[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023209880A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2023209880A1
WO2023209880A1 PCT/JP2022/019118 JP2022019118W WO2023209880A1 WO 2023209880 A1 WO2023209880 A1 WO 2023209880A1 JP 2022019118 W JP2022019118 W JP 2022019118W WO 2023209880 A1 WO2023209880 A1 WO 2023209880A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
blower
power conversion
conversion device
base plate
Prior art date
Application number
PCT/JP2022/019118
Other languages
French (fr)
Japanese (ja)
Inventor
健 篠▲崎▼
裕輔 木本
翔太 佐藤
寛之 矢原
雄二 白形
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022546503A priority Critical patent/JP7202053B1/en
Priority to PCT/JP2022/019118 priority patent/WO2023209880A1/en
Publication of WO2023209880A1 publication Critical patent/WO2023209880A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to a power conversion device having a heat dissipation structure.
  • the first casing and the second casing are arranged vertically so that the bottom surface of the first metal substrate and the bottom surface of the second metal substrate, on which electrical components are mounted, face each other.
  • the first metal substrate and the second metal substrate are arranged adjacent to each other, and are thermally coupled via the first radiation fin and the second radiation fin.
  • the first plate-shaped heat radiating fin and the second plate-shaped heat radiating fin are connected at their tips to form a flow path for air refrigerant passed by the fan.
  • Patent Document 1 in order to increase the heat dissipation area, fins are placed opposite each other to form a flow path through which air refrigerant flows, and because the fins are not open to the surrounding space, the fan may stop or the running air may pass through. If it is not flushed, cooling performance will be drastically reduced. In addition, if the heat generation of electrical components increases, it is necessary to increase the size of the fins, increase the number of blowers, or increase the air volume of the fan. may lead to
  • the present disclosure has been made in view of the above, and aims to provide a power conversion device that can be made smaller and lighter while still having efficient and high heat dissipation ability.
  • a power conversion device includes an outer box that stores electrical components, a base plate that is a lid of the outer box, and a pin-shaped pin that stands up on the base plate.
  • a cooler having a plurality of fins, the plurality of fins being open to the surrounding space, and a rotor blade installed in the center of the plurality of fins and blowing air to the plurality of fins of the cooler arranged around the fins.
  • a blower having a. The plurality of fins are arranged radially along a first direction that is a straight line connecting a blade root and a blade tip of a rotary blade of the blower.
  • the power conversion device of the present disclosure it is possible to reduce the size and weight while maintaining efficient and high heat dissipation ability.
  • a perspective view showing the configuration of a power conversion device according to Embodiment 1 A cross-sectional view showing the configuration of a power conversion device according to Embodiment 1 A cross-sectional view for explaining the positional relationship between a blower and fins in the power conversion device according to Embodiment 1.
  • a top view showing the configuration of a power conversion device according to Embodiment 1 A side view showing the configuration of a power conversion device according to Embodiment 1 Top view showing the configuration of a power conversion device according to Embodiment 2 A cross-sectional view showing the configuration of a power conversion device according to Embodiment 2 Cross-sectional view showing the configuration of a power conversion device according to Embodiment 3 Cross-sectional view showing the configuration of a power conversion device according to Embodiment 4
  • FIG. 1 is a perspective view showing the configuration of a power conversion device according to Embodiment 1.
  • FIG. 2 is a sectional view showing the configuration of the power conversion device according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view for explaining the positional relationship between the blower and the fins in the power conversion device according to the first embodiment.
  • FIG. 4 is a top view showing the configuration of the power conversion device according to the first embodiment.
  • FIG. 5 is a side view showing the configuration of the power conversion device according to the first embodiment.
  • the power conversion device 100 is a power conversion device installed in, for example, an electric aircraft, an electric vehicle, a hybrid vehicle, a fuel cell vehicle, or the like. As shown in FIGS. 1 to 3, the power conversion device 100 mainly includes an outer box 2, a cooling device 3, and a plurality of electrical components 4 that generate heat.
  • the outer box 2 is a casing provided to cover the electrical components 4.
  • the outer box 2 has an equipment area for storing and protecting electrical components 4 therein.
  • the cooler 31 also serves as a lid that partitions the equipment area from the outside air.
  • the outer box 2 and the cooler 31 form a sealed structure.
  • the outer box 2 is formed of a thin plate of metal such as aluminum, aluminum alloy, or stainless steel.
  • the outer box 2 and the cooler 31 are joined together using means such as an O-ring, a gasket, or friction stir welding.
  • the outside of the outer box 2 does not necessarily need to have a smooth surface, and may be provided with a heat dissipation structure 21 such as an uneven structure as long as the inside can be sealed.
  • a connector or the like for transmitting the converted power may be installed in the outer box 2 as long as water and dust are prevented from entering.
  • the cooling device 3 includes a cooler 31 and a blower 32.
  • the cooler 31 also serves as a lid for the outer box 2.
  • the blower 32 blows air through the cooler 31.
  • the cooler 31 is made of a material with good thermal conductivity, such as aluminum, aluminum alloy, copper, or iron.
  • the cooler 31 includes a base plate 312 as a lid of the outer box 2 and a plurality of fins 311 erected on the base plate 312. The top and side surfaces of the plurality of fins 311 are open to the surrounding space.
  • a plurality of electrical components 4 are installed on the surface of the base plate 312 opposite to the surface on which the fins 311 are arranged.
  • the blower 32 is a centrifugal blower that takes in air from an axial center portion 321 and discharges air from a side portion 322, which is an outlet of the blower 32, and is located perpendicular to the axis, as shown by arrow E. . Air discharged from the side part 322 passes between the plurality of fins 311 of the cooler 31.
  • the fins 311 are pin-shaped radially erected along the straight line F (direction of the broken arrow in FIG. 4) connecting the blade root 323a and the blade tip 323b of the rotary blade 323 of the blower 32. It's a fin.
  • the direction F of the dashed arrow corresponds to the first direction.
  • the fins 311 are integrally molded with the base plate 312 by, for example, aluminum die casting or a metal three-dimensional printer. Further, the fins 311 may be separately produced and bonded to the base plate 312 with an adhesive having good thermal conductivity, or may be mechanically bonded by caulking or the like.
  • the fins 311 may have a circular cross section, but are preferably pin-shaped fins with an elliptical cross section whose long sides are in the direction of air flow so as to follow the flow of air discharged from the blower 32. Further, the fins 311 are erected such that the distance between the fins 311 in the circumferential direction and the radial direction (direction F) increases as the distance from the blower 32 increases.
  • the blower 32 is fixed to the base plate 312 using adhesive, screws, or other means. Electric power is supplied to the blower 32 from the outside through a lead wire (not shown) or the like.
  • the fins 311 are not erected in the area where the blower 32 is fixed and the area 5 around the blower.
  • the blower peripheral area 5 is an area between the blower 32 and the fins 311.
  • the blower surrounding area 5 is an annular area within a certain distance from the blower 32.
  • the blower peripheral area 5 corresponds to the first spatial area. As described above, the blower 32 takes in air from the axial center portion 321 and discharges air from the side portion 322, which is the outlet of the blower 32 and is located perpendicular to the axis.
  • the air discharged from the side part 322 passes between the fins 311 installed on the cooler 31.
  • the blower 32 is configured to move the side surface portion 322 of the blower 32 in the vertical direction (extending direction of the fins 311), as shown in FIG.
