[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023286725A1 - Uv absorber and manufacturing method thereof, composition, molded body and coating film - Google Patents

Uv absorber and manufacturing method thereof, composition, molded body and coating film Download PDF

Info

Publication number
WO2023286725A1
WO2023286725A1 PCT/JP2022/027201 JP2022027201W WO2023286725A1 WO 2023286725 A1 WO2023286725 A1 WO 2023286725A1 JP 2022027201 W JP2022027201 W JP 2022027201W WO 2023286725 A1 WO2023286725 A1 WO 2023286725A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
resin
parts
ultraviolet
Prior art date
Application number
PCT/JP2022/027201
Other languages
French (fr)
Japanese (ja)
Inventor
優美香 千葉
僚一 辰巳
大輔 槇
Original Assignee
東洋インキScホールディングス株式会社
トーヨーカラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社, トーヨーカラー株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to CN202280048114.6A priority Critical patent/CN117651750A/en
Priority to KR1020237044600A priority patent/KR20240033216A/en
Publication of WO2023286725A1 publication Critical patent/WO2023286725A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/30Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing heterocyclic ring with at least one nitrogen atom as ring member
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/16Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom
    • C07D251/20Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom with no nitrogen atoms directly attached to a ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B17/00Azine dyes
    • C09B17/04Azine dyes of the naphthalene series
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to an ultraviolet absorber, its manufacturing method, composition, molded article, and coating film.
  • UV absorbers are added to resins to impart UV absorbency to moldings and coatings.
  • UV absorbers not only ultraviolet light with a wavelength of less than 400 nm, but also light in the visible short wavelength range of about 400 to 420 nm, damages organic matter and the human body. It is pointed out to give Therefore, for specific applications, there is a demand for an ultraviolet absorber capable of absorbing light in the short wavelength region of visible light.
  • an ultraviolet absorber to an optical film such as a polarizing plate protective film to prevent discoloration of these optical films.
  • an ultraviolet absorber is added to the antireflection film in order to prevent deterioration of the near-infrared absorber contained in the antireflection film due to ultraviolet rays.
  • various organic substances such as fluorescent materials and phosphorescent materials are used in the light-emitting elements of organic EL displays.
  • An ultraviolet absorber is added to the coating film on the surface.
  • UV absorbers that absorb UV light and light in the visible light short wavelength region of about 400 to 420 nm for the purpose of protecting organic substances in materials.
  • molded articles and coating films for the above applications have been required to further improve high ultraviolet shielding properties, heat resistance and light resistance, and are less likely to be colored and deteriorated due to heating or exposure to ultraviolet rays over a long period of time. Those that retain excellent visible transparency and UV shielding properties are desired.
  • Patent Documents 1 and 2 disclose a benzotriazole-based UV absorber that absorbs visible light in the short wavelength region of about 400 to 420 nm.
  • JP 2018-177696 A Japanese Patent Publication No. 2016-514756
  • UV absorbers absorb light in the short wavelength region of visible light of about 400 to 420 nm, they have low heat resistance and light resistance, and UV absorption decreases due to heating or exposure to UV rays over a long period of time. I had a problem. In addition, there is a problem that the transparency of the coating film and the molded article is lowered when the amount of the ultraviolet absorber added is increased in order to obtain sufficient ultraviolet shielding properties.
  • One embodiment of the present invention has heat resistance, light resistance, and transparency in addition to excellent ultraviolet absorption that absorbs not only ultraviolet rays of less than 400 nm but also light in the visible light short wavelength region of about 400 to 420 nm.
  • the object is to provide an ultraviolet absorber.
  • the embodiment of the present invention is as follows.
  • One or more ultraviolet absorbing dyes selected from the group consisting of compounds represented by the following general formulas (1) to (3), and one selected from the group consisting of Na, Mg, Al, K, Ca, and Fe
  • R 1b to R 1g , R 2a to R 2g , and R 3a to R 3g each independently represent a hydrogen atom, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, represents any one selected from the group consisting of an iodine atom, a nitrile group, a nitro group, a sulfo group, R 7 , Ar 1 , and groups represented by general formulas (4-1) to (4-3) below.
  • R 7 is any selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyloxy group having 1 to 20 carbon atoms. represents a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitrile group, a nitro group, a carboxyl group, or a sulfo group.
  • alkenyl groups 1 to 20 alkenyl groups, alkoxy groups having 1 to 20 carbon atoms, and alkenyloxy groups having 1 to 20 carbon atoms, and one or more -O-, -CO-, -COO between carbon atoms -, -OCO-, -CONH-, or -NHCO- may be linked.
  • Ar 1 represents any one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a biphenyl group, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, a carbon alkenyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkenyloxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, fluorine atom, chlorine It may have substituents of atoms, bromine atoms, iodine atoms, nitrile groups, nitro groups, carboxyl groups, or sulfo groups.
  • R 4 , R 5 and R 6 each independently represent any one selected from the group consisting of a hydroxyl group, R 7 and Ar 1 .
  • X 1 represents any selected from the group consisting of -CO-, -COO-, -OCO-, -CONH-, and -NHCO-
  • R 8 is hydrogen represents any one selected from the group consisting of an atom, a hydroxyl group, R7 and Ar1 .
  • * in general formula (4-1) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
  • X 2 and X 3 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO-
  • R 9 represents an arylene group having 6 to 20 carbon atoms
  • R 10 represents R 7 or Ar 1 .
  • * in general formula (4-2) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
  • X 4 and X 5 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO- wherein R 11 represents a linear or branched alkylene group having 1 to 20 carbon atoms or an arylene group having 6 to 20 carbon atoms, R 12 represents R 7 or Ar 1 , and n is 1 to is 20.
  • * in general formula (4-3) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
  • ⁇ 4> The UV absorber according to any one of ⁇ 1> to ⁇ 3>, and a triazine ring-containing compound and a benzotriazole ring-containing compound that are compounds other than the compounds represented by general formulas (1) to (3) , and at least one second UV absorber selected from the group consisting of benzophenone ring-containing compounds.
  • ⁇ 5> A composition comprising the ultraviolet absorber according to any one of ⁇ 1> to ⁇ 3> and a coloring material that blocks light in the visible wavelength range of 450 to 650 nm.
  • composition according to ⁇ 5> wherein the colorant contains two or more chromatic colorants.
  • the ultraviolet absorber according to any one of ⁇ 1> to ⁇ 3>, and one selected from the group consisting of phthalocyanine compounds, naphthalocyanine compounds, squarylium compounds, cyanine compounds, and diketopyrrolopyrroles
  • a composition comprising the above near-infrared absorbent, wherein the near-infrared absorbent has a maximum absorption in a wavelength range of 600 to 1500 nm.
  • a composition comprising the UV absorber according to any one of ⁇ 1> to ⁇ 3> and a resin.
  • a composition comprising the ultraviolet absorber according to any one of ⁇ 1> to ⁇ 3>, a photopolymerizable compound, and a photopolymerization initiator.
  • ⁇ 11> A molded article molded from the composition according to any one of ⁇ 4> to ⁇ 10>.
  • ⁇ 12> A coating film formed from the composition according to any one of ⁇ 4> to ⁇ 10>.
  • ⁇ 13> The method for producing an ultraviolet absorber according to any one of ⁇ 1> to ⁇ 3>, wherein a poor solvent containing water is added to the reaction solution for synthesizing the ultraviolet absorbing dye to separate the liquid, and the metal
  • a step of removing the components a step of washing the UV-absorbing dye with alcohol, water, or a mixture thereof after the liquid separation and filtration; washing the UV-absorbing dye by reslurrying the UV-absorbing dye in alcohol, water, or a mixture thereof. and one or more steps selected from the group consisting of the steps of reslurrying and washing the UV-absorbing dye with an acid solution, thereby reducing the content of the metal component contained in the UV-absorbing dye.
  • a method for producing an ultraviolet absorber A method for producing an ultraviolet absorber.
  • an ultraviolet absorber in addition to excellent ultraviolet absorption that absorbs not only ultraviolet rays of less than 400 nm but also light in the visible short wavelength region of about 400 to 420 nm, it has heat resistance, light resistance, and transparency.
  • An ultraviolet absorber, a composition using the same, a molded article, and a coating film can be provided.
  • FIG. 1 is an example of a diffraction pattern by powder X-ray diffraction of an ultraviolet absorber of one embodiment of the present invention.
  • the ultraviolet absorber of one embodiment of the present invention is one or more ultraviolet absorbing dyes selected from the compounds represented by the following general formulas (1) to (3) (hereinafter also referred to as “ultraviolet absorbing dye (A)"). , and a metal component containing one or more metal atoms selected from the group consisting of Na, Mg, Al, K, Ca, and Fe (hereinafter also referred to as “metal component (B)”), and a metal component ( The content of B) is 0.1 to 50000 ppm with respect to the ultraviolet absorber.
  • R 1b to R 1g , R 2a to R 2g , and R 3a to R 3g each independently represent a hydrogen atom, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. It represents any one selected from the group consisting of atoms, nitrile groups, nitro groups, sulfo groups, R 7 , Ar 1 , and groups represented by the following general formulas (4-1) to (4-3).
  • R 7 is any selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyloxy group having 1 to 20 carbon atoms. represents a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitrile group, a nitro group, a carboxyl group, or a sulfo group.
  • alkenyl groups 1 to 20 alkenyl groups, alkoxy groups having 1 to 20 carbon atoms, and alkenyloxy groups having 1 to 20 carbon atoms, and one or more -O-, -CO-, -COO between carbon atoms -, -OCO-, -CONH-, or -NHCO- may be linked.
  • Ar 1 represents any one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a biphenyl group, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, a carbon alkenyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkenyloxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, fluorine atom, chlorine It may have substituents of atoms, bromine atoms, iodine atoms, nitrile groups, nitro groups, carboxyl groups, or sulfo groups.
  • R 4 , R 5 and R 6 each independently represent any one selected from the group consisting of a hydroxyl group, R 7 and Ar 1 .
  • X 1 represents any selected from the group consisting of -CO-, -COO-, -OCO-, -CONH-, and -NHCO-
  • R 8 is hydrogen represents any one selected from the group consisting of an atom, a hydroxyl group, R7 and Ar1 .
  • * in general formula (4-1) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
  • X 2 and X 3 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO-
  • R 9 represents an arylene group having 6 to 20 carbon atoms
  • R 10 represents R 7 or Ar 1 .
  • * in general formula (4-2) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
  • X 4 and X 5 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO- wherein R 11 represents a linear or branched alkylene group having 1 to 20 carbon atoms or an arylene group having 6 to 20 carbon atoms, R 12 represents R 7 or Ar 1 , and n is 1 to is 20.
  • * in general formula (4-3) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
  • the ultraviolet absorber of the embodiment of the present invention is a light in the visible light short wavelength region of about 400 to 420 nm in addition to the ultraviolet region of less than 400 nm due to the action of the ultraviolet absorbing dye (A) having a naphthalene ring bonded to the triazine ring. can be absorbed.
  • the ultraviolet absorber contains an appropriate amount of a metal component (B) containing one or more metal atoms selected from the group consisting of Na, Mg, Al, K, Ca, and Fe. It has an unexpectedly remarkable effect of ensuring light resistance, heat resistance, and ultraviolet absorption.
  • the ultraviolet absorbing dye (A) can absorb wavelengths, so the amount of the ultraviolet absorbing dye (A) added can be suppressed, suppressing the deterioration of the transparency of the molded article and the coating film, and has the effect of improving transparency.
  • the mechanism by which such an effect is obtained is speculated as follows. That is, since the ultraviolet absorbing dye (A) contained in the ultraviolet absorber of the embodiment of the present invention contains a triazine ring moiety having a lone pair in its molecular structure, the ultraviolet absorbing dye (A) and the metal atom to form a complex, and metal ions are easily incorporated into the dye skeleton. As a result, it is assumed that the crystallinity of the ultraviolet-absorbing dye is improved, the deterioration due to heating and light irradiation is less likely to occur, and the heat resistance and light resistance are improved.
  • the ultraviolet absorbing dye incorporates too many metal ions, the amount of the ultraviolet absorbing dye component is reduced, and it is thought that the ultraviolet absorbability is reduced.
  • the amount By setting the amount to 0.1 to 50000 ppm (more preferably 0.1 to 10000 ppm or 0.1 to 1000 ppm), an appropriate amount of metal ions can be incorporated into the dye skeleton, so that excellent ultraviolet rays can be obtained. Absorbency can be maintained.
  • the ultraviolet absorbing dye (A) is selected from one or more compounds represented by formulas (1) to (3), and may be used alone or in combination.
  • the compounds represented by formulas (1) to (3) absorb light in the visible short wavelength region of about 400 to 420 nm in addition to the ultraviolet region of less than 400 nm.
  • the compound of general formula (1) can absorb the longest wavelengths, and is most preferable from the viewpoint of absorbing light of longer wavelengths. mentioned.
  • general formula (3) has the shortest maximum absorption wavelength among general formulas (1) to (3), but is most preferable from the viewpoint of being nearly colorless.
  • Examples include compounds represented by the following formulas.
  • general formula (2) is preferable from the viewpoint of being able to balance the absorption of light with longer wavelengths and the fact that it is nearly colorless, and examples thereof include compounds represented by the following formula.
  • the ultraviolet absorber contains an ultraviolet absorbing dye (A), and further contains 0.1 to 50000 ppm of a metal component (B) per 100 parts by mass of the ultraviolet absorber.
  • A ultraviolet absorbing dye
  • B metal component
  • the compounds represented by general formulas (1) to (3) contained in the ultraviolet absorbing dye (A) can be synthesized using known methods for synthesizing compounds having a triazine structure.
  • a synthesis method of the general formula (1) for example, there is a method of addition reaction of cyanuric chloride with naphthol using aluminum trichloride.
  • a synthesis method of general formula (2) for example, a method of addition reaction of 2,4-dichloro-6-phenyl-1,3,5-triazine with naphthol using aluminum trichloride can be mentioned.
  • a method of addition reaction of 2-chloro-4,6-diphenyl-1,3,5-triazine with naphthol using aluminum trichloride can be mentioned.
  • methyl 2-hydroxy-1-naphthoate and benzamidine hydrochloride may be condensed and cyclized using sodium methoxide, but these synthesis methods are typical production methods. It is described and is not limited to this.
  • the metal component (B) contained in the ultraviolet absorber contains one or more metal atoms selected from the group consisting of Na, Mg, Al, K, Ca and Fe.
  • the metal atoms can be often used as an acid catalyst used in the synthesis method, so the content of the metal component (B) can be controlled by controlling the Al amount by the purification method after synthesis. Further, depending on the method for synthesizing the ultraviolet absorbing dye (A), the above metal atoms may not be contained at all. It is also good to control the content of Various methods are known for measuring metal atoms.
  • the content of the metal component (B) can be easily determined by, for example, diluting a solution obtained by adding nitric acid to an ultraviolet absorber and decomposing it with microwaves to an appropriate concentration and using inductively coupled plasma emission spectrometry (ICP). can do.
  • the content of the metal component (B) is preferably 0.1 to 50000 ppm, more preferably 0.1 to 10000 ppm, even more preferably 0.1 to 1000 ppm, and even if it is 1 to 48200 ppm, relative to the ultraviolet absorber. good.
