処理において生成された第2データベースを(すなわち、第2対応情報を)、第2機械学習モデルに学習させる(ステップS290)。より具体的には、第2学習部266は、ある被検者についての対象脈種組を示す診断結果情報が入力された場合、当該被検者に処方される漢方薬として尤もらしい1以上の漢方薬のそれぞれを示す情報を、当該被検者に処方される漢方薬の候補として示す漢方薬候補情報を出力するように、第2データベースを第2機械学習モデルに学習させる。第2機械学習モデルとして利用される機械学習のモデルは、このような入出力の関係を実現可能なモデルであれば、如何なる種類の機械学習のモデルであってもよい。ステップS290の処理が行われた後、制御部26は、図5に示したフローチャートの処理を終了する。 Next, the second learning unit 266 causes the second machine learning model to learn the second database (that is, the second correspondence information) generated in the repeated processing of steps S220 to S270 (step S290). More specifically, when diagnosis result information indicating a target pulse type set for a certain subject is input, the second learning unit 266 selects one or more Chinese herbal medicines that are likely to be prescribed to the subject. The second database is trained by the second machine learning model so as to output Chinese herbal medicine candidate information indicating each of the Chinese herbal medicine candidates to be prescribed to the subject. The machine learning model used as the second machine learning model may be any type of machine learning model as long as it can realize such an input/output relationship. After the process of step S290 is performed, the control unit 26 ends the process of the flowchart shown in FIG.
 以上のように、情報処理装置20は、第1機械学習モデルに第1対応情報を学習させ、且つ、第2機械学習モデルに第2対応情報を学習させることができる。 As described above, the information processing device 20 can make the first machine learning model learn the first correspondence information, and can make the second machine learning model learn the second correspondence information.
 <情報処理装置が診断結果情報を受け付ける処理>
 以下、図9を参照し、情報処理装置20が診断結果情報を受け付ける処理について説明する。図9は、情報処理装置20が診断結果情報を受け付ける処理の流れの一例を示す図である。以下では、一例として、前述のN人の学習時被検者のうちの1人である被検者S2についての診断結果情報を情報処理装置20が受け付ける場合について説明する。また、以下では、一例として、図9に示したステップS310の処理が行われるよりも前のタイミングにおいて、漢方医による被検者S2の診断が行われている場合について説明する。また、以下では、一例として、当該タイミングにおいて、診断結果情報の受け付けを情報処理装置20に開始させる第2操作を情報処理装置20受け付けている場合について説明する。
<Processing in which the information processing device receives diagnosis result information>
Hereinafter, with reference to FIG. 9, a process in which the information processing device 20 receives diagnosis result information will be described. FIG. 9 is a diagram illustrating an example of the flow of processing in which the information processing device 20 receives diagnosis result information. Below, as an example, a case will be described in which the information processing device 20 receives diagnosis result information regarding the subject S2, who is one of the N learning subjects described above. Furthermore, as an example, a case will be described below in which the Chinese medicine doctor diagnoses the subject S2 at a timing before the process of step S310 shown in FIG. 9 is performed. Further, below, as an example, a case will be described in which the information processing device 20 receives a second operation that causes the information processing device 20 to start accepting diagnosis result information at the timing.
 第2操作を情報処理装置20が受け付けた後、表示制御部267は、情報受付画像PCT1を生成する(ステップS310)。 After the information processing device 20 receives the second operation, the display control unit 267 generates the information reception image PCT1 (step S310).
 ここで、情報受付画像PCT1は、診断結果情報を情報処理装置20が受け付ける画像である。図10は、情報受付画像PCT1の一例を示す図である。情報受付画像PCT1には、例えば、第1受付画像G1~第8受付画像G8の8つの画像が含まれている。なお、情報受付画像PCT1には、これら8つの画像に加えて、他の画像が含まれる構成であってもよい。 Here, the information reception image PCT1 is an image in which the information processing device 20 receives diagnosis result information. FIG. 10 is a diagram showing an example of the information reception image PCT1. The information reception image PCT1 includes, for example, eight images, the first reception image G1 to the eighth reception image G8. Note that the information reception image PCT1 may include other images in addition to these eight images.
 第1受付画像G1は、被検者識別情報を受け付けるGUIである。第1受付画像G1には、例えば、被検者識別情報が入力される入力欄が含まれている。 The first reception image G1 is a GUI that receives patient identification information. The first reception image G1 includes, for example, an input field into which patient identification information is input.
 第2受付画像G2は、被検者の性別を示す情報を受け付けるGUIである。第2受付画像G2には、例えば、被検者の性別が男性であることを示す情報を受け付けるラジオボタンと、被検者の性別が女性であることを示す情報を受け付けるラジオボタンとの2つのラジオボタンが含まれている。 The second reception image G2 is a GUI that receives information indicating the gender of the subject. The second reception image G2 includes two radio buttons, for example, one that accepts information indicating that the gender of the examinee is male, and the other that accepts information that the gender of the examinee is female. Contains radio buttons.
 第3受付画像G3は、被検者の年齢を示す情報を受け付けるGUIである。第3受付画像G3には、例えば、被検者の年齢を示す情報が入力される入力欄が含まれている。 The third reception image G3 is a GUI that accepts information indicating the age of the subject. The third reception image G3 includes, for example, an input field into which information indicating the age of the subject is input.
 第4受付画像G4は、被検者の身長を示す情報を受け付けるGUIである。第4受付画像G4には、例えば、被検者の身長を示す情報が入力される入力欄が含まれている。 The fourth reception image G4 is a GUI that receives information indicating the height of the subject. The fourth reception image G4 includes, for example, an input field into which information indicating the height of the subject is input.
 第5受付画像G5は、被検者の体重を示す情報を受け付けるGUIである。第5受付画像G5には、例えば、被検者の体重を示す情報が入力される入力欄が含まれている。 The fifth reception image G5 is a GUI that receives information indicating the subject's weight. The fifth reception image G5 includes, for example, an input field into which information indicating the subject's weight is input.
 第6受付画像G6は、被検者の脈波の検出位置を示す情報を受け付けるGUIである。第6受付画像G6には、例えば、被検者が有する両腕のうち脈波が検出された腕が左腕であることを示す情報を受け付けるラジオボタン、被検者が有する両腕のうち脈波が検出された腕が右腕であることを示す情報を受け付けるラジオボタン、被検者の脈波が検出された位置が寸であることを示す情報を受け付けるラジオボタン、被検者の脈波が検出された位置が関であることを示す情報を受け付けるラジオボタン、被検者の脈波が検出された位置が尺であることを示す情報を受け付けるラジオボタンが含まれている。 The sixth reception image G6 is a GUI that receives information indicating the detection position of the subject's pulse wave. The sixth reception image G6 includes, for example, a radio button that accepts information indicating that the arm in which the pulse wave was detected is the left arm among both arms of the subject, A radio button that accepts information indicating that the arm where the test subject's pulse wave was detected is the right arm, a radio button that accepts information that the position where the test subject's pulse wave was detected is the right arm, and a radio button that accepts information that the test subject's pulse wave was detected at the position where the test subject's pulse wave was detected. This includes a radio button that accepts information indicating that the detected position is Seki, and a radio button that accepts information that indicates that the position where the pulse wave of the subject was detected is Shaku.
 第7受付画像G7は、被検者の既往症を示す情報を受け付けるGUIである。第7受付画像G7には、例えば、被検者の既往症を示す情報が入力される入力欄が含まれている。 The seventh reception image G7 is a GUI that receives information indicating the subject's past illnesses. The seventh reception image G7 includes, for example, an input field into which information indicating a medical history of the subject is input.
 第8受付画像G8は、診断結果情報を受け付けるGUIである。第8受付画像G8には、例えば、受付画像G81~受付画像G86の6つの画像が含まれている。 The eighth reception image G8 is a GUI that receives diagnosis result information. The eighth reception image G8 includes, for example, six images, reception image G81 to reception image G86.
 受付画像G81は、浮網脈の範疇に含まれる6脈種のうちの1つを受け付けるGUIである。受付画像G81は、受付画像G81を選択する操作を行うと、当該6脈種のそれぞれを示す情報がリスト化されたドロップダウンメニューL81が表示される。ドロップダウンメニューL81が表示された場合、情報処理装置20のユーザは、ドロップダウンメニューL81においてリスト化された当該6脈種それぞれを示す情報のうちのいずれかを選択する操作を行うことができる。情報受付画像PCT1では、ドロップダウンメニューL81においてリスト化された当該6脈種それぞれを示す情報のうちのいずれかを選択する操作が行われた場合、ドロップダウンメニューL81の表示が消え、受付画像G81の表示欄に、ドロップダウンメニューL81において選択された情報が表示される。 The reception image G81 is a GUI that accepts one of the six vein types included in the category of floating veins. When the reception image G81 is selected, a drop-down menu L81 in which information indicating each of the six pulse types is listed is displayed. When the drop-down menu L81 is displayed, the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the six pulse types listed in the drop-down menu L81. In the information reception image PCT1, when an operation is performed to select any of the information indicating each of the six pulse types listed in the drop-down menu L81, the display of the drop-down menu L81 disappears and the reception image G81 The information selected in the drop-down menu L81 is displayed in the display field.
 受付画像G82は、沈網脈の範疇に含まれる4脈種のうちの1つを受け付けるGUIである。受付画像G82は、受付画像G82を選択する操作を行うと、当該4脈種のそれぞれを示す情報がリスト化されたドロップダウンメニューL82が表示される。ドロップダウンメニューL82が表示された場合、情報処理装置20のユーザは、ドロップダウンメニューL82においてリスト化された当該4脈種それぞれを示す情報のうちのいずれかを選択する操作を行うことができる。情報受付画像PCT1では、ドロップダウンメニューL82においてリスト化された当該4脈種それぞれを示す情報のうちのいずれかを選択する操作が行われた場合、ドロップダウンメニューL82の表示が消え、受付画像G82の表示欄に、ドロップダウンメニューL82において選択された情報が表示される。 The reception image G82 is a GUI that accepts one of the four vein types included in the category of sedimentary veins. When the reception image G82 is selected, a drop-down menu L82 in which information indicating each of the four pulse types is listed is displayed. When the drop-down menu L82 is displayed, the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the four pulse types listed in the drop-down menu L82. In the information reception image PCT1, when an operation is performed to select any of the information indicating each of the four pulse types listed in the drop-down menu L82, the display of the drop-down menu L82 disappears and the reception image G82 The information selected in the drop-down menu L82 is displayed in the display field.
 受付画像G83は、遅網脈の範疇に含まれる5脈種のうちの1つを受け付けるGUIである。受付画像G83は、受付画像G83を選択する操作を行うと、当該5脈種のそれぞれを示す情報がリスト化されたドロップダウンメニューL83が表示される。ドロップダウンメニューL83が表示された場合、情報処理装置20のユーザは、ドロップダウンメニューL83においてリスト化された当該5脈種それぞれを示す情報のうちのいずれかを選択する操作を行うことができる。情報受付画像PCT1では、ドロップダウンメニューL83においてリスト化された当該5脈種それぞれを示す情報のうちのいずれかを選択する操作が行われた場合、ドロップダウンメニューL83の表示が消え、受付画像G83の表示欄に、ドロップダウンメニューL83において選択された情報が表示される。 The reception image G83 is a GUI that accepts one of the five pulse types included in the category of slow retinal pulse. When the reception image G83 is selected, a drop-down menu L83 in which information indicating each of the five pulse types is listed is displayed. When the drop-down menu L83 is displayed, the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the five pulse types listed in the drop-down menu L83. In information reception image PCT1, when an operation is performed to select any of the information indicating each of the five pulse types listed in drop-down menu L83, the display of drop-down menu L83 disappears and reception image G83 The information selected in the drop-down menu L83 is displayed in the display field.
 受付画像G84は、数網脈の範疇に含まれる3脈種のうちの1つを受け付けるGUIである。受付画像G84は、受付画像G84を選択する操作を行うと、当該3脈種のそれぞれを示す情報がリスト化されたドロップダウンメニューL84が表示される。ドロップダウンメニューL84が表示された場合、情報処理装置20のユーザは、ドロップダウンメニューL84においてリスト化された当該3脈種それぞれを示す情報のうちのいずれかを選択する操作を行うことができる。情報受付画像PCT1では、ドロップダウンメニューL84においてリスト化された当該3脈種それぞれを示す情報のうちのいずれかを選択する操作が行われた場合、ドロップダウンメニューL84の表示が消え、受付画像G84の表示欄に、ドロップダウンメニューL84において選択された情報が表示される。 The reception image G84 is a GUI that accepts one of the three types of pulses included in the category of multiple veins. When the reception image G84 is selected, a drop-down menu L84 in which information indicating each of the three pulse types is listed is displayed. When the drop-down menu L84 is displayed, the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the three pulse types listed in the drop-down menu L84. In the information reception image PCT1, when an operation is performed to select any of the information indicating each of the three pulse types listed in the drop-down menu L84, the display of the drop-down menu L84 disappears and the reception image G84 The information selected in the drop-down menu L84 is displayed in the display field.
 受付画像G85は、虚網脈の範疇に含まれる4脈種のうちの1つを受け付けるGUIである。受付画像G85は、受付画像G85を選択する操作を行うと、当該4脈種のそれぞれを示す情報がリスト化されたドロップダウンメニューL85が表示される。ドロップダウンメニューL85が表示された場合、情報処理装置20のユーザは、ドロップダウンメニューL85においてリスト化された当該4脈種それぞれを示す情報のうちのいずれかを選択する操作を行うことができる。情報受付画像PCT1では、ドロップダウンメニューL85においてリスト化された当該4脈種それぞれを示す情報のうちのいずれかを選択する操作が行われた場合、ドロップダウンメニューL85の表示が消え、受付画像G85の表示欄に、ドロップダウンメニューL85において選択された情報が表示される。 The reception image G85 is a GUI that accepts one of the four pulse types included in the category of ischemic pulse. When the reception image G85 is selected, a drop-down menu L85 in which information indicating each of the four pulse types is listed is displayed. When the drop-down menu L85 is displayed, the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the four pulse types listed in the drop-down menu L85. In the information reception image PCT1, when an operation is performed to select any one of the information indicating each of the four pulse types listed in the drop-down menu L85, the display of the drop-down menu L85 disappears and the reception image G85 The information selected in the drop-down menu L85 is displayed in the display field.
 受付画像G86は、実網脈の範疇に含まれる6脈種のうちの1つを受け付けるGUIである。受付画像G86は、受付画像G86を選択する操作を行うと、当該6脈種のそれぞれを示す情報がリスト化されたドロップダウンメニューL86が表示される。ドロップダウンメニューL86が表示された場合、情報処理装置20のユーザは、ドロップダウンメニューL86においてリスト化された当該6脈種それぞれを示す情報のうちのいずれかを選択する操作を行うことができる。情報受付画像PCT1では、ドロップダウンメニューL86においてリスト化された当該6脈種それぞれを示す情報のうちのいずれかを選択する操作が行われた場合、ドロップダウンメニューL86の表示が消え、受付画像G86の表示欄に、ドロップダウンメニューL86において選択された情報が表示される。 The reception image G86 is a GUI that accepts one of the six vein types included in the category of real veins. When the reception image G86 is selected, a drop-down menu L86 is displayed in which information indicating each of the six pulse types is listed. When the drop-down menu L86 is displayed, the user of the information processing device 20 can perform an operation to select any one of the information indicating each of the six pulse types listed in the drop-down menu L86. In the information reception image PCT1, when an operation is performed to select any of the information indicating each of the six pulse types listed in the drop-down menu L86, the display of the drop-down menu L86 disappears and the reception image G86 The information selected in the drop-down menu L86 is displayed in the display field.
 なお、図11は、上記において説明した6つのドロップダウンメニューのそれぞれが表示されている様子の一例を示す図である。ここで、情報受付画像PCT1は、第2受付画像G2~第7受付画像G7のうちの一部又は全部を含まない構成であってもよい。 Note that FIG. 11 is a diagram showing an example of how each of the six drop-down menus described above is displayed. Here, the information reception image PCT1 may have a configuration that does not include some or all of the second reception image G2 to the seventh reception image G7.
 ステップS310の処理が行われた後、表示制御部267は、ステップS310において生成した情報受付画像PCT1を表示部25に表示させる(ステップS320)。 After the process of step S310 is performed, the display control unit 267 displays the information reception image PCT1 generated in step S310 on the display unit 25 (step S320).
 次に、受付部262は、ステップS320において表示部25に表示された情報受付画像PCT1を介して情報処理装置20が操作を受け付けるまで待機する(ステップS330)。 Next, the receiving unit 262 waits until the information processing device 20 receives an operation via the information receiving image PCT1 displayed on the display unit 25 in step S320 (step S330).
 受付部262は、ステップS320において表示部25に表示された情報受付画像PCT1を介して情報処理装置20が操作を受け付けた場合(ステップS330-YES)、情報受付画像PCT1を介した診断結果情報の受け付けを終了する操作をステップS330において受け付けたか否かを判定する(ステップS340)。 When the information processing device 20 receives an operation via the information acceptance image PCT1 displayed on the display unit 25 in step S320 (step S330-YES), the reception unit 262 receives the diagnosis result information via the information acceptance image PCT1. It is determined whether the operation to end the reception was accepted in step S330 (step S340).