  • the center position C is fixed to be lower than the position K of the upper end surface of the fin 311 in the upright direction.
  • a mounting stand or the like may be provided between the base plate 312 and the blower 32 in order to fix the blower 32 to the base plate 312 so as to satisfy this fixing condition.
  • the electrical components 4 such as semiconductor elements, transformers, and reactors installed on the base plate 312 and the inside of the bottom surface of the outer box 2 are installed.
  • the electrical components 4 such as the control board that have been installed operate. These electrical components 4 generate heat depending on their operating conditions.
  • Electrical components 4 installed on the base plate 312 are conducted to the fins 311 via the base plate 312. The heat conducted to the fins 311 is radiated to the surroundings by exchanging heat with the air discharged from the blower 32, so that the electrical component 4 is cooled.
  • Electrical components 4 installed inside the outer box 2 conduct heat to the wall surface of the outer box 2. The heat conducted to the wall surface of the outer box 2 is radiated to the surroundings by exchanging heat with the air outside the outer box 2, so that the electrical components 4 are cooled.
  • the power converter 100 includes the outer box 2 that stores the electrical components 4, the base plate 312 that is the lid of the outer box 2, and the plurality of fins 311 that are vertically provided on the base plate 312. and a blower 32 having rotary blades that is installed in the center of the plurality of fins 311 and blows air to the plurality of fins 311 arranged around the fins 311.
  • a blower 32 having rotary blades that is installed in the center of the plurality of fins 311 and blows air to the plurality of fins 311 arranged around the fins 311.
  • the plurality of fins 311 are arranged radially along the direction F of a straight line connecting the blade root portion 323a and the blade tip portion 323b of the rotor blade of the blower 32. Further, a blower peripheral area 5 is provided between the blower 32 and the fins 311, which is a space where the fins 311 are not provided. Further, the cross-sectional shape of the fin 311 is an ellipse whose long side is in the direction F. According to such a configuration, the air discharged from the side surface portion 322, which is the outlet of the blower 32, flows along the fins 311, so that pressure loss is reduced and the air flow rate can be increased. Therefore, it becomes possible to efficiently radiate heat from the fins 311. Therefore, even if the amount of heat generated by the power converter 100 increases due to the increase in the output of the power converter 100, the power converter 100 can be effectively operated while suppressing the increase in the size of the power converter 100 or the blower 32. Can be cooled.
  • the cooling device 3 is installed on the upper side in the direction of gravity, the air whose temperature has increased inside the housing made up of the outer box 2 flows upward in the direction of gravity. Therefore, it can be effectively cooled by the cooler 31. Furthermore, in the event that the blower 32 stops, the cooling effect due to natural convection can be increased.
  • FIG. 6 is a top view showing the configuration of the power conversion device according to the second embodiment.
  • FIG. 7 is a sectional view showing the configuration of a power conversion device according to the second embodiment.
  • the same components as in Embodiment 1 are given the same reference numerals, and redundant explanations will be omitted.
  • a shielding plate 6 that covers the area 5 around the blower is provided.
  • the shielding plate 6 prevents the air discharged from the side surface portion 322, which is the outlet of the blower 32, from circulating again to the axial center portion 321 of the blower 32 without passing through the fins 311.
  • the shielding plate 6 is manufactured separately and is mechanically fixed to the blower 32 and the fins 311. Further, if it is possible to mold the shielding plate 6 without interfering with the attachment of the blower 32, the shielding plate 6 may be molded integrally with the cooler 31 using aluminum die casting, a metal three-dimensional printer, or the like.
  • the shielding plate 6 is installed in the area 5 around the blower where the fins 311 are not provided, so that the air discharged from the side surface 322, which is the outlet of the blower 32, is By circulating the air again to the axial center portion 321 of the blower 32 without passing through the fins 311, it is possible to prevent the air flow rate passing through the fins 311 from decreasing. Moreover, it is also possible to prevent the temperature of the blower 32 from increasing due to the air temperature rising during the circulation process, and shortening the life of the blower 32.
  • FIG. 8 is a cross-sectional view showing the configuration of a power conversion device according to Embodiment 3.
  • Embodiment 3 the same components as in Embodiment 1 are given the same reference numerals, and redundant explanation will be omitted.
  • the heat diffusion member 7 contains a carbon compound that has excellent heat transfer ability in the planar direction, and utilizes the latent heat accompanying the evaporation and condensation of the working fluid sealed inside. etc. It is desirable that the heat diffusion member 7 is installed up to a region opposite to the region where the fins 311 are erected. Further, a heat pipe, which is a heat dissipation component that utilizes latent heat, may be used as the heat diffusion member 7 and integrally molded inside the base plate 312.
  • the heat diffusion member 7 since the heat diffusion member 7 is installed, the heat of the blower 32 and the electric components 4 installed in the area 5 around the blower can be effectively transported to the fins 311. . Therefore, the electrical components 4 can be efficiently cooled, and the heat generated by the blower 32 can also be cooled by the fins 311. Furthermore, in order to suppress the temperature rise of the electrical components 4, it is not necessary to increase the size of the fins 311 in the vertical direction, increase the number of fins 311, or increase the size of the blower 32, so that the power converter 102 does not need to be enlarged. It is possible to prevent the increase in size. Furthermore, if the temperature distribution of the base plate 312 can be made uniform by the heat diffusion member 7, the cooler 31 can be made smaller and lighter by reducing the number of fins 311 and making the blower 32 smaller. be able to.
  • FIG. 9 is a sectional view showing the configuration of a power conversion device according to Embodiment 4.
  • Embodiment 4 the same components as in Embodiment 1 are given the same reference numerals, and redundant explanation will be omitted.
  • the upper surface 312a of the base plate 312 has an inclined surface that decreases as the distance from the central position where the blower 32 is installed to the periphery increases. That is, the base plate 312 is thicker at the position where the blower 32 is installed, and the upper surface 312a of the base plate 312 is sloped so that the thickness decreases in the direction in which the fins 311 are installed. are doing.
  • the apex heights of the fins 311 in the upright direction are equal, but the fin lengths are not uniform.
  • the slope of the base plate 312 may not be a straight line, but may be an arc shape.
  • the upper surface 312a of the base plate 312 has an inclined surface that decreases as the distance from the central position where the blower 32 is installed to the periphery increases. It is possible to suppress the included dust from staying on the base plate 312. Therefore, it is possible to prevent a decrease in cooling performance due to the accumulation of dust.
  • Cooling device 2 Outer box, 3 Cooling device, 4 Electrical components, 5 Blower peripheral area, 6 Shielding plate, 7 Heat diffusion member, 21 Heat dissipation structure, 31 Cooler, 32 Blower, 100, 101, 102, 103 Power conversion device, 311 Fin , 312 base plate, 312a upper surface, 321 axial center, 322 side surface, 323 rotor, 323a blade root, 323b blade tip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion device (100) comprises: an outer box for accommodating an electric component; a cooler (31) which has a plurality of pin-shaped fins (311) and a base plate (312) as a lid of the outer box, and in which the plurality of fins (311) are open to the surrounding space; and a blower (32) that has rotary blades (323), that is installed at the center of the plurality of fins (311), and that blows air to the plurality of fins (311), of the cooler (31), arranged around the blower. The plurality of fins (311) are radially disposed along a direction (F) of a straight line connecting a blade root portion (323a) and a blade tip portion (323b) of each of the rotary blades (323) of the blower (32).

