[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023287176A1 - 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템 - Google Patents

증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템 Download PDF

Info

Publication number
WO2023287176A1
WO2023287176A1 PCT/KR2022/010149 KR2022010149W WO2023287176A1 WO 2023287176 A1 WO2023287176 A1 WO 2023287176A1 KR 2022010149 W KR2022010149 W KR 2022010149W WO 2023287176 A1 WO2023287176 A1 WO 2023287176A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
view image
information
route guidance
image
Prior art date
Application number
PCT/KR2022/010149
Other languages
English (en)
French (fr)
Inventor
장유정
이기형
최성환
김승만
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP22842438.8A priority Critical patent/EP4372317A1/en
Priority to KR1020237043354A priority patent/KR20240012448A/ko
Priority to US18/579,180 priority patent/US20240318974A1/en
Publication of WO2023287176A1 publication Critical patent/WO2023287176A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/28Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3602Input other than that of destination using image analysis, e.g. detection of road signs, lanes, buildings, real preceding vehicles using a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3635Guidance using 3D or perspective road maps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3635Guidance using 3D or perspective road maps
    • G01C21/3638Guidance using 3D or perspective road maps including 3D objects and buildings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3641Personalized guidance, e.g. limited guidance on previously travelled routes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3644Landmark guidance, e.g. using POIs or conspicuous other objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3647Guidance involving output of stored or live camera images or video streams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/365Guidance using head up displays or projectors, e.g. virtual vehicles or arrows projected on the windscreen or on the road itself
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/367Details, e.g. road map scale, orientation, zooming, illumination, level of detail, scrolling of road map or positioning of current position marker
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3679Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities
    • G01C21/3682Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities output of POI information on a road map
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/543User-generated data transfer, e.g. clipboards, dynamic data exchange [DDE], object linking and embedding [OLE]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/647Three-dimensional objects by matching two-dimensional images to three-dimensional objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/414Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/44008Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving operations for analysing video streams, e.g. detecting features or characteristics in the video stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/166Navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/16Type of output information
    • B60K2360/177Augmented reality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/21Optical features of instruments using cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0475Generative networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/094Adversarial learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/04Architectural design, interior design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/61Scene description