  • the content of the metal component (B) means the total content of ions of Na, Mg, Al, K, Ca, and Fe.
  • a poor solvent such as methanol containing water is added to the reaction solution for synthesizing the UV-absorbing dye (A).
  • a method of separating liquids and removing metal components A method of washing by sprinkling alcohol such as methanol or water, or a mixture thereof, on the wet cake (compound concentrated by the step of removing metal components) after liquid separation and filtration; A method of reslurrying the wet cake in alcohol such as methanol or water, or a mixed solution thereof for washing; provided, but not limited to.
  • the ultraviolet absorber has diffraction peaks at least at Bragg angles 2 ⁇ ( ⁇ 0.3°) of 7.6° and 13.2° in the X-ray diffraction pattern of the compound represented by the general formula (1) with CuK ⁇ rays.
  • the ratio of these diffraction peaks is 1:1.3 to 1:0.7
  • the X-ray diffraction pattern of the compound represented by the general formula (2) with CuK ⁇ rays shows that at least the Bragg angle 2 ⁇ ( ⁇ 0.3°) has diffraction peaks at 8.0° and 14.5°, and the ratio of these diffraction peaks (XRD ratio) is 1:1.3 to 1:0.7.
  • the crystallinity there is a risk that the particles will grow large due to the strong turbidity, and the transparency of the molded article and coating film will be reduced.
  • the ratio is 1:1.4 or more, the crystallinity is low and the particles are fine, but the cohesive force is strong, so there is a possibility that the transparency of the molded article and coating film may be lowered.
  • the crystallinity and the cohesive force can be appropriately balanced, and the transparency of the molded article and coating film can be further improved.
  • a method for measuring the powder X-ray diffraction spectrum and a method for calculating the diffraction peak intensity ratio will be described later.
  • the ultraviolet absorber of the embodiment of the present invention can be dissolved or present as particles in the composition.
  • the particles preferably have an average primary particle diameter of about 5 nm to 100 ⁇ m, more preferably about 10 nm to 10 ⁇ m, and even more preferably about 20 nm to 500 nm.
  • the ultraviolet absorber can suppress deterioration in transparency by having particles with an appropriate average primary particle size.
  • the average primary particle diameter can be obtained by arithmetically averaging the major diameters of about 20 primary particles in a magnified image of 1,000 to 10,000 times using a transmission electron microscope.
  • the UV absorber can be produced, for example, by synthesizing a compound contained in the UV absorbing dye (A) and then adjusting the content of the metal component (B) in the UV absorbing dye (A). , The content of the metal component (B) is reduced by ⁇ method for refining the ultraviolet absorbing dye (A)>, or the content is increased by adding a metal atom separately after synthesizing the ultraviolet absorbing dye (A).
  • the materials necessary for synthesizing the compound contained in the ultraviolet absorbing dye (A) are placed in an Erlenmeyer flask, stirred to obtain a reaction solution, and a poor solvent such as methanol containing water is added little by little to the reaction solution for separation.
  • the metal components are removed by removing the metal components, and the wet cake after the liquid separation and filtration (the compound concentrated by the metal component removal step) is sprinkled with alcohol or water, or a mixture thereof to wash the metal components.
  • a UV absorber with a reduced content of (B) can be produced.
  • the composition of the embodiment of the present invention comprises at least One type of second ultraviolet absorber (hereinafter also referred to as "ultraviolet absorber (C)”) can be contained.
  • second ultraviolet absorber hereinafter also referred to as "ultraviolet absorber (C)
  • the UV-absorbing dye (A) and the UV absorber By combining the above compounds contained in C), it is possible to broaden the ultraviolet region and to easily and effectively shield the short wavelength region of visible light with a wavelength of about 400 to 420 nm.
  • the compounds contained in the ultraviolet absorbing dye (A) and the ultraviolet absorbent (C) protect each other, better light resistance and heat resistance can be obtained.
  • the benzotriazole ring-containing compound is generally a compound that absorbs light with a wavelength of 360 nm or less.
  • TINUVIN P "TINUVIN PS”
  • TINUVIN 109 "TINUVIN 234"
  • TINUVIN 326 "TINUVIN 328”
  • TINUVIN 329 manufactured by BASF Japan.
  • triazine ring-containing compounds other than the compounds represented by the general formulas (1) to (3) are generally compounds that absorb light having a wavelength of 360 nm or less.
  • -[4,6-di(2,4-xylyl)-1,3,5-triazin-2-yl]-5-octyloxyphenol 2-[4,6-bis(2,4-dimethylphenyl) -1,3,5-triazin-2-yl]-5-[3-(dodecyloxy)-2-hydroxypropoxy]phenol
  • 2,4-bis(2-hydroxy-4-butoxyphenyl)-6-(2,4-dibutoxyphenyl)-1,3,5-triazine 2 -[4-[(2-hydroxy-3-(2′-ethoxyphenyl)-1,
  • triazine ring-containing compounds which are compounds other than the compounds represented by formulas (1) to (3), include “KEMISORB 102" manufactured by Chemipro Kasei Co., Ltd., "TINUVIN 400", “TINUVIN 405", and “TINUVIN 405" manufactured by BASF Japan.
  • TINUVIN 460 "TINUVIN 477-DW”, “TINUVIN 479”, “TINUVIN 1577”, “ADEKA STAB LA-46", “ADEKA STAB LA-F70” manufactured by ADEKA Corporation, "CYASORB UV-1164” manufactured by Sun Chemical Co., Ltd., etc. is mentioned.
  • benzophenone ring-containing compounds are generally compounds that absorb light with a wavelength of 360 nm or less, and examples thereof include 2,4-di-hydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, Sodium 2-hydroxy-4-methoxybenzophenone-5-sulfonate, 2-hydroxy-4-n-octoxybenzophenone, 2,2-di-hydroxy-4-methoxybenzophenone, hexyl 2-(4-diethylamino-2- hydroxybenzoyl)benzoate, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 1,4-bis(4-benzoyl-3-hydroxyphenoxy)butane, 2-hydroxy- 4-octoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2,2',4,4'-tetrahydroxybenzophenone and the like.
  • the content of the ultraviolet absorber (C) is preferably 0.005 to 50% by mass, more preferably 0.01 to 40% by mass, based on the non-volatile content of the composition.
  • the content of the ultraviolet absorber can be designed according to the desired spectral cut rate.
  • the content of the ultraviolet absorber containing the ultraviolet absorbing dye (A) is preferably 0.005 to 50% by mass, more preferably 0.01 to 40% by mass, based on the non-volatile content of the composition.
  • the content of the ultraviolet absorber can be designed according to the desired spectral cut rate.
  • the composition of the embodiment of the present invention can contain a coloring material (hereinafter also referred to as "coloring material (D)”) that blocks 80% or more of the visible wavelength range of 450 to 650 nm. .
  • the colorant (D) preferably contains two or more chromatic colorants. Since the ultraviolet absorber of the embodiment of the present invention strongly absorbs wavelengths of 420 nm or less, it is combined with a chromatic coloring agent that absorbs a specific wavelength range of 450 to 650 nm to cut wavelengths of 700 nm or less. Since light in the infrared region can be used, for example, it can be used as a bandpass material that appropriately adjusts the spectrum depending on the purpose. In addition, since the ultraviolet absorber protects the coloring material (D) from ultraviolet rays, the light resistance and heat resistance of the composition as a whole are improved.
  • coloring material (D) examples include blue pigments, yellow pigments, purple pigments, red pigments, and the like.
  • Organic pigments may be organic pigments, for example, diketopyrrolopyrrole pigments, azo pigments such as azo, disazo, and polyazo, aminoanthraquinone, diaminodianthraquinone, anthrapyrimidine, flavanthrone, anthantrone, and indanthrone.
  • Anthraquinone pigments such as , pyranthrone, or violanthrone, quinacridone pigments, perinone pigments, perylene pigments, thioindigo pigments, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, threne pigments, metal complex pigments etc.
  • Dyes may also be used as organic dyes, and examples thereof include anthraquinone dyes, monoazo dyes, disazo dyes, oxazine dyes, aminoketone dyes, xanthene dyes, quinoline dyes, and triphenylmethane dyes. mentioned. When a dye is used, it is effective to use a polar group of an anionic dye or a cationic dye to incorporate it into the resin and impart solubility in an organic solvent.
  • Blue pigments include, for example, C.I. I. Pigment Blue 1, 1:2, 9, 14, 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 17, 19, 25, 27, 28, 29, 33, 35, 36, 56, 56:1, 60, 61, 61:1, 62, 63, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79 and the like.
  • C.I means a color index (C.I.; published by The Society of Dyers and Colorists).
  • the blue dye is C.I. I. acid blue 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 29, 34, 35, 37, 40, 41, 41:1, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 62, 62:1, 63, 64, 65, 68, 69, 70, 73, 75, 78, 79, 80, 81, 83, 8485, 86, 88, 89, 90, 90:1, 91, 92, 93, 95, 96, 99, 100, 103, 104, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 120, 123, 124, 127, 127: 1, 128, 129, 135, 137, 138, 143, 145, 147, 150, 155, 159, 169, 174, 175, 176,
  • C.I. I. Direct Blue 1, 2, 3, 4, 6, 7, 8, 8:1, 9, 10, 12, 14, 15, 16, 19, 20, 21, 21:1, 22, 23, 25, 27, 29, 31, 35, 36, 37, 40, 42, 45, 48, 49, 50, 53, 54, 55, 58, 60, 61, 64, 65, 67, 79, 96, 97, 98: 1, 101, 106, 107, 108, 109, 111, 116, 122, 123, 124, 128, 129130, 130:1, 132, 136, 138, 140, 145, 146, 149, 152, 153, 154, 156, 158, 158: 1, 164, 165, 166, 167, 168, 169, 170, 174, 177, 181, 184, 185, 188, 190, 192, 193, 206, 207, 209, 213, 215, 225, 226, 229, 230, 231, 242, 243, 244, 253, 254, 260
  • Yellow pigments include, for example, C.I. I. Pigment Yellow 1, 1:1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 14, 16, 17, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 41, 42, 43, 48, 53, 55, 61, 62, 62: 1, 63, 65, 73, 74, 75, 81, 83, 87, 93, 94, 95,97,100,101,104,105,108,109,110,111,116,117,119,120,126,127,127:1,128,129,133,134,136,138,139, 142, 147, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 175, 176, 180, 181, 182, 183, 184, 185, 188, 189,
  • a yellow dye is, for example, C.I. I. Acid yellow 2,3,4,5,6,7,8,9,9:1,10,11,11:1,12,13,14,15,16,17,17:1,18,20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 38, 39, 40, 40:1, 41, 42, 42:1, 43, 44, 46, 48, 51, 53, 55, 56, 60, 63, 65, 66, 67, 68, 69, 72, 76, 82, 83, 84, 86, 87, 90, 94, 105, 115, 117, 122, 127, 131, 132, 136, 141, 142, 143, 144, 145, 146, 149, 153, 159, 166, 168, 169, 172, 174, 175, 178, 180, 183, 187, 188, 189, 190, 191, 192, 199 and the like.
  • C.I. Direct Yellow 1, 2, 4, 5, 12, 13, 15, 20, 24, 25, 26, 32, 33, 34, 35, 41, 42, 44, 44:1, 45, 46, 48, 49, 50, 51, 61, 66, 67, 69, 70, 71, 72, 73, 74, 81, 84, 86, 90, 91, 92, 95, 107, 110, 117, 118, 119, 120, 121, 126, 127, 129, 132, 133, 134 and the like.
  • Purple pigments include, for example, C.I. I. Pigment Violet 1, 1:1, 2, 2:2, 3, 3:1, 3:3, 5, 5:1, 14, 15, 16, 19, 23, 25, 27, 29, 31, 32, 37, 39, 42, 44, 47, 49, 50 and the like.
  • a purple dye is, for example, C.I. I. acid violet 1, 2, 3, 4, 5, 5:1, 6, 7, 7:1, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 30, 31, 33, 34, 36, 38, 39, 41, 42, 43, 47, 49, 51, 63, 67, 72, 76, 96, 97, 102, 103, 109, etc. is mentioned.
  • C.I. I. Direct Violet 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 51, 52, 54, 57, 58, 61, 62, 63, 64, 71, 72, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 93, 97 and the like.
  • Red pigments include, for example, C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 37, 38, 41, 47, 48, 48:1, 48:2, 48:3, 48:4, 49, 49:1, 49:2, 50:1, 52:1, 52:2, 53, 53:1, 53:2, 53: 3, 57, 57:1, 57:2, 58:4, 60, 63, 63:1, 63:2, 64, 64:1, 68, 69, 81, 81:1, 81:2, 81: 3, 81:4, 83, 88, 90:1, 101, 101:1, 104, 108, 108:1, 109, 112, 113, 114, 122, 123, 144, 146, 147, 149, 151, 166, 168, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 181, 184, 185, 187, 188, 190
  • An orange pigment that acts similarly to a red pigment is, for example, C.I. I. and orange pigments such as Pigment Orange 36, 38, 43, 51, 55, 59, 61, and the like.
  • the red dye is, for example, C.I. I. acid red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 25:1, 26, 26:1, 26:2, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47, 50, 52, 53, 54, 55, 56, 57, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 73, 74, 76, 76: 1, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 97, 99, 102, 104, 106, 107, 108, 110, 111, 113, 114, 115, 116, 120, 123, 125, 127, 128, 131, 132, 133, 134, 135, 137, 138, 141, 142, 143, 144, 148
  • Dyes in the coloring material (D) have good spectral characteristics and excellent color development properties, but have problems with light resistance and heat resistance. Therefore, in order to improve these problems, it is preferable to use the basic dye as a salt-forming compound that forms salt using an organic acid and perchloric acid.
  • Organic acids are preferably organic sulfonic acids and organic carboxylic acids. Among them, naphthalenesulfonic acid such as Tobias acid and perchloric acid are preferable in terms of resistance.
  • it is preferable to use it after forming a salt with a resin having an anionic group and it is also preferable to use it as a salt-forming compound that forms a salt together with a resin having a betaine structure and an organic acid.
  • anionic dyes including acid dyes and direct dyes can be used as a salt-forming compound using a compound having a cationic group or a resin having a cationic group as a counter ion to improve heat resistance, light resistance, and solvent resistance.
  • a resin having a cationic group in the synthesis of the salt-forming compound, and it is more preferable to use the resin having a cationic group in its side chain and an organic acid to form a salt.
  • the anionic dye can be preferably used in terms of durability by sulfonamidating it and using it as a sulfonic acid amide compound.
  • the coloring material (D) is a blue pigment and Pigment. Blue. 15:3 or Pigment. Blue. 15:6, Pigment. Yellow. 139, Pigment. Violet. 23 is preferably used. In molding applications, Pigment. Blue. 15:3 or Pigment. Blue. 15:6, Pigment. Yellow. 147, Solvent. Red. 52 is preferably used.
  • the content of the coloring material (D) is preferably 0.005 to 50% by mass, more preferably 0.005 to 20% by mass, even more preferably 0.5 to 50% by mass, based on the non-volatile content of the composition.
  • the content of the ultraviolet absorber can be designed according to the desired spectral cut rate.
  • a dye derivative can be added to the composition of the embodiment of the present invention as necessary.
  • a dye derivative is a compound having an acidic group, a basic group, a neutral group, or the like in an organic dye residue.
  • Dye derivatives include, for example, compounds having an acidic substituent such as a sulfo group, a carboxyl group, and a phosphoric acid group; or compounds having neutral substituents such as phthalimidoalkyl groups.
  • Organic dyes include, for example, diketopyrrolopyrrole-based pigments, anthraquinone-based pigments, quinacridone-based pigments, dioxazine-based pigments, perinone-based pigments, perylene-based pigments, thiazineindigo-based pigments, triazine-based pigments, benzimidazolone-based pigments, benzo Indole pigments such as isoindole, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, naphthol pigments, threne pigments, metal complex pigments, azo pigments such as azo, disazo and polyazo. be done.
  • the pigment derivatives can be used alone or in combination of two or more.
  • the composition of the embodiment of the present invention comprises one or more selected from the group consisting of cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, indigo compounds, immonium compounds, anthraquinone compounds, pyrrolopyrrole compounds, squarylium compounds, and croconium compounds.
  • a near-infrared absorbing agent hereinafter also referred to as "near-infrared absorbing agent (E)
  • the near-infrared absorbing agent (E) has a maximum absorption in the wavelength range of 600 to 1500 nm.
  • the spectrum can be appropriately adjusted, and the ultraviolet absorber of the embodiment of the present invention suppresses deterioration of the near-infrared absorber (E), thereby improving durability.
  • the near-infrared absorber (E) is a compound that has maximum absorption at a wavelength of 600-1500 nm.
  • the maximum absorption is preferably 800-1000 nm.
  • Cyanine compounds WO 2006/006573, WO 2010/073857, JP 2013-241598, JP 2016-113501, JP 2016-113504, etc.; JP-A-4-23868, JP-A-06-192584, JP-A-2000-63691, International Publication No. 2014/208514, etc.; JP, JP 2009-29955 A, International Publication No.
  • the squarylium compound is preferably a compound represented by the following general formula (4).
  • R 1 to R 4 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, —OR 10 , —COR 11 , —COOR 12 , —OCOR 13 , —NR 14 R 15 , —NHCOR 16 , —CONR 17 R 18 , —NHCONR 19 R 20 , —NHCOOR 21 , —SR 22 , —SO 2 R 23 , —SO 2 OR 24 , -NHSO 2 R 25 , -SO 2 NR 26 R 27 , -B(OR 28 ) 2 and -NHBR 29 R 30 ; each of R 10 to R 30 is independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group, an alkenyl group, an alkynyl group,
  • R 24 of —SO 2 OR 24 is a hydrogen atom (ie sulfo group)
  • the hydrogen atom may be dissociated (ie sulfonate group) or in a salt state.
  • R 1 and R 2 , R 3 and R 4 may combine with each other to form a ring.