 受付部262は、情報受付画像PCT1を介した診断結果情報の受け付けを終了する操作をステップS330において受け付けていないと判定した場合(ステップS340-NO)、ステップS330において受け付けた操作に応じた処理を行う(ステップS370)。ここで、当該処理は、例えば、第8受付画像G8を介して情報処理装置20が診断結果情報を受け付ける処理等である。すなわち、ステップS370の処理によって、情報処理装置20は、被検者S2についての診断結果情報に含まれる各種の情報を受け付ける。なお、ステップS330において受け付けた操作に応じた処理は、情報受付画像PCT1を介して受け付けた操作に応じて行うことが可能な処理であれば如何なる処理であってもよい。ステップS370の処理が行われた後、受付部262は、ステップS330に遷移し、ステップS320において表示部25に表示された情報受付画像PCT1を介して情報処理装置20が操作を受け付けるまで再び待機する。 If the reception unit 262 determines in step S330 that the operation to end the reception of diagnosis result information via the information reception image PCT1 has not been accepted (step S340-NO), the reception unit 262 performs processing according to the operation received in step S330. (Step S370). Here, the processing is, for example, processing in which the information processing device 20 receives diagnosis result information via the eighth reception image G8. That is, through the process of step S370, the information processing device 20 receives various types of information included in the diagnosis result information regarding the subject S2. Note that the process corresponding to the operation received in step S330 may be any process as long as it can be performed according to the operation received via the information reception image PCT1. After the process of step S370 is performed, the reception unit 262 moves to step S330 and waits again until the information processing device 20 accepts the operation via the information reception image PCT1 displayed on the display unit 25 in step S320. .
 一方、受付部262は、情報受付画像PCT1を介した診断結果情報の受け付けを終了する操作をステップS330において受け付けたと判定した場合(ステップS340-YES)、情報受付画像PCT1の受付画像G81~受付画像G86のそれぞれを介して受け付けた情報に基づいて、対象脈種組を特定する。そして、受付部262は、特定した対象脈種組を示す診断結果情報を生成する(ステップS350)。この際、受付部262は、生成した診断結果情報に、情報受付画像PCT1の第1受付画像G1~第7受付画像G7のそれぞれを介して受け付けた情報を対応付ける。 On the other hand, if the receiving unit 262 determines that the operation to end the reception of diagnosis result information via the information receiving image PCT1 has been received in step S330 (step S340-YES), the receiving unit 262 receives the receiving images G81 to G81 of the information receiving image PCT1. The target vein type set is specified based on the information received through each G86. Then, the reception unit 262 generates diagnostic result information indicating the specified target pulse type group (step S350). At this time, the reception unit 262 associates the generated diagnosis result information with the information received via each of the first reception image G1 to seventh reception image G7 of the information reception image PCT1.
 次に、受付部262は、ステップS350において生成した診断結果情報を記憶部22に記憶させ(ステップS360)、図9に示したフローチャートの処理を終了する。 Next, the reception unit 262 stores the diagnosis result information generated in step S350 in the storage unit 22 (step S360), and ends the process of the flowchart shown in FIG.
 以上のように、情報処理装置20は、診断結果情報を受け付けることができる。 As described above, the information processing device 20 can receive diagnosis result information.
 <情報処理装置が漢方薬候補情報を出力する処理>
 以下、図12を参照し、情報処理装置20が漢方薬候補情報を出力する処理について説明する。図12は、情報処理装置20が漢方薬候補情報を出力する処理の流れの一例を示す図である。以下では、一例として、図12に示したステップS410の処理が行われるよりも前のタイミングにおいて、図4に示したフローチャートの処理によって生成された第1波形情報が記憶部22に記憶されている場合について説明する。第1波形情報は、被検者S3の脈波の波形を示す波形情報のことである。また、以下では、一例として、当該タイミングにおいて、漢方薬候補情報を出力する処理を情報処理装置20に開始させる第3操作とともに、漢方薬候補情報を提供する対象となる被検者を識別する被検者識別情報として、被検者S3を識別する被検者識別情報を情報処理装置20が受け付けている場合について説明する。また、以下では、一例として、当該タイミングにおいて、図5に示したフローチャートの処理によって係数列情報が記憶部22に記憶されている場合について説明する。
<Processing in which the information processing device outputs Chinese medicine candidate information>
Hereinafter, with reference to FIG. 12, a process in which the information processing device 20 outputs Chinese herbal medicine candidate information will be described. FIG. 12 is a diagram showing an example of a process flow in which the information processing device 20 outputs Chinese herbal medicine candidate information. In the following, as an example, the first waveform information generated by the process of the flowchart shown in FIG. 4 is stored in the storage unit 22 at a timing before the process of step S410 shown in FIG. 12 is performed. Let me explain the case. The first waveform information is waveform information indicating the waveform of the pulse wave of the subject S3. In addition, as an example, in the following, at the timing, the third operation for causing the information processing device 20 to start the process of outputting the Chinese herbal medicine candidate information, and the test subject identifying the subject to whom the Chinese herbal medicine candidate information is to be provided. A case will be described in which the information processing device 20 receives patient identification information that identifies the patient S3 as the identification information. Further, below, as an example, a case will be described in which coefficient string information is stored in the storage unit 22 by the process of the flowchart shown in FIG. 5 at the timing.
 第3操作及び被検者識別情報を情報処理装置20が受け付けた後、算出部263は、受け付けた被検者識別情報に基づいて、記憶部22から第1波形情報を読み出す(ステップS410)。図12では、ステップS410の処理を「波形情報読出」によって示している。 After the information processing device 20 receives the third operation and the subject identification information, the calculation unit 263 reads the first waveform information from the storage unit 22 based on the received subject identification information (step S410). In FIG. 12, the process of step S410 is shown as "waveform information reading".
 次に、算出部263は、ステップS410において読み出した第1波形情報が示す波形に応じた時間周波数スペクトルを算出する。そして、生成部268は、算出部263が算出した当該時間周波数スペクトルを示す時間周波数スペクトル画像を生成する(ステップS420)。 Next, the calculation unit 263 calculates a time-frequency spectrum according to the waveform indicated by the first waveform information read in step S410. Then, the generation unit 268 generates a time-frequency spectrum image indicating the time-frequency spectrum calculated by the calculation unit 263 (step S420).
 次に、処方候補出力部264は、記憶部22に予め記憶された係数列情報を記憶部22から読み出す。そして、処方候補出力部264は、読み出した係数列情報が示す第1係数列~第6係数列のそれぞれと、ステップS420において生成部268が生成した時間周波数スペクトル画像とに基づいて、被検者S3に処方される漢方薬の候補を特定する(ステップS430)。図12では、ステップS430の処理を「漢方薬候補特定」によって示している。ここで、ステップS430の処理について説明する。 Next, the prescription candidate output unit 264 reads out coefficient string information stored in advance in the storage unit 22 from the storage unit 22. Then, the prescription candidate output unit 264 determines whether or not the patient is to be examined based on each of the first to sixth coefficient sequences indicated by the read coefficient sequence information and the time-frequency spectrum image generated by the generation unit 268 in step S420. Candidates for Chinese herbal medicine to be prescribed in S3 are identified (step S430). In FIG. 12, the process of step S430 is shown as "Identification of Chinese medicine candidate." Here, the process of step S430 will be explained.
 処方候補出力部264は、例えば、読み出した係数列情報が示す第1係数列~第6係数列のうちの第1係数列と、第1機械学習モデルとに基づいて、浮網脈についての学習後の第1機械学習モデルを再現する。処方候補出力部264は、再現した第1機械学習モデルに、入力として、ステップS420において生成部268が生成した時間周波数スペクトル画像を入力する。当該時間周波数スペクトル画像が入力された当該第1機械学習モデルは、浮網脈に含まれる6つの選択肢のそれぞれについて、浮網脈の診断結果としての尤もらしさを示す尤度を算出し、被検者S3についての浮網脈の診断結果を示すベクトルとして、算出した尤度が最も高い選択肢を示すベクトルを出力する。図13は、浮網脈のような診断項目に含まれる複数の選択肢毎の尤度の一例を示す図である。処方候補出力部264は、当該第1機械学習モデルから出力された当該ベクトルを取得する。処方候補出力部264は、このような処理を、第1係数列~第6係数列のそれぞれについて行う。これにより、処方候補出力部264は、被検者S3についての6大脈種それぞれの診断結果を示すベクトルを第1機械学習モデルから取得することができる。そして、処方候補出力部264は、第1機械学習モデルに出力させた6つのベクトルの直和を、被検者S3についての診断結果情報として生成する。以下では、説明の便宜上、被検者S3についての診断結果情報を示すベクトルを、ベクトルYと称して説明する。また、以下では、説明の便宜上、ベクトルYが有する28個の成分のそれぞれを、y1~y28によって示す。この場合、浮網脈の診断結果を示すベクトルに含まれる成分がy1~y6であり、沈網脈の診断結果を示すベクトルに含まれる成分がy7~y10であり、遅網脈の診断結果を示すベクトルに含まれる成分がy11~y15であり、数網脈の診断結果を示すベクトルに含まれる成分がy16~y18であり、虚網脈の診断結果を示すベクトルに含まれる成分がy19~y22であり、実網脈の診断結果を示すベクトルに含まれる成分がy23~y28である。 For example, the prescription candidate output unit 264 performs learning about floating veins based on the first coefficient sequence among the first to sixth coefficient sequences indicated by the read coefficient sequence information and the first machine learning model. The following first machine learning model is reproduced. The prescription candidate output unit 264 inputs the time-frequency spectrum image generated by the generation unit 268 in step S420 as an input to the reproduced first machine learning model. The first machine learning model into which the time-frequency spectrum image is input calculates the likelihood indicating the likelihood of each of the six options included in the floating mesh vein as a diagnosis result of the floating mesh vein, and A vector indicating the option with the highest calculated likelihood is output as a vector indicating the diagnosis result of floating net veins for person S3. FIG. 13 is a diagram showing an example of the likelihood for each of a plurality of options included in a diagnostic item such as floating veins. The prescription candidate output unit 264 acquires the vector output from the first machine learning model. The prescription candidate output unit 264 performs such processing for each of the first to sixth coefficient sequences. Thereby, the prescription candidate output unit 264 can acquire vectors indicating the diagnosis results of each of the six major vein types for the subject S3 from the first machine learning model. Then, the prescription candidate output unit 264 generates the direct sum of the six vectors outputted by the first machine learning model as diagnosis result information regarding the subject S3. In the following, for convenience of explanation, the vector indicating the diagnosis result information regarding the subject S3 will be referred to as a vector Y. Further, in the following, for convenience of explanation, each of the 28 components of the vector Y is indicated by y1 to y28. In this case, the components included in the vector indicating the diagnosis result of floating net vein are y1 to y6, the components included in the vector indicating the diagnosis result of sinking net vein are y7 to y10, and the components included in the vector indicating the diagnosis result of slow net vein are y1 to y6. The components included in the vector shown are y11 to y15, the components included in the vector showing the diagnosis result of imaginary network are y16 to y18, and the components included in the vector showing the diagnosis result of imaginary network are y19 to y22. , and the components included in the vector indicating the diagnosis result of the real network are y23 to y28.
 第1機械学習モデルがベクトルYを出力した後、処方候補出力部264は、第1機械学習モデルから出力されたベクトルYを、入力として第2機械学習モデルに入力する。第2機械学習モデルは、前述した通り、第1機械学習モデルにより出力された診断結果情報を入力すると、当該診断結果情報に対応する被検者に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補のそれぞれを示す漢方薬候補情報を出力する。このため、第2機械学習モデルは、第1機械学習モデルが出力したベクトルYが入力されると、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補のそれぞれを示す漢方薬候補情報を出力する。具体的には、第2機械学習モデルは、当該ベクトルYが入力された場合、入力されたベクトルYと、事前に学習された第2データベース(すなわち、第2対応情報)とに基づいて、第2データベースが示す二次元テーブルにおいて当該ベクトルYが示す対象脈種組に対応付けられたフィールドのうち、所定の第1閾値以上の値が割り当てられた1以上のフィールドのそれぞれを特定する。そして、第2機械学習モデルは、特定した1以上のフィールドのそれぞれに対応付けられた漢方薬を、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補として特定する。ここで、第1閾値は、0より大きい値であれば、如何なる値であってもよい。第1閾値は、例えば、事前の実験結果等によって、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補の特定精度が高くなるように決定される。第2機械学習モデルは、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補を特定した後、特定した1以上の漢方薬の候補それぞれを示す漢方薬候補情報を出力する。ここで、図14は、第2機械学習モデルが、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補を特定する流れを可視化したイメージ図である。 After the first machine learning model outputs the vector Y, the prescription candidate output unit 264 inputs the vector Y output from the first machine learning model to the second machine learning model as an input. As mentioned above, when the second machine learning model receives the diagnosis result information output by the first machine learning model, it estimates that one or more Chinese herbal medicines are likely to be prescribed to the subject corresponding to the diagnosis result information. Chinese herbal medicine candidate information indicating each of one or more Chinese herbal medicine candidates is output. Therefore, when the second machine learning model receives the vector Y output from the first machine learning model, it selects one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3. Outputs Chinese herbal medicine candidate information indicating each of the following. Specifically, when the vector Y is input, the second machine learning model calculates the second Among the fields associated with the target pulse type set indicated by the vector Y in the two-dimensional table indicated by the second database, one or more fields to which a value equal to or greater than a predetermined first threshold is assigned are each identified. Then, the second machine learning model selects the Chinese herbal medicines associated with each of the identified one or more fields as one or more Chinese herbal medicine candidates that are estimated to be plausible as the one or more Chinese medicines to be prescribed to the subject S3. Identify. Here, the first threshold value may be any value as long as it is greater than zero. The first threshold value is determined, for example, based on prior experimental results or the like, so as to increase the accuracy of identifying one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3. After identifying one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3, the second machine learning model generates Chinese herbal medicine candidate information indicating each of the identified one or more Chinese medicine candidates. Output. Here, FIG. 14 is an image diagram visualizing the flow in which the second machine learning model identifies one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3.
 第2機械学習モデルが1以上の漢方薬候補情報を出力した後、処方候補出力部264は、第2機械学習モデルが出力した当該1以上の漢方薬候補情報のそれぞれが示す漢方薬の候補を、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補として特定する。以上のように、処方候補出力部264は、ステップS430において、当該1以上の漢方薬の候補を特定する。 After the second machine learning model outputs one or more Chinese herbal medicine candidate information, the prescription candidate output unit 264 outputs the Chinese herbal medicine candidate indicated by each of the one or more Chinese medicine candidate information outputted by the second machine learning model to the patient. One or more Chinese herbal medicines that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to person S3 are identified as candidates. As described above, the prescription candidate output unit 264 identifies the one or more Chinese herbal medicine candidates in step S430.
 ステップS430の処理が行われた後、処方候補出力部264は、ステップS430において特定した1以上の漢方薬の候補それぞれを示す漢方薬候補情報を含む出力情報を生成する。当該出力情報には、当該1以上の漢方薬の候補それぞれを示す漢方薬候補情報に加えて、如何なる情報が含まれてもよい。処方候補出力部264は、生成した出力情報を表示制御部267に出力する。これにより、表示制御部267は、例えば、処方候補出力部264から出力された出力情報を含む画像を生成する。そして、表示制御部267は、生成した当該画像を表示部25に表示させ(ステップS440)、図12に示したフローチャートの処理を終了する。なお、図12では、ステップS440の処理を「漢方薬候補情報表示」によって示している。 After the process of step S430 is performed, the prescription candidate output unit 264 generates output information including herbal medicine candidate information indicating each of the one or more herbal medicine candidates identified in step S430. The output information may include any information in addition to the herbal medicine candidate information indicating each of the one or more herbal medicine candidates. The prescription candidate output unit 264 outputs the generated output information to the display control unit 267. Thereby, the display control unit 267 generates, for example, an image including the output information output from the prescription candidate output unit 264. Then, the display control unit 267 displays the generated image on the display unit 25 (step S440), and ends the process of the flowchart shown in FIG. 12. In addition, in FIG. 12, the process of step S440 is shown by "Chinese medicine candidate information display".
 以上のように、情報処理装置20は、被検者S3の脈波の波形を示す第1波形情報に基づいて、被検者S3に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する。これにより、情報処理装置20は、漢方医に被検者S3の脈診を行わせることなく、被検者S3へ処方する漢方薬の候補を特定することができる。その結果、情報処理装置20は、漢方医が被検者S3へ漢方薬を処方するのに要する手間を軽減することができる。また、これにより、情報処理装置20は、漢方医の熟練度による治療成果のバラツキを抑制することを、効率よく行うことができる。 As described above, the information processing device 20 generates output information including Chinese herbal medicine candidate information indicating candidates for Chinese herbal medicine to be prescribed to the subject S3 based on the first waveform information indicating the waveform of the pulse wave of the subject S3. Output. Thereby, the information processing device 20 can identify candidates for Chinese herbal medicines to be prescribed to the subject S3 without having the Chinese herbalist perform a pulse diagnosis of the subject S3. As a result, the information processing device 20 can reduce the effort required for the Chinese medicine doctor to prescribe Chinese medicine to the subject S3. Further, thereby, the information processing device 20 can efficiently suppress variations in treatment results depending on the skill level of the Chinese medicine doctor.