Description

電力変換装置power converter
 本開示は、放熱構造を有する電力変換装置に関する。 The present disclosure relates to a power conversion device having a heat dissipation structure.
 インバータ装置、コンバータ装置、または充電装置等の電力変換装置においては、小型化および軽量化のために、冷却水設備を用いない空冷方式の放熱構造が知られている。 In power conversion devices such as inverter devices, converter devices, or charging devices, air-cooled heat dissipation structures that do not use cooling water equipment are known in order to reduce size and weight.
 特許文献1では、第1の筐体と第2の筐体とが、表面に電気部品が実装される第1の金属基板の底面と第2の金属基板の底面とを対向させるように、上下に隣り合って配設され、第1の金属基板と第2の金属基板とが、第1の放熱フィンおよび第2の放熱フィンを介して、熱的に結合されている。板状の第1の放熱フィンおよび板状の第2の放熱フィンは、先端部が接続されることで、ファンにより通流される空気冷媒の流路を構成している。 In Patent Document 1, the first casing and the second casing are arranged vertically so that the bottom surface of the first metal substrate and the bottom surface of the second metal substrate, on which electrical components are mounted, face each other. The first metal substrate and the second metal substrate are arranged adjacent to each other, and are thermally coupled via the first radiation fin and the second radiation fin. The first plate-shaped heat radiating fin and the second plate-shaped heat radiating fin are connected at their tips to form a flow path for air refrigerant passed by the fan.
特開2019-22293号公報JP 2019-22293 Publication
 特許文献1では、放熱面積を増やすためにフィンを対向させて空気冷媒が流れる流路を形成しており、フィンが周囲空間に開放されていないために、ファンが停止したり、走行風が通流しない場合に、極端な冷却性能の低下を招く。また、電気部品の発熱量が増加する場合には、フィンを大型化するか、送風機の個数の増加、もしくはファンの風量の増加が必要となるため、放熱系を含めた電力変換装置全体の大型化を招き得る。 In Patent Document 1, in order to increase the heat dissipation area, fins are placed opposite each other to form a flow path through which air refrigerant flows, and because the fins are not open to the surrounding space, the fan may stop or the running air may pass through. If it is not flushed, cooling performance will be drastically reduced. In addition, if the heat generation of electrical components increases, it is necessary to increase the size of the fins, increase the number of blowers, or increase the air volume of the fan. may lead to
 本開示は、上記に鑑みてなされたものであり、効率の良い高い放熱能力を有したまま小型化、軽量化が可能な電力変換装置を得ることを目的としている。 The present disclosure has been made in view of the above, and aims to provide a power conversion device that can be made smaller and lighter while still having efficient and high heat dissipation ability.
 上述した課題を解決し、目的を達成するために、本開示における電力変換装置は、電気部品を収納する外箱と、外箱の蓋であるベース板、およびベース板に立設されたピン状の複数のフィンを有し、複数のフィンが周囲空間に開放されている冷却器と、複数のフィンの中央部に設置され、周囲に配置された冷却器の複数のフィンに送風する、回転翼を有する送風機と、を備える。複数のフィンは、送風機の回転翼の翼根元部と翼端部とを結んだ直線の方向である第1方向に沿って放射状に配設されている。 In order to solve the above-mentioned problems and achieve the purpose, a power conversion device according to the present disclosure includes an outer box that stores electrical components, a base plate that is a lid of the outer box, and a pin-shaped pin that stands up on the base plate. A cooler having a plurality of fins, the plurality of fins being open to the surrounding space, and a rotor blade installed in the center of the plurality of fins and blowing air to the plurality of fins of the cooler arranged around the fins. A blower having a. The plurality of fins are arranged radially along a first direction that is a straight line connecting a blade root and a blade tip of a rotary blade of the blower.
 本開示における電力変換装置によれば、効率の良い高い放熱能力を有したまま小型化、軽量化が可能であるという効果を奏する。 According to the power conversion device of the present disclosure, it is possible to reduce the size and weight while maintaining efficient and high heat dissipation ability.
実施の形態1に係る電力変換装置の構成を示す斜視図A perspective view showing the configuration of a power conversion device according to Embodiment 1 実施の形態1に係る電力変換装置の構成を示す断面図A cross-sectional view showing the configuration of a power conversion device according to Embodiment 1 実施の形態1に係る電力変換装置における送風機とフィンとの位置関係を説明するための断面図A cross-sectional view for explaining the positional relationship between a blower and fins in the power conversion device according to Embodiment 1. 実施の形態1に係る電力変換装置の構成を示す上面図A top view showing the configuration of a power conversion device according to Embodiment 1 実施の形態1に係る電力変換装置の構成を示す側面図A side view showing the configuration of a power conversion device according to Embodiment 1 実施の形態2に係る電力変換装置の構成を示す上面図Top view showing the configuration of a power conversion device according to Embodiment 2 実施の形態2に係る電力変換装置の構成を示す断面図A cross-sectional view showing the configuration of a power conversion device according to Embodiment 2 実施の形態3に係る電力変換装置の構成を示す断面図Cross-sectional view showing the configuration of a power conversion device according to Embodiment 3 実施の形態4に係る電力変換装置の構成を示す断面図Cross-sectional view showing the configuration of a power conversion device according to Embodiment 4
 以下に、実施の形態にかかる電力変換装置を図面に基づいて詳細に説明する。 Below, a power conversion device according to an embodiment will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係る電力変換装置の構成を示す斜視図である。図2は実施の形態1に係る電力変換装置の構成を示す断面図である。図2は、図1のII-II線に沿った断面図である。図3は、実施の形態1に係る電力変換装置における送風機とフィンとの位置関係を説明するための断面図である。図4は、実施の形態1に係る電力変換装置の構成を示す上面図である。図5は、実施の形態1に係る電力変換装置の構成を示す側面図である。
Embodiment 1.
FIG. 1 is a perspective view showing the configuration of a power conversion device according to Embodiment 1. FIG. 2 is a sectional view showing the configuration of the power conversion device according to the first embodiment. FIG. 2 is a cross-sectional view taken along line II-II in FIG. FIG. 3 is a cross-sectional view for explaining the positional relationship between the blower and the fins in the power conversion device according to the first embodiment. FIG. 4 is a top view showing the configuration of the power conversion device according to the first embodiment. FIG. 5 is a side view showing the configuration of the power conversion device according to the first embodiment.
 電力変換装置100は、例えば、電動化航空機、電気自動車、ハイブリッド自動車、燃料電池自動車などに搭載される電力変換装置である。図1から図3に示すように、電力変換装置100は、主に、外箱2と、冷却装置3と、発熱する複数の電気部品4と、を有する。 The power conversion device 100 is a power conversion device installed in, for example, an electric aircraft, an electric vehicle, a hybrid vehicle, a fuel cell vehicle, or the like. As shown in FIGS. 1 to 3, the power conversion device 100 mainly includes an outer box 2, a cooling device 3, and a plurality of electrical components 4 that generate heat.