  • the "substituent” includes, for example, a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, -OR 100 , -COR 101 , -COOR 102 , - OCOR 103 , —NR 104 R 105 , —NHCOR 106 , —CONR 107 R 108 , —NHCONR 109 R 110 , —NHCOOR 111 , —SR 112 , —SO 2 R 113 , —SO 2 OR 114 , —NHSO 2 R 115 , or —SO 2 NR 116 R 117 and the like.
  • R 100 to R 117 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group or an aralkyl group.
  • R 102 of —COOR 102 is hydrogen (ie, carboxyl group)
  • the hydrogen atom may be dissociated (ie, carbonate group), or may be in a salt state.
  • R 114 of —SO 2 OR 114 is a hydrogen atom (ie, sulfo group)
  • the hydrogen atom may be dissociated (ie, sulfonate group) or in a salt state.
  • Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
  • the number of carbon atoms in the alkyl group is preferably 1-20, more preferably 1-12, and particularly preferably 1-8.
  • Alkyl groups may be linear, branched or cyclic.
  • the alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms.
  • Alkenyl groups may be linear, branched or cyclic.
  • the alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms.
  • Alkynyl groups may be linear, branched or cyclic.
  • the aryl group preferably has 6 to 25 carbon atoms, more preferably 6 to 15 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
  • the alkyl portion of the aralkyl group is the same as the alkyl group described above.
  • the aryl portion of the aralkyl group is the same as the above aryl group.
  • the aralkyl group preferably has 7 to 40 carbon atoms, more preferably 7 to 30 carbon atoms, and particularly preferably 7 to 25 carbon atoms.
  • the heteroaryl group is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring with 2 to 8 condensed numbers, and particularly preferably a monocyclic ring or a condensed ring with 2 to 4 condensed numbers.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1-3.
  • a heteroatom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom, or a sulfur atom.
  • a heteroaryl group is preferably a 5- or 6-membered ring.
  • the number of carbon atoms constituting the ring of the heteroaryl group is preferably 3-30, more preferably 3-18, particularly preferably 3-12.
  • Alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, and aralkyl groups may have a substituent or may be unsubstituted. Examples of the substituent include the "substituent" described above.
  • the squarylium compound is more preferably a compound represented by the following general formula (5).
  • R 5 to R 8 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, —OR 50 , —COR 51 , —COOR 52 , —OCOR 53 , —NR 54 R 55 , —NHCOR 56 , —CONR 57 R 58 , —NHCONR 59 R 60 , —NHCOOR 61 , —SR 62 , —SO 2 R 63 , —SO 2 OR 64 , —NHSO 2 R 65 , —SO 2 NR 66 R 67 , —B(OR 68 ) 2 and —NHBR 69 R 70 .
  • R 50 to R 70 each independently represent a hydrogen atom, an optionally substituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group and aralkyl group.
  • R 52 of —COOR 52 is hydrogen (ie, carboxyl group)
  • the hydrogen atom may be dissociated (ie, carbonate group), or it may be in the form of a salt.
  • R 64 of —SO 2 OR 64 is a hydrogen atom (ie, sulfo group)
  • the hydrogen atom may be dissociated (ie, sulfonate group) or in a salt state.
  • R 5 and R 6 and R 7 and R 8 may combine with each other to form a ring.
  • the pyrrolopyrrole compound is preferably a compound represented by the following general formula (6).
  • R 1x and R 1y each independently represent an alkyl group, an aryl group or a heteroaryl group
  • R 2 and R 3 each independently represent a hydrogen atom or a substituent
  • R 2 and R 3 may combine with each other to form a ring
  • R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group
  • R 4 is It may be covalently or coordinately bonded to at least one selected from the group consisting of R 1x , R 1y and R 3
  • R 4x R 4y each independently represents a substituent.
  • General formula (6) is described in JP-A-2009-263614, JP-A-2011-68731, and International Publication No. 2015/166873.
  • R 1x and R 1y are each independently preferably an aryl group or a heteroaryl group, more preferably an aryl group.
  • the alkyl group, aryl group and heteroaryl group represented by R 1x and R 1y may have a substituent or may be unsubstituted.
  • substituents include alkoxy groups, hydroxy groups, halogen atoms, cyano groups, nitro groups, —OCOR 11 , —SOR 12 , —SO 2 R 13 and the like.
  • R 11 to R 13 each independently represent a hydrocarbon group or a heteroaryl group. Examples of substituents include those described in paragraphs 0020 to 0022 of JP-A-2009-263614.
  • substituents are alkoxy groups, hydroxy groups, halogen atoms, cyano groups, nitro groups, -OCOR 11 , -SOR 12 and -SO 2 R 13 .
  • the group represented by R 1x and R 1y is preferably an alkoxy group having a branched alkyl group or an aryl group having a group represented by —OCOR 11 as a substituent.
  • the branched alkyl group preferably has 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms.
  • At least one of R 2 and R 3 is preferably an electron-withdrawing group, more preferably R 2 represents an electron-withdrawing group and R 3 represents a heteroaryl group.
  • a heteroaryl group is preferably a 5- or 6-membered ring.
  • the heteroaryl group is preferably a single ring or a condensed ring, preferably a single ring or a condensed ring with 2 to 8 condensed numbers, more preferably a monocyclic ring or a condensed ring with 2 to 4 condensed numbers.
  • the number of heteroatoms constituting the heteroaryl group is preferably 1-3, more preferably 1-2.
  • Heteroatoms include, for example, nitrogen atoms, oxygen atoms, and sulfur atoms.
  • Heteroaryl groups preferably have one or more nitrogen atoms.
  • Two R 2 groups in general formula (6) may be the same or different.
  • Two R 3 groups in formula (6) may be the same or different.
  • R 4 is preferably a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, or a group represented by -BR 4x R 4y , and is preferably a hydrogen atom, an alkyl group, an aryl group, or -BR 4x R 4y A group represented by —BR 4x R 4y is particularly preferable.
  • the substituent represented by R 4x R 4y is preferably a halogen atom, an alkyl group, an alkoxy group, an aryl group, or a heteroaryl group, more preferably an alkyl group, an aryl group, or a heteroaryl group, and particularly preferably an aryl group. These groups may further have a substituent.
  • Two R 4 groups in general formula (6) may be the same or different.
  • pyrrolopyrrole compounds are shown below.
  • Me represents a methyl group
  • Ph represents a phenyl group.
  • pyrrolopyrrole compound for example, paragraphs 0016 to 0058 of JP-A-2009-263614, paragraphs 0037-0052 of JP-A-2011-68731, paragraphs 0014-0027 of JP-A-2014-130343, international Examples include compounds described in paragraphs 0010-0033 of Publication No. 2015/166873. In addition, embodiment of this invention is not limited to these.
  • naphthalocyanine compound is preferably a compound represented by the following general formula (7).
  • R 1 to R 24 each independently represent a hydrogen atom, a halogen atom, a nitro group, a nitrile group, a carboxyl group, a sulfone group, an optionally substituted alkyl group, or a substituent.
  • optionally substituted aryl group optionally substituted cycloalkyl group, optionally substituted alkoxyl group, optionally substituted aryloxy group, optionally substituted an optionally substituted alkylthio group, an optionally substituted arylthio group, an optionally substituted alkylamino group, an optionally substituted arylamino group, or an optionally substituted sulfamoyl group
  • Z is a polymer site containing a monomer unit represented by general formula (8) or a phosphorus compound site represented by general formula (9), and * is a bond with Al.
  • X represents -CONH-R 25 -, -COO-R 26 -, -CONH-R 27 -O-, or -COO-R 28 -O-
  • R 25 to R 28 represents an alkylene group or an arylene group optionally linked by -O-, -CO-, -COO-, -OCO-, -CONH- or -NHCO- between carbon atoms.
  • R31 represents a hydrogen atom or a methyl group.
  • R 29 and R 30 each independently represent a hydroxyl group, an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted It represents an alkoxyl group or an optionally substituted aryloxy group, and R 29 and R 30 may combine with each other to form a ring.
  • naphthalocyanine compounds are shown below. In addition, this invention is not limited to these.
  • the content of the near-infrared absorbent (E) is preferably 0.005 to 50% by mass, more preferably 0.01 to 40% by mass, based on the non-volatile content of the composition.
  • the content of the ultraviolet absorber can be designed according to the desired spectral cut rate.
  • compositions of embodiments of the present invention may contain a resin.
  • Resins include, for example, thermoplastic resins, photocurable resins, and thermosetting resins.
  • thermoplastic resins include polyolefin resins, polycarbonate resins, polyacrylic resins, polyester resins, polyamide resins, polyetherimide resins, cycloolefin resins, and the like.
  • Polyolefin resins include, for example, polyethylene, polypropylene, polybutene-1, poly-4-methylpentene, and copolymers thereof.
  • polyethylene include low-density polyethylene, high-density polyethylene, and the like.
  • Polypropylene includes, for example, crystalline or amorphous polypropylene. Copolymers using these include, for example, ethylene-propylene random, block or graft copolymers, ⁇ -olefin and ethylene or propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-methyl acrylate copolymers.
  • polymers ethylene-ethyl acrylate copolymers, ethylene-acrylic acid copolymers, and the like.
  • crystalline or amorphous polypropylene and ethylene-propylene random, block or graft copolymers are preferred, and propylene-ethylene block copolymers are more preferred.
  • polypropylene-based resins are preferable from the viewpoint of being inexpensive and having a small specific gravity, so that the weight of molded articles can be reduced.
  • the number average molecular weight of polyolefin resin is about 30,000 to 500,000.
  • the melt flow rate (MFR) of the polyolefin resin is preferably 1 to 100 (g/10 minutes). Note that MFR is a numerical value determined according to JISK-7210.
  • polycarbonate resin is an amorphous resin, and is synthesized by reacting an aromatic dihydroxy compound with a carbonate precursor such as phosgene or carbonic acid diester.
  • a carbonate precursor such as phosgene or carbonic acid diester.
  • interfacial methods are preferred.
  • a transesterification method in which the reaction is performed in a molten state is preferred.
  • Aromatic dihydroxy compounds are, for example, 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2 - bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, bis(4-hydroxyphenyl)phenylmethane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxy-3-t-butylphenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3,5- bis(hydroxyaryl)alkanes such as dibromophenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl)propane; 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1- bis(hydroxyaryl)
  • carbonate precursors examples include diaryl carbonates such as phosgene, diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate;
  • the aromatic dihydroxy compound and the carbonate precursor can each be used alone or in combination of two or more.
  • the viscosity average molecular weight of the polycarbonate resin is preferably 15,000 to 30,000, more preferably 16,000 to 27,000.
  • the viscosity-average molecular weight in this specification is a value converted from solution viscosity measured at a temperature of 25° C. using methylene chloride as a solvent.
  • polycarbonate resins include, for example, Iupilon H-4000 (manufactured by Mitsubishi Engineering-Plastics, viscosity average molecular weight 16,000), Iupilon S-3000 (Mitsubishi Engineering-Plastics, viscosity average molecular weight 23,000), and Iupilon E-2000. (manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 27,000).
  • polyacrylic resin is a compound obtained by polymerizing monomers such as methyl methacrylate and/or ethyl methacrylate and optionally other monomers by a known method.
  • examples of polyacrylic resins include ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene-acrylic acid copolymers, and the like.
  • monomers such as butadiene, ⁇ -methylstyrene, and maleic anhydride can be added for polymerization, and the heat resistance, fluidity, and impact resistance can be adjusted by adjusting the monomer weight and molecular weight.
  • Polyester resin is a resin having an ester bond in the main chain of the molecule, and polycondensate synthesized from dicarboxylic acid (including derivatives thereof) and diol (dihydric alcohol or dihydric phenol); including) and a polycondensate synthesized from a cyclic ether compound; and a ring-opening polymer of a cyclic ether compound.
  • the polyester resin includes a homopolymer obtained by polymerizing a dicarboxylic acid and a diol, a copolymer using a plurality of raw materials, a polymer blend obtained by mixing these materials, and the like.
  • the dicarboxylic acid derivatives include acid anhydrides, esters and the like. There are two kinds of dicarboxylic acids, aliphatic and aromatic dicarboxylic acids, and aromatic dicarboxylic acids are more preferable from the viewpoint of improving heat resistance.
  • Aromatic dicarboxylic acids are, for example, terephthalic acid, isophthalic acid, phthalic acid, chlorophthalic acid, nitrophthalic acid, p-carboxylphenylacetic acid, m-phenylenediglycolic acid, p-phenylenediglycolic acid, diphenyldiacetic acid, diphenyl-p , p'-dicarboxylic acid, diphenyl-4,4'-diacetic acid, diphenylmethane-p,p'-dicarboxylic acid, diphenylethane-m,m'-dicarboxylic acid, stilbenzylcarboxylic acid, diphenylbutane-p,p' -dicarboxylic acid, benzophenone-4,4'-dicarboxylic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, naphthalene-2,6-
  • aliphatic dicarboxylic acids examples include oxalic acid, succinic acid, adipic acid, corcic acid, mazelaic acid, sebacic acid, dodecanedicarboxylic acid, undecanedicarboxylic acid, maleic acid, and fumaric acid.
  • Dihydric alcohols are, for example, ethylene glycol, trimethylene glycol, butane-1,3-diol, butane-1,4-diol, 2,2-dimethylpropane-1,4-diol, cis-2-butene-1 ,4-diol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, cyclohexanedimethanol and the like.
  • ethylene glycol, butane-1,4-diol and cyclohexanedimethanol are preferred.
  • Dihydric phenols include, for example, hydroquinone, resorcinol, bisphenol A and the like.
  • Examples of cyclic ether compounds include ethylene oxide and propylene oxide.
  • Dicarboxylic acids and dihydric alcohols can be used either alone or in combination of two or more.
  • polyamide resin is a crystalline resin, and can be synthesized, for example, by subjecting a carboxylic acid component and a compound (Am) having two or more amino groups to a dehydration condensation reaction.
  • Carboxylic acid components include, for example, adipic acid, sebacic acid, isophthalic acid, and terephthalic acid.
  • a compound having 3 or more carboxyl groups can be used as the carboxylic acid component.
  • Known compounds (Am) having two or more amino groups can be used, for example, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, triethylene Aliphatic polyamines such as tetramine; Aliphatic polyamines including alicyclic polyamines such as isophoronediamine and dicyclohexylmethane-4,4'-diamine; Aromatic polyamines such as phenylenediamine and xylylenediamine; 1,3-diamino-2 -propanol, 1,4-diamino-2-butanol, 1-amino-3-(aminomethyl)-3,5,5
  • polyetherimide resin is an amorphous resin having a glass transition temperature of more than 180° C., and has good transparency, high strength, high heat resistance, high elastic modulus, and broad chemical resistance. As such, they are widely used in diverse applications such as automotive, telecommunications, aerospace, electrical/electronics, transportation and healthcare.
  • One process for making polyetherimide resins is by polymerization of alkali metal salts of dihydroxyaromatic compounds, such as bisphenol A disodium salt (BPA.Na 2 ), and bis(halophthalimide). The molecular weight of the resulting polyetherimide can be controlled in two ways.
  • the first method is to use a molar excess of bis(halophthalimide) to the alkali metal salt of the dihydroxyaromatic compound.
  • a second method is to prepare the bis(halophthalic anhydride) in the presence of a monofunctional compound such as phthalic anhydride which forms an endcapping agent.
  • Phthalic anhydride reacts with some of the organic diamines to form monohalo-bis(phthalimides).
  • Monohalo-bis(phthalimides) serve as end-capping agents in the polymerization step by reacting with phenoxide end groups in growing polymer chains.
  • Commercially available polyetherimide resins include, for example, ULTEM (manufactured by Saudi Basic Industries Corporation).
  • cycloolefin resin is an amorphous resin having an alicyclic structure in its main chain and/or side chains.
  • Types of alicyclic structures include, for example, norbornene polymers, monocyclic cyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • the norbornene polymer is preferred because of its excellent moldability and transparency.
  • Norbornene monomers include, for example, bicyclo[2.2.1]hept-2-ene (common name: norbornene), tricyclo[4.3.0.12,5]deca-3,7-diene (common name : dicyclopentadiene), 7,8-benzotricyclo[4.3.0.12,5]dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo[4.4.0.12,5. 17,10]dodeca-3-ene (common name: tetracyclododecene) and the like.
  • Examples of commercially available cycloolefin resins include Topas (manufactured by Polyplastics) and APEL (manufactured by Mitsui Chemicals, Inc.).