 <実施形態の変形例1>
 以下、実施形態の変形例1について説明する。実施形態の変形例1では、ある被検者についての診断結果情報には、漢方医による当該被検者の問診、顔診、舌診、腹診のうちの少なくとも1つの診断結果を示す情報が含まれている。以下では、一例として、ある被検者についての診断結果情報に、漢方医による当該被検者の問診の診断結果を示す情報が含まれている場合について説明する。この場合、ある被検者についての診断結果情報には、例えば、当該被検者に関する情報、当該被検者の脈波の検出位置を示す情報、当該被検者の既往症を示す情報が含まれている。すなわち、当該被検者に関する情報、当該被検者の脈波の検出位置を示す情報、当該被検者の既往症を示す情報のそれぞれは、漢方医による当該被検者の問診の診断結果を示す情報の一例である。そして、この場合、前述のベクトルYは、前述のy1~y28の28個の成分に加えて、y29~y38の10個の成分が含まれている。ここで、y29は、被検者の性別が男性である場合に1、被検者の性別が女性である場合に0が代入される変数である。y30は、被検者の性別が女性である場合に1、被検者の性別が男性である場合に0が代入される変数である。y31は、被検者の年齢が代入される変数である。y32は、被検者の身長が代入される変数である。y33は、被検者の体重が代入される変数である。y34は、被検者の両腕のうち脈波の検出が行われた方の腕が左腕である場合に1、被検者の両腕のうち脈波の検出が行われた方の腕が右腕である場合に0が代入される変数である。y34は、被検者の両腕のうち脈波の検出が行われた方の腕が右腕である場合に0が代入される変数である。y35は、被検者の脈波が検出された位置が寸である場合に1、被検者の脈波が検出された位置が関又は尺である場合に0が代入される変数である。y36は、被検者の脈波が検出された位置が関である場合に1、被検者の脈波が検出された位置が寸又は尺である場合に0が代入される変数である。y37は、被検者の脈波が検出された位置が尺である場合に1、被検者の脈波が検出された位置が寸又は関である場合に0が代入される変数である。y38は、被検者が既往症を有している場合に1、被検者が既往症を有していない場合に0が代入される変数である。なお、実施形態の変形例1に係るベクトルYは、y29~y38のうちの一部が含まれる構成であってもよい。
<Modification 1 of the embodiment>
Modification 1 of the embodiment will be described below. In Modification 1 of the embodiment, the diagnosis result information for a certain subject includes information indicating the diagnosis result of at least one of an interview, a facial examination, a tongue examination, and an abdominal examination of the subject by a Chinese medicine doctor. include. Below, as an example, a case will be described in which the diagnosis result information for a certain subject includes information indicating the diagnosis result of an interview of the subject by a Chinese medicine doctor. In this case, the diagnostic result information for a certain subject includes, for example, information about the subject, information indicating the detection position of the subject's pulse wave, and information indicating the subject's past diseases. ing. In other words, each of the information regarding the subject, the information indicating the detection position of the subject's pulse wave, and the information indicating the subject's past illness indicates the diagnosis result of the interview of the subject by the Chinese medicine doctor. This is an example of information. In this case, the vector Y described above includes 10 components y29 to y38 in addition to the 28 components y1 to y28 described above. Here, y29 is a variable to which 1 is assigned when the gender of the subject is male, and 0 is assigned when the gender of the subject is female. y30 is a variable to which 1 is assigned when the gender of the subject is female, and 0 is assigned when the gender of the subject is male. y31 is a variable to which the age of the subject is substituted. y32 is a variable to which the height of the subject is substituted. y33 is a variable to which the subject's weight is substituted. y34 is 1 if the arm from which the pulse wave was detected is the left arm, and y34 is 1 if the arm from which the pulse wave was detected is the left arm; This is a variable to which 0 is assigned if it is a right arm. y34 is a variable to which 0 is substituted when the right arm is the one in which the pulse wave has been detected out of both arms of the subject. y35 is a variable to which 1 is substituted when the position where the pulse wave of the subject is detected is Sun, and 0 is substituted when the position where the pulse wave of the subject is detected is Seki or Shaku. y36 is a variable to which 1 is substituted when the position where the pulse wave of the subject is detected is Seki, and 0 is substituted when the position where the pulse wave of the subject is detected is Sun or Shaku. y37 is a variable to which 1 is assigned when the position where the pulse wave of the subject is detected is shaku, and 0 is assigned when the position where the pulse wave of the subject is detected is sun or seki. y38 is a variable to which 1 is assigned when the subject has a pre-existing disease, and 0 is substituted when the subject does not have a pre-existing disease. Note that the vector Y according to the first modification of the embodiment may include a portion of y29 to y38.
 この場合、図10に示したステップS350では、受付部262は、情報受付画像PCT1の受付画像G81~受付画像G86のそれぞれを介して受け付けた情報に基づいて、対象脈種組を特定する。そして、受付部262は、特定した対象脈種組を示す診断結果情報と、第2受付画像G2~第7受付画像G7のそれぞれを介して受け付けた情報とを含む情報を、診断結果情報として生成する。この際、受付部262は、生成した診断結果情報に、情報受付画像PCT1の第1受付画像G1を介して受け付けた被検者識別情報を対応付ける。 In this case, in step S350 shown in FIG. 10, the reception unit 262 identifies the target pulse type group based on the information received through each of the reception images G81 to G86 of the information reception image PCT1. Then, the reception unit 262 generates, as diagnosis result information, information including diagnosis result information indicating the specified target pulse type set and information received via each of the second reception image G2 to seventh reception image G7. do. At this time, the reception unit 262 associates the generated diagnosis result information with the patient identification information received via the first reception image G1 of the information reception image PCT1.
 また、この場合、前述の第2データベースは、(n1×n2)×m1の二次元テーブル構造のデータベースである。ここで、n2は、y29~y38のそれぞれに代入された10個の値の組み合わせの数である。これにより、情報処理装置20は、ある被検者の対象脈種組を示す情報、当該被検者に関する情報、当該被検者の脈波の検出位置を示す情報、当該被検者の既往症を示す情報の組み合わせに基づいて、当該被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力することができる。その結果、情報処理装置20は、当該被検者へ処方すべき漢方薬の候補の特定精度を、高くすることができ、漢方医が被検者S3へ漢方薬を処方するのに要する手間を、より確実に軽減することができる。 Furthermore, in this case, the aforementioned second database is a database with a two-dimensional table structure of (n1×n2)×m1. Here, n2 is the number of combinations of 10 values assigned to each of y29 to y38. Thereby, the information processing device 20 can obtain information indicating the target pulse type set of a certain subject, information regarding the subject, information indicating the detection position of the subject's pulse wave, and past medical conditions of the subject. Based on the combination of information shown, output information including Chinese herbal medicine candidate information indicating candidates for Chinese medicine prescribed to the subject can be output. As a result, the information processing device 20 can increase the accuracy of identifying candidates for Chinese herbal medicines to be prescribed to the subject, and reduce the effort required for the Chinese herbalist to prescribe Chinese medicines to the subject S3. It can definitely be reduced.
 <実施形態の変形例2>
 以下、実施形態の変形例2について説明する。実施形態の変形例2では、第1機械学習モデルは、図12に示したステップS430において、エラー補正処理を行う。例えば、処方候補出力部264は、前述した通り、ステップS430において読み出した係数列情報が示す第1係数列~第6係数列のうちの第1係数列と、第1機械学習モデルとに基づいて、浮網脈についての学習後の第1機械学習モデルを再現する。そして、処方候補出力部264は、再現した第1機械学習モデルに、入力として、ステップS420において生成部268が生成した時間周波数スペクトル画像を入力する。当該時間周波数スペクトル画像が入力された当該第1機械学習モデルは、浮網脈に含まれる6つの選択肢のそれぞれについて、浮網脈の診断結果としての尤もらしさを示す尤度を算出する。この際、当該第1機械学習モデルは、算出した6つの尤度のすべてが予め決められた閾値未満であった場合、エラー処理を行う。エラー処理は、例えば、これら6つの尤度を、これら6つの尤度の平均値に置き換える処理である。当該第1機械学習モデルは、当該場合においてエラー処理を行うと、被検者S3についての浮網脈の診断結果を示すベクトルとして、すべての成分に1が代入されたベクトルを出力する。一方、当該第1機械学習モデルは、算出した6つの尤度のうちの少なくとも1つが予め決められた閾値以上であった場合、被検者S3についての浮網脈の診断結果を示すベクトルとして、算出した尤度が最も高い選択肢を示すベクトルを出力する。処方候補出力部264は、当該第1機械学習モデルから出力された当該ベクトルを取得する。処方候補出力部264は、このような処理を、第1係数列~第6係数列のそれぞれについて行う。ここで、処方候補出力部264は、例えば、第1機械学習モデルから取得した6つのベクトルのうちの少なくとも1つが、すべての成分に1が代入されたベクトルであった場合、図12に示したフローチャートの処理を終了する。そして、表示制御部267は、エラーが生じたことを示す情報とともに、被検者S3の脈波の波形を示す波形情報の取得のやり直しを促す情報を表示部25に表示させる。なお、上記のエラー処理は、これに代えて、エラーフラグを立てて蓄積しない等の他の処理であってもよい。また、処方候補出力部264は、第1機械学習モデルから取得した6つのベクトルのうちの少なくとも1つが、すべての成分に1が代入されたベクトルであった場合であっても、図12に示したフローチャートの処理を終了せずに継続してもよい。この場合、第2データベースが示す二次元テーブルのn1は、対象脈種組として選択可能な脈種の組み合わせの数ではなく、病脈28種の中から6以上の脈種の組み合わせとして選択可能な脈種の組み合わせの数に置き換えられる。また、この場合、診断結果情報は、6以上の脈種の組み合わせを示す情報、すなわち、6以上の脈種の組み合わせを示すベクトルに置き換えられる。これらの置き換えを行うことにより、情報処理装置20は、この場合であっても、図12に示したフローチャートの処理を終了せずに継続することができる。
<Modification 2 of embodiment>
Modification 2 of the embodiment will be described below. In the second modification of the embodiment, the first machine learning model performs error correction processing in step S430 shown in FIG. 12. For example, as described above, the prescription candidate output unit 264 generates a formula based on the first coefficient sequence of the first to sixth coefficient sequences indicated by the coefficient sequence information read in step S430 and the first machine learning model. , reproduce the first machine learning model after learning about floating veins. Then, the prescription candidate output unit 264 inputs the time-frequency spectrum image generated by the generation unit 268 in step S420 as an input to the reproduced first machine learning model. The first machine learning model to which the time-frequency spectrum image is input calculates a likelihood indicating the likelihood of each of the six options included in the floating mesh vein as a diagnosis result of the floating mesh vein. At this time, the first machine learning model performs error processing if all six calculated likelihoods are less than a predetermined threshold. The error processing is, for example, a process of replacing these six likelihoods with the average value of these six likelihoods. When the first machine learning model performs error processing in this case, it outputs a vector in which 1 is substituted for all components as a vector indicating the diagnosis result of floating web veins for the subject S3. On the other hand, when at least one of the six calculated likelihoods is equal to or higher than a predetermined threshold, the first machine learning model uses the vector as a vector indicating the diagnosis result of floating veins for the subject S3. A vector indicating the option with the highest calculated likelihood is output. The prescription candidate output unit 264 acquires the vector output from the first machine learning model. The prescription candidate output unit 264 performs such processing for each of the first to sixth coefficient sequences. Here, for example, if at least one of the six vectors acquired from the first machine learning model is a vector in which 1 is assigned to all components, the prescription candidate output unit 264 outputs the formula shown in FIG. End the flowchart processing. Then, the display control unit 267 causes the display unit 25 to display information indicating that an error has occurred, as well as information prompting to reacquire the waveform information indicating the waveform of the pulse wave of the subject S3. Note that the above error processing may be replaced with other processing such as setting an error flag and not storing the error flag. Further, even if at least one of the six vectors acquired from the first machine learning model is a vector in which 1 is assigned to all components, the prescription candidate output unit 264 outputs the formula as shown in FIG. The processing in the flowchart may be continued without ending. In this case, n1 of the two-dimensional table indicated by the second database is not the number of pulse type combinations that can be selected as the target pulse type set, but the number of pulse type combinations that can be selected as a combination of six or more pulse types from among the 28 diseased vein types. Replaced by the number of vein type combinations. Further, in this case, the diagnosis result information is replaced with information indicating a combination of six or more pulse types, that is, a vector indicating a combination of six or more pulse types. By performing these replacements, even in this case, the information processing device 20 can continue the processing of the flowchart shown in FIG. 12 without ending it.
 <実施形態の変形例3>
 以下、実施形態の変形例3について説明する。実施形態の変形例3では、第1機械学習モデルは、図12に示したステップS430において、病脈28脈のそれぞれについて算出した尤度を示すベクトルZを、ベクトルYとともに診断結果情報として出力する構成であってもよい。この場合、処方候補出力部264は、ステップS430において、第1機械学習モデルから出力されたベクトルYを第2機械学習モデルへ入力することによって第2機械学習モデルから出力された1以上の漢方薬の候補の組み合わせと、第1機械学習モデルから出力されたベクトルZとに基づいて、第2対応情報が示す二次元テーブルの各フィールドの値を更新する。具体的には、処方候補出力部264は、病脈28脈のそれぞれと、当該1以上の漢方薬の候補とのそれぞれが、当該二次元テーブル上でクロスしたフィールドの値に、ベクトルZが示す尤度を加算する。例えば、処方候補出力部264は、浮脈と、当該1以上の漢方薬の候補とのそれぞれがクロスしたフィールドの値に、ベクトルZが示す尤度のうち浮脈についての尤度を加算する。これにより、情報処理装置20は、漢方医の脈種の診断精度のバラツキによって、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補の特定精度が低下してしまうことを抑制することができる。なお、この場合、第1機械学習モデルは、第2対応情報を解析することによって得られる6大脈種それぞれについての漢方薬処方決定要因の要因順位、寄与度の少なくとも一方を推定する構成であってもよい。この場合、第1機械学習モデルは、例えば、推定した当該要因順位、当該寄与度の少なくとも一方に基づいて、6大脈種それぞれについて算出された尤度に重みを乗算することができる。ここで、この重みは、6大脈種それぞれについて算出された尤度に乗算する重みは、すべて足すと1になるように規格化された重みである。例えば、第1機械学習モデルは、浮網脈について推定した当該要因順位、当該寄与度の少なくとも一方に基づいて、浮網脈に含まれる6つの選択肢それぞれの尤度に乗算する重みを決定する。当該重みは、当該要因順位、当該寄与度のそれぞれが大きいほど、大きくなる重みである。第1機械学習モデルは、当該重みを決定した後、決定した重みを、浮網脈に含まれる6つの選択肢それぞれの尤度に乗算する。これにより、情報処理装置20は、漢方医の脈種の診断精度のバラツキによって、被検者S3に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補の特定精度が低下してしまうことを、より確実に抑制することができる。
<Variation 3 of the embodiment>
Modification 3 of the embodiment will be described below. In the third modification of the embodiment, the first machine learning model outputs the vector Z indicating the likelihood calculated for each of the 28 diseased pulses together with the vector Y in step S430 shown in FIG. 12 as diagnosis result information. It may be a configuration. In this case, in step S430, the prescription candidate output unit 264 inputs the vector Y output from the first machine learning model to the second machine learning model, thereby outputting one or more Chinese herbal medicines output from the second machine learning model. Based on the combination of candidates and the vector Z output from the first machine learning model, the values of each field of the two-dimensional table indicated by the second correspondence information are updated. Specifically, the prescription candidate output unit 264 outputs the likelihood indicated by the vector Z to the value of the field where each of the 28 disease veins and the one or more herbal medicine candidates cross each other on the two-dimensional table. Add degrees. For example, the prescription candidate output unit 264 adds the likelihood of floatation among the likelihoods indicated by the vector Z to the value of the field where floatation and the one or more Chinese medicine candidates cross each other. As a result, the information processing device 20 decreases the accuracy of identifying one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3 due to variations in the diagnostic accuracy of the Chinese medicine doctor's vein type. You can prevent it from happening. In this case, the first machine learning model is configured to estimate at least one of the factor ranking and the degree of contribution of the Chinese medicine prescription determining factors for each of the six major vein types obtained by analyzing the second correspondence information. Good too. In this case, the first machine learning model can, for example, multiply the likelihood calculated for each of the six major vein types by a weight based on at least one of the estimated factor rank and the contribution. Here, this weight is a weight normalized so that the weights multiplied by the likelihoods calculated for each of the six major vein types add up to 1. For example, the first machine learning model determines the weight to be multiplied by the likelihood of each of the six options included in the floating net based on at least one of the factor ranking and the contribution degree estimated for the floating net. The weight becomes larger as each of the factor ranking and the degree of contribution become larger. After determining the weight, the first machine learning model multiplies the likelihood of each of the six options included in the floating network by the determined weight. As a result, the information processing device 20 decreases the accuracy of identifying one or more Chinese herbal medicine candidates that are estimated to be plausible as one or more Chinese herbal medicines to be prescribed to the subject S3 due to variations in the diagnostic accuracy of the Chinese medicine doctor's vein type. It is possible to more reliably prevent this from happening.