 外箱2は、電気部品4を覆うように設けられた筐体である。外箱2は、内部に電気部品4を収納し保護する機器領域を有する。冷却器31は、機器領域と外気とを仕切る蓋の役割を兼ねている。外箱2と冷却器31とで密閉構造が構成されている。外箱2はアルミニウム、アルミニウム合金またはステンレスなどの金属の薄板で形成される。外箱2内へ水、塵埃が侵入することを防止するために、Oリング、ガスケットまたは摩擦攪拌接合等の手段で、外箱2と冷却器31とが接合されている。図5に示すように、外箱2の外側は必ずしも平滑面を形成する必要はなく、内部を密閉できれば凹凸構造などの放熱構造21を備えていても良い。さらに、外箱2には水、塵埃が侵入することを防止していれば、変換した電力を送電するためのコネクタ等を設置しても良い。 The outer box 2 is a casing provided to cover the electrical components 4. The outer box 2 has an equipment area for storing and protecting electrical components 4 therein. The cooler 31 also serves as a lid that partitions the equipment area from the outside air. The outer box 2 and the cooler 31 form a sealed structure. The outer box 2 is formed of a thin plate of metal such as aluminum, aluminum alloy, or stainless steel. In order to prevent water and dust from entering the outer box 2, the outer box 2 and the cooler 31 are joined together using means such as an O-ring, a gasket, or friction stir welding. As shown in FIG. 5, the outside of the outer box 2 does not necessarily need to have a smooth surface, and may be provided with a heat dissipation structure 21 such as an uneven structure as long as the inside can be sealed. Furthermore, a connector or the like for transmitting the converted power may be installed in the outer box 2 as long as water and dust are prevented from entering.
 冷却装置3は、冷却器31と、送風機32と、を有する。冷却器31は、外箱2の蓋の役割を兼ねている。送風機32は、冷却器31に風を流す。冷却器31は、アルミニウム、アルミニウム合金、銅、鉄等の熱伝導率の良い材料で構成されている。冷却器31は、外箱2の蓋としてのベース板312と、ベース板312に立設される複数のフィン311と、を有する。複数のフィン311の上面、側面は、周囲空間に開放されている。ベース板312におけるフィン311が配置される面と反対側の面に、複数の電気部品4が設置されている。複数の電気部品4が通電されると、一部が電力損失として熱に変換され、複数の電気部品4が発熱して温度が上昇する。この発熱がベース板312を介してフィン311へ伝導する。フィン311へ伝導した熱は、空気を介して周囲へと放熱される。送風機32は、矢印Eに示すように、軸方向中心部321から空気を取り込み、軸に対して直角方向に位置した、送風機32の出口である側面部322から空気を排出する遠心式送風機である。側面部322から排出された空気は、冷却器31の複数のフィン311の間を通過する。 The cooling device 3 includes a cooler 31 and a blower 32. The cooler 31 also serves as a lid for the outer box 2. The blower 32 blows air through the cooler 31. The cooler 31 is made of a material with good thermal conductivity, such as aluminum, aluminum alloy, copper, or iron. The cooler 31 includes a base plate 312 as a lid of the outer box 2 and a plurality of fins 311 erected on the base plate 312. The top and side surfaces of the plurality of fins 311 are open to the surrounding space. A plurality of electrical components 4 are installed on the surface of the base plate 312 opposite to the surface on which the fins 311 are arranged. When the plurality of electrical components 4 are energized, a part of the electrical power is converted into heat as power loss, and the plurality of electrical components 4 generate heat and the temperature rises. This heat generation is conducted to the fins 311 via the base plate 312. The heat conducted to the fins 311 is radiated to the surroundings through the air. The blower 32 is a centrifugal blower that takes in air from an axial center portion 321 and discharges air from a side portion 322, which is an outlet of the blower 32, and is located perpendicular to the axis, as shown by arrow E. . Air discharged from the side part 322 passes between the plurality of fins 311 of the cooler 31.
 フィン311は、送風機32の回転翼323の翼根元部323aと翼端部323bを結んだ直線の方向F(図4中の破線の矢印の方向)に沿って放射状に立設されたピン状のフィンである。破線の矢印の方向Fが第1方向に対応する。フィン311は、例えば、アルミダイカストあるいは金属3次元プリンタ等で、ベース板312と一体成型されている。また、フィン311を別途製作し、ベース板312に熱伝導率の良い接着剤等で接合しても良いし、かしめ等の機械的な接合をしても良い。また、フィン311は、円断面でもよいが、送風機32から排出された空気の流れに沿うように、空気の流れ方向が長辺となるような楕円断面のピン状のフィンとしたほうが望ましい。また、フィン311に関しては、送風機32から遠方にある程、フィン311同士の周方向および径方向(方向Fの方向)の間隔が広くなるように、立設されている。 The fins 311 are pin-shaped radially erected along the straight line F (direction of the broken arrow in FIG. 4) connecting the blade root 323a and the blade tip 323b of the rotary blade 323 of the blower 32. It's a fin. The direction F of the dashed arrow corresponds to the first direction. The fins 311 are integrally molded with the base plate 312 by, for example, aluminum die casting or a metal three-dimensional printer. Further, the fins 311 may be separately produced and bonded to the base plate 312 with an adhesive having good thermal conductivity, or may be mechanically bonded by caulking or the like. Further, the fins 311 may have a circular cross section, but are preferably pin-shaped fins with an elliptical cross section whose long sides are in the direction of air flow so as to follow the flow of air discharged from the blower 32. Further, the fins 311 are erected such that the distance between the fins 311 in the circumferential direction and the radial direction (direction F) increases as the distance from the blower 32 increases.
 送風機32は、ベース板312に接着剤、ネジ等の手段を用いて固定されている。送風機32には、図示していないリード線等によって外部から電力が供給されている。送風機32が固定されている領域および送風機周辺領域5には、フィン311が立設していない。送風機周辺領域5は、送風機32とフィン311との間の領域である。送風機周辺領域5は、送風機32から一定距離以内に入っている円環状の領域である。送風機周辺領域5が第1空間領域に対応する。送風機32は、前述のとおり、軸方向中心部321から空気を取り込み、軸に対して直角方向に位置した送風機32の出口である側面部322から空気を排出する。側面部322から排出された空気は、冷却器31に設置されたフィン311の間を通過する。側面部322から排出された空気が十分にフィン311の間を通過するために、送風機32は、図3に示すように、送風機32の側面部322の上下方向(フィン311の延在方向)の中心位置Cが、フィン311の立設方向の上端面の位置Kに対して低くなるように固定されている。この固定条件を満足するように、ベース板312に送風機32を固定するために、ベース板312と送風機32との間に、取付台等を設けても良い。 The blower 32 is fixed to the base plate 312 using adhesive, screws, or other means. Electric power is supplied to the blower 32 from the outside through a lead wire (not shown) or the like. The fins 311 are not erected in the area where the blower 32 is fixed and the area 5 around the blower. The blower peripheral area 5 is an area between the blower 32 and the fins 311. The blower surrounding area 5 is an annular area within a certain distance from the blower 32. The blower peripheral area 5 corresponds to the first spatial area. As described above, the blower 32 takes in air from the axial center portion 321 and discharges air from the side portion 322, which is the outlet of the blower 32 and is located perpendicular to the axis. The air discharged from the side part 322 passes between the fins 311 installed on the cooler 31. In order for the air discharged from the side surface portion 322 to sufficiently pass between the fins 311, the blower 32 is configured to move the side surface portion 322 of the blower 32 in the vertical direction (extending direction of the fins 311), as shown in FIG. The center position C is fixed to be lower than the position K of the upper end surface of the fin 311 in the upright direction. A mounting stand or the like may be provided between the base plate 312 and the blower 32 in order to fix the blower 32 to the base plate 312 so as to satisfy this fixing condition.