Definitions

  • the present invention relates to a route guidance device and a route guidance system for guiding a route for a vehicle to travel.
  • augmented reality Augmented Reality
  • HUD Head Up Display
  • a virtual object in the real world using a graphic object overlapping an image captured by a camera.
  • Reality, AR AR
  • Current vehicles provide the driver with additional information related to the environment around the vehicle, the state of the vehicle, and the driving path of the vehicle through such augmented reality technology, so the driver can intuitively recognize the vehicle and the driving environment of the vehicle. Accordingly, driving efficiency and convenience may be further improved.
  • augmented reality technology uses an image of the real world obtained through a camera, and requires acquisition of a clear image of the real world.
  • the sensor that acquires the image of the real world that is, the camera, senses the real-time environment around the vehicle as it is, in bad weather such as rain or snow, or in a complicated traffic situation such as traffic jam, the rain, snow, or roadside trees, etc.
  • path guidance information cannot be accurately identified from an image obtained from a sensor due to obstacles such as shadows and vehicles ahead.
  • the camera may not be able to recognize the lane in which the vehicle is currently driving due to the snow, rain, shadow, or a vehicle in front.
  • the slope or curve of the road may not be recognized.
  • the augmented reality object related to the lane cannot be displayed or the wrong augmented reality object may be displayed. That is, there is a problem in that inconsistency between the augmented reality object and the real environment may occur depending on the complexity of the real world acquired through the camera or the state of the acquired image.
  • Such mixed reality provides vehicle-related information through a virtual object displayed on a digitized 3D map, and can provide information regardless of images of the real world obtained through a camera. Therefore, the problem that discrepancies between provided information and the real environment may occur depending on the complexity of the real world acquired through the camera or the state of the acquired image can be solved.
  • the mixed reality provides information through a digitized 3D map image. Therefore, a discrepancy between a graphic object provided through mixed reality, that is, a mixed reality object, and the real environment may occur depending on the degree of correspondence between the 3D map image and the real world around the vehicle.
  • the present invention aims to solve the foregoing and other problems.
  • One object of the present invention is to use mixed reality to compensate for the disadvantages of augmented reality, and when it is difficult to provide route guidance information through augmented reality, the route guidance information can be provided using mixed reality. It is to provide a route guidance device and a route guidance system that enable.
  • One object of the present invention is to use mixed reality to compensate for the disadvantages of augmented reality, to provide a route guidance device and route guidance system that can further improve the visibility of information provided through augmented reality.
  • One object of the present invention is to use mixed reality to compensate for the disadvantages of augmented reality, and to provide information on objects located in an area within the viewing angle displayed through augmented reality and information on objects located in an area outside the viewing angle. It is to provide a route guidance device and a route guidance system that can be provided simultaneously.
  • a route guidance device includes a communication unit communicating with a cloud server, an image of a vehicle surrounding environment including an image of a road on which the vehicle travels, from at least one sensor provided in the vehicle, and the An interface unit for receiving sensing information obtained by sensing the driving state of the vehicle; an AR module for rendering AR information using at least one of the sensing information and POI information received from the cloud server; and the sensing information and the cloud server.
  • An MR module that renders MR information including at least one virtual object based on map information received from the vehicle, and an AR view image including the AR information or an MR view image including the MR information is displayed on the display unit of the vehicle controls the interface unit to be displayed on the screen, and in a state in which a first view image of the AR view image and the MR view image is displayed, detecting and detecting a view image matching the driving situation of the vehicle based on the sensing information and a processor controlling a display unit provided in the vehicle through the interface unit to switch a view image displayed as a second view image different from the first view image when the displayed view image is different from the first view image.
  • the processor determines whether the area in which the vehicle is driving is a highway or a general road in the city center based on the sensing information, and based on the determination result, determines whether the driving condition of the vehicle is met. It is characterized in that any one view image is detected.
  • the processor determines a road condition of an area in which the vehicle is driving based on the sensing information, and determines a driving condition of the vehicle based on the determined pavement condition or curvature of the road. It is characterized by detecting any one view image that matches.
  • the processor determines the driving time of the vehicle and the weather around the vehicle based on the sensing information, and determines the driving situation of the vehicle based on at least one of the determined time or weather. It is characterized by detecting any one view image that matches.
  • the processor determines the driving state of the vehicle based on the sensing information, and determines the driving state of the vehicle based on at least one of whether the vehicle is stopped or running and a speed at which the vehicle travels. It is characterized in that any one view image corresponding to the driving situation of the vehicle is detected.
  • the processor determines a traffic jam state around the vehicle based on the sensing information, and based on the determined traffic jam state, selects a view image that matches the driving situation of the vehicle. characterized by detection.
  • the processor determines structures detected from the surroundings of the vehicle based on the sensing information, and based on the sizes of the determined structures, selects a view image that matches the driving situation of the vehicle. characterized by detection.
  • the processor controls the interface unit to display warning information for warning of a danger area located around the vehicle or a possibility of collision detected from the surroundings of the vehicle, based on the sensing information, and the display It is characterized in that any one view image corresponding to the driving situation of the vehicle is detected according to whether the warning information is exposed from the front of the vehicle.
  • the processor determines a driving path of the vehicle based on the sensing information, and if the determined driving path is a straight section, the processor converts the AR view image into a view image matching the driving situation of the vehicle. Detecting the MR view image as a view image that matches the driving situation of the vehicle when the vehicle is out of a drivable route, or when the vehicle is adjacent to a branch point on the route or within a certain distance from an exit or destination. to be characterized
  • the processor calculates a curvature change of a road on which the vehicle travels and a gradient change of the road based on the sensing information, and the camera of the vehicle is configured based on the calculated curvature change and gradient change.
  • An error rate (AR fitting rate) is calculated between the actual image of the front of the vehicle acquired through and the AR object displayed on the actual image, and when the calculated error rate exceeds a threshold value, the MR view image is converted to the driving situation of the vehicle. and detecting the AR view image as a view image conforming to the driving situation of the vehicle when the calculated error rate is less than a threshold value.
  • the processor calculates a change in curvature of the road according to a detection result of a gyro sensor detecting an inclination of the vehicle and a detection result of a lane recognizer detecting a lane of the road on which the vehicle travels; , It is characterized in that it is calculated according to the road shape detected through a vertical profile and a high definition map (High Definition MAP, HD MAP) detected based on map information on the road on which the vehicle is currently driving.
  • a high definition map High Definition MAP, HD MAP
  • the processor when the route information requested by the occupant of the vehicle is route information on a driving route on which the vehicle is currently driving, converts the AR view image to a view matching the driving situation of the vehicle. image, and if the route information requested by the occupant is route information on a driving route on which the vehicle has not yet traveled or route information on a driving route on which the vehicle has already traveled, the MR view image is used as a driving method of the vehicle It is characterized in that detection is performed with a view image corresponding to the situation.
  • the processor when the change of the view image starts, changes the camera calibration of the second view image according to the camera calibration of the first view image to obtain a gazing point of the first view image.
  • a second view image having the same gazing point is generated, and the size and ratio of the first view image are the same from the generated second view image based on the field of view (FOV) of the first view image.
  • a 2-view image is extracted, and the display unit is controlled to convert the first-view image into the extracted second-view image.
  • the processor detects a horizontal reference line and a vertical reference line from a gazing point of the first view image, and the gazing point coincides with a point where the horizontal reference line and the vertical reference line of the first view image intersect. It is characterized in that the 2-view image is generated as a second-view image having the same gazing point as the first-view image.
  • the processor controls the interface unit to further display an additional screen including additional information while the AR view image or MR view image is displayed on the display unit, and the additional information is , POI (Point Of Interest) information, driving history, and route guidance information in the form of a bird's eye view.
  • POI Point Of Interest
  • the additional screen is characterized in that it is displayed on the display unit on which the AR view image or the MR view image is displayed in any one of screen splitting, PIP, and multi-layering.
  • the route guidance system is mounted on a vehicle and is rendered based on an AR view image including AR information rendered based on received POI (Point Of Interest) information or 3D map information.
  • the cloud server includes a digital twin as a service (DTaaS) server including digital twin 3D map information including virtual objects corresponding to each building included in the map area, and , Performs a communication connection with the route guidance device, provides the location information of the vehicle collected from the route guidance device to the DTaaS server, and provides digital twinned 3D map information provided from the DTaaS server for route guidance AR (Augmented Reality) server and characterized in that it includes.
  • DTaaS digital twin as a service
  • a route guidance device includes a communication unit communicating with a cloud server, a camera image including a road image on which the vehicle travels, from at least one sensor provided in the vehicle, and a driving state of the vehicle.
  • An interface unit for receiving sensing information sensed by the camera, an MR module for rendering MR information including at least one virtual object based on the camera image, the sensing information, and map information received from the cloud server, and the MR information and a processor controlling the interface unit so that an MR view image including an MR view image is displayed on a display unit of the vehicle. Characterized in that the view image is switched.
  • the processor displays route information for guiding a route for a vehicle to travel to a destination in the MR view image, and based on satisfying the preset condition, the processor determines the current vehicle according to the route information. It is characterized in that the MR view image is controlled so that a scene of a place preceding the location is displayed.
  • an icon for displaying a scene corresponding to a place where a vehicle is scheduled to drive is displayed on the MR view image, and the preset condition includes that the icon is selected by a user.
  • the predetermined condition includes at least one of a case where the vehicle stops for a predetermined time, a case where the vehicle enters within a predetermined distance from a destination, and a case where the vehicle enters within a predetermined distance from an intersection.
  • the MR view image is characterized in that the digital twin map in which the current situation is reflected in real time is viewed from a certain point at a predetermined viewing angle.
  • the processor may output an MR view image in which a current situation is reflected in real time to a display of the vehicle when a scene corresponding to a place where the vehicle is scheduled to drive is displayed.
  • the processor may output the MR view image to correspond to a scene in front of the vehicle based on a vehicle object representing a current location of the vehicle.
  • the processor generates a ghost car that travels ahead of the vehicle object along a path along which the vehicle will travel, based on the predetermined condition being satisfied, and the front of the ghost car based on the ghost car. It is characterized in that the MR view image is switched so that the scene is displayed.
  • the MR view image that is switched based on the satisfaction of the preset condition is characterized in that it is a prediction view image that shows in advance a situation ahead along the path on which the vehicle will travel on a digital twin map.
  • the processor when switching the MR view image based on satisfying the preset condition, changes the altitude of a point looking at the digital twin map to obtain a scene corresponding to a place where the vehicle is scheduled to drive. It is characterized by showing in advance.
  • the processor may, based on the preset condition is satisfied, a first MR view image in which a scene in front of the vehicle is displayed based on the current location of the vehicle and a location corresponding to a place where the vehicle is scheduled to drive It is characterized in that the interface unit is controlled to output the second MR view image in which the scene is displayed together to the display of the vehicle.
  • the processor may output the second MR view image in the form of a pop-up window.
  • the processor divides a screen of a display provided in a vehicle into a first area and a second area, based on satisfying the preset condition, and the first area of the display displays the second area. It is characterized in that the interface unit is controlled to output 1 MR view image and output the second MR view image to the second area.
  • the second MR view image is characterized in that it is an image reproducing a scene where the vehicle will move by a predetermined distance along a path along which the vehicle will proceed from a scene viewed from the current location.
  • the processor outputs a second MR view image that outputs a scene in which the vehicle will move by a predetermined distance along a path along which the vehicle will travel, and then outputs the second MR view image based on the vehicle moving by the predetermined distance. It is characterized in that the MR view image disappears.
  • a route guidance device includes a communication unit communicating with a cloud server, a camera image including a road image on which the vehicle travels, from at least one sensor provided in the vehicle, and a driving state of the vehicle.
  • An interface unit for receiving sensing information sensed by the camera, an MR module for rendering MR information including at least one virtual object based on the camera image, the sensing information, and map information received from the cloud server, and the MR information and a processor controlling the interface unit so that an MR view image including an MR view image is displayed on a display unit of the vehicle, and the processor displays an MR view image that was reproduced when the vehicle drove in the past, based on satisfying a specific condition. It is characterized by outputting as a replay video.
  • a point of interest (POI) object is output to the MR view image, and the specific condition includes that a vehicle object corresponding to a vehicle passes the POI object.
  • POI point of interest
  • a replay card is overlapped on the MR view image based on the specific condition being satisfied, and the specific condition includes that the replay card is selected by a user. characterized by
  • the specific conditions are when the vehicle stops for a predetermined time, when the vehicle enters within a predetermined distance from the destination, when the vehicle enters within a predetermined distance from the intersection, and POI displayed on the MR view image It is characterized in that it includes at least one of the cases of selecting an object.
  • the MR view image is characterized in that the digital twin map in which the current situation is reflected in real time is viewed from a certain point at a predetermined viewing angle.
  • the processor sets the one point based on the vehicle object, and when the vehicle object is driving to approach the POI object, the processor adjusts the viewing angle to look at the POI object to view the POI object. It is characterized in that the MR view image is controlled so that the object is gradually enlarged with the object located in the central area.
  • the processor captures the MR view image being output as a thumbnail image when the distance between the vehicle object and the POI object displayed on the MR view image enters within a preset distance, and replays the thumbnail image It is characterized by creating a card.
  • the replay card may include at least one of the thumbnail image, a name corresponding to the POI object, and an address of the POI object.
  • the processor may sequentially generate the replay cards and output them to the MR view image whenever the vehicle object sequentially passes different POI objects.
  • the processor when the replay card is selected, reproduces, as a replay image, an MR view image driven for a predetermined time while looking at a POI object corresponding to the replay card.
  • the replay image is reproduced by overlapping with a region of the MR view image, or output to a pop-up window.
  • the replay image may include at least one of service information available in a POI linked to the replay image and a button for setting a driving route to a place corresponding to the POI.
  • the present invention provides a view image according to mixed reality that matches the augmented reality view image when the view image provided according to augmented reality is difficult to display accurate route guidance information, thereby providing a situation in the real world around the vehicle.
  • accurate route guidance information can be provided to the driver regardless of the complexity, complexity, or image state of the real world.
  • the present invention displays a part of a view image according to mixed reality that matches the augmented reality view image on a part of an augmented reality view image provided according to augmented reality, or displays the above on at least part of the augmented reality view image.
  • the present invention displays the mixed reality view image according to mixed reality together with the augmented reality view image provided according to augmented reality, thereby providing information on objects located in an area within the viewing angle displayed through augmented reality and an area outside the viewing angle. It has the advantage of being able to simultaneously display the information of objects located on one screen.
  • FIG. 1 is a view showing the exterior of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a view of a vehicle according to an embodiment of the present invention viewed from various external angles.
  • 3 and 4 are views illustrating the interior of a vehicle according to an embodiment of the present invention.
  • 5 and 6 are referenced diagrams for explaining objects according to an embodiment of the present invention.
  • FIG. 7 is a block diagram referred to describe a vehicle according to an embodiment of the present invention.
  • FIG. 8a is a conceptual diagram for explaining the AR service platform of the present invention.
  • 8B is a conceptual diagram for explaining the MR service platform for providing the MR service of the present invention.
  • 8C is a conceptual diagram for explaining the MR AMS client of the present invention.
  • 8D is a conceptual diagram for explaining the MR AMS server of the present invention.
  • FIG. 9 is a conceptual diagram for explaining the DTaaS server of the present invention.
  • 10A is a block diagram showing the structure of a route guidance device according to an embodiment of the present invention.
  • 10B is an exemplary diagram illustrating an example of a display displaying route guidance information through a route guidance device according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating an operation process in which a route guidance device according to an embodiment of the present invention provides route guidance information through either AR or MR through operation mode switching.
  • FIG. 12 is an exemplary diagram illustrating an example of generating an MR view image corresponding to an AR view image by a route guidance device according to an embodiment of the present invention.
  • FIG. 13 illustrates an example of an AR view image displayed by a route guidance device according to an embodiment of the present invention and an MR view image corresponding to the AR view image.
  • FIG. 14 is a flowchart illustrating an operation process of switching an operation mode according to an error rate of an AR view image in a path guidance device according to an embodiment of the present invention.
  • 15A is a flowchart illustrating an operation process in which route guidance information is provided through MR view images according to MR mode when switching from AR mode to MR mode.
  • 15B is a flowchart illustrating an operation process in which route guidance information is provided through an AR view image according to an AR mode when switching from an MR mode to an AR mode.
  • 16 is a flowchart illustrating an operation process of simultaneously displaying an AR view image and an MR view image by dividing a display area by a route guidance device according to an embodiment of the present invention.
  • FIG. 17 illustrates an example of a display screen on which an AR view image and an MR view image are respectively displayed through the operation process of FIG. 16 .
  • FIG. 18 is a flowchart illustrating an operation process of generating a display screen in which an AR view image and an MR view image are mixed through separation of display areas.
  • FIG. 19 illustrates an example of a display screen on which an AR view image and an MR view image are respectively displayed on areas separated through the operation process of FIG. 18 .
  • 20 is a flowchart illustrating an operation process of overlapping a second view image on at least a part of a region where a first view image is displayed by a route guidance device according to an embodiment of the present invention.
  • 21 and 22 are exemplary diagrams in which a second view image overlaps with at least a portion of a display area in which a first view image is displayed according to the operation process of FIG. 20 .
  • FIG. 23 is an exemplary diagram illustrating an example of configuring a display screen by mixing a plurality of AR view images and a plurality of MR view images in a route guidance device according to an embodiment of the present invention.
  • FIG. 24 is exemplary diagrams in which a composite screen of an AR view image and an MR view image is displayed through a route guidance device according to an embodiment of the present invention.
  • 25 is an exemplary diagram illustrating an example in which preview information on a route to be driven by a vehicle is provided as route guidance information provided by a route guidance device through MR according to an embodiment of the present invention.
  • FIG. 26 is exemplary diagrams illustrating an example in which route guidance information for providing preview information in FIG. 25 is provided through a drone view or a preview camera.
  • FIG. 27 is an exemplary diagram illustrating an example of an MR view image in which the path guidance device according to an embodiment of the present invention displays images of surrounding buildings differently according to the speed of the vehicle.
  • FIG. 28 is an exemplary diagram illustrating an example in which a route guidance device according to an embodiment of the present invention provides POI information through an MR view image.
  • 29 is an exemplary diagram illustrating an example in which a route guidance device according to an embodiment of the present invention displays detailed information about one selected by a passenger among POIs collected according to vehicle driving.
  • a vehicle described in this specification may be a concept including a car and a motorcycle.
  • vehicles will be mainly described with respect to vehicles.
  • the vehicle described in this specification may be a concept including all of an internal combustion engine vehicle having an engine as a power source, a hybrid vehicle having an engine and an electric motor as a power source, and an electric vehicle having an electric motor as a power source.
  • the left side of the vehicle means the left side of the driving direction of the vehicle
  • the right side of the vehicle means the right side of the driving direction of the vehicle
  • FIG. 1 is a view showing the exterior of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a view of a vehicle according to an embodiment of the present invention viewed from various external angles.
  • 3 and 4 are views illustrating the interior of a vehicle according to an embodiment of the present invention.
  • 5 and 6 are referenced diagrams for explaining objects according to an embodiment of the present invention.
  • FIG. 7 is a block diagram referred to describe a vehicle according to an embodiment of the present invention.
  • the vehicle 100 may include wheels rotated by a power source and a steering input device 510 for adjusting the driving direction of the vehicle 100 .
  • Vehicle 100 may be an autonomous vehicle.
  • the vehicle 100 may switch to an autonomous driving mode or a manual mode based on a user input.
  • the vehicle 100 may switch from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on a user input received through the user interface device 200 .
  • the vehicle 100 may switch to an autonomous driving mode or a manual mode based on driving situation information.
  • Driving situation information may be generated based on object information provided by the object detection device 300 .
  • the vehicle 100 may switch from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on driving situation information generated by the object detection device 300 .
  • the vehicle 100 may switch from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on driving situation information received through the communication device 400 .
  • the vehicle 100 may switch from the manual mode to the autonomous driving mode or from the autonomous driving mode to the manual mode based on information, data, and signals provided from an external device.
  • the autonomous vehicle 100 may be operated based on the driving system 700 .
  • the autonomous vehicle 100 may operate based on information, data, or signals generated by the driving system 710 , the vehicle exit system 740 , and the parking system 750 .
  • the autonomous vehicle 100 may receive a user input for driving through the driving control device 500 . Based on the user input received through the driving control device 500, the vehicle 100 may be driven.
  • the overall length means the length from the front part to the rear part of the vehicle 100
  • the width means the width of the vehicle 100
  • the height means the length from the lower part of the wheel to the roof.
  • the overall length direction (L) is the standard direction for measuring the overall length of the vehicle 100
  • the overall width direction (W) is the standard direction for measuring the overall width of the vehicle 100
  • the overall height direction (H) is the vehicle It may mean a direction that is a standard for measuring the total height of (100).
  • the vehicle 100 includes a user interface device 200, an object detection device 300, a communication device 400, a driving manipulation device 500, a vehicle driving device 600, and a driving system. 700 , a navigation system 770 , a sensing unit 120 , a vehicle interface unit 130 , a memory 140 , a control unit 170 and a power supply unit 190 .
  • the vehicle 100 may further include components other than the components described herein, or may not include some of the components described herein.
  • the user interface device 200 is a device for communication between the vehicle 100 and a user.
  • the user interface device 200 may receive a user input and provide information generated in the vehicle 100 to the user.
  • the vehicle 100 may implement UI (User Interfaces) or UX (User Experience) through the user interface device 200 .
  • UI User Interfaces
  • UX User Experience
  • the user interface device 200 may include an input unit 210, an internal camera 220, a biological sensor 230, an output unit 250, and a processor 270.
  • the user interface device 200 may further include components other than the described components or may not include some of the described components.
  • the input unit 200 is for receiving information from a user, and the data collected by the input unit 120 is analyzed by the processor 270 and processed as a user's control command.
  • the input unit 200 may be disposed inside a vehicle.
  • the input unit 200 may include one area of a steering wheel, one area of an instrument panel, one area of a seat, one area of each pillar, and a door One area of the door, one area of the center console, one area of the head lining, one area of the sun visor, one area of the windshield or window It may be placed in one area or the like.
  • the input unit 200 may include a voice input unit 211 , a gesture input unit 212 , a touch input unit 213 , and a mechanical input unit 214 .
  • the voice input unit 211 may convert a user's voice input into an electrical signal.
  • the converted electrical signal may be provided to the processor 270 or the controller 170 .
  • the voice input unit 211 may include one or more microphones.
  • the gesture input unit 212 may convert a user's gesture input into an electrical signal.
  • the converted electrical signal may be provided to the processor 270 or the controller 170 .
  • the gesture input unit 212 may include at least one of an infrared sensor and an image sensor for detecting a user's gesture input.
  • the gesture input unit 212 may detect a user's 3D gesture input.
  • the gesture input unit 212 may include a light output unit outputting a plurality of infrared lights or a plurality of image sensors.
  • the gesture input unit 212 may detect a user's 3D gesture input through a time of flight (TOF) method, a structured light method, or a disparity method.
  • TOF time of flight
  • the touch input unit 213 may convert a user's touch input into an electrical signal.
  • the converted electrical signal may be provided to the processor 270 or the controller 170 .
  • the touch input unit 213 may include a touch sensor for sensing a user's touch input.
  • the touch input unit 213 may be integrally formed with the display unit 251 to implement a touch screen.
  • a touch screen may provide both an input interface and an output interface between the vehicle 100 and the user.
  • the mechanical input unit 214 may include at least one of a button, a dome switch, a jog wheel, and a jog switch. An electrical signal generated by the mechanical input unit 214 may be provided to the processor 270 or the controller 170 .
  • the mechanical input unit 214 may be disposed on a steering wheel, a center fascia, a center console, a cockpit module, or a door.
  • the internal camera 220 may acquire an image inside the vehicle.
  • the processor 270 may detect the user's state based on the vehicle interior image.
  • the processor 270 may obtain gaze information of the user from the vehicle interior image.
  • the processor 270 may detect a user's gesture from the vehicle interior image.
  • the biometric sensor 230 may obtain user's biometric information.
  • the biometric sensor 230 may include a sensor capable of obtaining user's biometric information, and may obtain user's fingerprint information, heart rate information, and the like, using the sensor. Biometric information may be used for user authentication.
  • the output unit 250 is for generating an output related to sight, hearing or touch.
  • the output unit 250 may include at least one of a display unit 251 , an audio output unit 252 , and a haptic output unit 253 .
  • the display unit 251 may display graphic objects corresponding to various pieces of information.
  • the display unit 251 includes a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display. display), a 3D display, and an e-ink display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • the display unit 251 and the touch input unit 213 may form a mutual layer structure or be integrally formed to implement a touch screen.
  • the display unit 251 may be implemented as a Head Up Display (HUD).
  • HUD Head Up Display
  • the display unit 251 may include a projection module to output information through an image projected on a windshield or window.
  • the display unit 251 may include a transparent display.
  • the transparent display may be attached to a windshield or window.
  • the transparent display may display a predetermined screen while having a predetermined transparency.
  • transparent displays are transparent TFEL (Thin Film Electroluminescent), transparent OLED (Organic Light-Emitting Diode), transparent LCD (Liquid Crystal Display), transmissive transparent display, transparent LED (Light Emitting Diode) display may include at least one of them. Transparency of the transparent display can be adjusted.
  • the user interface device 200 may include a plurality of display units 251a to 251g.
  • the display unit 251 includes one area of the steering wheel, one area 521a, 251b, and 251e of the instrument panel, one area 251d of the seat, one area 251f of each pillar, and one area of the door ( 251g), one area of the center console, one area of the headlining, one area of the sun visor, or one area 251c of the windshield and one area 251h of the window.
  • the audio output unit 252 converts an electrical signal provided from the processor 270 or the controller 170 into an audio signal and outputs the converted audio signal.
  • the sound output unit 252 may include one or more speakers.
  • the haptic output unit 253 generates a tactile output.
  • the haptic output unit 253 may vibrate the steering wheel, seat belt, and seats 110FL, 110FR, 110RL, and 110RR so that the user can recognize the output.
  • the processor 270 may control overall operations of each unit of the user interface device 200 .
  • the user interface device 200 may include a plurality of processors 270 or may not include a plurality of processors 270 .
  • the user interface device 200 may be operated under the control of a processor of another device in the vehicle 100 or the control unit 170.
  • the user interface device 200 may be referred to as a vehicle display device.
  • the user interface device 200 may be operated under the control of the controller 170 .
  • the object detection device 300 is a device for detecting an object located outside the vehicle 100 .
  • Objects may be various objects related to driving of the vehicle 100 .
  • objects O include lanes OB10, other vehicles OB11, pedestrians OB12, two-wheeled vehicles OB13, traffic signals OB14 and OB15, lights, roads, structures, May include speed bumps, terrain objects, animals, and the like.
  • the lane OB10 may be a driving lane, a lane adjacent to the driving lane, or a lane in which an opposing vehicle travels.
  • the lane OB10 may be a concept including left and right lines forming the lane.
  • the other vehicle OB11 may be a vehicle running around the vehicle 100 .
  • the other vehicle may be a vehicle located within a predetermined distance from the vehicle 100 .
  • the other vehicle OB11 may be a vehicle preceding or following the vehicle 100 .
  • the pedestrian OB12 may be a person located around the vehicle 100 .
  • the pedestrian OB12 may be a person located within a predetermined distance from the vehicle 100 .
  • the pedestrian OB12 may be a person located on a sidewalk or road.
  • the two-wheeled vehicle OB12 may refer to a vehicle that is located around the vehicle 100 and moves using two wheels.
  • the two-wheeled vehicle OB12 may be a vehicle having two wheels located within a predetermined distance from the vehicle 100 .
  • the two-wheeled vehicle OB13 may be a motorcycle or bicycle located on a sidewalk or road.
  • the traffic signal may include a traffic light OB15, a traffic sign OB14, and a pattern or text drawn on a road surface.
  • the light may be light generated from a lamp provided in another vehicle.
  • the light may be light generated from a street lamp.
  • the light may be sunlight.
  • the road may include a road surface, a curve, an incline such as an uphill or a downhill.
  • the structure may be an object located near a road and fixed to the ground.
  • structures may include streetlights, roadside trees, buildings, telephone poles, traffic lights, and bridges.
  • a feature may include a mountain, a hill, and the like.
  • objects may be classified into moving objects and fixed objects.
  • the moving object may be a concept including other vehicles and pedestrians.
  • a fixed object may be a concept including traffic signals, roads, and structures.
  • the object detection device 300 may include a camera 310, a radar 320, a lidar 330, an ultrasonic sensor 340, an infrared sensor 350, and a processor 370.
  • the object detection apparatus 300 may further include components other than the described components or may not include some of the described components.
  • the camera 310 may be located at an appropriate location outside the vehicle in order to obtain an external image of the vehicle.
  • the camera 310 may be a mono camera, a stereo camera 310a, an around view monitoring (AVM) camera 310b, or a 360-degree camera.
  • AVM around view monitoring
  • the camera 310 may be disposed in the interior of the vehicle and proximate to the front windshield to obtain an image of the front of the vehicle.
  • the camera 310 may be disposed around a front bumper or a radiator grill.
  • the camera 310 may be disposed in the interior of the vehicle and proximate to the rear glass to obtain an image behind the vehicle.
  • the camera 310 may be disposed around a rear bumper, a trunk, or a tailgate.
  • the camera 310 may be disposed close to at least one of the side windows in the interior of the vehicle to obtain an image of the side of the vehicle.
  • the camera 310 may be disposed around side mirrors, fenders, or doors.
  • the camera 310 may provide the acquired image to the processor 370 .
  • the radar 320 may include an electromagnetic wave transmitter and a receiver.
  • the radar 320 may be implemented in a pulse radar method or a continuous wave radar method in terms of radio wave emission principles.
  • the radar 320 may be implemented in a frequency modulated continuous wave (FMCW) method or a frequency shift keyong (FSK) method according to a signal waveform among continuous wave radar methods.
  • FMCW frequency modulated continuous wave
  • FSK frequency shift keyong
  • the radar 320 detects an object based on a Time of Flight (TOF) method or a phase-shift method through electromagnetic waves, and detects the position of the detected object, the distance to the detected object, and the relative speed. can be detected.
  • TOF Time of Flight
  • phase-shift method through electromagnetic waves
  • the radar 320 may be disposed at an appropriate location outside the vehicle to detect an object located in front, rear or side of the vehicle.
  • LiDAR 330 may include a laser transmitter and a receiver.
  • the LIDAR 330 may be implemented in a Time of Flight (TOF) method or a phase-shift method.
  • TOF Time of Flight
  • LiDAR 330 may be implemented as a driven or non-driven type.
  • the lidar 330 When implemented in a driving manner, the lidar 330 is rotated by a motor and may detect an object around the vehicle 100 .
  • the lidar 330 may detect an object located within a predetermined range with respect to the vehicle 100 by light steering.
  • the vehicle 100 may include a plurality of non-powered lidars 330 .
  • the LIDAR 330 detects an object based on a Time of Flight (TOF) method or a phase-shift method through a laser light medium, and determines the location of the detected object, the distance to the detected object, and the Relative speed can be detected.
  • TOF Time of Flight
  • phase-shift method through a laser light medium
  • the lidar 330 may be disposed at an appropriate location outside the vehicle in order to detect an object located in front, rear or side of the vehicle.
  • the ultrasonic sensor 340 may include an ultrasonic transmitter and receiver.
  • the ultrasonic sensor 340 may detect an object based on ultrasonic waves, and detect a position of the detected object, a distance to the detected object, and a relative speed.
  • the ultrasonic sensor 340 may be disposed at an appropriate location outside the vehicle to detect an object located in front, rear or side of the vehicle.
  • the infrared sensor 350 may include an infrared transmitter and a receiver.
  • the infrared sensor 340 may detect an object based on infrared light and detect a position of the detected object, a distance to the detected object, and a relative speed.
  • the infrared sensor 350 may be disposed at an appropriate location outside the vehicle in order to detect an object located in front, rear or side of the vehicle.
  • the processor 370 may control overall operations of each unit of the object detection device 300 .
  • the processor 370 may detect and track an object based on the obtained image.
  • the processor 370 may perform operations such as calculating a distance to an object and calculating a relative speed with an object through an image processing algorithm.
  • the processor 370 may detect and track the object based on the reflected electromagnetic wave that is transmitted and reflected by the object and returned.
  • the processor 370 may perform operations such as calculating a distance to an object and calculating a relative speed with an object based on electromagnetic waves.
  • the processor 370 may detect and track the object based on reflected laser light that is transmitted and reflected by the object.
  • the processor 370 may perform operations such as calculating a distance to an object and calculating a relative speed to an object based on laser light.
  • the processor 370 may detect and track the object based on the reflected ultrasonic wave after the transmitted ultrasonic wave is reflected on the object.
  • the processor 370 may perform operations such as calculating a distance with an object and calculating a relative speed with an object based on ultrasonic waves.
  • the processor 370 may detect and track the object based on the reflected infrared light that is transmitted and reflected by the object and returned.
  • the processor 370 may perform operations such as calculating a distance to an object and calculating a relative speed with an object based on infrared light.
  • the object detection device 300 may include a plurality of processors 370 or may not include the processor 370 .
  • each of the camera 310, the radar 320, the lidar 330, the ultrasonic sensor 340, and the infrared sensor 350 may individually include a processor.
  • the object detection device 300 may be operated according to the control of the processor or the control unit 170 of the device in the vehicle 100.
  • the object detection device 400 may be operated according to the control of the controller 170 .
  • the communication device 400 is a device for communicating with an external device.
  • the external device may be another vehicle, a mobile terminal, or a server.
  • the communication device 400 may include at least one of a transmission antenna, a reception antenna, a radio frequency (RF) circuit capable of implementing various communication protocols, and an RF element to perform communication.
  • RF radio frequency
  • the communication device 400 may include a short-distance communication unit 410, a location information unit 420, a V2X communication unit 430, an optical communication unit 440, a broadcast transmission/reception unit 450, and a processor 470.
  • the communication device 400 may further include components other than the described components, or may not include some of the described components.
  • the short-range communication unit 410 is a unit for short-range communication.
  • the short-range communication unit 410 includes BluetoothTM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, Near Field Communication (NFC), and Wireless (Wi-Fi). -Fidelity), Wi-Fi Direct, and wireless USB (Wireless Universal Serial Bus) technologies may be used to support short-distance communication.
  • the short-range communication unit 410 may perform short-range communication between the vehicle 100 and at least one external device by forming wireless area networks.
  • the location information unit 420 is a unit for acquiring location information of the vehicle 100 .
  • the location information unit 420 may include a Global Positioning System (GPS) module or a Differential Global Positioning System (DGPS) module.
  • GPS Global Positioning System
  • DGPS Differential Global Positioning System
  • the V2X communication unit 430 is a unit for performing wireless communication with a server (V2I: Vehicle to Infrastructure), another vehicle (V2V: Vehicle to Vehicle), or a pedestrian (V2P: Vehicle to Pedestrian).
  • the V2X communication unit 430 may include an RF circuit capable of implementing communication with infrastructure (V2I), vehicle-to-vehicle communication (V2V), and pedestrian communication (V2P) protocols.
  • the optical communication unit 440 is a unit for communicating with an external device via light.
  • the optical communication unit 440 may include an optical transmitter that converts an electrical signal into an optical signal and transmits the optical signal to the outside and an optical receiver that converts the received optical signal into an electrical signal.
  • the light emitting unit may be integrally formed with a lamp included in the vehicle 100 .
  • the broadcast transceiver 450 is a unit for receiving a broadcast signal from an external broadcast management server or transmitting a broadcast signal to the broadcast management server through a broadcast channel.
  • Broadcast channels may include satellite channels and terrestrial channels.
  • the broadcasting signal may include a TV broadcasting signal, a radio broadcasting signal, and a data broadcasting signal.
  • the processor 470 may control the overall operation of each unit of the communication device 400.
  • the communication device 400 may include a plurality of processors 470 or may not include a plurality of processors 470 .
  • the communication device 400 may be operated under the control of a processor of another device in the vehicle 100 or the control unit 170.
  • the communication device 400 may implement a vehicle display device together with the user interface device 200 .
  • the vehicle display device may be referred to as a telematics device or an audio video navigation (AVN) device.
  • APN audio video navigation
  • the communication device 400 may operate under the control of the control unit 170 .
  • the driving control device 500 is a device that receives a user input for driving.
  • the vehicle 100 may be operated based on a signal provided by the driving control device 500 .
  • the driving control device 500 may include a steering input device 510 , an acceleration input device 530 and a brake input device 570 .
  • the steering input device 510 may receive an input of a driving direction of the vehicle 100 from a user.
  • the steering input device 510 is preferably formed in a wheel shape so that steering input is possible by rotation.
  • the steering input device may be formed in the form of a touch screen, touch pad, or button.
  • the acceleration input device 530 may receive an input for acceleration of the vehicle 100 from a user.
  • the brake input device 570 may receive an input for decelerating the vehicle 100 from a user.
  • the acceleration input device 530 and the brake input device 570 are preferably formed in the form of pedals.
  • the acceleration input device or brake input device may be formed in the form of a touch screen, touch pad, or button.
  • the driving control device 500 may be operated according to the control of the control unit 170 .
  • the vehicle driving device 600 is a device that electrically controls driving of various devices in the vehicle 100 .
  • the vehicle driving device 600 may include a power train driving unit 610, a chassis driving unit 620, a door/window driving unit 630, a safety device driving unit 640, a lamp driving unit 650, and an air conditioning driving unit 660.
  • a power train driving unit 610 may include a power train driving unit 610, a chassis driving unit 620, a door/window driving unit 630, a safety device driving unit 640, a lamp driving unit 650, and an air conditioning driving unit 660.
  • the vehicle driving apparatus 600 may further include components other than the described components or may not include some of the described components.
  • the vehicle driving device 600 may include a processor. Each unit of the vehicle driving device 600 may individually include a processor.
  • the power train driver 610 may control the operation of the power train device.
  • the power train driving unit 610 may include a power source driving unit 611 and a transmission driving unit 612 .
  • the power source driver 611 may control the power source of the vehicle 100 .
  • the power source driver 610 may perform electronic control of the engine. This makes it possible to control the output torque of the engine and the like.
  • the power source driver 611 may adjust the engine output torque according to the control of the control unit 170 .
  • the power source driver 610 may control the motor.
  • the power source driver 610 may adjust the rotational speed and torque of the motor according to the control of the control unit 170 .
  • the transmission driving unit 612 may control the transmission.
  • the transmission driving unit 612 can adjust the state of the transmission.
  • the transmission driving unit 612 may adjust the state of the transmission to forward (D), reverse (R), neutral (N), or parking (P).
  • the transmission driving unit 612 may adjust the engagement state of the gear in the forward (D) state.
  • the chassis driving unit 620 may control the operation of the chassis device.
  • the chassis driving unit 620 may include a steering driving unit 621 , a brake driving unit 622 and a suspension driving unit 623 .
  • the steering driver 621 may perform electronic control of a steering apparatus in the vehicle 100 .
  • the steering drive unit 621 can change the traveling direction of the vehicle.
  • the brake driver 622 may perform electronic control of a brake apparatus in the vehicle 100 .
  • the speed of the vehicle 100 may be reduced by controlling the operation of brakes disposed on wheels.
  • the brake driving unit 622 may individually control each of a plurality of brakes.
  • the brake driving unit 622 may differently control braking force applied to a plurality of wheels.
  • the suspension driver 623 may perform electronic control of a suspension apparatus in the vehicle 100 .
  • the suspension driving unit 623 may control the vibration of the vehicle 100 to be reduced by controlling the suspension device when there is a curve on the road surface.
  • the suspension driving unit 623 may individually control each of the plurality of suspensions.
  • the door/window driver 630 may perform electronic control of a door apparatus or a window apparatus in the vehicle 100 .
  • the door/window driver 630 may include a door driver 631 and a window driver 632 .
  • the door driver 631 may control the door device.
  • the door driving unit 631 may control opening and closing of a plurality of doors included in the vehicle 100 .
  • the door driver 631 may control opening or closing of a trunk or a tail gate.
  • the door driver 631 may control opening or closing of the sunroof.
  • the window driving unit 632 may perform electronic control of a window apparatus. Opening or closing of a plurality of windows included in the vehicle 100 may be controlled.
  • the safety apparatus driver 640 may perform electronic control of various safety apparatuses in the vehicle 100 .
  • the safety device driving unit 640 may include an airbag driving unit 641 , a seat belt driving unit 642 , and a pedestrian protection device driving unit 643 .
  • the airbag driver 641 may perform electronic control of an airbag apparatus in the vehicle 100 .
  • the airbag driver 641 may control the airbag to be deployed when danger is detected.
  • the seat belt driver 642 may perform electronic control of a seat belt appartus in the vehicle 100 .
  • the seat belt driver 642 may control the occupants to be fixed to the seats 110FL, 110FR, 110RL, and 110RR using the seat belt when danger is detected.
  • the pedestrian protection device driving unit 643 may perform electronic control of the hood lift and the pedestrian airbag. For example, when detecting a collision with a pedestrian, the pedestrian protection device driver 643 may control the hood to be lifted up and the pedestrian airbag to be deployed.
  • the lamp driver 650 may perform electronic control of various lamp apparatuses in the vehicle 100 .
  • the air conditioning driving unit 660 may perform electronic control of an air cinditioner in the vehicle 100 . For example, when the temperature inside the vehicle is high, the air conditioning driving unit 660 may operate the air conditioner and control cool air to be supplied to the inside of the vehicle.
  • the vehicle driving apparatus 600 may include a processor. Each unit of the vehicle driving device 600 may individually include a processor.
  • the vehicle driving device 600 may be operated according to the control of the controller 170 .
  • the operating system 700 is a system that controls various operations of the vehicle 100 .
  • the driving system 700 may be operated in an autonomous driving mode.
  • the driving system 700 may include a driving system 710 , a vehicle exit system 740 and a parking system 750 .
  • the navigation system 700 may further include other components in addition to the described components, or may not include some of the described components.
  • the driving system 700 may include a processor. Each unit of the driving system 700 may individually include a processor.
  • the driving system 700 when the driving system 700 is implemented in software, it may be a sub-concept of the control unit 170.
  • the driving system 700 uses at least one of the user interface device 200, the object detection device 300, the communication device 400, the vehicle driving device 600, and the control unit 170. It may be a concept that includes
  • the driving system 710 may perform driving of the vehicle 100 .
  • the driving system 710 may perform driving of the vehicle 100 by receiving navigation information from the navigation system 770 and providing a control signal to the vehicle driving device 600 .
  • the driving system 710 may receive object information from the object detection device 300 and provide a control signal to the vehicle driving device 600 to drive the vehicle 100 .
  • the driving system 710 may receive a signal from an external device through the communication device 400 and provide a control signal to the vehicle driving device 600 to drive the vehicle 100 .
  • the vehicle extraction system 740 may perform vehicle 100 extraction.
  • the vehicle exit system 740 may receive navigation information from the navigation system 770 and provide a control signal to the vehicle driving device 600 to exit the vehicle 100 .
  • the vehicle extraction system 740 may receive object information from the object detection device 300 and provide a control signal to the vehicle driving device 600 to extract the vehicle 100 .
  • the vehicle extraction system 740 may receive a signal from an external device through the communication device 400 and provide a control signal to the vehicle driving apparatus 600 to extract the vehicle 100 .
  • the parking system 750 may perform parking of the vehicle 100 .
  • the parking system 750 may receive navigation information from the navigation system 770 and provide a control signal to the vehicle driving device 600 to park the vehicle 100 .
  • the parking system 750 may perform parking of the vehicle 100 by receiving object information from the object detection device 300 and providing a control signal to the vehicle driving device 600 .
  • the parking system 750 may receive a signal from an external device through the communication device 400 and provide a control signal to the vehicle driving device 600 to park the vehicle 100 .
  • the navigation system 770 may provide navigation information.
  • the navigation information may include at least one of map information, set destination information, route guidance information according to the destination setting, information on various objects on the route, lane information, and current location information of the vehicle.
  • the navigation system 770 may include a memory and a processor.
  • the memory may store navigation information.
  • the processor may control the operation of the navigation system 770 .
  • the navigation system 770 may receive information from an external device through the communication device 400 and update pre-stored information.
  • the navigation system 770 may be classified as a sub-component of the user interface device 200 .
  • the sensing unit 120 may sense the state of the vehicle.
  • the sensing unit 120 may include a posture sensor (eg, a yaw sensor, a roll sensor, a pitch sensor), a collision sensor, a wheel sensor, a speed sensor, and an inclination sensor.
  • a rotational steering sensor, a vehicle interior temperature sensor, a vehicle interior humidity sensor, an ultrasonic sensor, an illuminance sensor, an accelerator pedal position sensor, a brake pedal position sensor, and the like may be included.
  • the sensing unit 120 includes vehicle attitude information, vehicle collision information, vehicle direction information, vehicle location information (GPS information), vehicle angle information, vehicle speed information, vehicle acceleration information, vehicle tilt information, vehicle forward/backward information, battery Acquire sensing signals for information, fuel information, tire information, vehicle lamp information, vehicle internal temperature information, vehicle internal humidity information, steering wheel rotation angle, vehicle external illuminance, pressure applied to the accelerator pedal, pressure applied to the brake pedal, etc. can do.
  • the sensing unit 120 includes an accelerator pedal sensor, a pressure sensor, an engine speed sensor, an air flow sensor (AFS), an intake temperature sensor (ATS), a water temperature sensor (WTS), and a throttle position sensor. (TPS), a TDC sensor, a crank angle sensor (CAS), and the like may be further included.
  • the vehicle interface unit 130 may serve as a passage for various types of external devices connected to the vehicle 100 .
  • the vehicle interface unit 130 may have a port connectable to a mobile terminal, and may be connected to the mobile terminal through the port. In this case, the vehicle interface unit 130 may exchange data with the mobile terminal.
  • the vehicle interface unit 130 may serve as a passage through which electrical energy is supplied to the connected mobile terminal.
  • the vehicle interface unit 130 may provide electrical energy supplied from the power supply unit 190 to the mobile terminal. .
  • the memory 140 is electrically connected to the controller 170 .
  • the memory 140 may store basic data for the unit, control data for controlling the operation of the unit, and input/output data.
  • the memory 140 may be a variety of storage devices such as ROM, RAM, EPROM, flash drive, hard drive, etc. in terms of hardware.
  • the memory 140 may store various data for overall operation of the vehicle 100, such as a program for processing or control by the control unit 170.
  • the memory 140 may be integrally formed with the controller 170 or may be implemented as a sub-component of the controller 170 .
  • the controller 170 may control overall operations of each unit in the vehicle 100 .
  • the controller 170 may be referred to as an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the power supply unit 190 may supply power required for operation of each component according to the control of the control unit 170 .
  • the power supply unit 190 may receive power from a battery inside the vehicle.
  • processors and controllers 170 included in the vehicle 100 include application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( It may be implemented using at least one of field programmable gate arrays, processors, controllers, micro-controllers, microprocessors, and electrical units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors, controllers, micro-controllers, microprocessors, and electrical units for performing other functions include field programmable gate arrays, processors, controllers, micro-controllers, microprocessors, and electrical units for performing other functions.
  • FIG. 8a is a conceptual diagram for explaining the AR service platform of the present invention.
  • the AR service platform providing the AR service of the present invention may be referred to as an AR service system.
  • the AR service platform includes a server 850 that is provided outside the vehicle, collects and processes information necessary for the AR service, and transmits the information to the vehicle, and is provided in the vehicle and uses the information transmitted from the server to provide the AR service. It may include an AR service device 800 to provide.
  • the server 850 collects and processes information necessary for the AR service and transmits it to the vehicle. It may include meaning to transmit.
  • the AR service device 800 may change information provided through the AR service based on vehicle conditions.
  • the AR service device 800 of the present invention can dynamically adjust (variable) the information and amount of information to be displayed in AR according to the situation of the vehicle, and select information to be emphasized.
  • the AR service platform of the present invention can control the AR service provided in the vehicle to be changed according to specific conditions such as vehicle conditions and advertisement exposure conditions.
  • the AR service platform of the present invention may converge vehicle location information, map information, a plurality of sensor data, real-time POI information, advertisement/event information, and the like, and display them in AR navigation.
  • the AR service device 800 of the present invention receives AR service information from the server based on the current location of the vehicle and navigation route/guide information, and displays it on the AR navigation screen. can be processed into
  • the AR service device 800 of the present invention may reconstruct AR display information in real time.
  • the AR service device 800 may reconfigure the service data received from the server to be displayed on the AR navigation screen by determining the display format, size, location, exposure method, etc. of the AR content in consideration of the driving situation (e.g., driving POI exposure position and size variable according to speed, service information exposure position change according to traffic conditions, AR Wall display position and exposure time adjustment, etc.).
  • the AR service device 800 of the present invention may analyze the exposure frequency of AR display information through user feedback.
  • the server 850 collects user input information (input information such as touch, order, etc.) for AR service content, performs content exposure frequency analysis, and adjusts a service content exposure policy based on the information.
  • the present invention can converge various external service contents and express them in AR navigation, and can provide various services through POI information including real-time properties.
  • the present invention provides a service platform structure and AR information display method (UX) that dynamically adjusts the amount of information (POI data, advertisements) to be displayed in AR according to vehicle conditions and advertisement exposure conditions, and POI information and commerce service information for AR expression.
  • a module that collects and processes it into a form that is easy to render in an AR engine a module that processes to emphasize specific POI information according to the situation inside/outside the vehicle, a module that collects vehicle situation information and applies a UX policy appropriately to the situation, and a UX policy
  • an AR engine module that renders AR objects (Group Poi, Mini Poi, 3D Object, Event wall, etc.) can be provided.
  • the present invention collects user actions for advertisements, such as a client module that transmits and receives interactions and data between displays in front and rear seats of a vehicle, a Service App module that exposes commerce service information associated with a POI, AR advertisement object exposure results, and clicks. and a cloud module that collects/analyzes user actions on advertisements, such as AR advertisement object exposure results and clicks.
  • the AR service platform of the present invention includes a server 850, which is a component (off-board) existing outside the vehicle, and an AR service device 800, which is a component (on-board) provided in the vehicle.
  • a server 850 which is a component (off-board) existing outside the vehicle
  • an AR service device 800 which is a component (on-board) provided in the vehicle.
  • the server 850 includes a POI Data Aggregator 851, an Ads manager 852, an Ads Monitoring 853, a service, and an Ads manager 852. & Ads Manager) 854, a Commerce Manager 855, a DB Connector 856, and a Dashboard 857.
  • the POI Data Aggregator 851 may receive information necessary for the AR service from a plurality of external servers and convert/integrate it into a message format of the AR service platform.
  • the advertisement manager unit 852 may perform advertisement information/content management and advertisement campaign (ad exposure conditions) management.
  • the advertisement monitoring unit 853 may collect/store advertisement exposure and click results.
  • the Service & Ads Manager 854 may insert advertisement information suitable for an exposure condition into service information and provide the service information to a client.
  • the commerce manager unit 855 may interlock with commerce services/collect payment information.
  • the database connector 856 may store/query advertisement content, advertisement exposure result information, and commerce payment information.
  • the dashboard 857 may display the real-time AR service status by visualizing advertisement exposure results/payment details results.
  • the server 850 converts the information transmitted from the vehicle AR service device 800 into a data format usable by the server, and converts the information processed/generated by the server into a data format usable by the AR service device 800. It may further include an AR service cloud API (or data conversion unit) for conversion.
  • the AR service device 800 includes a client 810 including a cloud interface, a commerce app, a CID-RSE interaction manager, a policy manager, advertisement monitoring, driving context, and personalized recommendation, and a POI renderer, display manager, and touch It may include an AR engine 820 including a manager and the like.
  • the client 810 may receive POI information, advertisements, and the like from the server.
  • the client 810 may transmit/receive order/payment information with the server 850 and transmit an advertisement exposure result to the server 850 .
  • the AR engine 820 may transmit to the client 810 data such as the number of touches and the number of exposures of the AR object output through AR.
  • the AR engine 820 may transmit/receive interlocking data for front/rear seats (CID, RSE) with the client 810, and output an AR object according to the AR display policy received from the client 810.
  • CID front/rear seats
  • RSE front/rear seats
  • the AR engine 820 determines the type and output of an AR object provided through an AR service based on data collected from a gyro sensor, camera, communication unit, navigation, ADAS (Advanced Driver Assistance Systems), GPS, etc. provided in the vehicle. You can decide the location, POI type, output size, etc.
  • the AR service device 800 provided in the vehicle (on-board) may AR render the service content so that the data transmitted from the cloud server is displayed in AR on the front camera image.
  • the AR service device 800 may mediate data transmission between the server and the AR engine, such as collecting advertisement posting result data from the AR engine and transmitting the data to the server.
  • the AR service device 800 may link data generated by AR between CID-RSE (ie, front/rear seats).
  • the AR service device 800 may perform data management for AR display policies, and specifically, may provide AR display policy data according to driving conditions to the AR engine.
  • the AR service device 800 may provide situational awareness and personalized service, and specifically, AR objects may be displayed according to driving situations (speed, turn-by-turn (TBT), etc.) using in-vehicle data. engine can be provided.
  • driving situations speed, turn-by-turn (TBT), etc.
  • AR service described herein is not limited thereto, and AR information is output directly on the windshield of the vehicle on a driver or passenger basis so as to be overlapped with the space of the real world, or a Head-up Display (HUD). ), it can be similarly applied to various augmented reality implementation methods, such as outputting AR information.
  • HUD Head-up Display
  • the input data (input information) used to provide the AR service and the output data (output information) provided through the AR service platform are as follows.
  • the type of input data may include map information (navigation information), service content information (POI, advertisement, etc.), dynamic information, vehicle sensor information, historical information, and driving-related information.
  • map information novigation information
  • POI service content information
  • advertisement advertisement
  • Map information includes route information to the destination (navigation route), guidance information (Turn-by-Turn), road shape ahead (Road/Lane), and a plurality of map attribute information (road type/attribute, road and lane width, curvature, gradient, speed limit, etc.), localization object (road marking, traffic sign, etc.) information, etc. may be included.
  • Service content information may include POI information received from a plurality of service providers, advertisement information that can be provided at the current location, and real-time information for reservation/payment services such as gas stations, charging stations, and parking lots.
  • Dynamic information includes traffic information (road unit traffic, lane unit traffic), event information (accident, hazard warning, etc.), weather information, V2X (V2V, V2I) (Vehicle to Everything, Vehicle to Vehicle, Vehicle to Infra), etc. can include
  • Vehicle sensor information may include current location information (GPS/DR), camera input information (ADAS information, object recognition information), and V2X (real-time surrounding situation information collectable through V2V and V2I).
  • GPS/DR current location information
  • ADAS information camera input information
  • object recognition information object recognition information
  • V2X real-time surrounding situation information collectable through V2V and V2I
  • Historical information may include information about a past driving route, traffic history (eg, traffic per time zone), communication speed according to zone and time, and the like.
  • the driving-related information may include a driving mode (manual, autonomous driving, semi-autonomous driving, ADAS function operation, etc.), whether a destination or stopover has been entered, whether a parking lot has been entered, and the like.
  • a driving mode manual, autonomous driving, semi-autonomous driving, ADAS function operation, etc.
  • Output information that can be provided through the AR service platform may include current location/route-based AR service display data.
  • Current location/route-based AR service display data includes AR advertisement displayable points along the route (AR Wall, POI building highlights), selectable AR building information (selectable key building information such as landmarks), and general POI information (icons or POI summary information such as speech bubbles), long-distance POI information (distance/direction display of important POI information helpful for navigation that does not exist on the route), display information displayed when multiple POIs exist in the same building, destination building and real-time Parking lot status information, real-time status information of gas stations/charging stations, and location-based advertisement/event information may be included.
  • the AR service platform of the present invention may filter AR service information according to real-time information and determine a display method.
  • the AR service platform may determine the number of real-time POI exposures based on driving speed, POI overlap removal, size adjustment, exposure time, and the like.
  • the AR service platform may determine a POI exposure method according to risk information recognition, and specifically, may dynamically change a POI display method according to an accident, construction, or a plurality of moving object recognition situations.
  • the AR service platform may dynamically change the POI display position when a situation in which AR display visibility is deteriorated due to traffic occurs.
  • the AR service platform can reconstruct front/rear seat AR display data. For example, considering driving speed, risk information, weather information, etc., AR service information is minimized on the front seat display and all displayable information is displayed on the rear seat display. It can be reconstructed for display.
  • Such an operation/function/control method of the AR service platform may be implemented by a server included in the AR service platform or an AR service device, or may be implemented by an organic interaction between the server and the AR service device.
  • the service and advertisement manager unit 854 may perform a client request function, a data processing & aggregation function, and a client respond function.
  • the client interworking (request) function requests/receives POI information (location, category) with Unified API or requests/receives destination entrance location information (select one of destination coordinates/address/id) with Unified API.
  • POI information location, category
  • destination entrance location information select one of destination coordinates/address/id
  • Unified API may include
  • Unified API means an API (to minimize client variation) defined in the AR service cloud that is not dependent on a specific data provider.
  • the POI information and advertisement information integration (data processing & aggregation) function integrates POI information and advertisement information within a radius of 000m from the location requested by the client (from data manager, ads manager), or the entrance location of the destination requested by the client and POI advertisement This may include integrating information (from data manager, ads manager).
  • the function of integrating POI information and advertisement information is a function to match POI information with advertisement information including building wall and event wall information, or to prioritize and filter on the server when there are multiple POIs in the same building (e.g. partner companies). but excluding other POI information).
  • the filtering criterion may include assigning priority scores to each POI and comparing them.
  • the client respond function may include transmitting POI information and advertisement information to Unified API or sending destination entrance location and advertisement information to Unified API.
  • a data manager (not shown) included in the server 850 may include a POI information collection/delivery function, a building shape (polygon) information collection/delivery function, and a destination entrance information collection/delivery function. .
  • the POI information collection/delivery function can perform a function of requesting POI information from the 3rd party API or transmitting (to Service & Ads Aggregator) the POI information received from the 3rd party API (converting it into a Unified API response format) .
  • the building shape (polygon) information collection/delivery function requests building outline shape information from the 3rd party API/data set, or POI information received from the 3rd party API (converted into a Unified API response format) is delivered (to Service & Ads Aggregator) function.
  • the destination entrance information collection/transmission function performs a function of requesting destination entrance information from the 3rd party API or transmitting (to Service & Ads Aggregator) the destination entrance information received from the 3rd party API (converted into a Unified API response format) can do.
  • the advertisement manager unit 852 may provide a partner (advertising) company management interface, an advertising campaign management interface, and an advertising content management interface.
  • the advertisement monitoring unit 853 may perform a function of receiving advertisement effect measurement feedback and a function of transmitting advertisement information.
  • the partner (advertisement) company management interface can perform POI advertiser management (advertiser information addition/modification/deletion) and general advertiser management (advertiser information addition/deletion).
  • POI-supported advertisement formats may include Brand poi pin, Building wall, 3D rendering, Event wall, etc.
  • Supported advertisement formats general supported advertisement formats
  • brand advertisements e.g. Coca-Cola advertisements, etc.
  • event wall may be an event wall.
  • the advertising campaign management interface may perform addition/modification/deletion of an advertising campaign (an advertisement location, type, time, etc.).
  • the advertisement content management interface may perform content addition/modification/inquiry/deletion (POI brand icon image, building wall image, event wall image/video, 3D rendering image) for each advertisement format.
  • POI brand icon image building wall image
  • event wall image/video event wall image/video
  • 3D rendering image 3D rendering image
  • the advertisement effect measurement feedback receiving function may include a function of receiving the advertisement exposure feedback transmitted by the client and forwarding it to the DB manager (CPC/CMP/CPT&P).
  • the advertisement information delivery function may include a function of searching for and delivering advertisement campaign information to be exposed within a radius of 000m from the location requested by the Service & Ads Aggregator (in case of CPT&P, delivery of only advertisements that meet the time condition).
  • the Commerce Manager 855 may perform a client interworking function, an external commerce service interworking function, and a payment information management function.
  • the client linkage function includes receiving requests by linking clients with the Unified API, converting the contents of requests received through the Unified API into external commerce API specifications, converting data received from the external API into the message format of the Unified API, and delivering data to the client.
  • the commerce manager unit may perform an external service interworking function with the converted contents after converting the contents of requests received through the Unified API into external commerce API specifications.
  • Converting data received from an external API into a message format of Unified API may mean converting data received from external service interworking into Unified API.
  • the external commerce service linkage function is to request a list of stores adjacent to the current location and meta information & receive results, request detailed information on a specific store from the list above & receive results, request reservations/orders & receive results, request service usage status & receive results and linking member information of commerce services & receiving results.
  • the service use status request & result reception can be used for sequence management and AR message pop-up according to the service use status (reservation complete / entering the parking lot / parking in progress / leaving the parking lot / cancellation of reservation).
  • Service member information linkage & result reception can be used to link commerce service member ⁇ AR service member (OEM Connectivity service member) information.
  • the payment information management function may include a function of collecting payment details (contents, amount) from an external commerce service and charging a fee to an external commerce company based on the payment details.
  • the database connector 856 may perform advertising effect measurement data management function, commerce data management function, advertiser data management function, advertisement content data management function, and advertisement location data management function.
  • the advertising effect measurement data management function can save/delete log data related to CPC/CPM/CPT&P and search data (by POI, by brand, by time, by advertisement type).
  • the commerce data management function can save/delete payment details (contents, amount) and data search (by POI, by brand, by time, by advertisement type) made in external commerce services.
  • the advertiser data management function may perform storage/modification/delete/inquiry of advertiser information and advertising campaign settings for each advertiser.
  • the advertisement content data management function may store/modify/delete/retrieve advertisement contents in association with advertiser information.
  • the advertisement location data management function can manage event wall section coordinates and building wall coordinates (by brand) for displaying AR advertisements, and can be divided into coordinates registered by the user and specific coordinates obtained through linkage with the company's API. .
  • the dashboard (Service Dashboard) 857 may perform an advertisement effect measurement data visualization function and a commerce service data visualization function.
  • the advertising effect measurement data visualization function is CPC: a chart of the total number of clicks on advertisements by company/brand (can be viewed by period), CPC: an aggregate chart of the number of clicks by all advertisements (can be viewed by period), CPM: a chart by company/brand Chart for the total number of ad impressions per star (can be viewed by period), CPM: Aggregate chart for total number of ad impressions (can be viewed by period), CPT&P: Chart for the number of clicks on advertisements by company/brand (can be viewed by period) , CPT&P: A chart of the number of advertisement impressions by company/brand (viewable by period) can be provided.
  • These charts may be provided in various ways such as bar graph, line graph, pie chart, word graph, geospatial graph, and the like.
  • CPT&P is billed per hour rather than the number of clicks or impressions, but it can be used as data to measure the effect of exposure.
  • the commerce service data visualization function can provide a chart for the cumulative amount of payment by company (can be inquired by period) and a chart for the cumulative total amount of payment (can be inquired by period).
  • 8B is a conceptual diagram for explaining the MR service platform for providing the MR service of the present invention.
  • the present invention may provide an MR service platform capable of providing a Mixed Reality Automotive Meta Service (MR AMS) (hereinafter referred to as MR service).
  • MR AMS Mixed Reality Automotive Meta Service
  • the MR service platform may be referred to as an MR service system, an MR navigation system, an MR platform, an MR system, and the like.
  • An MR service platform refers to a platform capable of providing services based on mixed reality, and may include several independent components.
  • the MR service platform includes an MR service device 900 (or referred to as an MR navigation engine) installed in the vehicle (Onboard), a server (or cloud) installed in the vehicle (Offboard) It may include an MR AMS (hereinafter referred to as an MR AMS server) 1100 and a Digital Twin as a Service (DTaaS) server 1200.
  • the MR service device 900 may include an MR AMS client 910 and an MR renderer 920.
  • the MR service described in this specification may be understood as a vehicle mixed reality navigation service. That is, the MR service platform of the present invention can provide a vehicle interface implemented in mixed reality to a user riding in a vehicle.
  • the MR service provided by the MR service platform of the present invention can provide the experience of the digital world through the display in the vehicle even though driving in the real world.
  • the MR service may interactively provide driver with user experiences such as road guidance, safe driving, Point of Interest (POI), and entertainment in a virtual 3D space in which real world information is converged with the digital world.
  • driver with user experiences such as road guidance, safe driving, Point of Interest (POI), and entertainment in a virtual 3D space in which real world information is converged with the digital world.
  • POI Point of Interest
  • the MR service platform of the present invention can provide various user experiences (UX) that are free from space-time constraints compared to the existing camera-based (or head-up display (HUD)-based) AR (Augmented Reality).
  • UX user experiences
  • HUD head-up display
  • AR Auggmented Reality
  • the digital world means a digital twin or a digital twin smart city
  • real world information includes infrastructure data and/or autonomous vehicles such as V2X (Vehicle to Everything) and C-ITS (Cooperative-Intelligent transport Systems). It may include ambient perception data sensed by a sensor provided in a driving vehicle.
  • V2X Vehicle to Everything
  • C-ITS Cooperative-Intelligent transport Systems
  • the convergence described above may include not only the MR service cloud 1000 (or MR AMS cloud) and the MR service device 900 to implement this MR service platform, but also the concept of converging vehicle and infrastructure sensor data. there is.
  • interactive should be understood as a concept including not only mixed reality navigation, but also high-quality 3D image rendering and user interaction.
  • mixed reality described in this specification may mean an environment in which virtual reality is grafted to the real world and physical objects or virtual objects in the real world can interact.
  • Mixed reality may include augmented reality (AR) adding virtual information based on reality and augmented virtuality (AV) adding real information to a virtual environment.
  • AR augmented reality
  • AV augmented virtuality
  • a mixed reality car meta service (MR AMS) using mixed reality (MR) expresses a future driving route as a preview to help users prepare road shapes and actions in advance. can give
  • the mixed reality car meta service (MR AMS) using mixed reality (MR) may improve advertising effects or induce service usage rate improvement by observing a specific point of interest (POI). there is.
  • POI point of interest
  • mixed reality vehicle meta service (MR AMS) using mixed reality (MR) is not dependent on a specific map company, and it is also possible to converge data from various map companies.
  • the present invention can provide an MR navigation function as one of the mixed reality car meta services.
  • the MR navigation function is implemented on the virtual world rather than overlapping augmented reality objects on the real world, it is possible to solve the problem of front occlusion or difficulty in achieving matching quality, which occurs in AR navigation.
  • the present invention can improve user UX by effectively expressing various contexts that were difficult to express in the existing navigation through the MR navigation function.
  • the MR service platform of the present invention may provide an MR context management method, and a method and system for obtaining metadata and 3D assets for providing MR AMS.
  • the MR service platform of the present invention can render related service metadata and 3D assets to MR navigation by defining MR context required in the digital world and modeling service metadata to acquire it.
  • the present invention provides the experience of the digital world through the display in the vehicle even though driving in the real world, and utilizes the improved visibility and visibility of MR navigation to provide various additional HMI (Human Machine Interface) services to the user. can be recommended and provided.
  • HMI Human Machine Interface
  • the MR service platform (or MR service system) of the present invention may include an MR service cloud 1000 provided outside the vehicle and an MR service device 900 provided in the vehicle.
  • the MR service cloud 1100 provided outside the vehicle may include at least one of an MR AMS (Mixed Reality Automotive Meta Service) server 1100 and a DTaaS (Digital Twin as a Service) server 1200. .
  • MR AMS Mated Reality Automotive Meta Service
  • DTaaS Digital Twin as a Service
  • the onboard MR service device 900 may include an MR AMS client 910 and an MR renderer 920.
  • the MR service device 900 may provide a navigation function (or navigation application) by interacting with the AR service device 800 and the navigation system 770 .
  • Information necessary for the navigation function may be received through a user input (or user request) input through the camera 310, the sensing unit 120, and the user input unit 210 provided in the vehicle.
  • information necessary for the navigation function can be received through the MR service cloud 1000 provided outside the vehicle (Offboard), and in order to receive necessary information in each vehicle, the information sensed or processed in the vehicle can be received. It can also be transmitted to the MR service cloud 1000.
  • MR AMS (Mixed Reality Automotive Meta Service) server 1100 provides various service providers (1300a, 1300b, 1300c) may be connected. And based on the result of aggregating the map data provided from the connected service providers 1300a, 1300b, and 1300c, shape information of each building included in the map (eg, floor coordinates (footprint) information and height of the building) information) may be aggregated and the aggregated information may be provided to the DTaaS server 1200 .
  • the DTaaS server 1200 may mean a server or device that provides DTaaS, that is, a service using a digital twin map.
  • the DTaaS may mean Digital Twin as a Service or Digital Transformation as a Service.
  • the DTaaS server 1200 may be connected to a POI database in which POI service data for each building or area included in map information is stored.
  • a 3D model database in which data of a 3D polygon model (or a 3D polygon map) for each building included in the map information is stored.
  • the three-dimensional (3D) polygon model is a polygon model capable of providing a building volume, and may be a polygon model without a texture formed on a surface.
  • the DTaaS server 1200 may receive POI-related service data from the connected POI database, and may receive data of 3D polygon models of each building included in map information of an area from the connected 3D model database. .
  • a processor (not shown) of the MR service apparatus 900 may receive various pieces of information related to vehicle driving from the object detection apparatus 300 , the sensing unit 120 , and the navigation system 770 .
  • the processor may receive information on an object detected from the front, rear, or side of the vehicle from the camera 310 of the object detection device 300 .
  • the processor may receive information related to vehicle speed, driving direction, current location (GPS) of the vehicle, etc. from the sensing unit 120 including sensors connected to each component of the vehicle, including the driving system 710. .
  • information related to the driving route of the vehicle may be provided from the navigation system 770 .
  • the MR service device 900 and the DTaaS server 1200 may be connected through interface APIs of the MR AMS.
  • the MR service device 900 and the MR AMS interface can be connected through a wireless network connection.
  • the MR AMS server 1100 may be a network server or a cloud server wirelessly connected to the MR service device 900.
  • the MR service device 900 when connected to the MR AMS server 1100, the MR service device 900 receives a user input through a connected component (eg, the camera 310 of the vehicle, the sensing unit 120, or the user input unit 210). At least some of the information provided from the input) may be provided to the MR AMS server 1100 through a network connection. Then, the MR AMS server 1100 may provide 3D map data for providing mixed reality to the MR service device 900 in response to the provided information.
  • a connected component eg, the camera 310 of the vehicle, the sensing unit 120, or the user input unit 210.
  • the MR AMS server 1100 may provide 3D map data for providing mixed reality to the MR service device 900 in response to the provided information.
  • the MR service apparatus 900 may transmit information on objects detected around the vehicle, vehicle speed, direction, and current location of the vehicle. Further, information on the driving route may be provided to the MR AMS server 1100 . Then, the MR AMS server 1100 may provide the MR service device 900 with 3D map data of an area according to the current location of the vehicle based on the information provided by the MR service device 900.
  • the MR AMS server 1100 determines POI information based on the current location of the vehicle, the speed of the vehicle, and the driving route of the vehicle, and provides a 3D map further including the determined POI information in the 3D building map. You can also provide data.
  • the MR AMS server 1100 may provide the MR service device 900 with 3D map data further including information on conditions around the vehicle based on the provided information on objects around the vehicle.
  • the MR service device 900 may render a mixed reality image based on 3D map data provided from the MR AMS server 1100 .
  • the MR service device 900 may control the MR renderer 920 to display a 3D map screen including models of buildings around the vehicle based on the provided 3D map data.
  • the MR renderer 920 displays a graphic object corresponding to the vehicle on the 3D map screen, and displays graphic objects corresponding to the provided POI data and situational information around the vehicle on the 3D map screen.
  • an image of a virtual environment (in other words, a mixed reality (MR) image, or MR navigation screen, or MR navigation interface) including a 3D building model similar to the shape of the current vehicle and buildings around the vehicle and a graphic object corresponding to the vehicle It may be output to a display 251 provided in the vehicle, for example, a Center Information Display (CID), Head Up Display (HUD), Rear Sheet Information (RSI), or Rear Sheet Entertainment (RSE).
  • CID Center Information Display
  • HUD Head Up Display
  • RSI Rear Sheet Information
  • RSE Rear Sheet Entertainment
  • the MR service device 900 may provide a mixed reality service to a driver through the 3D map information, that is, a digital twin map (hereinafter referred to as a DT map).
  • a DT map a digital twin map
  • the MR AMS server 1100 generates 3D map data and the 3D map data based on information collected not only from the MR service device 900 installed in one vehicle but also from the MR service devices 900 installed in multiple vehicles. POI information that can be provided along with dimensional map data or situational information around each vehicle can be determined.
  • the MR AMS server 1100 may collect data from a plurality of vehicles in the form of a cloud server and generate 3D map data for mixed reality based on the collected information. Further, based on the generated 3D map data, the mixed reality service may be provided to at least one MR service device 900 provided in different vehicles.
  • the following includes the MR AMS server 1100 and the DTaaS server 1200, and includes metadata for providing mixed reality services (eg, service metadata, 3D assets), 3D A cloud or server that provides 3D map information such as a polygon map and a digital twin map, that is, a digital twin map (DT map), will be referred to as the MR service cloud 1000.
  • metadata for providing mixed reality services eg, service metadata, 3D assets
  • DT map digital twin map
  • the MR service apparatus 900 may include an MR AMS client 910 and an MR renderer 920.
  • the MR service device 900 can transmit and receive data with the AR service device 800 (or AR engine) and the navigation system 770 provided in the vehicle. there is.
  • the MR AMS client 910 may include a context manager 911 , a scene manager 913 and a UX scenario database 914 .
  • the MR renderer 920 may include a DTaaS client 921, an MR visualization unit 922, and a 3D HMI framework 923.
  • the MR AMS client 910 may collect and transmit vehicle location information, user input, user feedback information, payment information, etc. to the MR AMS server 1100 existing outside the vehicle.
  • the MR AMS server 1100 may transmit at least one of metadata, service metadata, and 3D assets required to provide the MR service to the MR AMS client 910.
  • the MR AMS client 910 may transmit data received from the MR AMS server 910 to the MR renderer 920.
  • the MR renderer 920 can create a digital twin map using the 3D polygon map received from the DTaaS server 1200 and the image received from the MR AMS client 910 or the camera 310 installed in the vehicle. .
  • the MR renderer 920 renders the data received from the MR AMS client 920 into MR objects that can overlap on the digital twin map, and overlaps the rendered MR objects on the digital twin map to create mixed reality (MR) images can be created.
  • MR mixed reality
  • the MR renderer 920 may output the generated mixed reality image to the display 251 provided in the vehicle.
  • 8C is a conceptual diagram for explaining the MR AMS client of the present invention.
  • the MR AMS client 910 is provided in a vehicle and can provide a Mixed Reality Automotive Meta Service (MR AMS).
  • MR AMS Mixed Reality Automotive Meta Service
  • the MR AMS client 910 includes a context manager 911 requesting a context corresponding to a user request (or user input) to the MR AMS server 1100 provided outside the vehicle, and a display 251 provided in the vehicle. ) and a UX scenario database 914 that provides at least one of the context manager 911 and the scene manager 913 with a scene manager 913 that manages MR scene information provided and UX rules.
  • the MR AMS client 910 may further include an interface API 912 that calls a function for communication with the MR AMS server 1100 provided outside the vehicle.
  • the interface API 912 may be composed of one or more functions configured to communicate with the MR AMS server 1100, and converts a data format or message format using these functions to convert data to the MR AMS server 1100. may be transmitted, or the format of data received from the MR AMS server 1100 may be converted.
  • the interface API 921 transmits the context request output from the context manager 911 to the MR AMS server 1100, and generates a 3D asset corresponding to the context requested from the MR AMS server 912. ) can be received.
  • the context may mean situation information, and may mean information corresponding to a situation in the vehicle. Also, the context may include meaning of contents.
  • the 3D asset may mean 3D object data corresponding to the requested context.
  • the 3D asset may refer to a 3D graphic object that is overlapped on a digital twinned image (or digital twin map) or newly updatable.
  • the MR AMS client 910 may be included in the MR service device 900.
  • the MR service device 900 When a user input is received through the input unit 210 provided in the vehicle, the MR service device 900 generates an action corresponding to the user input and transmits the action to the context manager (User Interaction Handler) 901 ) may be included.
  • the context manager User Interaction Handler
  • the user interaction handler 901 may be included in the MR service device 900 or in the MR AMS client 910.
  • the user interaction handler 901 when a user input of "Find nearby Starbucks" is received through the input unit 210 of the vehicle, the user interaction handler 901 generates an action (eg, "Search POI") corresponding to the user input. and can be transmitted to the context manager 911 provided in the MR AMS client 910.
  • an action eg, "Search POI”
  • the action may be determined by an action matching a word included in the user input, and the action may be named a command or control command.
  • the context manager 911 may generate a command for requesting a context corresponding to an action received from the user interaction handler 901 and transmit the command to the MR AMS server 1100 through the interface API 912. there is.
  • the command may be generated based on an action (eg, “Search POI”) received from the user interaction handler 901, and for example, current vehicle location, type of POI to be found, and radius information (eg, For example, it may be formed to include GET “Starbucks” (type of POI) WITHIN “500m” (radius) FROM “37.7795, -122.4201” (current vehicle location (latitude, longitude)).
  • search POI e.g, “Search POI”
  • radius information eg, For example, it may be formed to include GET “Starbucks” (type of POI) WITHIN “500m” (radius) FROM “37.7795, -122.4201” (current vehicle location (latitude, longitude)).
  • the context manager 911 may receive current scene information currently being output in the vehicle from the scene manager 913 and receive UX rules from the UX scenario database 914 .
  • the context manager 911 may receive navigation information including a current route and a current location from the navigation handler 902 that handles information of the navigation system 770 .
  • the navigation handler 902 may be included in the MR service device 900 or in the MR AMS client 910.
  • the context manager 911 may generate a command for requesting the context based on at least one of the current scene information, the UX rule, and the navigation information.
  • the current scene information may include screen information currently being output on the display 251 of the vehicle.
  • the current scene information may include information about a mixed reality image in which an MR object and an MR interface overlap on a digital twin map.
  • At least one of the context manager 911 and the scene manager 913 of the present invention processes information sensed through the sensing unit 120 of the vehicle through a sensor data adapter 903. sensor data can be received.
  • the sensor data adapter 903 may be included in the MR service device 900 or in the MR AMS client 910.
  • the sensor data adapter 903 may transmit the processed sensor data to the AR engine handler 904 that handles data transmitted to the AR engine (or AR service device) 800 .
  • the interface API 912 may receive metadata of a context corresponding to the command and/or a 3D asset corresponding to the context from the MR AMS server 1100 .
  • the interface API 912 may transmit the received metadata and/or 3D asset to the scene manager 913 .
  • the scene manager 913 may generate UI data using the UX rules received from the UX scenario database 914 and the metadata and 3D assets received from the interface API 912 .
  • the scene manager 913 transmits the generated UI data to the MR renderer 920 that renders the generated UI data to be output as a mixed reality (MR) or mixed reality image to the display 251 provided in the vehicle.
  • MR mixed reality
  • the scene manager 913 may further transmit the generated UI data to the AR engine handler 904 configured to handle the AR service device 800 provided in the vehicle.
  • the UX rules stored in the UX scenario database 914 may refer to information about rules, shapes, formats, or templates for generating a screen, UX, or user interface provided by the MR service device, and these UX rules may be previously defined for each type of data.
  • UX rules can be updated or modified by users or administrators.
  • 8D is a conceptual diagram for explaining the MR AMS server of the present invention.
  • the MR AMS server 1100 provided outside the vehicle and providing the Mixed Reality Automotive Meta Service (MR AMS) communicates with the MR AMS client installed in the vehicle.
  • an interface API 1101 that calls a function for the MR AMS client, a service aggregation manager 1110 that requests and receives a context corresponding to a request received from the MR AMS client from a service provider, and a context corresponding to the received context
  • a data integration manager 1120 for loading 3D assets from a 3D Assets for MR Navigation Database 1130 may be included.
  • the interface API 1101 may be named a server interface API 1101 to be distinguished from the interface API 912 of the MR AMS client 910 provided in the vehicle.
  • the interface API 912 of the MR AMS client 910 may be named a vehicle interface API or an MR AMS client interface API.
  • the interface API 1101 provided in the MR AMS server 1100 may transfer a user request (or context request) received from the MR AMS client to the service aggregation manager 1110 .
  • the interface API is a first interface API 1101 that calls a function for performing communication with the MR AMS client 910 and the service aggregation manager 1110 communicates with the service providers 1300a, 1300b, and 1300c It may include a second interface API (1102a, 1102b, 1102c) that calls a function for performing.
  • the second interface APIs 1102a, 1102b, and 1102c may receive service data and/or map data through an interface API provided in the service providers 1300a, 1300b, and 1300c.
  • the second interface APIs 1102a, 1102b, and 1102c and the interface API provided in the service providers 1300a, 1300b, and 1300c mutually transmit and receive data and may include functions formed to convert data formats or message formats, , Mutual data can be transmitted/received by converting the data format or message format using these functions.
  • the service aggregation manager 1110 may request the requested context from different service providers based on the type of context requested by the MR AMS client 910 provided in the vehicle.
  • the service aggregation manager 1110 sends the first-type context to a first service provider 1300a that provides the first-type context. and if the requested context type is a second type of context different from the first type, the second type of context may be requested from the second service provider 1300b that provides the second type of context. .
  • the service aggregation manager 1110 sends information about the POI to the first service provider 1300a that provides information about the POI.
  • Context (or POI data) can be requested and received.
  • the service aggregation manager 1110 sends information about the view of a certain street to the second service provider 1300b that provides information on the view of the street.
  • Context or imagery data
  • the service aggregation manager 1110 sends the third service provider 1300c that provides service-related information to the service-related context (or service-related data (eg For example, service ratings or prices) may be requested and received.
  • service-related data eg For example, service ratings or prices
  • the interface API 1101 may request the service aggregation manager 1110 for a confirmed expand service API call (API) based on the service (or context request) requested by the MR AMS client 910 .
  • API expand service API call
  • the service aggregation manager 1110 requests and receives information corresponding to the determined service from the service providers 1300a, 1300b, and 1300c based on the expanded service API request, and generates a service API and data It can be output to the integrated manager 1120.
  • the data integration manager 1120 based on the service API received from the service aggregation manager 1110, performs data enhancement, creates a metadata package for the requested context, and interface API ( 1101) to the MR AMS client 910 of the vehicle.
  • the metadata package may include the aforementioned 3D asset and service metadata.
  • service meta data may mean meta data for providing a service corresponding to a requested context.
  • the interface API 1101 may transmit the 3D asset loaded in the data integration manager 1120 to the MR AMS client 910.
  • the MR AMS server 1100 of the present invention may further include the context manager 911 described above.
  • the context manager 911 may be included in the MR AMS client 910 and provided at the vehicle end, included in the MR AMS server 1100 and provided at the server (cloud) end, or provided in both sides. It could be.
  • the context manager 911 when included in the MR AMS server 1100, may be configured to manage a context corresponding to a request received from the MR AMS client 910.
  • the context manager 911 includes a context handler 911a that handles and parses context requests, a context interpreter 911b that manages sessions for interpreting context requests and creates a context set using a data model, and the data
  • a context graph database (Context Graph DB or MR Context DB) 911c for storing the model may be included.
  • the context handler 911a may receive a user request input to the MR AMS client through the interface API 1101, parse the received user request, and pass it to the context interpreter 911b.
  • the context interpreter 911b After creating a session, the context interpreter 911b generates a query for a context request corresponding to the user request, and requests and receives a context data model corresponding to the query from the context graph database 911c.
  • the context interpreter 911b requests a context corresponding to the context data model from the service aggregation manager 1110, and the service aggregation manager 1110 sends the context to the service providers 1300a, 1300b, and 1300c. Context data corresponding to the data model can be requested and received.
  • the service aggregation manager 1110 requests and receives a 3D asset (and/or service meta data) corresponding to the requested context from the data integration manager 1120, and the context data received from the service provider and , The 3D asset (and/or service meta data) received from the data integration manager may be transmitted to the context interpreter 911b.
  • the context interpreter 911b may transmit the received context data and the 3D asset to the MR AMS client 910 installed in the vehicle through the context handler 911a and the interface API 1101.
  • the context manager 911 includes a context recorder 911d for extracting a recommended context based on the generated context set and a context controller 911e (or context tracker) for managing contexts to be periodically acquired. can include more.
  • the context recorder 911d requests the context interpreter 911b to generate a query for recommending a service that can replace the specific service when the completed context data includes information on which a specific service cannot be used.
  • FIG. 9 is a conceptual diagram for explaining the DTaaS server of the present invention.