 <実施形態の変形例4>
 以下、実施形態の変形例4について説明する。実施形態の変形例4では、M個の診断項目は、病脈28脈に代えて、日本式脈診法における6つの診断項目のそれぞれである。この場合も、Mは、6である。ここで、この6つの診断項目は、浮脈と沈脈との間の強弱、数脈と遅脈との間の強弱、大脈と小脈との間の強弱、虚脈と実脈との間の強弱、緊脈と緩脈との間の強弱、滑脈と渋脈との間の強弱のそれぞれである。日本式脈診法において、浮脈と沈脈とは、対抗関係にある。このため、日本式脈診法を用いる漢方医は、被検者の脈波に浮脈と沈脈とのいずれが強く現れているかを診断する。これが、浮脈と沈脈との間の強弱の診断である。同様に、日本式脈診法では、数脈と遅脈、大脈と小脈、虚脈と実脈、緊脈と緩脈、滑脈と渋脈のそれぞれが対抗関係にある。このため、日本式脈診法では、浮脈と沈脈との間の強弱、数脈と遅脈との間の強弱、大脈と小脈との間の強弱、虚脈と実脈との間の強弱、緊脈と緩脈との間の強弱、滑脈と渋脈との間の強弱のそれぞれが、6つの診断項目として診断される。以下では、一例として、これら6つの診断項目それぞれが、当該漢方医によってレベル1~レベル5の5段階のいずれかに診断される場合について説明する。この場合、これら6つの診断項目のうちのある診断項目に含まれる複数の選択肢が、レベル1~レベル5のそれぞれである。そして、この場合、浮脈と沈脈との間の強弱は、レベルの値が低いほど浮脈が強く、レベルの値が高いほど沈脈が強いことを示す。また、この場合、数脈と遅脈との間の強弱は、レベルの値が低いほど数脈が強く、レベルの値が高いほど遅脈が強いことを示す。また、この場合、大脈と小脈との間の強弱は、レベルの値が低いほど大脈が強く、レベルの値が高いほど小脈が強いことを示す。また、この場合、虚脈と実脈との間の強弱は、レベルの値が低いほど虚脈が強く、レベルの値が高いほど実脈が強いことを示す。また、この場合、緊脈と緩脈との間の強弱は、レベルの値が低いほど緊脈が強く、レベルの値が高いほど緩脈が強いことを示す。また、この場合、滑脈と渋脈との間の強弱は、レベルの値が低いほど滑脈が強く、レベルの値が高いほど渋脈が強いことを示す。例えば、ある学習時被検者の浮脈と沈脈との間の強弱についての診断結果を示す情報は、レベル1~レベル5のそれぞれに対応付けられた変数を成分として有するベクトルである。そして、例えば、当該ベクトルが有する成分のうちレベル1に対応付けられた変数には、浮脈と沈脈との間の強弱の診断結果としてレベル1が漢方医により選択されている場合、1が代入されている。また、この場合、当該ベクトルが有する成分のうちレベル2~レベル5のそれぞれに対応付けられた変数には、0が代入されている。ここで、実施形態の変形例4に係る診断結果情報は、これら6つの診断項目それぞれについての診断結果を示すベクトルの直和によって表される。すなわち、実施形態の変形例4において、ある診断結果情報を表すベクトルの次元は、30次元である。そして、実施形態の変形例4において、当該診断結果情報は、対象脈種組に代えて、対象レベル組を示す。
<Modification 4 of embodiment>
Modification 4 of the embodiment will be described below. In the fourth modification of the embodiment, the M diagnostic items are each of the six diagnostic items in the Japanese pulse diagnosis method, instead of the 28 diseased pulses. In this case as well, M is 6. Here, these six diagnostic items are the strength between floating pulses and sinking pulses, the strength between several pulses and slow pulses, the strength between large and small veins, and the strength between ischemic pulses and real pulses. The strength is the strength between the pulses, the strength between the tense and slow pulses, and the strength between the smooth and astringent pulses. In the Japanese pulse diagnosis method, floating veins and sinking veins have an opposing relationship. For this reason, Chinese herbalists who use the Japanese pulse diagnosis method diagnose whether floating pulses or sinking pulses appear more strongly in the subject's pulse wave. This is a diagnosis of the strength between floating veins and sinking veins. Similarly, in the Japanese pulse diagnosis method, slow pulse and slow pulse, large pulse and small pulse, ischemic pulse and real pulse, tense pulse and brady pulse, and smooth pulse and astringent pulse are opposed to each other. For this reason, in the Japanese pulse diagnosis method, there are differences in strength between floating pulse and sinking pulse, strength between several pulses and slow pulse, strength and weakness between large and small pulses, and weak and weak pulses between ischemic and real pulses. The strength between the two, the strength between the tense and slow pulses, and the strength between the smooth and astringent pulses are each diagnosed as six diagnostic items. Below, as an example, a case will be described in which each of these six diagnostic items is diagnosed by the Chinese herbalist as one of five levels from level 1 to level 5. In this case, a plurality of options included in a certain diagnostic item among these six diagnostic items are levels 1 to 5, respectively. In this case, the strength between the floating veins and the sinking veins indicates that the lower the level value, the stronger the floating veins, and the higher the level value, the stronger the sinking veins. Further, in this case, the strength between the several pulses and the slow pulse indicates that the lower the level value is, the stronger the several pulses are, and the higher the level value is, the stronger the slow pulse is. Further, in this case, regarding the strength between the large vein and the small vein, the lower the level value, the stronger the large vein, and the higher the level value, the stronger the small vein. Further, in this case, the strength between the ischemic pulse and the real pulse indicates that the lower the level value is, the stronger the isty pulse is, and the higher the level value is, the stronger the real pulse is. Further, in this case, regarding the intensity between the tense pulse and the bradycardia, the lower the level value, the stronger the bradycardia, and the higher the level value, the stronger the bradycardia. Further, in this case, regarding the strength between the smooth vein and the astringent vein, the lower the level value, the stronger the smooth vein, and the higher the level value, the stronger the astringent vein. For example, information indicating a diagnosis result regarding the strength of a floating pulse and a sinking pulse of a certain learning subject is a vector having variables associated with each of levels 1 to 5 as components. For example, if level 1 is selected by the Chinese herbalist as a diagnostic result of the strength between floating veins and sinking veins, the variable associated with level 1 among the components included in the vector is 1. It has been assigned. Furthermore, in this case, 0 is assigned to variables associated with each of levels 2 to 5 among the components of the vector. Here, the diagnosis result information according to the fourth modification of the embodiment is represented by the direct sum of vectors indicating the diagnosis results for each of these six diagnosis items. That is, in the fourth modification of the embodiment, the dimension of a vector representing certain diagnostic result information is 30 dimensions. In a fourth modification of the embodiment, the diagnosis result information indicates a target level group instead of a target pulse type group.
 情報処理装置20は、このような対象レベル組を示す診断結果情報を、図10に示した情報受付画像PCT1に代えて、情報受付画像PCT2を介して受け付ける。このため、表示制御部267は、図9に示したステップS310において、情報受付画像PCT2を生成する。ここで、図15は、情報受付画像PCT2の一例を示す図である。 The information processing device 20 receives diagnosis result information indicating such a target level group via the information reception image PCT2 instead of the information reception image PCT1 shown in FIG. Therefore, the display control unit 267 generates the information reception image PCT2 in step S310 shown in FIG. Here, FIG. 15 is a diagram showing an example of the information reception image PCT2.
 情報受付画像PCT2には、例えば、第8受付画像G8に代えて、第1受付画像G1~第7受付画像G7とともに第9受付画像G9が含まれている。なお、情報受付画像PCT2には、これらの画像に加えて、他の画像が含まれる構成であってもよい。また、第1受付画像G1~第7受付画像G7については、既に説明済みであるため、説明を省略する。 For example, instead of the eighth reception image G8, the information reception image PCT2 includes a ninth reception image G9 together with the first reception image G1 to the seventh reception image G7. Note that the information reception image PCT2 may include other images in addition to these images. Further, since the first reception image G1 to the seventh reception image G7 have already been explained, their explanation will be omitted.
 第9受付画像G9は、診断結果情報を受け付けるGUIである。第9受付画像G9には、例えば、受付画像G91~受付画像G96の6つの画像が含まれている。 The ninth reception image G9 is a GUI that receives diagnosis result information. The ninth reception image G9 includes, for example, six images, reception image G91 to reception image G96.
 受付画像G91は、浮脈と沈脈との間の強弱のレベルの値を受け付けるGUIである。受付画像G91には、浮脈を示す情報と、沈脈を示す情報との間に、5つのラジオボタンが並んで配置されている。これら5つのラジオボタンは、浮脈を示す情報に最も近いラジオボタンから沈脈を示す情報に向かって順に、レベル1に対応付けられたラジオボタン、レベル2に対応付けられたラジオボタン、レベル3に対応付けられたラジオボタン、レベル4に対応付けられたラジオボタン、レベル5に対応付けられたラジオボタンである。これら5つのラジオボタンのうちのいずれかを選択する操作を行うと、当該操作により選択されたラジオボタン上に、当該ラジオボタンが選択されたことを示す情報が重畳される。そして、これにより、情報処理装置20は、当該操作により選択されたラジオボタンに対応付けられたレベルの値を、浮脈と沈脈との間の強弱のレベルの値として受け付ける。例えば、情報処理装置20は、受付画像G91においてレベル1に対応付けられたラジオボタンを選択する操作を受け付けた場合、浮脈と沈脈との間の強弱のレベルの値として、レベル1を受け付ける。 The reception image G91 is a GUI that accepts the value of the strength level between the floating vein and the sinking vein. In the reception image G91, five radio buttons are arranged in a line between information indicating a floating vein and information indicating a sinking vein. These five radio buttons are arranged in order from the radio button closest to the information indicating floating veins to the information indicating sinking veins: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5. When an operation is performed to select any one of these five radio buttons, information indicating that the radio button has been selected is superimposed on the radio button selected by the operation. Thereby, the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the floating vein and the sinking vein. For example, when receiving an operation to select a radio button associated with level 1 in the reception image G91, the information processing device 20 accepts level 1 as the value of the level of strength between floating veins and sinking veins. .
 受付画像G92は、数脈と遅脈との間の強弱のレベルの値を受け付けるGUIである。受付画像G92には、数脈を示す情報と、遅脈を示す情報との間に、5つのラジオボタンが並んで配置されている。これら5つのラジオボタンは、数脈を示す情報に最も近いラジオボタンから遅脈を示す情報に向かって順に、レベル1に対応付けられたラジオボタン、レベル2に対応付けられたラジオボタン、レベル3に対応付けられたラジオボタン、レベル4に対応付けられたラジオボタン、レベル5に対応付けられたラジオボタンである。これら5つのラジオボタンのうちのいずれかを選択する操作を行うと、当該操作により選択されたラジオボタン上に、当該ラジオボタンが選択されたことを示す情報が重畳される。そして、これにより、情報処理装置20は、当該操作により選択されたラジオボタンに対応付けられたレベルの値を、数脈と遅脈との間の強弱のレベルの値として受け付ける。例えば、情報処理装置20は、受付画像G92においてレベル1に対応付けられたラジオボタンを選択する操作を受け付けた場合、数脈と遅脈との間の強弱のレベルの値として、レベル1を受け付ける。 The reception image G92 is a GUI that accepts the value of the strength level between the slow pulse and the slow pulse. In the reception image G92, five radio buttons are arranged in a line between information indicating a slow pulse and information indicating a slow pulse. These five radio buttons are arranged in order from the radio button closest to the information indicating slow pulse to the information indicating slow pulse: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5. When an operation is performed to select any one of these five radio buttons, information indicating that the radio button has been selected is superimposed on the radio button selected by the operation. Thereby, the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of intensity between the slow pulse and the slow pulse. For example, when receiving an operation to select a radio button associated with level 1 in the reception image G92, the information processing device 20 accepts level 1 as the strength level value between multiple pulses and slow pulses. .
 受付画像G93は、大脈と小脈との間の強弱のレベルの値を受け付けるGUIである。受付画像G93には、大脈を示す情報と、小脈を示す情報との間に、5つのラジオボタンが並んで配置されている。これら5つのラジオボタンは、大脈を示す情報に最も近いラジオボタンから小脈を示す情報に向かって順に、レベル1に対応付けられたラジオボタン、レベル2に対応付けられたラジオボタン、レベル3に対応付けられたラジオボタン、レベル4に対応付けられたラジオボタン、レベル5に対応付けられたラジオボタンである。これら5つのラジオボタンのうちのいずれかを選択する操作を行うと、当該操作により選択されたラジオボタン上に、当該ラジオボタンが選択されたことを示す情報が重畳される。そして、これにより、情報処理装置20は、当該操作により選択されたラジオボタンに対応付けられたレベルの値を、大脈と小脈との間の強弱のレベルの値として受け付ける。例えば、情報処理装置20は、受付画像G93においてレベル1に対応付けられたラジオボタンを選択する操作を受け付けた場合、大脈と小脈との間の強弱のレベルの値として、レベル1を受け付ける。 The reception image G93 is a GUI that accepts the value of the strength level between the large vein and the small vein. In the reception image G93, five radio buttons are arranged in a line between information indicating large veins and information indicating small veins. These five radio buttons are arranged in order from the radio button closest to the information indicating the large vein to the information indicating the small vein: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5. When an operation is performed to select any one of these five radio buttons, information indicating that the radio button has been selected is superimposed on the radio button selected by the operation. Then, the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the large and small veins. For example, when receiving an operation to select a radio button associated with level 1 in the reception image G93, the information processing device 20 accepts level 1 as the value of the level of strength between the large and small veins. .
 受付画像G94は、虚脈と実脈との間の強弱のレベルの値を受け付けるGUIである。受付画像G94には、虚脈を示す情報と、実脈を示す情報との間に、5つのラジオボタンが並んで配置されている。これら5つのラジオボタンは、虚脈を示す情報に最も近いラジオボタンから実脈を示す情報に向かって順に、レベル1に対応付けられたラジオボタン、レベル2に対応付けられたラジオボタン、レベル3に対応付けられたラジオボタン、レベル4に対応付けられたラジオボタン、レベル5に対応付けられたラジオボタンである。これら5つのラジオボタンのうちのいずれかを選択する操作を行うと、当該操作により選択されたラジオボタン上に、当該ラジオボタンが選択されたことを示す情報が重畳される。そして、これにより、情報処理装置20は、当該操作により選択されたラジオボタンに対応付けられたレベルの値を、虚脈と実脈との間の強弱のレベルの値として受け付ける。例えば、情報処理装置20は、受付画像G94においてレベル1に対応付けられたラジオボタンを選択する操作を受け付けた場合、虚脈と実脈との間の強弱のレベルの値として、レベル1を受け付ける。 The reception image G94 is a GUI that accepts the value of the strength level between the ischemic pulse and the real pulse. In the reception image G94, five radio buttons are arranged in a line between information indicating an ischemic pulse and information indicating a real pulse. These five radio buttons are arranged in order from the radio button closest to the information indicating the ischemic pulse to the information indicating the actual pulse: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5. When an operation is performed to select any one of these five radio buttons, information indicating that the radio button has been selected is superimposed on the radio button selected by the operation. Then, the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the ischemic pulse and the real pulse. For example, when receiving an operation to select a radio button associated with level 1 in the reception image G94, the information processing device 20 accepts level 1 as the value of the level of strength between the ischemic pulse and the real pulse. .
 受付画像G95は、緊脈と緩脈との間の強弱のレベルの値を受け付けるGUIである。受付画像G95には、緊脈を示す情報と、緩脈を示す情報との間に、5つのラジオボタンが並んで配置されている。これら5つのラジオボタンは、緊脈を示す情報に最も近いラジオボタンから緩脈を示す情報に向かって順に、レベル1に対応付けられたラジオボタン、レベル2に対応付けられたラジオボタン、レベル3に対応付けられたラジオボタン、レベル4に対応付けられたラジオボタン、レベル5に対応付けられたラジオボタンである。これら5つのラジオボタンのうちのいずれかを選択する操作を行うと、当該操作により選択されたラジオボタン上に、当該ラジオボタンが選択されたことを示す情報が重畳される。そして、これにより、情報処理装置20は、当該操作により選択されたラジオボタンに対応付けられたレベルの値を、緊脈と緩脈との間の強弱のレベルの値として受け付ける。例えば、情報処理装置20は、受付画像G95においてレベル1に対応付けられたラジオボタンを選択する操作を受け付けた場合、緊脈と緩脈との間の強弱のレベルの値として、レベル1を受け付ける。 The reception image G95 is a GUI that accepts the value of the level of strength between systolic and bradycardia. In the reception image G95, five radio buttons are arranged in a line between information indicating a tense heartbeat and information indicating a slow heartbeat. These five radio buttons are arranged in order from the radio button closest to the information indicating rapid pulse to the information indicating brady pulse: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5. When an operation is performed to select any one of these five radio buttons, information indicating that the radio button has been selected is superimposed on the radio button selected by the operation. Thereby, the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the strong and weak pulses. For example, when the information processing device 20 receives an operation to select a radio button associated with level 1 in the reception image G95, it accepts level 1 as the value of the level of strength between tense and slow pulses. .