 次に、実施の形態1における電力変換装置100の動作について説明する。例えば、電圧を昇圧したり降圧したり、図示しないモータ等を駆動するため、ベース板312に設置された半導体素子、トランス、リアクトルなどの電気部品4と、外箱2の下面などの内側に設置された制御基板等の電気部品4が動作する。これらの電気部品4は、動作状態に応じて発熱する。ベース板312に設置された電気部品4は、ベース板312を介してフィン311へ伝導する。フィン311へ伝導した熱は、送風機32から排出された空気と熱交換することで周囲へと放熱されるため、電気部品4が冷却される。外箱2の内側に設置された電気部品4は、外箱2の壁面へ熱が伝導する。外箱2の壁面へ伝導した熱は、外箱2の外側空気と熱交換することで周囲へと放熱されるため、電気部品4が冷却される。 Next, the operation of power conversion device 100 in Embodiment 1 will be described. For example, in order to step up or step down the voltage or drive a motor (not shown), etc., the electrical components 4 such as semiconductor elements, transformers, and reactors installed on the base plate 312 and the inside of the bottom surface of the outer box 2 are installed. The electrical components 4 such as the control board that have been installed operate. These electrical components 4 generate heat depending on their operating conditions. Electrical components 4 installed on the base plate 312 are conducted to the fins 311 via the base plate 312. The heat conducted to the fins 311 is radiated to the surroundings by exchanging heat with the air discharged from the blower 32, so that the electrical component 4 is cooled. Electrical components 4 installed inside the outer box 2 conduct heat to the wall surface of the outer box 2. The heat conducted to the wall surface of the outer box 2 is radiated to the surroundings by exchanging heat with the air outside the outer box 2, so that the electrical components 4 are cooled.
 以上のとおり、実施の形態1における電力変換装置100は、電気部品4を収納する外箱2と、外箱2の蓋であるベース板312、およびベース板312に立設された複数のフィン311を有する冷却器31と、複数のフィン311の中央部に設置され、周囲に配置された複数のフィン311に送風する、回転翼を有する送風機32と、を備える構造であり、冷却器31で外箱2に蓋をすることで外部から外箱2の内部に水、塵埃が侵入することを防止している。さらに、フィン311が周囲空間に開放されているため、万一送風機32が停止したとしても自然対流によって効率よく電気部品4を冷却することができる。 As described above, the power converter 100 according to the first embodiment includes the outer box 2 that stores the electrical components 4, the base plate 312 that is the lid of the outer box 2, and the plurality of fins 311 that are vertically provided on the base plate 312. and a blower 32 having rotary blades that is installed in the center of the plurality of fins 311 and blows air to the plurality of fins 311 arranged around the fins 311. By covering the box 2, water and dust are prevented from entering into the outer box 2 from the outside. Furthermore, since the fins 311 are open to the surrounding space, even if the blower 32 should stop, the electric components 4 can be efficiently cooled by natural convection.
 また、複数のフィン311は、送風機32の回転翼の翼根元部323aと翼端部323bとを結んだ直線の方向Fに沿って放射状に配設されている。また、送風機32とフィン311との間に、フィン311が立設されていない空間である送風機周辺領域5が設けられている。また、フィン311の断面形状は、方向Fが長辺となる楕円である。このような構成によれば、送風機32の出口である側面部322から排出した空気が、フィン311に沿って流れるため圧力損失が低くなり、空気流量を大きくすることができる。このため、フィン311から効率よく放熱することが可能となる。したがって、電力変換装置100の高出力化にともなって、電力変換装置100の発熱量が増加しても、電力変換装置100または送風機32の大型化を抑制しつつ、電力変換装置100を効果的に冷却することができる。 Further, the plurality of fins 311 are arranged radially along the direction F of a straight line connecting the blade root portion 323a and the blade tip portion 323b of the rotor blade of the blower 32. Further, a blower peripheral area 5 is provided between the blower 32 and the fins 311, which is a space where the fins 311 are not provided. Further, the cross-sectional shape of the fin 311 is an ellipse whose long side is in the direction F. According to such a configuration, the air discharged from the side surface portion 322, which is the outlet of the blower 32, flows along the fins 311, so that pressure loss is reduced and the air flow rate can be increased. Therefore, it becomes possible to efficiently radiate heat from the fins 311. Therefore, even if the amount of heat generated by the power converter 100 increases due to the increase in the output of the power converter 100, the power converter 100 can be effectively operated while suppressing the increase in the size of the power converter 100 or the blower 32. Can be cooled.
 また、冷却装置3が重力方向の上側に設置されるように電力変換装置100を、所望のシステムに取り付けることで、外箱2で構成された筐体内で温度上昇した空気が重力方向上側に流れるため、冷却器31で効果的に冷却することができる。さらに、万一、送風機32が停止した場合に自然対流による冷却効果を大きくすることができるといった効果も期待できる。 In addition, by installing the power conversion device 100 in a desired system so that the cooling device 3 is installed on the upper side in the direction of gravity, the air whose temperature has increased inside the housing made up of the outer box 2 flows upward in the direction of gravity. Therefore, it can be effectively cooled by the cooler 31. Furthermore, in the event that the blower 32 stops, the cooling effect due to natural convection can be increased.
実施の形態2.
 図6は、実施の形態2に係る電力変換装置の構成を示す上面図である。図7は、実施の形態2に係る電力変換装置の構成を示す断面図である。実施の形態2において、実施の形態1と同じ構成要素については同じ符号を付しており、重複する説明は省略する。
Embodiment 2.
FIG. 6 is a top view showing the configuration of the power conversion device according to the second embodiment. FIG. 7 is a sectional view showing the configuration of a power conversion device according to the second embodiment. In Embodiment 2, the same components as in Embodiment 1 are given the same reference numerals, and redundant explanations will be omitted.
 図6および図7に示すように、実施の形態2の電力変換装置101においては、送風機周辺領域5に蓋をする遮蔽板6を設けている。遮蔽板6は、送風機32の出口である側面部322から排出された空気が、フィン311を通過せずに再び送風機32の軸方向中心部321に循環することを防止する。遮蔽板6は、別途製作し、送風機32およびフィン311に機械的に固定されている。また、送風機32の取付けを阻害せずに成型することが可能であれば、アルミダイカスト、金属3次元プリンタ等を用いて、冷却器31と一体に遮蔽板6を成型しても良い。 As shown in FIGS. 6 and 7, in the power conversion device 101 of the second embodiment, a shielding plate 6 that covers the area 5 around the blower is provided. The shielding plate 6 prevents the air discharged from the side surface portion 322, which is the outlet of the blower 32, from circulating again to the axial center portion 321 of the blower 32 without passing through the fins 311. The shielding plate 6 is manufactured separately and is mechanically fixed to the blower 32 and the fins 311. Further, if it is possible to mold the shielding plate 6 without interfering with the attachment of the blower 32, the shielding plate 6 may be molded integrally with the cooler 31 using aluminum die casting, a metal three-dimensional printer, or the like.
 このように実施の形態2によれば、フィン311が立設されていない送風機周辺領域5に、遮蔽板6を設置しているので、送風機32の出口である側面部322から排出された空気が、フィン311を通過せずに再び送風機32の軸方向中心部321に循環することで、フィン311を通過する空気流量が減少することを防止できる。また、循環する過程で空気温度が上昇することで送風機32の温度が上昇して、送風機32の寿命が短くなることを抑止することもできる。 According to the second embodiment, the shielding plate 6 is installed in the area 5 around the blower where the fins 311 are not provided, so that the air discharged from the side surface 322, which is the outlet of the blower 32, is By circulating the air again to the axial center portion 321 of the blower 32 without passing through the fins 311, it is possible to prevent the air flow rate passing through the fins 311 from decreasing. Moreover, it is also possible to prevent the temperature of the blower 32 from increasing due to the air temperature rising during the circulation process, and shortening the life of the blower 32.