  • the DTaaS (Digital Twin as a Service, or Digital Transformation as a Service) server 1200 of the present invention is provided outside the vehicle and provides a Mixed Reality Automotive Meta Service (MR AMS). ) can be provided.
  • MR AMS Mixed Reality Automotive Meta Service
  • the DTaaS server 1200 provides a digital twin map or data necessary to create a digital twin map (eg, 3D polygon map or all kinds of information about objects overlapping on the digital twin) can provide.
  • the DTaaS server 1200 stores a DTaaS API 1210 that calls a function for communication with the MR service device 900 equipped in the vehicle, a digital twin map provided to the MR service device, and a renderable 3D polygon map Based on the database (Digital Twins Maps DB) 1220 and the location information of the vehicle received from the MR service device, a three-dimensional polygon map corresponding to the location information is transmitted to the MR service device through the DTaaS API.
  • a processor 1280 may be included.
  • the DTaaS server 1200 may further include a telecommunication unit (TCU) 1290 that communicates with the MR AMS server 1100 provided outside the vehicle and providing the MR AMS service.
  • TCU telecommunication unit
  • the DTaaS server 1200 generates a digital twin map by matching the actually captured image to the 3D polygon map stored in the database 1220 (Digital Twin Representation and Update Unit) (1230) may further include.
  • the DTaaS server 1200 includes a dynamic model database (Dynamics Modeling DB) 1240 for storing dynamic information about a moving object received from at least one of the MR service device 900 and the MR AMS server 1100 and digital A scenario database (Scenarios DB) 1250 for storing information related to scenarios that can be implemented in the twin may be further included.
  • a dynamic model database Dynamics Modeling DB
  • Synamics Modeling DB for storing dynamic information about a moving object received from at least one of the MR service device 900 and the MR AMS server 1100
  • digital A scenario database (Scenarios DB) 1250 for storing information related to scenarios that can be implemented in the twin may be further included.
  • the DTaaS server 1200 includes a simulation unit 1260 that performs a simulation corresponding to a user request on the digital twin and a visualization unit that visualizes information to be implemented on the digital twin ( 1270) may be further included.
  • All of the components described above can be implemented as independent hardware (eg, chips or modules), and can also be implemented as software-blocked components as needed.
  • the DTaaS server 1200 includes not only the vehicle 100, but also a server (FMS Server) 1280 that provides a fleet management service (or vehicle group management service) and a server that provides a city planning service ( 1290) can also transmit and receive data through the DTaaS API (1210).
  • FMS Server server
  • a fleet management service or vehicle group management service
  • a server that provides a city planning service 1290
  • the DTaaS server 1200 may collect log information collected from each server from at least one of the vehicle 100, the FMS server 1280, and the city planning service providing server 1290.
  • the DTaaS server 1200 may store the collected log information in a log database.
  • the DTaaS server 1200 may provide a digital twin map for visualization in at least one of the vehicle 100, the FMS server 1280, and the city planning service providing server 1290 based on the collected log information.
  • the DTaaS server 1200 transmits at least one of event notification information, simulation information, and visualization information to the vehicle 100, the FMS server 1280, and the city planning service providing server 1290 based on the received log information. At least one can be transmitted.
  • the vehicle 100 related to the present invention may include a route guidance device 1300 .
  • the route guidance device 1300 may include the AR service device 800 and/or the MR service device 900 described above.
  • the AR service device 800 may be referred to as an AR engine or AR module
  • the MR service device 900 may be referred to as an MR engine or MR module.
  • the route guidance device 1300 may perform at least one function/operation/control method of the AR service device 800 and the MR service device 900.
  • the processor 1330 included in the route guidance device 1300 may be a separate processor 1330 that controls at least one of the AR service device 800 and the MR service device 900, or the AR service device 800 and/or the MR service device 900 itself.
  • the route guidance device 1300 can control at least one of the components described in FIG. 7 . From this point of view, the route guidance device 1300 may be the control unit 170.
  • the route guidance device 1300 is not limited thereto, and may be a separate component independent of the control unit 170 .
  • the route guidance device 1300 may be provided in a part of the vehicle 100.
  • the route guidance device 1300 will be described as a separate component independent of the control unit 170.
  • the functions (operations) and control methods described for the route guidance device 1300 in this specification may be performed by the control unit 170 of the vehicle. That is, all contents described in relation to the route guidance device 1300 may be applied to the control unit 170 in the same/similar way.
  • the route guidance device 1300 described herein may include some of the components described in FIG. 7 and various components provided in a vehicle.
  • the route guidance device 1300 described herein may include some of the components described in FIG. 7 and various components provided in a vehicle.
  • FIG. 7 for convenience of description, separate names and reference numerals will be given to the components described in FIG. 7 and various components provided in the vehicle to be described.
  • 10A is a conceptual diagram for explaining the path guidance device 1300.
  • the route guidance device 1300 may include a communication unit 1310, an interface unit 1320, and a processor 1330.
  • the communication unit 1310 may be configured to perform wireless communication with at least one of electrical components included in the vehicle (eg, the electrical components included in the vehicle illustrated in FIG. 7 ).
  • the communication unit 1310 may be configured to perform communication with devices other than vehicles, such as mobile terminals, servers, other vehicles, and infrastructure provided on roads.
  • the communication unit 1310 may be the communication device 400 described above, and may include at least one of components included in the communication device 400 .
  • the interface unit 1320 may perform communication with at least one of the components provided in the vehicle.
  • the interface unit 1320 may be formed to perform wired communication with at least one of the components included in the vehicle illustrated in FIG. 7 .
  • the interface unit 1320 receives sensing information from one or more sensors provided in the vehicle 100 .
  • the interface unit 1320 may be called a sensor data collector.
  • the interface unit 1320 transmits sensors provided in the vehicle (eg, sensors (V.Sensors) for detecting manipulation of the vehicle (eg, heading, throttle, break, wheel, etc.) and surrounding information of the vehicle. Collects (receives) information sensed through sensors (S.Sensors) for sensing (eg, Camera, Radar, LiDAR, Sonar, etc.).
  • the interface unit 1320 may transmit information sensed through a sensor installed in the vehicle to the communication unit 1310 (or the processor 1330) so as to be reflected on a high-precision map.
  • the interface unit 1320 may serve as a passageway with electric appliances provided in the vehicle through the vehicle interface unit 130.
  • the interface unit 1320 may exchange data with the vehicle interface unit 130 .
  • the interface unit 1320 may serve as a passage through which electrical energy is supplied by being connected to the vehicle.
  • the route guidance device 1300 may be powered on by receiving electrical energy from the power supply 190 of the vehicle through the interface unit 1320 .
  • the present invention may include a processor 1330 that controls each component of the connected route guidance device 1300 and controls overall operations of the route guidance device 1300 .
  • the processor 1330 may generate a digital twin 3D map using at least one of an image captured by a camera installed in a vehicle, 2D map information, and 3D map information.
  • the processor 1330 may overlap (or overlap, output) a graphic object related to route guidance on the digitally twinned 3D map.
  • the graphic object related to route guidance means an object output in augmented reality, and may include various types of objects (eg, POI objects, carpet-type objects, 3D objects, etc.) necessary to perform route guidance.
  • objects eg, POI objects, carpet-type objects, 3D objects, etc.
  • a graphic object related to the route guidance may be named an AR object
  • an image on a display screen displaying the AR object, that is, a view image may be named an AR view image.
  • the graphic object related to the route guidance refers to an object output in mixed reality (MR), and includes various types of objects (eg, objects on a digitally twinned 3D map, etc.) necessary to perform route guidance. can do.
  • a graphic object related to the route guidance may be named an MR object, and an image on a display screen displaying the MR object, that is, a view image may be named an MR view image.
  • the route guidance device 1300 may render a mixed reality image based on 3D map data provided from the MR AMS server 1100 .
  • the route guidance device 1300 may control an MR renderer to display a 3D map screen including models of buildings around the vehicle based on the provided 3D map data.
  • graphic objects corresponding to the vehicle may be displayed on the 3D map screen, and graphic objects corresponding to provided POI data and situational information around the vehicle may be displayed on the 3D map screen.
  • the image of the virtual environment including the 3D building model similar to the shape of the current vehicle and the buildings around the vehicle and the graphic object corresponding to the vehicle is displayed in CID (Center Information Display), HUD (Head Up Display), RSI (Rear Sheet Information) Alternatively, it may be output to the display unit 251 such as RSE (Rear Sheet Entertainment).
  • the route guidance device 1300 may provide a mixed reality service to a driver through the 3D map information, that is, the digital twin map.
  • the MR AMS server 1100 provides 3D map data and the 3D map data based on information collected from not only the route guidance device 1300 provided in one vehicle but also route guidance devices 1300 provided in multiple vehicles. POI information that can be provided along with dimensional map data or situational information around each vehicle can be determined.
  • the MR AMS server 1100 may collect information from a plurality of vehicles in the form of a cloud server and generate 3D map data for mixed reality based on the collected information. Based on the generated 3D map data, MR information for providing a mixed reality service to at least one route guidance device 1300 provided in different vehicles may be transmitted.
  • the MR AMS server 1100 and the DTaaS server 1200 are connected to the DTaaS server 1200 and provide 3D map information, that is, a digitally twinned 3D map for providing mixed reality services.
  • 3D map information that is, a digitally twinned 3D map for providing mixed reality services.
  • the display screen 1350 may be a screen of the display unit 251 provided in a vehicle equipped with the route guidance device 1300.
  • the display unit 251 may be at least one of a CID (Center Information Display), HUD (Head Up Display), RSI (Rear Sheet Information), and RSE (Rear Sheet Entertainment) provided in the vehicle.
  • the route guidance device 1300 includes a view image (eg AR view) including various objects (eg AR objects and MR objects) for displaying route guidance information on the display unit 251 through the interface unit 1320 image, MR view image) may be provided so that the display unit 251 displays at least one of an AR view image including an AR object and an MR view image including an MR object.
  • the display unit 251 may display at least one of an AR view image and an MR view image under the control of the route guidance device 1300 through the interface unit 1320 .
  • the route guidance device 1300 may output one view image to the entire area of the display screen 1350 as shown in (a) of FIG. 10B.
  • the view image may be an AR view image or an MR view image.
  • the route guidance device 1300 may display an image in which at least one AR object is displayed in a real image obtained from a camera installed in a vehicle.
  • the actual image obtained from the camera may be an image of the front of the vehicle, the side of the vehicle (left or right), or the rear of the vehicle.
  • the AR objects displayed on the image may be graphic objects corresponding to objects or surrounding environments located in front of the vehicle, at the side of the vehicle, or at the rear of the vehicle, respectively, according to the captured image.
  • the route guidance device 1300 may display a view image in which an MR object corresponding to the vehicle is displayed at a specific angle corresponding to the passenger's selection or the state of the vehicle.
  • the route guidance device uses a digitally twinned 3D map to provide a bird's eye view of the vehicle from above, a side view image of the right or left side of the vehicle at a predetermined angle, or a vehicle It may be an MR view image, such as a view image according to a rear side view looking at the rear side of .
  • the path guidance device 1300 converts the view image displayed on the display screen 1350 to another type of view according to whether or not a preset condition is satisfied. You can turn it into an image.
  • the route guidance device 1300 may obtain an accurate image according to difficulty in obtaining an image capable of clearly identifying included objects, such as weather, traffic conditions, and illumination around the vehicle. If it is difficult to provide an AR view image, a view image displayed on the display screen 1350 may be converted to an MR view image. In this case, route guidance information provided through augmented reality may be converted into a state provided through mixed reality. Further, route guidance information may be provided through the MR view image.
  • the route guidance device 1300 converts a view image displayed on the display screen 1350 into an AR view image according to whether an AR view image can be provided while the display unit 251 displays the MR view image. conversion, and route guidance information may be provided through the MR view image. In this case, route guidance information provided through mixed reality may be converted into a state provided through augmented reality.
  • the route guidance device 1300 switches from an AR operation mode displaying an AR view image to an MR operation mode displaying an MR view image based on predetermined conditions related to the vehicle, or AR operation in the MR operation mode.
  • Operation process of controlling the display unit 251 to provide route guidance information by switching to mode and using a view image more suitable for the current vehicle state and surrounding environment among the AR view image and the MR view image, and an embodiment thereof will be examined in detail with reference to FIGS. 11 to 15 below.
  • the route guidance device 1300 may display different types of view images by dividing the display area. For example, the route guidance device 1300 divides the display screen 1350 into a main screen area (Main Screen, 1361) and a secondary screen area (Secondary Screen, 1362), as shown in FIG. can
  • the route guidance device 1300 may control the display unit 251 to display different types of view images on the main screen area 1061 and the sub screen area 1362 . That is, the route guidance device 1300 may control the display unit 251 to display an AR view image on the main screen area 1361 and an MR view image on the sub screen area 1362 . Alternatively, the display unit 251 may be controlled to display an MR view image on the main screen area 1361 and an AR view image on the sub screen area 1362 .
  • the route guidance device 1300 may generate a Picture In Picture (PIP) area 1370 overlapping at least a part of the display screen 1350 in a state where one type of view image is displayed on the display screen 1350.
  • PIP Picture In Picture
  • the PIP area is displayed in a pop-up form and may be an area overlapping at least a part of the display screen 1350 .
  • the PIP area 1370 may overlap the display screen 1350 through a multi-layer method.
  • the route guidance device 1300 may control the display unit 251 to display different types of view images on the display screen 1350 and the PIP area 1370 . That is, the route guidance device 1300 may control the display unit 251 to display an AR view image on the display screen 1350 and an MR view image on the PIP area 1370 . Alternatively, the display unit 251 may be controlled to display an MR view image on the display screen 1350 and an AR view image on the PIP area 1370 .
  • the route guidance device 1300 divides the display screen 1350 and controls the display unit 251 to display both the AR view image and the MR view image on one screen, and exemplary embodiments thereof are shown below. 16 to 20 will be examined in more detail.
  • the route guidance device 1300 overlaps another type of view image on at least a part of the display screen 1350 on which one type of view image is displayed to display both the AR view image and the MR view image on one screen
  • An operation process for controlling the display unit 251 and embodiments thereof will be described in more detail with reference to FIGS. 20 to 22 below.
  • FIG. 11 is a flowchart illustrating an operation process in which the route guidance device 1300 according to an embodiment of the present invention provides route guidance information through either augmented reality or mixed reality through operation mode switching.
  • 12 illustrates an example in which the route guidance device 1300 according to an embodiment of the present invention generates a second view image according to parameters detected from the first view image.
  • FIG. 13 shows an example of an augmented reality view image displayed by the route guidance device 1300 according to an embodiment of the present invention and a mixed reality view image corresponding to the augmented reality view image.
  • the route guidance device 1300 may first provide route guidance information through a view image based on the first mode (S1100).
  • the first mode may be an AR operation mode in which an AR object displays a real image obtained through a camera according to augmented reality technology.
  • the view image displayed in the first mode may be an AR view image including the AR object.
  • the first mode may be an MR operation mode in which a virtual object (MR object) is displayed on a digitally twinned 3D map according to mixed reality technology.
  • the view image displayed in the first mode may be an MR view image including the MR object.
  • the route guidance information may include not only route information related to a route to a currently set destination, but also a plurality of pieces of information related to the environment around the vehicle or route.
  • the route guidance information may include information on objects corresponding to the surrounding environment, such as at least objects or buildings located around the current vehicle.
  • it may include information on at least one object located around the path to the destination or various objects related to the destination. Information on these objects may be included in the form of Point Of Interest (POI) information.
  • POI Point Of Interest
  • the route guidance information may be information including information about the state of the vehicle or the environment around the vehicle, such as the current speed or amount of fuel of the vehicle, the state of the road on which it is driven, traffic congestion, weather around the vehicle, and the like.
  • the route guidance device 1300 may collect information related to a mode switching condition based on at least one sensor provided in the vehicle (S1102).
  • the at least one sensor may include the communication unit 1310 of the path guidance device 1300 .
  • Information related to the mode switching condition includes the type of route information requested by the occupant, the area or road on which the vehicle is driven, the driving mode of the vehicle, the driving time, the weather, the traffic conditions around the vehicle, the driving state and driving of the vehicle. It may be information related to the environment and preference path. Also, the information related to the mode switching condition may be information related to the accuracy of a currently displayed view image or the position of a warning generated around the vehicle.
  • the route guidance device 1300 may detect a mode suitable for the current situation based on the information collected in step S1102 (S1104).
  • the route guidance device 1300 may determine an appropriate mode based on route information requested by a passenger.
  • the route guidance device 1300 may determine that an AR mode providing an AR view image displaying an actual image acquired through a camera is a mode suitable for the current situation.
  • the route guidance device 1300 selects an MR mode that provides an MR view image including a digitally twinned 3D map and a virtual object suitable for the current situation. mode can be judged.
  • the route guidance device 1300 may determine an appropriate mode based on the region in which the vehicle is driving. For example, when the road on which the vehicle is driving is a highway with low traffic complexity, the route guidance device 1300 may determine that an AR mode providing an AR view image is a mode suitable for the current situation. On the other hand, when the road on which the vehicle is driving is a general road in a city with high traffic complexity, the route guidance device 1300 may determine that the MR mode providing the MR view image is a mode suitable for the current situation.
  • the route guidance device 1300 may determine an operation mode for displaying an appropriate view image according to the condition of the road on which the vehicle is driving. For example, if the path guidance device 1300 is a paved road or a road whose curvature is equal to or less than a predetermined threshold value, the AR mode may be determined as a mode suitable for the current situation.
  • the route guidance device 1300 determines that the MR mode, which does not use an actual captured image, is a mode more suitable for the current situation. can In addition, when driving on a slope on which height profile is not provided, it may be determined that the MR mode is a mode more suitable for the current situation.
  • information on the road condition may be collected from a server providing traffic information or may be collected from an image obtained through a camera. Alternatively, it may be obtained from a digital twinned 3D map.
  • the route guidance device 1300 may determine an appropriate mode based on the driving mode of the vehicle. For example, when the vehicle is driving in a manual driving mode in which a passenger directly drives, the route guidance device 1300 may determine that the AR mode providing an AR view image is a mode suitable for the current situation. On the other hand, when the vehicle is driving in an autonomous driving mode in which the vehicle travels autonomously, the route guidance apparatus 1300 may determine that the MR mode providing the MR view image is a mode more suitable for the current situation.
  • the route guidance device 1300 may determine a mode suitable for the current situation according to whether it is possible to obtain an image having a brightness contrast equal to or greater than a threshold value. For example, when a vehicle is driven during the daytime when an image having a clear brightness contrast can be obtained according to high illumination, the route guidance device 1300 is currently in an AR mode that provides an AR view image using an image actually obtained. It can be determined that the mode is suitable for the situation.
  • the route guidance device 1300 provides an MR view image using a digitally twinned 3D map when the vehicle is driven at night when an image having a brightness contrast of at least a threshold value cannot be obtained due to low illumination. It may be determined that the MR mode is a mode suitable for the current situation. As such, when the vehicle is driving at night, an MR view image including objects with higher visibility of objects around the vehicle may be displayed (Night MR mode).
  • the route guidance device 1300 may determine a mode suitable for the current situation according to whether it is possible to obtain an image having a brightness contrast equal to or greater than a threshold value. Therefore, if the result of detecting the illuminance around the vehicle is that the illuminance is sufficient (above the threshold value), the route guidance device 1300 determines the ambient light around the vehicle having a brightness contrast equal to or higher than the threshold value even when the vehicle is driving at night. It can be determined that the image can be acquired. Therefore, it goes without saying that the AR mode may be determined to be more suitable even when the vehicle is driving at night.
  • the route guidance device 1300 may determine a mode suitable for the current situation based on the weather around the vehicle. For example, as a result of sensing the weather around the vehicle, when the weather is snowy, rainy, or foggy, the route guidance device 1300 uses the MR mode using a digital twinned map rather than the AR mode using actual images. can be judged suitable. In this case, the route guidance device 1300 may display an MR view image including an MR object in which the weather around the vehicle is reflected. For example, in snowy or rainy weather, the route guidance device 1300 may display an MR object including an ice-shaped road carpet on the MR view image.
  • the route guidance device 1300 may determine that the AR mode using actual images is a mode more suitable for the current situation.
  • the route guidance device 1300 may collect information about the weather around the vehicle through a sensor installed in the vehicle.
  • the route guidance device 1300 wirelessly connects to a weather server that provides weather information on the area where the vehicle is currently driving through the communication unit 1310, and based on the weather information provided from the weather server, the surroundings of the vehicle. weather can be determined.
  • the route guidance device 1300 may determine a mode suitable for the current situation based on a traffic jam situation around the vehicle. For example, the route guidance device 1300 may determine that an AR mode for displaying an AR view image is appropriate when traffic congestion around the vehicle is less than a certain level. However, when the traffic congestion around the vehicle exceeds a certain level, it may be determined that the MR mode for displaying the MR view image is suitable.
  • the route guidance device 1300 may display an MR view image including MR objects that may be distinguished from each other according to the level of traffic congestion on each road around the vehicle.
  • the traffic congestion levels for each of the roads may be provided through a traffic control server that provides traffic information about an area in which a vehicle is currently driving.
  • the route guidance device 1300 may determine traffic jam levels for each road around the vehicle based on the traffic information provided from the traffic control server.
  • the MR view image may be provided by displaying MR objects having different colors according to the determined traffic congestion levels on the digitally twinned 3D map.
  • the route guidance device 1300 may determine the traffic jam level by itself.
  • the traffic congestion level of a specific route is determined according to the normal expected arrival time (first estimated arrival time) required for the vehicle to reach the destination when the vehicle is traveling on the specific route, and the current traffic conditions. It may be determined according to a difference between an expected arrival time (second expected arrival time) required for the vehicle to arrive at a destination when the vehicle is driving.
  • the route guidance device 1300 may determine a mode suitable for the current situation based on the driving state of the vehicle. For example, the route guidance device 1300 may determine that an MR mode providing an MR view image is appropriate when the vehicle is in a stopped state. On the other hand, when the vehicle is in a driving state, it may be determined that the MR mode providing an AR view image is suitable.
  • the route guidance device 1300 may determine that the MR mode is appropriate, and when the vehicle starts driving after waiting for a signal, it may be determined that the AR mode is appropriate. Accordingly, when the vehicle stops to wait for a traffic signal while driving, the view image displayed on the display unit 251 may be switched from an AR view image to an MR view image. In addition, when the vehicle starts to drive after waiting for a signal, the MR view image may be switched back to the AR view image.
  • the route guidance device 1300 may determine a mode suitable for the current situation based on the driving speed of the vehicle. For example, when the driving speed of the vehicle is less than the reference speed, it may be determined that the AR mode providing the AR view image is suitable. On the other hand, when the driving speed of the vehicle is equal to or higher than the reference speed, that is, when driving according to the reference speed or when the vehicle is traveling at a higher speed than the reference speed, the route guidance device 1300 determines that the MR mode providing the MR view image is suitable can do.
  • the route guidance device 1300 may provide MR view images displaying different MR objects according to the driving speed of the vehicle. For example, when the driving speed of the vehicle is equal to or higher than the first speed, an MR view image in the form of a bird's eye view looking at an object corresponding to the vehicle at a high altitude may be provided. However, if the driving speed of the vehicle is equal to or higher than the second speed higher than the first speed, the route guidance device 1300 goes beyond looking at an object corresponding to the vehicle at a high altitude, and a drone view that shows a path to be driven by the vehicle in advance. An MR view image in the form of a drone view may be provided.
  • the route guidance device 1300 may determine a mode suitable for the current situation based on the driving situation of the vehicle. In this case, the route guidance device 1300 may determine a mode suitable for the current situation based on objects detected from around the vehicle.
  • the route guidance device 1300 is blocked by the large vehicle or large structure when there is a large vehicle around the vehicle or when there is a building or a structure of a predetermined size or larger within a preset adjacent distance from the vehicle, such as a billboard or the like. It can be determined that there is a possibility of a losing area, that is, a blind spot. Accordingly, the route guidance apparatus 1300 may determine that the MR mode for providing an MR view image is suitable when there is a vehicle or structure of a certain size or larger within an adjacent distance from the vehicle.
  • the route guidance device 1300 may determine that an MR mode for providing an MR view image is appropriate when a dangerous area is detected around the vehicle.
  • the danger area may be an area previously designated as an area requiring attention while driving, such as a construction site or an accident-prone area.
  • the danger area may be an area designated according to danger area information provided to a nearby vehicle by a preset server providing traffic information or road information.
  • the route guidance device 1300 may display warning information on the danger zone through an AR object or an MR object when the danger zone is detected around the vehicle while the vehicle is driving.
  • the route guidance device 1300 may determine that the MR mode providing the MR view image is appropriate. In this way, when the MR view image is provided through the MR mode, the route guidance device 1300 provides information on the danger area to the occupants in advance through a preview function that provides route information on the area where the vehicle will drive in advance. may be
  • the route guidance device 1300 when the danger area is detected or when a collision warning is generated, the route guidance device 1300 provides an AR mode for providing the AR view image and an MR for providing an MR view image based on a location where the warning information is displayed. Any one of the modes can be determined as a more suitable mode.
  • the displayable range of the AR object may be limited to a range within the camera's capturing angle, that is, the viewing angle. Therefore, if the warning information is exposed within the area displayed through the AR view image, that is, within the viewing angle range of the camera, for example, exposed from the front, the route guidance device 1300 includes an AR object corresponding to the warning information. It may be determined that the AR view image is more suitable for the current situation. Accordingly, the AR mode may be determined as a mode more suitable for the current situation.
  • the route guidance device 1300 generates an MR view image capable of displaying an MR object corresponding to the warning information. It may be judged more suitable for the current situation. Therefore, the MR mode can be determined as a mode more suitable for the current situation.
  • the route guidance device 1300 may determine a mode suitable for the current situation based on the driving route of the vehicle. For example, the route guidance device 1300 may determine that an AR mode for displaying an AR view image is a mode suitable for the current situation when the path on which the vehicle travels is a straight section.
  • the route guidance device 1300 calls the MR mode for displaying the MR view image a more suitable mode. can judge Alternatively, the route guidance device 1300 may select the MR mode as being more appropriate when the route guidance information to be provided is a branch point or exit or destination on a route, that is, when a vehicle approaches within a preset distance from the branch point, exit, or destination on the route. mode can be judged.
  • the route guidance device 1300 may determine a mode suitable for the current situation according to whether the route on which the vehicle travels is a route preferred by the occupant. For example, the route guidance device 1300 sets an AR mode for displaying an AR view image or a 2D map mode for displaying a 2D map to a mode suitable for the current situation if the route on which the vehicle is currently traveling is a route preferred by the occupant. may decide On the other hand, the route guidance device 1300 may determine that the MR mode for displaying the MR view image is suitable for the current situation if the route on which the vehicle is currently driving is not preferred by the occupant.
  • whether the route is preferred by the occupant may be determined as a result of learning about the route on which the vehicle travels. That is, among a plurality of routes leading to a currently set destination, in the case of a route traveled more than a predetermined number of times, the corresponding route may be classified as a route preferred by the occupant. On the other hand, a route that has not been driven more than a predetermined number of times may be classified as a route that the occupant does not prefer.
  • step S1104 if any one mode suitable for the current situation is detected according to the collected information, the route guidance device 1300 determines whether the detected mode is different from the mode in which the current route guidance information is provided. It can (S1106).
  • step S1104 if the mode detected in step S1104 is the same as the mode in which the current route guidance information is provided, the route guidance device 1300 proceeds to step S1100 again, to the current mode, that is, the first mode without switching the mode. Depending on the mode, route guidance information may be provided. Then, proceeding to steps S1102 and S1104 again, information related to mode switching conditions may be collected, and a mode more suitable for the current situation may be detected according to the collected information.
  • the route guidance device 1300 may detect parameters for mode conversion (S1108).
  • the route guidance device 1300 may detect the field of view (FOV) of the first view image according to the first mode.
  • FOV field of view
  • a point of attention of the FOV may be detected from the detected FOV.
  • the gazing point of the FOV may be a point corresponding to the center of the viewing angle of the first view image.
  • the path guidance device 1300 may detect a vertical reference line and a horizontal reference line based on the FOV gazing point detected from the first view image.
  • a second view image according to the second mode having the same FOV as the first view image according to the first mode may be generated based on the FOV, the FOV gazing point, and the vertical reference line and the horizontal reference line.
  • a second view image may be generated from the first view image as a view image displayed on the display unit 251 by switching from the first mode to the second mode (S1110).
  • the route guidance device 1300 may provide route guidance information through the generated second view image (S1112).
  • the route guidance device 1300 may provide route guidance information in various ways through the generated second view image. For example, the route guidance device 1300 may switch from a first mode in which a first view image is displayed to a second mode in which a second view image is displayed. Therefore, the view image displayed on the display screen 1350 may be switched from the first view image to the second view image according to the mode conversion.
  • the route guidance device 1300 may automatically switch the mode.
  • the route guidance device 1300 may provide information on a more suitable mode detected in step S1104 to the passenger and allow the mode to be switched according to the passenger's selection.
  • the passenger's input for selecting the change of the mode may be made in various ways.
  • the mode switching may be performed through a touch input applied to the display unit 251, a voice input, or an occupant's input to a preset switch button.
  • the route guidance device 1300 may switch the mode according to the passenger's request regardless of the mode change condition. For example, when a passenger desires route guidance information corresponding to a wider viewing angle than the viewing angle provided through the AR view image, the route guidance device 1300 may be requested to switch to the MR view image.
  • the route guidance device 1300 may switch modes in a preset order according to a swipe input applied in the vertical direction or the left and right directions of the display unit 251 . That is, the MR mode may be switched to the AR mode, or the MR mode may be switched back to the MR mode after being switched to the AR mode according to the length or number of times a swipe input in the up and down or left and right directions is applied.
  • the AR mode may be switched to the 2D map mode providing 2D map information, or the 2D map mode may be switched to the AR mode according to the length or number of times the swipe input is applied.
  • FIG. 12 is an example of generating a second view image according to parameters detected from the first view image by the route guidance device 1300 according to the embodiment of the present invention in step S1110 of FIG. 11 .
  • the route guidance device 1300 may detect the FOV of the provided AR view image as shown in (a) of FIG. 12 .
  • the route guidance device 1300 may detect the gazing point 1400 of the FOV from the FOV of the provided AR view image as shown in (a) of FIG. 12 .
  • an MR view image pointing to the gazing point 1400 may be acquired from the current vehicle position on the digital twinned 3D map.
  • the path guidance device 1300 may detect a vertical reference line 1410 and a horizontal reference line 1420 based on the detected FOV gazing point 1400 .
  • the gazing point of the obtained MR view image may be matched to the detected vertical reference line 1410 and the horizontal reference line 1420 . That is, as shown in (b) of FIG. 12, the path guidance device 1300 can match the gazing point of the MR view image with the horizontal reference line 1420 detected from the gazing point 1400 of the AR view image. there is.
  • the gazing point of the MR view image may match the vertical reference line 1410 detected from the gazing point 1400 of the AR view image. That is, the gazing point of the MR view image may be matched to the intersection of the horizontal reference line 1420 and the vertical reference line 1410 of the AR view image.
  • the route guidance device 1300 may extract a region of the MR view image corresponding to the FOV of the AR view image.
  • the FOV is a viewing angle of the AR view image, and may determine the size of an image displayed through the view image. That is, the route guidance device 1300 may generate an MR view image corresponding to the FOV size of the AR view image from the MR view image matching the FOV gazing point of the AR view image.
  • a second view image having the same FOV as the first view image and the same position of the FOV gazing point may be generated. Therefore, when the view image displayed on the display unit 251 is switched, the path guidance device 1300 according to the embodiment of the present invention can switch between modes through the view image having the same FOV and the same location of the gazing point. Since this is done, a seamless view image can be switched when the mode is switched.
  • the first view image is an AR view image
  • an example in which seamless switching between modes is performed through an MR view image having the same FOV and the same FOV gazing point as the AR view image has been described.
  • this can be applied even when the first view image is an MR view image and the second view image is an AR view image.
  • the MR view image e.g. bird's eye view, etc.
  • the MR view according to the image for generating the AR view image A process of displaying an image may be preceded.
  • the route guidance device 1300 may first detect the gazing point of the FOV from the FOV of the image acquired by the camera.
  • an image of an area directed to the gazing point may be acquired from the current location of the vehicle on the digital twinned 3D map.
  • a vertical reference line and a horizontal reference line may be detected based on the FOV gazing point of the image obtained from the camera.
  • an image of an area where the gazing point coincides with the detected vertical reference line and the horizontal reference line may be obtained.
  • An area having the same size as the FOV of the image acquired by the camera may be extracted from the acquired image and displayed on the display unit 251 as an MR view image. That is, an MR view image having the same FOV as the image acquired by the camera and having the same location of the FOV gazing point may be displayed on the display unit 251 .
  • the route guidance device 1300 may create an AR view image by adding AR objects to the image acquired by the camera.
  • the route guidance device 1300 may switch the MR mode to the AR mode. Accordingly, a state in which the MR view image is displayed on the display unit 251 may be switched to a state in which the AR view image is displayed.
  • the MR view image and the AR view image are images having the same FOV and the same position of the FOV gazing point as described above, and when the mode is switched, the view image can be seamlessly switched.
  • an MR view image 1510 corresponding to the AR view image 1500 may be generated.
  • the MR view image corresponding to the AR view image may be a view image having the same FOV gazing point position as the AR view image and having the same size of an image area according to the FOV.
  • the AR view image 1500 may be a view image including an AR object 1501 corresponding to the recognized lane and an AR object 1502 displaying a future driving direction for driving to a destination.
  • the MR view image 1510 may be a view image including path information 1511 displayed as an MR object on a 3D map in which a driving path of a vehicle is digitally twinned.
  • the route guidance device 1300 may switch the view image displayed on the display unit 251 by switching the operation mode from the AR mode to the MR mode. Accordingly, a state in which the AR view image 1500 is displayed as shown in (a) of FIG. 13 may be switched to a state in which the MR view image 1510 is displayed as shown in (b) of FIG. 13 .
  • the route guidance device 1300 determines whether or not a preset mode conversion condition is satisfied (see FIG. 13).
  • a preset mode conversion condition is satisfied
  • an MR view image 1510 corresponding to a real image obtained through a camera may be generated.
  • the MR view image 1510 corresponding to the real image may be a view image having the same FOV gazing point position as the real image and the same size of an image area according to the FOV.
  • the route guidance device 1300 may switch the view image displayed on the display unit 251 by switching the operation mode from the MR mode to the AR mode. Accordingly, a state in which the MR view image 1510 is displayed as shown in (b) of FIG. 13 may be switched to a state in which the AR view image 1500 is displayed as shown in (a) of FIG. 13 .
  • the route guidance device 1300 may determine that a mode for displaying a 2D map is a more suitable mode if the area where the vehicle is driving is an out-of-town area where the precision of the digitally twinned 3D map is low. In this case, of course, the route guidance device 1300 may provide a view image including the 2D map and route guidance information through the 2D map.
  • the route guidance device 1300 may determine a mode suitable for the current situation based on a combination of information related to the mode switching condition described above. For example, the route guidance device 1300 may provide different view images through operation mode switching according to the driving speed of the vehicle when the vehicle is traveling on a highway. That is, when the area where the vehicle is traveling is a highway, when the vehicle speed is below the first speed (low speed), the MR view image is displayed (MR mode), and when the speed of the vehicle exceeds the first speed and is less than the second speed (Medium speed) displays an AR view image (AR mode), and when the second speed is exceeded (high speed), it may be switched to a 2D map mode displaying a 2D map image.
  • the driving speed of the vehicle when the vehicle is traveling on a highway. That is, when the area where the vehicle is traveling is a highway, when the vehicle speed is below the first speed (low speed), the MR view image is displayed (MR mode), and when the speed of the vehicle exceeds the first speed and is less than the second speed (Medium speed
  • the route guidance device 1300 may perform mode conversion to the MR mode based on the accuracy of the AR view image. To this end, the route guidance device 1300 may calculate an error rate between an AR view image and a real image acquired through a camera, and may switch modes according to the calculated error rate.
  • FIG. 14 is a flowchart illustrating an operation process in which the path guidance device 1300 according to an embodiment of the present invention switches an operation mode according to an error rate of an AR view image.
  • the route guidance device 1300 may first calculate the amount of change in the curvature of the road on which the vehicle travels and the amount of change in the slope of the road (S1400 and S1402).
  • the amount of change in curvature of the road may be calculated according to a detection result of a detection value of a gyro sensor capable of detecting an inclination of the vehicle and a detection result of a lane recognizer capable of detecting a lane of the road on which the vehicle is traveling. That is, the amount of curvature change of the road may be calculated based on the inclination of the vehicle and the degree of curvature of the vehicle detected through the lane recognizer.
  • the gradient change of the road is a digitally twinned three-dimensional map of the road on which the vehicle is currently traveling, or a vertical profile and high-precision map (High Definition MAP) collected through a preset server that provides road information , HD MAP) can be calculated according to the road shape detected.
  • High Definition MAP High Definition MAP
  • the route guidance device 1300 calculates the AR fitting error rate (AR fitting error rate) between the actual image acquired through the camera and the AR object displayed on the actual image based on the amount of change in curvature and slope of the road calculated in steps S1400 and S1402. ) can be calculated (S1404). That is, the route guidance device 1300 may calculate an error rate between the AR object generated based on the change in curvature and the change in slope of the road and the real image expressed in two dimensions.
  • AR fitting error rate AR fitting error rate
  • the route guidance device 1300 may compare an object (eg, a lane shape) in a real image corresponding to the AR object with a shape of the AR object corresponding to the object in units of pixels. As a result of the shape comparison, a ratio of the number of pixels that do not match the number of pixels that match the real object or a ratio of the number of pixels that do not match the total number of pixels of the image may be calculated as the error rate.
  • an object eg, a lane shape
  • a ratio of the number of pixels that do not match the number of pixels that match the real object or a ratio of the number of pixels that do not match the total number of pixels of the image may be calculated as the error rate.
  • the route guidance device 1300 may determine whether the error rate calculated in step S1404 exceeds a preset error rate threshold (S1406). In addition, when the determined error rate does not exceed the error rate threshold, a mode suitable for the current situation may be determined as the AR mode (S1408).
  • the route guidance device 1300 may provide route guidance information through an AR view image according to the current operation mode without mode switching.
  • the route guidance device 1300 may determine a mode suitable for the current situation as the MR mode.
  • the route guidance device 1300 may provide route guidance information through the MR view image according to the current operation mode without changing the mode.
  • the route guidance device 1300 may provide route guidance information based on the second mode through the second view image in step S1112 of FIG. 11 .
  • have done 15A and 15B when a view image displayed on the display unit 251 is switched from a first view image to a second view image through mode switching, path information is provided through the second view image.
  • FIG. 15A when switching from MR mode to AR mode, that is, when the first mode is the MR mode and the second mode is the AR mode, route guidance information is provided through the AR view image according to the AR mode. It is a flow chart showing the operation process provided.
  • the route guidance device 1300 may first update camera calibration for the AR mode (S1500).
  • camera calibration may be a process of calibrating parameters for a transformation relationship between 3D space coordinates and 2D image coordinates obtained through an image. That is, the route guidance device 1300 performs the AR camera calibration again in step S1500, and corrects the coordinates on the 2D image corresponding to the coordinates on the 3D space of the object recognized from the actual image actually acquired through the camera can do.
  • Accurate coordinates of a 2D image corresponding to an object recognized from a real image may be obtained through such a camera calibration process. Further, the route guidance device 1300 may display an AR object that more accurately matches an object included in a real image by displaying an AR object based on coordinates calibrated through the camera calibration process. In this way, a process of calibrating coordinates in a 2D space corresponding to coordinates in a 3D space in order to display an AR object may be referred to as AR camera calibration.
  • the FOV gazing point is detected from the actual image actually acquired through the camera, and the coordinates in the 3D space are determined based on the frustum formed based on the detected FOV gazing point. It may include a process of converting into coordinates in a two-dimensional space.
  • the path guidance device 1300 converts the MR view image displayed on the display unit 251 to AR with the same ratio and size through switching from the MR mode to the AR mode. It is possible to switch to a view image (S1502). In this case, the route guidance device 1300 may gradually convert an MR view image into an AR view image for seamless conversion.
  • the AR view image having the same ratio and size may be a view image having the same FOV as the MR view image.
  • the AR view image and the MR view image having the same FOV may be view images having the same location of the FOV gazing point.
  • the route guidance device 1300 before switching to the AR mode, in order to switch the view image more seamlessly, the MR view image having the FOV gazing point at the same position as the FOV gazing point of the image acquired through the camera can display. Accordingly, the route guidance device 1300 may change the view image displayed on the display unit 251 so that the MR view image of the front of the vehicle is displayed while the MR view image such as a bird's eye view or a side view is displayed.
  • step S1502 when the view image is converted to an AR view image having the same ratio and size as the MR view image displayed on the display unit 251, the route guidance device 1300 provides route guidance information based on the AR mode. can be provided (S1504). That is, the route guidance device 1300 recognizes objects (eg, lanes, buildings, etc.) included in the actually obtained image, and a graphic object corresponding to the recognized object is located in at least a part of the coordinate area where the recognized object is displayed. (AR object) can be displayed. That is, route guidance information may be provided through an AR view image provided through an AR mode.
  • objects eg, lanes, buildings, etc.
  • AR object can be displayed. That is, route guidance information may be provided through an AR view image provided through an AR mode.
  • route guidance information is provided through the MR view image according to the MR mode. It is a flow chart showing the operation process provided.
  • the route guidance device 1300 may change the MR camera calibration according to the AR camera calibration result (S1550). That is, the same coordinate conversion process as the coordinate conversion process on the 2D image corresponding to the coordinates in the 3D space of the object recognized from the real image according to the AR camera calibration result in the AR mode can be applied to the MR camera calibration.
  • the MR camera calibration is based on a frustum-shaped visual field formed according to the gazing point of the vehicle when the camera of the vehicle is directed toward the front of the vehicle on the digital twinned 3D map. It may be for displaying an MR view image according to . That is, it may be a process of converting the coordinates in the 3D space captured by the camera of the vehicle on the digital twinned 3D map into coordinates in the 2D space and coordinates in the MR view image. That is, when the MR camera calibration is changed according to the result of the AR camera calibration last performed in step S1550, digital twinned 3D oriented to the same FOV gaze point as the FOV gaze point of the AR view image provided in the AR mode. An image of the map may be created.
  • the route guidance device 1300 may switch to an MR view image having the same ratio as the AR view image (S1552).
  • the path guidance device 1300 may extract an area on the MR view image corresponding to the same size as the FOV of the AR view image 1500.
  • the route guidance device 1300 may extract an image area having the same FOV gazing point position as the FOV gazing point of the AR view image. Accordingly, an MR view image having the same size and ratio as the AR view image and the same FOV gazing point may be extracted. That is, an MR view image 1510 corresponding to the AR view image 1500 may be generated.
  • the AR view image and the MR view image have the same FOV, they may be different types of view images corresponding to the same viewing distance. That is, when the viewing distance displayed through the AR view image is 50 m, an MR view image having the same viewing distance of 50 m may be generated.
  • the route guidance device 1300 may convert the AR view image displayed on the display unit 251 into the generated MR view image by switching from the AR mode to the MR mode.
  • the MR view image is a view image for a digitally twinned 3D map, and may have a longer viewing distance than the AR view image. Therefore, in the case of the default MR view image, it may be a view image corresponding to a longer viewing distance. Accordingly, the route guidance device 1300 may convert an MR view image having the same short viewing distance as the AR mode into an MR view image having a basic viewing distance according to the MR mode (S1554). In this case, the path guidance device 1300 may gradually switch the MR view image for seamless switching.
  • the route guidance device 1300 may provide route guidance information based on the MR mode (S1556).
  • the route guidance device 1300 may provide various route guidance information through a virtual object (MR object) displayed on a digitally twinned 3D map.
  • MR object virtual object
  • the route guidance device 1300 provides a virtual image of a vehicle viewed from a bird's eye view or a side view as route guidance information, or provides POI for a route the vehicle has already passed or information on a route the vehicle will travel in the future. information can be provided.
  • the route guidance device 1300 controls the display unit 251 to display one type of AR view image or MR view image on the display unit 251 will be described.
  • the route guidance device 1300 may control the display unit 251 to display both the AR view image and the MR view image on a single display screen.
  • the route guidance device 1300 may divide the display screen, that is, the main screen region, and display the AR view image and the MR view image on each divided region, respectively.
  • the route guidance device 1300 overlaps an area where another view image is displayed on a part of the main screen area where one view image is displayed, and displays the AR view image and MR view image together on one display screen You may.
  • the route guidance device 1300 divides the display screen based on the information collected in relation to the mode switching condition and displays an AR view image and an MR view image together, or a view in which the AR view image and the MR view image are mixed. You can decide whether to display the image or not. Alternatively, it is possible to determine whether to output a view image overlapping a part of the AR view image with an MR view image or, conversely, overlapping a part of the MR view image with an AR view image.
  • condition in which the AR view image and the MR view image are displayed together through division of the display area (view image division display) and a view image in which the AR view image and MR view image are mixed are displayed (view image mixture display)
  • view image overlap display Conditions and conditions for displaying a view image in which a part of one type of view image is overlapped with another type of view image (view image overlap display) may be different from each other.
  • FIG. 16 is a flowchart illustrating an operation process of simultaneously displaying an AR view image and an MR view image by dividing a display area by the route guidance device 1300 according to an embodiment of the present invention.
  • 17 illustrates an example of a display screen on which an AR view image and an MR view image are respectively displayed through the operation process of FIG. 16 .
  • the route guidance device 1300 may detect whether a view image division display condition in which an AR view image and an MR view image are displayed together is satisfied through the divided display areas while the vehicle is driving.
  • the condition for dividing and displaying the view image may be a case where the vehicle departs from a preset route.
  • the path guidance device 1300 may first divide the display area to display the view images (S1600).
  • the route guidance device 1300 may divide the display area into a first area 1710 and a second area 1720.
  • the first area 1710 and the second area 1720 are each AR view. It can be assigned to images and MR view images.
  • the route guidance device 1300 may first display the AR view image in the first area 1710. Further, route guidance information according to the AR mode may be provided (S1602). In this case, the route guidance device 1300 provides an AR object 1501 indicating a transition direction from the current vehicle position to a set changed route to a destination as the vehicle departs from the preset route, and an AR object 1502 indicating the recognized lane.
  • the display unit 251 may be controlled to display an AR view image including , on the first area 1710 .
  • the route guidance device 1300 may change the MR camera calibration according to the last AR camera calibration (S1604).
  • a digitally twinned 3D map image may be generated that aims at the same FOV gazing point as that of the AR view image provided in the AR mode.
  • the route guidance device 1300 may extract an image having the same FOV as that of the AR view image from the image of the digitally twinned 3D map generated in calibration sharing. Accordingly, an MR view image corresponding to the AR view image having the same size and ratio as the AR view image and having the same gazing point may be generated (S1606).
  • the route guidance device 1300 may display the generated MR view image on a second area among the divided display areas (S1608). Further, route guidance information according to the MR mode may be provided (S1610). In this case, as the route guidance device 1300 departs from the preset route, the MR view image including the MR object 1511 indicating the direction of the changed route in the changed route set from the current vehicle location to the destination, The display unit 251 may be controlled to display on the second area 1730 .
  • the route guidance device 1300 may divide the display area based on specific conditions and provide different types of view images to each divided area.
  • the size of an object displayed on an image may be relatively large. Therefore, an object included in an image can be more easily recognized, and thus more accurate object recognition can be achieved. That is, as the distance from the vehicle decreases, an AR view image including an AR object accurately matched with a real object may be displayed.
  • the size of the object decreases due to the separation distance and the number of displayed objects increases, making it difficult to accurately recognize the object. Accordingly, the accuracy of the AR object displayed on the AR view image may be degraded.
  • the MR view image it is a virtual screen displayed using a digitally twinned 3D map, and an accurate MR object can be displayed regardless of the visible distance from the vehicle.
  • route guidance information is displayed through a virtual screen, and there may be a difference from the real world, and accordingly, passengers may feel a sense of difference.
  • the display screen displays both the AR view image and the MR view image.
  • the route guidance device 1300 identifies objects adjacent to the vehicle. It may be determined that it is necessary to secure a near view through an AR view image for display and secure a far view through an MR view image to display clear path information.
  • the path guidance device 1300 separates a display area where the first view image is displayed and an area where a second view image of a different type from the first view image is displayed are exclusively separated from each other, so that each area separated from each other is displayed.
  • the display unit 251 may be controlled to display a display screen in which the AR view image and the MR view image displayed in the area are mixed.
  • FIG. 18 is a flowchart illustrating an operation process of providing route guidance information through a display screen in which a first view image and a second view image are mixed as described above. Further, FIG. 19 illustrates an example of a display screen on which an AR view image and an MR view image are displayed in respective regions separated from each other through the operation process of FIG. 18 .
  • the route guidance device 1300 may divide the display screen into a first area and a second area based on the separation distance from the vehicle.
  • an area of the display screen corresponding to an area (short area) within a certain distance (eg, 50 m) from the vehicle may be classified as a first area, and an area exceeding the certain distance from the vehicle (long distance area)
  • One area of the corresponding display screen may be divided into a second area.
  • the display area is divided into a first area and a second area based on the separation distance of the route guidance device 1300 from the vehicle.
  • the route guidance device 1300 may divide the display area into the first area and the second area based on conditions other than distance.
  • the route guidance device 1300 may first detect an area where the distance from the vehicle is within a preset distance from the image displayed on the display screen (S1800). In this case, an area on the display screen corresponding to an area within a predetermined distance from the vehicle may be detected through the route guidance device 1300 and the pixel depth value of an image obtained from the camera.
  • the route guidance device 1300 may divide the area detected in step S1800 into a first area where an AR view image is to be displayed (S1802).
  • the remaining area of the display screen that is, one area on the display screen corresponding to the area where the distance from the vehicle exceeds the preset distance may be divided into a second area where the MR view image is to be displayed (S1804).
  • the route guidance device 1300 may change the MR camera calibration according to the AR camera calibration (S1806).
  • a digitally twinned 3D map image may be generated that aims at the same FOV gazing point as that of the AR view image provided in the AR mode.
  • the route guidance device 1300 may extract an image having the same FOV as that of the AR view image from the image of the digitally twinned 3D map generated in calibration sharing. Accordingly, an MR view image corresponding to the AR view image having the same size and ratio as the AR view image and having the same gazing point may be generated (S1808).
  • the route guidance device 1300 displays a part of the AR view image corresponding to the first area among the AR view images on a display screen, and displays a part of the MR view image corresponding to the second area among the MR view images. can be displayed on the display screen (S1810). Accordingly, an AR view image including an AR object may be displayed in the first area, and an MR view image including an MR object may be displayed in the second area. Further, the route guidance device 1300 may provide route guidance information according to a mode corresponding to each region with respect to each region (S1812). That is, the route guidance device 1300 may provide different types of route guidance information according to different operation modes for each of the first and second regions exclusively separated from each other.
  • FIG. 19 illustrates an example in which an AR view image is displayed on a display screen.
  • the displayed view image may be a view image including an AR object 1501 corresponding to the recognized lane and an AR object 1502 corresponding to a change direction of a path along which the vehicle will travel.
  • the route guidance device 1300 may more accurately provide AR information on objects located in a short distance. It may be determined that provision of a view image is necessary. On the other hand, since the distance at which lanes are recognized is very short due to vehicles traveling ahead, it may be determined that it is necessary to provide an MR view image capable of providing route information corresponding to a longer viewing distance.
  • the route guidance device 1300 may detect an area where the separation distance from the vehicle is within a preset distance in the image obtained from the camera. In this case, if the preset distance is set to 50 m, the route guidance device 1300 displays an image acquired from the camera as an area (first area, 1950) in which the separation distance from the vehicle is less than 50 m, and the separation distance is 50 m. It can be divided into an exceeding area (second area, 1900).
  • the route guidance device 1300 may generate an MR view image corresponding to the AR view image according to the process described with reference to FIG. 18 .
  • an AR view image including an AR object is displayed in a first area within a distance of 50 m from the vehicle, and an MR view image including an MR object is displayed in a second area where the distance from the vehicle exceeds 50 m. can be displayed.
  • an image obtained from an actual camera and an AR object 1951 corresponding to a lane in front of the vehicle recognized from the image may be displayed in the first area 1950 .
  • the second area 1900 may display an image on a digitally twinned 3D map and an MR object 1901 displaying a path on which a vehicle will travel on the digitally twinned 3D map.
  • the display area may be exclusively divided into areas providing route guidance information in different ways, and route guidance information in different ways may be provided according to operation modes corresponding to the separated areas.
  • the view images may be view images in which camera calibration is shared, as described above.
  • the FOV gazing point may be the same view images. Therefore, since the coordinates in the 3D space are converted to the 2D image according to the visual field formed based on the same FOV gaze point, objects displayed in each view image can be moved seamlessly to areas where different view images are displayed. there is.
  • an object displayed in the form of a real image is displayed as a virtual object displayed according to modeling. can be represented as an object.
  • a virtual object displayed according to modeling may be displayed in the form of a real image.
  • the route guidance device 1300 may display the route information using an MR object having a shape curved from the ground surface toward the sky.
  • the route guidance device 1300 may overlap the second view image on at least a part of the area where the first view image is displayed. For example, when visibility of POI information needs to be increased, the route guidance device 1300 may overlap the second view image on at least a part of the area where the first view image is displayed according to the condition of the road on which the vehicle is traveling. there is.
  • the route guidance device may determine whether visibility of the displayed POI information needs to be improved based on the importance of the POI information previously determined according to the user's preference.
  • the visibility of POI information may be increased by overlapping an MR view image with at least a part of the AR view image.
  • the route guidance device 1300 overlaps the MR view image with at least a part of the AR view image to more clearly display the divergence point when the divergence point of the path on which the vehicle is traveling is adjacent, so that the driver more clearly recognizes the divergence point might as well make it happen.
  • the route guidance device 1300 may display a display screen in which an AR view image overlaps a part of an MR view image in order to provide passengers with a blind spot situation outside the viewing angle obtained by a camera of the vehicle.
  • 20 is a flowchart illustrating an operation process of overlapping a second view image on at least a part of a region where a first view image is displayed by the route guidance device 1300 according to an embodiment of the present invention.
  • 21 and 22 are exemplary diagrams in which an AR view image overlaps with at least a portion of a display area where an MR view image is displayed according to the operation process of FIG. 20 .
  • the route guidance device 1300 may generate a second view image corresponding to at least a part of the first view image (S2000).
  • the route guidance device 1300 may generate a view image having the same FOV gaze point through camera calibration sharing.
  • the route guidance device 1300 may generate an MR view image having the same FOV gaze point as the AR view image.
  • an AR view image having the same FOV gazing point as the MR view image may be generated.
  • route guidance device 1300 may overlap the second view image with at least a part of the first view image displayed on the display screen (S2002). Further, route guidance information may be provided based on objects of the first view image and objects of the second view image displayed through the first view image overlapped with the second view image (S2004).
  • the route guidance device 1300 may generate an MR view image corresponding to an area other than a road on which a vehicle travels while an AR view image according to an AR mode is displayed.
  • the generated MR view image may be a view image having the same FOV gazing point and the same FOV as the AR view image.
  • the route guidance device 1300 may overlap the MR view image on an area other than an area of the AR view image in which the driving road is displayed. Therefore, as shown in FIG. 21, a display screen in which the road area 2110 is displayed in the form of an AR view image and the remaining area 2100 excluding the road area is displayed in the form of an MR view image can be displayed.
  • the road area 2100 may display an actual road image photographed by a camera, and an AR object 1501 indicating a lane recognized from the road image.
  • the area 2100 other than the road area may be displayed in the form of a building model image on a digitally twinned 3D map due to an overlap of MR view images.
  • the route guidance device 1300 when the route guidance device 1300 operates according to the AR mode, POI information of objects recognized from a real image captured by a camera may be displayed as an AR object. Accordingly, the route guidance device 1300 may detect POI information according to objects recognized in the real image, and display an AR object corresponding to the POI information on a display screen overlapping the MR view image. Therefore, as shown in FIG. 21 , AR objects 2101 corresponding to detected POI information may be displayed on a building model image on a digitally twinned 3D map.
  • the building model on the digital twinned 3D map may not have a complex shape compared to the image of the actual building. Therefore, as shown in FIG. 21 , since the AR object 2101 is displayed on a background having a lower complexity, the visibility of the AR object 2101 can be greatly improved. That is, visibility of exposed POI information may be improved.
  • the display screen as shown in FIG. 21, it has been described that the MR view image overlaps the AR view image, but on the contrary, on the MR view image displayed on the display unit 251, the display screen
  • AR view images corresponding to at least a part may overlap.
  • a part of the AR view image corresponding to the road on which the vehicle travels may overlap the MR view image.
  • the route guidance device 1300 in the MR view image displayed on the display unit 251, displays AR objects corresponding to POI information of objects recognized through actual captured images, corresponding to the recognized objects. It goes without saying that the display screen shown in FIG. 21 may be displayed by overlapping and displaying positions on the MR view image of FIG.
  • the route guidance device 1300 may display a display screen overlapping an AR view image on an area corresponding to a viewing angle of a camera while the display unit 251 displays the MR view image.
  • the route guidance device 1300 may display an MR view image 2200 corresponding to a surrounding area including a vehicle on which the route guidance device 1300 is mounted.
  • an image on a digital twinned 3D map is displayed, an image of a model corresponding to a vehicle or building, rather than an actual image, may be displayed on the display unit 251 .
  • the route guidance device 1300 may generate an AR view image 2210 according to an image obtained through a camera.
  • the AR view image since the AR view image is limited to a range of viewing angles that can be obtained through a camera, that is, an FOV, it may be an image corresponding to a region of an MR view image having a wider FOV.
  • the AR view image 2210 and the MR view image 2200 may be images having the same position of the FOV gazing point.
  • route guidance device 1300 may overlap the AR view image 2210 on the MR view image 2200 based on the FOV gazing point. Therefore, as shown in FIG. 22 , route guidance information may be provided in the form of an AR view image 2210 in a range that the occupant can visually check, that is, an area corresponding to the viewing angle of the camera. Accordingly, route guidance information based on actual images may be displayed.
  • route guidance information may be provided in the form of the MR view image 2200 . Therefore, route information can be displayed in the form of digital twinned 3D map images and virtual objects.
  • coordinates in a 3D space may be converted into coordinates of a 2D image according to a field of view formed based on the same FOV gazing point through camera calibration sharing. Accordingly, an object displayed in each view image may be seamlessly moved to an area where different view images are displayed. Accordingly, in the case of the surrounding vehicle 2003 displayed in FIG. 22 , the area that the occupant can visually check (the area within the camera's viewing angle) can be displayed in the form of a live action image, and the area that the occupant cannot visually check (the area within the camera's viewing angle) can be displayed. area outside the viewing angle) may be displayed in the form of a virtual object.
  • examples of overlapping MR view images or AR view images have been looked at in detail.
  • the route guidance device 1300 may display different view images displayed in different operation modes on one screen. Also, the route guidance device 1300 may configure a display area including a plurality of AR view images and a plurality of MR view images in a similar manner.
  • FIG. 23 is an exemplary diagram illustrating an example of configuring a display area 2300 including a plurality of AR view images and a plurality of MR view images by a route guidance device 1300 according to an embodiment of the present invention.
  • the route guidance device 1300 includes route guidance information (first view image, 2510) for a road on which the vehicle will travel in the future, that is, a predicted driving route, and route guidance information (first view image, 2510) for a driving route on which the vehicle is currently driving.
  • route guidance information first view image, 2510 for a driving route on which the vehicle is currently driving.
  • 2 view image 2520 and route guidance information (third view image 2530) for a driving route on which the vehicle has already traveled may be implemented on a single display screen.
  • the route guidance device 1300 may display information on a predicted driving route on which the vehicle will travel in the future according to an MR view image display method, such as a drone view or a bird's eye view (first MR view image, 2310).
  • the route guidance device 1300 displays an AR view image (second AR view image, 2321) corresponding to a forward driving image of the current vehicle in a part of the second view image area 2520, and displays the second view image area 2520.
  • At least one MR view image of the driving path on which the vehicle is currently traveling may be displayed (second MR view image, 2322, 2323) in the remaining area of the MR view image.
  • the second MR view images 2322 and 2323 and the second AR view image 2321 may be images that share camera calibration. Accordingly, it may be images in which coordinates in a 3D space are converted into coordinates of a 2D image according to a field of view formed based on the same FOV gazing point.
  • the second MR view images 2322 and 2323 may be displayed on the left and right sides of the second AR view image 2321. And it may be an MR view image including an AR view image and movable objects in real time. In this case, the second MR view images 2322 and 2323 may be MR view images displaying objects located in blind spots on both left and right sides of the current vehicle.
  • the third view image area 2530 may be an area in which route guidance information on a driving route on which the vehicle has already traveled is displayed.
  • the route guidance device 1300 displays an AR view image (third AR view image, 2331) displaying objects and a past movement path according to the path the vehicle has passed in a part of the third view image area 2530, and In the remaining area of the 3-view image area 2530, at least one MR view image related to a past movement path along the path the vehicle has passed and objects may be displayed (third MR view images 2332 and 2333).
  • the third MR view images 2332 and 2333 and the third AR view image 2331 may be images that share camera calibration. Accordingly, it may be images in which coordinates in a 3D space are converted into coordinates of a 2D image according to a field of view formed based on the same FOV gazing point.
  • the third MR view images 2332 and 2333 may be displayed on the left and right sides of the third AR view image 2331.
  • the third MR view images 2332 and 2333 may be MR view images displaying objects located in blind spots on both left and right sides of the current vehicle.
  • objects displayed in the second view image area 2520 may be displayed in the form of an AR view image or an MR view image according to the movement of corresponding objects.
  • objects displayed in the third view image area 2530 may be displayed in the form of an AR view image or an MR view image according to the movement of corresponding objects.
  • the first view image area 2510 to the second view image area 2510 to the second view image area 2510 to the second view image area 2510 Of course, movement of an object cannot occur between the 3-view image areas 2530. Therefore, the object displayed in the second-view image area 2520 moves to the third-view image area 2530 or, conversely, the object displayed in the third-view image area 2530 moves to the second-view image area 2520. can't move to
  • FIG. 24 is exemplary diagrams in which a composite screen of an AR view image and an MR view image is displayed through the route guidance device 1300 according to an embodiment of the present invention.
  • the route guidance device 1300 when the driving state of the vehicle is in a preset state, the route guidance device 1300 provides route information on a route to be traveled by the vehicle using an MR object, as shown in (a) of FIG. 24 .
  • the route guidance device 1300 may display an object (hereinafter referred to as a vehicle object) 2411 corresponding to a vehicle in which the route guidance device 1300 is mounted on the digital twinned 3D map. From the vehicle object 2411, a sub virtual object 2412 corresponding to the vehicle object moving along the path on which the vehicle will travel may be further displayed.
  • the sub virtual object 2412 may be an object similar to a vehicle and may be a translucently displayed object. Therefore, it may be distinguished from the vehicle object 2411 according to whether it is displayed as translucent.
  • the sub virtual object 2412 may be named 'ghost car' based on the fact that it is the virtual object that is displayed translucently.
  • the path guidance device 1300 may use the ghost car object 2412 to travel in advance on a driving path on which the vehicle should travel in the future, based on the location of the vehicle object 2411 .
  • an MR view image such as a bird's eye view may be further displayed along a path along which the ghost car object moves.
  • the route guidance device 1300 may provide route information of a route to be traveled by the vehicle in advance by using the MR view image, and a function of providing route information of a route to be traveled by the vehicle is referred to as 'preview'.
  • the first MR view image 2410 on which the vehicle object corresponding to the current vehicle is displayed and along the path along which the ghost car object moves A second MR view image 2420 displaying route information of a route along which the vehicle travels may be displayed on different regions of the display screen.
  • the route guidance device 1300 may display an AR view image using a real image obtained from a vehicle camera instead of the first MR view image 2410 .
  • an AR view image 2450 displaying a front image of the current driving vehicle may be displayed in the first area of the display area, and the second area may be displayed on the vehicle.
  • An MR view image 2451 displaying a corresponding vehicle object may be displayed.
  • the MR view image 2451 is an MR view image (first MR view image) corresponding to the current position of the vehicle or an MR view image (second MR view image - preview) that displays a driving route to a destination in advance. ) can be.
  • the route guidance device 1300 may display a 2D map mode image 2461 displaying not only the MR view image but also 2D map information corresponding to the current location of the vehicle.
  • a 2D map mode image 2461 displaying not only the MR view image but also 2D map information corresponding to the current location of the vehicle.
  • an AR view image 2460 or an MR view image may be displayed on one area of the display unit 251, and the current location of the vehicle is included on another area.
  • a 2D map image 2461 may be displayed.
  • 25 is an exemplary diagram illustrating an example in which preview information on a route to be driven by a vehicle is provided as route guidance information provided by a route guidance device through MR according to an embodiment of the present invention.
  • a communication unit 1310 that communicates with the vehicle 100 and the cloud server 1000, and at least one sensor provided in the vehicle, detects that the vehicle is traveling.
  • An interface unit 1320 that receives a camera image including a road image, sensing information obtained by sensing the driving state of the vehicle, and at least one image based on the camera image, the sensing information, and map information received from the cloud server.
  • the MR module (or MR service device) 900 that renders MR information including virtual objects and the interface unit 1320 so that the MR view image including the MR information is displayed on the display unit 251 of the vehicle It may include a processor 1330 for controlling.
  • the communication unit 1310, the interface unit 1320, the MR module 900, and the processor 1330 may be implemented as independent hardware or, if necessary, as software components.
  • the processor 1330 may switch the MR view image so that a scene corresponding to a place where the vehicle is scheduled to drive is displayed.
  • switching the MR view image so that a scene corresponding to the place where the vehicle is scheduled to drive is displayed means outputting a situation in which the vehicle will drive in the future as a preview image, or a situation in which the vehicle will drive in advance on the MR view image. It can include the meaning of simulating.
  • an image reproducing a situation in which the vehicle will drive in the form of an MR view image may be named a preview image or a predicted view image.
  • the MR view image means a screen displayed on a digitally twinned 3D map (or digital twin map). That is, the MR view image may mean a scene viewed from a certain point on the digital twin map at a predetermined viewing angle.
  • the processor 1330 sets the vehicle object corresponding to the vehicle to a certain point, and when the preset condition is satisfied, the vehicle along the route information set to the certain point in order to show the situation ahead of the vehicle in advance. can proceed earlier.
  • a situation ahead of the MR view image shown at the current location of the vehicle, and/or a path the vehicle will travel in the future, and a place where the vehicle is expected to arrive in the future can be output/played through the MR view image in advance.
  • the processor 1330 may display route information for guiding a route along which the vehicle will travel to a destination on the MR view image.
  • the processor 1330 may control (switch and reproduce) the MR view image so that a scene of a place ahead of the current vehicle position is displayed along the route information based on satisfying the preset condition. .
  • an icon for displaying a scene corresponding to a place where a vehicle is scheduled to drive may be displayed on the MR view image.
  • the preset condition may include that the icon is selected by a user.
  • the predetermined condition may include at least one of a case where the vehicle stops for a predetermined time, a case where the vehicle enters within a predetermined distance from a destination, and a case where the vehicle enters within a predetermined distance from an intersection.
  • the processor 1330 may switch the MR view image (or output a separate preview image) so that a scene corresponding to the place where the vehicle is scheduled to drive is displayed based on the preset condition being satisfied.
  • the MR view image may be a scene viewed from a certain point in the digital twin map reflecting the current situation in real time at a predetermined viewing angle.
  • the one point may be located in a portion of a vehicle object generally corresponding to a vehicle, and an MR view image may be set to display a scene facing the front of the vehicle with the predetermined viewing angle.
  • the present invention is not limited thereto, and a point is located at a higher position than the vehicle object, and the mode of the MR view image is changed to a bird view, a 360 degree view, and a drone view as a separate movement without being dependent on the movement of the vehicle object. It is possible to convert to
  • the modes of this MR view image include user manipulation, whether a predetermined condition is satisfied, whether a specific event occurs, whether the vehicle has entered a specific place, whether the vehicle has entered within a predetermined distance from the destination, and whether the vehicle has entered the surrounding POI may change based on whether it is located in
  • the processor 1330 may output an MR view image in which a current situation is reflected in real time to the display 251 of the vehicle when displaying a scene corresponding to a place where the vehicle is scheduled to drive.
  • the processor 1330 may receive a real-time situation from a sensor provided in the vehicle 100 or the cloud server 1000 and update the digital twin map to reflect the real-time situation.
  • the current situation may be reflected in the MR view image in real time.
  • the preview image when outputting a preview image representing a situation in which the vehicle travels a predetermined distance in the future as an MR view image, the preview image may reflect the current situation in real time.
  • the processor 1330 may output the MR view image to correspond to a scene in front of the vehicle based on the vehicle object representing the current location of the vehicle.
  • the processor 1330 generates a ghost car that travels ahead of the vehicle object along a path along which the vehicle will travel, based on the predetermined condition being satisfied, and a scene in front of the ghost car based on the ghost car.
  • the MR view image may be switched to display.
  • the MR view image which is switched based on the satisfaction of the preset condition, is a predictive view image that shows in advance a situation ahead along the route on which the vehicle will travel on a digital twin map.
  • the route guidance device 1300 may provide a preview using the ghost car to provide route guidance information for a turn point when a vehicle is adjacent to a point where the driving direction changes, that is, a turn point.
  • the path guidance device 1300 may display a driving path along which the ghost car object moves as an MR view image.
  • switching the MR view image means converting the MR view image currently being output to a preview image, overlapping the preview image with the MR view image currently being output, and setting the display output area to the first and second It may include at least one of means of dividing into two regions, outputting an MR view image currently being output to the first region, and outputting a preview image to the second region.
  • the processor 1330 when switching the MR view image based on satisfying the preset condition, changes the altitude of the digital twin map viewing point (any one of the points described above) to determine where the vehicle is scheduled to travel.
  • the scene corresponding to the place can be shown in advance.
  • the route guidance device 1300 includes a first MR view image providing a view image looking at the vehicle at a relatively low altitude through different areas of the display screen; A second MR view image providing a view image of a driving path according to the movement of the ghost car object at a high altitude may be displayed.
  • the processor 1330 generates a first MR view image displaying a scene in front of the vehicle based on the current vehicle position (or an MR view image that was previously being output) and the vehicle, based on the preset condition being satisfied.
  • the interface unit 1320 may be controlled to output a second MR view image (or preview image) displaying a scene corresponding to a place to be driven to the display 251 of the vehicle.
  • the processor 1330 may output the second MR view image in the form of a pop-up window (or in the form of a Picture-In-Picture (PIP)), as shown in FIG. 25 .
  • PIP Picture-In-Picture
  • the processor 1330 divides the screen of the display provided in the vehicle into a first area and a second area, based on satisfying the preset condition, and displays the first MR in the first area of the display.
  • the interface unit 1320 may be controlled to output a view image and output the second MR view image to the second area.
  • the second MR view image reproduces a scene where the vehicle will move by a predetermined distance along the path the vehicle will proceed from the scene viewed from the current location It may be a video of
  • the processor 1330 outputs a second MR view image that outputs a scene in which the vehicle will move by a predetermined distance along the path along which the vehicle will travel, and then outputs the second MR view image based on the movement of the vehicle by the predetermined distance. can make it disappear
  • the processor 1330 repeatedly reproduces a scene in which the vehicle will move by a predetermined distance along the route, and when the vehicle actually moves by the predetermined distance, the reproduction of the second MR view image being reproduced is stopped ( or disappear).
  • 25 illustrates an example of a display screen displaying a driving path according to the movement of the ghost car object.
  • FIG. 25(a) illustrates an example of a vehicle object 2550 traveling on a road.
  • the gazing point 2500 of the first MR view image 2510 may be directed to the center of the first MR view image. That is, the first MR view image 2510 may display an image acquired through an MR camera (first MR camera) focusing on the center as the first MR view image.
  • the second MR view image 2520 may display an image (eg, a bird's eye view) obtained from a second MR camera viewing a driving path along which the vehicle object 2550 travels from a high altitude.
  • the path guidance device 1300 converts the image obtained from the first MR camera focusing the driving path through which the vehicle should travel past the turn point into a first MR view image.
  • a first MR view image 2510 pointing to a driving path obscured by a building may be displayed.
  • the route guidance device 1300 may position the second MR camera at a tangential point of the turning radius of the turn point, and direct the direction in which the vehicle should travel at the tangential point.
  • an image acquired by the second MR camera may be provided as a second MR view image 2520 .
  • the MR view image obtained from the second MR camera is an image displaying the exit direction of the turn point, that is, a path along which the vehicle should drive forward past the turn point, as shown in FIG. 25 (b).
  • the route guidance device 1300 may further display a ghost car object 2511 corresponding to the vehicle object 2550 as shown in (c) of FIG. 25 .
  • the ghost car object 2511 may move along the turn point ahead of the vehicle object 2550 .
  • the ghost car object 2511 may be displayed on the second MR view image 2520 directed toward the exit direction of the turn point.
  • the gazing point 2500 of the first MR camera may be directed to the center of the first MR view image 2510 again.
  • the second MR view image 2520 a bird's eye view of the driving path along which the vehicle object 2550 is traveling may be displayed as the second MR view image 2520.
  • the preview provided through the MR view image is based on the vehicle's driving state (eg, stopped state or driving state) or driving route (eg, whether it has entered a designated route such as a turn point). It can be automatically activated (automatic activation) or activated according to the passenger's choice (manual activation).
  • the route guidance device 1300 When the preview is automatically activated, the route guidance device 1300 gradually converts the MR view image displayed on one area of the display screen into an MR view image displaying a path along which the vehicle travels, as described in FIG. 25 . can be changed to That is, as described with reference to FIG. 25, if the second MR view image is a bird's eye view obtained from a second MR camera pointing at a vehicle object at a high altitude, the route guidance device 1300 gradually moves the second MR camera It can be moved to a position that directs the exit direction of the turn point. That is, an effect (drone view) may be provided as if the second MR camera providing the second MR view image is moved by a drone.
  • FIG. 26(a) shows an example in which the second MR view image is gradually changed from a bird's eye view to an image directed toward the exit direction of the turn point according to the movement of the second MR camera.
  • the route guidance device 1300 displays a second MR view image on a part of the display screen according to the user's selection while the first MR view image is displayed on the entire display screen.
  • the MR view image may be displayed in a PIP manner.
  • the second MR view image may be gradually changed from an MR view image representing the direction in which the vehicle is currently driving to an image obtained from the second MR camera 2610 located at a tangential point of the turning radius of the turn point. Therefore, as shown in (b) of FIG. 26, in a state in which the MR view image having the same gazing point as the first MR view image is displayed, the direction in which the vehicle should travel gradually from the tangential point of the turn point, that is, of the turn point It can be changed to an MR image representing a travel path in the exit direction.
  • the route guidance device 1300 may display images of surrounding buildings differently in order to increase the visibility of the driving route.
  • 27 is an exemplary diagram illustrating an example of an MR view image in which the path guidance device according to an embodiment of the present invention displays images of surrounding buildings differently according to the speed of the vehicle.
  • the route guidance device 1300 may display buildings around the driving route as images of opaque 3D objects, as shown in (a) of FIG. 27 .
  • the route guidance device 1300 when the driving speed of the vehicle increases, the route guidance device 1300, as shown in (b) of FIG. Transparency can be increased. Accordingly, as the speed of the vehicle increases, buildings around the vehicle may be displayed as translucent 3D objects, as shown in (b) of FIG. 27 .
  • the speed of the vehicle may further increase.
  • 3D objects corresponding to the buildings around the vehicle may not become transparent any more when transparency reaches a certain level. This is because if the transparency is too high, it may be difficult to recognize buildings around the vehicle.
  • the route guidance device 1300 may further increase a photographing angle at which the MR view image is provided. That is, an image of a driving path of a vehicle acquired at a higher altitude may be provided as an MR view image. Therefore, as shown in (c) of FIG. 27 , an MR view image obtained from a higher angle may be provided, and accordingly, a longer viewing distance may be provided when the speed of the vehicle is high.
  • FIG. 28 is an exemplary diagram illustrating an example in which the route guidance device 1300 according to an embodiment of the present invention provides POI information through an MR view image.
  • the route guidance device 1300 may display POI information through a digitally twinned 3D map image provided through an MR view image. Accordingly, as shown in (a) of FIG. 28 , when a building corresponding to POI information is exposed on an MR view image, POI information may be displayed on a virtual object corresponding to the building.
  • the size of the POI object may be changed according to the changed distance between the vehicle and the building corresponding to the POI information according to the driving of the vehicle. That is, as shown in (b) and (c) of FIG. 28 , when a vehicle gradually approaches a building corresponding to the POI information, the POI object may be gradually enlarged and displayed. And, as shown in (c) of FIG. 28, as the vehicle enters the building corresponding to the POI information within a certain distance, when the POI object is enlarged and displayed to a size greater than or equal to a certain level, the route guidance device 1300 may capture an image of the POI object, convert the captured image into a thumbnail image, and store the captured image. In this case, the captured image of the POI object can be used to provide a service using POI information in the future.
  • the POI object may deviate from the viewing angle of the vehicle, that is, the area in front of the vehicle. Then, the route guidance device 1300 may indicate the POI object as a default object.
  • the default object may be a polygonal virtual object to which no texture is reflected. That is, when an MR view image (e.g., a bird's-eye view) that displays not only the front of the vehicle but also the surroundings of the vehicle is provided, POI objects around the driving path that the vehicle has already passed may change color or image according to the vehicle's driving location. Alternatively, it may be displayed as objects reflecting only shadow without texture, and POI objects around a driving route on which the vehicle has not yet passed may be displayed as objects including color, image, or texture.
  • MR view image e.g., a bird's-eye view
  • FIG. 29 is an exemplary view showing an example in which the route guidance device 1300 according to an embodiment of the present invention displays detailed information about one of the POIs collected according to the driving of the vehicle according to the passenger's selection. .
  • the route guidance device 1300 may capture and store POI objects exposed around the vehicle while the vehicle is driving. And as shown in (a) of FIG. 29 , thumbnail images of stored POI objects may be displayed on the display unit 251 according to a passenger's request.
  • thumbnail images of the POI objects may be provided in the form of a card (replay card, 2900) including POI information of corresponding POI objects. And it can be provided in a state sorted in the order of the collected time. For example, the card 2910 corresponding to the most recently collected POI object may be displayed at the top, and the card 2930 corresponding to the most recently collected POI object may be displayed at the bottom.
  • a passenger may select one replay card 2910 through input such as touch or voice. Then, the route guidance device 1300 may display information on the POI object corresponding to the currently selected replay card 2910 on the display unit 251 .
  • the route guidance device 1300 divides the area of the display unit 251 or overlaps one area on the display unit 251 according to the PIP method, A second MR view image including POI object information may be displayed.
  • the POI object information may include the name of a service or company corresponding to the POI, a POI object, and an image of a location on a driving route where the POI object is exposed.
  • the route guidance device 1300 sets a new destination as an address corresponding to the POI object based on the passenger's selection of POI object information displayed through the second MR view image, or provides the passenger with a network connection. POI functions such as service reservation can be provided.
  • the processor 1330 may replay a past driving situation in which the vehicle was driven by using the MR view image using the replay card.
  • a communication unit 1310 that communicates with the vehicle 100 and the cloud server 1000, and at least one sensor provided in the vehicle, detects that the vehicle is traveling.
  • An interface unit 1320 that receives a camera image including a road image, sensing information obtained by sensing the driving state of the vehicle, and at least one image based on the camera image, the sensing information, and map information received from the cloud server.
  • the MR module (or MR service device) 900 that renders MR information including virtual objects and the interface unit 1320 so that the MR view image including the MR information is displayed on the display unit 251 of the vehicle It may include a processor 1330 for controlling.
  • the communication unit 1310, the interface unit 1320, the MR module 900, and the processor 1330 may be implemented as independent hardware or, if necessary, as software components.
  • the processor 1330 may output, as a replay image, an MR view image that was reproduced while the vehicle was driving in the past, based on satisfying a specific condition.
  • the specific condition may include a preset condition described above.
  • a Point of Interest (POI) object may be output to the MR view image.
  • the specific condition may include that a vehicle object corresponding to a vehicle passes the POI object.
  • a replay card 2910 may overlap the MR view image based on the specific condition being satisfied.
  • the specific condition may include that the replay card is selected by the user.
  • the processor 1330 when the replay card is selected by the user, as shown in (c) of FIG. 29, the POI corresponding to the replay card
  • the MR view image which traveled for a predetermined time while looking at the object, may be reproduced as a replay image 2950.
  • the processor 1330 may store an MR view image output while the vehicle object drives toward the POI object, generate a replay image using a plurality of stored MR view images, and generate a replay image.
  • An image may be stored in association with the POI object.
  • the specific conditions are when the vehicle stops for a predetermined time, when the vehicle enters within a predetermined distance from the destination, when the vehicle enters within a predetermined distance from the intersection, and when the POI object displayed on the MR view image is selected. may include at least one of them.
  • the MR view image may be a scene viewed from a certain point in the digital twin map reflecting the current situation in real time at a predetermined viewing angle.
  • the processor 1330 sets the one point based on the vehicle object
  • the MR view image can be controlled so that the POI object is located in the center area and gradually enlarged by adjusting the viewing angle to look at the POI object.
  • the processor 1330 captures the MR view image being output as a thumbnail image when the distance between the vehicle object and the POI object displayed on the MR view image enters within a preset distance, and captures the thumbnail image to the replay card can create
  • the replay card includes at least one of the thumbnail image, a name corresponding to the POI object (or a POI place name), and an address of the POI object (real address of the POI).
  • the processor 1330 may sequentially generate the replay cards and output them to the MR view image whenever the vehicle object sequentially passes different POI objects. .
  • the processor 1330 reproduces the MR view image, which was driven for a predetermined time while looking at the POI object corresponding to the replay card, as a replay image 2950.
  • the replay image 2950 may be reproduced overlapping with a region of the MR view image or may be output as a pop-up window.
  • the replay image may include at least one of service information 2911 available in the POI associated with the replay image and a button 2912 for setting a driving route to a place corresponding to the POI.
  • Information related to the POI eg, a name corresponding to the POI object (or POI place name) and an address of the POI object (actual address of the POI)
  • service information available in the POI e.g., a name corresponding to the POI object (or POI place name) and an address of the POI object (actual address of the POI)
  • service information available in the POI e.g., a name corresponding to the POI object (or POI place name) and an address of the POI object (actual address of the POI)
  • service information available in the POI e.g, a name corresponding to the POI object (or POI place name) and an address of the POI object (actual address of the POI)
  • service information available in the POI e.g., a name corresponding to the POI object (or POI place name) and an address of the POI object (actual address of the POI)
  • service information available in the POI e.g., a name corresponding
  • the present invention provides a view image according to mixed reality that matches the augmented reality view image when the view image provided according to augmented reality is difficult to display accurate route guidance information, thereby providing a situation in the real world around the vehicle.
  • accurate route guidance information can be provided to the driver regardless of the complexity, complexity, or image state of the real world.
  • the present invention displays a part of a view image according to mixed reality that matches the augmented reality view image on a part of an augmented reality view image provided according to augmented reality, or displays the above on at least part of the augmented reality view image.
  • the present invention displays the mixed reality view image according to mixed reality together with the augmented reality view image provided according to augmented reality, thereby providing information on objects located in an area within the viewing angle displayed through augmented reality and an area outside the viewing angle. It has the advantage of being able to simultaneously display the information of objects located on one screen.
  • the above-described present invention can be implemented as computer readable code (or application or software) on a medium on which a program is recorded.
  • the control method of the self-driving vehicle described above may be realized by a code stored in a memory or the like.
  • the computer-readable medium includes all types of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable media include Hard Disk Drive (HDD), Solid State Disk (SSD), Silicon Disk Drive (SDD), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. , and also includes those implemented in the form of a carrier wave (eg, transmission over the Internet). Also, the computer may include a processor or a control unit. Therefore, the above detailed description should not be construed as limiting in all respects and should be considered as illustrative. The scope of the present invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Primary Health Care (AREA)
  • Economics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)