 受付画像G96は、滑脈と渋脈との間の強弱のレベルの値を受け付けるGUIである。受付画像G96には、滑脈を示す情報と、渋脈を示す情報との間に、5つのラジオボタンが並んで配置されている。これら5つのラジオボタンは、滑脈を示す情報に最も近いラジオボタンから渋脈を示す情報に向かって順に、レベル1に対応付けられたラジオボタン、レベル2に対応付けられたラジオボタン、レベル3に対応付けられたラジオボタン、レベル4に対応付けられたラジオボタン、レベル5に対応付けられたラジオボタンである。これら5つのラジオボタンのうちのいずれかを選択する操作を行うと、当該操作により選択されたラジオボタン上に、当該ラジオボタンが選択されたことを示す情報が重畳される。そして、これにより、情報処理装置20は、当該操作により選択されたラジオボタンに対応付けられたレベルの値を、滑脈と渋脈との間の強弱のレベルの値として受け付ける。例えば、情報処理装置20は、受付画像G96においてレベル1に対応付けられたラジオボタンを選択する操作を受け付けた場合、滑脈と渋脈との間の強弱のレベルの値として、レベル1を受け付ける。 The reception image G96 is a GUI that accepts the value of the strength level between the smooth vein and the astringent vein. In the reception image G96, five radio buttons are arranged in a line between information indicating smooth pulse and information indicating slow pulse. These five radio buttons are arranged in order from the radio button closest to the information indicating smooth pulse to the information indicating difficult pulse: the radio button associated with level 1, the radio button associated with level 2, and the radio button associated with level 3. , a radio button associated with level 4, and a radio button associated with level 5. When an operation is performed to select any one of these five radio buttons, information indicating that the radio button has been selected is superimposed on the radio button selected by the operation. Thereby, the information processing device 20 receives the value of the level associated with the radio button selected by the operation as the value of the level of strength between the smooth pulse and the astringent pulse. For example, when receiving an operation to select a radio button associated with level 1 in reception image G96, the information processing device 20 accepts level 1 as the value of the level of strength between smooth pulse and astringent pulse. .
 情報処理装置20は、このような構成の情報受付画像PCT2を介して、実施形態の変形例4に係る診断結果情報を受け付けることができる。そして、情報処理装置20は、図5に示したフローチャートの処理を、このような構成の情報受付画像PCT2を介して受け付けられた診断結果情報を用いて行うことにより、実施形態と同様に、第1対応情報及び第2対応情報を生成し、生成した第1対応情報に基づく第1機械学習モデルの学習と、生成した第2対応情報に基づく第2機械学習モデルの学習とのそれぞれを行う。その結果、情報処理装置20は、実施形態と同様に、図12に示したフローチャートの処理を行うことができ、漢方医が第1被検者へ漢方薬を処方するのに要する手間を軽減することができる。なお、実施形態の変形例4に係る第2対応情報が記憶された第2データベースにおけるn1は、対象レベル組として選択可能なレベルの値の組み合わせの数である。そして、n1は、浮脈と沈脈との間の強弱、数脈と遅脈との間の強弱、大脈と小脈との間の強弱、虚脈と実脈との間の強弱、緊脈と緩脈との間の強弱、滑脈と渋脈との間の強弱のそれぞれに含まれるレベルの数が5であるので、15625である。 The information processing device 20 can receive the diagnosis result information according to the fourth modification of the embodiment via the information reception image PCT2 having such a configuration. Then, the information processing device 20 performs the process of the flowchart shown in FIG. 5 using the diagnosis result information received via the information reception image PCT2 having such a configuration, thereby obtaining the first result as in the embodiment. First correspondence information and second correspondence information are generated, and a first machine learning model is trained based on the generated first correspondence information, and a second machine learning model is trained based on the generated second correspondence information, respectively. As a result, the information processing device 20 can perform the process shown in the flowchart shown in FIG. 12 similarly to the embodiment, reducing the effort required for the Chinese herbalist to prescribe the Chinese herbal medicine to the first subject. I can do it. Note that n1 in the second database in which the second correspondence information according to the fourth modification of the embodiment is stored is the number of combinations of level values that can be selected as the target level set. And n1 is the strength between floating veins and sinking veins, the strength between several pulses and slow pulses, the strength between large veins and small veins, the strength and weakness between weak pulses and real pulses, and tension. Since the number of levels included in each of the strength between the pulse and slow pulse and the strength between smooth pulse and astringent pulse is 5, the number is 15,625.
 <実施形態の変形例5>
 以下、実施形態の変形例5について説明する。実施形態の変形例5は、実施形態の変形例4の変形例である。実施形態の変形例5では、第1学習部265は、図5に示したステップS230において読み出されたN個の診断結果情報のそれぞれを、漢方医の主観による診断のバラツキを軽減させるための重みベクトルによって補正する。
<Variation 5 of the embodiment>
Modification 5 of the embodiment will be described below. Modification 5 of the embodiment is a modification of Modification 4 of the embodiment. In modification 5 of the embodiment, the first learning unit 265 analyzes each of the N pieces of diagnosis result information read out in step S230 shown in FIG. Correct by weight vector.
 以下、この補正について、具体的に説明する。実施形態の変形例5では、記憶部22には、漢方医毎の補正フィルタが記憶されている。この場合、記憶部22に記憶されたN個の診断結果情報のそれぞれには、それぞれの診断結果情報が示す診断結果を診断した漢方医を識別する漢方医識別情報が対応付けられている。 Hereinafter, this correction will be specifically explained. In modification 5 of the embodiment, the storage unit 22 stores correction filters for each Chinese medicine doctor. In this case, each of the N pieces of diagnosis result information stored in the storage unit 22 is associated with Chinese herbalist identification information that identifies the Chinese herbalist who diagnosed the diagnosis result indicated by each piece of diagnostic result information.
 ある漢方医の補正フィルタは、浮脈と沈脈との間の強弱、数脈と遅脈との間の強弱、大脈と小脈との間の強弱、虚脈と実脈との間の強弱、緊脈と緩脈との間の強弱、滑脈と渋脈との間の強弱のそれぞれに対応付けられた重みベクトルを有する。例えば、浮脈と沈脈との間の強弱に対応付けられた重みベクトルは、浮脈と沈脈との間の強弱ついての当該漢方医による診断結果を示すベクトルを補正するベクトルである。より具体的には、当該重みベクトルは、浮脈と沈脈との間の強弱ついての当該漢方医による診断結果を示すベクトルが成分として有する5つの変数のそれぞれに乗算される互いに大きさが異なる5つの重みを成分として有するベクトルである。そして、浮脈と沈脈との間の強弱ついての当該漢方医による診断結果を示すベクトルは、浮脈と沈脈との間の強弱ついての当該漢方医による診断結果を示すベクトルと、浮脈と沈脈との間の強弱に対応付けられた重みベクトルとのアダマール積によって補正される。ここで、アダマール積は、行列の成分毎の積であり、シューア積等と呼ばれることもある。すなわち、当該ベクトルと当該重みベクトルとのアダマール積は、5行1列の行列同士のアダマール積である。このような補正により、浮脈と沈脈との間の強弱ついての当該漢方医による診断結果を示すベクトルでは、1が代入された変数の値が補正される。このような事情は、数脈と遅脈との間の強弱、大脈と小脈との間の強弱、虚脈と実脈との間の強弱、緊脈と緩脈との間の強弱、滑脈と渋脈との間の強弱のそれぞれについて、同様である。 A Chinese medicine doctor's correction filter is based on the strength between floating pulses and sinking pulses, the strength between several pulses and slow pulses, the strength between large and small pulses, and the strength between imaginary pulses and real pulses. It has weight vectors associated with each of the strength and weakness, the strength between tense and slow pulses, and the strength between smooth and astringent pulses. For example, the weight vector associated with the strength between floating veins and sinking veins is a vector that corrects a vector indicating the diagnosis result by the Chinese medicine doctor regarding the strength between floating veins and sinking veins. More specifically, the weight vector has different magnitudes, which are multiplied by each of the five variables that the vector indicating the diagnosis result by the herbalist doctor regarding the strength between floating veins and sinking veins has as a component. This is a vector having five weights as components. Then, the vector indicating the diagnosis result by the Chinese herbalist about the strength between the floating vein and the sinking vein is the vector indicating the diagnosis result by the Chinese herbalist about the strength between the floating vein and the sinking vein, It is corrected by the Hadamard product of the weight vectors associated with the strengths and weaknesses between and the sedimentation veins. Here, the Hadamard product is a product of each component of a matrix, and is sometimes called a Schur product or the like. That is, the Hadamard product of the vector and the weight vector is the Hadamard product of matrices with 5 rows and 1 column. By such correction, the value of the variable to which 1 is substituted is corrected in the vector indicating the diagnosis result by the Chinese medicine doctor regarding the strength between the floating vein and the sinking vein. These circumstances include the strength between slow and slow pulses, the strength between large and small pulses, the strength between ischemic and real pulses, the strength between tense and slow pulses, The same applies to the strength of the smooth vein and the astringent vein.
 ここで、第1学習部265は、図5に示したフローチャートの処理において、記憶部22から読み出された診断結果情報に対応付けられた漢方医識別情報に基づいて、当該漢方医識別情報により識別される漢方医の補正フィルタを特定する。第1学習部265は、特定した補正フィルタに基づいて、当該診断結果情報が示すベクトルを補正する。そして、第1学習部265は、補正した当該ベクトルと、ステップS250において生成した学習時時間周波数スペクトル画像とを対応付けた情報を、第1対応情報として生成する。また、第2学習部266は、補正した当該ベクトルと、ステップS240において読み出した漢方薬情報が示す1以上の漢方薬のそれぞれとを対応付けた第2対応情報を生成し、生成した第2対応情報を第2データベースへ格納する。この際、第2学習部266は、補正した当該ベクトルに基づいて、前述の対象レベル組を特定し、特定した対象レベル組と、当該1以上の漢方薬の候補とのそれぞれが第2データベースにおいてクロスしたフィールドの値に、当該ベクトルが有する変数のうち非零(ノンゼロ)の変数の値を加算する。これにより、情報処理装置20は、第2データベースについて、漢方医の主観による診断のバラツキを軽減させることができる。その結果、情報処理装置20は、漢方医が第1被検者へ漢方薬を処方するのに要する手間を、より確実に軽減することができる。 Here, in the process of the flowchart shown in FIG. Identify the identified herbalist's correction filter. The first learning unit 265 corrects the vector indicated by the diagnosis result information based on the specified correction filter. The first learning unit 265 then generates, as first correspondence information, information in which the corrected vector is associated with the learning time-frequency spectrum image generated in step S250. Further, the second learning unit 266 generates second correspondence information that associates the corrected vector with each of the one or more Chinese medicines indicated by the Chinese medicine information read in step S240, and uses the generated second correspondence information. Store in the second database. At this time, the second learning unit 266 identifies the aforementioned target level set based on the corrected vector, and each of the identified target level set and the one or more Chinese medicine candidates crosses in the second database. The value of the non-zero variable among the variables included in the vector is added to the value of the field. Thereby, the information processing device 20 can reduce variations in diagnosis due to the subjectivity of the Chinese medicine doctor regarding the second database. As a result, the information processing device 20 can more reliably reduce the effort required for the Chinese medicine doctor to prescribe the Chinese medicine to the first subject.
 <実施形態の変形例6>
 以下、実施形態の変形例6について説明する。実施形態の変形例6は、実施形態の変形例4の変形例である。実施形態の変形例6では、第2機械学習モデルは、漢方薬禁忌フィルタを有する。第2機械学習モデルは、前述した通り、第1機械学習モデルにより出力された診断結果情報を入力すると、当該診断結果情報に対応する被検者に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補のそれぞれを示す漢方薬候補情報を出力する。漢方薬禁忌フィルタは、第2機械学習モデルから出力される漢方薬候補情報が示す1以上の漢方薬の候補に、禁忌な漢方薬の組み合わせが含まれないようにするフィルタである。
<Variation 6 of the embodiment>
Modification 6 of the embodiment will be described below. Modification 6 of the embodiment is a modification of Modification 4 of the embodiment. In modification 6 of the embodiment, the second machine learning model has a herbal medicine contraindication filter. As mentioned above, when the second machine learning model receives the diagnosis result information output by the first machine learning model, it estimates that one or more Chinese herbal medicines are likely to be prescribed to the subject corresponding to the diagnosis result information. Chinese herbal medicine candidate information indicating each of one or more Chinese herbal medicine candidates is output. The herbal medicine contraindication filter is a filter that prevents one or more herbal medicine candidates indicated by the herbal medicine candidate information outputted from the second machine learning model from including a combination of contraindicated herbal medicines.
 以下、第2機械学習モデルが漢方薬禁忌フィルタを使用する処理について説明する。第2機械学習モデルは、例えば、ある被検者についての診断結果情報を示すベクトルが入力された場合、入力されたベクトルと、事前に学習された第2データベース(すなわち、第2対応情報)とに基づいて、第2データベースが示す二次元テーブルにおいて当該ベクトルが示す対象レベル組に対応付けられたフィールドのうち、所定の第1閾値以上の値が割り当てられた1以上のフィールドのそれぞれを特定する。これら1以上のフィールドのうちのあるフィールドの値は、当該フィールドに対応付けられた漢方薬が、当該被検者に処方する漢方薬としての尤もらしさを示す尤度として扱われる。そこで、漢方薬禁忌フィルタは、これら1以上のフィールドを、割り当てられている尤度の高い順に1つずつ対象フィールドとして選択する。そして、漢方薬禁忌フィルタは、選択した対象フィールド毎に、以下の処理を行う。漢方薬禁忌フィルタは、選択した対象フィールドに対応付けられた漢方薬との組み合わせが禁忌の1以上の漢方薬それぞれに対応付けられたフィールドを禁忌フィールドとして特定し、対象フィールド及び禁忌フィールド以外の1以上のフィールドを他フィールドとして特定する。そして、漢方薬禁忌フィルタは、対象フィールドの値に1を乗算し、禁忌フィールドの値に-1を乗算し、他フィールドの値に0を乗算する。漢方薬禁忌フィルタは、このような処理を、選択した対象フィールド毎に行い、最終的に正の値が割り当てられている1以上のフィールドのそれぞれに対応付けられた漢方薬の組み合わせを、被検者に処方する1以上の漢方薬として尤もらしいと推定される1以上の漢方薬の候補の組み合わせであり、且つ、禁忌な漢方薬の組み合わせが含まれていない漢方薬の候補の組み合わせとして第2機械学習モデルに特定させることができる。このように、漢方薬禁忌フィルタは、漢方薬候補情報が示す1以上の漢方薬の候補の中から、禁忌な漢方薬の組み合わせを除外するフィルタである。 Hereinafter, a process in which the second machine learning model uses the herbal medicine contraindication filter will be described. For example, when a vector indicating diagnostic result information for a certain subject is input, the second machine learning model combines the input vector and a second database learned in advance (i.e., second correspondence information). Based on this, among the fields associated with the target level set indicated by the vector in the two-dimensional table indicated by the second database, each of one or more fields to which a value equal to or greater than a predetermined first threshold is assigned is identified. . The value of a certain field among these one or more fields is treated as a likelihood indicating the likelihood that the herbal medicine associated with the field is the herbal medicine to be prescribed to the subject. Therefore, the Chinese herbal medicine contraindication filter selects these one or more fields as target fields one by one in descending order of assigned likelihood. Then, the herbal medicine contraindication filter performs the following processing for each selected target field. The herbal medicine contraindication filter specifies fields associated with each of one or more herbal medicines that are contraindicated in combination with the herbal medicine associated with the selected target field as contraindication fields, and filters one or more fields other than the target field and the contraindication field. Specify as another field. Then, the Chinese herbal medicine contraindication filter multiplies the value of the target field by 1, the value of the contraindication field by -1, and the values of other fields by 0. The herbal medicine contraindication filter performs such processing for each selected target field, and finally displays the combination of herbal medicines associated with each of the one or more fields to which a positive value has been assigned to the subject. The second machine learning model identifies a combination of one or more Chinese herbal medicine candidates that is estimated to be plausible as one or more Chinese herbal medicines to be prescribed, and does not include any contraindicated combination of Chinese herbal medicines. be able to. In this way, the Chinese herbal medicine contraindication filter is a filter that excludes combinations of Chinese herbal medicines that are contraindicated from among one or more Chinese medicine candidates indicated by the Chinese medicine candidate information.
 <実施形態の変形例7>
 以下、実施形態の変形例7について説明する。実施形態の変形例7では、前述の被検者S3の脈波の波形は、予め決められた測定時間内において、被検者S3の脈波の波形を検出する脈波センサ12を被検者S3に押し当てる圧力が一定ではない状況下において脈波センサ12により検出された波形である。この場合であっても、情報処理装置20は、被検者に処方される漢方薬の候補を、精度よく特定することができる。これは、脈波センサ12の被検者への押し当て方が、脈診を行う毎に変わってしまう場合であっても、被検者に適切な漢方薬を処方することができることを意味する。
<Modification 7 of embodiment>
Modification 7 of the embodiment will be described below. In the seventh modification of the embodiment, the pulse wave waveform of the subject S3 is measured by the pulse wave sensor 12 that detects the pulse wave waveform of the subject S3 within a predetermined measurement time. This is a waveform detected by the pulse wave sensor 12 under a situation where the pressure applied to S3 is not constant. Even in this case, the information processing device 20 can accurately identify Chinese herbal medicine candidates to be prescribed to the subject. This means that even if the way the pulse wave sensor 12 is pressed against the subject changes each time a pulse diagnosis is performed, an appropriate Chinese herbal medicine can be prescribed to the subject.