実施の形態3.
 図8は、実施の形態3に係る電力変換装置の構成を示す断面図である。実施の形態3において、実施の形態1と同じ構成要素については同じ符号を付しており、重複する説明は省略する。
Embodiment 3.
FIG. 8 is a cross-sectional view showing the configuration of a power conversion device according to Embodiment 3. In Embodiment 3, the same components as in Embodiment 1 are given the same reference numerals, and redundant explanation will be omitted.
 図8に示すように、実施の形態3における電力変換装置102においては、ベース板312と、ベース板312の裏面における送風機周辺領域5に設置された電気部品4との間に、ベース板312の面方向Dに熱を拡散させる熱拡散部材7を設置している。 As shown in FIG. 8, in the power conversion device 102 according to the third embodiment, there is a gap between the base plate 312 and the electric component 4 installed in the blower peripheral area 5 on the back surface of the base plate 312. A heat diffusion member 7 that diffuses heat in the surface direction D is installed.
 熱拡散部材7は、伝熱グリースまたは伝熱シートとは異なり、平面方向の熱輸送能力が優れている炭素化合物を含有したもの、内部に封入された作動液の蒸発および凝縮に伴う潜熱を利用したもの等である。熱拡散部材7は、フィン311が立設されている領域に対向する領域まで設置することが望ましい。また、潜熱を利用した放熱部品であるヒートパイプを熱拡散部材7として利用し、ベース板312の内部に一体成型しても良い。 Unlike heat transfer grease or heat transfer sheets, the heat diffusion member 7 contains a carbon compound that has excellent heat transfer ability in the planar direction, and utilizes the latent heat accompanying the evaporation and condensation of the working fluid sealed inside. etc. It is desirable that the heat diffusion member 7 is installed up to a region opposite to the region where the fins 311 are erected. Further, a heat pipe, which is a heat dissipation component that utilizes latent heat, may be used as the heat diffusion member 7 and integrally molded inside the base plate 312.
 このように実施の形態3によれば、熱拡散部材7を設置しているので、送風機32および送風機周辺領域5に設置された電気部品4の熱を効果的にフィン311に輸送することができる。このため、電気部品4を効率よく冷却できるとともに、送風機32で発生した熱もフィン311で冷却することができる。また、電気部品4の温度上昇を抑制するために、フィン311を立設方向に大きくしたり、フィン311の立設本数を増やしたり、送風機32を大型化する必要がなくなるため、電力変換装置102の大型化を防ぐことができる。さらに、熱拡散部材7によってベース板312の温度分布を均一化することができれば、フィン311の立設本数を減らしたり、送風機32を小型化したりといった冷却器31の小型化および軽量化を実現することができる。 According to the third embodiment, since the heat diffusion member 7 is installed, the heat of the blower 32 and the electric components 4 installed in the area 5 around the blower can be effectively transported to the fins 311. . Therefore, the electrical components 4 can be efficiently cooled, and the heat generated by the blower 32 can also be cooled by the fins 311. Furthermore, in order to suppress the temperature rise of the electrical components 4, it is not necessary to increase the size of the fins 311 in the vertical direction, increase the number of fins 311, or increase the size of the blower 32, so that the power converter 102 does not need to be enlarged. It is possible to prevent the increase in size. Furthermore, if the temperature distribution of the base plate 312 can be made uniform by the heat diffusion member 7, the cooler 31 can be made smaller and lighter by reducing the number of fins 311 and making the blower 32 smaller. be able to.
実施の形態4.
 図9は、実施の形態4に係る電力変換装置の構成を示す断面図である。実施の形態4において、実施の形態1と同じ構成要素については同じ符号を付しており、重複する説明は省略する。
Embodiment 4.
FIG. 9 is a sectional view showing the configuration of a power conversion device according to Embodiment 4. In Embodiment 4, the same components as in Embodiment 1 are given the same reference numerals, and redundant explanation will be omitted.
 図9に示すように、実施の形態4における電力変換装置103においては、ベース板312の上面312aは、送風機32が設置される中央位置から周囲に遠ざかるほど下がる傾斜面を有する。すなわち、ベース板312は、送風機32が設置されている位置で厚みが大きくなっており、ベース板312の上面312aは、フィン311が立設されている方向に行くほど厚みが小さくなるように傾斜している。 As shown in FIG. 9, in the power conversion device 103 according to the fourth embodiment, the upper surface 312a of the base plate 312 has an inclined surface that decreases as the distance from the central position where the blower 32 is installed to the periphery increases. That is, the base plate 312 is thicker at the position where the blower 32 is installed, and the upper surface 312a of the base plate 312 is sloped so that the thickness decreases in the direction in which the fins 311 are installed. are doing.
 ベース板312の上面312aが傾斜を有しているため、フィン311の立設方向における頂点高さは等しいが、フィン長さは均一ではない。また、ベース板312の傾斜は直線でなくてもよく、円弧状になっていてもよい。 Since the upper surface 312a of the base plate 312 has an inclination, the apex heights of the fins 311 in the upright direction are equal, but the fin lengths are not uniform. Further, the slope of the base plate 312 may not be a straight line, but may be an arc shape.
 このように実施の形態4によれば、ベース板312の上面312aは、送風機32が設置される中央位置から周囲に遠ざかるほど下がる傾斜面を有しているので、送風機32から排出される空気に含まれる塵埃が、ベース板312に滞留することを抑制できる。このため、塵埃が滞留することによる冷却性能の低下を防ぐことができる。 As described above, according to the fourth embodiment, the upper surface 312a of the base plate 312 has an inclined surface that decreases as the distance from the central position where the blower 32 is installed to the periphery increases. It is possible to suppress the included dust from staying on the base plate 312. Therefore, it is possible to prevent a decrease in cooling performance due to the accumulation of dust.
 また、フィン311およびベース板312に撥水作用を付与するコーティングを施すことで、ベース板312に水が滞留することを抑制できるため、腐食によりベース板312が劣化して孔が開いて密閉状態が確保できなくなることを防ぐことができる。 In addition, by applying a water-repellent coating to the fins 311 and the base plate 312, it is possible to prevent water from staying on the base plate 312. Therefore, the base plate 312 deteriorates due to corrosion and holes open, resulting in a sealed state. This can prevent the situation from becoming impossible to secure.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments described above are examples of the contents of the present disclosure, and can be combined with other known technologies, and the configurations can be modified without departing from the gist of the present disclosure. It is also possible to omit or change parts.
 2 外箱、3 冷却装置、4 電気部品、5 送風機周辺領域、6 遮蔽板、7 熱拡散部材、21 放熱構造、31 冷却器、32 送風機、100,101,102,103 電力変換装置、311 フィン、312 ベース板、312a 上面、321 軸方向中心部、322 側面部、323 回転翼、323a 翼根元部、323b 翼端部。 2 Outer box, 3 Cooling device, 4 Electrical components, 5 Blower peripheral area, 6 Shielding plate, 7 Heat diffusion member, 21 Heat dissipation structure, 31 Cooler, 32 Blower, 100, 101, 102, 103 Power conversion device, 311 Fin , 312 base plate, 312a upper surface, 321 axial center, 322 side surface, 323 rotor, 323a blade root, 323b blade tip.