  • Polyvinyl acetal resin is preferably polyvinyl acetal obtained by acetalizing polyvinyl alcohol with aldehyde. Polyvinyl acetal resins are preferred over polyvinyl butyral resins. Polyvinyl butyral resin can be synthesized, for example, by reacting polyvinyl alcohol and butyraldehyde under acidic conditions.
  • thermoplastic resin can be used alone or in combination of two or more.
  • the content of the ultraviolet absorber is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 1 part by mass, with respect to 100 parts by mass of the thermoplastic resin.
  • a composition containing an ultraviolet absorber and a thermoplastic resin is preferably produced, for example, as a masterbatch in which the ultraviolet absorber is blended at a high concentration.
  • a masterbatch is prepared and then melted and kneaded with a diluent resin (thermoplastic resin) to prepare a molded article
  • the UV absorber is more uniform in the molded article than a molded article prepared without the masterbatch. It is easy to disperse in water, and aggregation of the ultraviolet absorber can be suppressed. This improves the transparency of the molded article.
  • the masterbatch can be produced, for example, by melt-kneading an ultraviolet absorber and a thermoplastic resin and using a pelletizer to produce pellets.
  • the ultraviolet absorber In order to prevent aggregation of the ultraviolet absorber, it is preferable to melt-knead the ultraviolet absorber and wax in advance to prepare a dispersion, and then melt-knead the dispersion together with the thermoplastic resin to prepare a masterbatch.
  • a blend mixer or a three-roll mill for preparation of the dispersion.
  • the blending amount of the ultraviolet absorber is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 3 parts by mass, with respect to 100 parts by mass of the thermoplastic resin.
  • composition of the embodiment of the present invention can be prepared into a molded body by preparing a liquid masterbatch and then melt-kneading it with a diluent resin (thermoplastic resin).
  • a liquid masterbatch is obtained by dissolving or dispersing an ultraviolet absorber in a liquid resin.
  • a liquid resin is a resin with a viscosity of 8,000 mPa ⁇ s or less at 25°C.
  • the viscosity is preferably 10 to 5,000 mPa ⁇ s, more preferably 100 to 3,000 mPa ⁇ s.
  • the ultraviolet absorber can be easily dispersed in the liquid masterbatch. Viscosity in this specification is a value measured at 25° C. using a Brookfield viscometer according to JIS K7117-1:1999.
  • the content of the liquid resin is preferably 50% by mass or more, more preferably 60 to 95% by mass, and even more preferably 70 to 90% by mass, based on 100 parts by mass of the liquid masterbatch.
  • the melt viscosity can be suppressed during melt kneading, making it easier to disperse the ultraviolet absorber.
  • Using this liquid masterbatch gives a molded article with high transparency.
  • the number average molecular weight (Mn) of the liquid resin is preferably 100-3000, more preferably 200-2000, even more preferably 500-1500, and particularly preferably 1000-1500.
  • Mn is 100 or more, it is easy to achieve both moldability and transparency of the molded product. Further, when Mn is 3000 or less, dispersibility and antistatic properties are improved.
  • Liquid resins include, for example, epoxy resins such as epoxidized soybean oil and epoxidized linseed oil, aliphatic polyester resins, polyalkylene glycol resins, polyether ester resins, and tributyl acetylcitrate. Even when high molding temperatures such as polyethylene terephthalate (PET) and polycarbonate are required, aliphatic polyesters, polyalkylene glycol resins, polyether ester resins, or acetyl citric acid resins are used because they have high heat resistance and excellent antistatic properties. Tributyl is preferred.
  • An aliphatic polyester resin is a resin obtained by reacting an aliphatic polyhydric carboxylic acid and a polyhydric alcohol.
  • An aliphatic polycarboxylic acid is an aliphatic carboxylic acid having two or more carboxyl groups.
  • Aliphatic polycarboxylic acids include, for example, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, tricarballylic acid, 1,3,6-hexanetricarboxylic acid, 1 , 3,5-hexanetricarboxylic acid and the like.
  • a polyhydric alcohol is an alcohol having two or more hydroxyl groups.
  • Polyhydric alcohols are, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1 ,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1 ,3-propanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, Aliphatic glycols such as 2-methyl-1,8-octaned
  • Aliphatic carboxylic acids and polyhydric alcohols can be used alone or in combination of two or more.
  • the freezing point of the aliphatic polyester resin is preferably -5°C or lower, more preferably -50°C to -10°C.
  • Adekasizer PN-170 manufactured by ADEKA Co., Ltd., viscosity at 25 ° C.: 800 mPa s, freezing point -15 ° C., adipate polyester
  • Adekasizer P-200 (ADEKA Co., Ltd. manufactured by ADEKA CORPORATION, viscosity at 25 ° C. 2,600 mPa s, freezing point -20 ° C., adipate polyester
  • ADEKA CIZER PN-250 manufactured by ADEKA Co., Ltd., viscosity at 25 ° C. 4,500 mPa s, freezing point -20 ° C., adipic acid polyester
  • a polyether resin is a resin having repeating units of alkyleneoxy groups.
  • the number of carbon atoms in the alkyleneoxy group is preferably 1-6.
  • the polyether resin preferably has a viscosity of 10,000 mPa ⁇ s or less at 25°C. This viscosity is suitable for use in liquid masterbatch applications.
  • the number of carbon atoms in the alkyleneoxy group is preferably 2-4. While compatibility improves by this, water absorption can be suppressed.
  • Polyether resins include, for example, polyethylene glycol each having 2 carbon atoms in the repeating unit, polytrimethylene glycol and polypropylene glycol both having 3 carbon atoms in the repeating unit, and carbon Examples include polytetramethylene glycol and polybutylene glycol having a number of four.
  • polyether ester resin is an ester compound of an aliphatic polycarboxylic acid resin and an alkylene glycol resin.
  • polyetherester resins include, for example, Adekasizer RS-107 (manufactured by ADEKA Co., Ltd., viscosity at 25°C: 20 mPa s, freezing point: -47°C, adipate ether ester resin), Adekasizer RS-700 ( manufactured by ADEKA Co., Ltd., viscosity at 25° C. of 30 mPa ⁇ s, freezing point of ⁇ 53° C., polyether ester resin) and the like.
  • Adekasizer RS-107 manufactured by ADEKA Co., Ltd., viscosity at 25°C: 20 mPa s, freezing point: -47°C, adipate ether ester resin
  • Adekasizer RS-700 manufactured by ADEKA Co., Ltd., viscosity at 25° C. of 30 mPa ⁇ s, freezing point of ⁇ 53° C., polyether ester resin
  • the freezing point of the polyetherester resin is preferably -5°C or lower, more preferably -50°C to -10°C.
  • a molded body can be produced by preparing a plasticizer dispersion and then melt-kneading it with a diluent resin (thermoplastic resin).
  • the content of the ultraviolet absorber is preferably 0.1 to 30% by mass in the plasticizer dispersion.
  • a plasticizer dispersion is prepared by dissolving or dispersing an ultraviolet absorber in a plasticizer.
  • plasticizers include phthalates, adipates, trimellitates, polyesters, phosphates, citrates, epoxidized vegetable oils, and sebacates.
  • plasticizers include phthalates, adipates, trimellitates, polyesters, phosphates, citrates, epoxidized vegetable oils, and sebacates.
  • triethylene glycol-di-2-ethylhexanoate and triethylene glycol-di-n-heptanoate are preferred, and triethylene glycol-di-2-ethylhexanoate is more preferred.
  • the plasticizer can be used alone or in combination of two or more.
  • the content of the plasticizer is preferably 60 to 99.9% by mass in the plasticizer dispersion.
  • the liquid masterbatch and plasticizer dispersion in the present invention may contain a resin type dispersant.
  • the UV absorber is more uniformly dispersed in the liquid masterbatch and the plasticizer dispersion, so that the molded article has even higher transparency.
  • the storage stability of the liquid masterbatch and the plasticizer dispersion is improved by containing the resin type dispersant.
  • the resin-type dispersant is a resin that has an adsorption site that has the property of adsorbing to the ultraviolet absorber and the colorant, and a relaxation site that is compatible with components other than the ultraviolet absorber and the colorant.
  • the resin-type dispersant include basic dispersants, acidic dispersants, neutral dispersants, amphoteric dispersants, and the like.
  • the main skeleton of the resin-type dispersant is, for example, a polyurethane skeleton, a polyolefin skeleton, a poly(meth)acrylic skeleton, a polyester skeleton, a polyamide skeleton, a polycarbonate skeleton, a polyether skeleton, a polysiloxane skeleton, a polyvinyl skeleton, a polyimide skeleton, a polyurea skeleton, or the like. and composite resins of these skeletons may also be used.
  • the molecular structure of the resin-type dispersant is not limited, and examples thereof include a random structure, a block structure, a chain structure, a comb-like structure, a star-like structure, and the like.
  • the resin-type dispersant has an acidic group or a basic group, some or all of them may be neutralized.
  • acidic groups include sulfo groups, phenol moieties, phosphoric acid groups and carboxyl groups. Among these, a carboxyl group is preferred.
  • Basic groups include primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium salt moieties. Among them, a tertiary amino group and a quaternary ammonium salt moiety are preferred.
  • a resin type dispersant having a basic functional group and a polymeric dispersant having a basic functional group are preferred because the viscosity of the dispersion is lowered with a small addition amount.
  • Polymers, nitrogen atom-containing acrylic block copolymers, urethane resin type dispersants and urethane polymer dispersions having functional groups containing tertiary amino groups, quaternary ammonium bases, nitrogen-containing heterocycles, etc. in side chains agents and the like are preferred.
  • the resin-type dispersant can be used alone or in combination of two or more.
  • the content of the resin-type dispersant is preferably about 5-200% by mass, more preferably about 10-100% by mass, relative to 100 parts by mass of the ultraviolet absorber.
  • resin-type dispersants include, for example, Disperbyk-101, 103, 107, 108, 110, 111, 116, 130, 140, 154, 161, 162, 163, 164, 165, 166 manufactured by BYK-Chemie Japan.
  • the resin-type dispersant When the resin-type dispersant is dissolved in an organic solvent, it is preferable to add the liquid resin, heat under reduced pressure, and distill off the solvent before use. In that case, since the liquid masterbatch containing this also does not contain an organic solvent, it is easy to use in the process.
  • a liquid masterbatch can be produced by mixing an ultraviolet absorber and a liquid resin.
  • a resin-type dispersant for the production.
  • a device such as a kneader, a two-roll mill, a three-roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, an annular bead mill, or an attritor can be used for mixing.
  • a plasticizer dispersion can be prepared by mixing an ultraviolet absorber and a plasticizer.
  • a resin-type dispersant for the production.
  • the apparatus described in the above "method for producing liquid masterbatch" can be used.
  • composition of the present specification can contain antioxidants, light stabilizers, dispersants, waxes, etc. as optional components in addition to thermoplastic resins and ultraviolet absorbers.
  • a composition containing an ultraviolet absorber and a thermoplastic resin can be used, for example, as a paint.
  • thermoplastic resin preferably has a glass transition temperature of 30°C or higher.
  • thermoplastic resins include nitrocellulose and polyester.
  • the paint may contain a resin-type dispersant having a carboxyl group as a resin-type dispersant.
  • the molecular structure of the resin-type dispersant having a carboxyl group may be comb-shaped or linear.
  • Comb-shaped resin-type dispersant examples include the following (S1) or (S2).
  • the resin-type dispersant (S1) can be produced by known methods such as those disclosed in International Publication No. 2008/007776, JP-A-2008-029901, and JP-A-2009-155406.
  • a resin-type dispersant that is a reaction product of a hydroxyl group of a polymer having a hydroxyl group and an acid anhydride group of a tetracarboxylic dianhydride; and a hydroxyl group of a compound having a hydroxyl group and a tetracarboxylic dianhydride.
  • resin-type dispersants which are polymers obtained by polymerizing ethylenically unsaturated monomers in the presence of reaction products with acid anhydride groups.
  • the resin type dispersant (S2) is manufactured by known methods such as WO 2008/007776, JP 2009-155406, JP 2010-185934, and JP 2011-157416. can be done. For example, in the presence of a reaction product of a hydroxyl group of a compound having a hydroxyl group and an acid anhydride group of a tetracarboxylic dianhydride, a hydroxyl group, a t-butyl group, an oxetane skeleton, or a thermal cross-linking group such as a blocked isocyanate is present.
  • a resin-type dispersant having a side chain obtained by polymerizing an ethylenically unsaturated monomer and other substances; a resin-type dispersant obtained by further reacting an ethylenically unsaturated monomer having an isocyanate group with the hydroxyl group of the side chain. etc.
  • Linear resin-type dispersant A linear resin-type dispersant can be produced using a known method. can be synthesized using a known method as shown in .
  • a dispersant having a carboxyl group can be produced by adding a tricarboxylic acid anhydride to the hydroxyl group of a vinyl polymer having one hydroxyl group at one end. can be done.
  • resin-type dispersants have an affinity site that has the property of adsorbing to the ultraviolet absorber and the colorant, and a site that is compatible with the ultraviolet absorber and the colorant carrier. Any material can be used as long as it has an action of adsorbing to the material and stabilizing the dispersion in the colorant carrier.
  • polymeric dispersants having basic functional groups include nitrogen atom-containing graft copolymers, nitrogen atom-containing acrylic resins having functional groups containing tertiary amino groups, quaternary ammonium bases, nitrogen-containing heterocycles, etc. in side chains. system block copolymers and urethane polymer dispersants.
  • the composition can be used, for example, for coating layers such as hard coat layers, top coat layers, and intermediate layers of various laminates.
  • the composition preferably contains an ultraviolet absorber, a photopolymerizable compound and a photopolymerization initiator.
  • the ultraviolet absorber in the composition contains a photocurable site.
  • the composition can also contain a resin.
  • the composition can contain known additives for photocurable compositions and, if necessary, an organic solvent.
  • Photopolymerizable compounds include monomers and oligomers. Photopolymerizable compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, ⁇ -carboxyethyl (meth) ) acrylate, polyethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, phenoxy Tetraethylene glycol (meth)acrylate, phenoxyhexaethyleneglycol (meth)acrylate, trimethylolpropane PO-modified tri(meth)acrylate, trimethylolpropane EO-modified tri(meth)acryl
  • Photopolymerization initiators include, for example, acetophenone acetophenone ring-containing compounds, benzoin ring-containing compounds, benzophenone ring-containing compounds, thioxanthone ring-containing compounds, triazine ring-containing compounds, oxime ester compounds, phosphine compounds, quinone compounds, and borate compounds. , carbazole ring-containing compounds, imidazole ring-containing compounds, titanocene compounds, and the like. Among these, oxime ester compounds are preferred in terms of high sensitivity.
  • the composition can be used, for example, for paints and adhesives.
  • the composition preferably contains an ultraviolet absorber and a thermosetting resin, and further preferably contains a curing agent.
  • the composition preferably contains an ultraviolet absorber, a thermosetting resin (adhesive resin), and a curing agent.
  • the adhesive resin is a resin with a glass transition temperature of -50 to -20°C.
  • Types of adhesive resins include, for example, acrylic resins, polyesters, and urethane resins.
  • the adhesive resin preferably has a functional group capable of reacting with the curing agent. Functional groups include, for example, carboxyl groups and hydroxyl groups.
  • Curing agents include, for example, isocyanate curing agents, epoxy curing agents, aziridine curing agents, and metal chelate curing agents.
  • a molded article according to an embodiment of the present invention can be produced by melting and kneading a composition containing an ultraviolet absorber, a resin, and the like, and molding the composition.
  • the composition is a masterbatch
  • the molded article is obtained by putting resin into a mold. Molded articles include articles and molded articles obtained without using a mold, such as plastic films.
  • the diluent resin it is preferable to use the already explained thermoplastic resin.
  • melt-kneading it is preferable to use, for example, a single-screw kneading extruder, a twin-screw kneading extruder, a tandem-type twin-screw kneading extruder, or the like.
  • the melt-kneading temperature varies depending on the type of thermoplastic resin, but is usually about 150 to 320°C.
  • molding methods include extrusion molding, injection molding, and blow molding.
  • extrusion molding include compression molding, pipe extrusion molding, laminate molding, T-die molding, inflation molding, and melt spinning.