Abstract

본 발명은 경로 안내 장치 및 경로 안내 시스템을 제공한다. 본 발명의 일 실시 예에 따른 경로 안내 장치는, 클라우드 서버와 통신하는 통신부, 상기 차량에 구비된 적어도 하나의 센서로부터, 상기 차량이 주행하는 도로 이미지를 포함하는 카메라 영상과, 상기 차량의 주행 상태를 센싱한 센싱 정보를 수신하는 인터페이스부, 상기 카메라 영상, 상기 센싱 정보 및 상기 클라우드 서버로부터 수신되는 지도 정보를 기초로 적어도 하나의 가상객체를 포함하는 MR 정보를 렌더링하는 MR 모듈 및 상기 MR 정보를 포함하는 MR 뷰 이미지가 상기 차량의 디스플레이부에 표시되도록 상기 인터페이스부를 제어하는 프로세서를 포함하고, 상기 프로세서는, 기 설정된 조건을 만족하면, 차량이 주행할 예정인 장소에 대응되는 장면이 표시되도록 상기 MR 뷰 이미지를 전환하는 것을 특징으로 한다.

Description

증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
본 발명은 차량이 주행할 경로를 안내하는 경로 안내 장치 및 경로 안내 시스템에 관한 것이다.
최근에는, 차량의 윈드쉴드, HUD(Head Up Display)를 통해 그래픽 객체를 출력하거나, 카메라로 촬영되는 영상에 오버랩되는 그래픽 객체를 이용하여 실제 세계에 가상의 객체를 추가로 출력하는 증강현실(Augmented Reality, AR) 기술이 등장하였다. 현재의 차량은 이러한 증강현실 기술을 통해 차량 주변의 환경 및 차량의 상태와 차량의 주행 경로에 관련된 추가적인 정보들을 운전자에게 제공하므로, 운전자는 직관적으로 차량 및 차량의 주행 환경을 인지할 수 있다. 따라서 주행의 효율 및 편의성이 보다 향상될 수 있다.
한편 이러한 증강현실 기술을 활용하는 경우, 실제 현실 세계를 기반으로 차량의 주행에 필요한 다양한 정보들이 제공될 수 있다. 즉 증강현실 기술은, 카메라를 통해 획득되는 실제 현실 세계의 이미지를 이용하는 것으로, 현실 세계의 명확한 이미지의 획득을 필요로 한다. 그런데 상기 현실 세계의 이미지를 획득하는 센서, 즉 카메라는 차량 주변의 실시간 환경을 그대로 센싱하므로, 비 또는 눈 등의 악천우 시, 또는 교통 체증과 같은 복잡한 교통 상황에서는 상기 비나 눈, 또는 가로수 등의 그림자 및 전방의 차량들과 같은 장애물들에 의하여 센서로부터 획득되는 이미지로부터 경로 안내 정보를 정확하게 식별할 수 없다는 문제가 있다.
일 예로, 상기 눈이나 비, 그림자나 전방의 차량으로 인해 카메라는 차량이 현재 주행하고 있는 차선 등을 인식하지 못할 수 있다. 또한 경사로와 같이 차량이 주행하는 도로의 높이가 달라지거나 복잡한 굴곡을 가지는 도로의 경우 상기 경사 또는 도로의 굴곡을 인식하지 못할 수 있다. 그리고 이러한 경우, 차선과 관련된 증강현실 객체를 표시하지 못하거나 또는 잘못된 증강현실 객체가 표시될 수 있다는 문제가 있다. 즉, 카메라를 통해 획득되는 현실 세계의 복잡도나 획득되는 이미지의 상태에 따라, 증강현실 객체와 실제 환경 사이의 불일치가 발생할 수 있다는 문제가 있다.
한편 현재는 이러한 증강현실 기술에 이어, 디지털 트윈(DT, Digital Twin) 기술을 적용하여 차량과 관련된 다양한 시뮬레이션 정보를 제공할 수 있는 혼합현실(Mixed Reality, MR)에 관련된 기술 개발이 활발하게 이루어지고 있다.
이러한 혼합현실에 관련된 기술 개발의 일환으로, 혼합현실을 이용하여 운전자에게 경로 안내와 관련된 정보들을 제공하는 방안이 활발하게 연구되고 있다. 이처럼 혼합현실을 이용한 경로 안내의 경우, 상기 디지털 트윈 기술을 통해 디지털화된 3차원 지도 상에 차량에 대응하는 그래픽 객체를 표시하고, 상기 지도와 상기 그래픽 객체를 통해 운전자가 아직 주행하지 않은 주행 경로에 대한 정보를 제공하거나, 또는 버드뷰(bird view)와 같은 시야각을 제공하는 등, 콕핏(cockpit)위치한 운전자가 확인할 수 없는 다양한 정보들을 상기 운전자에게 제공할 수 있다는 장점이 있다.
이러한 혼합현실은, 디지털화된 3차원 지도를 통해 표시되는 가상의 객체를 통해 차량과 관련된 정보를 제공하는 것으로, 카메라를 통해 획득되는 현실 세계의 이미지와 상관없이 정보를 제공할 수 있다. 따라서 카메라를 통해 획득되는 현실 세계의 복잡도나 획득되는 이미지의 상태에 따라, 제공되는 정보와 실제 환경 사이의 불일치가 발생할 수 있다는 문제는 해결될 수 있다.
그런데 상기 혼합현실은 디지털화된 3차원 지도의 이미지를 통해 정보를 제공한다. 따라서 상기 3차원 지도 이미지와 차량 주변의 현실 세계와의 일치도에 따라 혼합현실을 통해 제공되는 그래픽 객체, 즉 혼합현실 객체와 실제 환경 사이의 불일치가 발생할 수 있다.
그러나 현실 세계와 완전히 동일한 3차원 지도를 제공한다는 것은 매우 어려우며, 이에 따라 건물과 같이 고정된 객체 또는 차량과 같은 일정 수준 이상의 크기를 가지는 물체들의 정보를 제공할 수 있을 뿐, 차량 주변의 사람이나 동물 등, 작거나 감지하기 어려운 객체들은 3차원 지도 이미지를 이용한 혼합현실로 표시하기 어렵다는 문제가 있다.
이러한 문제로 현실 세계의 이미지를 직접 이용하는 증강현실을, 혼합현실로 완전히 대체하기는 어렵다는 문제가 있으며, 이에 따라 증강현실과 혼합현실을 모두 이용할 수 있는 효과적인 방안에 대한 기술 개발이 활발하게 연구 중인 실정이다.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.
본 발명의 일 목적은, 혼합현실을 이용하여 증강현실의 단점을 보완할 수 있도록 하는 것으로, 증강현실을 통한 경로 안내 정보의 제공이 어려운 경우, 혼합현실을 이용하여 상기 경로 안내 정보가 제공될 수 있도록 하는 경로 안내 장치 및 경로 안내 시스템을 제공하는 것이다.
본 발명의 일 목적은 혼합현실을 이용하여 증강현실의 단점을 보완할 수 있도록 하는 것으로, 증강현실을 통해 제공되는 정보들의 시인성을 보다 향상시킬 수 있는 경로 안내 장치 및 경로 안내 시스템을 제공하는 것이다.
본 발명의 일 목적은 혼합현실을 이용하여 증강현실의 단점을 보완할 수 있도록 하는 것으로, 증강현실을 통해 표시되는 시야각 내의 영역에 위치한 객체들의 정보들과, 상기 시야각 외의 영역에 위치한 객체들의 정보들을 동시에 제공할 수 있는 경로 안내 장치 및 경로 안내 시스템을 제공하는 것이다.
본 발명의 일 실시 예에 따른 경로 안내 장치는, 클라우드 서버와 통신하는 통신부와, 상기 차량에 구비된 적어도 하나의 센서로부터, 상기 차량이 주행하는 도로 이미지를 포함하는 차량 주변 환경의 이미지와, 상기 차량의 주행 상태를 센싱한 센싱 정보를 수신하는 인터페이스부와, 상기 센싱 정보 및 상기 클라우드 서버로부터 수신되는 POI 정보 중 적어도 하나를 이용하여 AR 정보를 렌더링하는 AR 모듈과, 상기 센싱 정보 및 상기 클라우드 서버로부터 수신되는 지도 정보를 기초로 적어도 하나의 가상객체를 포함하는 MR 정보를 렌더링하는 MR 모듈 및, 상기 AR 정보를 포함하는 AR 뷰 이미지 또는 상기 MR 정보를 포함하는 MR 뷰 이미지가 상기 차량의 디스플레이부에 표시되도록 상기 인터페이스부를 제어하고, 상기 AR 뷰 이미지와 상기 MR 뷰 이미지 중 제1 뷰 이미지가 표시되는 상태에서, 상기 센싱 정보에 기초하여 상기 차량의 주행 상황에 부합하는 뷰 이미지를 검출하고, 검출된 뷰 이미지가 상기 제1 뷰 이미지와 다른 경우 상기 제1 뷰 이미지와 다른 제2 뷰 이미지로 표시되는 뷰 이미지를 전환하도록 상기 인터페이스부를 통해 상기 차량에 구비된 디스플레이부를 제어하는 프로세서를 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여 상기 차량이 주행하고 있는 지역이 고속도로 인지 또는 도심 내 일반 도로인지 여부를 판별하고, 판별 결과에 근거하여 상기 차량의 주행 상황에 부합하는 어느 하나의 뷰 이미지를 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여 상기 차량이 주행하고 있는 지역의 도로 상태를 판별하고, 판별된 도로의 포장 상태 또는 도로의 굴곡률에 근거하여 상기 차량의 주행 상황에 부합하는 어느 하나의 뷰 이미지를 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여 상기 차량의 주행이 이루어지는 시간 및 상기 차량 주변의 날씨를 판별하고, 판별된 시간 또는 날씨 중 적어도 하나에 근거하여 상기 차량의 주행 상황에 부합하는 어느 하나의 뷰 이미지를 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여, 상기 차량의 주행 상태를 판별하고, 상기 차량이 정차 중이거나 주행 중인지 여부 및, 상기 차량이 주행하는 속도 중 적어도 하나에 근거하여 상기 차량의 주행 상황에 부합하는 어느 하나의 뷰 이미지를 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여, 상기 차량 주변의 교통 체증 상태를 판별하고, 판별된 교통 체증 상태에 근거하여 상기 차량의 주행 상황에 부합하는 어느 하나의 뷰 이미지를 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여, 상기 차량 주변으로부터 검출되는 구조물들을 판별하고, 판별된 구조물들의 크기에 근거하여 상기 차량의 주행 상황에 부합하는 어느 하나의 뷰 이미지를 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여, 상기 차량 주변에 위치한 위험 영역 또는 상기 차량 주변으로부터 검출되는 충돌 가능성을 경고하기 위한 경고 정보를 표시하도록 상기 인터페이스부를 제어하고, 상기 표시되는 경고 정보가, 상기 차량의 전방에서 노출되는지 여부에 따라 상기 차량의 주행 상황에 부합하는 어느 하나의 뷰 이미지를 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여, 상기 차량의 주행 경로를 판별하고, 판별된 주행 경로가 직진 구간인 경우 상기 AR 뷰 이미지를 상기 차량의 주행 상황에 부합하는 뷰 이미지로 검출하며, 상기 차량이 주행 가능한 경로를 벗어난 경우, 또는 경로 상의 분기점이거나 출구 또는 목적지로부터 일정 거리 이내로 상기 차량이 인접한 경우 상기 MR 뷰 이미지를 상기 차량의 주행 상황에 부합하는 뷰 이미지로 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 센싱 정보에 근거하여, 상기 차량이 주행하는 도로의 곡률 변화량과 도로의 경사도 변화량을 산출하고, 산출된 곡률 변화량과 경사도 변화량에 근거하여 상기 차량의 카메라를 통해 획득된 차량 전방의 실제 이미지와 그 실제 이미지 상에 표시되는 AR 객체 간의 오차율(AR fitting rate)을 산출하며, 산출된 오차율이 임계값을 초과하는 경우, 상기 MR 뷰 이미지를 상기 차량의 주행 상황에 부합하는 뷰 이미지로 검출하고, 산출된 오차율이 임계값 이하인 경우, 상기 AR 뷰 이미지를 상기 차량의 주행 상황에 부합하는 뷰 이미지로 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 차량의 기울어짐을 감지하는 자이로 센서의 감지값과, 상기 차량이 주행하는 도로의 차선을 검출하는 차선 인식기의 검출 결과에 따라 상기 도로의 곡률 변화량을 산출하며, 상기 차량이 현재 주행하는 도로에 대한 지도 정보에 근거하여 검출되는 고도 특성(vertical profile) 및 고정밀 지도(High Definition MAP, HD MAP)를 통해 검출되는 도로 형상에 따라 산출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 차량의 탑승자가 요청한 경로 정보가, 상기 차량이 현재 주행하고 있는 주행 경로에 대한 경로 정보인 경우, 상기 AR 뷰 이미지를 상기 차량의 주행 상황에 부합하는 뷰 이미지로 검출하고, 상기 탑승자가 요청한 경로 정보가, 상기 차량이 아직 주행하지 않은 주행 경로에 대한 경로 정보 또는 상기 차량이 이미 주행한 주행 경로에 대한 경로 정보인 경우 상기 MR 뷰 이미지를 상기 차량의 주행 상황에 부합하는 뷰 이미지로 검출하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 뷰 이미지의 전환이 시작되면, 상기 제1 뷰 이미지의 카메라 캘리브레이션(calibration)에 따라 제2 뷰 이미지의 카메라 캘리브레이션을 변경하여 상기 제1 뷰 이미지의 주시점과 동일한 주시점을 가지는 제2 뷰 이미지를 생성하고, 상기 제1 뷰 이미지의 FOV(Field Of Viiew)에 근거하여, 상기 생성된 제2 뷰 이미지로부터 상기 제1 뷰 이미지의 크기 및 비율이 동일한 제2 뷰 이미지를 추출 및, 추출된 제2 뷰 이미지로 상기 제1 뷰 이미지가 전환되도록 상기 디스플레이부를 제어하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 제1 뷰 이미지의 주시점으로부터 수평 기준선 및 수직 기준선을 검출하고, 상기 제1 뷰 이미지의 수평 기준선 및 수직 기준선이 교차하는 지점에 주시점이 일치하는 상기 제2 뷰 이미지를, 상기 제1 뷰 이미지와 주시점이 동일한 제2 뷰 이미지로 생성하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 AR 뷰 이미지 또는 MR 뷰 이미지가 상기 디스플레이부 상에 표시되는 상태에서, 부가 정보를 포함하는 부가 화면이 더 표시되도록 상기 인터페이스부를 제어하며, 상기 부가 정보는, POI(Point Of Interest) 정보, 주행 히스토리(history), 조감도 형태의 경로 안내 정보 중 적어도 하나를 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 부가 화면은, 화면분할, PIP, 다중 레이어 중 어느 하나의 방식으로 상기 AR 뷰 이미지 또는 MR 뷰 이미지가 표시되는 상기 디스플레이부 상에 표시되는 것을 특징으로 한다.
또한 본 발명의 일 실시 예에 따른 경로 안내 시스템은, 차량에 탑재되며, 수신되는 POI(Point Of Interest) 정보를 기초로 렌더링되는 AR 정보를 포함하는 AR 뷰 이미지 또는 3차원 지도 정보를 기초로 렌더링되는 MR 정보를 포함하는 MR 뷰 이미지를 상기 차량의 디스플레이부 상에 표시하는 경로 안내 장치 및, 상기 경로 안내 장치의 요청에 따라, 상기 차량의 현재, 과거 또는 예상되는 미래의 위치에 대응하는 POI 정보 또는 3차원 지도 정보를 상기 경로 안내 장치에 제공하는 클라우드 서버를 포함하며, 상기 경로 안내 장치는, 상기 차량에 구비된 적어도 하나의 센서로부터 센싱되는 센싱 정보들에 근거하여, 상기 AR 뷰 이미지와 MR 뷰 이미지 중 어느 하나로 상기 디스플레이부 상에 표시되는 뷰 이미지를 전환하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 클라우드 서버는, 지도 영역에 포함되는 각 건물에 대응하는 가상 객체들을 포함하는 디지털 트윈(Digital Twin)된 3차원 지도 정보를 포함하는 DTaaS(Digital Twin as a Service) 서버와, 상기 경로 안내 장치와 통신 연결을 수행하며, 상기 경로 안내 장치로부터 수집되는 상기 차량의 위치 정보를 상기 DTaaS 서버에 제공 및, 상기 DTaaS 서버로부터 제공되는 디지털 트윈된 3차원 지도 정보를 상기 경로 안내 제공 장치에 제공하는 MR (Mixed Reality) 서버 및, 상기 경로 안내 장치로부터 제공되는 차량의 위치 정보 및 상기 센싱 정보를 수신하고, 수신된 정보에 대응하는 POI 정보를 상기 경로 안내 장치에 제공하는 AR(Augmented Reality) 서버와, 를 포함하는 것을 특징으로 한다.
본 발명의 일 실시 예에 따른 경로 안내 장치는, 클라우드 서버와 통신하는 통신부, 상기 차량에 구비된 적어도 하나의 센서로부터, 상기 차량이 주행하는 도로 이미지를 포함하는 카메라 영상과, 상기 차량의 주행 상태를 센싱한 센싱 정보를 수신하는 인터페이스부, 상기 카메라 영상, 상기 센싱 정보 및 상기 클라우드 서버로부터 수신되는 지도 정보를 기초로 적어도 하나의 가상객체를 포함하는 MR 정보를 렌더링하는 MR 모듈 및 상기 MR 정보를 포함하는 MR 뷰 이미지가 상기 차량의 디스플레이부에 표시되도록 상기 인터페이스부를 제어하는 프로세서를 포함하고, 상기 프로세서는, 기 설정된 조건을 만족하면, 차량이 주행할 예정인 장소에 대응되는 장면이 표시되도록 상기 MR 뷰 이미지를 전환하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 차량이 목적지까지 주행할 경로를 안내하는 경로 정보를 상기 MR 뷰 이미지에 표시하고, 상기 기 설정된 조건을 만족하는 것에 근거하여, 상기 경로 정보를 따라 현재 차량의 위치보다 앞선 장소의 장면이 표시되도록 상기 MR 뷰 이미지를 제어하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 MR 뷰 이미지에는, 차량이 주행할 예정인 장소에 대응되는 장면을 표시하기 위한 아이콘이 표시되고, 상기 기 설정된 조건은, 상기 아이콘이 사용자에 의해 선택되는 것을 포함한다.
일 실시 예에 있어서, 상기 기 설정된 조건은, 차량이 소정 시간동안 정차하는 경우, 목적지로부터 소정거리 이내에 차량이 진입한 경우 및 교차로로부터 소정거리 이내에 차량이 진입한 경우 중 적어도 하나를 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 MR 뷰 이미지는, 현재 상황이 실시간으로 반영된 디지털 트윈 맵을 어느 한 지점에서 소정의 시야각으로 바라본 장면인 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 차량이 주행할 예정인 장소에 대응되는 장면을 표시할 때, 현재 상황이 실시간 반영된 MR 뷰 이미지를 차량의 디스플레이에 출력하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 현재 차량의 위치를 나타내는 차량 객체를 기준으로 차량의 전방의 장면에 대응되도록 상기 MR 뷰 이미지를 출력하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 기 설정된 조건을 만족하는 것에 근거하여, 차량이 주행할 경로를 따라 상기 차량 객체보다 앞서서 주행하는 고스트 카를 생성하고, 상기 고스트 카를 기준으로 고스트 카의 전방의 장면이 표시되도록 상기 MR 뷰 이미지를 전환하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 기 설정된 조건이 만족되는 것에 근거하여 전환되는 MR 뷰 이미지는, 차량이 주행할 경로를 따라 앞선 상황을 디지털 트윈 맵 상에서 미리 보여주는 예측 뷰 이미지인 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 기 설정된 조건을 만족하는 것에 근거하여 MR 뷰 이미지를 전환할 때, 디지털 트윈 맵을 바라보는 지점의 고도를 가변하여 차량이 주행할 예정인 장소에 해당하는 장면을 미리 보여주는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 기 설정된 조건이 만족되는 것에 근거하여, 현재 차량의 위치를 기준으로 차량 전방의 장면이 표시되는 제1 MR 뷰 이미지 및 차량이 주행할 예정인 장소에 대응되는 장면이 표시되는 제2 MR 뷰 이미지를 함께 차량의 디스플레이에 출력하도록 상기 인터페이스부를 제어하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 제2 MR 뷰 이미지를 팝업창 형태로 출력하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 기 설정된 조건을 만족하는 것에 근거하여, 차량에 구비된 디스플레이의 화면을 제1 영역 및 제2 영역으로 분할하고, 상기 디스플레이의 상기 제1 영역에 상기 제1 MR 뷰 이미지를 출력하고, 상기 제2 영역에 상기 제2 MR 뷰 이미지를 출력하도록 상기 인터페이스부를 제어하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 제2 MR 뷰 이미지는, 차량이 현재 위치에서 바라본 장면에서부터 상기 차량이 진행할 경로를 따라 소정거리만큼 이동할 장면을 재생하는 영상인 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 차량이 진행할 경로를 따라 소정거리만큼 이동할 장면을 출력하는 제2 MR 뷰 이미지를 출력하다가, 상기 차량이 상기 소정거리만큼 이동하는 것에 근거하여, 상기 제2 MR 뷰 이미지를 사라지게 하는 것을 특징으로 한다.
본 발명의 일 실시 예에 따른 경로 안내 장치는, 클라우드 서버와 통신하는 통신부, 상기 차량에 구비된 적어도 하나의 센서로부터, 상기 차량이 주행하는 도로 이미지를 포함하는 카메라 영상과, 상기 차량의 주행 상태를 센싱한 센싱 정보를 수신하는 인터페이스부, 상기 카메라 영상, 상기 센싱 정보 및 상기 클라우드 서버로부터 수신되는 지도 정보를 기초로 적어도 하나의 가상객체를 포함하는 MR 정보를 렌더링하는 MR 모듈 및 상기 MR 정보를 포함하는 MR 뷰 이미지가 상기 차량의 디스플레이부에 표시되도록 상기 인터페이스부를 제어하는 프로세서를 포함하고, 상기 프로세서는, 특정 조건을 만족하는 것에 근거하여, 차량이 과거에 주행할 때 재생되었던 MR 뷰 이미지를 리플레이 영상으로 출력하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 MR 뷰 이미지에는 POI(Point of Interest) 객체가 출력되고, 상기 특정 조건은, 차량에 대응되는 차량 객체가 상기 POI 객체를 지나치는 것을 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 MR 뷰 이미지에는, 상기 특정 조건이 만족되는 것에 근거하여 리플레이 카드가 상기 MR 뷰 이미지 상에 오버랩되고, 상기 특정 조건은, 상기 리플레이 카드가 사용자에 의해 선택되는 것을 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 특정 조건은, 차량이 소정 시간동안 정차하는 경우, 목적지로부터 소정거리 이내에 차량이 진입한 경우, 교차로로부터 소정거리 이내에 차량이 진입한 경우 및 상기 MR 뷰 이미지 상에 표시된 POI 객체를 선택한 경우 중 적어도 하나를 포함하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 MR 뷰 이미지는, 현재 상황이 실시간으로 반영된 디지털 트윈 맵을 어느 한 지점에서 소정의 시야각으로 바라본 장면인 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 차량 객체를 기준으로 상기 어느 한 지점을 설정하고, 상기 차량 객체가 POI 객체에 다가가도록 주행중인 경우, 상기 POI 객체를 바라보도록 상기 시야각을 조정하여 상기 POI 객체가 중앙 영역에 위치한 상태로 점차 확대되도록 상기 MR 뷰 이미지를 제어하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, MR 뷰 이미지에 표시되는 차량 객체와 POI 객체 사이의 거리가 기 설정된 거리 이내에 진입할 때 출력중인 MR 뷰 이미지를 썸네일 이미지로 캡쳐하고, 상기 썸네일 이미지를 상기 리플레이 카드로 생성하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 리플레이 카드에는, 상기 썸네일 이미지, 상기 POI 객체에 대응하는 이름 및 상기 POI 객체의 주소 중 적어도 하나가 포함되는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 차량 객체가 서로 다른 POI 객체를 순차적으로 지나칠 때마다 상기 리플레이 카드를 순차적으로 생성하여 상기 MR 뷰 이미지에 출력하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 프로세서는, 상기 리플레이 카드가 선택되면, 상기 리플레이 카드에 대응하는 POI 객체를 바라보며 소정시간 주행했던 MR 뷰 이미지를 리플레이 영상으로 재생하는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 리플레이 영상은, 상기 MR 뷰 이미지의 일 영역에 오버랩되어 재생되거나, 팝업창으로 출력되는 것을 특징으로 한다.
일 실시 예에 있어서, 상기 리플레이 영상에는, 상기 리플레이 영상에 연계된 POI에서 이용 가능한 서비스 정보 및 상기 POI에 해당하는 장소까지 주행 경로를 설정하기 위한 버튼 중 적어도 하나가 포함되는 것을 특징으로 한다.
본 발명의 실시 예에 따른 경로 안내 장치 및 경로 안내 시스템의 효과에 대해 설명하면 다음과 같다.
첫째, 본 발명은 증강현실에 따라 제공되는 뷰 이미지가 정확한 경로 안내 정보를 표시하기 어려운 상태인 경우, 상기 증강현실 뷰 이미지와 일치하는 혼합현실에 따른 뷰 이미지를 제공함으로써, 차량 주변 현실 세계의 상황이나 복잡도, 또는 획득되는 현실 세계의 이미지 상태에 상관없이 운전자에게 정확한 경로 안내 정보를 제공할 수 있다는 장점이 있다.
둘째, 본 발명은 증강현실에 따라 제공되는 증강현실 뷰 이미지의 일부에, 상기 증강현실 뷰 이미지와 일치하는 혼합현실에 따른 뷰 이미지의 일부를 표시하거나, 또는 상기 증강현실 뷰 이미지의 적어도 일부에 상기 혼합현실 뷰 이미지의 적어도 일부를 오버랩함으로써, 차량 주변 객체들에 대해 표시되는 정보들의 시인성을 보다 향상시킬 수 있다는 장점이 있다.
셋째, 본 발명은 증강현실에 따라 제공되는 증강현실 뷰 이미지와 함께 혼합현실에 따른 혼합현실 뷰 이미지를 표시함으로써, 증강현실을 통해 표시되는 시야각 내의 영역에 위치한 객체들의 정보들과, 상기 시야각 외의 영역에 위치한 객체들의 정보들을 하나의 화면에 동시에 표시할 수 있다는 장점이 있다.
도 1은 본 발명의 실시예에 따른 차량의 외관을 도시한 도면이다.
도 2는 본 발명의 실시예에 따른 차량을 외부의 다양한 각도에서 본 도면이다.
도 3 내지 도 4는 본 발명의 실시예에 따른 차량의 내부를 도시한 도면이다.
도 5 내지 도 6은 본 발명의 실시예에 따른 오브젝트를 설명하는데 참조되는 도면이다.
도 7은 본 발명의 실시예에 따른 차량을 설명하는데 참조되는 블록도이다.
도 8a는 본 발명의 AR 서비스 플랫폼을 설명하기 위한 개념도이다.
도 8b는 본 발명의 MR 서비스를 제공하기 위한 MR 서비스 플랫폼을 설명하기 위한 개념도이다.
도 8c는 본 발명의 MR AMS 클라이언트를 설명하기 위한 개념도이다.
도 8d는 본 발명의 MR AMS 서버를 설명하기 위한 개념도이다.
도 9는 본 발명의 DTaaS 서버를 설명하기 위한 개념도이다.
도 10a는 본 발명의 실시 예에 따른 경로 안내 장치의 구조를 도시한 블록도이다.
도 10b는 본 발명의 실시 예에 따른 경로 안내 장치를 통해 경로 안내 정보를 표시하는 디스플레이의 예를 도시한 예시도이다.
도 11은 본 발명의 실시 예에 따른 경로 안내 장치가, 동작 모드 전환을 통해 AR 또는 MR 중 어느 하나를 통해 경로 안내 정보를 제공하는 동작 과정을 도시한 흐름도이다.
도 12는 본 발명의 실시 예에 따른 경로 안내 장치가, AR 뷰 이미지에 대응하는 MR 뷰 이미지를 생성하는 예를 도시한 예시도이다.
도 13은 본 발명의 실시 예에 따른 경로 안내 장치에서 표시되는 AR 뷰 이미지와, 그 AR 뷰 이미지에 대응하는 MR 뷰 이미지의 예를 도시한 것이다.
도 14는 본 발명의 실시 예에 따른 경로 안내 장치에서, AR 뷰 이미지의 오차율에 따라 동작 모드를 전환하는 동작 과정을 도시한 흐름도이다.
도 15a는, AR 모드에서 MR 모드로 전환되는 경우에, MR 모드에 따른 MR 뷰 이미지를 통해 경로 안내 정보가 제공되는 동작 과정을 도시한 흐름도이다.
도 15b는, MR 모드에서 AR 모드로 전환되는 경우에, AR 모드에 따른 AR 뷰 이미지를 통해 경로 안내 정보가 제공되는 동작 과정을 도시한 흐름도이다.
도 16은 본 발명의 실시 예에 따른 경로 안내 장치가, 디스플레이 영역을 분할하여 AR 뷰 이미지와 MR 뷰 이미지를 동시에 표시하는 동작 과정을 도시한 흐름도이다.
도 17은, 도 16의 동작 과정을 통해 AR 뷰 이미지와 MR 뷰 이미지가 각각 표시되는 디스플레이 화면의 예를 도시한 것이다.
도 18은 디스플레이 영역의 분리를 통해 AR 뷰 이미지와 MR 뷰 이미지가 혼합된 디스플레이 화면을 생성하는 동작 과정을 도시한 흐름도이다.
도 19는 도 18의 동작 과정을 통해 분리된 영역에 각각 AR 뷰 이미지와 MR 뷰 이미지가 표시되는 디스플레이 화면의 예를 도시한 것이다.
도 20은 본 발명의 실시 예에 따른 경로 안내 장치가, 제1 뷰 이미지가 표시되는 영역의 적어도 일부에, 제2 뷰 이미지를 오버랩하는 동작 과정을 도시한 흐름도이다.
도 21과 도 22는, 도 20의 동작 과정에 따라 제1 뷰 이미지가 표시되는 디스플레이 영역의 적어도 일부에, 제2 뷰 이미지가 오버랩되는 예시도들이다.
도 23은 본 발명의 실시 예에 따른 경로 안내 장치가, 복수의 AR 뷰 이미지와 복수의 MR 뷰 이미지가 혼합되어 디스플레이 화면을 구성하는 예를 도시한 예시도이다.
도 24는 본 발명의 실시 예에 따른 경로 안내 장치를 통해 AR 뷰 이미지 및 MR 뷰 이미지의 복합 화면이 표시되는 예시도들이다.
도 25는 본 발명의 실시 예에 따른 경로 안내 장치가 MR을 통해 제공하는 경로 안내 정보로서, 차량이 주행할 경로에 대한 미리보기 정보가 제공하는 예를 도시한 예시도이다.
도 26은, 상기 도 25에서 미리보기 정보를 제공하기 위한 경로 안내 정보가 드론뷰 또는 프리뷰 카메라를 통해 제공되는 예를 도시한 예시도들이다.
도 27은 본 발명의 실시 예에 따른 경로 안내 장치가, 차량의 속도에 따라 주변 건물들의 이미지를 다르게 표시하는 MR 뷰 이미지의 예를 도시한 예시도이다.
도 28은 본 발명의 실시 예에 따른 경로 안내 장치가, MR 뷰 이미지를 통해 POI 정보를 제공하는 예를 도시한 예시도이다.
도 29는 본 발명의 실시 예에 따른 경로 안내 장치가, 차량의 주행에 따라 수집된 POI들 중 탑승자의 선택에 따른 어느 하나에 대한 상세 정보를 표시하는 예를 도시한 예시도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 기술되는 차량은, 자동차, 오토바이를 포함하는 개념일 수 있다. 이하에서는, 차량에 대해 자동차를 위주로 기술한다.
본 명세서에서 기술되는 차량은, 동력원으로서 엔진을 구비하는 내연기관 차량, 동력원으로서 엔진과 전기 모터를 구비하는 하이브리드 차량, 동력원으로서 전기 모터를 구비하는 전기 차량등을 모두 포함하는 개념일 수 있다.
이하의 설명에서 차량의 좌측은 차량의 주행 방향의 좌측을 의미하고, 차량의 우측은 차량의 주행 방향의 우측을 의미한다.
도 1은 본 발명의 실시예에 따른 차량의 외관을 도시한 도면이다.
도 2는 본 발명의 실시예에 따른 차량을 외부의 다양한 각도에서 본 도면이다.
도 3 내지 도 4는 본 발명의 실시예에 따른 차량의 내부를 도시한 도면이다.
도 5 내지 도 6은 본 발명의 실시예에 따른 오브젝트를 설명하는데 참조되는 도면이다.
도 7은 본 발명의 실시예에 따른 차량을 설명하는데 참조되는 블럭도이다.
도 1 내지 도 7을 참조하면, 차량(100)은 동력원에 의해 회전하는 바퀴, 차량(100)의 진행 방향을 조절하기 위한 조향 입력 장치(510)를 포함할 수 있다.
차량(100)은 자율 주행 차량일 수 있다.
차량(100)은, 사용자 입력에 기초하여, 자율 주행 모드 또는 메뉴얼 모드로 전환될 수 있다.
예를 들면, 차량(100)은, 사용자 인터페이스 장치(200)를 통해, 수신되는 사용자 입력에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)은, 주행 상황 정보에 기초하여, 자율 주행 모드 또는 메뉴얼 모드로 전환될 수 있다. 주행 상황 정보는, 오브젝트 검출 장치(300)에서 제공된 오브젝트 정보에 기초하여 생성될 수 있다.
예를 들면, 차량(100)은, 오브젝트 검출 장치(300)에서 생성되는 주행 상황 정보에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
예를 들면, 차량(100)은, 통신 장치(400)를 통해 수신되는 주행 상황 정보에 기초하여, 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)은, 외부 디바이스에서 제공되는 정보, 데이터, 신호에 기초하여 메뉴얼 모드에서 자율 주행 모드로 전환되거나, 자율 주행 모드에서 메뉴얼 모드로 전환될 수 있다.
차량(100)이 자율 주행 모드로 운행되는 경우, 자율 주행 차량(100)은, 운행 시스템(700)에 기초하여 운행될 수 있다.
예를 들면, 자율 주행 차량(100)은, 주행 시스템(710), 출차 시스템(740), 주차 시스템(750)에서 생성되는 정보, 데이터 또는 신호에 기초하여 운행될 수 있다.
차량(100)이 메뉴얼 모드로 운행되는 경우, 자율 주행 차량(100)은, 운전 조작 장치(500)를 통해 운전을 위한 사용자 입력을 수신할 수 있다. 운전 조작 장치(500)를 통해 수신되는 사용자 입력에 기초하여, 차량(100)은 운행될 수 있다.
전장(overall length)은 차량(100)의 앞부분에서 뒷부분까지의 길이, 전폭(width)은 차량(100)의 너비, 전고(height)는 바퀴 하부에서 루프까지의 길이를 의미한다. 이하의 설명에서, 전장 방향(L)은 차량(100)의 전장 측정의 기준이 되는 방향, 전폭 방향(W)은 차량(100)의 전폭 측정의 기준이 되는 방향, 전고 방향(H)은 차량(100)의 전고 측정의 기준이 되는 방향을 의미할 수 있다.
도 7에 예시된 바와 같이, 차량(100)은, 사용자 인터페이스 장치(200), 오브젝트 검출 장치(300), 통신 장치(400), 운전 조작 장치(500), 차량 구동 장치(600), 운행 시스템(700), 내비게이션 시스템(770), 센싱부(120), 차량 인터페이스부(130), 메모리(140), 제어부(170) 및 전원 공급부(190)를 포함할 수 있다.
실시예에 따라, 차량(100)은, 본 명세서에서 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
사용자 인터페이스 장치(200)는, 차량(100)과 사용자와의 소통을 위한 장치이다. 사용자 인터페이스 장치(200)는, 사용자 입력을 수신하고, 사용자에게 차량(100)에서 생성된 정보를 제공할 수 있다. 차량(100)은, 사용자 인터페이스 장치(200)를 통해, UI(User Interfaces) 또는 UX(User Experience)를 구현할 수 있다.
사용자 인터페이스 장치(200)는, 입력부(210), 내부 카메라(220), 생체 감지부(230), 출력부(250) 및 프로세서(270)를 포함할 수 있다.
실시예에 따라, 사용자 인터페이스 장치(200)는, 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수도 있다.
입력부(200)는, 사용자로부터 정보를 입력받기 위한 것으로, 입력부(120)에서 수집한 데이터는, 프로세서(270)에 의해 분석되어, 사용자의 제어 명령으로 처리될 수 있다.
입력부(200)는, 차량 내부에 배치될 수 있다. 예를 들면, 입력부(200)는, 스티어링 휠(steering wheel)의 일 영역, 인스투루먼트 패널(instrument panel)의 일 영역, 시트(seat)의 일 영역, 각 필러(pillar)의 일 영역, 도어(door)의 일 영역, 센타 콘솔(center console)의 일 영역, 헤드 라이닝(head lining)의 일 영역, 썬바이저(sun visor)의 일 영역, 윈드 쉴드(windshield)의 일 영역 또는 윈도우(window)의 일 영역 등에 배치될 수 있다.
입력부(200)는, 음성 입력부(211), 제스쳐 입력부(212), 터치 입력부(213) 및 기계식 입력부(214)를 포함할 수 있다.
음성 입력부(211)는, 사용자의 음성 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다.
음성 입력부(211)는, 하나 이상의 마이크로 폰을 포함할 수 있다.
제스쳐 입력부(212)는, 사용자의 제스쳐 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다.
제스쳐 입력부(212)는, 사용자의 제스쳐 입력을 감지하기 위한 적외선 센서 및 이미지 센서 중 적어도 어느 하나를 포함할 수 있다.
실시예에 따라, 제스쳐 입력부(212)는, 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 이를 위해, 제스쳐 입력부(212)는, 복수의 적외선 광을 출력하는 광출력부 또는 복수의 이미지 센서를 포함할 수 있다.
제스쳐 입력부(212)는, TOF(Time of Flight) 방식, 구조광(Structured light) 방식 또는 디스패러티(Disparity) 방식을 통해 사용자의 3차원 제스쳐 입력을 감지할 수 있다.
터치 입력부(213)는, 사용자의 터치 입력을 전기적 신호로 전환할 수 있다. 전환된 전기적 신호는 프로세서(270) 또는 제어부(170)에 제공될 수 있다.
터치 입력부(213)는, 사용자의 터치 입력을 감지하기 위한 터치 센서를 포함할 수 있다.
실시예에 따라, 터치 입력부(213)는 디스플레이부(251)와 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한, 터치 스크린은, 차량(100)과 사용자 사이의 입력 인터페이스 및 출력 인터페이스를 함께 제공할 수 있다.
기계식 입력부(214)는, 버튼, 돔 스위치(dome switch), 조그 휠 및 조그 스위치 중 적어도 어느 하나를 포함할 수 있다. 기계식 입력부(214)에 의해 생성된 전기적 신호는, 프로세서(270) 또는 제어부(170)에 제공될 수 있다.
기계식 입력부(214)는, 스티어링 휠, 센테 페시아, 센타 콘솔, 칵픽 모듈, 도어 등에 배치될 수 있다.
내부 카메라(220)는, 차량 내부 영상을 획득할 수 있다. 프로세서(270)는, 차량 내부 영상을 기초로, 사용자의 상태를 감지할 수 있다. 프로세서(270)는, 차량 내부 영상에서 사용자의 시선 정보를 획득할 수 있다. 프로세서(270)는, 차량 내부 영상에서 사용자의 제스쳐를 감지할 수 있다.
생체 감지부(230)는, 사용자의 생체 정보를 획득할 수 있다. 생체 감지부(230)는, 사용자의 생체 정보를 획득할 수 있는 센서를 포함하고, 센서를 이용하여, 사용자의 지문 정보, 심박동 정보 등을 획득할 수 있다. 생체 정보는 사용자 인증을 위해 이용될 수 있다.
출력부(250)는, 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것이다.
출력부(250)는, 디스플레이부(251), 음향 출력부(252) 및 햅틱 출력부(253) 중 적어도 어느 하나를 포함할 수 있다.
디스플레이부(251)는, 다양한 정보에 대응되는 그래픽 객체를 표시할 수 있다.
디스플레이부(251)는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 3차원 디스플레이(3D display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
디스플레이부(251)는 터치 입력부(213)와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다.
디스플레이부(251)는 HUD(Head Up Display)로 구현될 수 있다. 디스플레이부(251)가 HUD로 구현되는 경우, 디스플레이부(251)는 투사 모듈을 구비하여 윈드 쉴드 또는 윈도우에 투사되는 이미지를 통해 정보를 출력할 수 있다.
디스플레이부(251)는, 투명 디스플레이를 포함할 수 있다. 투명 디스플레이는 윈드 쉴드 또는 윈도우에 부착될 수 있다.
투명 디스플레이는 소정의 투명도를 가지면서, 소정의 화면을 표시할 수 있다. 투명 디스플레이는, 투명도를 가지기 위해, 투명 디스플레이는 투명 TFEL(Thin Film Elecroluminescent), 투명 OLED(Organic Light-Emitting Diode), 투명 LCD(Liquid Crystal Display), 투과형 투명디스플레이, 투명 LED(Light Emitting Diode) 디스플레이 중 적어도 하나를 포함할 수 있다. 투명 디스플레이의 투명도는 조절될 수 있다.
한편, 사용자 인터페이스 장치(200)는, 복수의 디스플레이부(251a 내지 251g)를 포함할 수 있다.
디스플레이부(251)는, 스티어링 휠의 일 영역, 인스투루먼트 패널의 일 영역(521a, 251b, 251e), 시트의 일 영역(251d), 각 필러의 일 영역(251f), 도어의 일 영역(251g), 센타 콘솔의 일 영역, 헤드 라이닝의 일 영역, 썬바이저의 일 영역에 배치되거나, 윈드 쉴드의 일영역(251c), 윈도우의 일영역(251h)에 구현될 수 있다.
음향 출력부(252)는, 프로세서(270) 또는 제어부(170)로부터 제공되는 전기 신호를 오디오 신호로 변환하여 출력한다. 이를 위해, 음향 출력부(252)는, 하나 이상의 스피커를 포함할 수 있다.
햅틱 출력부(253)는, 촉각적인 출력을 발생시킨다. 예를 들면, 햅틱 출력부(253)는, 스티어링 휠, 안전 벨트, 시트(110FL, 110FR, 110RL, 110RR)를 진동시켜, 사용자가 출력을 인지할 수 있게 동작할 수 있다.
프로세서(270)는, 사용자 인터페이스 장치(200)의 각 유닛의 전반적인 동작을 제어할 수 있다.
실시예에 따라, 사용자 인터페이스 장치(200)는, 복수의 프로세서(270)를 포함하거나, 프로세서(270)를 포함하지 않을 수도 있다.
사용자 인터페이스 장치(200)에 프로세서(270)가 포함되지 않는 경우, 사용자 인터페이스 장치(200)는, 차량(100)내 다른 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다.
한편, 사용자 인터페이스 장치(200)는, 차량용 디스플레이 장치로 명명될 수 있다.
사용자 인터페이스 장치(200)는, 제어부(170)의 제어에 따라 동작될 수 있다.
오브젝트 검출 장치(300)는, 차량(100) 외부에 위치하는 오브젝트를 검출하기 위한 장치이다.
오브젝트는, 차량(100)의 운행과 관련된 다양한 물체들일 수 있다.
도 5 내지 도 6을 참조하면, 오브젝트(O)는, 차선(OB10), 타 차량(OB11), 보행자(OB12), 이륜차(OB13), 교통 신호(OB14, OB15), 빛, 도로, 구조물, 과속 방지턱, 지형물, 동물 등을 포함할 수 있다.
차선(Lane)(OB10)은, 주행 차선, 주행 차선의 옆 차선, 대향되는 차량이 주행하는 차선일 수 있다. 차선(Lane)(OB10)은, 차선(Lane)을 형성하는 좌우측 선(Line)을 포함하는 개념일 수 있다.
타 차량(OB11)은, 차량(100)의 주변에서 주행 중인 차량일 수 있다. 타 차량은, 차량(100)으로부터 소정 거리 이내에 위치하는 차량일 수 있다. 예를 들면, 타 차량(OB11)은, 차량(100)보다 선행 또는 후행하는 차량일 수 있다.
보행자(OB12)는, 차량(100)의 주변에 위치한 사람일 수 있다. 보행자(OB12)는, 차량(100)으로부터 소정 거리 이내에 위치하는 사람일 수 있다. 예를 들면, 보행자(OB12)는, 인도 또는 차도상에 위치하는 사람일 수 있다.
이륜차(OB12)는, 차량(100)의 주변에 위치하고, 2개의 바퀴를 이용해 움직이는 탈것을 의미할 수 있다. 이륜차(OB12)는, 차량(100)으로부터 소정 거리 이내에 위치하는 2개의 바퀴를 가지는 탈 것일 수 있다. 예를 들면, 이륜차(OB13)는, 인도 또는 차도상에 위치하는 오토바이 또는 자전거일 수 있다.
교통 신호는, 교통 신호등(OB15), 교통 표지판(OB14), 도로면에 그려진 문양 또는 텍스트를 포함할 수 있다.
빛은, 타 차량에 구비된 램프에서 생성된 빛일 수 있다. 빛은, 가로등에서 생성된 빛을 수 있다. 빛은 태양광일 수 있다.
도로는, 도로면, 커브, 오르막, 내리막 등의 경사 등을 포함할 수 있다.
구조물은, 도로 주변에 위치하고, 지면에 고정된 물체일 수 있다. 예를 들면, 구조물은, 가로등, 가로수, 건물, 전봇대, 신호등, 다리를 포함할 수 있다.
지형물은, 산, 언덕, 등을 포함할 수 있다.
한편, 오브젝트는, 이동 오브젝트와 고정 오브젝트로 분류될 수 있다. 예를 들면, 이동 오브젝트는, 타 차량, 보행자를 포함하는 개념일 수 있다. 예를 들면, 고정 오브젝트는, 교통 신호, 도로, 구조물을 포함하는 개념일 수 있다.
오브젝트 검출 장치(300)는, 카메라(310), 레이다(320), 라이다(330), 초음파 센서(340), 적외선 센서(350) 및 프로세서(370)를 포함할 수 있다.
실시예에 따라, 오브젝트 검출 장치(300)는, 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
카메라(310)는, 차량 외부 영상을 획득하기 위해, 차량의 외부의 적절한 곳에 위치할 수 있다. 카메라(310)는, 모노 카메라, 스테레오 카메라(310a), AVM(Around View Monitoring) 카메라(310b) 또는 360도 카메라일 수 있다.
예를 들면, 카메라(310)는, 차량 전방의 영상을 획득하기 위해, 차량의 실내에서, 프런트 윈드 쉴드에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 프런트 범퍼 또는 라디에이터 그릴 주변에 배치될 수 있다.
예를 들면, 카메라(310)는, 차량 후방의 영상을 획득하기 위해, 차량의 실내에서, 리어 글라스에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 리어 범퍼, 트렁크 또는 테일 게이트 주변에 배치될 수 있다.
예를 들면, 카메라(310)는, 차량 측방의 영상을 획득하기 위해, 차량의 실내에서 사이드 윈도우 중 적어도 어느 하나에 근접하게 배치될 수 있다. 또는, 카메라(310)는, 사이드 미러, 휀더 또는 도어 주변에 배치될 수 있다.
카메라(310)는, 획득된 영상을 프로세서(370)에 제공할 수 있다.
레이다(320)는, 전자파 송신부, 수신부를 포함할 수 있다. 레이더(320)는 전파 발사 원리상 펄스 레이더(Pulse Radar) 방식 또는 연속파 레이더(Continuous Wave Radar) 방식으로 구현될 수 있다. 레이더(320)는 연속파 레이더 방식 중에서 신호 파형에 따라 FMCW(Frequency Modulated Continuous Wave)방식 또는 FSK(Frequency Shift Keyong) 방식으로 구현될 수 있다.
레이더(320)는 전자파를 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다.
레이더(320)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
라이다(330)는, 레이저 송신부, 수신부를 포함할 수 있다. 라이다(330)는, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식으로 구현될 수 있다.
라이다(330)는, 구동식 또는 비구동식으로 구현될 수 있다.
구동식으로 구현되는 경우, 라이다(330)는, 모터에 의해 회전되며, 차량(100) 주변의 오브젝트를 검출할 수 있다.
비구동식으로 구현되는 경우, 라이다(330)는, 광 스티어링에 의해, 차량(100)을 기준으로 소정 범위 내에 위치하는 오브젝트를 검출할 수 있다. 차량(100)은 복수의 비구동식 라이다(330)를 포함할 수 있다.
라이다(330)는, 레이저 광 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다.
라이다(330)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
초음파 센서(340)는, 초음파 송신부, 수신부를 포함할 수 있다. 초음파 센서(340)은, 초음파를 기초로 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다.
초음파 센서(340)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
적외선 센서(350)는, 적외선 송신부, 수신부를 포함할 수 있다. 적외선 센서(340)는, 적외선 광을 기초로 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다.
적외선 센서(350)는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
프로세서(370)는, 오브젝트 검출 장치(300)의 각 유닛의 전반적인 동작을 제어할 수 있다.
프로세서(370)는, 획득된 영상에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 영상 처리 알고리즘을 통해, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 전자파가 오브젝트에 반사되어 되돌아오는 반사 전자파에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 전자파에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 레이저가 오브젝트에 반사되어 되돌아오는 반사 레이저 광에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 레이저 광에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 초음파가 오브젝트에 반사되어 되돌아오는 반사 초음파에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 초음파에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
프로세서(370)는, 송신된 적외선 광이 오브젝트에 반사되어 되돌아오는 반사 적외선 광에 기초하여, 오브젝트를 검출하고, 트래킹할 수 있다. 프로세서(370)는, 적외선 광에 기초하여, 오브젝트와의 거리 산출, 오브젝트와의 상대 속도 산출 등의 동작을 수행할 수 있다.
실시예에 따라, 오브젝트 검출 장치(300)는, 복수의 프로세서(370)를 포함하거나, 프로세서(370)를 포함하지 않을 수도 있다. 예를 들면, 카메라(310), 레이다(320), 라이다(330), 초음파 센서(340) 및 적외선 센서(350) 각각은 개별적으로 프로세서를 포함할 수 있다.
오브젝트 검출 장치(300)에 프로세서(370)가 포함되지 않는 경우, 오브젝트 검출 장치(300)는, 차량(100)내 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다.
오브젝트 검출 장치(400)는, 제어부(170)의 제어에 따라 동작될 수 있다.
통신 장치(400)는, 외부 디바이스와 통신을 수행하기 위한 장치이다. 여기서, 외부 디바이스는, 타 차량, 이동 단말기 또는 서버일 수 있다.
통신 장치(400)는, 통신을 수행하기 위해 송신 안테나, 수신 안테나, 각종 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다.
통신 장치(400)는, 근거리 통신부(410), 위치 정보부(420), V2X 통신부(430), 광통신부(440), 방송 송수신부(450) 및 프로세서(470)를 포함할 수 있다.
실시예에 따라, 통신 장치(400)는, 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
근거리 통신부(410)는, 근거리 통신(Short range communication)을 위한 유닛이다. 근거리 통신부(410)는, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다.
근거리 통신부(410)는, 근거리 무선 통신망(Wireless Area Networks)을 형성하여, 차량(100)과 적어도 하나의 외부 디바이스 사이의 근거리 통신을 수행할 수 있다.
위치 정보부(420)는, 차량(100)의 위치 정보를 획득하기 위한 유닛이다. 예를 들면, 위치 정보부(420)는, GPS(Global Positioning System) 모듈 또는 DGPS(Differential Global Positioning System) 모듈을 포함할 수 있다.
V2X 통신부(430)는, 서버(V2I : Vehicle to Infra), 타 차량(V2V : Vehicle to Vehicle) 또는 보행자(V2P : Vehicle to Pedestrian)와의 무선 통신 수행을 위한 유닛이다. V2X 통신부(430)는, 인프라와의 통신(V2I), 차량간 통신(V2V), 보행자와의 통신(V2P) 프로토콜이 구현 가능한 RF 회로를 포함할 수 있다.
광통신부(440)는, 광을 매개로 외부 디바이스와 통신을 수행하기 위한 유닛이다. 광통신부(440)는, 전기 신호를 광 신호로 전환하여 외부에 발신하는 광발신부 및 수신된 광 신호를 전기 신호로 전환하는 광수신부를 포함할 수 있다.
실시예에 따라, 광발신부는, 차량(100)에 포함된 램프와 일체화되게 형성될 수 있다.
방송 송수신부(450)는, 방송 채널을 통해, 외부의 방송 관리 서버로부터 방송 신호를 수신하거나, 방송 관리 서버에 방송 신호를 송출하기 위한 유닛이다. 방송 채널은, 위성 채널, 지상파 채널을 포함할 수 있다. 방송 신호는, TV 방송 신호, 라디오 방송 신호, 데이터 방송 신호를 포함할 수 있다.
프로세서(470)는, 통신 장치(400)의 각 유닛의 전반적인 동작을 제어할 수 있다.
실시예에 따라, 통신 장치(400)는, 복수의 프로세서(470)를 포함하거나, 프로세서(470)를 포함하지 않을 수도 있다.
통신 장치(400)에 프로세서(470)가 포함되지 않는 경우, 통신 장치(400)는, 차량(100)내 다른 장치의 프로세서 또는 제어부(170)의 제어에 따라, 동작될 수 있다.
한편, 통신 장치(400)는, 사용자 인터페이스 장치(200)와 함께 차량용 디스플레이 장치를 구현할 수 있다. 이경우, 차량용 디스플레이 장치는, 텔레 매틱스(telematics) 장치 또는 AVN(Audio Video Navigation) 장치로 명명될 수 있다.
통신 장치(400)는, 제어부(170)의 제어에 따라 동작될 수 있다.
운전 조작 장치(500)는, 운전을 위한 사용자 입력을 수신하는 장치이다.
메뉴얼 모드인 경우, 차량(100)은, 운전 조작 장치(500)에 의해 제공되는 신호에 기초하여 운행될 수 있다.
운전 조작 장치(500)는, 조향 입력 장치(510), 가속 입력 장치(530) 및 브레이크 입력 장치(570)를 포함할 수 있다.
조향 입력 장치(510)는, 사용자로부터 차량(100)의 진행 방향 입력을 수신할 수 있다. 조향 입력 장치(510)는, 회전에 의해 조향 입력이 가능하도록 휠 형태로 형성되는 것이 바람직하다. 실시예에 따라, 조향 입력 장치는, 터치 스크린, 터치 패드 또는 버튼 형태로 형성될 수도 있다.
가속 입력 장치(530)는, 사용자로부터 차량(100)의 가속을 위한 입력을 수신할 수 있다. 브레이크 입력 장치(570)는, 사용자로부터 차량(100)의 감속을 위한 입력을 수신할 수 있다. 가속 입력 장치(530) 및 브레이크 입력 장치(570)는, 페달 형태로 형성되는 것이 바람직하다. 실시예에 따라, 가속 입력 장치 또는 브레이크 입력 장치는, 터치 스크린, 터치 패드 또는 버튼 형태로 형성될 수도 있다.
운전 조작 장치(500)는, 제어부(170)의 제어에 따라 동작될 수 있다.
차량 구동 장치(600)는, 차량(100)내 각종 장치의 구동을 전기적으로 제어하는 장치이다.
차량 구동 장치(600)는, 파워 트레인 구동부(610), 샤시 구동부(620), 도어/윈도우 구동부(630), 안전 장치 구동부(640), 램프 구동부(650) 및 공조 구동부(660)를 포함할 수 있다.
실시예에 따라, 차량 구동 장치(600)는, 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
한편, 차량 구동 장치(600)는 프로세서를 포함할 수 있다. 차량 구동 장치(600)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다.
파워 트레인 구동부(610)는, 파워 트레인 장치의 동작을 제어할 수 있다.
파워 트레인 구동부(610)는, 동력원 구동부(611) 및 변속기 구동부(612)를 포함할 수 있다.
동력원 구동부(611)는, 차량(100)의 동력원에 대한 제어를 수행할 수 있다.
예를 들면, 화석 연료 기반의 엔진이 동력원인 경우, 동력원 구동부(610)는, 엔진에 대한 전자식 제어를 수행할 수 있다. 이에 의해, 엔진의 출력 토크 등을 제어할 수 있다. 동력원 구동부(611)는, 제어부(170)의 제어에 따라, 엔진 출력 토크를 조정할 수 있다.
예를 들면, 전기 에너지 기반의 모터가 동력원인 경우, 동력원 구동부(610)는, 모터에 대한 제어를 수행할 수 있다. 동력원 구동부(610)는, 제어부(170)의 제어에 따라, 모터의 회전 속도, 토크 등을 조정할 수 있다.
변속기 구동부(612)는, 변속기에 대한 제어를 수행할 수 있다.
변속기 구동부(612)는, 변속기의 상태를 조정할 수 있다. 변속기 구동부(612)는, 변속기의 상태를, 전진(D), 후진(R), 중립(N) 또는 주차(P)로 조정할 수 있다.
한편, 엔진이 동력원인 경우, 변속기 구동부(612)는, 전진(D) 상태에서, 기어의 물림 상태를 조정할 수 있다.
샤시 구동부(620)는, 샤시 장치의 동작을 제어할 수 있다.
샤시 구동부(620)는, 조향 구동부(621), 브레이크 구동부(622) 및 서스펜션 구동부(623)를 포함할 수 있다.
조향 구동부(621)는, 차량(100) 내의 조향 장치(steering apparatus)에 대한 전자식 제어를 수행할 수 있다. 조향 구동부(621)는, 차량의 진행 방향을 변경할 수 있다.
브레이크 구동부(622)는, 차량(100) 내의 브레이크 장치(brake apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 바퀴에 배치되는 브레이크의 동작을 제어하여, 차량(100)의 속도를 줄일 수 있다.
한편, 브레이크 구동부(622)는, 복수의 브레이크 각각을 개별적으로 제어할 수 있다. 브레이크 구동부(622)는, 복수의 휠에 걸리는 제동력을 서로 다르게 제어할 수 있다.
서스펜션 구동부(623)는, 차량(100) 내의 서스펜션 장치(suspension apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 서스펜션 구동부(623)는 도로면에 굴곡이 있는 경우, 서스펜션 장치를 제어하여, 차량(100)의 진동이 저감되도록 제어할 수 있다.
한편, 서스펜션 구동부(623)는, 복수의 서스펜션 각각을 개별적으로 제어할 수 있다.
도어/윈도우 구동부(630)는, 차량(100) 내의 도어 장치(door apparatus) 또는 윈도우 장치(window apparatus)에 대한 전자식 제어를 수행할 수 있다.
도어/윈도우 구동부(630)는, 도어 구동부(631) 및 윈도우 구동부(632)를 포함할 수 있다.
도어 구동부(631)는, 도어 장치에 대한 제어를 수행할 수 있다. 도어 구동부(631)는, 차량(100)에 포함되는 복수의 도어의 개방, 폐쇄를 제어할 수 있다. 도어 구동부(631)는, 트렁크(trunk) 또는 테일 게이트(tail gate)의 개방 또는 폐쇄를 제어할 수 있다. 도어 구동부(631)는, 썬루프(sunroof)의 개방 또는 폐쇄를 제어할 수 있다.
윈도우 구동부(632)는, 윈도우 장치(window apparatus)에 대한 전자식 제어를 수행할 수 있다. 차량(100)에 포함되는 복수의 윈도우의 개방 또는 폐쇄를 제어할 수 있다.
안전 장치 구동부(640)는, 차량(100) 내의 각종 안전 장치(safety apparatus)에 대한 전자식 제어를 수행할 수 있다.
안전 장치 구동부(640)는, 에어백 구동부(641), 시트벨트 구동부(642) 및 보행자 보호 장치 구동부(643)를 포함할 수 있다.
에어백 구동부(641)는, 차량(100) 내의 에어백 장치(airbag apparatus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 에어백 구동부(641)는, 위험 감지시, 에어백이 전개되도록 제어할 수 있다.
시트벨트 구동부(642)는, 차량(100) 내의 시트벨트 장치(seatbelt appartus)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 시트벨트 구동부(642)는, 위험 감지시, 시트 밸트를 이용해 탑승객이 시트(110FL, 110FR, 110RL, 110RR)에 고정되도록 제어할 수 있다.
보행자 보호 장치 구동부(643)는, 후드 리프트 및 보행자 에어백에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 보행자 보호 장치 구동부(643)는, 보행자와의 충돌 감지시, 후드 리프트 업 및 보행자 에어백 전개되도록 제어할 수 있다.
램프 구동부(650)는, 차량(100) 내의 각종 램프 장치(lamp apparatus)에 대한 전자식 제어를 수행할 수 있다.
공조 구동부(660)는, 차량(100) 내의 공조 장치(air cinditioner)에 대한 전자식 제어를 수행할 수 있다. 예를 들면, 공조 구동부(660)는, 차량 내부의 온도가 높은 경우, 공조 장치가 동작하여, 냉기가 차량 내부로 공급되도록 제어할 수 있다.
차량 구동 장치(600)는, 프로세서를 포함할 수 있다. 차량 구동 장치(600)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다.
차량 구동 장치(600)는, 제어부(170)의 제어에 따라 동작될 수 있다.
운행 시스템(700)은, 차량(100)의 각종 운행을 제어하는 시스템이다. 운행 시스템(700)은, 자율 주행 모드에서 동작될 수 있다.
운행 시스템(700)은, 주행 시스템(710), 출차 시스템(740) 및 주차 시스템(750) 을 포함할 수 있다.
실시예에 따라, 운행 시스템(700)은, 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
한편, 운행 시스템(700)은, 프로세서를 포함할 수 있다. 운행 시스템(700)의 각 유닛은, 각각 개별적으로 프로세서를 포함할 수 있다.
한편, 실시예에 따라, 운행 시스템(700)이 소프트웨어적으로 구현되는 경우, 제어부(170)의 하위 개념일 수도 있다.
한편, 실시예에 따라, 운행 시스템(700)은, 사용자 인터페이스 장치(200), 오브젝트 검출 장치(300), 통신 장치(400), 차량 구동 장치(600) 및 제어부(170) 중 적어도 어느 하나를 포함하는 개념일 수 있다.
주행 시스템(710)은, 차량(100)의 주행을 수행할 수 있다.
주행 시스템(710)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다.
주행 시스템(710)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다.
주행 시스템(710)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주행을 수행할 수 있다.
출차 시스템(740)은, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
출차 시스템(740)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 출차를 수행할 수 있다.
주차 시스템(750)은, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 내비게이션 시스템(770)으로부터 내비게이션 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 오브젝트 검출 장치(300)로부터 오브젝트 정보를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
주차 시스템(750)은, 통신 장치(400)를 통해, 외부 디바이스로부터 신호를 제공받아, 차량 구동 장치(600)에 제어 신호를 제공하여, 차량(100)의 주차를 수행할 수 있다.
내비게이션 시스템(770)은, 내비게이션 정보를 제공할 수 있다. 내비게이션 정보는, 맵(map) 정보, 설정된 목적지 정보, 상기 목적지 설정 따른 경로 안내 정보, 경로 상의 다양한 오브젝트에 대한 정보, 차선 정보 및 차량의 현재 위치 정보 중 적어도 어느 하나를 포함할 수 있다.
내비게이션 시스템(770)은, 메모리, 프로세서를 포함할 수 있다. 메모리는 내비게이션 정보를 저장할 수 있다. 프로세서는 내비게이션 시스템(770)의 동작을 제어할 수 있다.
실시예에 따라, 내비게이션 시스템(770)은, 통신 장치(400)를 통해, 외부 디바이스로부터 정보를 수신하여, 기 저장된 정보를 업데이트 할 수 있다.
실시예에 따라, 내비게이션 시스템(770)은, 사용자 인터페이스 장치(200)의 하위 구성 요소로 분류될 수도 있다.
센싱부(120)는, 차량의 상태를 센싱할 수 있다. 센싱부(120)는, 자세 센서(예를 들면, 요 센서(yaw sensor), 롤 센서(roll sensor), 피치 센서(pitch sensor)), 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 요 센서(yaw sensor), 자이로 센서(gyro sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 핸들 회전에 의한 스티어링 센서, 차량 내부 온도 센서, 차량 내부 습도 센서, 초음파 센서, 조도 센서, 가속 페달 포지션 센서, 브레이크 페달 포지션 센서, 등을 포함할 수 있다.
센싱부(120)는, 차량 자세 정보, 차량 충돌 정보, 차량 방향 정보, 차량 위치 정보(GPS 정보), 차량 각도 정보, 차량 속도 정보, 차량 가속도 정보, 차량 기울기 정보, 차량 전진/후진 정보, 배터리 정보, 연료 정보, 타이어 정보, 차량 램프 정보, 차량 내부 온도 정보, 차량 내부 습도 정보, 스티어링 휠 회전 각도, 차량 외부 조도, 가속 페달에 가해지는 압력, 브레이크 페달에 가해지는 압력 등에 대한 센싱 신호를 획득할 수 있다.
센싱부(120)는, 그 외, 가속페달센서, 압력센서, 엔진 회전 속도 센서(engine speed sensor), 공기 유량 센서(AFS), 흡기 온도 센서(ATS), 수온 센서(WTS), 스로틀 위치 센서(TPS), TDC 센서, 크랭크각 센서(CAS), 등을 더 포함할 수 있다.
차량 인터페이스부(130)는, 차량(100)에 연결되는 다양한 종류의 외부 기기와의 통로 역할을 수행할 수 있다. 예를 들면, 차량 인터페이스부(130)는 이동 단말기와 연결 가능한 포트를 구비할 수 있고, 상기 포트를 통해, 이동 단말기와 연결할 수 있다. 이경우, 차량 인터페이스부(130)는 이동 단말기와 데이터를 교환할 수 있다.
한편, 차량 인터페이스부(130)는 연결된 이동 단말기에 전기 에너지를 공급하는 통로 역할을 수행할 수 있다. 이동 단말기가 차량 인터페이스부(130)에 전기적으로 연결되는 경우, 제어부(170)의 제어에 따라, 차량 인터페이스부(130)는 전원 공급부(190)에서 공급되는 전기 에너지를 이동 단말기에 제공할 수 있다.
메모리(140)는, 제어부(170)와 전기적으로 연결된다. 메모리(140)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(140)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장기기 일 수 있다. 메모리(140)는 제어부(170)의 처리 또는 제어를 위한 프로그램 등, 차량(100) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다.
실시예에 따라, 메모리(140)는, 제어부(170)와 일체형으로 형성되거나, 제어부(170)의 하위 구성 요소로 구현될 수 있다.
제어부(170)는, 차량(100) 내의 각 유닛의 전반적인 동작을 제어할 수 있다. 제어부(170)는 ECU(Electronic Contol Unit)로 명명될 수 있다.
전원 공급부(190)는, 제어부(170)의 제어에 따라, 각 구성요소들의 동작에 필요한 전원을 공급할 수 있다. 특히, 전원 공급부(190)는, 차량 내부의 배터리 등으로부터 전원을 공급받을 수 있다.
차량(100)에 포함되는, 하나 이상의 프로세서 및 제어부(170)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
도 8a는 본 발명의 AR 서비스 플랫폼을 설명하기 위한 개념도이다.
본 발명의 AR 서비스를 제공하는 AR 서비스 플랫폼은, AR 서비스 시스템으로 명명될 수 있다.
상기 AR 서비스 플랫폼은, 차량 외부에 구비되며, AR 서비스에 필요한 정보를 수집 및 가공하여 상기 차량으로 전송하는 서버(850) 및 상기 차량에 구비되며, 상기 서버에서 전송된 정보를 이용하여 AR 서비스를 제공하는 AR 서비스 장치(800)를 포함할 수 있다.
상기 서버(850)에서 AR 서비스에 필요한 정보를 수집 및 가공하여 차량으로 전송한다는 것은, 상기 서버(850)가 상기 AR 서비스에 필요한 정보를 수집 및 가공하여 차량에 구비된 AR 서비스 장치(800)로 전송한다는 의미를 포함할 수 있다.
상기 AR 서비스 장치(800)는, 차량의 상황에 근거하여, AR 서비스로 제공되는 정보를 가변시킬 수 있다.
즉, 본 발명의 AR 서비스 장치(800)는, AR로 표시할 정보와 정보량을 차량의 상황에 따라 동적으로 조절(가변)하고, 강조할 정보를 선별할 수 있다.
또한, 본 발명의 AR 서비스 플랫폼은, 차량 상황, 광고 노출 조건 등 특정 조건에 따라 차량에서 제공되는 AR 서비스가 달라지도록 제어할 수 있다.
종래의 AR 네비게이션의 경우, 목적지나 주요 POI(Point of Interest)를 AR 네비게이션에서 표시할 때, 지도 데이터에 저장된 정보를 이용하기 때문에 최신 정보를 반영하기 어렵고, 주유/주차 등과 같이 실시간 속성이 포함된 POI는 제공하지 못하는 한계가 존재한다.
반면, 본 발명의 AR 서비스 플랫폼은, 차량의 위치 정보, 지도 정보, 복수의 센서 데이터, 실시간 POI 정보, 광고/이벤트 정보 등을 융합하여 AR 네비게이션에 표시할 수 있다.
일 예로, AR 정보 표시를 위해, 본 발명의 AR 서비스 장치(800)는, 차량의 현위치, 네비게이션 경로/안내 정보를 기반으로 서버로부터 AR 서비스 정보를 수신하고, AR 네비게이션 화면에 표시하기 위한 형태로 가공할 수 있다.
일 예로, 본 발명의 AR 서비스 장치(800)는, 실시간 AR 표시 정보 재구성할 수 있다. AR 서비스 장치(800)는, 서버로부터 수신 받은 서비스 데이터를 주행 상황을 고려하여 AR 컨텐츠의 표시 형식, 크기, 위치, 노출 방법 등을 판단하여 AR 네비게이션 화면에 표시하도록 재구성할 수 있다(예, 주행 속도에 따라 POI 노출 위치 및 크기 가변화, 교통 트래픽 상황에 따른 서비스 정보 노출 위치 변경, AR Wall 표시 위치 및 노출 시간 조정 등).
또한, 본 발명의 AR 서비스 장치(800)는, 사용자 피드백을 통한 AR 표시 정보 노출 빈도 분석할 수 있다.
서버(850)는 AR 서비스 컨텐츠에 대한 사용자 입력 정보(터치, 주문 등의 입력 정보)를 수집하여 컨텐츠 노출 빈도 분석을 수행하고, 해당 정보를 기반으로 서비스 컨텐츠 노출 정책을 조정할 수 있다.
이러한 구성을 통해, 본 발명은, 다양한 외부 서비스 컨텐츠를 융합하여 AR 네비게이션에 표현이 가능하고, 실시간 속성이 포함된 POI 정보를 통해 다양한 서비스를 제공할 수 있다.
또한, 본 발명은, POI 정보뿐만 아니라 광고, 이벤트, 주요 랜드마크 정보 등 다양한 형태의 AR 컨텐츠 표시가 가능하다.
또한, 본 발명에서 제안하는 UX 시나리오 기반의 실시예를 통하여, AR 네비게이션의 새로운 사용자 경험을 제시할 수 있다.
본 발명은, AR로 표시할 정보량(POI 데이터, 광고)을 차량 상황과 광고 노출 조건에 따라 동적으로 조절하는 서비스 플랫폼 구조 및 AR 정보 표시 방법(UX), AR 표현을 위한 POI 정보와 커머스 서비스 정보를 수집하고 AR 엔진에서 렌더링하기 쉬운 형태로 가공하는 모듈, 차량 내/외 상황에 따라 특정 POI 정보를 강조하도록 처리하는 모듈, 차량 상황 정보를 수집하고 상황에 맞게 UX 정책을 적용하는 모듈 및 UX 정책에 따라 AR 오브젝트(Group Poi, Mini Poi, 3D Object, Event wall 등)를 렌더링하는 AR 엔진 모듈을 제공할 수 있다.
또한, 본 발명은, 차량 전석, 후석 디스플레이간 인터랙션 및 데이터를 송수신하는 클라이언트 모듈, POI와 연계된 커머스 서비스 정보를 노출하는 Service App 모듈, AR 광고 오브젝트 노출 결과, 클릭 등 광고에 대한 사용자 액션을 수집하는 클라이언트 모듈 및 AR 광고 오브젝트 노출 결과, 클릭 등 광고에 대한 사용자 액션을 수집/분석하는 클라우드 모듈을 제공할 수 있다.
도 8a를 참조하면, 본 발명의 AR 서비스 플랫폼은, 차량 외부에 존재하는 구성(Off-board)인 서버(850)와, 차량에 구비되는 구성(On-board)인 AR 서비스 장치(800)를 포함할 수 있다.
우선, 서버(850)는, POI 데이터 애그리게이터(POI Data Aggregator)(851), 광고 매니저부(Ads manager)(852), 광고 모니터링부(Ads Monitoring)(853), 서비스 및 광고 매니저부(Service & Ads Manager)(854), 커머스 매니저부(Commerce Manager)(855), 데이터베이스 커넥터(DB Connector)(856) 및 대쉬보드(Dashboard)(857)를 포함할 수 있다.
POI 데이터 애그리게이터(POI Data Aggregator)(851)는 AR 서비스에 필요한 정보를 복수개의 외부 서버로부터 받아와 AR 서비스 플랫폼의 메시지 포맷으로 변환/통합할 수 있다.
광고 매니저부(Ads manager)(852)는, 광고 정보/컨텐츠 관리, 광고 캠페인(광고 노출 조건) 관리를 수행할 수 있다.
광고 모니터링부(Ads Monitoring)(853)는, 광고 노출, 클릭 결과 수집/저장할 수 있다.
서비스 및 광고 매니저부(Service & Ads Manager)(854)는, 서비스 정보에 노출 조건에 맞는 광고 정보를 삽입하여 클라이언트에 제공할 수 있다.
커머스 매니저부(Commerce Manager)(855)는, 커머스 서비스 연동 / 결제 정보 수집할 수 있다.
데이터베이스 커넥터(DB Connector)(856)는, 광고 컨텐츠, 광고 노출 결과 정보, 커머스 결제 정보 저장/쿼리할 수 있다.
대쉬보드(Dashboard)(857)는, 광고 노출 결과/결제 내역 결과를 시각화한 실시간 AR 서비스 현황을 표시할 수 있다.
또한, 서버(850)는, 차량의 AR 서비스 장치(800)로부터 전송된 정보를 서버에서 이용 가능한 데이터 형식으로 변환하고, 서버에서 가공/생성된 정보를 AR 서비스 장치(800)에서 이용 가능한 데이터 형식으로 변환하기 위한 AR 서비스 클라우드 API(또는, 데이터 변환부)를 더 포함할 수 있다.
한편, AR 서비스 장치(800)는, 클라우드 인터페이스, 커머스 앱, CID-RSE 인터랙션 매니저, 정책 매니저, 광고 모니터링, 주행 컨텍스트, 개인화된 추천 등을 포함하는 클라이언트(810) 및 POI 렌더러, 표시 매니저, 터치 매니저 등을 포함하는 AR 엔진(820)을 포함할 수 있다.
클라이언트(810)는, 서버로부터 POI 정보, 광고 등을 수신할 수 있다.
또한, 클라이언트(810)는, 주문/결제 정보를 서버(850)와 송수신할 수 있으며, 광고 노출 결과를 서버(850)에 전송할 수 있다.
AR 엔진(820)은, AR로 출력된 AR 객체가 터치된 횟수, 노출 횟수 등의 데이터를 클라이언트(810)에 전송할 수 있다.
또한, AR 엔진(820)은, 전/후석(CID, RSE) 연동 데이터를 클라이언트(810)와 송수신할 수 있으며, 클라이언트(810)로부터 수신된 AR 표시 정책에 따라 AR 객체를 출력할 수 있다.
또한, AR 엔진(820)은, 차량에 구비된 자이로 센서, 카메라, 통신부, 네비게이션, ADAS(Advanced Driver Assistance Systems), GPS 등으로부터 수집된 데이터를 기반으로 AR 서비스를 통해 제공된 AR 객체의 종류, 출력 위치, POI 종류, 출력 크기, 등을 결정할 수 있다.
차량에 구비된(On-board) AR 서비스 장치(800)는, 클라우드 서버로부터 전송받은 데이터를, 전방 카메라 영상에 AR로 표시하도록 서비스 컨텐츠를 AR 렌더링할 수 있다.
또한, AR 서비스 장치(800)는, AR엔진으로 부터 광고 게시 결과 데이터 수집 및 서버에 전달하는 등 서버와 AR 엔진 사이의 데이터 전달을 중개할 수 있다.
또한, AR 서비스 장치(800)는, CID-RSE(즉, 전/후석)간 AR로 발생한 데이터를 연동할 수 있다.
또한, AR 서비스 장치(800)는, AR 표시 정책에 대한 데이터 관리를 수행할 수 있으며, 구체적으로, 주행 상황에 따른 AR표시 정책 데이터를 AR엔진에 제공할 수 있다.
또한, AR 서비스 장치(800)는, 상황 인지 및 개인화 서비스 제공할 수 있으며, 구체적으로, 차량 내 데이터를 활용한 주행 상황(속도, TBT(Turn-by-Turn) 등)에 따라 AR 객체를 AR 엔진에 제공할 수 있다.
본 명세서에서는, 차량에 구비된 카메라를 통해 촬영(수신, 처리)된 영상에 AR 정보(또는, AR 객체, AR 컨텐츠, POI 정보 등)를 오버랩하여 출력하여 AR 서비스를 제공하는 것을 예로 설명하기로 한다.
그러나, 이에 한정되지 않고, 본 명세서에서 설명하는 AR 서비스는, 운전자 또는탑승객 기준으로, 차량의 윈드쉴드 상에 바로 AR 정보가 현실 세계의 공간에 오버랩되어 보이도록 출력되거나, HUD(Head-up Display)를 통해 AR 정보가 출력되는 등 다양한 증강현실의 구현방법에 동일/유사하게 유추적용될 수 있다.
AR 서비스를 제공하기 위해 사용되는 입력 데이터(입력 정보)와 AR 서비스 플랫폼을 통해 제공되는 출력 데이터(출력 정보)는 다음과 같다.
우선, 입력 데이터의 종류는, 지도 정보(네비게이션 정보), 서비스 컨텐츠 정보(POI, 광고 등), 다이내믹 정보, 차량 센서 정보, 히스토리컬 정보, 주행 관련 정보를 포함할 수 있다.
지도 정보(네비게이션 정보)는, 목적지까지의 경로 정보 (네비게이션 경로), 안내정보 (Turn-by-Turn), 전방 도로 형상 (Road/Lane), 복수개의 지도 속성 정보(도로 종별/속성, 도로 및 차선의 폭, 곡률, 경사도, 제한속도 등), Localization Object (Road marking, Traffic sign 등) 정보 등을 포함할 수 있다.
서비스 컨텐츠 정보(POI, 광고 등)는, 복수의 서비스 프로바이더로부터 수신 받은 POI 정보, 현위치에서 제공 가능한 광고 정보 및 주유소, 충전소, 주차장 등 예약/결제 서비스를 위한 실시간 정보를 포함할 수 있다.
다이내믹 정보는, Traffic 정보 (Road단위 traffic, Lane 단위 traffic), 이벤트 정보 (사고, Hazard warning 등), 날씨 정보, V2X (V2V, V2I)(Vehicle to Everything, Vehicle to Vehicle, Vehicle to Infra) 등을 포함할 수 있다.
차량 센서 정보는, 현위치 정보 (GPS/DR), 카메라 입력 정보 (ADAS 정보, Object 인식 정보) 및 V2X (V2V와 V2I를 통해 수집 가능한 실시간 주변 상황 정보)를 포함할 수 있다.
히스토리컬 정보는, 과거 주행 경로, Traffic History (예, 시간대 별 소통량), 지역(Zone)과 시간에 따른 통신 속도 등에 대한 정보를 포함할 수 있다.
주행 관련 정보는, 주행모드 (수동, 자율주행, 반자율주행, ADAS 기능 작동 여부 등), 목적지나 경유지 진입 여부, 주차장 진입 여부 등을 포함할 수 있다.
AR 서비스 플랫폼을 통해 제공할 수 있는 출력 정보는, 현위치/경로 기반 AR 서비스 표시 데이터를 포함할 수 있다.
현위치/경로 기반 AR 서비스 표시 데이터는, 경로상 AR 광고 표시 가능 지점(AR Wall, POI 건물 하이라이트), 선택 가능한 AR 빌딩 정보(랜드마크와 같이 선택 가능한 주요 건물 정보), 일반 POI 정보(아이콘이나 말풍선과 같은 POI 요약 정보), 원거리 POI 정보(경로상에는 존재하지 않지만 운행에 도움이 되는 중요 POI 정보의 거리/방향 표시), 동일 건물에 복수개의 POI가 존재할 경우 출력되는 표시 정보, 목적지 건물 및 실시간 주차장 상태 정보, 주유소/충전소의 실시간 상태 정보 및 위치 기반 광고/이벤트 정보 등을 포함할 수 있다.
본 발명의 AR 서비스 플랫폼은, 실시간 정보에 따른 AR 서비스 정보를 필터링하고, 표시 방법을 결정할 수 있다.
구체적으로, AR 서비스 플랫폼은, 주행 속도 기반의 실시간 POI 노출 개수, POI 겹침제거, 크기 조절, 노출 시간 등을 결정할 수 있다.
또한, AR 서비스 플랫폼은, 위험 정보 인식에 따른 POI 노출 방법을 결정할 수 있으며, 구체적으로, 사고, 공사, 다수의 무빙오브젝트 인식 상황 등에 따라 POI 표시 방법을 동적으로 변경할 수 있다.
또한, AR 서비스 플랫폼은, 트래픽으로 인한 AR 표시 시인성 저하 상황 발생 시, POI 표시 위치 동적 변경할 수 있다.
또한, AR 서비스 플랫폼은, 전/후석 AR 표시 데이터 재구성할 수 있으며, 일 예로, 주행속도, 위험정보, 날씨 정보 등을 고려하여 전석 디스플레이에는 AR 서비스 정보를 최소화 하고 후석 디스플레이는 표시 가능한 모든 정보를 표시할 수 있도록 재구성할 수 있다.
이와 같은 AR 서비스 플랫폼의 동작/기능/제어방법은, AR 서비스 플랫폼에 포함된 서버 또는 AR 서비스 장치에 의해 구현되거나, 서버와 AR 서비스 장치의 유기적인 상호 작용에 의해 구현될 수 있다.
도 8a를 참조하여, AR 서비스 플랫폼의 서버(850)의 구성에 대하여 보다 구체적으로 설명하면 다음과 같다.
서비스 및 광고 매니저부(854)는, 클라이언트 연동(request) 기능, POI 정보와 광고 정보 통합 (data processing & aggregation) 기능, 클라이언트 연동 (respond) 기능을 수행할 수 있다.
구체적으로, 클라이언트 연동(request) 기능은, Unified API로 POI 정보를 요청/수신(위치, 카테고리)하거나, Unified API로 목적지 입구 위치 정보를 요청/수신 (목적지 좌표/주소/id 중 택 1)하는 것을 포함할 수 있다.
여기서, Unified API는 특정 data provider에 의존성없는 AR 서비스 클라우드에서 정의한 API (클라이언트 변동 최소화를 위함)를 의미한다.