 これを実現するため、情報処理装置20の記憶部22には、図4に示したフローチャートの処理によって、以下のような圧力変動脈波検出方法によって検出された波形を示す波形情報が記憶される。圧力変動脈波検出方法では、被検者の脈波の波形が、予め決められた測定時間内において、被検者の脈波の波形を検出する脈波センサ12を被検者に押し当てる圧力を変化させながら脈波センサ12により検出される。この場合、脈波検出装置10は、例えば、アクチュエーター等によって被検者の片腕を上下方向に移動させることが可能な構成の第1部材11と、アクチュエーター等によって脈波センサ12を上下方向に移動させることが可能な構成の第2部材13との少なくとも一方を備える構成である。これにより、脈波検出装置10は、例えば、脈波センサ12を被検者に押し当てる圧力を断続的又は連続的に上昇させながら、脈波センサ12に脈波の圧力を検出させることができる。以下では、一例として、脈波検出装置10が、脈波センサ12を被検者に押し当てる圧力を、40gf~300gfの範囲で連続的に上昇させながら、脈波センサ12に脈波の圧力を検出させる場合について説明する。なお、脈波検出装置10は、脈波センサ12を被検者に押し当てる圧力を断続的又は連続的に下降させながら、脈波センサ12に脈波の圧力を検出させる構成であってもよい。ここで、図16は、圧力変動脈波検出方法によって検出された脈波の波形を示す波形情報に基づいて、情報処理装置20により時間周波数スペクトル画像が生成される流れの一例を示す図である。図16に示した波形WP1は、圧力変動脈波検出方法によって検出された脈波の波形の一例を示す。情報処理装置20は、図4に示したステップS110において、圧力変動脈波検出方法によって検出された脈波の圧力に応じた電気信号を脈波センサ12から取得する。そして、情報処理装置20は、このようにして測定期間内において取得された電気信号に基づいて、測定期間内における被検者の脈波の波形を示す波形情報を生成する。その後、図5に示したステップS250において、情報処理装置20は、このようにして生成された波形情報に基づいて、時間周波数スペクトル画像を生成する。この際、情報処理装置20は、例えば、バンドパスフィルタによって、当該波形情報が示す波形から、予め決められた周波数以上の周波数成分を除去し、当該周波数成分を除去した後の当該波形を示す情報に基づくSTFTによって時間周波数スペクトルを算出する。その結果、情報処理装置20は、算出した時間周波数スペクトルを示す時間周波数スペクトル画像を生成することができる。図16に示した画像WP2は、このようにして生成された時間周波数スペクトル画像の一例を示す。 To achieve this, the storage unit 22 of the information processing device 20 stores waveform information indicating a waveform detected by the following pressure-variable arterial wave detection method through the process shown in the flowchart shown in FIG. . In the pressure variable arterial wave detection method, the waveform of the pulse wave of the subject is determined by applying pressure to the subject against the pulse wave sensor 12 that detects the waveform of the subject's pulse wave within a predetermined measurement time. is detected by the pulse wave sensor 12 while changing the pulse wave. In this case, the pulse wave detection device 10 includes, for example, a first member 11 configured to be able to move one arm of the subject in the vertical direction using an actuator or the like, and a pulse wave sensor 12 that can move the pulse wave sensor 12 in the vertical direction using the actuator or the like. This configuration includes at least one of the second member 13 and the second member 13 that can be configured to Thereby, the pulse wave detection device 10 can, for example, cause the pulse wave sensor 12 to detect the pressure of the pulse wave while intermittently or continuously increasing the pressure with which the pulse wave sensor 12 is pressed against the subject. . In the following, as an example, the pulse wave detection device 10 applies pulse wave pressure to the pulse wave sensor 12 while continuously increasing the pressure with which the pulse wave sensor 12 is pressed against the subject in the range of 40 gf to 300 gf. The case of detection will be explained. Note that the pulse wave detection device 10 may have a configuration in which the pulse wave sensor 12 detects the pressure of the pulse wave while intermittently or continuously lowering the pressure with which the pulse wave sensor 12 is pressed against the subject. . Here, FIG. 16 is a diagram showing an example of a flow in which a time-frequency spectrum image is generated by the information processing device 20 based on waveform information indicating the waveform of a pulse wave detected by the pressure variable arterial wave detection method. . The waveform WP1 shown in FIG. 16 shows an example of the waveform of a pulse wave detected by the pressure variable arterial wave detection method. In step S110 shown in FIG. 4, the information processing device 20 acquires, from the pulse wave sensor 12, an electrical signal corresponding to the pressure of the pulse wave detected by the pressure variable arterial wave detection method. Then, the information processing device 20 generates waveform information indicating the waveform of the subject's pulse wave within the measurement period, based on the electrical signal thus acquired during the measurement period. Thereafter, in step S250 shown in FIG. 5, the information processing device 20 generates a time-frequency spectrum image based on the waveform information generated in this way. At this time, the information processing device 20 removes frequency components equal to or higher than a predetermined frequency from the waveform indicated by the waveform information using a band-pass filter, and provides information indicating the waveform after removing the frequency components. The time-frequency spectrum is calculated by STFT based on . As a result, the information processing device 20 can generate a time-frequency spectrum image showing the calculated time-frequency spectrum. Image WP2 shown in FIG. 16 shows an example of the time-frequency spectrum image generated in this way.
 情報処理装置20は、このようにして生成された時間周波数スペクトル画像と、図9に示したフローチャートの処理によって受け付けた診断結果情報とが対応付けられた情報を第1対応情報として生成し、生成した第1対応情報を第1機械学習モデルに学習させる。このため、第1機械学習モデルは、実施形態の変形例7に係る時間周波数スペクトル画像に応じて、適切な診断結果情報を出力するように学習させられる。その結果、情報処理装置20は、被検者S3の脈波の波形が、予め決められた測定時間内において、被検者S3の脈波の波形を検出する脈波センサ12を被検者S3に押し当てる圧力が一定ではない状況下において脈波センサ12により検出された波形であったとしても、被検者S3に処方する漢方薬として適切な漢方薬の候補を精度よく特定することができる。換言すると、情報処理装置20は、漢方医の脈診時の押圧加減による曖昧さを排除することができ、被検者S3に処方する漢方薬として適切な漢方薬の候補を精度よく特定することができる。 The information processing device 20 generates, as first correspondence information, information in which the time-frequency spectrum image generated in this manner is associated with the diagnosis result information received through the processing of the flowchart shown in FIG. The first machine learning model is caused to learn the first correspondence information. Therefore, the first machine learning model is trained to output appropriate diagnosis result information according to the time-frequency spectrum image according to the seventh modification of the embodiment. As a result, the information processing device 20 detects that the pulse wave sensor 12 detects the pulse wave of the subject S3 within the predetermined measurement time. Even if the waveform is detected by the pulse wave sensor 12 in a situation where the pressure applied to the test subject S3 is not constant, it is possible to accurately identify a candidate for a Chinese herbal medicine that is suitable as a Chinese medicine to be prescribed to the subject S3. In other words, the information processing device 20 can eliminate ambiguity caused by the amount of pressure applied during a pulse diagnosis by a Chinese herbalist doctor, and can accurately identify candidates for Chinese herbal medicines that are appropriate as the Chinese herbal medicines to be prescribed to the subject S3. .
 なお、上記において説明した事項は、如何様に組み合わされてもよい。
 また、上記において説明した臓器の状態に応じた脈種の分類方法は、病脈28脈に代えて、病脈38脈等の他の分類方法であってもよい。この場合、前述の対象脈種組は、7以上の脈種の組み合わせであってもよい。しかしながら、この場合であっても、情報処理装置20が行う処理の全体としての流れは、上記において説明した流れと変わらない。
Note that the matters described above may be combined in any manner.
Further, the method of classifying pulse types according to the state of the organ explained above may be other classification methods such as 38 diseased pulses instead of 28 diseased pulses. In this case, the aforementioned target vein type set may be a combination of seven or more vein types. However, even in this case, the overall flow of the processing performed by the information processing device 20 is the same as the flow described above.
 <付記>
[1]第1被検者(上記において説明した例では、被検者S3)の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方9される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力部を備える、情報処理装置(上記において説明した例では、情報処理装置20)。
<Additional notes>
[1] Based on the first time-frequency spectrum image showing the first time-frequency spectrum corresponding to the waveform of the pulse wave of the first subject (in the example explained above, subject S3), the first subject is An information processing device (in the example described above, the information processing device 20) includes a prescription candidate output unit that outputs output information including Chinese herbal medicine candidate information indicating candidates for Chinese herbal medicines to be prescribed to an examiner.
[2]前記第1被検者の脈波の波形を第1波形として示す第1波形情報に基づいて前記第1時間周波数スペクトルを算出する算出部(上記において説明した例では、算出部263)と、前記第1時間周波数スペクトルに基づいて前記第1時間周波数スペクトル画像を生成する生成部(上記において説明した例では、生成部268)と、を更に備える[1]に記載の情報処理装置。 [2] A calculation unit (calculation unit 263 in the example described above) that calculates the first time-frequency spectrum based on first waveform information indicating the pulse wave waveform of the first subject as a first waveform. The information processing device according to [1], further comprising: a generation unit (generation unit 268 in the example described above) that generates the first time-frequency spectrum image based on the first time-frequency spectrum.
[3]前記算出部は、予め決められた周波数以上の周波数成分を前記第1波形から除去し、前記周波数成分を除去した後の前記第1波形を示す情報を前記第1波形情報として生成し、生成した前記第1波形情報に基づいて前記第1時間周波数スペクトルを算出する、[2]に記載の情報処理装置。 [3] The calculation unit removes a frequency component equal to or higher than a predetermined frequency from the first waveform, and generates information indicating the first waveform after removing the frequency component as the first waveform information. , the information processing device according to [2], wherein the first time-frequency spectrum is calculated based on the generated first waveform information.
[4]前記処方候補出力部は、第1機械学習モデルと、第2機械学習モデルと、前記第1時間周波数スペクトル画像とに基づいて、前記第1被検者に処方される漢方薬の候補を特定し、前記第1機械学習モデルは、第2被検者(上記において説明した例では、学習時被検者)の脈波の波形に応じた第2時間周波数スペクトルを示す第2時間周波数スペクトル画像と、漢方医による前記第2被検者の診断結果を示す第2診断結果情報とが対応付けられた第1対応情報を学習させた機械学習のモデルであり、前記第2機械学習モデルは、前記第2診断結果情報と、漢方薬情報とが対応付けられた第2対応情報を学習させた機械学習のモデルであり、前記漢方薬情報は、前記漢方医が前記第2被検者に処方した1以上の漢方薬のそれぞれを示す情報である、[2]又は[3]に記載の情報処理装置。 [4] The prescription candidate output unit generates candidates for Chinese herbal medicine to be prescribed to the first subject based on the first machine learning model, the second machine learning model, and the first time-frequency spectrum image. and the first machine learning model has a second time-frequency spectrum that indicates a second time-frequency spectrum corresponding to a pulse wave waveform of a second subject (in the example described above, the subject during learning). A machine learning model that has learned first correspondence information in which an image is associated with second diagnosis result information indicating a diagnosis result of the second subject by a Chinese medicine doctor, and the second machine learning model is , is a machine learning model that has learned second correspondence information in which the second diagnosis result information and Chinese herbal medicine information are associated with each other, and the Chinese herbal medicine information is the one that the Chinese medicine doctor prescribed to the second subject. The information processing device according to [2] or [3], wherein the information indicates each of one or more Chinese herbal medicines.
[5]前記第1機械学習モデルは、深層学習用の畳み込みニューラルネットワークである、[4]に記載の情報処理装置。 [5] The information processing device according to [4], wherein the first machine learning model is a convolutional neural network for deep learning.
[6]前記算出部は、前記第2被検者の脈波の波形を第2波形として示す第2波形情報に基づいて前記第2時間周波数スペクトルを算出し、前記生成部は、前記第2時間周波数スペクトルに基づいて前記第2時間周波数スペクトル画像を生成し、前記情報処理装置は、前記第2診断結果情報と、前記1以上の漢方薬情報とを受け付ける受付部(上記において説明した例では、受付部262)と、前記生成部が生成した前記第2時間周波数スペクトル画像と、前記受付部が受け付けた前記第2診断結果情報とを対応付けた情報を前記第1対応情報として生成し、生成した前記第1対応情報を前記第1機械学習モデルに学習させる第1学習部(上記において説明した例では、第1学習部265)と、前記受付部が受け付けた前記第2診断結果情報と、前記受付部が受け付けた前記1以上の漢方薬情報とを対応付けた情報を前記第2対応情報として生成し、生成した前記第2対応情報を前記第2機械学習モデルに学習させる第2学習部(上記において説明した例では、第2学習部266)と、を更に備える、[4]に記載の情報処理装置。 [6] The calculation unit calculates the second time-frequency spectrum based on second waveform information indicating the pulse wave waveform of the second subject as a second waveform, and the generation unit The information processing device generates the second time-frequency spectrum image based on the time-frequency spectrum, and includes a reception unit (in the example described above, which receives the second diagnosis result information and the one or more Chinese herbal medicine information). a reception unit 262), generates, as the first correspondence information, information in which the second time-frequency spectrum image generated by the generation unit and the second diagnosis result information received by the reception unit are associated; a first learning unit (in the example described above, the first learning unit 265) that causes the first machine learning model to learn the first correspondence information, and the second diagnosis result information received by the reception unit; a second learning unit that generates information that is associated with the one or more Chinese herbal medicine information received by the reception unit as the second correspondence information, and causes the second machine learning model to learn the generated second correspondence information; In the example described above, the information processing device according to [4], further comprising a second learning section 266).
[7]前記第2診断結果情報には、予め決められた第1診断項目(上記において説明した例では、例えば、浮網脈、浮脈と沈脈との間の強弱等)についての漢方医による前記第2被検者の診断結果(上記において説明した例では、例えば、浮脈、レベル1等)を示す情報と、予め決められた第2診断項目(上記において説明した例では、例えば、沈網脈、数脈と遅脈との間の強弱等)についての漢方医による前記第2被検者の診断結果(上記において説明した例では、例えば、沈脈、レベル2等)を示す情報とが含まれており、前記第1学習部は、前記第1対応情報に基づいて、前記第1診断項目についての漢方医による前記第2被検者の診断結果を示す情報と、前記第2時間周波数スペクトル画像とを前記第1機械学習モデルに学習させて、前記第1診断項目についての前記第1機械学習モデルの係数列を第1係数列として取得し、前記第1対応情報に基づいて、前記第2診断項目についての漢方医による前記第2被検者の診断結果を示す情報と、前記第2時間周波数スペクトル画像とを前記第1機械学習モデルに学習させて、前記第2診断項目についての前記第1機械学習モデルの係数列を第2係数列として取得し、前記処方候補出力部は、前記第1係数列と、前記第2係数列と、前記第1機械学習モデルと、前記第1時間周波数スペクトル画像とに基づいて、前記第1診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報と、前記第2診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報とを含む第1診断結果情報を前記第1機械学習モデルに出力させ、前記第1機械学習モデルに出力させた前記第1診断結果情報と、前記第2機械学習モデルとに基づいて、前記第1被検者に処方される漢方薬の候補を特定する、[6]に記載の情報処理装置。 [7] The second diagnosis result information includes a herbalist's information regarding the predetermined first diagnosis item (in the example explained above, for example, floating veins, strength and weakness between floating veins and sinking veins, etc.) information indicating the diagnosis result of the second subject (in the example explained above, for example, floating pulse, level 1, etc.) and a predetermined second diagnosis item (in the example explained above, for example, information indicating the diagnosis result of the second subject by the Chinese herbalist (in the example explained above, for example, sinking pulse, level 2, etc.) Based on the first correspondence information, the first learning section includes information indicating the diagnosis result of the second subject by the Chinese medicine doctor regarding the first diagnosis item, and the second learning section. the first machine learning model learns the time-frequency spectrum image, and obtains a coefficient sequence of the first machine learning model for the first diagnosis item as a first coefficient sequence, and based on the first correspondence information, , causing the first machine learning model to learn information indicating the diagnosis result of the second subject by the Chinese medicine doctor regarding the second diagnosis item and the second time-frequency spectrum image, and determining the second diagnosis item. The prescription candidate output unit obtains the coefficient sequence of the first machine learning model for information indicating a plausible diagnosis result of the first subject by the Chinese herbalist regarding the first diagnostic item based on the first time-frequency spectrum image; and causing the first machine learning model to output first diagnosis result information including information indicating a plausible diagnosis result as a diagnosis result of the first subject, and the first diagnosis caused to be output by the first machine learning model. The information processing device according to [6], which identifies candidates for Chinese herbal medicine to be prescribed to the first subject based on the result information and the second machine learning model.