  • the molding temperature is usually 160-320°C, depending on the softening point of the diluted resin.
  • the molded bodies of the embodiments of the present invention can be used for pharmaceutical packaging materials, food packaging materials, displays, glass interlayer films, optical lenses, solar cells, window films, and spectacle lenses, for example.
  • thermoplastic resins such as polyester resins and cycloolefin resins. These molded articles have improved flexibility and visibility, and can suppress deterioration of contents.
  • Molded articles that can be used for displays, glass interlayer films, optical lenses, and solar cell applications may be any molded articles that are made of thermoplastic resin, but are made of a resin that has a property of being transparent to a desired wavelength. A film is preferred.
  • resins constituting such a molded body include polyetherimide resins, polyethersulfone resins, polyethylene terephthalate resins, polyimide resins, polysulfone resins, polyarylate resins, polyamides, polycarbonate resins, alicyclic Structured olefin polymer-based resins (alicyclic olefin polymer-based resins), cellulose ester-based resins, and the like are included.
  • the coating film of the embodiment of the present invention can be produced by coating a substrate or the like with a composition containing an ultraviolet absorber and a resin, and a paint containing an organic solvent and the like, followed by drying.
  • a composition containing an ultraviolet absorber and a resin and a paint containing an organic solvent and the like, followed by drying.
  • examples thereof include a hard coat layer, a top coat layer, a coating layer such as an intermediate layer of various laminates, and an adhesive layer.
  • Coating layers such as hard coat layers, top coat layers, intermediate layers of various laminates, for example, display materials, sensor materials, optical control materials, various industrial coating materials, automobile parts, home appliances, housing, etc. In applications such as building materials and toiletry products, it can be applied to base materials to form a film that blocks ultraviolet rays and suppress deterioration of organic materials.
  • the adhesive layer can be coated on a release sheet and dried to form an adhesive layer, and a base material can be attached to the adhesive layer to produce an adhesive sheet.
  • the pressure-sensitive adhesive sheet of the present specification is used, for example, in displays (e.g., televisions, personal computers, smartphones, etc.), automotive parts, sensor members, home appliances, building materials for housing, glass interlayer applications, etc. It is preferable to use it by laminating to.
  • the adhesive sheet absorbs ultraviolet light contained in backlight and sunlight, and light in the short wavelength region of visible light, and suppresses adverse effects on the eyes and the human body. and deterioration of the display element of the display can be suppressed.
  • Sheet, film and tape are synonyms.
  • the laminated body using the molded article or the coating film of the embodiment of the present invention can suppress adverse effects on the eyes by absorbing light in the short wavelength region of ultraviolet rays and visible light contained in the backlight of the display.
  • deterioration of the display element of the display can be suppressed by absorbing light in the short wavelength region of ultraviolet light and visible light contained in sunlight.
  • a laminated glass using a molded article containing the above composition absorbs light in the short wavelength region of ultraviolet light and visible light contained in sunlight, thereby suppressing adverse effects on the eyes and the human body.
  • lens applications for example, it can be used in lenses that can be used in eyeglasses and optical sensors.
  • a lens using a molded body containing the above composition for example, for spectacle applications, absorbs light in the short wavelength region of ultraviolet light and visible light contained in sunlight, thereby suppressing adverse effects on the eyes and the human body.
  • optical sensor applications it is possible to increase the sensitivity of the sensor by cutting unnecessary wavelengths of light that can become noise.
  • ultraviolet rays and light in the visible light short wavelength region of about 400 to 420 nm deteriorate resins, so the use of the ultraviolet absorber of the embodiment of the present invention can reduce the deterioration of resins in general applications using resins. Therefore, it is possible to extend the life of the molded article and coating film, and as a result, reduce the amount of waste.
  • a numerical range indicated using “to” indicates a range that includes the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit of the numerical range in one step can be arbitrarily combined with the upper limit or lower limit of the numerical range in another step.
  • the present invention relates to the subject matter of Japanese Patent Application No. 2021-116306 filed on July 14, 2021, the entire disclosure of which is incorporated herein by reference.
  • ⁇ Method for producing ultraviolet absorbing dye (A-1)> Ultraviolet absorbing dye A-1) 160 parts of nitrobenzene, 8 parts of cyanuric chloride and 17.4 parts of aluminum chloride were placed in a 300 mL Erlenmeyer flask and stirred to suspend. Next, while cooling with ice water, 21.9 parts of 2-naphthol was added little by little. Thereafter, the mixture was stirred overnight while gradually returning to room temperature to obtain a reaction liquid (A'-1). On the other hand, a 500 mL beaker was charged with 38.1 parts of water, 10.0 parts of 35% hydrochloric acid and 45.0 parts of methanol, and the reaction solution (A'-1) was added dropwise little by little. After stirring for 30 minutes, the mixture was filtered to obtain a wet cake (a-1) containing the ultraviolet absorbing dye (A-1).
  • ICP emission spectrometry was used to measure the metal component (B) of the ultraviolet absorber of the embodiment of the present invention.
  • ⁇ Measurement conditions About 0.2 g of the ultraviolet absorber 1 was precisely weighed and subjected to decomposition treatment (2 mL of nitric acid for precision analysis was added as a decomposition reagent) using a microwave sample pretreatment device (MLS-1200MEGA manufactured by Milestone General). Next, ultrapure water is added to the resulting decomposed solution, and 25 mL of the filtered filtrate is placed in a constant volume in a volumetric flask. This solution was measured by ICP emission spectrometry (720-ES ICP optical emission spectrometer manufactured by Varian Co., Ltd.) to quantify metal ions.
  • ICP emission spectrometry 720-ES ICP optical emission spectrometer manufactured by Varian Co., Ltd.
  • the content of the metal component (B) shown in this example means the total content of ions of Na, Mg, Al, K, Ca, and Fe.
  • the ultraviolet absorbing dye 1 Na: 1432 ppm, Mg: 836 ppm, Al: 42750 ppm, K: 147 ppm, Ca: 2428 ppm and Fe: 548 ppm were obtained.
  • the total value of metal component (B) was 48141 ppm.
  • the metal atoms were measured by ICP emission spectrometry, using UV absorber 1 as an example. Other UV absorbers were also measured in the same manner as above. Table 1 shows the measurement results.
  • X-ray diffractometer RINT2100 manufactured by Rigaku Corporation Sampling width: 0.02° Scan speed: 2.0°/min Divergence slit: 1° Divergence longitudinal limiting slit: 10mm Scattering slit: 2° Light receiving slit: 0.3mm Tube: Cu Tube voltage: 40kV Tube current: 40mA
  • Fig. 1 shows an example of a diffraction pattern obtained by powder X-ray diffraction of an ultraviolet absorber.
  • the X-axis is the Bragg angle (2 ⁇ )
  • the Y-axis is the diffraction peak intensity (count).
  • UV absorber 3 After obtaining the wet cake (a-3), 45 g of water was sprinkled to wash the cake, followed by filtration to obtain the wet cake (a-4). The resulting wet cake (a-4) was dried overnight at 80° C. to obtain UV absorber 3 containing UV absorbing dye (A-1).
  • UV absorber 14 300 parts of UV absorber 13, 1500 parts of sodium chloride, and 400 parts of diethylene glycol were charged into a 3 L double-arm kneader to form a dough, which was then kneaded at a material temperature of 60° C. for 6 hours. The resulting dough (kneaded mass) was taken out, reslurried in water of about 10 times the weight of the dough, stirred at 25°C for 1.5 hours, and filtered. Further, it was reslurried again, filtered and washed with water to obtain a paste pigment, and dried in a heating oven at 80° C. for 48 hours to obtain an ultraviolet absorber 14 containing an ultraviolet absorbing dye (A-1).
  • A-1 ultraviolet absorber 14 containing an ultraviolet absorbing dye
  • UV absorber 17 ⁇ Method for Producing UV Absorber 17>
  • methanesulfonic acid 40.0 parts of UV absorber 1 was gradually added with stirring, and dissolved by stirring for 4 hours. Next, the solution is gradually added dropwise to 50,000 parts of water at 0° C. over 30 minutes with stirring, filtered, washed with water, dried at 80° C., and an ultraviolet absorber containing the ultraviolet absorbing dye (A-1). 17 was obtained.
  • UV absorber 18 ⁇ Method for Producing UV Absorber 18>
  • UV absorber 18 35.0 parts of UV absorber 3 and 350 parts of diethylene glycol were mixed, and the mixture was heated and stirred at 120° C. for 3 hours. Filtration, washing with warm water, and drying at 80° C. were carried out to obtain an ultraviolet absorber 18 containing the ultraviolet absorbing dye (A-1) represented by general formula (1).
  • UV absorber 19 containing the UV absorbing dye (A-3) was obtained in the same manner as the UV absorber 17, except that the UV absorber 9 was used instead of the UV absorber 1.
  • UV absorber 20 A UV absorber 20 containing a UV absorbing dye (A-3) was obtained in the same manner as the UV absorber 18, except that the UV absorber 11 was used instead of the UV absorber 3.
  • UV Absorber 21 (Ultraviolet absorption dye A-4)
  • the ultraviolet absorbing dye (A-1) was produced in the same manner, except that 24.3 parts of 1,3-dihydroxynaphthalene was added instead of 21.9 parts of 2-naphthol.
  • a wet cake (a-19) containing 4) was obtained.
  • the wet cake (a-19) was washed by sprinkling 45 g of methanol and separated by filtration to obtain a wet cake (a-20).
  • the wet cake (a-20) was reslurried in 100 g of methanol at room temperature for 30 minutes, and filtered.
  • a UV absorbing dye (A-3) was produced in the same manner except that 9.1 parts of methyl 6-hydroxy-2-naphthoate was added instead of 6.5 parts of 2-naphthol.
  • a wet cake (a-22) containing (A-6) was obtained.
  • the wet cake (a-22) was washed by sprinkling 45 g of methanol and separated by filtration to obtain a wet cake (a-23). Then, the wet cake (a-23) was returned to 100 g of methanol, reslurried at room temperature for 30 minutes, and separated by filtration.
  • Ultraviolet absorber 23 was produced in the same manner except that 8.4 parts of 6-hydroxy-2-naphthoic acid was added instead of 9.1 parts of methyl 6-hydroxy-2-naphthoate. An ultraviolet absorber 24 containing agent (A-7) was obtained.
  • UV absorber 25 ⁇ Method for Producing UV Absorber 25> (Ultraviolet absorption dye A-8) Manufactured in the same manner as UV absorber 23, except that 11.0 parts of sodium 2-naphthol-6-sulfonate hydrate was added instead of 9.1 parts of methyl 6-hydroxy-2-naphthoate. to obtain UV absorber 25 containing UV absorber (A-8).
  • UV Absorber 26 (Ultraviolet absorbing dye A-9)
  • the ultraviolet absorbing dye (A-2) instead of 8 parts of 2,4-dichloro-6-phenyl-1,3,5-triazine, 12.8 parts of 2-naphthol and 11.8 parts of aluminum chloride, Manufactured in the same manner except that 8 parts of 2-(4-biphenylyl)-4,6-dichloro-1,3,5-triazine, 9.5 parts of 2-naphthol and 8.8 parts of aluminum chloride were added, A wet cake (a-25) containing the ultraviolet absorbing dye (A-9) was obtained.
  • the wet cake (a-25) was washed by sprinkling 45 g of methanol and separated by filtration to obtain a wet cake (a-26). Then, the wet cake (a-26) was returned to 100 g of methanol, reslurried at room temperature for 30 minutes, and separated by filtration. Furthermore, 45 g of water was sprinkled to wash the cake, and the cake was separated by filtration to obtain a wet cake (a-27). The obtained wet cake (a-27) was dried at 80° C. overnight to obtain an ultraviolet absorber 26 containing an ultraviolet absorbing dye (A-9).
  • UV Absorber 27 ⁇ Method for Producing UV Absorber 27> (Ultraviolet absorption dye A-10) 8 parts of UV absorber 1 and 80 parts of N-methyl-2-pyrrolidone were placed in a 300 mL Erlenmeyer flask and dissolved by stirring. Next, 5.4 parts of tripotassium phosphate was charged and stirred to suspend. Then, 5.8 parts of 1-iodobutane was charged, heated to 110° C. with stirring, and stirred for 3 hours to obtain a reaction liquid. On the other hand, 400 parts of water was charged into a 1 L beaker, and the reaction liquid was added dropwise little by little. After stirring overnight, the mixture was filtered to obtain a wet cake (a-28).
  • UV absorber 1 8 parts of UV absorber 1 and 80 parts of N-methyl-2-pyrrolidone were placed in a 300 mL Erlenmeyer flask and dissolved by stirring. Next, 5.4 parts of tripotassium
  • the wet cake (a-28) was reslurried in 400 g of water, stirred for 3 hours, and filtered to obtain a wet cake (a-29).
  • the resulting wet cake (a-29) was dried overnight at 80° C., and the resulting dried product was pulverized with 80 mesh to obtain UV absorber 27 containing UV absorbing dye A-10.
  • the obtained wet cake (a-30) was filtered off, reconstituted with 100 parts of methyl ethyl ketone, and stirred at 40° C. for 30 minutes. Then, 100 parts of methanol was added, and the mixture was stirred for 30 minutes while cooling with ice, and filtered. The resulting wet cake (a-31) was returned to 100 parts of methanol, stirred for 30 minutes, and filtered. The resulting wet cake (a-32) was dried overnight at 80° C. to obtain UV absorber 28 containing UV absorbing dye A-11.
  • the obtained wet cake (a-36) was filtered, and the obtained wet cake (a-36) was returned to 100 parts of methanol, stirred for 30 minutes, and filtered. Then, the obtained wet cake (a-37) was returned to 100 parts of water, stirred for 30 minutes, and filtered.
  • the obtained wet cake (a-38) was dried under reduced pressure at 60° C. to obtain UV absorber 30 containing UV absorbing dye A-13.
  • Comparative material 1 ⁇ Manufacturing method of comparative material 1>
  • the wet cake (a-1) was dried overnight at 80° C. to obtain Comparative Material 1 containing the UV-absorbing dye (A-1) represented by general formula (1).
  • Comparative material 3 ⁇ Manufacturing method of comparative material 3>
  • the wet cake (a-6) was dried overnight at 80° C. to obtain Comparative Material 3 containing the UV-absorbing dye (A-2) represented by general formula (1).
  • Comparative material 4 Water was added to the reaction solution (A'-2) to carry out extraction/liquid separation operations, and 5% aqueous sodium bicarbonate solution and saturated brine were added to the obtained organic layer to separate the layers. The obtained organic layer was concentrated under reduced pressure to obtain Comparative Material 4.
  • Comparative material 5 ⁇ Manufacturing method of comparative material 5>
  • the wet cake (a-11) was dried overnight at 80° C. to obtain Comparative Material 5 containing UV absorbing dye (A-3).
  • Comparative material 6 Water was added to the reaction solution (A'-3) to carry out an extraction/liquid separation operation, and 5% aqueous sodium bicarbonate solution and saturated brine were added to the resulting organic layer to separate the layers. The obtained organic layer was concentrated under reduced pressure to obtain Comparative Material 6.
  • Comparative material 7 35.0 parts of Comparative Material 1 and 350 parts of diethylene glycol were mixed, and the mixture was heated and stirred at 120° C. for 3 hours. Filtration, washing with warm water, and drying at 80° C. gave Comparative Material 7 containing the UV-absorbing dye (A-1) represented by the general formula (1).
  • Comparative material 8 To 1000 parts of methanesulfonic acid, 40.0 parts of Comparative Material 2 was gradually added with stirring, and dissolved by stirring for 4 hours. Then, the solution was gradually added dropwise to 50,000 parts of water at 0° C. over 30 minutes with stirring, filtered, washed with water, dried at 80° C., and comparative material 8 containing ultraviolet absorbing dye (A-1). got
  • Comparative material 9 A comparative material 9 containing an ultraviolet absorbing dye (A-3) was obtained in the same manner as the comparative material 7 except that the comparative material 5 was used instead of the comparative material 1.
  • Comparative material 10 A comparative material 10 containing an ultraviolet absorbing dye (A-3) was obtained in the same manner as in the production of comparative material 8, except that comparative material 6 was used instead of comparative material 2.
  • Table 1 shows the metal amounts and X-ray diffraction peak ratios of the obtained UV absorbers 1 to 30 and comparative materials 1 to 10.
  • UV-visible absorption spectrum was measured for UV absorbers 1-30 and comparative materials 1-10. Table 2 shows the results. Moreover, the solution preparation method for absorbance measurement and the measurement conditions are as follows.
  • Example 1-1 1 part of UV absorber 1 and 1000 parts of tetrahydrofuran were mixed and dissolved completely. Subsequently, 2 parts of the previous solution and 98 parts of tetrahydrofuran were uniformly mixed to prepare a solution having a concentration of 20 ppm.
  • the concentrations of ultraviolet absorbers 2 to 30 and comparative materials 1 to 10 were also adjusted as shown in Table 2.