POI 정보와 광고 정보 통합 (data processing & aggregation) 기능은, 클라이언트가 요청한 위치의 반경 000m 내 POI 정보 및 광고 정보를 통합하거나 (from data manager, ads manager) 또는 클라이언트가 요청한 목적지의 입구 위치 및 POI 광고 정보를 통합 (from data manager, ads manager)하는 것을 포함할 수 있다.
구체적으로, POI 정보와 광고 정보 통합 기능은, Building wall, Event wall 정보 포함한 광고 정보와 POI 정보 정합하거나, 같은 건물에 다수의 POI가 있는 경우, 서버에서 우선순위를 정해 필터링하는 기능(e.g. 파트너 업체만 남기고 다른 POI 정보는 제외시킴)을 포함할 수 있다.
여기서, 필터링 기준은 각 POI별 우선순위 점수 부여하고 이를 비교하는 것을 포함할 수 있다.
클라이언트 연동 (respond) 기능은, Unified API로 POI 정보 및 광고 정보 전송하거나, Unified API로 목적지 입구 위치 및 광고 정보를 정송하는 것을 포함할 수 있다.
서버(850)에 포함된 데이터 매니저부(Data Manager)(미도시)는, POI 정보 수집/전달 기능, 빌딩 형상(polygon) 정보 수집/전달 기능, 목적지 입구 정보 수집/전달기능을 포함할 수 있다.
POI 정보 수집/전달 기능은, 3rd party API에 POI 정보를 요청하거나, 3rd party API에서 받아온 POI 정보를 (Unified API response 형식으로 변환하여) 전달 (to Service & Ads Aggregator)하는 기능을 수행할 수 있다.
빌딩 형상(polygon) 정보 수집/전달 기능은, 3rd party API/data set에 빌딩 외곽 형상 정보를 요청하거나, 3rd party API에서 받아온 POI 정보를 (Unified API response 형식으로 변환하여) 전달 (to Service & Ads Aggregator)하는 기능을 수행할 수 있다.
목적지 입구 정보 수집/전달 기능은, 3rd party API에 목적지 입구 정보를 요청하거나, 3rd party API에서 받아온 목적지 입구 정보를 (Unified API response 형식으로 변환하여) 전달 (to Service & Ads Aggregator)하는 기능을 수행할 수 있다.
광고 매니저부(Ads Manager)(852)는, 파트너(광고) 업체 관리 인터페이스, 광고 캠페인 관리 인터페이스, 광고 컨텐츠 관리 인터페이스를 제공할 수 있다.
광고 모니터링부(Ads Monitoring)(853)는, 광고 효과 측정 피드백 수신 기능 및 광고 정보 전달 기능을 수행할 수 있다.
파트너(광고) 업체 관리 인터페이스는, POI 광고주 관리 (광고주 정보 추가/수정/삭제) 및 일반 광고주 관리 (광고주 정보 추가/삭제)를 수행할 수 있다.
POI 지원 광고 포맷은, Brand poi pin, Building wall, 3D rendering, Event wall 등을 포함할 수 있으며, 실제 POI/위치와는 관련 없는 브랜드 광고의 (e.g. 코카콜라 광고 등) 지원 광고 포맷(일반 지원 광고 포맷)은, Event wall일 수 있다.
광고 캠페인 관리 인터페이스는, 광고 캠페인(광고 위치, 유형, 시간 등) 추가/수정/삭제를 수행할 수 있다.
광고 컨텐츠 관리 인터페이스는 광고 포맷 별 컨텐츠 추가/수정/조회/삭제 (POI 브랜드 아이콘 이미지, building wall 이미지, event wall 이미지/동영상, 3D rendering 이미지)를 수행할 수 있다.
광고 효과 측정 피드백 수신 기능은, 클라이언트가 전송한 광고 노출 피드백 수신하여 DB Manager에 전달 (CPC/CMP/CPT&P)하는 기능을 포함할 수 있다.
광고 정보 전달 기능은, Service & Ads Aggregator가 요청한 위치의 반경 000m 내 노출해야할 광고 캠페인 정보 조회하여 전달 (CPT&P인 경우 시간 조건에 맞는 광고만 전달)하는 기능을 포함할 수 있다.
커머스 매니저부(Commerce Manager)(855)는, 클라이언트 연동 기능, 외부 커머스 서비스 연동 기능, 결제 정보 관리 기능을 수행할 수 있다.
클라이언트 연동 기능은, Unified API로 클라이언트 연동하여 요청 수신, Unified API로 받은 요청 내용을 외부 커머스 API 스펙으로 변환, 외부 API에서 받은 데이터를 Unified API의 메세지 포맷으로 변환 및 클라이언트에 데이터 전달 기능을 포함할 수 있다.
커머스 매니저부는, Unified API로 받은 요청 내용을 외부 커머스 API 스펙으로 변환한 후 변환된 내용으로 외부 서비스 연동 기능을 수행할 수 있다.
외부 API에서 받은 데이터를 Unified API의 메세지 포맷으로 변환하는 것은 외부 서비스 연동에서 수신한 데이터를 Unified API로 변환하는 작업을 의미할 수 있다.
외부 커머스 서비스 연동 기능은, 현재 위치에서 인접한 매장 리스트 및 메타 정보 요청 & 결과 수신, 위 리스트 중 특정 매장에 대한 상세 정보 요청 & 결과 수신, 예약/주문 요청 & 결과 수신, 서비스 이용 상태 요청 & 결과 수신 및 커머스 서비스의 회원 정보 연동 & 결과 수신 기능을 포함할 수 있다.
여기서, 서비스 이용 상태 요청 & 결과 수신은, 서비스 이용 상태(예약 완료 / 주차장 입차 / 주차 중 / 주차장 출차 / 예약 취소)에 따른 시퀀스 관리 및 AR 메시지 팝업 용도로 사용될 수 있다.
서비스의 회원 정보 연동 & 결과 수신은 커머스 서비스 회원 ↔ AR 서비스 회원(OEM 커넥티스 서비스 회원) 정보 연동에 사용될 수 있다.
결제 정보 관리 기능은, 외부 커머스 서비스에서 결제한 내역 수집(내용, 금액) 및 결제 내역을 기반으로 외부 커머스 사에게 수수료 청구하는 기능을 포함할 수 있다.
데이터베이스 커넥터(DB Connector)(856)는, 광고 효과 측정 데이터 관리 기능, 커머스 데이터 관리 기능, 광고주 데이터 관리 기능, 광고 컨텐츠 데이터 관리 기능 및 광고 위치 데이터 관리 기능을 수행할 수 있다.
광고 효과 측정 데이터 관리 기능은 CPC/CPM/CPT&P 관련 로그 데이터 저장/삭제하고, 데이터 조회 (POI별, 브랜드별, 시간별, 광고 타입별)할 수 있다.
커머스 데이터 관리 기능은, 외부 커머스 서비스에서 결제한 내역 저장/삭제 (내용, 금액), 데이터 조회 (POI별, 브랜드별, 시간별, 광고 타입별)를 수행할 수 있다.
광고주 데이터 관리 기능은, 광고주 정보 및 광고주별 광고 캠페인 설정 내용 저장/수정/삭제/조회를 수행할 수 있다.
광고 컨텐츠 데이터 관리 기능은, 광고주 정보와 연동하여 광고 컨텐츠 저장/수정/삭제/조회할 수 있다.
광고 위치 데이터 관리 기능은, AR 광고를 표시할, Event wall 구간 좌표, Building wall 좌표 관리 (브랜드별)를 수행할 수 있으며, 사용자가 직접 등록한 좌표, 업체 API 연동으로 얻은 특정 좌표로 구분될 수 있다.
대쉬보드(Service Dashboard)(857)는, 광고 효과 측정 데이터 시각화 기능 및 커머스 서비스 데이터 시각화 기능을 수행할 수 있다.
광고 효과 측정 데이터 시각화 기능은, CPC: 업체/브랜드별 총 광고 click 수에 대한 차트 (기간별로 조회 가능), CPC: 전체 광고 click 수에 대한 집계 차트 (기간별로 조회 가능), CPM: 업체/브랜드별 총 광고 노출 수에 대한 차트 (기간별로 조회 가능), CPM: 전체 광고 노출 수에 대한 집계 차트 (기간별로 조회 가능), CPT&P: 업체/브랜드별 광고 click 수에 대한 차트 (기간별로 조회 가능), CPT&P: 업체/브랜드별 광고 노출 수에 대한 차트 (기간별로 조회 가능)를 제공할 수 있다.
이러한 차트는, Bar graph, Line graph, Pie Chart, Word graph, Geospatial graph 등 다양한 방식으로 제공될 수 있다.
CPT&P는 정산 방식이 클릭 횟수나 노출 횟수가 아닌 시간당 과금이지만, 노출 효과 측정을 위한 데이터로 사용될 수 있다.
커머스 서비스 데이터 시각화 기능은, 업체별 결제 누적 액수에 대한 차트 (기간별로 조회 가능), 전체 결제 누적 액수에 대한 차트 (기간별로 조회 가능)를 제공할 수 있다.
도 8b는 본 발명의MR 서비스를 제공하기 위한 MR 서비스 플랫폼을 설명하기 위한 개념도이다.
본 발명은 혼합 현실 자동차 메타 서비스(Mixed Reality Automotive Meta Service, MR AMS)(이하, MR 서비스와 혼용하여 사용하기로 함)를 제공하는 것이 가능한 MR 서비스 플랫폼을 제공할 수 있다.
MR 서비스 플랫폼은, MR 서비스 시스템, MR 네비게이션 시스템, MR 플랫폼, MR 시스템 등으로 명명될 수 있다.
MR 서비스 플랫폼은, 혼합 현실을 기반으로 한 서비스를 제공하는 것이 가능한 플랫폼을 이야기하며, 여러 독립적인 구성요소들을 포함할 수 있다.
예를 들어, MR 서비스 플랫폼은, 차량 단(Onboard)에 구비된 MR 서비스 장치(900)(또는, MR 네비게이션 엔진으로 명명됨), 차량 외부의 서버 단(또는 클라우드 단)(Offboard)에 구비된 MR AMS(이하에서는, MR AMS 서버라 함)(1100) 및DTaaS(Digital Twin as a Service) 서버(1200)를 포함할 수 있다.
상기 MR 서비스 장치(900)는, MR AMS 클라이언트(Client)(910) 및 MR 렌더러(Renderer)(920)를 포함할 수 있다.
본 명세서에서 설명하는 MR 서비스는, 차량용 혼합현실 네비게이션 서비스로 이해될 수 있다. 즉, 본 발명의 MR 서비스 플랫폼은, 차량에 탑승한 사용자에게 혼합 현실로 구현된 차량용 인터페이스를 제공할 수 있다.
본 발명의 MR 서비스 플랫폼에서 제공하는 MR 서비스는, 실제 세계에서 운전을 하고 있지만 차량 내에 있는 디스플레이를 통해서 디지털 세계의 경험을 제공할 수 있다.
구체적으로, MR 서비스는, 디지털 세계에 실세계 정보를 융합한 가상의 3D 공간에서 길안내, 안전운전, POI(Point of Interest) 및 엔터테인먼트 사용자 경험을 운전자에게 인터렉티브(Interactive)하게 제공할 수 있다.
이를 통해, 본 발명의 MR 서비스 플랫폼은, 기존의 카메라 기반(또는 HUD(Head up Display) 기반)의 AR(Augmented Reality) 대비 시공간 제약에서 벗어난 다양한 UX(User Experience)를 제공할 수 있다.
여기서, 디지털 세계는, 디지털 트윈(Digital Twin) 또는 디지털 트윈된 스마트 시티를 의미하고, 실세계 정보는, V2X(Vehicle to Everything), C-ITS(Cooperative-Intelligent transport Systems) 등 인프라 데이터 및/또는 자율주행 차량에 구비된 센서에 의해 센싱된 주변 인지 데이터를 포함할 수 있다.
또한, 위에서 설명한 융합은, 본 MR 서비스 플랫폼을 구현하기 위한 MR 서비스 클라우드(1000)(또는 MR AMS 클라우드)및 MR 서비스 장치(900)뿐만 아니라, 차량 및 인프라 센서 데이터를 융합하는 개념을 포함할 수 있다.
또한, 인터렉티브는, 혼합 현실 네비게이션 뿐만 아니라, 고품질의 3차원 영상 렌더링 및 사용자 인터렉션을 포함하는 개념으로 이해되어야 한다.
한편, 본 명세서에서 설명하는 혼합 현실(Mixed Reality, MR)은 현실 세계에 가상 현실(Virtual Reality)이 접목되어 현실의 물리적 객체오 ㅏ가상 객체가 상호 작용할 수 있는 환경을 의미할 수 있다.
혼합 현실(MR)은 현실을 기반으로 가상 정보를 부가하는증강 현실(AR:AugmentedReality)과 가상 환경에 현실 정보를 부가하는증강 가상(AV:AugmentedVirtuality)의 의미를 포함할 수 있다.
즉, 현실과 가상이 자연스럽게 연결된 스마트 환경을 제공하여사용자는 풍부한 체험을 할 수 있다. 예로 사용자의 손바닥에 놓인 가상의 애완동물과 교감한다거나, 현실의 방 안에 가상의 게임 환경을 구축해 게임을 할 수 있다. 또 집안의 가구를 가상으로 재배치해 본다거나, 원격에 있는 사람들이 함께 모여 함께 작업하는 듯한 환경을 구축할 수 있다.
본 발명의 일 실시 예에 따른 혼합 현실(MR)을 이용한 혼합 현실 자동자 메타 서비스(MR AMS)는, 미래 주행 경로를 미리보기로 표현하여 사용자에게 사전에 도로 형상과 액션을 준비할 수 있도록 도움을 줄 수 있다.
또한, 본 발명의 일 실시 예에 따른 혼합 현실(MR)을 이용한 혼합 현실 자동자 메타 서비스(MR AMS)는, 특정 POI(Point of Interest)를 주시하여 광고 효과를 개선하거나 서비스 사용률 향상을 유도할 수도 있다.
또한, 본 발명의 일 실시 예에 따른 혼합 현실(MR)을 이용한 혼합 현실 자동자 메타 서비스(MR AMS)는, 특정 지도 업체에 종속적이지 않으며, 다양한 지도 업체의 데이터를 융합하는 것도 가능하다.
본 발명은 혼합 현실 자동차 메타 서비스 중 하나로 MR 네비게이션 기능을 제공할 수 있다.
MR 네비게이션 기능에서는, 현실 세계 상에 증강 현실 객체를 오버랩하는 것이 아닌, 가상 세계 상에서 구현되기 때문에, AR 네비게이션에서 발생되는 전방 가려짐 문제나 매칭 품질 달성 등의 어려움을 해결할 수 있다.
이에 따라, 본 발명은 MR 네비게이션 기능을 통해 기존 네비게이션에서 표현이 어려웠던 다양한 컨텍스트들을효과적으로 표현하여 사용자 UX를 개선할 수 있다.
이를 위해, 본 발명의 MR 서비스 플랫폼은, MR 컨텍스트(Context) 관리 방법과, MR AMS를 제공하기 위한 메타 데이터와 3D 자산(asset)을 획득하는 방법 및 시스템을 제공할 수 있다.
본 발명의 MR 서비스 플랫폼은, 디지털 세계에서 필요한 MR Context를 정의하고 이를 획득하기 위한 서비스 메타데이터를 모델링함으로써 관련 서비스 메타데이타와 3D 자산을 MR 네비게이션에 렌더링할 수 있다.
이에 따라, 본 발명은 실제 세계에서 운전을 하고 있지만 차량 내에 있는 디스플레이를 통해서 디지털 세계의 경험을 제공하고, MR 네비게이션의 향상된 가시성과 주시성을 활용하여 다양한 추가적인 HMI(Human Machine Interface) 서비스를 사용자에게 추천하고 제공해 줄 수 있다.
이하에서는, 앞서 설명한 MR 서비스를 제공하기 위한 본 발명의 일 실시 예에 따른 MR 서비스 플랫폼에 대하여 설명하기로 한다.
도 8b를 참조하면, 본 발명의 MR 서비스 플랫폼(또는 MR 서비스 시스템)은, 차량 외부에 구비된 MR 서비스 클라우드(1000) 및 차량에 구비된 MR 서비스 장치(900)를 포함할 수 있다.
차량 외부(Offboard)에 구비된 MR 서비스 클라우드(1100)는, MR AMS(Mixed Reality Automotive Meta Service) 서버(1100) 및 DTaaS(Digital Twin as a Service) 서버(1200) 중 적어도 하나를 포함할 수 있다.
상기 차량에 구비된(Onboard) MR 서비스 장치(900)는, MR AMS 클라이언트(Client)(910) 및 MR 렌더러(Renderer)(920)를 포함할 수 있다.
상기 MR 서비스 장치(900)는, AR 서비스 장치(800) 및 네비게이션 시스템(770)과 상호작용하여 네비게이션 기능(또는 네비게이션 애플리케이션)을 제공할 수 있다.
상기 네비게이션 기능에 필요한 정보들은, 차량에 구비된 카메라(310), 센싱부(120), 사용자 입력부(210)를 통해 입력된 사용자 입력(또는 사용자 요청)을 통해 수신할 수 있다.
또한, 상기 네비게이션 기능에 필요한 정보들은, 차량 외부(Offboard)에 구비된 MR 서비스 클라우드(1000)를 통해 수신할 수 있으며, 각 차량에서 필요한 정보를 수신하기 위해, 차량에서 센싱되거나 처리된 정보를 상기 MR 서비스 클라우드(1000)로 전송할 수도 있다.
MR AMS(Mixed Reality Automotive Meta Service)서버(1100)는, 도 8d에 도시된 바와 같이, OSM(Open Street Map), Mapbox, HERE, WRLD, BingMAP 등 온라인 지도 서비스를 제공하는 다양한 서비스 제공자(1300a, 1300b, 1300c)와 연결될 수 있다. 그리고 연결된 서비스 제공자(1300a, 1300b, 1300c)로부터 제공되는 지도 데이터를 집계(aggregation)한 결과에 근거하여 지도에 포함된 각 건물의 형상 정보(예를 들어 건물의 바닥면 좌표(footprint) 정보와 높이 정보)를 집계하고 집계된 정보를 DTaaS 서버(1200)에 제공할 수 있다. 여기서 DTaaS 서버(1200)는 DTaaS, 즉 디지털 트윈 맵을 이용한 서비스를 제공하는 서버 또는 장치를 의미할 수 있다.
상기 DTaaS는, Digital Twin as a Service를 의미할 수도 있고, Digital Transformation as a Service를 의미할 수도 있다.
한편 DTaaS 서버(1200)는 지도 정보에 포함된 각 건물 또는 각 영역에 대한 POI 서비스 데이터들이 저장된 POI 데이터베이스와 연결될 수 있다. 또한 지도 정보에 포함된 각 건물에 대한 3차원 폴리곤 모델(또는 3차원 폴리곤 맵)의 데이터가 저장된 3D 모델 데이터베이스와 연결될 수 있다. 여기서 상기 3차원(3D) 폴리곤 모델은 건물 볼륨을 제공할 수 있는 폴리곤 모델로서, 표면에 텍스처가 형성되지 않은 폴리곤 모델일 수 있다. 상기 DTaaS 서버(1200)는 상기 연결된 POI 데이터베이스로부터 POI에 관련된 서비스 데이터를 제공받을 수 있으며, 상기 연결된 3D 모델 데이터베이스로부터 일 영역의 지도 정보에 포함된 각 건물들의 3D 폴리곤 모델들의 데이터를 제공받을 수 있다.
MR 서비스 장치(900)의 프로세서(미도시)는 오브젝트 검출 장치(300), 센싱부(120) 및 네비게이션 시스템(770)으로부터 차량의 주행에 관련된 다양한 정보들을 제공받을 수 있다. 일 예로 프로세서는 오브젝트 검출 장치(300)의 카메라(310)로부터 차량의 전방이나 후방 또는 측방에서 검출된 객체의 정보를 제공받을 수 있다.
또한 프로세서는 주행 시스템(710)을 비롯한 차량의 각 구성부와 연결된 센서들을 포함하는 센싱부(120)로부터, 차량의 속도, 주행 방향, 현재 차량의 위치(GPS) 등에 관련된 정보들을 제공받을 수 있다. 또한 네비게이션 시스템(770)으로부터 차량의 주행 경로에 관련된 정보들을 제공받을 수 있다.
한편 상기 MR 서비스 장치(900)와 DTaaS 서버(1200)는, MR AMS의 인터페이스(Interface APIs)를 통해 연결될 수 있다. 여기서 상기 MR 서비스 장치(900)와 MR AMS의 인터페이스(Interface APIs)는 무선 네트워크 접속을 통해 연결이 이루어질 수 있다. 이 경우 상기 MR AMS 서버(1100)는 상기 MR 서비스 장치(900)와 무선 연결되는 네트워크 서버 또는 클라우드(Cloud) 서버일 수 있다.
이처럼MR AMS 서버(1100)와 연결되는 경우 MR 서비스 장치(900)는, 연결된 구성 요소(예를 들어, 차량의 카메라(310), 센싱부(120) 또는 사용자 입력부(210)를 통해 입력된 사용자 입력)로부터 제공받은 정보들 중 적어도 일부를 네트워크 연결을 통해 MR AMS 서버(1100)에 제공할 수 있다. 그러면 MR AMS 서버(1100)는 상기 제공된 정보에 대한 응답으로 혼합 현실의 제공을 위한 3차원 지도 데이터를 상기 MR 서비스 장치(900)에 제공할 수 있다.
예를 들어 MR 서비스 장치(900)는 차량 주변에서 검출된 객체들의 정보와 차량의 속도, 방향 그리고 현재 차량의 위치에 대한 정보를 전송할 수 있다. 그리고 주행 경로에 대한 정보를 상기 MR AMS 서버(1100)에 제공할 수 있다. 그러면 MR AMS 서버(1100)는 MR 서비스 장치(900)에서 제공받은 정보들에 근거하여, 현재 차량의 위치에 따른 일 영역의 3차원 지도 데이터를 MR 서비스 장치(900)에 제공할 수 있다.
이 경우 MR AMS 서버(1100)는 현재 차량의 위치 및 차량의 속도, 그리고 차량의 주행 경로 등에 근거하여 POI 정보를 결정하고, 상기 3차원 건물 지도에, 상기 결정된 POI 정보를 더 포함하는 3차원 지도 데이터를 제공할 수도 있다. 또한 MR AMS 서버(1100)는 제공받은 차량 주변의 객체들의 정보에 근거하여 차량 주변의 상황에 대한 정보를 더 포함하는 3차원 지도 데이터를 MR 서비스 장치(900)에 제공할 수 있다.
한편 MR 서비스 장치(900)는 MR AMS 서버(1100)로부터 제공받은 3차원 지도 데이터에 근거하여 혼합 현실 영상을 렌더링(rendering) 할 수 있다. 일 예로 MR 서비스 장치(900)는 MR 렌더러(Renderer)(920)를 제어하여, 제공받은 3차원 지도 데이터에 근거하여 차량 주변의 건물들에 대한 모델들을 포함하는 3차원 지도 화면을 표시할 수 있다. 또한 MR 렌더러(Renderer)(920)는 차량에 대응하는 그래픽 객체를 상기 3차원 지도 화면에 표시하고, 제공받은 POI 데이터 및 차량 주변의 상황 정보에 대응하는 그래픽 객체들을 상기 3차원 지도 화면에 표시할 수 있다.
따라서 현재 차량과 차량 주변 건물 형상과 흡사한 3차원 건물 모델과 차량에 대응하는 그래픽 객체를 포함하는 가상 환경의 영상(다른 말로, 혼합 현실(MR)영상, 또는 MR 네비게이션 화면, 또는 MR 네비게이션 인터페이스)이 차량에 구비된 디스플레이(251), 예를 들어, CID(Center Information Display), HUD(Head Up Display), RSI(Rear Sheet Information) 또는 RSE(Rear Sheet Entertainment)에 출력될 수 있다.
이 경우 상기 가상 환경을 통해 차량의 주행 및 차량 주변의 상황에 관련된 정보들이 운전자에게 제공될 수 있다. 상기 3차원 지도 정보, 즉, 디지털 트윈 지도(Digital Twin Map, 이하 DT 지도)를 통해, 본 발명의 실시 예에 따른 MR 서비스 장치(900)는 운전자에게 혼합 현실 서비스를 제공할 수 있다.
한편 상기 MR AMS 서버(1100)는 하나의 차량에 구비된 MR 서비스 장치(900)뿐만 아니라 다수의 차량에 구비된 MR 서비스 장치(900)로부터 수집되는 정보에 근거하여 3차원 지도 데이터 및, 상기 3차원 지도 데이터와 함께 제공될 수 있는 POI 정보나 각 차량 주변의 상황 정보들을 결정할 수 있다. 이 경우 MR AMS 서버(1100)는 클라우드 서버의 형태로 복수의 차량에서 수집하고, 수집된 정보들에 근거하여 혼합 현실을 위한 3차원 지도 데이터를 생성할 수 있다. 그리고 생성된 3차원 지도 데이터에 근거하여 서로 다른 차량에 구비된 적어도 하나의 MR 서비스 장치(900)에 혼합 현실 서비스를 제공하도록 구현될 수 있다.
따라서 설명의 편의상 이하에서는, 상기 MR AMS 서버(1100)와 상기 DTaaS 서버(1200)를 포함하며, 혼합 현실 서비스를 제공하기 위한 메타데이터(예를 들어, 서비스 메타 데이터, 3차원 에셋), 3차원 폴리곤 맵, 디지털 트윈 맵 등의 정보를 3차원 지도 정보, 즉 디지털 트윈 지도(DT 지도)를 제공하는 클라우드 또는 서버를 MR 서비스 클라우드(1000)라고 하기로 한다.
도 8b에 도시된 것과 같이, MR 서비스 장치(900)(또는, MR 네비게이션 엔진)은, MR AMS 클라이언트(910) 및 MR 렌더러(920)를 포함할 수 있다.
또한, MR 서비스 중 하나인 MR 네비게이션 기능을 구현하기 위해, MR 서비스 장치(900)는, 차량에 구비된 AR 서비스 장치(800)(또는 AR 엔진) 및 네비게이션 시스템(770)과 데이터를 송수신할 수 있다.
MR AMS 클라이언트(910)는, 컨텍스트 매니저(911), 씬 매니저(913) 및 UX 시나리오 데이터베이스(914)를 포함할 수 있다.
또한, MR 렌더러(920)는, DTaaS 클라이언트(921), MR 시각화부(922) 및 3차원 HMI 프레임워크(923)를 포함할 수 있다.
MR AMS 클라이언트(910)는, 차량의 위치 정보, 사용자 입력, 사용자 피드백 정보, 결제 정보 등을 수집하여 차량 외부에 존재하는 MR AMS 서버(1100)로 전송할 수 있다.
MR AMS 서버(1100)는 MR AMS 클라이언트로부터 수신된 정보에 근거하여, MR 서비스를 제공하는데 필요한 메타데이터, 서비스 메타데이터 및 3차원 에셋 중 적어도 하나를MR AMS 클라이언트(910)로 전송할 수 있다.
MR AMS 클라이언트(910)는, MR AMS 서버(910)로부터 수신한 데이터들을 MR 렌더러(920)로 전송할 수 있다.
MR 렌더러(920)는, DTaaS 서버(1200)부터 수신한 3차원 폴리곤 맵과 MR AMS 클라이언트(910) 또는 차량에 구비된 카메라(310)로부터 수신된 영상을 이용하여 디지털 트윈 맵을 생성할 수 있다.
또한, MR 렌더러(920)는, MR AMS 클라이언트(920)로부터 수신한 데이터를 디지털 트윈 맵 상에 오버랩할 수 있는 MR 객체로 렌더링하고, 렌더링된 MR 객체를 디지털 트윈 맵 상에 오버랩하여 혼합 현실(MR) 영상을 생성할 수 있다.
이후, MR 랜더러(920)는, 생성된 혼합 현실 영상을 차량에 구비된 디스플레이(251)에 출력할 수 있다.
본 명세서에서 설명하는 모든 구성요소들은, 별도의 하드웨어 모듈로 구현될 수 있으며, 필요에 따라 소프트웨어적으로 블록단위로 구현한 컴포넌트인 것으로 이해될 수 있다.
이하에서는, MR 서비스 플랫폼을 구성하는 각 구성요소들에 대하여 첨부된 도면을 참조하여 보다 구체적으로 설명하기로 한다.
도 8c는 본 발명의 MR AMS 클라이언트를 설명하기 위한 개념도이다.
MR AMS 클라이언트(910)는, 차량에 구비되며, 혼합 현실 자동차 메타 서비스(Mixed Reality Automotive Meta Service, MR AMS)를 제공할 수 있다.
MR AMS 클라이언트(910)는, 차량 외부에 구비된 MR AMS 서버(1100)로 사용자 요청(또는 사용자 입력)에 대응하는 컨텍스트(Context)를 요청하는 컨텍스트 매니저(911), 차량에 구비된 디스플레이(251)로 제공하는 MR 장면 정보를 관리하는 씬 매니저(913) 및 UX 룰(UX rule)을 상기 컨텍스트 매니저(911) 및 상기 씬 매니저(913) 중 적어도 하나로 제공하는 UX 시나리오 데이터베이스(914)를 포함할 수 있다.
또한, MR AMS 클라이언트(910)는, 차량 외부에 구비된 상기 MR AMS 서버(1100)와 통신하기 위한 함수를 호출하는 인터페이스 API(912)를 더 포함할 수 있다.
상기 인터페이스 API(912)는, MR AMS 서버(1100)와 통신을 수행하도록 형성된 하나 이상의 함수로 구성될 수 있으며, 이러한 함수를 이용하여 데이터 형식 또는 메시지 형식을 변환하여 MR AMS 서버(1100)로 데이터를 전송하거나, MR AMS 서버(1100)로부터 수신된 데이터의 형식을 변환할 수 있다.
인터페이스 API(921)는, 상기 컨텍스트 매니저(911)에서 출력된 컨텍스트 요청을 상기 MR AMS 서버(1100)로 전송하고, 상기 MR AMS 서버(912)로부터 요청된 컨텍스트에 대응하는 3차원 에셋(3D Asset)을 수신할 수 있다.
여기서, 상기 컨텍스트는, 상황 정보를 의미할 수 있으며, 차량에 처한 상황에 대응되는 정보를 의미할 수 있다. 또한, 상기 컨텍스트는, 컨텐츠(Contents)의 의미를 포함할 수도 있다.
상기 3차원 에셋은, 요청된 컨텍스트에 대응되는 3차원 객체 데이터를 의미할 수 있다. 또한, 상기 3차원 에셋은, 디지털 트윈된 영상(또는 디지털 트윈 맵) 상에 오버랩되거나 새롭게 업데이트 가능한 3차원 그래픽 객체를 의미할 수 있다.
MR AMS 클라이언트(910)는, MR 서비스 장치(900)에 포함될 수 있다.
MR 서비스 장치(900)는, 차량에 구비된 입력부(210)를 통해 사용자 입력이 수신되면, 상기 사용자 입력에 대응되는 액션을 생성하여 상기 컨텍스트 매니저로 전달하는 사용자 인터랙션 핸들러(User Interaction Handler)(901)를 포함할 수 있다.
상기 사용자 인터랙션 핸들러(901)는, MR 서비스 장치(900)에 포함될 수도 있고, MR AMS 클라이언트(910)에 포함될 수도 있다.
예를 들어, 사용자 인터렉션 핸들러(901)는, 차량의 입력부(210)를 통해 "Find nearby Starbucks"라는 사용자 입력이 수신되면, 사용자 입력에 대응되는 액션(예를 들어, "Search POI")를 생성하여 MR AMS 클라이언트(910)에 구비된 컨텍스트 매니저(911)로 전달할 수 있다.
일 예로, 상기 액션은, 사용자 입력에 포함된 단어와 매칭되는 동작에 의해 결정될 수 있으며, 상기 액션은, 명령 또는 제어명령으로 명명될 수도 있다.
상기 컨텍스트 매니저(911)는, 사용자 인터랙션 핸들러(901)로부터 수신된 액션에 대응하는 컨텍스트를 요청하기 위한 명령을 생성하고, 상기 명령을 인터페이스 API(912)를 통해 MR AMS 서버(1100)로 전송할 수 있다.
상기 명령은, 상기 사용자 인터랙션 핸들러(901)로부터 수신된 액션(예를 들어, "Search POI")에 근거하여 생성될 수 있으며, 일 예로, 현재 차량 위치, 찾아야 하는 POI의 종류 및 반경 정보(예를 들어, GET "Starbucks"(POI의 종류) WITHIN "500m"(반경) FROM "37.7795, -122.4201"(현재 차량 위치(위도, 경도))를 포함하도록 형성될 수 있다.
컨텍스트 매니저(911)는, 씬 매니저(913)로부터 현재 차량에서 출력중인 현재 장면 정보(Current scene)를 수신하고, UX 시나리오 데이터베이스(914)로부터 UX 룰을 수신할 수 있다.
또한, 컨텍스트 매니저(911)는, 네비게이션 시스템(770)의 정보를 핸들링하는 네비게이션 핸들러(902)로부터 현재 경로 및 현재 위치를 포함하는 네비게이션 정보를 수신할 수 있다.
네비게이션 핸들러(902)는, MR 서비스 장치(900)에 구비될 수도 있고, MR AMS 클라이언트(910)에 구비될 수도 있다.
컨텍스트 매니저(911)는, 상기 현재 장면 정보, 상기 UX 룰 및 상기 네비게이션 정보 중 적어도 하나에 근거하여, 상기 컨텍스트를 요청하기 위한 명령을 생성할 수 있다.
현재 장면 정보는, 현재 차량의 디스플레이(251)에 출력중인 화면 정보를 포함할 수 있다. 일 예로, 상기 현재 장면 정보는, 디지털 트윈 맵 상에 MR 객체 및 MR 인터페이스가 오버랩된 혼합 현실 영상에 관한 정보를 포함할 수 있다.
또한, 본 발명의 컨텍스트 매니저(911) 및 씬 매니저(913) 중 적어도 하나는, 차량의 센싱부(120)를 통해 센싱된 정보를 처리하는 센서 데이터 어댑터(Sensor Data Adapter)(903)를 통해 처리된 센서 데이터를 수신할 수 있다.
상기 센서 데이터 어댑터(903)는, MR 서비스 장치(900)에 구비될 수도 있고, MR AMS 클라이언트(910)에 구비될 수도 있다. 상기 센서 데이터 어댑터(903)는, 처리된 센서 데이터를, AR 엔진(또는 AR 서비스 장치)(800)로 전송되는 데이터를 핸들링하는 AR 엔진 핸들러(904)로 전송할 수도 있다.
인터페이스 API(912)는, 상기 MR AMS 서버(1100)로부터 상기 명령에 대응하는 컨텍스트의 메타데이터 및/또는 상기 컨텍스트에 대응하는 3차원 에셋를 수신할 수 있다.
이후, 인터페이스 API(912)는, 수신된 메타데이터 및/또는 3차원 에셋을 상기 씬 매니저(913)로 전송할 수 있다.
씬 매니저(913)는, 상기 UX 시나리오 데이터베이스(914)에서 수신한 UX 룰과, 상기 인터페이스 API(912)로부터 수신된 메타데이터 및 3차원 에셋을 이용하여, UI 데이터를 생성할 수 있다.
이후, 상기 씬 매니저(913)는, 상기 생성된 UI 데이터를, 차량에 구비된 디스플레이(251)에 혼합 현실(Mixed Reality, MR) 또는 혼합 현실 영상으로 출력하도록 렌더링하는 MR 렌더러(920)로 전송할 수 있다.
또한, 상기 씬 매니저(913)는, 상기 생성된 UI 데이터를, 차량에 구비된 AR 서비스 장치(800)를 핸들링하도록 형성되는 AR 엔진 핸들러(904)로 더 전송할 수 있다.
UX 시나리오 데이터베이스(914)에 저장된 UX 룰(UX rule)은, MR 서비스 장치에서 제공하는 화면, UX 또는 사용자 인터페이스를 생성하는 규칙, 형태, 형식 또는 템플릿에 관한 정보를 의미할 수 있으며, 이러한 UX 룰은, 데이터의 종류별로 기 정의되어 있을 수 있다.
또한, UX 룰은, 사용자 또는 관리자에 의해 업데이트되거나 수정될 수 있다.
도 8d는 본 발명의 MR AMS 서버를 설명하기 위한 개념도이다.
도 8d를 참조하면, 차량 외부(Offboard)에 구비되며, 혼합 현실 자동차 메타 서비스(Mixed Reality Automotive Meta Service, MR AMS)를 제공하는 MR AMS 서버(1100)는, 차량에 구비된 MR AMS 클라이언트와 통신하기 위한 함수를 호출하는 인터페이스 API(1101), 상기 MR AMS 클라이언트로부터 수신된 요청에 대응하는 컨텍스트를 서비스 제공자에게 요청 및 수신하는 서비스 집계 관리자(Service Aggregation Manager)(1110) 및 수신한 컨텍스트에 대응하는 3차원 에셋을 데이터베이스(3D Assets for MR Navigation Database)(1130)에서 로딩하는 데이터 통합 관리자(data Integration Manager)(1120)를 포함할 수 있다.
상기 인터페이스 API(1101)은, 차량에 구비된 MR AMS 클라이언트(910)의 인터페이스 API(912)와 구별되도록, 서버 인터페이스 API(1101)로 명명될 수 있다.
또한, MR AMS 클라이언트(910)의 인터페이스 API(912)는, 차량 인터페이스 API 또는 MR AMS 클라이언트 인터페이스 API로 명명될 수 있다.
MR AMS 서버(1100)에 구비된 인터페이스 API(1101)는, 상기 MR AMS 클라이언트로부터 수신된 사용자 요청(또는 컨텍스트 요청)을 상기 서비스 집계 관리자(1110)로 전달할 수 있다.
상기 인터페이스 API는, 상기 MR AMS 클라이언트(910)와의 통신을 수행하기 위한 함수를 호출하는 제1 인터페이스 API(1101) 및 상기 서비스 집계 관리자(1110)가 상기 서비스 제공자(1300a, 1300b, 1300c)와의 통신을 수행하기 위한 함수를 호출하는 제2 인터페이스 API(1102a, 1102b, 1102c)를 포함할 수 있다.
상기 제2 인터페이스 API(1102a, 1102b, 1102c)는, 서비스 제공자(1300a, 1300b, 1300c)에 구비된 인터페이스 API를 통해 서비스 데이터 및/또는 지도 데이터를 수신할 수 있다.
상기 제2 인터페이스 API(1102a, 1102b, 1102c)와 서비스 제공자(1300a, 1300b, 1300c)에 구비된 인터페이스 API는 상호 데이터 송수신을 수행하고, 데이터 형식이나 메시지 형식을 변환하도록 형성된 함수를 포함할 수 있으며, 이러한 함수를 이용하여 데이터 형식이나 메시지 형식을 변환하여 상호 데이터를 송수신할 수 있다.
서비스 집계 관리자(1110)는, 차량에 구비된 MR AMS 클라이언트(910)에서 요청된 컨텍스트의 종류에 근거하여, 서로 다른 서비스 제공자로 상기 요청된 컨텍스트를 요청할 수 있다.
구체적으로, 상기 서비스 집계 관리자(1110)는, 상기 요청된 컨텍스트의 종류가 제1 종류의 컨텍스트이면, 상기 제1 종류의 컨텍스트를 제공하는 제1 서비스 제공자(1300a)로 상기 제1 종류의 컨텍스트를 요청하고, 상기 요청된 컨텍스트의 종류가 상기 제1 종류와 다른 제2 종류의 컨텍스트이면, 상기 제2 종류의 컨텍스트를 제공하는 제2 서비스 제공자(1300b)로 상기 제2 종류의 컨텍스트를 요청할 수 있다.
일 예로, 요청된 컨텍스트의 종류가 POI(예를 들어, "Starbucks")에 관한 것이면, 서비스 집계 관리자(1110)는, POI에 관한 정보를 제공하는 제1 서비스 제공자(1300a)로 상기 POI에 관한 컨텍스트(또는 POI 데이터)를 요청 및 수신할 수 있다.
또한, 요청된 컨텍스트의 종류가 어느 거리의 뷰(view)인 경우, 서비스 집계 관리자(1110)는, 거리의 뷰에 관한 정보를 제공하는 제2 서비스 제공자(1300b)로 상기 어느 거리의 뷰에 대한 컨텍스트(또는 이미제리 데이터(Imagery data))를 요청 및 수신할 수 있다.
또한, 요청된 컨텍스트의 종류가 어느 서비스인 경우, 서비스 집계 관리자(1110)는, 서비스와 관련된 정보를 제공하는 제3 서비스 제공자(1300c)로 상기 서비스와 관련된 컨텍스트(또는, 서비스에 대한 데이터(예를 들어, 서비스 순위(ratings) 또는 가격))를 요청 및 수신할 수 있다.
또한, 인터페이스 API(1101)는, MR AMS 클라이언트(910)에서 요청된 서비스(또는 컨텍스트 요청)에 근거하여, 확정된 서비스 API(Expand service API calls)를 서비스 집계 관리자(1110)로 요청할 수 있다.
서비스 집계 관리자(1110)는, 상기 확장된 서비스 API 요청에 근거하여, 확정된 서비스에 대응하는 정보를 서비스 제공자(1300a, 1300b, 1300c)로 요청 및 수신하고, 이를 이용하여 서비스 API를 생성 및 데이터 통합 관리자(1120)로 출력할 수 있다.
상기 데이터 통합 관리자(1120)는, 상기 서비스 집계 관리자(1110)로부터 수신한 서비스 API에 근거하여, 데이터를 강화(Data Enhancement)를 수행하고, 요청된 컨텍스트에 대한 메타데이터 패키지를 생성하여 인터페이스 API(1101)를 통해 차량의 MR AMS 클라이언트(910)로 전송할 수 있다.
상기 메타데이터 패키지는, 앞서 설명한 3차원 에셋 및 서비스 메타 데이터를 포함할 수 있다. 여기서 서비스 메타 데이터는, 요청된 컨텍스트에 대응하는 서비스를 제공하기 위한 메타 데이터를 의미할 수 있다.
한편, 인터페이스 API(1101)는, 데이터 통합 관리자(1120)에서 로딩한 3차원 에셋을 상기 MR AMS 클라이언트(910)로 전송할 수 있다.
한편, 본 발명의 MR AMS 서버(1100)는, 앞서 설명한 컨텍스트 매니저(911)를 더 포함할 수 있다.
즉, 컨텍스트 매니저(911)는, MR AMS 클라이언트(910)에 포함되어 차량 단에 구비될 수도 있고, MR AMS 서버(1100)에 포함되어 서버(클라우드) 단에 구비될 수도 있으며, 양측에 모두 구비될 수도 있다.
상기 컨텍스트 매니저(911)는, MR AMS 서버(1100)에 구비된 경우, MR AMS 클라이언트(910)로부터 수신된 요청에 대응하는 컨텍스트를 관리하도록 형성될 수 있다.
상기 컨텍스트 매니저(911)는, 컨텍스트 요청을 핸들링하고 파싱하는 컨텍스트 핸들러(911a), 컨텍스트 요청을 해석하기 위한 세션을 관리하고, 데이터 모델을 이용하여 컨텍스트 집합을 생성하는 컨텍스트 인터프리터(911b), 상기 데이터 모델을 저장하는 컨텍스트 그래프 데이터베이스(Context Graph DB 또는 MR Context DB)(911c)를 포함할 수 있다.
여기서, 컨텍스트 핸들러(911a)는, 상기 MR AMS 클라이언트로 입력된 사용자 요청을 상기 인터페이스 API(1101)를 통해 수신하고, 상기 수신된 사용자 요청을 파싱하여 상기 컨텍스트 인터프리터(911b)로 전달할 수 있다.
상기 컨텍스트 인터프리터(911b)는, 세션 생성 후 상기 사용자 요청에 대응하는 컨텍스트 요청을 위한 쿼리(query)를 생성하고, 상기 쿼리에 대응하는 컨텍스트 데이터 모델을 상기 컨텍스트 그래프 데이터베이스(911c)로 요청 및 수신할 수 있다.
상기 컨텍스트 인터프리터(911b)는, 상기 서비스 집계 매니저(1110)로 상기 컨텍스트 데이터 모델에 해당하는 컨텍스트를 요청하고, 상기 서비스 집계 매니저(1110)는, 상기 서비스 제공자(1300a, 1300b, 1300c)에게 상기 컨텍스트 데이터 모델에 해당하는 컨텍스트 데이터를 요청 및 수신할 수 있다.
상기 서비스 집계 매니저(1110)는, 상기 데이터 통합 매니저(1120)로 상기 요청된 컨텍스트에 대응하는 3차원 에셋(및/또는 서비스 메타 데이터)을 요청 및 수신하고, 상기 서비스 제공자로부터 수신한 컨텍스트 데이터와, 상기 데이터 통합 매니저로부터 수신한 3차원 에셋(및/또는 서비스 메타 데이터)을 상기 컨텍스트 인터프리터(911b)로 전송할 수 있다.
상기 컨텍스트 인터프리터(911b)는, 상기 수신한 컨텍스트 데이터와 상기 3차원 에셋을 상기 컨텍스트 핸들러(911a) 및 상기 인터페이스 API(1101)를 통해 상기 차량에 구비된MR AMS 클라이언트(910)로 전송할 수 있다.
한편, 컨텍스트 매니저(911)는, 상기 생성된 컨텍스트 집합에 근거하여 추천 컨텍스트를 추출하는 컨텍스트 레코맨더(911d) 및 주기적으로 획득해야 하는 컨텍스트를 관리하는 컨텍스트 컨트롤러(911e)(또는, Context tracker)를 더 포함할 수 있다.
상기 컨텍스트 레코맨더(911d)는, 완성된 컨텍스트 데이터에서 특정 서비스를 이용할 수 없는 정보가 포함된 경우, 상기 특정 서비스를 대체할 수 있는 서비스를 추천하기 위한 쿼리 생성을 상기 컨텍스트 인터프리터(911b)로 요청할 수 있다.
도 9는 본 발명의 DTaaS 서버를 설명하기 위한 개념도이다.
도 9를 참조하면, 본 발명의 DTaaS(Digital Twin as a Service, 또는 Digital Transformation as a Service) 서버(1200)는, 차량 외부에 구비되며, 혼합 현실 자동차 메타 서비스(Mixed Reality Automotive Meta Service, MR AMS)를 제공할 수 있다. 구체적으로, 상기 DTaaS 서버(1200)는, 디지털 트윈 맵을 제공하거나, 디지털 트윈 맵을 생성하는데 필요한 데이터(예를 들어, 3차원 폴리곤 맵 혹은 디지털 트윈 상에 오버랩되는 객체에 관한 모든 종류의 정보)를 제공할 수 있다.
DTaaS 서버(1200)는, 차량에 구비된 MR 서비스 장치(900)와 통신하기 위한 함수를 호출하는 DTaaS API(1210), 상기 MR 서비스 장치로 제공하는 디지털 트윈 맵 및 렌더링 가능한 3차원 폴리곤 맵을 저장하는 데이터베이스(Digital Twins Maps DB)(1220) 및 상기 MR 서비스 장치로부터 수신된 차량의 위치정보에 근거하여, 상기 위치정보에 대응하는 3차원 폴리곤 맵을 상기 DTaaS API를 통해 상기 MR 서비스 장치로 전송하는 프로세서(1280)를 포함할 수 있다.
또한, DTaaS 서버(1200)는, 차량 외부에 구비되며 MR AMS 서비스를 제공하는MR AMS 서버(1100)와 통신을 수행하는 통신부(TeleCommunicatino Unit, TCU)(1290)를 더 포함할 수 있다.
또한, DTaaS 서버(1200)는, 상기 데이터베이스(1220)에 저장된 3차원 폴리곤 맵에 실제 촬영된 영상을 매칭하여 디지털 트윈 맵을 생성하는 디지털 트윈맵 생성부(Digital Twin Representation and Update Unit)(1230)를 더 포함할 수 있다.
또한, DTaaS 서버(1200)는, MR 서비스 장치(900) 및 MR AMS 서버(1100) 중 적어도 하나로부터 수신된 움직이는 객체에 관한 다이나믹 정보를 저장하는 다이나믹 모델 데이터베이스(Dynamics Modeling DB)(1240) 및 디지털 트윈에서 구현 가능한 시나리오에 관련된 정보를 저장하는 시나리오 데이터베이스(Scenarios DB)(1250)를 더 포함할 수 있다.
또한, DTaaS 서버(1200)는, 상기 디지털 트윈 상에서 사용자 요청에 대응되는 시뮬레이션을 수행하는 시뮬레이션부(Simulation Unit)(1260) 및 상기 디지털 트윈 상에서 구현되어야 하는 정보를 시각화하는 시각화부(Visualization Unit)(1270)를 더 포함할 수 있다.
앞서 설명한 모든 구성요소들은 각각 독립적인 하드웨어(예를 들어, 칩 또는 모듈)로 구현 가능하며, 필요에 따라 소프트웨적으로 블록화된 컴포너트로 구현될 수도 있다.
상기 DTaaS 서버(1200)는, 차량(100) 뿐만 아니라, 플릿 매니지먼트 서비스(또는 차량군 관리 서비스)를 제공하는 서버(FMS Server)(1280) 및 도시 계획 서비스(City Planning Service)를 제공하는 서버(1290)와도 DTaaS API(1210)를 통해 데이터를 송수신할 수 있다.
일 예로, DTaaS 서버(1200)는, 차량(100), FMS 서버(1280) 및 도시 계획 서비스 제공 서버(1290) 중 적어도 하나로부터 각 서버에서 수집된 로그 정보를 수집할 수 있다.
이후, DTaaS 서버(1200)는, 수집된 로그 정보를 로그 데이터베이스에 저장할 수 있다.
DTaaS 서버(1200)는, 수집된 로그 정보에 근거하여, 차량(100), FMS 서버(1280) 및 도시계획 서비스 제공 서버(1290) 중 적어도 하나에서 시각화를 위한 디지털 트윈 맵을 제공할 수 있다.
또한, DTaaS 서버(1200)는, 수신된 로그 정보에 근거하여, 이벤트 알림 정보, 시뮬레이션 정보 및 시각화 정보 중 적어도하나를 차량(100), FMS 서버(1280) 및 도시계획 서비스 제공 서버(1290) 중 적어도 하나로 전송할 수 있다.
한편, 본 발명과 관련된 차량(100)은 경로 안내 장치(1300)를 포함할 수 있다.
경로 안내 장치(1300)는, 앞서 설명한 AR 서비스 장치(800) 및/또는 MR 서비스 장치(900)를 포함할 수 있다.
상기 AR 서비스 장치(800)는, AR 엔진 또는 AR 모듈로 명명될 수 있으며, 상기 MR 서비스 장치(900)는, MR 엔진 또는 MR 모듈로 명명될 수 있다.
경로 안내 장치(1300)는, AR 서비스 장치(800) 및 MR 서비스 장치(900) 중 적어도 하나의 기능/동작/제어방법을 수행할 수 있다.
경로 안내 장치(1300)에 포함된 프로세서(1330)는, AR 서비스 장치(800) 및 MR 서비스 장치(900) 중 적어도 하나를 제어하는 별도의 프로세서(1330)일 수도 있고, AR 서비스 장치(800) 및/또는 MR 서비스 장치(900) 그 자체를 의미할 수도 있다.
또한, 경로 안내 장치(1300)는, 도 7에서 설명한 구성요소들 중 적어도 하나를 제어하는 것이 가능하다. 이러한 관점에서 봤을 때, 상기 경로 안내 장치(1300)는 제어부(170)일 수 있다.
이에 한정되지 않고, 경로 안내 장치(1300)는, 제어부(170)와 독립된 별도의 구성일 수 있다. 경로 안내 장치(1300)가 제어부(170)와 독립된 구성요소로 구현되는 경우, 상기 경로 안내 장치(1300)는 차량(100)의 일부분에 구비될 수 있다.
이하에서는, 설명의 편의를 위해 경로 안내 장치(1300)를 제어부(170)와 독립된 별도의 구성인 것으로 설명하기로 한다. 본 명세서에서 경로 안내 장치(1300)에 대하여 설명하는 기능(동작) 및 제어방법은, 차량의 제어부(170)에 의해 수행될 수 있다. 즉, 경로 안내 장치(1300)와 관련하여 설명한 모든 내용은, 제어부(170)에도 동일/유사하게 유추적용될 수 있다.
또한, 본 명세서에서 설명하는 경로 안내 장치(1300)는, 도 7에서 설명한 구성요소 및 차량에 구비되는 다양한 구성요소들 중 일부분이 포함될 수 있다. 본 명세서에서는, 설명의 편의를 위해, 도 7에서 설명한 구성요소 및 차량에 구비되는 다양한 구성요소들을 별도의 명칭과 도면부호를 부여하여 설명하기로 한다.
도 10a는 상기 경로 안내 장치(1300)를 설명하기 위한 개념도이다.
본 발명의 일 실시 예에 따른 경로 안내 장치(1300)는, 통신부(1310), 인터페이스부(1320) 및 프로세서(1330)를 포함할 수 있다.
상기 통신부(1310)는, 차량에 구비된 전장품(예를 들어, 도 7에서 살펴본 차량에 구비된 전장품) 중 적어도 하나와 무선 통신을 수행하도록 형성될 수 있다.
또한, 상기 통신부(1310)는, 차량 이외의 장치, 예를 들어, 이동 단말기, 서버, 다른 차량, 도로에 구비된 인프라 등과 통신을 수행하도록 형성될 수 있다.
상기 통신부(1310)는, 앞서 설명한 통신 장치(400)일 수 있으며, 상기 통신 장치(400)에 포함된 구성요소들 중 적어도 하나를 포함할 수 있다.
인터페이스부(1320)는, 차량에 구비된 구성품 중 적어도 하나와 통신을 수행할 수 있다.
구체적으로, 인터페이스부(1320)는, 도 7에서 살펴본 차량에 구비된 구성품 중 적어도 하나와 유선 통신을 수행하도록 형성될 수 있다.
상기 인터페이스부(1320)는 상기 차량(100)에 구비된 하나 또는 그 이상의 센서들로부터 센싱 정보를 수신한다.
상기 인터페이스부(1320)는 센서 데이터 콜렉터(Sensor Data Collector)로 호칭될 수 있다.
상기 인터페이스부(1320)는, 차량에 구비되는 센서(예를 들어, 차량의 조작을 감지하는 센서(V.Sensors)(예를 들어, heading, throttle, break, wheel 등)와 차량의 주변 정보를 센싱하기 위한 센서(S.Sensors)(예를 들어, Camera, Radar, LiDAR, Sonar 등))를 통해 센싱된 정보를 수집(수신)한다.
상기 인터페이스부(1320)는, 차량에 구비된 센서를 통해 센싱된 정보가 고정밀 지도에 반영되도록 통신부(1310)(또는 프로세서(1330))로 전송할 수 있다.
인터페이스부(1320)는, 일 예로, 차량 인터페이스부(130)를 통해 차량에 구비된 전장품과의 통로 역할을 수행할 수 있다.
인터페이스부(1320)는, 차량 인터페이스부(130)와 데이터를 교환할 수 있다.
인터페이스부(1320)는 차량에 연결되어 전기 에너지를 공급받는 통로 역할을 수행할 수 있다.
예를 들어, 경로 안내 장치(1300)는, 인터페이스부(1320)를 통해 차량의 전원 공급부(190)로부터 전기 에너지를 공급받아 전원을 온 시킬 수 있다.
한편, 본 발명은, 연결된 경로 안내 장치(1300)의 각 구성요소를 제어하며, 상기 경로 안내 장치(1300)의 전반적인 동작을 제어하는 프로세서(1330)를 포함할 수 있다. 상기 프로세서(1330)는 차량에 구비된 카메라로부터 촬영된 이미지, 2차원 지도정보 및 3차원 지도정보 중 적어도 하나를 이용하여 디지털 트윈(Digital Twin)된 3차원 맵을 생성할 수 있다.
상기 프로세서(1330)는, 디지털 트윈된 3차원 맵 상에 경로 안내와 관련된 그래픽 객체를 오버랩(Overlap)(또는 중첩, 출력)할 수 있다.
여기서, 경로 안내와 관련된 그래픽 객체는, 증강현실로 출력되는 객체를 의미하며, 경로 안내를 수행하는데 필요한 다양한 형태의 객체(예를 들어, POI객체, 카펫 형태의 객체, 3D 객체 등)를 포함할 수 있다.
이 경우 상기 경로 안내와 관련된 그래픽 객체는, AR 객체로 명명될 수도 있으며, 상기 AR 객체를 표시하는 디스플레이 화면 상의 이미지, 즉 뷰(view) 이미지는 AR 뷰 이미지로 명명될 수 있다.
또한 상기 경로 안내와 관련된 그래픽 객체는, 혼합 현실(MR)로 출력되는 객체를 의미하며, 경로 안내를 수행하는데 필요한 다양한 형태의 객체(예를 들어, 디지털 트윈된 3차원 맵 상의 객체 등)를 포함할 수 있다. 이 경우 상기 경로 안내와 관련된 그래픽 객체는, MR 객체로 명명될 수도 있으며, 상기 MR 객체를 표시하는 디스플레이 화면 상의 이미지, 즉 뷰 이미지는 MR 뷰 이미지로 명명될 수 있다.
경로 안내 장치(1300)는 MR AMS 서버(1100)로부터 제공받은 3차원 지도 데이터에 근거하여 혼합 현실 영상을 렌더링(rendering) 할 수 있다. 일 예로 경로 안내 장치(1300)는 MR 렌더러(Render)를 제어하여, 제공받은 3차원 지도 데이터에 근거하여 차량 주변의 건물들에 대한 모델들을 포함하는 3차원 지도 화면을 표시할 수 있다. 또한 차량에 대응하는 그래픽 객체를 상기 3차원 지도 화면에 표시하고, 제공받은 POI 데이터 및 차량 주변의 상황 정보에 대응하는 그래픽 객체들을 상기 3차원 지도 화면에 표시할 수 있다.
따라서 현재 차량과 차량 주변 건물 형상과 흡사한 3차원 건물 모델과 차량에 대응하는 그래픽 객체를 포함하는 가상 환경의 영상이 CID(Center Information Display), HUD(Head Up Display), RSI(Rear Sheet Information) 또는 RSE(Rear Sheet Entertainment)와 같은 디스플레이부(251)에 출력될 수 있다.
이 경우 상기 가상 환경을 통해 차량의 주행 및 차량 주변의 상황에 관련된 정보들이 운전자에게 제공될 수 있다. 상기 3차원 지도 정보, 즉, 디지털 트윈 지도(Digital Twin Map)를 통해, 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 운전자에게 혼합 현실 서비스를 제공할 수 있다.
한편 상기 MR AMS 서버(1100)는 하나의 차량에 구비된 경로 안내 장치(1300) 뿐만 아니라 다수의 차량에 구비된 경로 안내 장치(1300)로부터 수집되는 정보에 근거하여 3차원 지도 데이터 및, 상기 3차원 지도 데이터와 함께 제공될 수 있는 POI 정보나 각 차량 주변의 상황 정보들을 결정할 수 있다.
이 경우 MR AMS 서버(1100)는 클라우드 서버의 형태로 복수의 차량에서 정보를 수집하고, 수집된 정보들에 근거하여 혼합 현실을 위한 3차원 지도 데이터를 생성할 수 있다. 그리고 생성된 3차원 지도 데이터에 근거하여, 서로 다른 차량에 구비된 적어도 하나의 경로 안내 장치(1300)에 혼합 현실 서비스를 제공하기 위한 MR 정보를 전송하도록 구현될 수 있다.
설명의 편의상 이하에서는, DTaaS 서버(1200)와 연결되어, 혼합 현실 서비스를 제공하기 위한 3차원 지도 정보, 즉 디지털 트윈된 3차원 맵을 제공하는 MR AMS 서버(1100) 및 상기 DTaaS 서버(1200)를 클라우드 서버로 통칭하기로 한다.
이하에서는, 카메라로부터 촬영된 이미지를 통해 제공되는 AR 뷰 이미지 및 디지털 트윈된 3차원 맵을 통해 제공되는 MR 뷰 이미지를 이용하여 경로 안내를 수행하는 방법에 대하여 첨부된 도면을 참조하여 보다 구체적으로 살펴보기로 한다.
도 10b는 본 발명의 실시 예에 따른 경로 안내 장치(1300)에 의해 뷰 이미지를 표시하는 디스플레이 화면(1350)의 예를 도시한 것이다. 상기 디스플레이 화면(1350)은 상기 경로 안내 장치(1300)가 장착된 차량에 구비되는 디스플레이부(251)의 화면일 수 있다. 일 예로 상기 디스플레이부(251)는 상기 차량에 구비된 CID(Center Information Display), HUD(Head Up Display), RSI(Rear Sheet Information) 또는 RSE(Rear Sheet Entertainment) 중 적어도 하나일 수 있다.
상기 경로 안내 장치(1300)는 인터페이스부(1320)를 통해 상기 디스플레이부(251)에 경로 안내 정보를 표시하기 위한 다양한 객체(예 :AR 객체 및 MR 객체)를 포함하는 뷰 이미지(예 : AR 뷰 이미지, MR 뷰 이미지)를 제공하여 상기 디스플레이부(251)가, AR 객체를 포함하는 AR 뷰 이미지 및 MR 객체를 포함하는 MR 뷰 이미지 중 적어도 하나를 표시하도록 할 수 있다. 이 경우 상기 디스플레이부(251)는, 상기 인터페이스부(1320)를 통해 경로 안내 장치(1300)의 제어에 따라 AR 뷰 이미지 및 MR 뷰 이미지 중 적어도 하나를 표시하는 것일 수 있다.
도 10b를 참조하여 살펴보면, 경로 안내 장치(1300)는 도 10b의 (a)에서 보이고 있는 바와 같이 디스플레이 화면(1350) 전체 영역에 하나의 뷰 이미지를 출력할 수 있다. 이 경우 상기 뷰 이미지는 AR 뷰 이미지이거나 또는 MR 뷰 이미지일 수 있다. 여기서 AR 뷰 이미지가 표시되는 경우, 경로 안내 장치(1300)는 차량에 구비된 카메라로부터 획득되는 실제 이미지에, 적어도 하나의 AR 객체들이 표시되는 이미지를 표시할 수 있다. 이 경우 상기 카메라로부터 획득되는 실제 이미지는, 차량의 전방이거나 차량의 측방(좌측 또는 우측), 또는 차량의 후방을 촬영한 이미지일 수 있다. 그리고 이미지 상에 표시되는 AR 객체는, 촬영된 이미지에 따라 각각, 차량의 전방이나 차량의 측방, 또는 차량의 후방에 위치한 차량 주변 사물 또는 주변 환경에 대응하는 그래픽 객체들일 수 있다.
한편 디스플레이 화면(1350)에 MR 뷰 이미지가 표시되는 경우 경로 안내 장치(1300)는 탑승자의 선택 또는 차량의 상태에 대응하는 특정 촬영각에서 차량에 대응하는 MR 객체가 표시되는 뷰 이미지를 표시할 수 있다. 일 예로 경로 안내 장치는, 디지털 트윈된 3차원 맵을 이용하여 차량을 위에서 내려다보는 조감도(bird view image)나, 차량의 우측이나 좌측을 소정 각도에서 바라보는 측면뷰(side view image), 또는 차량의 후면을 바라보는 후면뷰(rear side view)에 따른 뷰 이미지 등의 MR 뷰 이미지일 수 있다.
한편 디스플레이 화면(1350)에 한 종류의 뷰 이미지가 표시되는 상태에서, 경로 안내 장치(1300)는 기 설정된 조건이 충족되는지 여부에 따라 상기 디스플레이 화면(1350)에 표시되는 뷰 이미지를 다른 종류의 뷰 이미지로 전환할 수 있다. 일 예로 경로 안내 장치(1300)는, 디스플레이부(251)가 AR 뷰 이미지를 표시하는 상태에서 날씨, 교통 상황, 차량 주변 조도 등, 포함된 객체들의 명확한 식별이 가능한 이미지의 획득이 어려움에 따라 정확한 AR 뷰 이미지의 제공이 어려운 경우, 디스플레이 화면(1350) 상에 표시되는 뷰 이미지를 MR 뷰 이미지로 전환할 수 있다. 이 경우 증강현실을 통해 제공되는 경로 안내 정보가 혼합현실을 통해 제공되는 상태로 전환될 수 있다. 그리고 MR 뷰 이미지를 통해 경로 안내 정보를 제공할 수 있다.
또는 경로 안내 장치(1300)는, 디스플레이부(251)가 MR 뷰 이미지를 표시하는 상태에서, AR 뷰 이미지의 제공이 가능한지 여부에 따라 디스플레이 화면(1350) 상에 표시되는 뷰 이미지를 AR 뷰 이미지로 전환하고, MR 뷰 이미지를 통해 경로 안내 정보를 제공할 수 있다. 이 경우 혼합현실을 통해 제공되는 경로 안내 정보가 증강현실을 통해 제공되는 상태로 전환될 수 있다.
이하 경로 안내 장치(1300)가, 차량과 관련된 기 설정된 조건들에 근거하여 AR 뷰 이미지를 표시하는 AR 동작 모드에서 MR 뷰 이미지를 표시하는 MR 동작 모드로 전환하거나, 또는 상기 MR 동작 모드에서 AR 동작 모드로 전환하여, AR 뷰 이미지와 MR 뷰 이미지 중, 현재 차량의 상태 및 주변 환경 등에 보다 적합한 뷰 이미지를 이용하여 경로 안내 정보를 제공하도록 디스플레이부(251)를 제어하는 동작 과정 및 이에 대한 실시 예들을 하기 도 11 내지 도 15를 참조하여 자세하게 살펴보기로 한다.
한편 디스플레이 화면(1350)에 한 종류의 뷰 이미지가 표시되는 상태에서, 경로 안내 장치(1300)는 디스플레이 영역을 분할하여 서로 다른 종류의 뷰 이미지를 표시할 수 있다. 예를 들어 경로 안내 장치(1300)는 도 10b의 (b)에서 보이고 있는 바와 같이, 디스플레이 화면(1350)을 주화면 영역(Main Screen, 1361)과 보조화면 영역(Secondary Screen, 1362)으로 분할할 수 있다.
이 경우 경로 안내 장치(1300)는 상기 주화면 영역(1061)과 보조화면 영역(1362)에 서로 다른 종류의 뷰 이미지를 표시하도록 디스플레이부(251)를 제어할 수 있다. 즉, 경로 안내 장치(1300)는 주화면 영역(1361)에는 AR 뷰 이미지를 표시하고, 보조화면 영역(1362)에는 MR 뷰 이미지를 표시하도록 디스플레이부(251)를 제어할 수 있다. 또는 반대로 주화면 영역(1361)에는 MR 뷰 이미지를 표시하고, 보조화면 영역(1362)에는 AR 뷰 이미지를 표시하도록 디스플레이부(251)를 제어할 수 있다.
또는 경로 안내 장치(1300)는 디스플레이 화면(1350)에 한 종류의 뷰 이미지가 표시되는 상태에서, 상기 디스플레이 화면(1350)의 적어도 일부에 오버랩되는 PIP(Picture In Picture) 영역(1370)을 생성할 수 있다. 이 경우 상기 PIP 영역은 팝업(POP UP)형태로 표시되며, 상기 디스플레이 화면(1350)의 적어도 일부를 오버랩(Overlap)되는 영역일 수 있다. 이 경우 상기 PIP 영역(1370)은 다중 레이어 방식을 통해 상기 디스플레이 화면(1350)에 오버랩될 수 있다.
이 경우 경로 안내 장치(1300)는 디스플레이 화면(1350)과 상기 PIP 영역(1370)에 서로 다른 종류의 뷰 이미지를 표시하도록 디스플레이부(251)를 제어할 수 있다. 즉, 경로 안내 장치(1300)는 디스플레이 화면(1350)에는 AR 뷰 이미지를 표시하고, PIP 영역(1370)에는 MR 뷰 이미지를 표시하도록 디스플레이부(251)를 제어할 수 있다. 또는 반대로 디스플레이 화면(1350)에는 MR 뷰 이미지를 표시하고, PIP 영역(1370)에는 AR 뷰 이미지를 표시하도록 디스플레이부(251)를 제어할 수 있다.
이하 경로 안내 장치(1300)가, 디스플레이 화면(1350)을 분할하여 AR 뷰 이미지 및 MR 뷰 이미지를 하나의 화면에 모두 표시하도록 디스플레이부(251)를 제어하는 동작 과정 및 그에 따른 실시 예들을 하기 도 16 내지 도 20을 참조하여 보다 자세하게 살펴보기로 한다. 또한 경로 안내 장치(1300)가, 어느 한 종류의 뷰 이미지가 표시되는 디스플레이 화면(1350)의 적어도 일부에 다른 종류의 뷰 이미지를 오버랩하여 AR 뷰 이미지 및 MR 뷰 이미지를 하나의 화면에 모두 표시하도록 디스플레이부(251)를 제어하는 동작 과정 및 그에 따른 실시 예들을 하기 도 20 내지 도 22를 참조하여 보다 자세하게 살펴보기로 한다.
먼저 AR 동작 모드에서 MR 동작 모드로 전환하거나 또는 MR 동작 모드에서 AR 동작 모드로 전환하여, 전환된 동작 모드에 따른 뷰 이미지를 제공하도록 디스플레이부(251)를 제어하는 경로 안내 장치(1300)의 동작 과정을 살펴보기로 한다.
도 11은 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, 동작 모드 전환을 통해 증강현실 또는 혼합현실 중 어느 하나를 통해 경로 안내 정보를 제공하는 동작 과정을 도시한 흐름도이다. 그리고 도 12는 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, 제1 뷰 이미지로부터 검출된 파라메터들에 따라 제2 뷰 이미지를 생성하는 예를 도시한 것이다. 그리고 도 13은 본 발명의 실시 예에 따른 경로 안내 장치(1300)에서 표시되는 증강현실 뷰 이미지와, 그 증강현실 뷰 이미지에 대응하는 혼합현실 뷰 이미지의 예를 도시한 것이다.
먼저 도 11을 참조하여 살펴보면, 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 먼저 제1 모드에 기반한 뷰 이미지를 통해 경로 안내 정보를 제공할 수 있다(S1100).
여기서 상기 제1 모드는 증강현실 기술에 따라 카메라를 통해 획득된 실제 이미지에 AR 객체가 표시하는 AR 동작 모드일 수 있다. 이 경우 상기 제1 모드에서 표시되는 뷰 이미지는 상기 AR 객체가 포함된 AR 뷰 이미지일 수 있다. 또는 상기 제1 모드는 혼합현실 기술에 따라 디지털 트윈된 3차원 맵에 가상 객체(MR 객체)가 표시되는 MR 동작 모드일 수 있다. 이 경우 상기 제1 모드에서 표시되는 뷰 이미지는 상기 MR 객체가 포함된 MR 뷰 이미지일 수 있다.
또한 상기 경로 안내 정보는, 현재 설정된 목적지까지의 경로에 관련된 경로 정보 뿐만 아니라 차량 또는 경로 주변의 환경에 관련된 정보를 다수 포함할 수 있다. 일 예로 경로 안내 정보는, 현재 차량의 주변에 위치한 적어도 사물 또는 건물과 같은 주변 환경에 대응하는 객체들의 정보들을 포함할 수 있다. 또한 목적지까지의 경로 주변에 위치한 적어도 하나의 객체들이나 상기 목적지 주변에 관련된 다양한 객체들의 정보들을 포함할 수 있다. 이러한 객체들의 정보는 POI(Point Of Interest) 정보의 형태로 포함될 수 있다. 뿐만 아니라 상기 경로 안내 정보는 현재 차량의 속도나 연료량, 주행하는 도로의 상태, 교통 혼잡 여부, 차량 주변 날씨 등, 차량의 상태나 차량 주변 환경의 상태에 대한 정보를 포함하는 정보일 수 있다.
상기 제1 모드에 기반하여 경로 안내 정보를 제공하는 S1100 단계에서, 경로 안내 장치(1300)는 차량에 구비된 적어도 하나의 센서에 근거하여 모드 전환 조건과 관련된 정보들을 수집할 수 있다(S1102). 여기서 상기 적어도 하나의 센서는 경로 안내 장치(1300)의 통신부(1310)를 포함할 수 있다.
그리고 상기 모드 전환 조건과 관련된 정보들은, 탑승자가 요청한 경로 정보의 종류, 차량이 주행하는 지역이나 도로, 차량의 주행 모드, 주행이 이루어지는 시간, 날씨, 차량 주변의 교통 상황, 차량의 주행 상태 및 주행 환경 및 선호 경로 여부 등에 관련된 정보들일 수 있다. 또한 상기 모드 전환 조건과 관련된 정보들은, 현재 표시되는 뷰 이미지의 정확도나 차량 주변에서 발생된 경고의 위치 등에 관련된 정보들일 수 있다.
그리고 경로 안내 장치(1300)는 상기 S1102 단계에서 수집된 정보들에 근거하여, 현재 상황에 적합한 모드를 검출할 수 있다(S1104).
일 예로 경로 안내 장치(1300)는, 탑승자가 요청한 경로 정보에 근거하여 적합한 모드를 결정할 수 있다. 탑승자가 현재 시점에 대응하는 경로 정보를 요청하는 경우 경로 안내 장치(1300)는 카메라를 통해 획득되는 실제 이미지를 표시하는 AR 뷰 이미지를 제공하는 AR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다.
반면 탑승자가 요청한 경로 정보가 현재 시점에 대응하는 경로 정보가 아닌 경우, 즉, 차량이 아직 주행하지 않은 미래의 분기점이나 목적지의 주행 경로에 대한 경로 정보, 또는 차량이 이미 주행한 과거의 주행 경로 또는 이미 지나온 경로에 대한 POI 정보 등의 경로 정보를 탑승자가 요청하는 경우, 경로 안내 장치(1300)는 디지털 트윈된 3차원 맵과 가상 객체를 포함하는 MR 뷰 이미지를 제공하는 MR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다.
또는 경로 안내 장치(1300)는, 차량이 주행하고 있는 지역에 근거하여 적합한 모드를 결정할 수 있다. 예를 들어 차량이 주행하고 있는 도로가, 교통 복잡도가 낮은 고속도로인 경우 경로 안내 장치(1300)는 AR 뷰 이미지를 제공하는 AR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다. 반면 차량이 주행하고 있는 도로가, 교통 복잡도가 높은 도심 내 일반 도로인 경우 경로 안내 장치(1300)는 MR 뷰 이미지를 제공하는 MR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다.
또한 경로 안내 장치(1300)는 차량이 주행하는 도로의 상태에 따라 적합한 뷰 이미지를 표시하는 동작 모드를 결정할 수도 있다. 예를 들어 포장 도로이거나 도로의 굴곡률이 기 설정된 임계값 이하인 도로인 경우 경로 안내 장치(1300)는 AR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다.
한편 차량이 주행하는 도로가 비포장 도로이거나 도로의 굴곡률이 상기 임계값을 초과하는 도로인 경우, 또는 차선이 없는 도로인 경우 카메라를 통해 획득되는 이미지를 통해 도로를 정확하게 인식하기 어려울 수 있다. 예를 들어 차선의 인식이 어려울 수 있다. 따라서 경로 안내 장치(1300)는, 차량이 주행하는 도로가 비포장 도로이거나 굴곡률이 임계값을 초과하는 도로인 경우, 실제 촬영된 이미지를 사용하지 않는 MR 모드가 현재 상황에 보다 적합한 모드라고 판단할 수 있다. 또한 고도 정보(Height profile)가 제공되지 않는 경사로를 주행하는 경우 MR 모드가 현재 상황에 보다 적합한 모드라고 판단할 수 있다.
한편 상기 도로의 상태에 대한 정보는, 교통 정보를 제공하는 서버로부터 수집되거나, 카메라를 통해 획득되는 이미지로부터 수집될 수 있다. 또는 디지털 트윈화된 3차원 지도로부터 획득될 수 있다.
또는 경로 안내 장치(1300)는, 차량의 주행 모드에 근거하여 적합한 모드를 결정할 수 있다. 예를 들어 차량이, 탑승자가 직접 운전하는 수동 주행 모드로 주행 중인 경우, 경로 안내 장치(1300)는 AR 뷰 이미지를 제공하는 AR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다. 반면 차량이 자율적으로 주행하는 자율 주행 모드로 주행 중인 경우, 경로 안내 장치(1300)는 MR 뷰 이미지를 제공하는 MR 모드가 현재 상황에 보다 적합한 모드라고 판단할 수 있다.
또는 경로 안내 장치(1300)는, 명도 대비가 임계값 이상인 이미지의 획득이 가능한지 여부에 따라 현재 상황에 적합한 모드를 결정할 수 있다. 일 예로 조도가 높음에 따라 명도 대비가 명확한 이미지를 획득할 수 있는 낮 시간대에 차량의 주행이 이루어지는 경우, 경로 안내 장치(1300)는 실제 획득된 이미지를 이용하는 AR 뷰 이미지를 제공하는 AR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다.
반면 경로 안내 장치(1300)는 조도가 낮음에 따라 명도 대비가 임계값 이상인 이미지를 획득할 수 없는 밤 시간대에 차량의 주행이 이루어지는 경우, 디지털 트윈화된 3차원 지도를 이용하는 MR 뷰 이미지를 제공하는 MR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다. 이처럼 차량이 야간 주행 중인 경우, 차량 주변의 객체들에 대한 가시도가 더 높은 객체들을 포함하는 MR 뷰 이미지를 표시할 수도 있다(야간(Night) MR 모드).
한편 경로 안내 장치(1300)는 상술한 바와 같이 명도 대비가 임계값 이상인 이미지의 획득이 가능한지 여부에 따라 현재 상황에 적합한 모드를 결정할 수 있다. 따라서 차량 주변의 조도를 검출한 결과 조도가 충분한 경우라면(임계값 이상), 경로 안내 장치(1300)는 차량이 주행하는 시간대가 비록 밤 시간대인 경우에도, 임계값 이상의 명도 대비를 가지는 차량 주변의 이미지를 획득할 수 있는 것으로 판단할 수 있다. 그러므로 차량이 주행하는 시간대가 밤 시간대인 경우에도 AR 모드가 더 적합하다고 판단할 수도 있음은 물론이다.
한편 경로 안내 장치(1300)는 차량 주변의 날씨에 근거하여 현재 상황에 적합한 모드를 결정할 수도 있다. 예를 들어 차량 주변의 날씨를 센싱한 결과, 눈이나 비가 오는 날씨인 경우, 또는 안개가 심한 날씨인 경우 경로 안내 장치(1300)는 실제 이미지를 이용하는 AR 모드보다 디지털 트윈화된 지도를 이용하는 MR 모드가 적합한 것으로 판단할 수 있다. 이 경우 경로 안내 장치(1300)는 상기 차량 주변의 날씨가 반영된 MR 객체를 포함하는 MR 뷰 이미지를 표시할 수 있다. 예를 들어 눈 또는 비가 오는 날씨인 경우, 경로 안내 장치(1300)는 얼음 형태의 도로 카펫을 포함하는 MR 객체를, MR 뷰 이미지 상에 표시할 수 있다.
반면, 눈, 비, 안개 등이 없는 맑은 날씨인 경우 경로 안내 장치(1300)는 실제 이미지를 이용하는 AR 모드가 현재 상황에 보다 적합한 모드라고 판단할 수 있다.
여기서 경로 안내 장치(1300)는 상기 차량 주변의 날씨에 대한 정보를, 차량에 구비된 센서를 통해 수집할 수 있다. 또는 경로 안내 장치(1300)는, 통신부(1310)를 통해 차량이 현재 주행하고 있는 지역에 대한 날씨 정보를 제공하는 기상 서버와 무선 연결하고, 상기 기상 서버로부터 제공되는 날씨 정보에 근거하여 상기 차량 주변의 날씨를 판별할 수 있다.
한편 경로 안내 장치(1300)는 차량 주변의 교통 체증 상황에 근거하여 현재 상황에 적합한 모드를 결정할 수도 있다. 예를 들어 경로 안내 장치(1300)는 차량 주변의 교통 체증이 일정 수준 미만인 경우 AR 뷰 이미지를 표시하는 AR 모드가 적합한 것으로 판단할 수 있다. 그러나 차량 주변의 교통 체증이 일정 수준 이상인 경우 MR 뷰 이미지를 표시하는 MR 모드가 적합한 것으로 판단할 수 있다.
이 경우 경로 안내 장치(1300)는 차량 주변의 각 도로에 대한 교통 체증 수준에 따라 서로 구분될 수 있는 MR 객체들을 포함하는 MR 뷰 이미지를 표시할 수 있다.
여기서 상기 각 도로에 대한 상기 교통 체증 수준들은, 차량이 현재 주행하고 있는 지역에 대한 교통정보를 제공하는 교통 관제 서버를 통해 제공될 수 있다. 이 경우 경로 안내 장치(1300)는, 상기 교통 관제 서버로부터 제공되는 교통 정보에 근거하여 차량 주변의 각 도로에 대한 교통 체증 수준들을 판별할 수 있다. 그리고 판별된 교통 체증 수준들에 따라 서로 다른 색상을 가지는 MR 객체들을 디지털 트윈화된 3차원 맵 상에 표시함으로써 상기 MR 뷰 이미지를 제공할 수 있다.
또는 경로 안내 장치(1300)는 자체적으로 교통 체증 수준을 결정할 수도 있다. 이 경우 특정 경로의 교통 체증 수준은, 그 특정 경로로 차량이 주행하는 경우에 차량이 목적지까지 도달하는데 소요되는 통상적인 도착 예상 시간(제1 도착 예상 시간)과, 현재 교통 상태에 따라 상기 특정 경로로 차량이 주행하는 경우에 차량이 목적지까지 도착하는데 예상되는 소요되는 도착 예상 시간(제2 도착 예상 시간)의 차이에 따라 결정될 수 있다.
한편 경로 안내 장치(1300)는 차량의 주행 상태에 근거하여 현재 상황에 적합한 모드를 결정할 수도 있다. 예를 들어 경로 안내 장치(1300)는 차량이 정지 상태에 있는 경우 MR 뷰 이미지를 제공하는 MR 모드가 적합한 것으로 판단할 수 있다. 반면 차량이 이동하는 주행 상태에 있는 경우 AR 뷰 이미지를 제공하는 MR 모드가 적합한 것으로 판단할 수 있다.
이 경우 차량이 신호 대기를 위해 정차하면, 경로 안내 장치(1300)는 MR 모드가 적합한 것으로 판단할 수 있으며, 신호 대기 후 차량이 주행을 시작하는 경우 AR 모드가 적합한 것으로 판단할 수 있다. 따라서 차량이 주행 중인 상태에서 신호 대기를 위해 정차하는 경우, 디스플레이부(251) 상에 표시되는 뷰 이미지는 AR 뷰 이미지에서 MR 뷰 이미지로 전환될 수 있다. 그리고 신호 대기 후 차량이 주행을 시작하는 경우 MR 뷰 이미지에서 다시 AR 뷰 이미지로 전환될 수 있다.
한편 경로 안내 장치(1300)는 차량의 주행 속도에 근거하여 현재 상황에 적합한 모드를 결정할 수도 있다. 예를 들어 차량의 주행 속도가 기준 속도 미만인 경우 AR 뷰 이미지를 제공하는 AR 모드가 적합한 것으로 판단할 수 있다. 반면 차량의 주행 속도가 상기 기준 속도 이상인 경우, 즉 기준 속도에 따라 주행 중이거나 또는 차량이 그 이상의 고속으로 주행하는 경우, 경로 안내 장치(1300)는 MR 뷰 이미지를 제공하는 MR 모드가 적합한 것으로 판단할 수 있다.
이러한 경우 경로 안내 장치(1300)는 상기 차량의 주행 속도에 따라 서로 다른 MR 객체들을 표시하는 MR 뷰 이미지를 제공할 수 있다. 일 예로 차량의 주행 속도가 제1 속도 이상인 경우 높은 고도에서 상기 차량에 대응하는 객체를 바라보는 조감도 형태의 MR 뷰 이미지를 제공할 수 있다. 그러나 차량의 주행 속도가 상기 제1 속도보다 높은 제2 속도 이상인 경우라면 경로 안내 장치(1300)는 높은 고도에서 차량에 대응하는 객체를 바라보는 것을 넘어서, 상기 차량에 주행할 경로를 미리 보여주는 드론 뷰(drone view) 형태의 MR 뷰 이미지를 제공할 수도 있다.
한편 경로 안내 장치(1300)는 차량의 주행 상황에 근거하여 현재 상황에 적합한 모드를 결정할 수도 있다. 이 경우 경로 안내 장치(1300)는 차량 주변으로부터 검출되는 객체들에 근거하여 상기 현재 상황에 적합한 모드를 결정할 수 있다.
일 예로 경로 안내 장치(1300)는 차량 주변에 대형 차량이 있는 경우, 또는 차량으로부터 기 설정된 인접 거리 내에 기 설정된 크기 이상의 건물 또는 광고판 등의 구조물이 있는 경우, 상기 대형 차량이나 대형 구조물들로 인해 가려지는 영역, 즉 사각 지대가 발생할 가능성이 있다고 판단할 수 있다. 따라서 경로 안내 장치(1300)는 차량으로부터 인접 거리 내에 일정 크기 이상의 차량이나 구조물이 있는 경우 MR 뷰 이미지를 제공하는 MR 모드가 적합한 것으로 판단할 수 있다.
또는 경로 안내 장치(1300)는 차량 주변에 위험 영역이 검출되는 경우 MR 뷰 이미지를 제공하는 MR 모드가 적합한 것으로 판단할 수 있다. 여기서 상기 위험 영역은 공사 중이거나 사고 다발 지역 등, 주행 중에 주의를 기울여야 할 영역으로 미리 지정된 영역일 수 있다. 또는 상기 위험 영역은, 교통 정보 또는 도로 정보를 제공하는 기 설정된 서버가, 근방 차량에게 제공하는 위험 영역의 정보에 따라 지정되는 영역일 수 있다. 경로 안내 장치(1300)는 차량의 주행 중, 차량 주변에 상기 위험 영역이 검출되는 경우 위험 영역에 대한 경고 정보를 AR 객체 또는 MR 객체를 통해 표시할 수 있다.
한편 상기 위험 영역이 검출되는 경우, 경로 안내 장치(1300)는 MR 뷰 이미지를 제공하는 MR 모드가 적합한 것으로 판단할 수 있다. 이처럼 MR 모드를 통해 MR 뷰 이미지가 제공되는 경우, 경로 안내 장치(1300)는 차량이 앞으로 주행할 지역에 대한 경로 정보를 미리 제공하는 미리보기 기능을 통해 상기 위험 영역의 정보를 탑승자에게 미리 제공할 수도 있다.
또는 상기 위험 영역이 검출되는 경우, 또는 충돌 경고가 발생되는 경우 경로 안내 장치(1300)는 상기 경고 정보가 표시되는 위치에 근거하여 상기 AR 뷰 이미지를 제공하는 AR 모드와 MR 뷰 이미지를 제공하는 MR 모드 중 어느 하나를 보다 적합한 모드로 결정할 수 있다.
일 예로 AR 뷰 이미지의 경우, 카메라에서 촬영되는 실제 이미지를 이용하므로 AR 객체가 표시가능한 범위가 상기 카메라의 촬영각, 즉 시야각 내의 범위로 제한될 수 있다. 따라서 상기 경고 정보가 AR 뷰 이미지를 통해 표시되는 영역 내, 즉 상기 카메라의 시야각 범위 내, 예를 들어 전방에서 노출되는 경우라면 경로 안내 장치(1300)는 상기 경고 정보에 대응하는 AR 객체가 포함된 AR 뷰 이미지가 현재 상황에 보다 적합하다고 판단할 수 있다. 따라서 AR 모드가 현재 상황에 보다 적합한 모드로 결정될 수 있다.
그러나 상기 경고 정보가 상기 카메라의 시야각 외 영역, 즉 차량의 후방 등의 사각 지대에서 노출되는 경우라면, 경로 안내 장치(1300)는 상기 경고 정보에 대응하는 MR 객체를 표시할 수 있는 MR 뷰 이미지가 현재 상황에 보다 적합하다고 판단할 수 있다. 따라서 MR 모드가 현재 상황에 보다 적합한 모드로 결정될 수 있다.
한편 경로 안내 장치(1300)는 차량의 주행 경로에 근거하여 현재 상황에 적합한 모드를 결정할 수도 있다. 예를 들어 경로 안내 장치(1300)는 차량이 주행하는 경로가 직진 구간인 경우 AR 뷰 이미지를 표시하는 AR 모드가 현재 상황에 적합한 모드라고 판단할 수 있다.
반면 주행 경로 상에 기 설정된 곡률 이상의 커브, 또는 기 설정된 길이 이상의 터널이 포함된 경우, 또는 주행 가능한 경로를 벗어난 경우, 경로 안내 장치(1300)는 MR 뷰 이미지를 표시하는 MR 모드가 더 적합한 모드라고 판단할 수 있다. 또는 경로 안내 장치(1300)는 제공될 경로 안내 정보가 경로 상의 분기점이나 출구, 또는 목적지인 경우, 즉 상기 경로 상의 분기점이나 출구 또는 목적지로부터 기 설정된 거리 이내로 차량이 근접한 경우, 상기 MR 모드가 더 적합한 모드라고 판단할 수 있다.
또한 경로 안내 장치(1300)는 차량이 주행하는 경로가 탑승자가 선호하는 경로인지 여부에 따라 현재 상황에 적합한 모드를 결정할 수도 있다. 일 예로 경로 안내 장치(1300)는 현재 차량이 주행하는 경로가, 탑승자가 선호하는 경로인 경우라면 AR 뷰 이미지를 표시하는 AR 모드 또는 2차원 맵이 표시되는 2D 맵 모드가 현재 상황에 적합한 모드로 결정할 수도 있다. 반면 경로 안내 장치(1300)는 현재 차량이 주행하는 경로가, 탑승자가 선호하지 않는 경로인 경우라면 MR 뷰 이미지를 표시하는 MR 모드가 현재 상황에 적합한 모드로 결정할 수도 있다.
여기서 상기 탑승자가 선호하는 경로인지 여부는 차량이 주행하는 경로에 대한 학습 결과로서 판별될 수 있다. 즉, 현재 설정된 목적지에 이르는 복수의 경로 중, 기 설정된 횟수 이상 주행된 경로의 경우 해당 경로는 탑승자가 선호하는 경로로 구분될 수 있다. 반면 기 설정된 횟수 이상 주행되지 않은 경로는 탑승자가 선호하지 않는 경로로 구분될 수 있다.
한편 상기 S1104 단계에서, 수집된 정보에 따라 현재 상황에 적합한 어느 하나의 모드가 검출되는 경우, 경로 안내 장치(1300)는 검출된 모드가 현재 경로 안내 정보가 제공되는 모드와 상이한지 여부를 판별할 수 있다(S1106).
그리고 판별 결과, 상기 S1104 단계에서 검출된 모드가, 현재 경로 안내 정보가 제공되는 모드와 동일한 경우라면, 경로 안내 장치(1300)는 다시 S1100 단계로 진행하여, 모드의 전환 없이 현재 모드, 즉 제1 모드에 따라 경로 안내 정보를 제공할 수 있다. 그리고 S1102 단계 및 S1104 단계로 다시 진행하여 모드 전환 조건과 관련된 정보들을 수집 및, 수집된 정보들에 따라 현재 상황에 보다 적합한 모드를 검출할 수 있다.
한편 상기 판별 결과, 상기 S1104 단계에서 검출된 모드가, 현재 경로 안내 정보를 제공하는 모드와 상이한 경우라면, 경로 안내 장치(1300)는 모드 전환을 위한 파라메터들을 검출할 수 있다(S1108).
상기 파라메터로서 경로 안내 장치(1300)는, 제1 모드에 따른 제1 뷰 이미지의 FOV(Field Of View)를 검출할 수 있다. 그리고 검출된 FOV로부터 FOV의 주시점(point of attention)을 검출할 수 있다. 여기서 FOV의 주시점은 제1 뷰 이미지의 시야각 중심에 대응하는 지점일 수 있다.
그리고 경로 안내 장치(1300)는 제1 뷰 이미지로부터 검출된 FOV 주시점에 근거하여 수직 기준선과 수평 기준선을 검출할 수 있다. 그리고 FOV, FOV 주시점, 그리고 수직 기준선과 수평 기준선에 근거하여, 상기 제1 모드에 따른 제1 뷰 이미지와 동일한 FOV를 가지는, 제2 모드에 따른 제2 뷰 이미지를 생성할 수 있다. 그리고 제1 모드에서 제2 모드로 전환하여 디스플레이부(251) 상에 표시되는 뷰 이미지를 제1 뷰 이미지에서 제2 뷰 이미지를 생성할 수 있다(S1110). 그리고 경로 안내 장치(1300)는 생성된 제2 뷰 이미지를 통해 경로 안내 정보를 제공할 수 있다(S1112).
여기서 상기 경로 안내 장치(1300)는 상기 생성된 제2 뷰 이미지를 통해 다양한 방식으로 경로 안내 정보를 제공할 수 있다. 일 예로 경로 안내 장치(1300)는 제1 뷰 이미지가 표시되는 제1 모드에서, 제2 뷰 이미지가 표시되는 제2 모드로 전환할 수 있다. 따라서 디스플레이 화면(1350)에 표시되는 뷰 이미지는, 상기 모드 전환에 따라 제1 뷰 이미지에서 제2 뷰 이미지로 전환될 수 있다.