Claims (9)

  1.  電気部品を収納する外箱と、
     前記外箱の蓋であるベース板、および前記ベース板に立設されたピン状の複数のフィンを有し、複数の前記フィンが周囲空間に開放されている冷却器と、
     複数の前記フィンの中央部に設置され、周囲に配置された前記冷却器の複数の前記フィンに送風する、回転翼を有する送風機と、
     を備え、
     複数の前記フィンは、前記送風機の前記回転翼の翼根元部と翼端部とを結んだ直線の方向である第1方向に沿って放射状に配設されている
     ことを特徴とする電力変換装置。
    An outer box that stores electrical components;
    A cooler having a base plate that is a lid of the outer box, and a plurality of pin-shaped fins erected on the base plate, the plurality of fins being open to the surrounding space;
    a blower having rotary blades that is installed in the center of the plurality of fins and blows air to the plurality of fins of the cooler arranged around the fins;
    Equipped with
    A power conversion device characterized in that the plurality of fins are arranged radially along a first direction that is a direction of a straight line connecting a blade root and a blade tip of the rotary blade of the blower. .
  2.  複数の前記フィンの各々の断面は、前記第1方向が長辺となる楕円である
     ことを特徴とする請求項1に記載の電力変換装置。
    The power conversion device according to claim 1, wherein a cross section of each of the plurality of fins is an ellipse with a long side in the first direction.
  3.  前記送風機と複数の前記フィンとの間に、前記フィンが配置されていない第1空間領域が存在する
     ことを特徴とする請求項1または2に記載の電力変換装置。
    The power conversion device according to claim 1 or 2, wherein a first spatial region in which the fins are not arranged exists between the blower and the plurality of fins.
  4.  前記第1空間領域に蓋をする遮蔽板を備える
     ことを特徴とする請求項3に記載の電力変換装置。
    The power conversion device according to claim 3, further comprising a shielding plate that covers the first spatial region.
  5.  前記ベース板と、前記ベース板の裏面に配置された前記電気部品との間に、前記ベース板の面方向に熱を拡散させる熱拡散部材を備える
     ことを特徴とする請求項1から4の何れか一つに記載の電力変換装置。
    Any one of claims 1 to 4, further comprising a heat diffusion member that diffuses heat in a surface direction of the base plate between the base plate and the electric component arranged on the back surface of the base plate. The power conversion device according to one of the above.
  6.  前記外箱の外側面に、前記フィンの延在方向に延びる凹凸を設けた
     ことを特徴とする請求項1から5の何れか一つに記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 5, characterized in that an outer surface of the outer box is provided with unevenness extending in the direction in which the fins extend.
  7.  前記送風機の上下方向の中心位置は、前記フィンの上端面より低い位置にある
     ことを特徴とする請求項1から6の何れか一つに記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 6, wherein a vertical center position of the blower is located at a position lower than an upper end surface of the fin.
  8.  前記送風機から遠方にある程、前記フィン同士の間隔が広くなるように、前記フィンを立設する
     ことを特徴とする請求項1から7の何れか一つに記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 7, wherein the fins are arranged upright such that the distance between the fins increases as the distance from the blower increases.
  9.  前記ベース板の上面は、前記送風機が設置される中央位置から周囲に遠ざかるほど下がる傾斜面を有する
     ことを特徴とする請求項1から8の何れか一つに記載の電力変換装置。
    The power conversion device according to any one of claims 1 to 8, wherein the upper surface of the base plate has an inclined surface that decreases as the distance from the center position where the blower is installed increases.
PCT/JP2022/019118 2022-04-27 2022-04-27 Power conversion device WO2023209880A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022546503A JP7202053B1 (en) 2022-04-27 2022-04-27 power converter
PCT/JP2022/019118 WO2023209880A1 (en) 2022-04-27 2022-04-27 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019118 WO2023209880A1 (en) 2022-04-27 2022-04-27 Power conversion device