  • Evaluation criteria for the ultraviolet to visible absorption spectrum are as follows. AA, A, and B are practically no problem levels. [Evaluation criteria] AA: The absorbance at a wavelength of 400 nm is 0.8 or more A: The absorbance at a wavelength of 400 nm is 0.4 or more and less than 0.8 B: The absorbance at a wavelength of 400 nm is 0.2 or more and less than 0.4 C: The absorbance at a wavelength of 400 nm is less than 0.2
  • C-1 TINUVIN 326 (manufactured by BASF Japan, benzotriazole)
  • C-2 TINUVIN 400 (manufactured by BASF Japan, triazine system)
  • C-3 Adekastab 1413 (manufactured by ADEKA Co., Ltd., benzophenone type)
  • D The coloring materials (D) used in the examples are shown below.
  • D-1 C.I. I. Pigment Blue PB15:6
  • D-2 C.I. I. Solvent Red SR52
  • D-3 C.I. I. Pigment Yellow PY147
  • the near-infrared absorbent (E) used in the examples is shown below.
  • thermoplastic resins used in the examples are shown below.
  • G-1) Polyester MA-2101M polyyester, manufactured by Unitika Ltd., crystalline resin, melting point 264°C, MFR 45g/10min (280°C/2.16kg)
  • G-2) Iupilon S-3000 polycarbonate resin, manufactured by Mitsubishi Engineering-Plastics, amorphous resin, glass transition temperature 145°C, M
  • Liquid resins used in the examples are shown below.
  • H-1 Uniol D-1200 (manufactured by NOF Corporation, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 1200, viscosity 200 mPa s)
  • H-2 PEG-400 (manufactured by Sanyo Chemical Industries, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 400, viscosity 90 mPa s)
  • H-3 Uniol D-400 (manufactured by NOF Corporation, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 400, viscosity 100 mPa s)
  • H-4 Adekasizer RS-107 (manufactured by ADEKA Co., Ltd., ether ester resin, adipate ether ester resin, number average molecular weight 430, viscosity 20 mPa s
  • the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more in terms of the non-volatile content.
  • 20 parts of PGMAc, 21.2 parts of an ethylenically unsaturated monomer (b-5) as a second block monomer, and 27 parts of an ethylenically unsaturated monomer (b-9) aqueous solution (non-volatile 38%) was added, and the mixture was stirred while maintaining the temperature at 110°C under nitrogen atmosphere to continue the reaction.
  • the polymerization solution was sampled and the non-volatile content was measured to confirm that the polymerization conversion rate of the second block was 98% or more in terms of the non-volatile content, and the reaction solution was cooled to room temperature to stop the polymerization. bottom.
  • PGMAc was added to the previously synthesized block copolymer solution so that the non-volatile content was 40% by mass.
  • a resin-type dispersant solution having an amine value per nonvolatile content of 50 mgKOH/g, a quaternary ammonium salt value of 20 mgKOH/g, a weight average molecular weight (Mw) of 9,800, and a nonvolatile content of 40% by mass was obtained. rice field.
  • liquid resin (H-4) as the non-volatile content of this resin-type dispersant solution is added, heated to 100° C. and reduced in pressure to distill off PGMAc and water, thereby obtaining this resin-type dispersant solution.
  • Example 2-1 ⁇ Production of masterbatch> 2 parts of the UV absorbing dye 1 and 98 parts of the polyolefin resin (F-1) were fed from the same supply port into a twin-screw extruder with a screw diameter of 30 mm (manufactured by Japan Steel Works, Ltd.) and melt-mixed at 240 ° C. After kneading, the mixture was cut into pellets using a pelletizer to prepare a masterbatch (K-1).
  • Example 2-2 to 2-30 Comparative Examples 2-1 to 2-10) Films (X-2) to (X-30) and (XX-1) to (XX-10) having a thickness of 250 ⁇ m were formed using the materials shown in Table 3 in the same manner as in Example 2-1. .
  • AA Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
  • Example 2-31 ⁇ Production of masterbatch> 2 parts of the ultraviolet absorbing dye 1 and 98 parts of the polyester (G-1) are fed from the same supply port into a twin-screw extruder with a screw diameter of 30 mm (manufactured by Japan Steel Works, Ltd.) and melt-mixed at 240 ° C. After kneading, the material was cut into pellets using a pelletizer to produce a masterbatch (K-31).
  • Examples 2-32 to 2-60, Comparative Examples 2-11 to 2-20 Films (X-32) to (X-60) and (XX-11) to (XX-20) having a thickness of 250 ⁇ m were prepared using the materials listed in Table 4-1 in the same manner as in Example 2-21. Molded.
  • Example 2-61 ⁇ Production of liquid masterbatch> A liquid masterbatch (K-61) was produced by kneading 10 parts of the ultraviolet absorber 1 and 90 parts of the liquid resin (H-1) with a roll.
  • ⁇ Film molding> 0.5 parts of the obtained liquid masterbatch (K-61) is mixed with 99.5 parts of the thermoplastic resin (G-1) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) is used. was melt-mixed at a temperature of 300° C. to form a film (X-61) having a thickness of 250 ⁇ m.
  • Examples 2-62 to 2-90 In the same manner as in Example 2-61, films (X-62) to (X-90) with a thickness of 250 ⁇ m were formed using the materials listed in Table 4-2.
  • Example 2-91 ⁇ Production of liquid masterbatch> 10 parts of the ultraviolet absorbing dye 1, 20 parts of the resin type dispersant (J-1), and 70 parts of the liquid resin (H-1) are dispersed in a bead mill to obtain a liquid masterbatch (K-91). manufactured.
  • ⁇ Film molding> 0.5 parts of the obtained liquid masterbatch (K-91) is mixed with 99.5 parts of the thermoplastic resin (G-1) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) is used. was melt-mixed at a temperature of 300° C. to form a film (X-91) having a thickness of 250 ⁇ m.
  • Example 292 to 2-120 Films (X-92) to (X-120) with a thickness of 250 ⁇ m were formed using the materials shown in Table 4-2 in the same manner as in Example 2-91.
  • plasticizer dispersion (K-121) was prepared by bead-dispersing 10 parts of UV absorber 1 and 90 parts of plasticizer (I-1).
  • Example 2122 to 2-150 Films (X-122) to (X-150) with a thickness of 250 ⁇ m were formed using the materials shown in Table 4-3 in the same manner as in Example 2-121.
  • ⁇ Film molding> 0.5 parts of the obtained plasticizer dispersion (K-151) is mixed with 99.5 parts of the thermoplastic resin (G-1) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) were melt-mixed at a temperature of 280° C. to form a film (X-151) having a thickness of 250 ⁇ m.
  • Example 2152 to 2-180 Films (X-152) to (X-180) with a thickness of 250 ⁇ m were formed using the materials shown in Table 4-3 in the same manner as in Example 2-151.
  • AA Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
  • AAA, AA, A, and B are practically acceptable levels.
  • Evaluation criteria AAA: less than 0.2: very good AA: 0.2 or more and less than 0.5: very good A: 0.5 or more and less than 2: good B: 2 or more and less than 5: good C: 5 or more: not practical
  • the molded articles of the embodiments of the present invention have high UV absorption per unit weight and high light resistance in the visible light short wavelength region of 400 to 420 nm.
  • the transparency of the film is high and the haze is low because the addition of a small amount reaches the practical range.
  • Example 3-1 ⁇ Production of masterbatch> 2 parts of the ultraviolet absorbing dye 1 and 98 parts of the thermoplastic resin (G-1) are put into a twin-screw extruder with a screw diameter of 30 mm (manufactured by Japan Steel Works, Ltd.) from the same supply port, and melted at 300 ° C. After kneading, the mixture was cut into pellets using a pelletizer to produce a masterbatch (K-31).
  • Examples 3-2 to 3-150, Comparative Examples 3-1 to 3-10) In the same manner as in Example 3-1, films (Y-2) to (Y-150), (YY-1) to (YY) having a thickness of 250 ⁇ m were prepared using the materials listed in Tables 4-1 to 4-3. -10) was molded.
  • AA Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
  • the molded article using the ultraviolet absorber of the embodiment of the present invention has a small rate of change in ultraviolet absorption due to residence time during melt mixing during film molding. Therefore. It was confirmed that it possessed good heat resistance.
  • Example 4-1 ⁇ Production of UV region absorbing masterbatch> 1 part of UV absorber 3, 1 part of UV absorber C-1, and 98 parts of UV absorber polyester (G-1) are fed from the same supply port into a twin-screw extruder with a screw diameter of 30 mm (Nippon Steel Co., Ltd. (manufactured by the company), melted and kneaded at 240° C., and cut into pellets using a pelletizer to produce a masterbatch (K-121).
  • Examples 4-2 to 4-3) Films (Z-2) to (Z-3) having a thickness of 250 ⁇ m were formed using the materials shown in Table 6-1 in the same manner as in Example 4-1.
  • the transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. A and B are practically no problem levels.
  • evaluation criteria A: Light transmittance at a wavelength of 400 to 420 nm is less than 1% over the entire region: Very good B: Light transmittance at a wavelength of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good C: A wavelength of 400 to 420 nm Light transmittance of 5% or more over the entire area is not practical
  • Heat resistance was evaluated in the same manner as in Example 3. Evaluation criteria are as follows. A and B are practically no problem levels. [Evaluation criteria] A: Difference in light transmittance at wavelength 400 to 420 nm is less than 1%: Good B: Difference in light transmittance at wavelength 400 to 420 nm is 1% or more and less than 5%: Practical range C: Light transmittance at wavelength 400 to 420 nm difference is 5% or more: impractical
  • Example 4-4 ⁇ Production of ultraviolet/visible light absorption masterbatch> 1 part of UV absorber 3, 1 part of colorant D-1, 1 part of colorant D-2, 1 part of colorant D-3, 96 parts of UV absorber polyester (G-1), the same It is put into a twin-screw extruder with a screw diameter of 30 mm (manufactured by The Japan Steel Works, Ltd.) from the supply port, melted and kneaded at 240 ° C., and then cut into pellets using a pelletizer to masterbatch (K-124). manufactured.
  • Example 4-5 to 4-6 Films (Z-5) to (Z-6) with a thickness of 250 ⁇ m were formed using the materials shown in Table 6-1 in the same manner as in Example 4-4.
  • the transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. A and B are practically no problem levels.
  • evaluation criteria A: Light transmittance at wavelengths of 400 to 650 nm is less than 1% over the entire region: Good B: Light transmittance at wavelengths from 400 to 650 nm is 1% or more and less than 5%: Practical range C: Light at wavelengths from 400 to 650 nm Transmittance of 5% or more: Not practical
  • Example 4--7 ⁇ Production of UV/Near Infrared Region Masterbatch> 1 part of UV absorber 3, 1 part of near-infrared collecting dye E-1, and 98 parts of UV absorber polyester (G-1) are fed from the same supply port into a twin-screw extruder with a screw diameter of 30 mm (Co., Ltd. Japan Steel Works), melted and kneaded at 240° C., and cut into pellets using a pelletizer to produce a masterbatch (K-127).
  • Example 4-8 to 4-11 Films (Z-8) to (Z-11) having a thickness of 250 ⁇ m were formed using the materials shown in Table 6-1 in the same manner as in Example 4-7.
  • the transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied.
  • a and B are practically no problem levels.
  • Example 4-12 ⁇ Production of ultraviolet/near-infrared absorption masterbatch> 1 part of the UV absorber 3, 1 part of the UV absorber C-1, 1 part of the near-infrared collecting dye E-1, and 97 parts of the UV absorber polyester (G-1) are fed from the same supply port to the screw. It was put into a twin-screw extruder with a diameter of 30 mm (manufactured by The Japan Steel Works, Ltd.), melted and kneaded at 240° C., and cut into pellets using a pelletizer to produce a masterbatch (K-132).
  • Example 4-13 to 4-16 Films (Z-13) to (Z-16) having a thickness of 250 ⁇ m were formed using the materials shown in Table 6-1 in the same manner as in Example 4-12.
  • the transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied.
  • a and B are practically no problem levels.
  • Examples 5-2 to 5-20, Comparative Examples 5-1 to 5-10) As shown in Table 7, preparations were made in the same manner as in Example 5-1 to obtain paints of Examples 5-2 to 5-30 and Comparative Examples 5-1 to 5-10, respectively.
  • the obtained paint was applied to a glass substrate having a thickness of 1000 ⁇ m using a bar coater so that the dry film thickness was 10 ⁇ m, and dried at 100° C. for 2 minutes to form a coating film.
  • AA Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
  • the coating film using the UV absorber of the embodiment of the present invention has high UV absorption in the visible light short wavelength region of 400 to 420 nm and high light resistance. It was found that the transparency of the coated material is not impaired because it reaches the practical range with the addition of a small amount.
  • Photocurable composition (Example 6-1) In the following composition, each raw material was stirred and mixed to prepare a photocurable composition.
  • UV absorber 1 1.0 parts Photopolymerizable compound (polyfunctional acrylate "KAYARAD DPHA” manufactured by Nippon Kayaku Co., Ltd.) 18.0 parts Photopolymerization initiator (IGM ResinBV "Omnirad 184”) 1.0 parts Propylene glycol monomethyl ether 80.0 parts
  • Examples 6-2 to 6-30, Comparative Examples 6-1 to 6-10) As shown in Table 8, preparations were made in the same manner as in Example 6-1 to obtain photocurable compositions of Examples 6-2 to 6-30 and Comparative Examples 6-1 to 6-10, respectively.
  • the above photocurable composition was applied to a glass substrate having a thickness of 1 mm using a bar coater so that the dry film thickness was 6 ⁇ m.
  • the resulting coating layer was dried at 100° C. for 1 minute and then cured by irradiating ultraviolet rays of 400 mJ/cm 2 with a high-pressure mercury lamp to form a coating.
  • AA Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
  • the coating film using the UV absorber of the embodiment of the present invention has high UV absorption in the visible light short wavelength region of 400 to 420 nm and high light resistance. It was found that the transparency of the coated material is not impaired because it reaches the practical range with the addition of a small amount. It was also found to have good scratch resistance.
  • ⁇ Adhesive> (Production example of adhesive resin (L-1)) 96.0 parts of n-butyl acrylate and 4.0 parts of 2-hydroxyethyl acrylate under a nitrogen atmosphere using a reactor equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer and dropping tube. 50% of the total amount, 0.2 parts of 2,2'-azobisisobutylnitrile as a polymerization initiator, and 150 parts of ethyl acetate as a solvent are charged into a reactor, and the remaining 50% of the total amount An appropriate amount of ethyl acetate was charged into the dropping tank.
  • TDI-TMP tolylene diisocyanate trimethylolpropane adduct
  • this pressure-sensitive adhesive was applied onto a polyethylene terephthalate release film having a thickness of 38 ⁇ m so that the thickness after drying was 50 ⁇ m, and dried in a hot air oven at 100° C. for 2 minutes. Then, a 25 ⁇ m polyethylene terephthalate film was adhered to the pressure-sensitive adhesive layer side, and aged in this state at room temperature for 7 days to obtain a pressure-sensitive adhesive sheet.
  • Example 7-2 to 7-30 Comparative Examples 7-1 to 7-10
  • Table 9 pressure-sensitive adhesive sheets of Examples 7-2 to 7-30 and Comparative Examples 7-1 to 7-10 were obtained by adjusting in the same manner as in Example 7-1.
  • the obtained pressure-sensitive adhesive sheet was prepared in a size of 25 mm in width and 150 mm in length. In an atmosphere of 23° C. and a relative humidity of 50%, the peelable film was removed from the adhesive sheet, and the exposed adhesive layer was attached to a glass plate and crimped once with a 2 kg roll. After being left for 24 hours, the adhesive strength was measured in a 180° peel test in which a tensile tester was used to peel off at a speed of 300 mm/min in the 180° direction, and evaluation was performed based on the following evaluation criteria (JIS Z0237: 2000). ). A is a practically acceptable level. [Evaluation criteria] A: The adhesive strength is 10 N or more, which is good. C: Adhesive strength is less than 10 N, not practical.
  • the obtained pressure-sensitive adhesive sheet was prepared in a size of 25 mm in width and 150 mm in length.
  • the release sheet was peeled off from the adhesive sheet, and an adhesive layer was attached to a polished stainless steel plate having a width of 30 mm and a length of 150 mm.
  • a load of 1 kg was applied in an atmosphere of 40° C., and the holding force was measured by leaving it for 70,000 seconds.
  • the length by which the upper end of the adhesive sheet pasting surface shifted downward was measured. A is a practically acceptable level.
  • A The deviated length of the adhesive sheet is less than 0.5 mm. Good.
  • C The length of deviation of the adhesive sheet is 0.5 mm or more. Not practical.
  • AA Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
  • the coating film using the ultraviolet absorber of the embodiment of the present invention has high ultraviolet absorption in the visible light short wavelength region of 400 to 420 nm and high light resistance. It was found that the transparency of the pressure-sensitive adhesive sheet is not impaired because it can be practically used by adding a small amount. It was also found to have good adhesion and holding power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Polymerisation Methods In General (AREA)
  • Optical Filters (AREA)