한편 이러한 모드 전환이 자동 전환으로 설정된 경우 경로 안내 장치(1300)는 자동으로 모드를 전환할 수 있다. 그러나 상기 모드 전환이 수동으로 설정된 경우 경로 안내 장치(1300)는 상기 S1104 단계에서 검출된 보다 적합한 모드에 대한 정보를 탑승자에게 제공하고, 탑승자의 선택에 따라 모드의 전환이 이루어지도록 할 수도 있다.
이러한 경우 상기 모드의 전환을 선택하기 위한 탑승자의 입력은, 다양한 방식으로 이루어질 수 있다. 예를 들어 디스플레이부(251) 상에 인가되는 터치 입력이나 음성 입력, 또는 기 설정된 전환 버튼에 대한 탑승자의 입력을 통해 상기 모드 전환이 이루어질 수 있다.
또는 경로 안내 장치(1300)는 상기 모드 전환 조건과는 상관없이 탑승자의 요청에 따라 모드를 전환할 수도 있다. 일 예로 탑승자가 AR 뷰 이미지를 통해 제공되는 시야각보다 더 넓은 시야각에 대응하는 경로 안내 정보를 원하는 경우 MR 뷰 이미지로의 전환을 경로 안내 장치(1300)에 요청할 수 있다.
이 경우 경로 안내 장치(1300)는 디스플레이부(251)의 상하 방향 또는 좌우 방향으로 인가되는 스와이프 입력에 따라 기 설정된 순서로 모드를 전환할 수 있다. 즉, 상하 방향 또는 좌우 방향의 스와이프 입력이 인가되는 길이, 또는 횟수에 따라 MR 모드에서 AR 모드로 전환되거나, AR 모드로 전환된 상태에서 다시 MR 모드로 전환할 수 있다. 또는 스와이프 입력이 인가되는 길이, 또는 횟수에 따라 상기 AR 모드로 전환된 상태에서 2차원 지도 정보를 제공하는 2D 맵 모드로 전환하거나, 상기 2D 맵 모드에서 상기 AR 모드로 전환할 수도 있다.
도 12는 상기 도 11의 S1110 단계에서, 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, 제1 뷰 이미지로부터 검출된 파라메터들에 따라 제2 뷰 이미지를 생성하는 예로서, 상기 제1 뷰 이미지가 AR 뷰 이미지이고, 상기 제2 뷰 이미지가 MR 뷰 이미지인 예를 도시한 것이다.
도 12를 참조하여 살펴보면, 경로 안내 장치(1300)는 도 12의 (a)에서와 같이 제공되는 AR 뷰 이미지의 FOV를 검출할 수 있다.
그리고 경로 안내 장치(1300)는 도 12의 (a)에서와 같이 제공되는 AR 뷰 이미지의 FOV로부터 FOV의 주시점(1400)을 검출할 수 있다. 그리고 디지털 트윈화된 3차원 맵 상의 현재 차량의 위치에서, 상기 주시점(1400)을 지향하는 MR 뷰 이미지를 획득할 수 있다.
이를 위해 경로 안내 장치(1300)는, 상기 검출된 FOV 주시점(1400)에 근거하여 수직 기준선(1410)과 수평 기준선(1420)을 검출할 수 있다. 그리고 검출된 수직 기준선(1410)과 수평 기준선(1420)에 상기 획득된 MR 뷰 이미지의 주시점을 일치시킬 수 있다. 즉, 경로 안내 장치(1300)는 도 12의 (b)에서 보이고 있는 바와 같이, AR 뷰 이미지의 주시점(1400)으로부터 검출된 수평 기준선(1420) 상에 MR 뷰 이미지의 주시점을 일치시킬 수 있다. 그리고 도 12의 (c)에서 보이고 있는 바와 같이, AR 뷰 이미지의 주시점(1400)으로부터 검출된 수직 기준선(1410)에, 상기 MR 뷰 이미지의 주시점을 일치시킬 수 있다. 즉, AR 뷰 이미지의 수평 기준선(1420) 및 수직 기준선(1410)이 교차하는 지점에 MR 뷰 이미지의 주시점을 일치시킬 수 있다.
그리고 경로 안내 장치(1300)는, AR 뷰 이미지의 FOV에 대응하는 MR 뷰 이미지의 일 영역을 추출할 수 있다. 여기서 FOV는 AR 뷰 이미지의 시야각으로서, 뷰 이미지를 통해 표시되는 이미지의 크기를 결정할 수 있다. 즉, 경로 안내 장치(1300)는 AR 뷰 이미지의 FOV 주시점에 일치하는 MR 뷰 이미지로부터, 상기 AR 뷰 이미지의 FOV 크기에 대응하는 MR 뷰 이미지를 생성할 수 있다.
따라서 제1 뷰 이미지와 동일한 FOV를 가지며, FOV 주시점의 위치가 동일한 제2 뷰 이미지가 생성될 수 있다. 따라서 디스플레이부(251) 상에 표시되는 뷰 이미지의 전환이 이루어지는 경우, 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 동일한 FOV와 동일한 주시점의 위치를 가지는 뷰 이미지를 통해 모드 간의 전환이 이루어지므로, 모드 전환 시 심리스(seamless)한 뷰 이미지의 전환이 이루어질 수 있다.
한편 상술한 도 12에서는 제1 뷰 이미지가 AR 뷰 이미지인 경우를 가정하여, AR 뷰 이미지와 동일한 FOV를 가지며, FOV 주시점이 동일한 MR 뷰 이미지를 통해 모드 간에 심리스한 전환이 이루어지는 예를 설명하였다. 그러나 이는 제1 뷰 이미지가 MR 뷰 이미지이고, 제2 뷰 이미지가 AR 뷰 이미지인 경우에도 적용될 수 있음은 물론이다. 이러한 경우 AR 뷰 이미지를 통해 표시되는 시야각 외의 영역을 표시할 수 있는 MR 뷰 이미지(예 : 조감도 등)의 특성 상, 상기 심리스한 뷰 이미지 전환을 위해서는 AR 뷰 이미지의 생성을 위한 이미지에 따른 MR 뷰 이미지가 표시되는 과정이 먼저 선행될 수 있다.
이러한 경우, 경로 안내 장치(1300)는, MR 뷰 이미지에서 AR 뷰 이미지로의 전환을 위해, 먼저 카메라에서 획득된 이미지의 FOV로부터 FOV의 주시점을 검출할 수 있다. 그리고 디지털 트윈화된 3차원 맵 상의 현재 차량의 위치에서, 상기 주시점을 지향하는 영역의 이미지를 획득할 수 있다.
그리고 상기 카메라에서 획득된 이미지의 FOV 주시점에 근거하여 수직 기준선과 수평 기준선을 검출할 수 있다. 그리고 검출된 수직 기준선과 수평 기준선에 주시점이 일치된 영역의 이미지를 획득할 수 있다. 그리고 획득된 이미지로부터, 카메라에서 획득된 이미지의 FOV와 동일한 크기를 가지는 일 영역을 추출하여 MR 뷰 이미지로서 디스플레이부(251) 상에 표시할 수 있다. 즉, 상기 카메라에서 획득된 이미지와 동일한 FOV를 가지며, FOV 주시점의 위치가 동일한 MR 뷰 이미지를 디스플레이부(251) 상에 표시할 수 있다. 이와 동시에 경로 안내 장치(1300)는 상기 카메라에서 획득된 이미지에 AR 객체들을 추가하여 AR 뷰 이미지를 생성할 수 있다.
AR 뷰 이미지가 생성되면, 경로 안내 장치(1300)는 MR 모드를 AR 모드로 전환할 수 있다. 따라서 디스플레이부(251)에는 MR 뷰 이미지가 표시되는 상태에서 AR 뷰 이미지가 표시되는 상태로 전환될 수 있다. 이 경우 상기 MR 뷰 이미지와 AR 뷰 이미지는, 상술한 바와 같이 동일한 FOV를 가지며 FOV 주시점의 위치가 동일한 이미지들로서, 모드 전환이 이루어지는 경우 심리스한 뷰 이미지의 전환이 이루어질 수 있다.
따라서 도 13의 (a)에서 보이고 있는 바와 같은 AR 뷰 이미지(1500)가 표시되는 AR 모드로 경로 안내 장치(1300)가 동작하는 경우, 경로 안내 장치(1300)는 기 설정된 모드 전환 조건이 충족되는지 여부에 근거하여, 도 13의 (b)에서 보이고 있는 바와 같이, AR 뷰 이미지(1500)에 대응하는 MR 뷰 이미지(1510)를 생성할 수 있다. 여기서 상기 AR 뷰 이미지에 대응하는 MR 뷰 이미지는, AR 뷰 이미지와 FOV 주시점 위치가 동일하고, FOV에 따른 이미지 영역의 크기가 동일한 뷰 이미지일 수 있다.
이 경우 상기 AR 뷰 이미지(1500)는 인식된 차선에 대응하는 AR 객체(1501) 및 목적지까지의 주행을 위해 앞으로의 주행 방향을 표시하는 AR 객체(1502)를 포함하는 뷰 이미지일 수 있다. 또한 상기 MR 뷰 이미지(1510)는 차량의 주행 경로가 디지털 트윈된 3차원 맵 상에서 MR 객체로 표시된 경로 정보(1511)를 포함하는 뷰 이미지일 수 있다.
상기 모드 전환 조건이 충족되는 경우, 경로 안내 장치(1300)는 동작 모드를 AR 모드에서 MR 모드로 전환하여 디스플레이부(251) 상에 표시되는 뷰 이미지를 전환할 수 있다. 따라서 도 13의 (a)에서와 같이 AR 뷰 이미지(1500)가 표시되는 상태에서, 도 13의 (b)에서 보이고 있는 바와 같이 MR 뷰 이미지(1510)가 표시되는 상태로 전환될 수 있다.
또는 반대로, MR 뷰 이미지(1510)가 표시되는 MR 모드로 경로 안내 장치(1300)가 동작하는 경우, 경로 안내 장치(1300)는 기 설정된 모드 전환 조건이 충족되는지 여부에 근거하여, 도 13의 (b)에서 보이고 있는 바와 같이, 카메라를 통해 획득되는 실제 이미지에 대응하는 MR 뷰 이미지(1510)를 생성할 수 있다. 여기서 상기 실제 이미지에 대응하는 MR 뷰 이미지(1510)는, 상기 실제 이미지와 FOV 주시점 위치가 동일하고, FOV에 따른 이미지 영역의 크기가 동일한 뷰 이미지일 수 있다.
그리고 상기 모드 전환 조건이 충족되는 경우, 경로 안내 장치(1300)는 동작 모드를 MR 모드에서 AR 모드로 전환하여 디스플레이부(251) 상에 표시되는 뷰 이미지를 전환할 수 있다. 따라서 도 13의 (b)에서와 같이 MR 뷰 이미지(1510)가 표시되는 상태에서, 도 13의 (a)에서 보이고 있는 바와 같이 AR 뷰 이미지(1500)가 표시되는 상태로 전환될 수 있다.
한편 상술한 설명에서는 AR 모드와 MR 모드 간의 전환을 주로 설명하였으나, AR 모드와 MR 모드 외에 다른 뷰 이미지가 표시되는 동작 모드로 전환이 이루어질 수도 있음은 물론이다. 일 예로 경로 안내 장치(1300)는 차량이 주행하고 있는 지역이, 디지털 트윈화된 3차원 맵의 정밀도가 낮은 시외 지역인 경우라면 2차원 지도를 표시하는 모드가 보다 적합한 모드라고 판단할 수도 있다. 이 경우 경로 안내 장치(1300)는 상기 2차원 지도를 포함하는 뷰 이미지를 제공하고, 상기 2차원 지도를 통해 경로 안내 정보를 제공할 수도 있음은 물론이다.
또한 경로 안내 장치(1300)는 상술한 모드 전환 조건과 관련된 정보들의 조합에 근거하여 현재 상황에 적합한 모드를 결정할 수도 있다. 예를 들어 경로 안내 장치(1300)는 차량이 주행하는 지역이 고속도로 인 경우, 차량의 주행 속도에 따라 동작 모드 전환을 통해 서로 다른 뷰 이미지를 제공할 수도 있다. 즉, 차량이 주행하는 지역이 고속도로인 경우 차량의 속도가 제1 속도 이하인 경우(저속)에는 MR 뷰 이미지를 표시하고(MR 모드), 차량의 속도가 상기 제1 속도 초과, 제2 속도 미만인 경우(중속)에는 AR 뷰 이미지를 표시하며(AR 모드), 상기 제2 속도를 초과하는 경우(고속) 2차원 맵 이미지를 표시하는 2D 맵 모드로 전환될 수 있다.
한편, 경로 안내 장치(1300)는 현재 동작 모드가 AR 뷰 이미지를 표시하는 AR 동작 모드인 경우, 상기 AR 뷰 이미지의 정확도에 근거하여 MR 모드로의 모드 전환을 수행할 수도 있다. 이를 위해 경로 안내 장치(1300)는 AR 뷰 이미지와 카메라를 통해 획득되는 실제 이미지 간의 오차율을 산출할 수 있으며, 산출된 오차율에 따라 모드를 전환할 수도 있다.
도 14는 이처럼 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, AR 뷰 이미지의 오차율에 따라 동작 모드를 전환하는 동작 과정을 도시한 흐름도이다.
도 14를 참조하여 살펴보면, 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 먼저 차량이 주행하는 도로의 곡률 변화량과 도로의 경사도 변화량을 산출할 수 있다(S1400, S1402).
여기서 상기 도로 곡률 변화량은, 차량의 기울어짐을 감지할 수 있는 자이로 센서의 감지값과 차량이 주행하는 도로의 차선을 검출할 수 있는 차선 인식기의 검출 결과에 따라 산출될 수 있다. 즉, 차량의 기울어짐과, 차선 인식기를 통해 검출되는 차량의 굴곡 정도에 근거하여 상기 도로의 곡률 변화량이 산출될 수 있다.
그리고 상기 도로의 경사도 변화량은, 차량이 현재 주행하는 도로에 대한 디지털 트윈화된 3차원 맵 또는, 도로 정보를 제공하는 기 설정된 서버를 통해 수집되는 고도 특성(Vertical profile) 및 고정밀 지도(High Definition MAP, HD MAP)를 통해 검출되는 도로 형상에 따라 산출될 수 있다.
그러면 경로 안내 장치(1300)는 상기 S1400 단계 및 S1402 단계에서 산출된 도로 곡률 변화량과 경사도 변화량에 근거하여, 카메라를 통해 획득된 실제 이미지와 그 실제 이미지에 표시되는 AR 객체 간의 오차율(AR fitting error rate)을 산출할 수 있다(S1404). 즉, 경로 안내 장치(1300)는 상기 도로 곡률 변화량과 경사도 변화량에 근거하여 생성되는 AR 객체와, 2차원으로 표현되는 상기 실제 이미지간의 오차율을 산출할 수 있다.
일 예로, 경로 안내 장치(1300)는 상기 오차율을 산출하기 위해, AR 객체에 대응하는 실제 이미지 내의 객체(예 : 차선 형상)와 상기 객체에 대응하는 AR 객체의 형상을 픽셀 단위로 비교할 수 있다. 그리고 상기 형상 비교 결과, 실제 객체와 일치하는 픽셀 수에 대한 일치하지 않는 픽셀 수의 비율, 또는 이미지의 전체 픽셀 수를 기준으로 상기 일치하지 않는 픽셀 수의 비율 등을 상기 오차율로서 산출할 수 있다.
그리고 경로 안내 장치(1300)는, 상기 S1404 단계에서 산출된 오차율이 기 설정된 오차율 임계값을 초과하는지 여부를 판별할 수 있다(S1406). 그리고 판별된 오차율이 상기 오차율 임계값을 초과하지 않는 경우 현재 상황에 적합한 모드를 AR 모드로 판별할 수 있다(S1408).
이 경우 제1 모드, 즉 현재 경로 안내 정보를 제공하는 모드가 MR 모드인 경우라면 AR 모드로의 전환이 이루어질 수 있다. 그리고 디스플레이부(251) 상에 표시되는 뷰 이미지가 MR 뷰 이미지에서 AR 뷰 이미지로 전환될 수 있다. 그러나 상기 제1 모드가 AR 모드라면, 경로 안내 장치(1300)는 모드 전환없이 현재 동작 모드에 따른 AR 뷰 이미지를 통해 경로 안내 정보를 제공할 수 있다.
그러나 상기 S1408 단계의 판별 결과, 오차율이 상기 오차율 임계값을 초과하는 경우라면, 경로 안내 장치(1300)는 현재 상황에 적합한 모드를 MR 모드로 판별할 수 있다.
이 경우 제1 모드, 즉 현재 경로 안내 정보를 제공하는 모드가 AR 모드인 경우라면 MR 모드로의 전환이 이루어질 수 있다. 그리고 디스플레이부(251) 상에 표시되는 뷰 이미지가 AR 뷰 이미지에서 MR 뷰 이미지로 전환될 수 있다. 그러나 상기 제1 모드가 MR 모드라면, 경로 안내 장치(1300)는 모드 전환없이 현재 동작 모드에 따른 MR 뷰 이미지를 통해 경로 안내 정보를 제공할 수 있다.
한편 상술한 설명에 따르면, 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 상기 도 11의 S1112 단계에서, 제2 뷰 이미지를 통해 제2 모드에 기반한 경로 안내 정보를 제공할 수 있음을 언급한 바 있다. 이하 도 15a 및 도 15b는, 모드 전환을 통해 디스플레이부(251) 상에 표시되는 뷰 이미지가 제1 뷰 이미지에서 제2 뷰 이미지로 전환되는 경우에, 제2 뷰 이미지를 통해 경로 정보가 제공되는 동작 과정을 도시한 흐름도들이다.
먼저 도 15a는, MR 모드에서 AR 모드로 전환되는 경우에, 즉, 제1 모드가 MR 모드이고, 제2 모드가 AR 모드인 경우에, 상기 AR 모드에 따른 AR 뷰 이미지를 통해 경로 안내 정보가 제공되는 동작 과정을 도시한 흐름도이다.
도 15a를 참조하여 살펴보면, 경로 안내 장치(1300)는 AR 모드로 전환하기 전에, 먼저 AR 모드에 대한 카메라 캘리브레이션(camera calibration)을 갱신할 수 있다(S1500).
여기서 카메라 캘리브레이션은, 이미지를 통해 획득된 3차원 공간 좌표와 2차원 영상 좌표 사이의 변환 관계에 대한 파라미터들을 교정하는 과정일 수 있다. 즉, 경로 안내 장치(1300)는 상기 S1500 단계에서, AR 카메라 캘리브레이션을 다시 수행하여, 카메라를 통해 실제 획득된 실제 이미지로부터 인식되는 객체의 3차원 공간 상의 좌표에 대응하는 2차원 영상 상의 좌표를 교정할 수 있다.
이러한 카메라 캘리브레이션 과정을 통해 실제 이미지로부터 인식되는 객체에 대응하는 정확한 2차원 영상의 좌표가 획득될 수 있다. 그리고 경로 안내 장치(1300)는 상기 카메라 캘리브레이션 과정을 통해 교정된 좌표에 근거하여 AR 객체를 표시함으로써, 실제 이미지에 포함된 객체에 보다 정확하게 일치하는 AR 객체를 표시할 수 있다. 이처럼 AR 객체를 표시하기 위해 3차원 공간 상의 좌표에 대응하는 2차원 공간 상의 좌표를 교정하는 과정을 AR 카메라 캘리브레이션이라고 할 수 있다.
여기서 상기 S1500 단계의 AR 카메라 캘리브레이션 과정은, 카메라를 통해 실제 획득된 실제 이미지로부터 FOV 주시점을 검출하고, 검출된 FOV 주시점에 근거하여 형성되는 절두체(Frustum)에 근거하여 3차원 공간 상의 좌표를 2차원 공간 상의 좌표로 변환하는 과정을 포함할 수 있다.
한편 상기 S1500 단계의 AR 카메라 캘리브레이션 과정이 완료되면, 경로 안내 장치(1300)는 MR 모드에서 AR 모드로의 전환을 통해, 디스플레이부(251) 상에 표시되는 MR 뷰 이미지를 동일한 비율 및 크기의 AR 뷰 이미지로 전환할 수 있다(S1502). 이 경우 경로 안내 장치(1300)는, 심리스한 전환을 위해 점진적으로 MR 뷰 이미지를 AR 뷰 이미지로 전환할 수 있다.
여기서 상기 동일한 비율 및 크기를 가지는 AR 뷰 이미지는, MR 뷰 이미지와 동일한 FOV를 가지는 뷰 이미지일 수 있다. 그리고 상기 동일한 FOV를 가지는 AR 뷰 이미지와 MR 뷰 이미지는 FOV 주시점의 위치가 서로 동일한 뷰 이미지일 수 있다. 이를 위해 경로 안내 장치(1300)는, AR 모드로 전환하기 전에, 보다 심리스한 뷰 이미지의 전환을 위하여, 상기 카메라를 통해 획득된 이미지의 FOV 주시점과 동일한 위치에 FOV 주시점을 가지는 MR 뷰 이미지를 디스플레이할 수 있다. 따라서 경로 안내 장치(1300)는 조감도, 또는 측면도 등의 MR 뷰 이미지가 표시되는 상태에서, 차량의 전방에 대한 MR 뷰 이미지가 표시되도록 디스플레이부(251) 상에 표시되는 뷰 이미지를 변경할 수 있다.
그리고 상기 S1502 단계에서, 디스플레이부(251) 상에 표시되는 MR 뷰 이미지와 동일한 비율 및 크기를 가지는 AR 뷰 이미지로, 뷰 이미지가 전환되면 경로 안내 장치(1300)는 AR 모드에 기반하여 경로 안내 정보를 제공할 수 있다(S1504). 즉, 경로 안내 장치(1300)는 상기 실제 획득되는 이미지에 포함된 객체(예 : 차선, 건물 등)들을 인식하고, 인식된 객체가 표시되는 좌표 영역 적어도 일부에 상기 인식된 객체에 대응하는 그래픽 객체(AR 객체)를 표시할 수 있다. 즉 AR 모드를 통해 제공되는 AR 뷰 이미지를 통해 경로 안내 정보를 제공할 수 있다.
한편 도 15b는, AR 모드에서 MR 모드로 전환되는 경우에, 즉, 제1 모드가 AR 모드이고, 제2 모드가 MR 모드인 경우에, 상기 MR 모드에 따른 MR 뷰 이미지를 통해 경로 안내 정보가 제공되는 동작 과정을 도시한 흐름도이다.
도 15b를 참조하여 살펴보면, 경로 안내 장치(1300)는 AR 모드에서 MR 모드로 전환이 시작되는 경우, 마지막으로 이루어진 AR 카메라 캘리브레이션 결과에 따라 MR 카메라 캘리브레이션을 변경할 수 있다(S1550). 즉, AR 모드에서 이루어진 AR 카메라 캘리브레이션 결과에 따라 실제 이미지로부터 인식되는 객체의 3차원 공간 상의 좌표에 대응하는 2차원 영상 상의 좌표 변환 과정과 동일한 좌표 변환 과정이, MR 카메라 캘리브레이션에 적용될 수 있다.
여기서 MR 카메라 캘리브레이션은, 디지털 트윈화된 3차원 맵 상에서 차량의 카메라가 차량의 전방을 지향할 때에 카메라의 주시점에 따라 형성되는 절두체 형상의 시각장에 근거하여 디스플레이부 상에 상기 카메라의 주시점에 따른 MR 뷰 이미지를 표시하기 위한 것일 수 있다. 즉, 디지털 트윈화된 3차원 맵 상에서 차량의 카메라를 통해 촬영되는 상기 3차원 공간 상의 좌표를, 2차원 공간 상의 좌표, MR 뷰 이미지 상의 좌표로 변환하는 과정일 수 있다. 즉, 상기 S1550 단계에서 마지막으로 수행된 AR 카메라 캘리브레이션 결과에 따라 MR 카메라 캘리브레이션을 변경하는 경우, AR 모드에서 제공되는 AR 뷰 이미지의 FOV 주시점과 동일한 FOV 주시점을 지향하는 디지털 트윈화 된 3차원 맵의 영상이 생성될 수 있다.
그러면 경로 안내 장치(1300)는 AR 뷰 이미지와 동일한 비율의 MR 뷰 이미지로 전환할 수 있다(S1552).
일 예로 경로 안내 장치(1300)는 AR 뷰 이미지(1500)의 FOV와 동일한 크기에 대응하는 MR 뷰 이미지 상의 영역을 추출할 수 있다. 이 경우 경로 안내 장치(1300)는 AR 뷰 이미지의 FOV 주시점과 동일한 FOV 주시점 위치를 가지는 이미지 영역을 추출할 수 있다. 따라서 AR 뷰 이미지와 크기 및 비율이 동일하고, FOV 주시점이 동일한 MR 뷰 이미지가 추출될 수 있다. 즉, AR 뷰 이미지(1500)에 대응하는 MR 뷰 이미지(1510)가 생성될 수 있다.
이 경우 AR 뷰 이미지와 MR 뷰 이미지는 서로 동일한 FOV를 가지므로, 동일한 가시거리에 대응하는 서로 다른 종류의 뷰 이미지일 수 있다. 즉, AR 뷰 이미지를 통해 표시되는 가시거리가 50m인 경우, 동일하게 50m의 가시거리를 가지는 MR 뷰 이미지가 생성될 수 있다.
그리고 경로 안내 장치(1300)는 AR 모드에서 MR 모드로의 전환을 통해, 디스플레이부(251) 상에 표시되는 AR 뷰 이미지를, 상기 생성된 MR 뷰 이미지로 전환할 수 있다.
한편 MR 뷰 이미지는 디지털 트윈화된 3차원 맵에 대한 뷰 이미지로서, AR 뷰 이미지에 비하여 보다 긴 가시거리를 가질 수 있다. 따라서 디폴트 MR 뷰 이미지의 경우 보다 긴 가시거리에 대응하는 뷰 이미지일 수 있다. 따라서 그러므로 경로 안내 장치(1300)는, AR 모드와 동일한 짧은 가시거리를 가지는 MR 뷰 이미지를, MR 모드에 따른 기본 가시거리를 가지는 MR 뷰 이미지로 전환할 수 있다(S1554). 이 경우 경로 안내 장치(1300)는 심리스한 전환을 위해 MR 뷰 이미지를 점진적으로 전환할 수 있다.
그리고 경로 안내 장치(1300)는 MR 모드에 기반하여 경로 안내 정보를 제공할 수 있다(S1556). 이 경우 경로 안내 장치(1300)는 디지털 트윈화된 3차원 맵 상에서 표시되는 가상 객체(MR 객체)를 통해 다양한 경로 안내 정보를 제공할 수 있다. 일 예로 경로 안내 장치(1300)는 조감도 또는 측면도 방식으로 차량 바라보는 가상 영상을 경로 안내 정보로서 제공하거나, 또는 차량이 이미 지나온 경로에 대한 POI나, 앞으로 차량이 주행할 경로에 대한 정보들을 경로 안내 정보로서 제공할 수 있다.
한편 이상의 설명에서는, 본 발명의 실시 예에 따른 경로 안내 장치(1300)가 디스플레이부(251) 상에 한 종류의 AR 뷰 이미지 또는 MR 뷰 이미지를 표시하도록 디스플레이부(251)를 제어하는 경우를 설명하였다.
그러나 상기 경로 안내 장치(1300)는 하나의 디스플레이 화면에 상기 AR 뷰 이미지와 MR 뷰 이미지가 함께 표시되도록 디스플레이부(251)를 제어할 수도 있음은 물론이다.
이 경우 경로 안내 장치(1300)는, 상기 디스플레이 화면, 즉 메인 스크린 영역을 분할하여 분할된 각 영역에 AR 뷰 이미지와 MR 뷰 이미지를 각각 표시할 수 있다. 또는 경로 안내 장치(1300)는 어느 하나의 뷰 이미지가 표시되는 메인 스크린 영역의 일부 영역에, 다른 뷰 이미지가 표시되는 영역을 오버랩하여 하나의 디스플레이 화면에 상기 AR 뷰 이미지와 MR 뷰 이미지를 함께 표시할 수도 있다.
경로 안내 장치(1300)는, 상기 모드 전환 조건과 관련하여 수집된 정보에 근거하여 디스플레이 화면을 분할하여 AR 뷰 이미지와 MR 뷰 이미지를 함께 표시하거나, 상기 AR 뷰 이미지와 MR 뷰 이미지가 혼합된 뷰 이미지를 표시할지 여부를 결정할 수 있다. 또는 AR 뷰 이미지의 일부에 MR 뷰 이미지를 오버랩 하거나 반대로 MR 뷰 이미지의 일부에 AR 뷰 이미지를 오버랩한 뷰 이미지를 출력할지 여부를 결정할 수 있다.
이 경우 디스플레이 영역 분할을 통해 상기 AR 뷰 이미지와 MR 뷰 이미지가 함께 표시(뷰 이미지 분할 표시)되는 조건과, 상기 AR 뷰 이미지와 MR 뷰 이미지가 혼합된 뷰 이미지가 표시(뷰 이미지 혼합 표시)되는 조건, 그리고 어느 한 종류의 뷰 이미지 일부에 다른 종류의 뷰 이미지가 오버랩된 뷰 이미지를 표시(뷰 이미지 오버랩 표시)하는 조건은 서로 상이할 수 있다.
먼저 도 16은 이러한 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, 디스플레이 영역을 분할하여 AR 뷰 이미지와 MR 뷰 이미지를 동시에 표시하는 동작 과정을 도시한 흐름도이다. 그리고 도 17은, 도 16의 동작 과정을 통해 AR 뷰 이미지와 MR 뷰 이미지가 각각 표시되는 디스플레이 화면의 예를 도시한 것이다.
상기 경로 안내 장치(1300)는 차량의 주행 중에, 분할된 디스플레이 영역을 통해 AR 뷰 이미지와 MR 뷰 이미지가 함께 표시되는 뷰 이미지 분할 표시 조건이 충족되는지 여부를 검출할 수 있다. 이 경우 상기 뷰 이미지 분할 표시 조건은 기 설정된 경로에서 차량이 이탈하는 경우일 수 있다.
이처럼 뷰 이미지 분할 표시 조건이 충족되는 경우, 경로 안내 장치(1300)는 먼저 뷰 이미지들을 표시하기 위하여 디스플레이 영역을 분할 수 있다(S1600). 여기서 경로 안내 장치(1300)는 디스플레이 영역을 제1 영역(1710)과 제2 영역(1720)으로 분할할 수 있으며, 이 경우 상기 제1 영역(1710)과 제2 영역(1720)은 각각 AR 뷰 이미지와 MR 뷰 이미지에 할당될 수 있다.
상기 S1600 단계에서 디스플레이 영역이 분할되는 경우, 경로 안내 장치(1300)는 제1 영역(1710)에 먼저 AR 뷰 이미지를 표시할 수 있다. 그리고 AR 모드에 따른 경로 안내 정보를 제공할 수 있다(S1602). 이 경우 경로 안내 장치(1300)는 기 설정된 경로에서 이탈함에 따라, 현재 차량의 위치에서 목적지까지 설정된 변경된 경로로의 전환 방향을 나타내는 AR 객체(1501) 및, 인식된 차선을 나타내는 AR 객체(1502)를 포함하는 AR 뷰 이미지를, 상기 제1 영역(1710)에 표시하도록 디스플레이부(251)를 제어할 수 있다.
한편 경로 안내 장치(1300)는, 마지막으로 이루어진 AR 카메라 캘리브레이션에 따라 MR 카메라 캘리브레이션을 변경할 수 있다(S1604). 이 경우, 카메라 캘리브레이션 결과를 공유함에 따라 AR 모드에서 제공되는 AR 뷰 이미지의 FOV 주시점과 동일한 FOV 주시점을 지향하는 디지털 트윈화 된 3차원 맵의 영상이 생성될 수 있다.
그리고 경로 안내 장치(1300)는 캘리브레이션 공유에 생성된 디지털 트윈화 된 3차원 맵의 영상으로부터, AR 뷰 이미지의 FOV와 동일한 FOV를 가지는 영상을 추출할 수 있다. 따라서 AR 뷰 이미지와 동일한 크기와 비율을 가지며, 주시점이 동일한, AR 뷰 이미지에 대응하는 MR 뷰 이미지가 생성될 수 있다(S1606).
그러면 경로 안내 장치(1300)는 생성된 MR 뷰 이미지를, 상기 분할된 디스플레이 영역 중 제2 영역에 표시할 수 있다(S1608). 그리고 MR 모드에 따른 경로 안내 정보를 제공할 수 있다(S1610). 이 경우 경로 안내 장치(1300)는 기 설정된 경로에서 이탈함에 따라, 현재 차량의 위치에서 목적지까지 설정된 변경된 경로에서, 변경된 경로의 진행 방향을 나타내는 MR 객체(1511)를 포함하는 MR 뷰 이미지를, 상기 제2 영역(1730)에 표시하도록 디스플레이부(251)를 제어할 수 있다.
한편 상기 도 17에서는 디스플레이 영역을 동일한 두 개의 영역으로 분할하고, 분할된 각 영역에 서로 다른 경로 안내 정보를 제공하는 뷰 이미지들을 표시하는 예를 설명하였다. 그러나 경로 안내 장치(1300)는 특정 조건에 근거하여 상기 디스플레이 영역을 분할하고, 분할된 영역 각각에 서로 다른 종류의 뷰 이미지를 제공할 수도 있음은 물론이다.
일 예로 차량으로부터의 거리가 가까울수록 차량으로부터 획득되는 이미지는 선명하고 명확할 수 있다. 또한 이미지 상에 표시되는 객체의 크기가 비교적 클 수 있다. 따라서 보다 용이하게 이미지에 포함된 객체가 인식될 수 있으며, 이에 보다 정확한 객체의 인식이 이루어질 수 있다. 즉, 차량으로부터의 거리가 가까울수록 실제 객체와 정확하게 매치되는 AR 객체를 포함하는 AR 뷰 이미지가 표시될 수 있다. 반면, 차량으로부터 거리의 멀어지게 되면 이격 거리에 의해 객체의 크기가 작아지고 표시되는 객체의 개수가 많아지므로 정확한 객체의 인식이 어려울 수 있다. 따라서 AR 뷰 이미지 상에 표시되는 AR 객체의 정확도가 저하될 수 있다.
한편 MR 뷰 이미지의 경우 디지털 트윈화된 3차원 맵을 이용하여 표시되는 가상 화면으로서, 차량으로부터의 가시거리와 상관없이 정확한 MR 객체를 표시할 수 있다. 그러나 MR 뷰 이미지의 경우 가상 화면을 통해 경로 안내 정보를 표시하는 것으로, 현실 세계와 차이가 있을 수 있으며, 이에 따라 탑승자는 괴리감을 느낄 수 있다.
따라서 본 발명의 실시 예에 따른 경로 안내 장치(1300)는, 긴 가시거리에 따른 시야 확보와, 근거리의 시야를 모두 확보할 필요가 있는 경우 AR 뷰 이미지와 MR 뷰 이미지가 모두 표시되는 디스플레이 화면으로 전환할 수 있다. 예를 들어 차량 주변에 인접한 객체들이 기 설정된 개수 이상이고, 교통 체증 및 차량 주변의 상황으로 인해 경로 정보에 대한 정확한 AR 객체의 표시가 어려운 경우, 경로 안내 장치(1300)는 차량 주변에 인접한 객체들을 표시하기 위해 AR 뷰 이미지를 통한 근거리 시야 확보와, 명확한 경로 정보의 표시를 위해 MR 뷰 이미지를 통한 원거리 시야 확보가 필요하다고 판단할 수 있다.
이 경우 경로 안내 장치(1300)는 제1 뷰 이미지가 표시되는 디스플레이 영역과, 상기 제1 뷰 이미지와 다른 종류의 제2 뷰 이미지가 표시되는 영역을 서로 간에 배타적으로 분리함으로써, 서로 간에 분리된 각 영역에 표시되는 AR 뷰 이미지와 MR 뷰 이미지가 혼합된 디스플레이 화면이 표시되도록 디스플레이부(251)를 제어할 수 있다.
도 18은, 이처럼 제1 뷰 이미지와 제2 뷰 이미지가 혼합된 디스플레이 화면을 통해 경로 안내 정보를 제공하는 동작 과정을 도시한 흐름도이다. 그리고 도 19는, 도 18의 동작 과정을 통해, 서로 간에 분리된 각각의 영역에 AR 뷰 이미지와 MR 뷰 이미지가 표시되는 디스플레이 화면의 예를 도시한 것이다.
한편 디스플레이 영역을 분리하는 조건은 다양하게 설정될 수 있다. 일 예로 경로 안내 장치(1300)는 차량으로부터의 이격 거리에 근거하여 디스플레이 화면을 제1 영역과 제2 영역으로 구분할 수 있다. 이 경우 차량으로부터 일정 거리(예 : 50m) 이내의 영역(근거리 영역)에 대응하는 디스플레이 화면의 일 영역은 제1 영역으로 구분될 수 있으며, 차량으로부터 상기 일정 거리를 초과하는 영역(원거리 영역)에 대응하는 디스플레이 화면의 일 영역은 제2 영역으로 구분될 수 있다.
이하 설명의 편의상 상기 경로 안내 장치(1300) 차량으로부터의 이격 거리에 근거하여 디스플레이 영역을 제1 영역과 제2 영역으로 분리하는 것을 가정하여 설명하기로 한다. 그러나 본 발명이 이에 한정되는 것이 아님은 물론이며, 이에 따라 경로 안내 장치(1300)는 거리가 아닌 다른 조건에 근거하여 디스플레이 영역을 상기 제1 영역과 제2 영역으로 분리할 수도 있음은 물론이다.
도 18을 참조하여 살펴보면, 경로 안내 장치(1300)는 먼저 디스플레이 화면을 통해 표시되는 이미지에서, 차량으로부터의 거리가 기 설정된 거리 이내인 영역을 검출할 수 있다(S1800). 이 경우 경로 안내 장치(1300), 카메라로부터 획득된 이미지의 픽셀 깊이값 등을 통해, 상기 차량으로부터의 거리가 기 설정된 거리 이내인 영역에 대응하는 디스플레이 화면 상의 일 영역을 검출할 수 있다.
그러면 경로 안내 장치(1300)는 상기 S1800 단계에서 검출된 일 영역을, AR 뷰 이미지가 표시될 제1 영역으로 분리할 수 있다(S1802). 그리고 디스플레이 화면의 나머지 영역, 즉 차량으로부터의 거리가 기 설정된 거리를 초과하는 영역에 대응하는 디스플레이 화면 상의 일 영역을 MR 뷰 이미지가 표시될 제2 영역으로 분리할 수 있다(S1804).
그리고 경로 안내 장치(1300)는 AR 카메라 캘리브레이션에 따라 MR 카메라 캘리브레이션을 변경할 수 있다(S1806). 이 경우, 카메라 캘리브레이션 결과를 공유함에 따라 AR 모드에서 제공되는 AR 뷰 이미지의 FOV 주시점과 동일한 FOV 주시점을 지향하는 디지털 트윈화 된 3차원 맵의 영상이 생성될 수 있다.
그리고 경로 안내 장치(1300)는 캘리브레이션 공유에 생성된 디지털 트윈화 된 3차원 맵의 영상으로부터, AR 뷰 이미지의 FOV와 동일한 FOV를 가지는 영상을 추출할 수 있다. 따라서 AR 뷰 이미지와 동일한 크기와 비율을 가지며, 주시점이 동일한, AR 뷰 이미지에 대응하는 MR 뷰 이미지가 생성될 수 있다(S1808).
그러면 경로 안내 장치(1300)는, 상기 AR 뷰 이미지 중 상기 제1 영역에 대응하는 일부의 AR 뷰 이미지를 디스플레이 화면에 표시하고, 상기 MR 뷰 이미지 중 상기 제2 영역에 대응하는 일부의 MR 뷰 이미지를 디스플레이 화면에 표시할 수 있다(S1810). 이에 따라 제1 영역에서는 AR 객체를 포함하는 AR 뷰 이미지가 표시될 수 있으며, 제2 영역에서는 MR 객체를 포함하는 MR 뷰 이미지가 표시될 수 있다. 그리고 경로 안내 장치(1300)는 각 영역에 대하여, 각 영역에 대응하는 모드에 따른 경로 안내 정보를 제공할 수 있다(S1812). 즉, 경로 안내 장치(1300)는 서로 간에 배타적으로 분리된 제1 영역과 제2 영역 각각에 대하여, 서로 다른 동작 모드에 따라 서로 다른 종류의 경로 안내 정보를 제공할 수 있다.
도 19를 참조하여 살펴보면, 도 19의 (a)는 AR 뷰 이미지가 디스플레이 화면에 표시되는 예를 도시한 것이다. 이 경우, 표시되는 뷰 이미지는, 인식된 차선에 대응하는 AR 객체(1501), 차량이 주행할 경로의 전환 방향에 대응하는 AR 객체(1502)를 포함하는 뷰 이미지일 수 있다.
한편 도 19의 (a)에서 보이고 있는 바와 같은 상황인 경우, 차량 주변에 위치한 사람 및 다른 사물들이 다수 검출되므로, 경로 안내 장치(1300)는 근거리에 위치한 사물들의 정보를 보다 정확하게 제공할 수 있는 AR 뷰 이미지의 제공이 필요한 것으로 판단할 수 있다. 반면 앞서 주행하는 차량들로 인해 차선이 인식되는 거리가 매우 짧으므로, 보다 긴 가시거리에 대응하는 경로 정보를 제공할 수 있는 MR 뷰 이미지의 제공이 필요한 것으로 판단할 수 있다.
이러한 경우 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 카메라로부터 획득된 이미지에서, 차량으로부터 이격 거리가 기 설정된 거리 이내인 영역을 검출할 수 있다. 이 경우 상기 기 설정된 거리가 50m로 설정된 경우라면, 경로 안내 장치(1300)는 카메라로부터 획득되는 이미지를, 차량으로부터의 이격 거리가 50m 이내인 영역(제1 영역, 1950), 이격거리가 50m를 초과하는 영역(제2 영역, 1900)으로 구분할 수 있다.
그리고 경로 안내 장치(1300)는, 상기 도 18에서 설명한 과정에 따라 AR 뷰 이미지에 대응하는 MR 뷰 이미지를 생성할 수 있다. 그리고 디스플레이 화면에서, 차량으로부터 이격 거리가 50m 이내인 제1 영역에는 AR 객체를 포함하는 AR 뷰 이미지를 표시하고, 차량으로부터 이격 거리가 50m를 초과하는 제2 영역에는 MR 객체를 포함하는 MR 뷰 이미지를 표시할 수 있다. 따라서 도 19에서 보이고 있는 바와 같이, 제1 영역(1950)에는 실제 카메라에서 획득된 이미지와, 상기 이미지로부터 인식된 차량 주변의 전방의 차선에 대응하는 AR 객체(1951)가 표시될 수 있다. 반면 제2 영역(1900)에는 디지털 트윈화된 3차원 맵상의 이미지와, 상기 디지털 트윈화된 3차원 맵 상에서 차량이 주행할 경로를 표시하는 MR 객체(1901)가 표시될 수 있다.
즉, 디스플레이 영역을 서로 다른 방식으로 경로 안내 정보를 제공하는 영역으로 배타적으로 분리하여, 분리된 각 영역에 대응하는 동작 모드에 따라 서로 다른 방식의 경로 안내 정보를 제공할 수 있다.
한편 이처럼 디스플레이 영역을 분리하여 서로 다른 동작 모드에서 제공되는 뷰 이미지들을 혼합하여 표시하는 경우, 상술한 바와 같이 상기 뷰 이미지들은 카메라 캘리브레이션이 공유된 뷰 이미지들일 수 있다. 또한 FOV 주시점이 동일한 뷰 이미지들일 수 있다. 따라서 동일한 FOV 주시점에 근거하여 형성되는 시각장에 따라 3차원 공간 상의 좌표를 2차원 영상에 변환하므로, 각 뷰 이미지들에서 표시되는 객체가 서로 다른 뷰 이미지가 표시되는 영역으로 심리스하게 이동될 수 있다.
즉, AR 모드에 따라 경로 안내 정보가 제공되는 영역에서 표시되는 객체가, MR 모드에 따라 경로 안내 정보가 제공되는 영역으로 이동하는 경우, 실사 이미지의 형태로 표시되는 객체가 모델링에 따라 표시되는 가상 객체로 표시될 수 있다. 반대로 MR 모드에 따라 경로 안내 정보가 제공되는 영역에서 표시되는 객체가, AR 모드에 따라 경로 안내 정보가 제공되는 영역으로 이동하는 경우, 모델링에 따라 표시되는 가상 객체가 실사 이미지의 형태로 표시될 수 있다.
한편 이처럼 혼합된 화면에서 MR 객체를 이용하여 경로 정보를 표시하는 경우, 경로 안내 장치(1300)는 지표면에서 하늘 방향으로 구부러지는 형태를 가지는 MR 객체를 이용하여 상기 경로 정보를 표시할 수도 있다.
한편 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 제1 뷰 이미지가 표시되는 영역의 적어도 일부에 제2 뷰 이미지를 오버랩할 수도 있음은 물론이다. 예를 들어 경로 안내 장치(1300)는 POI 정보의 시인성을 높일 필요가 있는 경우, 차량이 주행하는 도로의 상태에 따라 제1 뷰 이미지가 표시되는 영역의 적어도 일부에 제2 뷰 이미지를 오버랩할 수도 있다.
이러한 경우, 경로 안내 장치는 사용자의 선호도 등에 따라 미리 결정된 POI 정보의 중요도에 근거하여 표시되는 POI 정보의 시인성을 개선할 필요가 있는지 여부를 판별할 수 있다. 그리고 POI 정보의 시인성 개선이 필요한 경우, AR 뷰 이미지의 적어도 일부에 MR 뷰 이미지를 오버랩하여 POI 정보의 시인성을 높일 수 있다.
또는 경로 안내 장치(1300)는 차량이 주행하는 경로의 분기점이 인접한 경우, 상기 분기점을 보다 명확하게 표시하기 위해 AR 뷰 이미지의 적어도 일부에 MR 뷰 이미지를 오버랩하여 운전자가 분기 지점을 보다 명확하게 인식하도록 할 수도 있다. 또는 경로 안내 장치(1300)는 차량의 카메라에서 획득되는 시야각을 벗어나는 사각 지대의 상황을 탑승자에게 제공하기 위하여, MR 뷰 이미지의 일부에 AR 뷰 이미지가 오버랩된 디스플레이 화면을 표시할 수도 있다.
도 20은 이러한 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, 제1 뷰 이미지가 표시되는 영역의 적어도 일부에, 제2 뷰 이미지를 오버랩하는 동작 과정을 도시한 흐름도이다. 그리고 도 21과 도 22는, 도 20의 동작 과정에 따라 MR 뷰 이미지가 표시되는 디스플레이 영역의 적어도 일부에, AR 뷰 이미지가 오버랩되는 예시도들이다.
도 20을 참조하여 살펴보면, 경로 안내 장치(1300)는 제1 뷰 이미지의 적어도 일부에 대응하는 제2 뷰 이미지를 생성할 수 있다(S2000). 이 경우 경로 안내 장치(1300)는 카메라 캘리브레이션 공유를 통해, FOV 주시점이 동일한 뷰 이미지를 생성할 수 있다. 예를 들어 경로 안내 장치(1300)는 AR 뷰 이미지와 동일한 FOV 주시점을 가지는 MR 뷰 이미지를 생성할 수 있다. 또는 MR 뷰 이미지와 동일한 FOV 주시점을 가지는 AR 뷰 이미지를 생성할 수도 있다.
그리고 경로 안내 장치(1300)는 디스플레이 화면에 표시되는 제1 뷰 이미지의 적어도 일부에, 제2 뷰 이미지를 오버랩할 수 있다(S2002). 그리고 제2 뷰 이미지가 오버랩된 제1 뷰 이미지를 통해 표시되는 제1 뷰 이미지의 객체들 및 제2 뷰 이미지의 객체들에 근거하여 경로 안내 정보를 제공할 수 있다(S2004).
일 예로 상기 경로 안내 장치(1300)는, AR 모드에 따른 AR 뷰 이미지가 표시되는 상태에서, 차량이 주행하는 도로를 제외한 나머지 영역에 대응하는 MR 뷰 이미지를 생성할 수 있다. 이 경우 상기 생성되는 MR 뷰 이미지는, 상기 AR 뷰 이미지와 FOV 주시점이 동일하고, FOV가 동일한 뷰 이미지일 수 있다.
그리고 경로 안내 장치(1300)는 상기 주행 도로가 표시되는 AR 뷰 이미지의 영역을 제외한 나머지 영역에, 상기 MR 뷰 이미지를 오버랩할 수 있다. 따라서 도 21에서 보이고 있는 바와 같이, 상기 도로 영역(2110)은 AR 뷰 이미지의 형태로 표시되고, 상기 도로 영역을 제외한 나머지 영역(2100)은 MR 뷰 이미지의 형태로 표시되는 디스플레이 화면이 표시될 수 있다. 따라서 상기 도로 영역(2100)은 카메라에서 촬영된 실제 도로 이미지가 표시될 수 있으며, 상기 도로 이미지에서 인식된 차선을 나타내는 AR 객체(1501)가 표시될 수 있다. 또한 도로 영역을 제외한 나머지 영역(2100)은, MR 뷰 이미지의 오버랩으로 인해 디지털 트윈화된 3차원 맵 상의 건물 모델 이미지의 형태로 표시될 수 있다.
한편 AR 모드에 따라 경로 안내 장치(1300)가 동작하는 경우, 카메라에서 촬영된 실제 이미지로부터 인식되는 객체들의 POI 정보를 AR 객체로서 표시할 수 있다. 따라서 경로 안내 장치(1300)는 상기 실제 이미지에서 인식된 객체들에 따른 POI 정보를 검출하고, POI 정보에 대응하는 AR 객체를 상기 MR 뷰 이미지가 오버랩된 디스플레이 화면 상에 표시할 수 있다. 그러므로 도 21에서 보이고 있는 바와 같이, 디지털 트윈화된 3차원 맵 상의 건물 모델 이미지 상에 검출된 POI 정보에 대응하는 AR 객체(2101)들이 표시될 수 있다.
이 경우 상기 디지털 트윈화된 3차원 맵 상의 건물 모델은, 실제 건물의 이미지에 비하여 형상이 복잡하지 않을 수 있다. 따라서 도 21에서 보이고 있는 바와 같이, 더 낮은 복잡도를 가지는 배경 상에 AR 객체(2101)가 표시되므로, AR 객체(2101)의 시인성이 크게 향상될 수 있다. 즉, 노출되는 POI 정보의 시인성이 향상될 수 있다.
한편 상술한 설명에 따르면, 도 21과 같은 디스플레이 화면의 경우, AR 뷰 이미지에 MR 뷰 이미지가 오버랩되는 것으로 설명하였으나, 이와는 반대로 디스플레이부(251) 상에 표시되는 MR 뷰 이미지에, 상기 디스플레이 화면의 적어도 일부에 대응하는 AR 뷰 이미지가 오버랩될 수도 있음은 물론이다. 이 경우, 차량이 주행하는 도로에 대응하는 AR 뷰 이미지의 일부가, MR 뷰 이미지에 오버랩될 수 있다.
이 경우 경로 안내 장치(1300)가, 디스플레이부(251) 상에 표시되는 MR 뷰 이미지에, 실제 촬영된 이미지를 통해 인식된 객체들의 POI 정보에 대응하는 AR 객체들을, 상기 인식된 객체들에 대응하는 MR 뷰 이미지 상의 위치들에 오버랩하여 표시함으로써, 상기 도 21과 같은 디스플레이 화면을 표시할 수도 있음은 물론이다.
한편 경로 안내 장치(1300)는 디스플레이부(251)가 MR 뷰 이미지를 표시하는 상태에서, 카메라의 시야각에 대응하는 일 영역에 AR 뷰 이미지를 오버랩된 디스플레이 화면을 표시할 수도 있다.
예를 들어 경로 안내 장치(1300)는 도 22에서 보이고 있는 바와 같이, 경로 안내 장치(1300)가 탑재된 차량을 포함하는 주변 영역에 대응하는 MR 뷰 이미지(2200)를 표시할 수 있다. 이 경우 디지털 트윈화된 3차원 맵 상의 이미지가 표시되므로, 실제 이미지가 아니라 차량 또는 건물에 대응하는 모델의 이미지가 디스플레이부(251) 상에 표시될 수 있다.
이러한 상태에서, 경로 안내 장치(1300)는 카메라를 통해 획득되는 이미지에 따른 AR 뷰 이미지(2210)를 생성할 수 있다. 이 경우 상기 AR 뷰 이미지는, 카메라를 통해 획득될 수 있는 시야각 범위, 즉 FOV에 한정되므로, 보다 넓은 FOV를 가지는 MR 뷰 이미지의 일 영역에 대응하는 이미지일 수 있다. 여기서 상기 AR 뷰 이미지(2210)와 MR 뷰 이미지(2200)는 FOV 주시점의 위치가 동일한 이미지들일 수 있다.
그러면 경로 안내 장치(1300)는 상기 FOV 주시점을 기준으로, MR 뷰 이미지(2200) 상에 AR 뷰 이미지(2210)를 오버랩할 수 있다. 따라서 도 22에서 보이고 있는 바와 같이, 탑승자가 육안으로 확인할 수 있는 범위, 즉 카메라의 시야각 내에 대응하는 영역은 AR 뷰 이미지(2210)의 형태로 경로 안내 정보가 제공될 수 있다. 따라서 실제 이미지에 기반한 경로 안내 정보가 표시될 수 있다.
반면, 탑승자가 육안을 확인할 수 없는 범위, 즉 경로 안내 장치(1300)가 탑재된 차량(2221)의 후면 영역 및, 상기 차량(2221) 후면에서 접근하는 다른 차량(2222), 시야각 범위를 벗어나는 양 측면 방향에 대응하는 사각 지대 영역은 MR 뷰 이미지(2200)의 형태로 경로 안내 정보가 제공될 수 있다. 따라서 디지털 트윈화된 3차원 맵의 이미지와 가상 객체의 형태로 경로 정보가 표시될 수 있다.
한편 도 22의 경우 역시 상술한 바와 마찬가지로, 카메라 캘리브레이션 공유를 통해 동일한 FOV 주시점에 근거하여 형성되는 시각장에 따라 3차원 공간 상의 좌표를 2차원 영상의 좌표로 변환할 수 있다. 따라서 각 뷰 이미지들에서 표시되는 객체가 서로 다른 뷰 이미지가 표시되는 영역으로 심리스하게 이동될 수 있다. 이에 따라 도 22에서 표시되는 주변 차량(2003)의 경우, 탑승자가 육안으로 확인할 수 있는 영역(카메라 시야각 내 영역)은 실사 이미지의 형태로 표시될 수 있고, 탑승자가 육안으로 확인할 수 없는 영역(카메라 시야각 외 영역)은 가상 객체의 형태로 표시될 수 있다.
한편 상술한 설명을 통해, AR 뷰 이미지가 표시되는 상태(AR 모드)에서 MR 뷰 이미지가 표시되는 상태(MR 모드)로 전환하거나 또는 반대로 MR 모드에서 AR 모드로 전환하는 예들을 살펴보았다.
또한 디스플레이 화면을 분할하여 AR 뷰 이미지와 MR 뷰 이미지를 각각 표시하거나, 또는 상기 AR 뷰 이미지와 MR 뷰 이미지가 혼합된 디스플레이 화면을 표시하는 예들 및, AR 뷰 이미지 또는 MR 뷰 이미지가 표시되는 디스플레이 화면의 적어도 일부에, MR 뷰 이미지 또는 AR 뷰 이미지를 오버랩하는 예들을 자세히 살펴보았다.
이와 같이, 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 서로 다른 동작 모드에서 표시되는 서로 다른 뷰 이미지를 하나의 화면에서 표시할 수 있다. 그리고 상기 경로 안내 장치(1300)는 이와 유사한 방식으로 복수의 AR 뷰 이미지와 복수의 MR 뷰 이미지를 포함하여 디스플레이 영역을 구성할 수도 있다.
도 23은 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, 복수의 AR 뷰 이미지와 복수의 MR 뷰 이미지를 포함하는 디스플레이 영역(2300)을 구성하는 예를 도시한 예시도이다.
이 경우 경로 안내 장치(1300)는 차량이 앞으로 주행할 도로, 즉 예측된 주행 경로에 대한 경로 안내 정보(제1 뷰 이미지, 2510)와 현재 차량이 주행하고 있는 주행 경로에 대한 경로 안내 정보(제2 뷰 이미지, 2520), 그리고 차량이 이미 주행한 주행 경로에 대한 경로 안내 정보(제3 뷰 이미지, 2530)를 하나의 디스플레이 화면에 구현할 수 있다.
이 경우 상기 제1 뷰 이미지(2510)는 아직 주행하지 않은 경로이므로, AR 뷰 이미지는 표시할 수 없다. 따라서 경로 안내 장치(1300)는 드론뷰 또는 조감도(bird view) 등, MR 뷰 이미지 표시 방식에 따라 차량이 앞으로 주행할 예측 주행 경로의 정보를 표시할 수 있다(제1 MR 뷰 이미지, 2310).
한편 현재 차량이 주행하는 주행 경로의 경우, AR 뷰 이미지 및 MR 뷰 이미지 모두에 따라 표시할 수 있다. 경로 안내 장치(1300)는 제2 뷰 이미지 영역(2520) 일부에 현재 차량의 전방 주행 영상에 대응하는 AR 뷰 이미지를 표시(제2 AR 뷰 이미지, 2321)하고, 제2 뷰 이미지 영역(2520)의 나머지 영역에 현재 차량이 주행하는 주행 경로에 대한 적어도 하나의 MR 뷰 이미지를 표시(제2 MR 뷰 이미지, 2322, 2323)할 수 있다.
여기서 제2 MR 뷰 이미지들(2322, 2323)과 제2 AR 뷰 이미지(2321)는 카메라 캘리브레이션을 공유하는 이미지들일 수 있다. 따라서 동일한 FOV 주시점에 근거하여 형성되는 시각장에 따라 3차원 공간 상의 좌표를 2차원 영상의 좌표로 변환하는 이미지들일 수 있다.
일 예로 상기 제2 MR 뷰 이미지들(2322, 2323)은, 상기 제2 AR 뷰 이미지(2321) 좌우에 표시될 수 있다. 그리고 실시간으로 AR 뷰 이미지와 이동될 수 있는 객체들을 포함하는 MR 뷰 이미지일 수 있다. 이 경우 상기 제2 MR 뷰 이미지들(2322, 2323)은 현재 차량의 좌우 양측의 사각 지대에 위치한 객체들을 표시한 MR 뷰 이미지들일 수 있다.
한편 제3 뷰 이미지 영역(2530)은 차량이 이미 주행한 주행 경로에 대한 경로 안내 정보가 표시되는 영역일 수 있다. 이 경우 경로 안내 장치(1300)는 제3 뷰 이미지 영역(2530) 일부에 차량이 지나온 경로에 따른 과거 이동 경로와 객체들을 표시하는 AR 뷰 이미지를 표시(제3 AR 뷰 이미지, 2331)하고, 제3 뷰 이미지 영역(2530)의 나머지 영역에 차량이 지나온 경로에 따른 과거 이동 경로와 객체들에 관련된 적어도 하나의 MR 뷰 이미지를 표시(제3 MR 뷰 이미지, 2332, 2333)할 수 있다.
마찬가지로 제3 MR 뷰 이미지들(2332, 2333)과 제3 AR 뷰 이미지(2331)는 카메라 캘리브레이션을 공유하는 이미지들일 수 있다. 따라서 동일한 FOV 주시점에 근거하여 형성되는 시각장에 따라 3차원 공간 상의 좌표를 2차원 영상의 좌표로 변환하는 이미지들일 수 있다.
일 예로 상기 제3 MR 뷰 이미지들(2332, 2333)은, 상기 제3 AR 뷰 이미지(2331) 좌우에 표시될 수 있다. 이 경우 상기 제3 MR 뷰 이미지들(2332, 2333)은 현재 차량의 좌우 양측의 사각 지대에 위치한 객체들을 표시한 MR 뷰 이미지들일 수 있다.
한편 제2 뷰 이미지 영역(2520) 내에서 표시되는 객체들은, 대응하는 객체들의 이동에 따라 AR 뷰 이미지 또는 MR 뷰 이미지의 형태로 표시될 수 있다. 마찬가지로 제3 뷰 이미지 영역(2530) 내에서 표시되는 객체들은, 대응하는 객체들의 이동에 따라 AR 뷰 이미지 또는 MR 뷰 이미지의 형태로 표시될 수 있다.
그러나 제2 뷰 이미지 영역(2520)과 제3 뷰 이미지 영역(2530), 그리고 제1 뷰 이미지 영역(2510)은 차량의 주행이 이루어지는 시간이 서로 다르므로, 제1 뷰 이미지 영역(2510) 내지 제3 뷰 이미지 영역(2530) 간에는 객체의 이동이 발생할 수 없음은 물론이다. 따라서 제2 뷰 이미지 영역(2520)에서 표시되는 객체가, 제3 뷰 이미지 영역(2530)으로 이동하거나, 반대로 제3 뷰 이미지 영역(2530)에서 표시되는 객체가, 제2 뷰 이미지 영역(2520)으로 이동할 수 없다.
한편 도 24는 본 발명의 실시 예에 따른 경로 안내 장치(1300)를 통해 AR 뷰 이미지 및 MR 뷰 이미지의 복합 화면이 표시되는 예시도들이다.
일 예로 경로 안내 장치(1300)는, 차량의 주행 상태가 기 설정된 상태인 경우 도 24의 (a)에서 보이고 있는 바와 같이, 차량이 앞으로 주행할 경로에 대한 경로 정보를 MR 객체를 이용하여 제공할 수 있다. 이 경우 경로 안내 장치(1300)는 디지털 트윈화된 3차원 맵에서, 경로 안내 장치(1300)가 탑재된 차량에 대응하는 객체(이하 차량 객체)(2411)를 표시할 수 있다. 그리고 상기 차량 객체(2411)로부터, 차량이 주행할 경로를 따라 이동하는 상기 차량 객체에 대응하는 서브 가상 객체(2412)를 더 표시할 수 있다.
상기 서브 가상 객체(2412)는, 차량과 흡사한 객체일 수 있으며 반투명하게 표시되는 객체일 수 있다. 따라서 반투명으로 표시되는지 여부에 따라 상기 차량 객체(2411)와의 구분이 가능할 수 있다. 상기 서브 가상 객체(2412)는, 상기 반투명하게 표시되는 가상 객체임에 근거하여 ‘고스트 카’라고 명명할 수 있다.
경로 안내 장치(1300)는 상기 고스트 카 객체(2412)를 이용하여, 차량 객체(2411)의 위치로부터, 차량이 앞으로 주행하여야 할 주행 경로를 미리 주행할 수 있다. 그리고 상기 고스트 카 객체가 이동하는 경로를 따라 조감도 등의 MR 뷰 이미지를 더 표시할 수 있다. 이처럼 경로 안내 장치(1300)는 MR 뷰 이미지를 이용하여 차량이 앞으로 주행할 경로의 경로 정보를 미리 제공할 수 있으며, 이처럼 앞으로 주행할 경로의 경로 정보를 제공하는 기능을 ‘미리보기(preview)’라고 하기로 한다.
이처럼 미리보기가 제공되는 경우, 도 24의 (a)에서 보이고 있는 바와 같이, 현재 차량에 대응하는 차량 객체가 표시되는 제1 MR 뷰 이미지(2410)와, 상기 고스트 카 객체가 이동하는 경로를 따라 차량이 주행하는 경로의 경로 정보를 표시하는 제2 MR 뷰 이미지(2420)가 디스플레이 화면의 서로 다른 영역에 표시될 수 있다.
뿐만 아니라 경로 안내 장치(1300)는 상기 제1 MR 뷰 이미지(2410) 이미지 대신, 차량의 카메라로부터 획득되는 실제 이미지를 이용한 AR 뷰 이미지를 표시할 수도 있다. 이러한 경우 도 24의 (b)에서 보이고 있는 바와 같이, 디스플레이 영역의 제1 영역에는 주행하고 있는 현재 차량의 전방 이미지를 표시하는 AR 뷰 이미지(2450)가 표시될 수 있으며, 제2 영역에는 차량에 대응하는 차량 객체가 표시되는 MR 뷰 이미지(2451)가 표시될 수 있다. 이 경우 상기 MR 뷰 이미지(2451)는 차량의 현재 위치에 대응하는 MR 뷰 이미지(제1 MR 뷰 이미지)이거나 또는 목적지까지의 주행 경로를 미리 표시하는 MR 뷰 이미지(제2 MR 뷰 이미지 - 미리보기)일 수 있다.
한편 경로 안내 장치(1300)는, MR 뷰 이미지 뿐만 아니라 현재 차량의 위치에 대응하는 2차원 지도 정보를 표시하는 2D 맵 모드의 이미지(2461)를 표시할 수도 있음은 물론이다. 이 경우 도 24의 (c)에서 보이고 있는 바와 같이, 디스플레이부(251) 상의 일 영역에는 AR 뷰 이미지(2460) 또는 MR 뷰 이미지가 표시될 수 있으며, 다른 일 영역에는 차량의 현재 위치가 포함된 2차원 지도 이미지(2461)가 표시될 수 있다.
도 25는 본 발명의 실시 예에 따른 경로 안내 장치가 MR을 통해 제공하는 경로 안내 정보로서, 차량이 주행할 경로에 대한 미리보기 정보가 제공하는 예를 도시한 예시도이다.
본 발명의 일 실시 예에 따른 경로 제공 장치(1300)는, 차량(100) 및 클라우드 서버(1000)와 통신하는 통신부(1310), 상기 차량에 구비된 적어도 하나의 센서로부터, 상기 차량이 주행하는 도로 이미지를 포함하는 카메라 영상과, 상기 차량의 주행 상태를 센싱한 센싱 정보를 수신하는 인터페이스부(1320), 상기 카메라 영상, 상기 센싱 정보 및 상기 클라우드 서버로부터 수신되는 지도 정보를 기초로 적어도 하나의 가상객체를 포함하는 MR 정보를 렌더링하는 MR 모듈(또는 MR 서비스 장치)(900) 및 상기 MR 정보를 포함하는 MR 뷰 이미지가 상기 차량의 디스플레이부(251)에 표시되도록 상기 인터페이스부(1320)를 제어하는 프로세서(1330)를 포함할 수 있다.
상기 통신부(1310), 인터페이스부(1320), MR 모듈(900) 및 프로세서(1330)는 독립적인 하드웨어로 구현될 수 있으며, 필요에 따라 소프트웨어적인 컴포넌트로 구현될 수 있다.
상기 프로세서(1330)는, 기 설정된 조건을 만족하면, 차량이 주행할 예정인 장소에 대응되는 장면이 표시되도록 상기 MR 뷰 이미지를 전환할 수 있다.
여기서, 차량이 주행할 예정인 장소에 대응되는 장면이 표시되도록 MR 뷰 이미지를 전환한다는 것은, 차량이 앞으로 주행할 상황을 미리보기 영상으로 출력한다는 의미 또는 차량이 앞으로 주행할 상황을 MR 뷰 이미지 상에서 미리 시뮬레이션한다는 의미를 포함할 수 있다.
이와 같이, 차량이 앞으로 주행할 상황을 MR 뷰 이미지 형태로 재생하는 영상을 미리보기 영상 또는 예측 뷰 영상으로 명명할 수 있다.
상기 MR 뷰 이미지는, 디지털 트윈된 3차원 맵(또는 디지털 트윈 맵) 상에서 보여지는 화면을 의미한다. 즉, MR 뷰 이미지는, 디지털 트윈 맵의 어느 일 지점에서 소정의 시야각으로 바라본 장면을 의미할 수 있다.
프로세서(1330)는, 차량에 대응되는 차량 객체를 상기 어느 일 지점으로 설정해 두었다가, 상기 기 설정된 조건이 만족되면, 차량의 앞선 상황을 미리 보여주기 위해, 상기 어느 일 지점을 설정된 경로 정보를 따라 차량보다 먼저 진행시킬 수 있다.
이에 따라, 본 발명은 차량의 현재 위치에서 보여지는 MR 뷰 이미지보다 앞선 상황 및/또는 앞으로 차량이 주행할 경로, 앞으로 차량이 도착할 예정인 장소를 미리 MR 뷰 이미지를 통해 출력/재생할 수 있다.
프로세서(1330)는, 차량이 목적지까지 주행할 경로를 안내하는 경로 정보를 상기 MR 뷰 이미지에 표시할 수 있다.
또한, 프로세서(1330)는, 상기 기 설정된 조건을 만족하는 것에 근거하여, 상기 경로 정보를 따라 현재 차량의 위치보다 앞선 장소의 장면이 표시되도록 상기 MR 뷰 이미지를 제어(전환, 재생)할 수 있다.
예를 들어, 상기 MR 뷰 이미지에는, 차량이 주행할 예정인 장소에 대응되는 장면을 표시하기 위한 아이콘이 표시될 수 있다. 상기 기 설정된 조건은, 상기 아이콘이 사용자에 의해 선택되는 것을 포함할 수 있다.
또한, 상기 기 설정된 조건은, 차량이 소정 시간동안 정차하는 경우, 목적지로부터 소정거리 이내에 차량이 진입한 경우 및 교차로로부터 소정거리 이내에 차량이 진입한 경우 중 적어도 하나를 포함할 수 있다.
프로세서(1330)는, 상기 기 설정된 조건이 만족되는 것에 근거하여, 차량이 주행할 예정인 장소에 대응되는 장면이 표시되도록 MR 뷰 이미지를 전환(또는 별도의 미리보기 영상을 출력)할 수 있다.
앞서 설명한 것과 같이, MR 뷰 이미지는, 현재 상황이 실시간으로 반영된 디지털 트윈 맵을 어느 한 지점에서 소정의 시야각으로 바라본 장면일 수 있다.
일반적으로, 상기 어느 한 지점은, 일반적으로 차량에 대응되는 차량 객체의 일 부분에 위치할 수 있으며, 상기 소정의 시야각을 갖고 차량의 전방을 향하는 장면이 표시되도록 MR 뷰 이미지가 설정될 수 있다.
그러나, 이에 한정되지 않고, 본 발명은 차량 객체보다 높은 위치에 어느 한 지점이 위치하며, 차량 객체의 이동에 종속되지 않고 별도의 움직임으로 MR 뷰 이미지의 모드를 버드뷰, 360도 뷰, 드론 뷰 등으로 전환하는 것이 가능하다.
이러한 MR 뷰 이미지의 모드는, 사용자 조작, 기 설정된 조건이 만족되는지 여부, 특정 이벤트가 발생되는지 여부, 차량이 특정 장소에 진입했는지 여부, 차량이 목적지로부터 소정거리 이내에 진입했는지 여부, 차량이 POI 주변에 위치하는지 여부 등에 근거하여 변경될 수 있다.
프로세서(1330)는, 차량이 주행할 예정인 장소에 대응되는 장면을 표시할 때, 현재 상황이 실시간 반영된 MR 뷰 이미지를 차량의 디스플레이(251)에 출력할 수 있다.
즉, 프로세서(1330)는, 실시간 상황을 차량(100)에 구비된 센서 또는 클라우드 서버(1000)로부터 수신하고, 실시간 상황이 반영되도록 디지털 트윈 맵을 업데이트할 수 있다.
이에 따라, MR 뷰 이미지에는, 현재 상황이 실시간 반영될 수 있다.
또한, 차량이 앞으로 소정거리만큼 주행하는 상황을 MR 뷰 이미지로 나타내는 미리보기 영상을 출력할 때에도, 상기 미리보기 영상에는, 실시간 현재 상황이 반영되어 있을 수 있다.
앞서 설명한 바와 같이, 프로세서(1330)는, 현재 차량의 위치를 나타내는 차량 객체를 기준으로 차량의 전방의 장면에 대응되도록 상기 MR 뷰 이미지를 출력할 수 있다.
이 때, 프로세서(1330)는, 상기 기 설정된 조건을 만족하는 것에 근거하여, 차량이 주행할 경로를 따라 상기 차량 객체보다 앞서서 주행하는 고스트 카를 생성하고, 상기 고스트 카를 기준으로 고스트 카의 전방의 장면이 표시되도록 상기 MR 뷰 이미지를 전환할 수 있다.
상기 기 설정된 조건이 만족되는 것에 근거하여 전환되는 MR 뷰 이미지는, 차량이 주행할 경로를 따라 앞선 상황을 디지털 트윈 맵 상에서 미리 보여주는 예측 뷰 이미지인 것을 특징으로 하는 경로 안내 장치.
예를 들어 경로 안내 장치(1300)는 주행 방향이 변경되는 지점, 즉 턴 포인트에 차량이 인접하는 경우, 상기 턴 포인트에 대한 경로 안내 정보를 제공하기 위해 상기 고스트 카를 이용한 미리보기를 제공할 수 있다. 이 경우, 경로 안내 장치(1300)는 고스트 카 객체를 따라 상기 고스트 카 객체가 이동하는 주행 경로를 MR 뷰 이미지로 표시할 수 있다.
여기서, MR 뷰 이미지를 전환한다는 의미는, 기존에 출력중인 MR 뷰 이미지를 미리보기 영상으로 전환한다는 의미, 기존 출력중인 MR 뷰 이미지에 미리보기 영상을 오버랩한다는 의미 및 디스플레이 출력영역을 제1 및 제2 영역으로 분할하고, 제1 영역에 기존 출력중인 MR 뷰 이미지를 출력하고, 제2 영역에 미리보기 영상을 출력한다는 의미 중 적어도 하나를 포함할 수 있다.
한편, 프로세서(1330)는, 상기 기 설정된 조건을 만족하는 것에 근거하여 MR 뷰 이미지를 전환할 때, 디지털 트윈 맵을 바라보는 지점(앞서 설명한 어느 한 지점)의 고도를 가변하여 차량이 주행할 예정인 장소에 해당하는 장면을 미리 보여줄 수 있다.
이 경우 상기 도 24의 (a)에서 보이고 있는 바와 같이, 경로 안내 장치(1300)는 디스플레이 화면의 서로 다른 영역을 통해 비교적 낮은 고도에서 차량을 주시하는 뷰 이미지를 제공하는 제1 MR 뷰 이미지와, 높은 고도에서 고스트 카 객체의 이동에 따른 주행 경로의 뷰 이미지를 제공하는 제2 MR 뷰 이미지를 표시할 수 있다.
또한, 프로세서(1330)는, 상기 기 설정된 조건이 만족되는 것에 근거하여, 현재 차량의 위치를 기준으로 차량 전방의 장면이 표시되는 제1 MR 뷰 이미지(또는 기존 출력중이던 MR 뷰 이미지) 및 차량이 주행할 예정인 장소에 대응되는 장면이 표시되는 제2 MR 뷰 이미지(또는, 미리보기 영상)를 함께 차량의 디스플레이(251)에 출력하도록 상기 인터페이스부(1320)를 제어할 수 있다.
이 때, 프로세서(1330)는, 도 25에 도시된 바와 같이, 상기 제2 MR 뷰 이미지를 팝업창 형태(또는 PIP(Picture-In-Picture) 형태)로 출력할 수 있다.
또한, 프로세서(1330)는, 상기 기 설정된 조건을 만족하는 것에 근거하여, 차량에 구비된 디스플레이의 화면을 제1 영역 및 제2 영역으로 분할하고, 상기 디스플레이의 상기 제1 영역에 상기 제1 MR 뷰 이미지를 출력하고, 상기 제2 영역에 상기 제2 MR 뷰 이미지를 출력하도록 상기 인터페이스부(1320)를 제어할 수 있다.
앞서 설명한 바와 같이, 상기 제2 MR 뷰 이미지(미리보기 영상, MR 뷰 이미지를 통해 제공되는 미리보기)는, 차량이 현재 위치에서 바라본 장면에서부터 상기 차량이 진행할 경로를 따라 소정거리만큼 이동할 장면을 재생하는 영상일 수 있다.
프로세서(1330)는, 상기 차량이 진행할 경로를 따라 소정거리만큼 이동할 장면을 출력하는 제2 MR 뷰 이미지를 출력하다가, 상기 차량이 상기 소정거리만큼 이동하는 것에 근거하여, 상기 제2 MR 뷰 이미지를 사라지게 할 수 있다.
예를 들어, 프로세서(1330)는, 차량이 진행할 경로를 따라 소정거리만큼 이동할 장면을 반복적으로 재생하다가, 차량이 상기 소정거리만큼 실제로 이동하게 되면, 재생중인 제2 MR 뷰 이미지의 재생을 중단(또는 사라지게)할 수 있다.
도 25는 이처럼 고스트 카 객체의 이동에 따른 주행 경로를 표시하는 디스플레이 화면의 예를 도시한 것이다.
도 25의 (a)를 참조하여 살펴보면, 도 25의 (a)는 도로를 주행하는 차량 객체(2550)의 예를 도시한 것이다. 이 경우 제1 MR 뷰 이미지(2510)의 주시점(2500)은 제1 MR 뷰 이미지의 중심을 지향할 수 있다. 즉 제1 MR 뷰 이미지(2510)는 중심을 포커싱하는 MR 카메라(제1 MR 카메라)를 통해 획득되는 이미지를 제1 MR 뷰 이미지로 표시할 수 있다. 또한 제2 MR 뷰 이미지(2520)는, 차량 객체(2550)가 주행하는 주행 경로를 높은 고도에서 바라보는 제2 MR 카메라로부터 획득되는 이미지(예 : 조감도)가 표시될 수 있다.
이러한 상태에서 차량 객체(2550)턴 포인트에 인접하는 경우, 경로 안내 장치(1300)는 턴 포인트를 지나 차량이 주행하여야 할 주행 경로를 포커싱하는 제1 MR 카메라로부터 획득되는 이미지를 제1 MR 뷰 이미지로 표시할 수 있다. 따라서 도 25의 (b)에서 보이고 있는 바와 같이, 건물에 의해 가려진 주행 경로를 지향하는 제1 MR 뷰 이미지(2510)를 표시할 수 있다.
한편 경로 안내 장치(1300)는 제2 MR 카메라를 상기 턴 포인트의 회전 반경의 접선 지점에 위치시키고, 상기 접선 지점에서 차량이 주행하여야 할 방향을 지향하도록 할 수 있다. 그리고 상기 제2 MR 카메라에서 획득되는 이미지를 제2 MR 뷰 이미지(2520)로 제공할 수 있다.
따라서 상기 제2 MR 카메라에서 획득되는 MR 뷰 이미지는, 상기 도 25의 (b)에서 보이고 있는 바와 같이, 상기 턴 포인트의 출구 방향, 즉 턴 포인트를 지나 차량이 앞으로 주행하여야 할 경로를 표시하는 이미지 일 수 있다.
그리고 차량이 턴 포인트에 인접하는 경우 경로 안내 장치(1300)는, 도 25의 (c)에서 보이고 있는 바와 같이, 차량 객체(2550)에 대응하는 고스트 카 객체(2511)를 더 표시할 수 있다. 이 경우 고스트 카 객체(2511)는 차량 객체(2550)에 앞서서 턴 포인트를 따라 이동할 수 있다. 그러면 상기 턴 포인트의 출구 방향을 지향하는 제2 MR 뷰 이미지(2520)에 상기 고스트 카 객체(2511)가 표시될 수 있다.
한편 차량이 턴 포인트에서 주행 경로를 따라 방향을 전환하면, 도 25의 (d)에서 보이고 있는 바와 같이, 변경되는 차량의 주행 방향에 따라 점차적으로 제1 MR 카메라의 주시점(2500)은 제1 MR 뷰 이미지(2510)의 중심으로 이동될 수 있다. 그리고 제2 MR 뷰 이미지(2520)에서는 턴 포인트를 지나 출구 방향으로 진입하는 차량 객체(2550)의 이미지가 표시될 수 있다. 이 경우 차량이 아직 턴 포인트를 벗어난 상태가 아니므로, 제1 MR 뷰 이미지(2510) 및 제2 MR 뷰 이미지(2520)에는 고스트 카 객체(2511)가 표시되는 상태가 각각 유지될 수 있다.
그리고 차량이 턴 포인트를 완전히 통과하게 되면, 다시 제1 MR 카메라의 주시점(2500)은 제1 MR 뷰 이미지(2510)의 중심을 지향할 수 있다. 그리고 제2 MR 뷰 이미지(2520)는 차량 객체(2550)가 주행하는 주행 경로를 높은 고도에서 바라보는 조감도가 제2 MR 뷰 이미지(2520)로 표시될 수 있다.
한편 상술한 바와 같이 MR 뷰 이미지를 통해 제공되는 미리보기는, 차량의 주행 상태(예를 들어 정차 상태 또는 주행 상태 여부)나 주행 경로(예를 들어 턴 포인트 등 지정된 경로에 진입하였는지 여부)에 따라 자동으로 활성화(자동 활성화)되거나 또는 탑승자의 선택에 따라 활성화(수동 활성화)될 수 있다.
상기 미리보기가 자동으로 활성화되는 경우, 경로 안내 장치(1300)는 상기 도 25에서 살펴본 바와 같이, 디스플레이 화면의 일 영역에 표시되는 MR 뷰 이미지를 점차적으로 차량이 주행하는 경로를 표시하는 MR 뷰 이미지로 변경할 수 있다. 즉, 도 25에서 설명한 바와 같이, 제2 MR 뷰 이미지가 높은 고도에서 차량 객체를 지향하는 제2 MR 카메라로부터 획득되는 조감도인 경우라면, 경로 안내 장치(1300)는 상기 제2 MR 카메라를 점차적으로 이동하여 턴 포인트의 출구 방향을 지향하는 위치로 이동시킬 수 있다. 즉, 마치 제2 MR 뷰 이미지를 제공하는 제2 MR 카메라가 드론(drone)에 의해 이동되는 것과 같은 효과(드론 뷰)를 제공할 수 있다. 도 26의 (a)는 이처럼 제2 MR 카메라의 이동에 따라, 점차적으로 제2 MR 뷰 이미지가 조감도에서 턴 포인트의 출구 방향을 지향하는 이미지로 변경되는 예를 도시한 것이다.
반면 상기 미리보기가 탑승자의 선택에 따라 수동으로 활성화되는 경우, 경로 안내 장치(1300)는 제1 MR 뷰 이미지가 디스플레이 화면 전체에 표시되는 상태에서, 사용자의 선택에 따라 디스플레이 화면의 일부에 제2 MR 뷰 이미지를 PIP 방식으로 표시할 수 있다.
이 경우 제2 MR 뷰 이미지는, 차량이 현재 주행하는 방향을 나타내는 MR 뷰 이미지에서, 턴 포인트의 회전 반경 접선 지점에 위치한 제2 MR 카메라(2610)에서 획득되는 이미지로 점차 변경될 수 있다. 따라서 도 26의 (b)에서 보이고 있는 바와 같이, 제1 MR 뷰 이미지와 주시점이 동일한 MR 뷰 이미지를 표시한 상태에서, 점차적으로 턴 포인트의 접선 지점에서 차량이 주행하여야 할 방향, 즉 턴 포인트의 출구 방향의 주행 경로를 나타내는 MR 이미지로 변경될 수 있다.
한편 본 발명의 실시 예에 따른 경로 안내 장치(1300)는 주행 경로의 시인성을 보다 높이기 위해, 주변 건물들의 이미지를 다르게 표시할 수 있다. 도 27은 이처럼 본 발명의 실시 예에 따른 경로 안내 장치가, 차량의 속도에 따라 주변 건물들의 이미지를 다르게 표시하는 MR 뷰 이미지의 예를 도시한 예시도이다.
차량의 주행 속도가 낮은 경우, 경로 안내 장치(1300)는 도 27의 (a)에서 보이고 있는 바와 같이, 주행 경로 주변의 건물들을 불투명한 3차원 객체의 이미지들로 표시할 수 있다.
이러한 상태에서 차량의 주행 속도가 증가하는 경우 경로 안내 장치(1300)는 도 27의 (b)에서 보이고 있는 바와 같이, 증가하는 차량의 속도에 비례하여 주행 경로 주변의 건물에 대응하는 3차원 객체들의 투명도를 증가시킬 수 있다. 따라서 차량의 속도가 증가할 수록, 도 27의 (b)에서 보이고 있는 바와 같이 차량 주변의 건물들이 반투명한 3차원 객체로 표시될 수 있다.
한편 이처럼 차량 주변의 건물들이 반투명한 3차원 객체로 표시되는 상태에서, 차량의 속도가 더 증가할 수 있다. 그러나 상기 차량 주변 건물들에 대응하는 3차원 객체들은, 투명도가 일정 수준에 이르는 경우 더 이상투명해지지 않을 수 있다. 이는 투명도가 너무 높아지면 차량 주변 건물을 인식하기 어려워질 수 있기 때문이다.
이러한 경우 경로 안내 장치(1300)는, MR 뷰 이미지가 제공되는 촬영각을 보다 증가시킬 수 있다. 즉, 보다 높은 고도에서 획득되는 차량의 주행 경로의 이미지를 MR 뷰 이미지로 제공할 수 있다. 따라서 도 27의 (c)에서 보이고 있는 바와 같이, 보다 고각에서 획득된 MR 뷰 이미지가 제공될 수 있으며, 이에 따라 차량의 속도가 고속인 경우 보다 긴 시야 거리가 제공될 수 있다.
한편 도 28은 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, MR 뷰 이미지를 통해 POI 정보를 제공하는 예를 도시한 예시도이다.
본 발명의 실시 예에 따른 경로 안내 장치(1300)는 MR 뷰 이미지를 통해 제공되는 디지털 트윈화된 3차원 맵의 이미지를 통해 POI 정보를 표시할 수 있다. 따라서 도 28의 (a)에서 보이고 있는 바와 같이, POI 정보에 대응하는 건물이 MR 뷰 이미지 상에 노출되는 경우, 그 건물에 대응하는 가상 객체에 POI 정보를 표시할 수 있다.
그리고 차량의 주행에 따라 상기 POI 정보에 대응하는 건물과 차량 사이의 변화되는 거리에 따라 상기 POI 객체의 크기를 변경할 수 있다. 즉, 도 28의 (b) 및 (c)에서 보이고 있는 바와 같이, 상기 POI 정보에 대응하는 건물에 차량이 점차 인접하는 경우 상기 POI 객체는 점차적으로 확대되어 표시될 수 있다. 그리고 도 28의 (c)에서 보이고 있는 바와 같이, 차량이 상기 POI 정보에 대응하는 건물에 일정 거리 이내로 진입함에 따라, POI 객체가 일정 수준 이상의 크기로 확대되어 표시되는 경우, 경로 안내 장치(1300)는 상기 POI 객체의 이미지를 캡쳐하고, 캡쳐된 이미지를 썸네일 이미지화하여 저장할 수 있다. 이 경우 상기 캡쳐된 POI 객체의 이미지는 차후 POI 정보를 이용한 서비스의 제공에 이용될 수 있다.
한편 차량이 이동함에 따라, 차량이 상기 POI 정보에 대응하는 건물을 지나가는 경우, 상기 POI 객체가 차량의 시야각, 즉 차량 전방 영역에서 이탈될 수 있다. 그러면 경로 안내 장치(1300)는 상기 POI 객체를 디폴트 객체로 나타낼 수 있다.
이 경우 상기 디폴트 객체는 도 28의 (c)에서 보이고 있는 바와 같이 텍스처가 반영되지 않은 폴리곤 형태의 가상 객체일 수 있다. 즉, 차량의 전방 뿐만 아니라 차량의 주변을 모두 표시하는 MR 뷰 이미지(예 : 조감도)가 제공되는 경우, 차량이 주행하는 위치에 따라, 차량이 이미 경과한 주행 경로 주변의 POI 객체들은 색상이나 이미지 또는 텍스처 없이 음영만 반영된 객체들로 표시될 수 있으며, 차량이 아직 경과하지 않은 주행 경로 주변의 POI 객체들은 색상, 이미지 또는 텍스처를 포함하는 객체들로 표시될 수 있다.
한편 도 29는 본 발명의 실시 예에 따른 경로 안내 장치(1300)가, 차량의 주행에 따라 수집된 POI들 중 탑승자의 선택에 따른 어느 하나에 대한 상세 정보를 표시하는 예를 도시한 예시도이다.
상기 도 28에서 설명한 바와 같이, 경로 안내 장치(1300)는 차량이 주행하는 동안에 차량 주변에서 노출되는 POI 객체들을 캡쳐하고, 저장할 수 있다. 그리고 도 29의 (a)에서 보이고 있는 바와 같이, 저장된 POI 객체들의 썸네일 이미지를, 탑승자의 요청에 따라 디스플레이부(251) 상에 표시할 수 있다.
이 경우 상기 POI 객체들의 썸네일 이미지들은, 대응하는 POI 객체들의 POI 정보를 포함하는 카드(리플레이 카드(replay card), 2900) 형태로 제공될 수 있다. 그리고 수집된 시간 순서대로 정렬된 상태로 제공될 수 있다. 일 예로 가장 최근에 수집된 POI 객체에 대응하는 카드(2910)는 가장 상단에 표시될 수 있으며, 가장 오래 전에 수집된 POI 객체에 대응하는 카드(2930)는 가장 하단에 표시될 수 있다.
이러한 상태에서, 도 29의 (b)에서 보이고 있는 바와 같이, 탑승자가 터치 또는 음성 등의 입력을 통해 어느 하나의 리플레이 카드(2910)를 선택할 수 있다. 그러면 경로 안내 장치(1300)는 현재 선택된 리플레이 카드(2910)에 대응하는 POI 객체의 정보를 디스플레이부(251) 상에 표시할 수 있다.
이 경우 경로 안내 장치(1300)는, 도 29의 (c)에서 보이고 있는 바와 같이, 디스플레이부(251) 영역을 분할하거나 또는 PIP 방식에 따라 상기 디스플레이부(251) 상의 일 영역에 오버랩하여, 상기 POI 객체의 정보를 포함하는 제2 MR 뷰 이미지를 표시할 수 있다. 이 경우 상기 POI 객체의 정보는, POI에 대응하는 서비스 또는 업체의 명칭, POI 객체 및, 상기 POI 객체가 노출된 주행 경로 상의 일 위치가 캡쳐된 이미지를 포함할 수 있다. 그리고 경로 안내 장치(1300)는 상기 제2 MR 뷰 이미지를 통해 표시되는 POI 객체의 정보에 대한 탑승자의 선택에 근거하여, POI 객체에 대응하는 주소로 새로운 목적지를 설정하거나, 탑승자에게 네트워크 연결을 통한 서비스 예약 등의 POI 기능을 제공할 수 있다.
한편, 프로세서(1330)는, 상기 리플레이 카드를 이용하여 차량이 주행했던 과거 주행 상황을 MR 뷰 이미지를 이용하여 리플레이할 수 있다.
본 발명의 일 실시 예에 따른 경로 제공 장치(1300)는, 차량(100) 및 클라우드 서버(1000)와 통신하는 통신부(1310), 상기 차량에 구비된 적어도 하나의 센서로부터, 상기 차량이 주행하는 도로 이미지를 포함하는 카메라 영상과, 상기 차량의 주행 상태를 센싱한 센싱 정보를 수신하는 인터페이스부(1320), 상기 카메라 영상, 상기 센싱 정보 및 상기 클라우드 서버로부터 수신되는 지도 정보를 기초로 적어도 하나의 가상객체를 포함하는 MR 정보를 렌더링하는 MR 모듈(또는 MR 서비스 장치)(900) 및 상기 MR 정보를 포함하는 MR 뷰 이미지가 상기 차량의 디스플레이부(251)에 표시되도록 상기 인터페이스부(1320)를 제어하는 프로세서(1330)를 포함할 수 있다.
상기 통신부(1310), 인터페이스부(1320), MR 모듈(900) 및 프로세서(1330)는 독립적인 하드웨어로 구현될 수 있으며, 필요에 따라 소프트웨어적인 컴포넌트로 구현될 수 있다.
프로세서(1330)는, 특정 조건을 만족하는 것에 근거하여, 차량이 과거에 주행할 때 재생되었던 MR 뷰 이미지를 리플레이 영상으로 출력할 수 있다.
상기 특정 조건은, 앞서 설명한 기 설정된 조건을 포함할 수 있다.
상기 MR 뷰 이미지에는, 도 28에 도시된 것과 같이, POI(Point of Interest) 객체가 출력될 수 있다. 상기 특정 조건은, 차량에 대응되는 차량 객체가 상기 POI 객체를 지나치는 것을 포함할 수 있다.
상기 MR 뷰 이미지에는, 도 29의 (a)에 도시된 것과 같이, 상기 특정 조건이 만족되는 것에 근거하여 리플레이 카드(2910)가 상기 MR 뷰 이미지 상에 오버랩될 수 있다.
상기 특정 조건은, 상기 리플레이 카드가 사용자에 의해 선택되는 것을 포함할 수 있다.
예를 들어, 프로세서(1330)는, 도 29의 (b)에 도시된 것과 같이, 상기 리플레이 카드가 사용자에 의해 선택되면, 도 29의 (c)에 도시된 것과 같이, 리플레이 카드에 대응하는 POI 객체를 바라보며 소정시간 주행했던 MR 뷰 이미지를 리플레이 영상(2950)으로 재생할 수 있다.
프로세서(1330)는, POI 객체를 출력하면, 차량 객체가 POI 객체를 향해 주행하는 동안 출력되는 MR 뷰 이미지를 저장할 수 있으며, 저장된 복수의 MR 뷰 이미지들을 이용하여 리플레이 영상을 생성하고, 생성된 리플레이 영상을 상기 POI 객체와 연계하여 저장할 수 있다.
또한, 상기 특정 조건은, 차량이 소정 시간동안 정차하는 경우, 목적지로부터 소정거리 이내에 차량이 진입한 경우, 교차로로부터 소정거리 이내에 차량이 진입한 경우 및 상기 MR 뷰 이미지 상에 표시된 POI 객체를 선택한 경우 중 적어도 하나를 포함할 수 있다.
앞서 설명한 바와 같이, 상기 MR 뷰 이미지는, 현재 상황이 실시간으로 반영된 디지털 트윈 맵을 어느 한 지점에서 소정의 시야각으로 바라본 장면일 수 있다.
상기 프로세서(1330)는, 도 28에 도시된 바와 같이, 상기 차량 객체를 기준으로 상기 어느 한 지점을 설정하고,
상기 차량 객체가 POI 객체(2800)에 다가가도록 주행중인 경우, 상기 POI 객체를 바라보도록 상기 시야각을 조정하여 상기 POI 객체가 중앙 영역에 위치한 상태로 점차 확대되도록 상기 MR 뷰 이미지를 제어할 수 있다.
한편, 프로세서(1330)는,MR 뷰 이미지에 표시되는 차량 객체와 POI 객체 사이의 거리가 기 설정된 거리 이내에 진입할 때 출력중인 MR 뷰 이미지를 썸네일 이미지로 캡쳐하고, 상기 썸네일 이미지를 상기 리플레이 카드로 생성할 수 있다.
도 29의 (b)에 도시된 바와 같이, 상기 리플레이 카드에는, 상기 썸네일 이미지, 상기 POI 객체에 대응하는 이름(또는 POI 장소 이름) 및 상기 POI 객체의 주소(POI의 실제 주소) 중 적어도 하나가 포함될 수 있다.
또한, 프로세서(1330)는, 도 29의 (a)에 도시된 바와 같이, 차량 객체가 서로 다른 POI 객체를 순차적으로 지나칠 때마다 상기 리플레이 카드를 순차적으로 생성하여 상기 MR 뷰 이미지에 출력할 수 있다.
프로세서(1330)는, 도 29의 (b)에 도시된 바와 같이, 상기 리플레이 카드가 선택되면, 상기 리플레이 카드에 대응하는 POI 객체를 바라보며 소정시간 주행했던 MR 뷰 이미지를 리플레이 영상(2950)으로 재생할 수 있다.
상기 리플레이 영상(2950)은, 도 29의 (c)에 도시된 바와 같이, 상기 MR 뷰 이미지의 일 영역에 오버랩되어 재생되거나, 팝업창으로 출력될 수 있다.
또한, 상기 리플레이 영상에는, 상기 리플레이 영상에 연계된 POI에서 이용 가능한 서비스 정보(2911) 및 상기 POI에 해당하는 장소까지 주행 경로를 설정하기 위한 버튼(2912) 중 적어도 하나가 포함될 수 있다.
상기 POI와 관련된 정보(예를 들어, 상기 POI 객체에 대응하는 이름(또는 POI 장소 이름) 및 상기 POI 객체의 주소(POI의 실제 주소))와, 상기 POI에서 이용 가능한 서비스 정보 및 POI에 해당하는 장소까지의 주행 경로 정보는 클라우드 서버(1100)로부터 수신하거나 서비스 제공자로부터 경로 제공 장치로 수신될 수 있다.
본 발명에 따른 경로 안내 장치 및 경로 안내 시스템의 효과에 대해 설명하면 다음과 같다.
첫째, 본 발명은 증강현실에 따라 제공되는 뷰 이미지가 정확한 경로 안내 정보를 표시하기 어려운 상태인 경우, 상기 증강현실 뷰 이미지와 일치하는 혼합현실에 따른 뷰 이미지를 제공함으로써, 차량 주변 현실 세계의 상황이나 복잡도, 또는 획득되는 현실 세계의 이미지 상태에 상관없이 운전자에게 정확한 경로 안내 정보를 제공할 수 있다는 장점이 있다.
둘째, 본 발명은 증강현실에 따라 제공되는 증강현실 뷰 이미지의 일부에, 상기 증강현실 뷰 이미지와 일치하는 혼합현실에 따른 뷰 이미지의 일부를 표시하거나, 또는 상기 증강현실 뷰 이미지의 적어도 일부에 상기 혼합현실 뷰 이미지의 적어도 일부를 오버랩함으로써, 차량 주변 객체들에 대해 표시되는 정보들의 시인성을 보다 향상시킬 수 있다는 장점이 있다.
셋째, 본 발명은 증강현실에 따라 제공되는 증강현실 뷰 이미지와 함께 혼합현실에 따른 혼합현실 뷰 이미지를 표시함으로써, 증강현실을 통해 표시되는 시야각 내의 영역에 위치한 객체들의 정보들과, 상기 시야각 외의 영역에 위치한 객체들의 정보들을 하나의 화면에 동시에 표시할 수 있다는 장점이 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드(또는, 애플리케이션이나 소프트웨어)로서 구현하는 것이 가능하다. 상술한 자율 주행 차량의 제어 방법은 메모리 등에 저장된 코드에 의하여 실현될 수 있다.
컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 프로세서 또는 제어부를 포함할 수도 있다. 따라서 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (15)