[8]前記第1診断項目と前記第2診断項目とのそれぞれは、病脈28脈における浮網脈、沈網脈、遅網脈、数網脈、虚網脈、実網脈のいずれかであり、互いに異なる診断項目である、[7]に記載の情報処理装置。 [8] Each of the first diagnostic item and the second diagnostic item is one of floating network, sinking network, slow network, few network, virtual network, and real network in the 28 diseased veins. The information processing device according to [7], wherein the diagnostic items are different from each other.
[9]前記第1診断項目には、診断結果として選択可能な複数の第1選択肢が含まれており、前記第2診断項目には、診断結果として選択可能な複数の第2選択肢が含まれており、前記第1機械学習モデルは、前記第1係数列と、前記第1時間周波数スペクトル画像とに基づいて、前記複数の第1選択肢それぞれの漢方医による診断結果としての尤もらしさを示す尤度を算出し、算出した尤度に基づいて、前記第1診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報を推定し、前記第2係数列と、前記第1時間周波数スペクトル画像とに基づいて、前記複数の第2選択肢それぞれの漢方医による診断結果としての尤もらしさを示す尤度を算出し、算出した尤度に基づいて、前記第2診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報を推定する、[7]に記載の情報処理装置。 [9] The first diagnosis item includes a plurality of first options selectable as a diagnosis result, and the second diagnosis item includes a plurality of second options selectable as a diagnosis result. The first machine learning model is configured to calculate the likelihood of each of the plurality of first options as a diagnosis result by a Chinese herbalist based on the first coefficient sequence and the first time-frequency spectrum image. Based on the calculated likelihood, information indicating a likely diagnosis result of the first subject by the Chinese medicine doctor regarding the first diagnosis item is estimated, and the second coefficient sequence and , a likelihood indicating the likelihood of each of the plurality of second options as a diagnosis result by a Chinese herbalist is calculated based on the first time-frequency spectrum image, and based on the calculated likelihood, the second diagnosis is made. The information processing device according to [7], which estimates information indicating a plausible diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the item.
[10]前記第1診断項目と前記第2診断項目とのそれぞれは、日本式脈診法における浮脈と沈脈との間の強弱、数脈と遅脈との間の強弱、大脈と小脈との間の強弱、虚脈と実脈との間の強弱、緊脈と緩脈との間の強弱、滑脈と渋脈との間の強弱のうちのいずれかであり、互いに異なる診断項目である、[7]に記載の情報処理装置。 [10] The first diagnostic item and the second diagnostic item each include the strength between floating pulse and sinking pulse, the strength between few pulses and slow pulse, and the strength between large vein and slow pulse in Japanese pulse diagnosis method. It is either the strength between small veins, the strength between ischemic pulse and real pulse, the strength between tense and slow pulse, or the strength between smooth pulse and astringent pulse, and is different from each other. The information processing device according to [7], which is a diagnostic item.
[11]前記第1診断項目には、診断結果として選択可能な複数の第1選択肢が含まれており、前記第2診断項目には、診断結果として選択可能な複数の第2選択肢が含まれており、前記第1機械学習モデルは、前記第1係数列と、前記第1機械学習モデルと、前記第1時間周波数スペクトル画像とに基づいて、前記複数の第1選択肢それぞれの漢方医による診断結果としての尤もらしさを示す尤度を算出し、算出した尤度に基づいて、前記第1診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報を推定し、前記第2係数列と、前記第1機械学習モデルと、前記第1時間周波数スペクトル画像とに基づいて、前記複数の第2選択肢それぞれの漢方医による診断結果としての尤もらしさを示す尤度を算出し、算出した尤度に基づいて、前記第2診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報を推定する、[9]に記載の情報処理装置。 [11] The first diagnosis item includes a plurality of first options selectable as a diagnosis result, and the second diagnosis item includes a plurality of second options selectable as a diagnosis result. The first machine learning model is configured to perform a diagnosis by a Chinese herbalist of each of the plurality of first options based on the first coefficient sequence, the first machine learning model, and the first time-frequency spectrum image. A likelihood indicating the likelihood of the result is calculated, and based on the calculated likelihood, information indicating a likely diagnosis result as a diagnosis result of the first subject by the Chinese herbalist regarding the first diagnosis item is estimated. and a likelihood indicating the likelihood of each of the plurality of second options as a diagnosis result by a Chinese herbalist based on the second coefficient sequence, the first machine learning model, and the first time-frequency spectrum image. and, based on the calculated likelihood, estimate information indicating a likely diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the second diagnosis item, the information according to [9] Processing equipment.
[12]前記第1機械学習モデルは、前記第1診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報として第1ベクトルを生成し、生成した前記第1ベクトルを、前記第1診断項目に対応付けられた重みベクトルとのアダマール積によって補正し、前記第2診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報として第2ベクトルを生成し、生成した前記第2ベクトルを、前記第2診断項目に対応付けられた重みベクトルとのアダマール積によって補正し、補正した後の前記第1ベクトルと、補正した後の前記第2ベクトルとを含む前記第1診断結果情報を出力する、[10]に記載の情報処理装置。 [12] The first machine learning model generates a first vector as information indicating a plausible diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the first diagnosis item, and 1 vector is corrected by a Hadamard product with a weight vector associated with the first diagnostic item, and a plausible diagnosis result is indicated as a diagnosis result of the first subject by the Chinese herbalist regarding the second diagnostic item. A second vector is generated as information, the generated second vector is corrected by a Hadamard product with a weight vector associated with the second diagnostic item, and the first vector after the correction and the first vector after the correction are obtained. The information processing device according to [10], which outputs the first diagnosis result information including the second vector.
[13]前記第1機械学習モデルは、前記複数の第1選択肢それぞれについての尤度がすべて、予め決められた閾値未満であった場合、又は、前記複数の第2選択肢それぞれについての尤度がすべて、前記閾値未満であった場合、エラー処理を行う、[11]に記載の情報処理装置。 [13] The first machine learning model is configured such that if the likelihoods for each of the plurality of first options are all less than a predetermined threshold, or the likelihood for each of the plurality of second options is The information processing device according to [11], which performs error processing when all of the values are less than the threshold values.
[14]前記第1機械学習モデルは、前記第2対応情報に基づいて、前記第1診断項目と前記第2診断項目とのそれぞれについての漢方薬処方決定要因の要因順位、寄与度の少なくとも一方を推定し、推定した前記少なくとも一方に基づく第1重みを前記複数の第1選択肢それぞれについての尤度に乗算し、推定した前記少なくとも一方に基づく第2重みを前記複数の第2選択肢それぞれについての尤度に乗算し、前記処方候補出力部は、前記複数の第1選択肢それぞれについての尤度と、前記第1重みと、前記複数の第2選択肢それぞれについての尤度と、前記第2重みと、前記第2機械学習モデルから出力された前記漢方薬候補情報とに基づいて、前記第2対応情報を更新する、[11]に記載の情報処理装置。 [14] The first machine learning model determines at least one of the factor ranking and the degree of contribution of the Chinese herbal medicine prescription determining factors for each of the first diagnostic item and the second diagnostic item, based on the second correspondence information. the likelihood for each of the plurality of first options is multiplied by the first weight based on the estimated at least one, and the second weight based on the estimated at least one is multiplied by the likelihood for each of the plurality of second options. The prescription candidate output unit multiplies the likelihood for each of the plurality of first options, the first weight, the likelihood for each of the plurality of second options, and the second weight, The information processing device according to [11], wherein the second correspondence information is updated based on the Chinese herbal medicine candidate information output from the second machine learning model.
[15]前記第2機械学習モデルは、前記漢方薬候補情報が示す1以上の漢方薬の候補の中から、禁忌な漢方薬の組み合わせを除外する漢方薬禁忌フィルタを有する、[10]に記載の情報処理装置。 [15] The information processing device according to [10], wherein the second machine learning model has a herbal medicine contraindication filter that excludes contraindicated combinations of herbal medicines from among the one or more Chinese medicine candidates indicated by the herbal medicine candidate information. .
[16]前記第1被検者の脈波の波形は、予め決められた測定時間内において、前記第1被検者の脈波の波形を検出するセンサを前記第1被検者に押し当てる圧力を変化させながら前記センサにより検出された波形である、[1]から[15]のうちいずれか一項に記載の情報処理装置。 [16] The waveform of the pulse wave of the first subject is determined by pressing a sensor that detects the waveform of the pulse wave of the first subject against the first subject within a predetermined measurement time. The information processing device according to any one of [1] to [15], wherein the waveform is detected by the sensor while changing pressure.
[17]第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力ステップを有する、情報処理方法。 [17] A Chinese herbal medicine candidate indicating a Chinese herbal medicine candidate to be prescribed to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to the waveform of the pulse wave of the first subject. An information processing method comprising a prescription candidate output step of outputting output information including information.
[18]コンピュータに、第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力ステップ、を実行させるためのプログラム。 [18] A computer is configured to select candidates for Chinese herbal medicines to be prescribed to the first subject based on a first time-frequency spectrum image showing a first time-frequency spectrum corresponding to the waveform of the pulse wave of the first subject. A program for executing a prescription candidate output step of outputting output information including Chinese herbal medicine candidate information shown in FIG.
 以上、この開示の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この開示の要旨を逸脱しない限り、変更、置換、削除等されてもよい。 Although the embodiments of this disclosure have been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and modifications, substitutions, deletions, etc. may be made without departing from the gist of this disclosure. may be done.
 また、以上に説明した装置における任意の構成部の機能を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録し、そのプログラムをコンピュータシステムに読み込ませて実行するようにしてもよい。ここで、当該装置は、例えば、脈波検出装置10、情報処理装置20等である。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD(Compact Disk)-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバーやクライアントとなるコンピュータシステム内部の揮発性メモリーのように、一定時間プログラムを保持しているものも含むものとする。 Furthermore, a program for realizing the functions of arbitrary components in the apparatus described above may be recorded on a computer-readable recording medium, and the program may be read and executed by a computer system. Here, the device is, for example, the pulse wave detection device 10, the information processing device 20, etc. Note that the "computer system" herein includes hardware such as an OS (Operating System) and peripheral devices. Furthermore, "computer-readable recording media" refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD (Compact Disk)-ROMs, and storage devices such as hard disks built into computer systems. . Furthermore, "computer-readable recording media" refers to volatile memory inside a computer system that serves as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. This also includes those that hold time programs.
 また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワークや電話回線等の通信回線のように情報を伝送する機能を有する媒体のことをいう。
 また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル又は差分プログラムであってもよい。
Further, the above program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the "transmission medium" that transmits the program refers to a medium that has a function of transmitting information, such as a network such as the Internet or a communication line such as a telephone line.
Moreover, the above-mentioned program may be for realizing a part of the above-mentioned functions. Furthermore, the above-mentioned program may be a so-called difference file or difference program that can realize the above-described functions in combination with a program already recorded in the computer system.
1…情報処理システム、10…脈波検出装置、11…第1部材、12…脈波センサ、13…第2部材、20…情報処理装置、21…プロセッサ、22…記憶部、23…入力受付部、24…通信部、25…表示部、26…制御部、261…取得部、262…受付部、263…算出部、264…処方候補出力部、265…第1学習部、266…第2学習部、267…表示制御部、268…生成部、TC…三次元座標系 DESCRIPTION OF SYMBOLS 1... Information processing system, 10... Pulse wave detection device, 11... First member, 12... Pulse wave sensor, 13... Second member, 20... Information processing device, 21... Processor, 22... Storage unit, 23... Input reception Department, 24...Communication section, 25...Display section, 26...Control section, 261...Acquisition section, 262...Reception section, 263...Calculation section, 264...Prescription candidate output section, 265...First learning section, 266...Second Learning section, 267... Display control section, 268... Generation section, TC... Three-dimensional coordinate system

Claims (18)

  1.  第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力部を備える、
     情報処理装置。
    Contains Chinese herbal medicine candidate information indicating a Chinese herbal medicine candidate to be prescribed to the first subject based on a first time frequency spectrum image indicating a first time frequency spectrum corresponding to the pulse wave waveform of the first subject. comprising a prescription candidate output unit that outputs output information;
    Information processing device.
  2.  前記第1被検者の脈波の波形を第1波形として示す第1波形情報に基づいて前記第1時間周波数スペクトルを算出する算出部と、
     前記第1時間周波数スペクトルに基づいて前記第1時間周波数スペクトル画像を生成する生成部と、
     を更に備える請求項1に記載の情報処理装置。
    a calculation unit that calculates the first time-frequency spectrum based on first waveform information indicating a pulse wave waveform of the first subject as a first waveform;
    a generation unit that generates the first time-frequency spectrum image based on the first time-frequency spectrum;
    The information processing device according to claim 1, further comprising:.
  3.  前記算出部は、予め決められた周波数以上の周波数成分を前記第1波形から除去し、前記周波数成分を除去した後の前記第1波形を示す情報を前記第1波形情報として生成し、生成した前記第1波形情報に基づいて前記第1時間周波数スペクトルを算出する、
     請求項2に記載の情報処理装置。
    The calculation unit removes a frequency component equal to or higher than a predetermined frequency from the first waveform, and generates information indicating the first waveform after removing the frequency component as the first waveform information. calculating the first time-frequency spectrum based on the first waveform information;
    The information processing device according to claim 2.
  4.  前記処方候補出力部は、第1機械学習モデルと、第2機械学習モデルと、前記第1時間周波数スペクトル画像とに基づいて、前記第1被検者に処方される漢方薬の候補を特定し、
     前記第1機械学習モデルは、第2被検者の脈波の波形に応じた第2時間周波数スペクトルを示す第2時間周波数スペクトル画像と、漢方医による前記第2被検者の診断結果を示す第2診断結果情報とが対応付けられた第1対応情報を学習させた機械学習のモデルであり、
     前記第2機械学習モデルは、前記第2診断結果情報と、漢方薬情報とが対応付けられた第2対応情報を学習させた機械学習のモデルであり、
     前記漢方薬情報は、前記漢方医が前記第2被検者に処方した1以上の漢方薬のそれぞれを示す情報である、
     請求項2又は3に記載の情報処理装置。
    The prescription candidate output unit identifies candidates for Chinese herbal medicine to be prescribed to the first subject based on the first machine learning model, the second machine learning model, and the first time frequency spectrum image,
    The first machine learning model shows a second time-frequency spectrum image showing a second time-frequency spectrum according to a pulse waveform of a second subject, and a diagnosis result of the second subject by a Chinese herbalist. A machine learning model that has learned first correspondence information associated with second diagnosis result information,
    The second machine learning model is a machine learning model that has learned second correspondence information in which the second diagnosis result information and Chinese herbal medicine information are associated with each other,
    The Chinese herbal medicine information is information indicating each of one or more Chinese medicines prescribed by the Chinese herbalist to the second subject.
    The information processing device according to claim 2 or 3.
  5.  前記第1機械学習モデルは、深層学習用の畳み込みニューラルネットワークである、
     請求項4に記載の情報処理装置。
    The first machine learning model is a convolutional neural network for deep learning,
    The information processing device according to claim 4.
  6.  前記算出部は、前記第2被検者の脈波の波形を第2波形として示す第2波形情報に基づいて前記第2時間周波数スペクトルを算出し、
     前記生成部は、前記第2時間周波数スペクトルに基づいて前記第2時間周波数スペクトル画像を生成し、
     前記情報処理装置は、
     前記第2診断結果情報と、前記1以上の漢方薬情報とを受け付ける受付部と、
     前記生成部が生成した前記第2時間周波数スペクトル画像と、前記受付部が受け付けた前記第2診断結果情報とを対応付けた情報を前記第1対応情報として生成し、生成した前記第1対応情報を前記第1機械学習モデルに学習させる第1学習部と、
     前記受付部が受け付けた前記第2診断結果情報と、前記受付部が受け付けた前記1以上の漢方薬情報とを対応付けた情報を前記第2対応情報として生成し、生成した前記第2対応情報を前記第2機械学習モデルに学習させる第2学習部と、
     を更に備える、
     請求項4に記載の情報処理装置。
    The calculation unit calculates the second time-frequency spectrum based on second waveform information indicating a pulse wave waveform of the second subject as a second waveform,
    The generation unit generates the second time-frequency spectrum image based on the second time-frequency spectrum,
    The information processing device includes:
    a reception unit that receives the second diagnosis result information and the one or more Chinese herbal medicine information;
    generating, as the first correspondence information, information in which the second time-frequency spectrum image generated by the generation unit and the second diagnosis result information received by the reception unit are associated; and the generated first correspondence information a first learning unit that causes the first machine learning model to learn;
    Generate information in which the second diagnosis result information received by the reception unit and the one or more Chinese herbal medicine information received by the reception unit are associated as the second correspondence information, and use the generated second correspondence information. a second learning unit that causes the second machine learning model to learn;
    further comprising;
    The information processing device according to claim 4.