Publications (1)

Publication Number Publication Date
WO2023209880A1 true WO2023209880A1 (en) 2023-11-02

Family

ID=84829423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019118 WO2023209880A1 (en) 2022-04-27 2022-04-27 Power conversion device

Country Status (2)

Country Link
JP (1) JP7202053B1 (en)
WO (1) WO2023209880A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156582A (en) * 1999-03-15 2000-06-06 Fujitsu Ltd Heat sink
JP2001102508A (en) * 1999-10-01 2001-04-13 Mitsubishi Electric Corp Heat sink device
US6913070B2 (en) * 2003-09-03 2005-07-05 Chin Wen Wang Planar heat pipe structure
JP2017158413A (en) * 2016-03-04 2017-09-07 富士電機株式会社 Sealing container and power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156582A (en) * 1999-03-15 2000-06-06 Fujitsu Ltd Heat sink
JP2001102508A (en) * 1999-10-01 2001-04-13 Mitsubishi Electric Corp Heat sink device
US6913070B2 (en) * 2003-09-03 2005-07-05 Chin Wen Wang Planar heat pipe structure
JP2017158413A (en) * 2016-03-04 2017-09-07 富士電機株式会社 Sealing container and power conversion device

Also Published As

Publication number Publication date
JPWO2023209880A1 (en) 2023-11-02
JP7202053B1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
KR100259599B1 (en) Cooling apparatus using boiling and condensing refrigerant
WO2012105353A1 (en) Mounting structure for power control unit
JP2008103576A (en) Motor controller
JP4639648B2 (en) Inverter device
JP2019179832A (en) Cooling device
WO2023209880A1 (en) Power conversion device
CN110400677A (en) Transformer and its radiator
JP4955986B2 (en) X-ray generator
US11391473B2 (en) Outdoor unit and air conditioner
US11976827B2 (en) Outdoor unit and air conditioner
US11788738B2 (en) Outdoor unit and air conditioner
JP2008211001A (en) Electronic device cooling apparatus
CN217685393U (en) Indoor unit of air conditioner
JP7510908B2 (en) Fuel Cell Systems
CN218920862U (en) Frequency conversion equipment, compressor and heating ventilation equipment
JP7480274B2 (en) Inverter integrated motor
KR102513609B1 (en) Lower module of power electronics
CN217694097U (en) Heat dissipation module for light and thin electronic equipment
CN221403271U (en) Radiator, electric control box component, outdoor unit and heating and ventilation equipment
CN215972071U (en) Marine explosion-proof electrical heating electric fan heater
CN217685402U (en) Indoor unit of air conditioner
CN217388414U (en) Motor casing and motor
CN219372305U (en) Inverter heat radiation structure and inverter
CN219459627U (en) Bidirectional cooling structure and generator set
CN220061963U (en) Electric control device and refrigeration equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022546503

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940158

Country of ref document: EP

Kind code of ref document: A1