Abstract

This UV absorber contains: at least one type of UV absorbing dye selected from a group consisting of compounds shown by general formulas (1)-(3); and a metal component containing at least one type of metal atom selected from the group consisting of Na, Mg, Al, K, Ca and Fe, wherein the content of the aforementioned metal components is 0.1-50000 ppm of the UV absorber.

Description

紫外線吸収剤及びその製造方法、組成物、成形体、塗膜Ultraviolet absorber and its manufacturing method, composition, molded article, coating film
 本発明は、紫外線吸収剤及びその製造方法、組成物、成形体、塗膜に関する。 The present invention relates to an ultraviolet absorber, its manufacturing method, composition, molded article, and coating film.
 従来、樹脂に紫外線吸収剤を配合して成形体及び塗膜に紫外線吸収性を付与している。太陽光のうち可視域より短波長域(100~400nm)の光の紫外線は、近年では波長400nm未満の紫外線のみならず、400~420nm程度の可視光短波長領域の光も有機物及び人体にダメージを与えることが指摘されている。そのため、特定の用途においては、可視光短波長域の光まで吸収できる紫外線吸収剤が求められている。 Conventionally, UV absorbers are added to resins to impart UV absorbency to moldings and coatings. In recent years, not only ultraviolet light with a wavelength of less than 400 nm, but also light in the visible short wavelength range of about 400 to 420 nm, damages organic matter and the human body. It is pointed out to give Therefore, for specific applications, there is a demand for an ultraviolet absorber capable of absorbing light in the short wavelength region of visible light.
 例えば、医薬品薬剤及び化粧品等の包装材料において、内容物の有機物が太陽光などに含まれる紫外線の作用によって劣化する。また、ビタミンなどの特定の成分は、400~420nm程度の可視光短波長領域の光で劣化するため、より長波領域の光を吸収できる紫外線吸収剤が求められている。 For example, in packaging materials such as pharmaceutical agents and cosmetics, the organic matter inside the contents deteriorates due to the action of ultraviolet rays contained in sunlight. In addition, certain components such as vitamins are degraded by light in the short wavelength region of visible light of about 400 to 420 nm.
 また、ディスプレイ表示装置において、偏光板保護フィルム等の光学フィルムに紫外線吸収剤を添加して、これら光学フィルムの変色を防止することが一般的である。また、反射防止フィルムに含まれる近赤外線吸収剤の紫外線による劣化を防ぐため、反射防止フィルムに紫外線吸収剤が添加されている。また、有機ELディスプレイの発光素子には、蛍光材料及び燐光材料等の各種有機物が使用されており、これら有機物の紫外線による劣化を防ぐため、ディスプレイの表面フィルム、基材、粘着剤、及び偏光板表面の塗膜などに紫外線吸収剤が添加されている。 Also, in a display device, it is common to add an ultraviolet absorber to an optical film such as a polarizing plate protective film to prevent discoloration of these optical films. In addition, an ultraviolet absorber is added to the antireflection film in order to prevent deterioration of the near-infrared absorber contained in the antireflection film due to ultraviolet rays. In addition, various organic substances such as fluorescent materials and phosphorescent materials are used in the light-emitting elements of organic EL displays. An ultraviolet absorber is added to the coating film on the surface.
 その他、光学レンズ、太陽電池、ウィンドウフィルムなどの様々な用途でも、材料中の有機物を保護する目的で、紫外線および400~420nm程度の可視光短波長領域の光を吸収する紫外線吸収剤が求められている。また、近年は前記用途の成形体及び塗膜において、高い紫外線遮蔽性、耐熱性および耐光性のさらなる向上が求められており、加熱又は長期経時での紫外線の暴露による着色及び劣化が生じにくく、優れた可視透明性及び紫外線遮蔽性を保持するものが望まれている。 In addition, for various applications such as optical lenses, solar cells, and window films, there is a demand for UV absorbers that absorb UV light and light in the visible light short wavelength region of about 400 to 420 nm for the purpose of protecting organic substances in materials. ing. In addition, in recent years, molded articles and coating films for the above applications have been required to further improve high ultraviolet shielding properties, heat resistance and light resistance, and are less likely to be colored and deteriorated due to heating or exposure to ultraviolet rays over a long period of time. Those that retain excellent visible transparency and UV shielding properties are desired.
 例えば、特許文献1及び特許文献2には、400~420nm程度の可視光短波長領域を吸収するベンゾトリアゾール系の紫外線吸収剤が開示されている。 For example, Patent Documents 1 and 2 disclose a benzotriazole-based UV absorber that absorbs visible light in the short wavelength region of about 400 to 420 nm.
特開2018-177696号公報JP 2018-177696 A 特表2016-514756号公報Japanese Patent Publication No. 2016-514756
 しかし、従来の紫外線吸収剤は、400~420nm程度の可視光短波長領域の光を吸収するものの、耐熱性及び耐光性が低く、加熱又は長期経時での紫外線の暴露によって紫外線吸収性が低下する問題があった。また、十分な紫外線遮蔽性を得るために紫外線吸収剤の添加量を増やすと塗膜及び成形体の透明性が低下する問題があった。 However, although conventional UV absorbers absorb light in the short wavelength region of visible light of about 400 to 420 nm, they have low heat resistance and light resistance, and UV absorption decreases due to heating or exposure to UV rays over a long period of time. I had a problem. In addition, there is a problem that the transparency of the coating film and the molded article is lowered when the amount of the ultraviolet absorber added is increased in order to obtain sufficient ultraviolet shielding properties.
 本発明の一実施形態は、400nm未満の紫外線のみならず、400~420nm程度の可視光短波長領域の光も吸収する優れた紫外線吸収性に加え、耐熱性、耐光性、及び透明性を有する紫外線吸収剤の提供を目的とする。 One embodiment of the present invention has heat resistance, light resistance, and transparency in addition to excellent ultraviolet absorption that absorbs not only ultraviolet rays of less than 400 nm but also light in the visible light short wavelength region of about 400 to 420 nm. The object is to provide an ultraviolet absorber.
 本発明の実施形態は以下の通りである。 The embodiment of the present invention is as follows.
<1> 下記一般式(1)~(3)で示す化合物からなる群から選ばれる1種以上の紫外線吸収色素、ならびにNa、Mg、Al、K、Ca、およびFeからなる群から選ばれる1種以上の金属原子を含む金属成分を含む紫外線吸収剤であって、前記金属成分の含有量が前記紫外線吸収剤に対して0.1~50000ppmである、紫外線吸収剤。 <1> One or more ultraviolet absorbing dyes selected from the group consisting of compounds represented by the following general formulas (1) to (3), and one selected from the group consisting of Na, Mg, Al, K, Ca, and Fe An ultraviolet absorber containing a metal component containing at least one kind of metal atom, wherein the content of said metal component is 0.1 to 50000 ppm relative to said ultraviolet absorber.
Figure JPOXMLDOC01-appb-C000006
 
 (一般式(1)~(3)中、R1b~R1g、R2a~R2g、及びR3a~R3gは、それぞれ独立に、水素原子、水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、スルホ基、R、Ar、及び下記一般式(4-1)~(4-3)で示す基からなる群より選択されるいずれかを表す。
 Rは、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルコシキ基、及び炭素数1~20のアルケニルオキシ基からなる群より選択されるいずれかを表し、水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基の置換基を有してもよく、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルコシキ基、及び炭素数1~20のアルケニルオキシ基の炭素原子と炭素原子の間が一つまたは複数の-O-、-CO-、-COO-、-OCO-、-CONH-、または-NHCO-で連結されていてもよい。
 Arは、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、及びビフェニル基からなる群より選択されるいずれかを表し、水酸基、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数6~20のアリール基、炭素数1~20のアルコシキ基、炭素数1~20のアルケニルオキシ基、炭素数6~20のアリールオキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基の置換基を有してもよい。
 一般式(2)~(3)中、R、R、Rは、それぞれ独立に、水酸基、R、及びArからなる群より選択されるいずれかを表す。
Figure JPOXMLDOC01-appb-C000007
 
 一般式(4-1)中、Xは、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、Rは、水素原子、水酸基、R、及びArからなる群より選択されるいずれかを表す。ただし、一般式(4-1)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。
Figure JPOXMLDOC01-appb-C000008
 
 一般式(4-2)中、X、Xは、それぞれ独立に、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、Rは、炭素数6~20のアリーレン基を表し、R10は、RまたはArを表す。ただし、一般式(4-2)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。
Figure JPOXMLDOC01-appb-C000009
 
 一般式(4-3)中、X、Xは、それぞれ独立に、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、R11は、直鎖または分岐鎖状の炭素数1~20のアルキレン基、または炭素数6~20のアリーレン基を表し、R12は、RまたはArを表し、nは1~20である。ただし、一般式(4-3)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。)
Figure JPOXMLDOC01-appb-C000006

(In general formulas (1) to (3), R 1b to R 1g , R 2a to R 2g , and R 3a to R 3g each independently represent a hydrogen atom, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, represents any one selected from the group consisting of an iodine atom, a nitrile group, a nitro group, a sulfo group, R 7 , Ar 1 , and groups represented by general formulas (4-1) to (4-3) below.
R 7 is any selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyloxy group having 1 to 20 carbon atoms. represents a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitrile group, a nitro group, a carboxyl group, or a sulfo group. 1 to 20 alkenyl groups, alkoxy groups having 1 to 20 carbon atoms, and alkenyloxy groups having 1 to 20 carbon atoms, and one or more -O-, -CO-, -COO between carbon atoms -, -OCO-, -CONH-, or -NHCO- may be linked.
Ar 1 represents any one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a biphenyl group, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, a carbon alkenyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkenyloxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, fluorine atom, chlorine It may have substituents of atoms, bromine atoms, iodine atoms, nitrile groups, nitro groups, carboxyl groups, or sulfo groups.
In general formulas (2) to (3), R 4 , R 5 and R 6 each independently represent any one selected from the group consisting of a hydroxyl group, R 7 and Ar 1 .
Figure JPOXMLDOC01-appb-C000007

In general formula (4-1), X 1 represents any selected from the group consisting of -CO-, -COO-, -OCO-, -CONH-, and -NHCO-, and R 8 is hydrogen represents any one selected from the group consisting of an atom, a hydroxyl group, R7 and Ar1 . However, * in general formula (4-1) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000008

In general formula (4-2), X 2 and X 3 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO- R 9 represents an arylene group having 6 to 20 carbon atoms, and R 10 represents R 7 or Ar 1 . However, * in general formula (4-2) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000009

In general formula (4-3), X 4 and X 5 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO- wherein R 11 represents a linear or branched alkylene group having 1 to 20 carbon atoms or an arylene group having 6 to 20 carbon atoms, R 12 represents R 7 or Ar 1 , and n is 1 to is 20. However, * in general formula (4-3) represents a bonding site with the naphthalene ring of general formulas (1) to (3). )
<2> 前記紫外線吸収色素は、下記式で示す化合物からなる群から選ばれる1種以上の化合物を含む、<1>に記載の紫外線吸収剤。
Figure JPOXMLDOC01-appb-C000010
 