  7.  前記第2診断結果情報には、予め決められた第1診断項目についての漢方医による前記第2被検者の診断結果を示す情報と、予め決められた第2診断項目についての漢方医による前記第2被検者の診断結果を示す情報とが含まれており、
     前記第1学習部は、前記第1対応情報に基づいて、前記第1診断項目についての漢方医による前記第2被検者の診断結果を示す情報と、前記第2時間周波数スペクトル画像とを前記第1機械学習モデルに学習させて、前記第1診断項目についての前記第1機械学習モデルの係数列を第1係数列として取得し、前記第1対応情報に基づいて、前記第2診断項目についての漢方医による前記第2被検者の診断結果を示す情報と、前記第2時間周波数スペクトル画像とを前記第1機械学習モデルに学習させて、前記第2診断項目についての前記第1機械学習モデルの係数列を第2係数列として取得し、
     前記処方候補出力部は、前記第1係数列と、前記第2係数列と、前記第1機械学習モデルと、前記第1時間周波数スペクトル画像とに基づいて、前記第1診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報と、前記第2診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報とを含む第1診断結果情報を前記第1機械学習モデルに出力させ、前記第1機械学習モデルに出力させた前記第1診断結果情報と、前記第2機械学習モデルとに基づいて、前記第1被検者に処方される漢方薬の候補を特定する、
     請求項6に記載の情報処理装置。
    The second diagnosis result information includes information indicating the diagnosis result of the second subject by the Chinese medicine doctor regarding the predetermined first diagnosis item, and information indicating the diagnosis result of the second subject by the Chinese medicine doctor regarding the predetermined second diagnosis item. Information indicating the diagnosis result of the second subject is included,
    The first learning unit is configured to acquire information indicating a diagnosis result of the second subject by the Chinese medicine doctor regarding the first diagnosis item and the second time-frequency spectrum image based on the first correspondence information. A first machine learning model is trained to obtain a coefficient sequence of the first machine learning model for the first diagnostic item as a first coefficient sequence, and based on the first correspondence information, for the second diagnostic item. The first machine learning model is made to learn information indicating the diagnosis result of the second subject by the Chinese medicine doctor and the second time frequency spectrum image, and the first machine learning about the second diagnosis item is performed. Obtain the coefficient sequence of the model as the second coefficient sequence,
    The prescription candidate output unit is configured to select a Chinese herbal medicine doctor for the first diagnostic item based on the first coefficient sequence, the second coefficient sequence, the first machine learning model, and the first time-frequency spectrum image. information indicating a plausible diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the second diagnosis item, and information indicating a plausible diagnosis result as the diagnosis result of the first subject by the Chinese medicine doctor regarding the second diagnosis item. The first test result information is output to the first machine learning model, and the first test result information is output to the first test subject based on the first diagnosis result information output by the first machine learning model and the second machine learning model. identify candidates for herbal medicines to be prescribed to patients;
    The information processing device according to claim 6.
  8.  前記第1診断項目と前記第2診断項目とのそれぞれは、病脈28脈における浮網脈、沈網脈、遅網脈、数網脈、虚網脈、実網脈のいずれかであり、互いに異なる診断項目である、
     請求項7に記載の情報処理装置。
    Each of the first diagnostic item and the second diagnostic item is any one of floating reticular vein, sinking reticular pulse, slow reticular pulse, few reticular pulse, ischemic reticular pulse, and real reticular pulse in the 28 diseased pulses, Diagnostic items that are different from each other,
    The information processing device according to claim 7.
  9.  前記第1診断項目には、診断結果として選択可能な複数の第1選択肢が含まれており、
     前記第2診断項目には、診断結果として選択可能な複数の第2選択肢が含まれており、
     前記第1機械学習モデルは、前記第1係数列と、前記第1時間周波数スペクトル画像とに基づいて、前記複数の第1選択肢それぞれの漢方医による診断結果としての尤もらしさを示す尤度を算出し、算出した尤度に基づいて、前記第1診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報を推定し、前記第2係数列と、前記第1時間周波数スペクトル画像とに基づいて、前記複数の第2選択肢それぞれの漢方医による診断結果としての尤もらしさを示す尤度を算出し、算出した尤度に基づいて、前記第2診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報を推定する、
     請求項7に記載の情報処理装置。
    The first diagnosis item includes a plurality of first options that can be selected as a diagnosis result,
    The second diagnosis item includes a plurality of second options that can be selected as a diagnosis result,
    The first machine learning model calculates a likelihood indicating the likelihood of each of the plurality of first options as a diagnosis result by a Chinese herbalist based on the first coefficient sequence and the first time-frequency spectrum image. Based on the calculated likelihood, information indicating a likely diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the first diagnosis item is estimated, and information is estimated based on the second coefficient sequence and the first subject. Based on the one-time frequency spectrum image, a likelihood indicating the likelihood of each of the plurality of second options as a diagnosis result by a Chinese herbalist is calculated, and based on the calculated likelihood, the second diagnosis item is determined based on the calculated likelihood. estimating information indicating a plausible diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor;
    The information processing device according to claim 7.
  10.  前記第1診断項目と前記第2診断項目とのそれぞれは、日本式脈診法における浮脈と沈脈との間の強弱、数脈と遅脈との間の強弱、大脈と小脈との間の強弱、虚脈と実脈との間の強弱、緊脈と緩脈との間の強弱、滑脈と渋脈との間の強弱のうちのいずれかであり、互いに異なる診断項目である、
     請求項7に記載の情報処理装置。
    The first diagnostic item and the second diagnostic item each include the strength between floating pulse and sinking pulse, the strength between several pulses and slow pulse, and the strength between large and small veins in the Japanese pulse diagnosis method. The strength is between the strength between ischemic and real pulses, the strength between tense and slow pulses, the strength between smooth and astringent pulses, and these are different diagnostic items. be,
    The information processing device according to claim 7.
  11.  前記第1診断項目には、診断結果として選択可能な複数の第1選択肢が含まれており、
     前記第2診断項目には、診断結果として選択可能な複数の第2選択肢が含まれており、
     前記第1機械学習モデルは、前記第1係数列と、前記第1機械学習モデルと、前記第1時間周波数スペクトル画像とに基づいて、前記複数の第1選択肢それぞれの漢方医による診断結果としての尤もらしさを示す尤度を算出し、算出した尤度に基づいて、前記第1診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報を推定し、前記第2係数列と、前記第1機械学習モデルと、前記第1時間周波数スペクトル画像とに基づいて、前記複数の第2選択肢それぞれの漢方医による診断結果としての尤もらしさを示す尤度を算出し、算出した尤度に基づいて、前記第2診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報を推定する、
     請求項9に記載の情報処理装置。
    The first diagnosis item includes a plurality of first options that can be selected as a diagnosis result,
    The second diagnosis item includes a plurality of second options that can be selected as a diagnosis result,
    The first machine learning model is configured to determine a diagnosis result by a Chinese herbalist for each of the plurality of first options based on the first coefficient sequence, the first machine learning model, and the first time-frequency spectrum image. A likelihood indicating likelihood is calculated, and based on the calculated likelihood, information indicating a likely diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the first diagnosis item is estimated, and the Based on the second coefficient sequence, the first machine learning model, and the first time-frequency spectrum image, a likelihood indicating the likelihood of each of the plurality of second options as a diagnosis result by a Chinese herbalist is calculated. , based on the calculated likelihood, estimate information indicating a likely diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the second diagnosis item;
    The information processing device according to claim 9.
  12.  前記第1機械学習モデルは、前記第1診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報として第1ベクトルを生成し、生成した前記第1ベクトルを、前記第1診断項目に対応付けられた重みベクトルとのアダマール積によって補正し、前記第2診断項目についての漢方医による前記第1被検者の診断結果として尤もらしい診断結果を示す情報として第2ベクトルを生成し、生成した前記第2ベクトルを、前記第2診断項目に対応付けられた重みベクトルとのアダマール積によって補正し、補正した後の前記第1ベクトルと、補正した後の前記第2ベクトルとを含む前記第1診断結果情報を出力する、
     請求項10に記載の情報処理装置。
    The first machine learning model generates a first vector as information indicating a plausible diagnosis result as a diagnosis result of the first subject by the Chinese medicine doctor regarding the first diagnosis item, and , corrected by the Hadamard product with the weight vector associated with the first diagnostic item, and as information indicating a likely diagnosis result of the first subject by the Chinese herbalist regarding the second diagnostic item. 2 vectors are generated, the generated second vector is corrected by a Hadamard product with a weight vector associated with the second diagnostic item, and the corrected first vector and the corrected second vector are outputting the first diagnosis result information including two vectors;
    The information processing device according to claim 10.
  13.  前記第1機械学習モデルは、前記複数の第1選択肢それぞれについての尤度がすべて、予め決められた閾値未満であった場合、又は、前記複数の第2選択肢それぞれについての尤度がすべて、前記閾値未満であった場合、エラー処理を行う、
     請求項11に記載の情報処理装置。
    The first machine learning model is configured such that if all the likelihoods for each of the plurality of first options are less than a predetermined threshold, or all the likelihoods for each of the plurality of second options are If it is less than the threshold, perform error processing,
    The information processing device according to claim 11.
  14.  前記第1機械学習モデルは、前記第2対応情報に基づいて、前記第1診断項目と前記第2診断項目とのそれぞれについての漢方薬処方決定要因の要因順位、寄与度の少なくとも一方を推定し、推定した前記少なくとも一方に基づく第1重みを前記複数の第1選択肢それぞれについての尤度に乗算し、推定した前記少なくとも一方に基づく第2重みを前記複数の第2選択肢それぞれについての尤度に乗算し、
     前記処方候補出力部は、前記複数の第1選択肢それぞれについての尤度と、前記第1重みと、前記複数の第2選択肢それぞれについての尤度と、前記第2重みと、前記第2機械学習モデルから出力された前記漢方薬候補情報とに基づいて、前記第2対応情報を更新する、
     請求項11に記載の情報処理装置。
    The first machine learning model estimates at least one of a factor ranking and a degree of contribution of Chinese herbal medicine prescription determining factors for each of the first diagnostic item and the second diagnostic item, based on the second correspondence information, Multiplying the likelihood of each of the plurality of first options by a first weight based on the estimated at least one, and multiplying the likelihood of each of the plurality of second options by a second weight based on the estimated at least one. death,
    The prescription candidate output unit includes a likelihood for each of the plurality of first options, the first weight, a likelihood for each of the plurality of second options, the second weight, and the second machine learning. updating the second correspondence information based on the Chinese herbal medicine candidate information output from the model;
    The information processing device according to claim 11.
  15.  前記第2機械学習モデルは、前記漢方薬候補情報が示す1以上の漢方薬の候補の中から、禁忌な漢方薬の組み合わせを除外する漢方薬禁忌フィルタを有する、
     請求項10に記載の情報処理装置。
    The second machine learning model has a herbal medicine contraindication filter that excludes contraindicated combinations of herbal medicines from among the one or more herbal medicine candidates indicated by the herbal medicine candidate information.
    The information processing device according to claim 10.
  16.  前記第1被検者の脈波の波形は、予め決められた測定時間内において、前記第1被検者の脈波の波形を検出するセンサを前記第1被検者に押し当てる圧力を変化させながら前記センサにより検出された波形である、
     請求項1から3のうちいずれか一項に記載の情報処理装置。
    The waveform of the pulse wave of the first subject is determined by changing the pressure with which a sensor for detecting the waveform of the pulse wave of the first subject is pressed against the first subject within a predetermined measurement time. is a waveform detected by the sensor while
    The information processing device according to any one of claims 1 to 3.
  17.  第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力ステップを有する、
     情報処理方法。
    Contains Chinese herbal medicine candidate information indicating a Chinese herbal medicine candidate to be prescribed to the first subject based on a first time frequency spectrum image indicating a first time frequency spectrum corresponding to the pulse wave waveform of the first subject. comprising a prescription candidate output step for outputting output information;
    Information processing method.
  18.  コンピュータに、
     第1被検者の脈波の波形に応じた第1時間周波数スペクトルを示す第1時間周波数スペクトル画像に基づいて、前記第1被検者に処方される漢方薬の候補を示す漢方薬候補情報を含む出力情報を出力する処方候補出力ステップ、
     を実行させるためのプログラム。
    to the computer,
    Contains Chinese herbal medicine candidate information indicating a Chinese herbal medicine candidate to be prescribed to the first subject based on a first time frequency spectrum image indicating a first time frequency spectrum corresponding to the pulse wave waveform of the first subject. a prescription candidate output step for outputting output information;
    A program to run.
PCT/JP2023/011503 2022-04-28 2023-03-23 Information processing device, information processing method, and program WO2023210219A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-074671 2022-04-28
JP2022074671 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210219A1 true WO2023210219A1 (en) 2023-11-02

Family

ID=88518606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011503 WO2023210219A1 (en) 2022-04-28 2023-03-23 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2023210219A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235829A (en) * 2002-02-15 2003-08-26 Oki Electric Ind Co Ltd Health check unit, health check apparatus and health check system using the same
JP2009028057A (en) * 2007-07-24 2009-02-12 Saieco:Kk Pulse diagnostic system, pulse diagnostic apparatus, pulse diagnostic method, and pulse diagnostic program
JP2016018224A (en) * 2014-07-04 2016-02-01 サイバーワオン合同会社 Service system for using health condition prediction diagnosis
WO2020004391A1 (en) * 2018-06-29 2020-01-02 小林製薬株式会社 Herbal medicine prescription information processing system, information processing method, and program
JP2020074940A (en) * 2018-11-08 2020-05-21 兆奇 胡 Health state evaluation system by measuring pulse and actuation method thereof
US20200211706A1 (en) * 2017-07-31 2020-07-02 Guangdong University Of Technology Intelligent traditional chinese medicine diagnosis method, system and traditional chinese medicine system
JP2020157050A (en) * 2019-03-05 2020-10-01 光正 趙 System for generating stimulus in relation to medicament, meridian of human body, organ, and tissue
JP2021047504A (en) * 2019-09-17 2021-03-25 国立大学法人千葉大学 Automatic diagnosis support device, automatic diagnosis support method, program, learned model, and learned model creation method in chinese medicine for doctor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235829A (en) * 2002-02-15 2003-08-26 Oki Electric Ind Co Ltd Health check unit, health check apparatus and health check system using the same
JP2009028057A (en) * 2007-07-24 2009-02-12 Saieco:Kk Pulse diagnostic system, pulse diagnostic apparatus, pulse diagnostic method, and pulse diagnostic program
JP2016018224A (en) * 2014-07-04 2016-02-01 サイバーワオン合同会社 Service system for using health condition prediction diagnosis
US20200211706A1 (en) * 2017-07-31 2020-07-02 Guangdong University Of Technology Intelligent traditional chinese medicine diagnosis method, system and traditional chinese medicine system
WO2020004391A1 (en) * 2018-06-29 2020-01-02 小林製薬株式会社 Herbal medicine prescription information processing system, information processing method, and program
JP2020074940A (en) * 2018-11-08 2020-05-21 兆奇 胡 Health state evaluation system by measuring pulse and actuation method thereof
JP2020157050A (en) * 2019-03-05 2020-10-01 光正 趙 System for generating stimulus in relation to medicament, meridian of human body, organ, and tissue
JP2021047504A (en) * 2019-09-17 2021-03-25 国立大学法人千葉大学 Automatic diagnosis support device, automatic diagnosis support method, program, learned model, and learned model creation method in chinese medicine for doctor

Similar Documents

Publication Publication Date Title
US20220093216A1 (en) Discovering novel features to use in machine learning techniques, such as machine learning techniques for diagnosing medical conditions
Kim et al. Wrist sensor-based tremor severity quantification in Parkinson's disease using convolutional neural network
US20220093215A1 (en) Discovering genomes to use in machine learning techniques
US10299735B2 (en) Automated diagnosis based at least in part on pulse waveforms
CN105361869B (en) Blood pressure measurement
CN101815466B (en) A non-invasive device NADI TARANGINI useful for quantitative detection of arterial NADI pulse waveform
JP2022084673A (en) Apparatuses, systems, and methods for screening and monitoring of encephalopathy/delirium
Guo et al. Analysis and recognition of traditional Chinese medicine pulse based on the Hilbert‐Huang transform and random forest in patients with coronary heart disease
RU2657384C2 (en) Method and system for noninvasive screening physiological parameters and pathology
WO2019162054A1 (en) System and method for client-side physiological condition estimations based on a video of an individual
JP2019091498A (en) System and method for correcting answers
US20240008813A1 (en) Smart wearable device and method for estimating traditional medicine system parameters
CN108962379B (en) Mobile phone auxiliary detection system for cranial nerve system diseases
CN111243747A (en) Method, device and system for monitoring physical and psychological health state
WO2023210219A1 (en) Information processing device, information processing method, and program
CN204813807U (en) Box -like traditional chinese medical science electron equipment of diagnosing of multiunit
JP2022059448A (en) Diagnosis and treatment support system
WO2023210217A1 (en) Information processing device, information processing method, and program
JP5911840B2 (en) Diagnostic data generation device and diagnostic device
Szczęsna et al. Novel photoplethysmographic signal analysis via wavelet scattering transform
WO2023281424A1 (en) Integrative system and method for performing medical diagnosis using artificial intelligence
Thomas et al. Artificial Intelligence of Things for Early Detection of Cardiac Diseases
Parameswari et al. Robust Heart Disease Diagnosis and Analysis System Using Data Mining
Bassiouni et al. Mobile Application for Heart Diseases Diagnosis based on the PPG Signals and Deep Learning
Gundala et al. Parkinson’s Disease Identification By Voice and Handwritten Drawings using Xgboost and Random Forest Algorithms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024517904

Country of ref document: JP