  1. 클라우드 서버와 통신하는 통신부;
    상기 차량에 구비된 적어도 하나의 센서로부터, 상기 차량이 주행하는 도로 이미지를 포함하는 카메라 영상과, 상기 차량의 주행 상태를 센싱한 센싱 정보를 수신하는 인터페이스부;
    상기 카메라 영상, 상기 센싱 정보 및 상기 클라우드 서버로부터 수신되는 지도 정보를 기초로 적어도 하나의 가상객체를 포함하는 MR 정보를 렌더링하는 MR 모듈; 및
    상기 MR 정보를 포함하는 MR 뷰 이미지가 상기 차량의 디스플레이부에 표시되도록 상기 인터페이스부를 제어하는 프로세서를 포함하고,
    상기 프로세서는,
    기 설정된 조건을 만족하면, 차량이 주행할 예정인 장소에 대응되는 장면이 표시되도록 상기 MR 뷰 이미지를 전환하는 것을 특징으로 하는 경로 안내 장치.
  2. 제 1 항에 있어서,
    상기 프로세서는,
    차량이 목적지까지 주행할 경로를 안내하는 경로 정보를 상기 MR 뷰 이미지에 표시하고,
    상기 기 설정된 조건을 만족하는 것에 근거하여, 상기 경로 정보를 따라 현재 차량의 위치보다 앞선 장소의 장면이 표시되도록 상기 MR 뷰 이미지를 제어하는 것을 특징으로 하는 경로 안내 장치.
  3. 제 1 항에 있어서,
    상기 MR 뷰 이미지에는, 차량이 주행할 예정인 장소에 대응되는 장면을 표시하기 위한 아이콘이 표시되고,
    상기 기 설정된 조건은, 상기 아이콘이 사용자에 의해 선택되는 것을 포함하는 것을 특징으로 하는 경로 안내 장치.
  4. 제 1 항에 있어서,
    상기 기 설정된 조건은,
    차량이 소정 시간동안 정차하는 경우, 목적지로부터 소정거리 이내에 차량이 진입한 경우 및 교차로로부터 소정거리 이내에 차량이 진입한 경우 중 적어도 하나를 포함하는 것을 특징으로 하는 경로 안내 장치.
  5. 제 1 항에 있어서,
    상기 MR 뷰 이미지는,
    현재 상황이 실시간으로 반영된 디지털 트윈 맵을 어느 한 지점에서 소정의 시야각으로 바라본 장면인 것을 특징으로 하는 경로 안내 장치.
  6. 제 5 항에 있어서,
    상기 프로세서는,
    차량이 주행할 예정인 장소에 대응되는 장면을 표시할 때, 현재 상황이 실시간 반영된 MR 뷰 이미지를 차량의 디스플레이에 출력하는 것을 특징으로 하는 경로 안내 장치.
  7. 제 1 항에 있어서,
    상기 프로세서는,
    현재 차량의 위치를 나타내는 차량 객체를 기준으로 차량의 전방의 장면에 대응되도록 상기 MR 뷰 이미지를 출력하는 것을 특징으로 하는 경로 안내 장치.
  8. 제 7 항에 있어서,
    상기 프로세서는,
    상기 기 설정된 조건을 만족하는 것에 근거하여, 차량이 주행할 경로를 따라 상기 차량 객체보다 앞서서 주행하는 고스트 카를 생성하고,
    상기 고스트 카를 기준으로 고스트 카의 전방의 장면이 표시되도록 상기 MR 뷰 이미지를 전환하는 것을 특징으로 하는 경로 안내 장치.
  9. 제 1 항에 있어서,
    상기 기 설정된 조건이 만족되는 것에 근거하여 전환되는 MR 뷰 이미지는, 차량이 주행할 경로를 따라 앞선 상황을 디지털 트윈 맵 상에서 미리 보여주는 예측 뷰 이미지인 것을 특징으로 하는 경로 안내 장치.
  10. 제 1 항에 있어서,
    상기 프로세서는,
    상기 기 설정된 조건을 만족하는 것에 근거하여 MR 뷰 이미지를 전환할 때, 디지털 트윈 맵을 바라보는 지점의 고도를 가변하여 차량이 주행할 예정인 장소에 해당하는 장면을 미리 보여주는 것을 특징으로 하는 경로 안내 장치.
  11. 제 1 항에 있어서,
    상기 프로세서는,
    상기 기 설정된 조건이 만족되는 것에 근거하여, 현재 차량의 위치를 기준으로 차량 전방의 장면이 표시되는 제1 MR 뷰 이미지 및 차량이 주행할 예정인 장소에 대응되는 장면이 표시되는 제2 MR 뷰 이미지를 함께 차량의 디스플레이에 출력하도록 상기 인터페이스부를 제어하는 것을 특징으로 하는 경로 안내 장치.
  12. 제 11 항에 있어서,
    상기 프로세서는,
    상기 제2 MR 뷰 이미지를 팝업창 형태로 출력하는 것을 특징으로 하는 경로 안내 장치.
  13. 제 11 항에 있어서,
    상기 프로세서는,
    상기 기 설정된 조건을 만족하는 것에 근거하여, 차량에 구비된 디스플레이의 화면을 제1 영역 및 제2 영역으로 분할하고,
    상기 디스플레이의 상기 제1 영역에 상기 제1 MR 뷰 이미지를 출력하고, 상기 제2 영역에 상기 제2 MR 뷰 이미지를 출력하도록 상기 인터페이스부를 제어하는 것을 특징으로 하는 경로 안내 장치.
  14. 제 11 항에 있어서,
    상기 제2 MR 뷰 이미지는, 차량이 현재 위치에서 바라본 장면에서부터 상기 차량이 진행할 경로를 따라 소정거리만큼 이동할 장면을 재생하는 영상인 것을 특징으로 하는 경로 안내 장치.
  15. 제 11 항에 있어서,
    상기 프로세서는,
    상기 차량이 진행할 경로를 따라 소정거리만큼 이동할 장면을 출력하는 제2 MR 뷰 이미지를 출력하다가, 상기 차량이 상기 소정거리만큼 이동하는 것에 근거하여, 상기 제2 MR 뷰 이미지를 사라지게 하는 것을 특징으로 하는 경로 안내 장치.
PCT/KR2022/010149 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템 WO2023287176A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22842438.8A EP4372317A1 (en) 2021-07-13 2022-07-12 Route guidance device and route guidance system based on augmented reality and mixed reality
KR1020237043354A KR20240012448A (ko) 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로안내 시스템
US18/579,180 US20240318974A1 (en) 2021-07-13 2022-07-12 Route guidance device and route guidance system based on augmented reality and mixed reality

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163221467P 2021-07-13 2021-07-13
US63/221,467 2021-07-13

Publications (1)

Publication Number Publication Date
WO2023287176A1 true WO2023287176A1 (ko) 2023-01-19

Family

ID=84920116

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/KR2022/010103 WO2023287153A1 (ko) 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
PCT/KR2022/010102 WO2023287152A1 (ko) 2021-07-13 2022-07-12 혼합 현실 자동차 메타 서비스를 제공하는 mr 서비스 플랫폼 및 그것의 제어방법
PCT/KR2022/010149 WO2023287176A1 (ko) 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
PCT/KR2022/010139 WO2023287169A1 (ko) 2021-07-13 2022-07-12 혼합 현실에 기반한 디스플레이 장치 및 경로 안내 시스템
PCT/KR2022/010107 WO2023287156A1 (ko) 2021-07-13 2022-07-12 혼합 현실 자동자 메타 서비스를 제공하는 mr 서비스 플랫폼 및 그것의 제어방법
PCT/KR2022/010151 WO2023287177A1 (ko) 2021-07-13 2022-07-12 혼합 현실 자동차 메타 서비스를 제공하는 mr 서비스 플랫폼 및 그것의 제어방법
PCT/KR2022/010147 WO2023287175A1 (ko) 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
PCT/KR2022/010144 WO2023287172A1 (ko) 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
PCT/KR2023/007639 WO2024014709A1 (ko) 2021-07-13 2023-06-02 혼합 현실에 기반한 디스플레이 장치 및 경로 안내 시스템

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/KR2022/010103 WO2023287153A1 (ko) 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
PCT/KR2022/010102 WO2023287152A1 (ko) 2021-07-13 2022-07-12 혼합 현실 자동차 메타 서비스를 제공하는 mr 서비스 플랫폼 및 그것의 제어방법

Family Applications After (6)

Application Number Title Priority Date Filing Date
PCT/KR2022/010139 WO2023287169A1 (ko) 2021-07-13 2022-07-12 혼합 현실에 기반한 디스플레이 장치 및 경로 안내 시스템
PCT/KR2022/010107 WO2023287156A1 (ko) 2021-07-13 2022-07-12 혼합 현실 자동자 메타 서비스를 제공하는 mr 서비스 플랫폼 및 그것의 제어방법
PCT/KR2022/010151 WO2023287177A1 (ko) 2021-07-13 2022-07-12 혼합 현실 자동차 메타 서비스를 제공하는 mr 서비스 플랫폼 및 그것의 제어방법
PCT/KR2022/010147 WO2023287175A1 (ko) 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
PCT/KR2022/010144 WO2023287172A1 (ko) 2021-07-13 2022-07-12 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
PCT/KR2023/007639 WO2024014709A1 (ko) 2021-07-13 2023-06-02 혼합 현실에 기반한 디스플레이 장치 및 경로 안내 시스템

Country Status (4)

Country Link
US (8) US20240282056A1 (ko)
EP (8) EP4372668A4 (ko)
KR (8) KR20240024769A (ko)
WO (9) WO2023287153A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023287153A1 (ko) * 2021-07-13 2023-01-19 엘지전자 주식회사 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
WO2024158065A1 (ko) * 2023-01-26 2024-08-02 엘지전자 주식회사 증강 현실에 기반한 차량의 디스플레이 장치 및 그 장치의 제어 방법
KR102710859B1 (ko) * 2023-12-29 2024-09-27 주식회사 비솔 위성 영상을 이용한 인공지능 기반의 건축물 합성 이미지 생성 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190109336A (ko) * 2019-09-05 2019-09-25 엘지전자 주식회사 운전자 시선에 기반한 길 안내 서비스 지원 장치 및 이를 이용한 자동차 내비게이션 시스템
US20200255026A1 (en) * 2017-09-18 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing precise driving recommendations based on network-assisted scanning of a surrounding environment
KR102173286B1 (ko) * 2020-02-18 2020-11-03 (주)리얼메이커 혼합 현실 내에서의 공간 좌표 정보 보정을 위한 전자 장치, 방법, 및 컴퓨터 판독가능 매체
KR20210059980A (ko) * 2019-11-18 2021-05-26 엘지전자 주식회사 차량의 원격 제어방법 및 이를 위한 혼합현실 디바이스 및 차량
KR20210085789A (ko) * 2019-12-31 2021-07-08 주식회사 버넥트 디지털 트윈을 이용한 증강현실 기반 현장 모니터링 시스템 및 방법

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294457A (ja) * 2002-04-04 2003-10-15 Matsushita Electric Ind Co Ltd ナビゲーション装置
US7860301B2 (en) * 2005-02-11 2010-12-28 Macdonald Dettwiler And Associates Inc. 3D imaging system
DE102007030226A1 (de) * 2007-06-29 2009-01-08 Robert Bosch Gmbh Kameragestütztes Navigationssystem und Verfahren zu seinem Betrieb
KR20110064540A (ko) * 2009-12-08 2011-06-15 한국전자통신연구원 건물 텍스처 생성 장치 및 방법
US8498812B2 (en) * 2010-01-05 2013-07-30 Robert Bosch Gmbh Stylized procedural modeling for 3D navigation
US9664527B2 (en) 2011-02-25 2017-05-30 Nokia Technologies Oy Method and apparatus for providing route information in image media
US9752889B2 (en) * 2013-03-14 2017-09-05 Robert Bosch Gmbh Time and environment aware graphical displays for driver information and driver assistance systems
JP2015187795A (ja) * 2014-03-27 2015-10-29 株式会社ジオ技術研究所 画像表示システム
KR20160059376A (ko) 2014-11-18 2016-05-26 엘지전자 주식회사 전자 기기 및 그 제어방법
KR20170005602A (ko) * 2015-07-06 2017-01-16 삼성전자주식회사 증강현실 및 가상현실의 통합적 제공 방법 및 이를 사용하는 전자 장치
KR20170056752A (ko) 2015-11-13 2017-05-24 현대오트론 주식회사 헤드업 디스플레이를 이용한 차선 표시장치 및 그 방법
US10366290B2 (en) 2016-05-11 2019-07-30 Baidu Usa Llc System and method for providing augmented virtual reality content in autonomous vehicles
US10812936B2 (en) * 2017-01-23 2020-10-20 Magic Leap, Inc. Localization determination for mixed reality systems
WO2020071703A1 (ko) * 2018-10-01 2020-04-09 엘지전자 주식회사 포인트 클라우드 데이터 전송 장치, 포인트 클라우드 데이터 전송 방법, 포인트 클라우드 데이터 수신 장치 및/또는 포인트 클라우드 데이터 수신 방법
KR20200042166A (ko) * 2018-10-15 2020-04-23 삼성전자주식회사 컨텐츠를 시각화하는 장치 및 방법
KR102569898B1 (ko) * 2018-11-22 2023-08-24 현대자동차주식회사 혼합 현실을 이용한 운전 보조 시스템 및 그 제어 방법
KR20200063889A (ko) 2018-11-28 2020-06-05 서울대학교산학협력단 디지털 트윈을 이용한 플랜트 운영 방법, 시스템 및 컴퓨터 프로그램
KR102160990B1 (ko) * 2018-12-21 2020-09-29 서울시립대학교 산학협력단 객체 기반의 3d 도시 모델링 방법 및 이를 구현하는 서버, 그리고 이를 이용하는 시스템
US11302055B2 (en) * 2019-04-01 2022-04-12 Apple Inc. Distributed processing in computer generated reality system
KR102592653B1 (ko) * 2019-07-01 2023-10-23 엘지전자 주식회사 Ar 모드 및 vr 모드를 제공하는 xr 디바이스 및 그 제어 방법
KR102135256B1 (ko) * 2019-08-08 2020-07-17 엘지전자 주식회사 자율 주행 시스템에서 차량의 사용자 인증 위한 방법 및 장치
US20210117214A1 (en) 2019-10-18 2021-04-22 Facebook, Inc. Generating Proactive Content for Assistant Systems
KR20210048739A (ko) * 2019-10-24 2021-05-04 엘지전자 주식회사 Ar 모빌리티 제어 장치 및 ar 모빌리티 제어 방법
KR20210080936A (ko) 2019-12-23 2021-07-01 엘지전자 주식회사 Xr 컨텐트 제공 방법 및 xr 디바이스
KR20210087271A (ko) 2020-01-02 2021-07-12 삼성전자주식회사 3d 증강 현실 내비게이션 정보 표시 방법 및 장치
KR102174524B1 (ko) 2020-04-07 2020-11-04 안정훈 전자 지도 서비스 방법 및 시스템
KR102235474B1 (ko) 2020-09-08 2021-04-02 포티투닷 주식회사 내비게이션 장치 및 이를 포함하는 차량 내비게이션 시스템
KR102454073B1 (ko) * 2020-12-18 2022-10-14 한국과학기술원 360 카메라 및 디지털 트윈을 기반으로 한 이동 객체의 지리적 데이터 추정방법 및 시스템
WO2023287153A1 (ko) * 2021-07-13 2023-01-19 엘지전자 주식회사 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200255026A1 (en) * 2017-09-18 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing precise driving recommendations based on network-assisted scanning of a surrounding environment
KR20190109336A (ko) * 2019-09-05 2019-09-25 엘지전자 주식회사 운전자 시선에 기반한 길 안내 서비스 지원 장치 및 이를 이용한 자동차 내비게이션 시스템
KR20210059980A (ko) * 2019-11-18 2021-05-26 엘지전자 주식회사 차량의 원격 제어방법 및 이를 위한 혼합현실 디바이스 및 차량
KR20210085789A (ko) * 2019-12-31 2021-07-08 주식회사 버넥트 디지털 트윈을 이용한 증강현실 기반 현장 모니터링 시스템 및 방법
KR102173286B1 (ko) * 2020-02-18 2020-11-03 (주)리얼메이커 혼합 현실 내에서의 공간 좌표 정보 보정을 위한 전자 장치, 방법, 및 컴퓨터 판독가능 매체

Also Published As

Publication number Publication date
KR20230068439A (ko) 2023-05-17
WO2023287153A1 (ko) 2023-01-19
EP4372316A1 (en) 2024-05-22
KR20230115319A (ko) 2023-08-02
EP4372668A1 (en) 2024-05-22
KR20240035377A (ko) 2024-03-15
US20240271953A1 (en) 2024-08-15
EP4290185A1 (en) 2023-12-13
KR20240012448A (ko) 2024-01-29
EP4372315A1 (en) 2024-05-22
US20240273837A1 (en) 2024-08-15
KR20240024769A (ko) 2024-02-26
US20240273836A1 (en) 2024-08-15
WO2023287172A1 (ko) 2023-01-19
KR20240012449A (ko) 2024-01-29
EP4372314A1 (en) 2024-05-22
EP4290185A4 (en) 2024-09-11
US12062136B2 (en) 2024-08-13
US20240282056A1 (en) 2024-08-22
KR102625688B1 (ko) 2024-01-18
WO2023287156A1 (ko) 2023-01-19
KR20240032697A (ko) 2024-03-12
KR20240026449A (ko) 2024-02-28
WO2024014709A1 (ko) 2024-01-18
US20240344841A1 (en) 2024-10-17
WO2023287169A1 (ko) 2023-01-19
EP4372663A1 (en) 2024-05-22
WO2023287177A1 (ko) 2023-01-19
US20240318974A1 (en) 2024-09-26
US20240312153A1 (en) 2024-09-19
EP4372317A1 (en) 2024-05-22
US20240177418A1 (en) 2024-05-30
WO2023287175A1 (ko) 2023-01-19
EP4372668A4 (en) 2024-11-13
EP4358524A1 (en) 2024-04-24
WO2023287152A1 (ko) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2023287176A1 (ko) 증강현실과 혼합현실에 기반한 경로 안내 장치 및 경로 안내 시스템
WO2020235766A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2022154478A1 (ko) 증강현실 서비스를 제공하는 ar 서비스 플랫폼
WO2021045257A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021090971A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2019031853A1 (ko) 지도 제공 장치
WO2021141142A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021182655A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021157760A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021045256A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021141143A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021230387A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2020149427A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021045255A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2020017677A1 (ko) 영상 출력 장치
WO2021141145A1 (ko) 영상 출력 장치 및 그것의 제어 방법
WO2021246534A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021246551A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2022050435A1 (ko) 차량용 ar 화면을 위한 시스템 및 차량용 ar 화면 서비스 제공 방법
WO2021225195A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021149846A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2022119267A1 (ko) 경로 안내 장치 및 경로 안내 시스템
WO2021246550A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021157759A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021221181A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237043354

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043354

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18579180

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022842438

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022842438

Country of ref document: EP

Effective date: 20240213