<2> The ultraviolet absorber according to <1>, wherein the ultraviolet absorbing dye contains one or more compounds selected from the group consisting of compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000010
<3> 前記金属成分がAlを含む、<1>または<2>に記載の紫外線吸収剤。 <3> The ultraviolet absorber according to <1> or <2>, wherein the metal component contains Al.
<4> <1>~<3>のいずれか1つに記載の紫外線吸収剤、ならびに一般式(1)~(3)で示す化合物以外の化合物であるトリアジン環含有化合物、ベンゾトリアゾール環含有化合物、およびベンゾフェノン環含有化合物からなる群から選択される少なくとも1種以上の第2の紫外線吸収剤を含む、組成物。 <4> The UV absorber according to any one of <1> to <3>, and a triazine ring-containing compound and a benzotriazole ring-containing compound that are compounds other than the compounds represented by general formulas (1) to (3) , and at least one second UV absorber selected from the group consisting of benzophenone ring-containing compounds.
<5> <1>~<3>のいずれか1つに記載の紫外線吸収剤、および波長450~650nmの可視波長域の光を遮光する色材を含む、組成物。 <5> A composition comprising the ultraviolet absorber according to any one of <1> to <3> and a coloring material that blocks light in the visible wavelength range of 450 to 650 nm.
<6> 前記色材は、2種類以上の有彩色着色剤を含む、<5>に記載の組成物。 <6> The composition according to <5>, wherein the colorant contains two or more chromatic colorants.
<7> <1>~<3>のいずれか1つに記載の紫外線吸収剤、ならびにフタロシアニン化合物、ナフタロシアニン化合物、スクアリリウム化合物、シアニン化合物、およびジケトピロロピロールからなる群から選択される1種以上の近赤外線吸収剤を含み、前記近赤外線吸収剤は波長600~1500nmの波長領域に極大吸収を有する、組成物。 <7> The ultraviolet absorber according to any one of <1> to <3>, and one selected from the group consisting of phthalocyanine compounds, naphthalocyanine compounds, squarylium compounds, cyanine compounds, and diketopyrrolopyrroles A composition comprising the above near-infrared absorbent, wherein the near-infrared absorbent has a maximum absorption in a wavelength range of 600 to 1500 nm.
<8> <1>~<3>のいずれか1つに記載の紫外線吸収剤、および樹脂を含む、組成物。 <8> A composition comprising the UV absorber according to any one of <1> to <3> and a resin.
<9> 前記樹脂が熱可塑性樹脂を含む、<8>に記載の組成物。 <9> The composition according to <8>, wherein the resin contains a thermoplastic resin.
<10> <1>~<3>のいずれか1つに記載の紫外線吸収剤、光重合性化合物、及び光重合開始剤を含む、組成物。 <10> A composition comprising the ultraviolet absorber according to any one of <1> to <3>, a photopolymerizable compound, and a photopolymerization initiator.
<11> <4>~<10>のいずれか1つに記載の組成物から成形されてなる、成形体。 <11> A molded article molded from the composition according to any one of <4> to <10>.
<12> <4>~<10>のいずれか1つに記載の組成物から形成されてなる、塗膜。 <12> A coating film formed from the composition according to any one of <4> to <10>.
<13> <1>~<3>のいずれか1つに記載の紫外線吸収剤の製造方法であって、前記紫外線吸収色素の合成反応液に水を含む貧溶媒を加えて分液し、金属成分を取り除く工程;前記分液及び濾過後にアルコール又は水、もしくはその混合液を用いて前記紫外線吸収色素を洗浄する工程;アルコール又は水、もしくはその混合液に前記紫外線吸収色素をリスラリーして洗浄する工程;及び、酸溶液を用いて前記紫外線吸収色素をリスラリーして洗浄する工程からなる群から選択される1つ以上の工程を行うことにより、前記紫外線吸収色素に含まれる金属成分の含有量を調整する、紫外線吸収剤の製造方法。 <13> The method for producing an ultraviolet absorber according to any one of <1> to <3>, wherein a poor solvent containing water is added to the reaction solution for synthesizing the ultraviolet absorbing dye to separate the liquid, and the metal A step of removing the components; a step of washing the UV-absorbing dye with alcohol, water, or a mixture thereof after the liquid separation and filtration; washing the UV-absorbing dye by reslurrying the UV-absorbing dye in alcohol, water, or a mixture thereof. and one or more steps selected from the group consisting of the steps of reslurrying and washing the UV-absorbing dye with an acid solution, thereby reducing the content of the metal component contained in the UV-absorbing dye. A method for producing an ultraviolet absorber.
 上記の実施形態によれば、400nm未満の紫外線のみならず、400~420nm程度の可視光短波長領域の光も吸収する優れた紫外線吸収性に加え、耐熱性、耐光性、及び透明性を有する紫外線吸収剤、それを用いた組成物、成形体、および塗膜を提供できる。 According to the above embodiment, in addition to excellent ultraviolet absorption that absorbs not only ultraviolet rays of less than 400 nm but also light in the visible short wavelength region of about 400 to 420 nm, it has heat resistance, light resistance, and transparency. An ultraviolet absorber, a composition using the same, a molded article, and a coating film can be provided.
図1は、本発明の一実施形態の紫外線吸収剤の粉末X線回折による回折パターンの一例である。FIG. 1 is an example of a diffraction pattern by powder X-ray diffraction of an ultraviolet absorber of one embodiment of the present invention.
[紫外線吸収剤]
 本発明の一実施形態の紫外線吸収剤は、下記一般式(1)~(3)で示す化合物から選ばれる1種以上の紫外線吸収色素(以下、「紫外線吸収色素(A)」とも記す。)、ならびにNa、Mg、Al、K、Ca、およびFeからなる群から選ばれる1種以上の金属原子を含む金属成分(以下、「金属成分(B)」とも記す。)を含み、金属成分(B)の含有量が紫外線吸収剤に対して0.1~50000ppmである。
[Ultraviolet absorber]
The ultraviolet absorber of one embodiment of the present invention is one or more ultraviolet absorbing dyes selected from the compounds represented by the following general formulas (1) to (3) (hereinafter also referred to as "ultraviolet absorbing dye (A)"). , and a metal component containing one or more metal atoms selected from the group consisting of Na, Mg, Al, K, Ca, and Fe (hereinafter also referred to as “metal component (B)”), and a metal component ( The content of B) is 0.1 to 50000 ppm with respect to the ultraviolet absorber.
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 一般式(1)~(3)中、R1b~R1g、R2a~R2g、及びR3a~R3gは、それぞれ独立に、水素原子、水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、スルホ基、R、Ar、及び下記一般式(4-1)~(4-3)で示す基からなる群より選択されるいずれかを表す。
 Rは、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルコシキ基、及び炭素数1~20のアルケニルオキシ基からなる群より選択されるいずれかを表し、水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基の置換基を有してもよく、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルコシキ基、及び炭素数1~20のアルケニルオキシ基の炭素原子と炭素原子の間が一つまたは複数の-O-、-CO-、-COO-、-OCO-、-CONH-、または-NHCO-で連結されていてもよい。
 Arは、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、及びビフェニル基からなる群より選択されるいずれかを表し、水酸基、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数6~20のアリール基、炭素数1~20のアルコシキ基、炭素数1~20のアルケニルオキシ基、炭素数6~20のアリールオキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基の置換基を有してもよい。
In general formulas (1) to (3), R 1b to R 1g , R 2a to R 2g , and R 3a to R 3g each independently represent a hydrogen atom, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. It represents any one selected from the group consisting of atoms, nitrile groups, nitro groups, sulfo groups, R 7 , Ar 1 , and groups represented by the following general formulas (4-1) to (4-3).
R 7 is any selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyloxy group having 1 to 20 carbon atoms. represents a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitrile group, a nitro group, a carboxyl group, or a sulfo group. 1 to 20 alkenyl groups, alkoxy groups having 1 to 20 carbon atoms, and alkenyloxy groups having 1 to 20 carbon atoms, and one or more -O-, -CO-, -COO between carbon atoms -, -OCO-, -CONH-, or -NHCO- may be linked.
Ar 1 represents any one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a biphenyl group, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, a carbon alkenyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkenyloxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, fluorine atom, chlorine It may have substituents of atoms, bromine atoms, iodine atoms, nitrile groups, nitro groups, carboxyl groups, or sulfo groups.
 一般式(2)~(3)中、R、R、Rは、それぞれ独立に、水酸基、R、及びArからなる群より選択されるいずれかを表す。 In general formulas (2) to (3), R 4 , R 5 and R 6 each independently represent any one selected from the group consisting of a hydroxyl group, R 7 and Ar 1 .
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
 一般式(4-1)中、Xは、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、Rは、水素原子、水酸基、R、及びArからなる群より選択されるいずれかを表す。ただし、一般式(4-1)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。 In general formula (4-1), X 1 represents any selected from the group consisting of -CO-, -COO-, -OCO-, -CONH-, and -NHCO-, and R 8 is hydrogen represents any one selected from the group consisting of an atom, a hydroxyl group, R7 and Ar1 . However, * in general formula (4-1) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
 一般式(4-2)中、X、Xは、それぞれ独立に、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、Rは、炭素数6~20のアリーレン基を表し、R10は、RまたはArを表す。ただし、一般式(4-2)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。 In general formula (4-2), X 2 and X 3 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO- R 9 represents an arylene group having 6 to 20 carbon atoms, and R 10 represents R 7 or Ar 1 . However, * in general formula (4-2) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
 一般式(4-3)中、X、Xは、それぞれ独立に、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、R11は、直鎖または分岐鎖状の炭素数1~20のアルキレン基、または炭素数6~20のアリーレン基を表し、R12は、RまたはArを表し、nは1~20である。ただし、一般式(4-3)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。 In general formula (4-3), X 4 and X 5 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO- wherein R 11 represents a linear or branched alkylene group having 1 to 20 carbon atoms or an arylene group having 6 to 20 carbon atoms, R 12 represents R 7 or Ar 1 , and n is 1 to is 20. However, * in general formula (4-3) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
 本発明の実施形態の紫外線吸収剤は、トリアジン環に結合するナフタレン環をもつ紫外線吸収色素(A)の作用により、400nm未満の紫外線領域に加え、400~420nm程度の可視光短波長領域の光を吸収できる。また、紫外線吸収剤は、Na、Mg、Al、K、Ca、およびFeからなる群から選ばれる1種以上の金属原子を含む金属成分(B)を適当量含むことにより、従来よりも優れた耐光性、耐熱性、及び紫外線吸収性を確保できるという予想外の顕著な効果を有している。また、高い紫外線吸収性により、少量の紫外線吸収色素(A)でも波長吸収が可能であるため、紫外線吸収色素(A)の添加量を抑制でき、成形体及び塗膜の透明性低下の抑制、及び透明性を改善する効果を有している。 The ultraviolet absorber of the embodiment of the present invention is a light in the visible light short wavelength region of about 400 to 420 nm in addition to the ultraviolet region of less than 400 nm due to the action of the ultraviolet absorbing dye (A) having a naphthalene ring bonded to the triazine ring. can be absorbed. In addition, the ultraviolet absorber contains an appropriate amount of a metal component (B) containing one or more metal atoms selected from the group consisting of Na, Mg, Al, K, Ca, and Fe. It has an unexpectedly remarkable effect of ensuring light resistance, heat resistance, and ultraviolet absorption. In addition, due to the high ultraviolet absorption, even a small amount of the ultraviolet absorbing dye (A) can absorb wavelengths, so the amount of the ultraviolet absorbing dye (A) added can be suppressed, suppressing the deterioration of the transparency of the molded article and the coating film, and has the effect of improving transparency.
 このような効果が得られるメカニズムを以下のように推測する。すなわち、本発明の実施形態の紫外線吸収剤に含まれる紫外線吸収色素(A)は、分子構造に非共有電子対をもつトリアジン環部位を含むため、紫外線吸収色素(A)と金属原子との間で錯体を形成し、金属イオンを色素骨格内に取り込みやすい。その結果、紫外線吸収色素の結晶性が向上して、加熱及び光照射による劣化が生じにくくなり、耐熱性及び耐光性が向上したと推測する。一方、紫外線吸収色素が金属イオンを取り込みすぎると、紫外線吸収色素成分が低下することから、紫外線吸収性が低下すると考えられるが、紫外線吸収剤に対し、金属原子を含む金属成分(B)の合計量を0.1~50000ppm(より好ましくは、0.1~10000ppm、または、0.1~1000ppm)とすることにより、色素骨格内への金属イオンの取り込み量を適度にできるため、優れた紫外線吸収性を維持できる。 The mechanism by which such an effect is obtained is speculated as follows. That is, since the ultraviolet absorbing dye (A) contained in the ultraviolet absorber of the embodiment of the present invention contains a triazine ring moiety having a lone pair in its molecular structure, the ultraviolet absorbing dye (A) and the metal atom to form a complex, and metal ions are easily incorporated into the dye skeleton. As a result, it is assumed that the crystallinity of the ultraviolet-absorbing dye is improved, the deterioration due to heating and light irradiation is less likely to occur, and the heat resistance and light resistance are improved. On the other hand, if the ultraviolet absorbing dye incorporates too many metal ions, the amount of the ultraviolet absorbing dye component is reduced, and it is thought that the ultraviolet absorbability is reduced. By setting the amount to 0.1 to 50000 ppm (more preferably 0.1 to 10000 ppm or 0.1 to 1000 ppm), an appropriate amount of metal ions can be incorporated into the dye skeleton, so that excellent ultraviolet rays can be obtained. Absorbency can be maintained.
<紫外線吸収色素(A)>
 紫外線吸収色素(A)は、一般式(1)~(3)で示す化合物からなる群から1種以上選ばれ、それぞれ単独でも組み合わせてよい。一般式(1)~(3)で示す化合物は、400nm未満の紫外線領域に加え400~420nm程度の可視光短波長領域の光を吸収する。
<Ultraviolet absorption dye (A)>
The ultraviolet absorbing dye (A) is selected from one or more compounds represented by formulas (1) to (3), and may be used alone or in combination. The compounds represented by formulas (1) to (3) absorb light in the visible short wavelength region of about 400 to 420 nm in addition to the ultraviolet region of less than 400 nm.
 一般式(1)~(3)のなかでも一般式(1)の化合物が最も長波まで吸収することができ、より長波長の光まで吸収する観点では最も好ましく、例えば、下記式で示す化合物が挙げられる。 Among general formulas (1) to (3), the compound of general formula (1) can absorb the longest wavelengths, and is most preferable from the viewpoint of absorbing light of longer wavelengths. mentioned.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
 
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
 
 また、一般式(3)は、一般式(1)~(3)のなかでは最大吸収波長が最も短波であるが、無色に近いという観点では最も好ましく、例えば、下記式で示す化合物が挙げられる In addition, general formula (3) has the shortest maximum absorption wavelength among general formulas (1) to (3), but is most preferable from the viewpoint of being nearly colorless. Examples include compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
 また、一般式(2)は、より長波長の光まで吸収、かつ無色に近いという両者のバランスを取ることができる観点で好ましく、例えば、下記式で示す化合物が挙げられる。 In addition, general formula (2) is preferable from the viewpoint of being able to balance the absorption of light with longer wavelengths and the fact that it is nearly colorless, and examples thereof include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
 吸収したい波長領域によって、一般式(1)~(3)のいずれかを選択もしくは組み合わせることが好ましい。 It is preferable to select or combine any one of general formulas (1) to (3) depending on the wavelength region to be absorbed.
 紫外線吸収剤は、紫外線吸収色素(A)を含有し、さらに紫外線吸収剤100質量部に対し金属成分(B)を0.1~50000ppm含有する。金属成分(B)を適当量含むことにより、紫外線吸収色素(A)の添加による成形体及び塗膜の透明性低下を抑制し、透明性を改善できる。 The ultraviolet absorber contains an ultraviolet absorbing dye (A), and further contains 0.1 to 50000 ppm of a metal component (B) per 100 parts by mass of the ultraviolet absorber. By containing an appropriate amount of the metal component (B), it is possible to suppress deterioration in the transparency of the molded article and coating film due to the addition of the ultraviolet absorbing dye (A), thereby improving the transparency.
<紫外線吸収色素(A)の製造方法>
 紫外線吸収色素(A)に含まれる一般式(1)~(3)で示す化合物の合成方法は、トリアジン構造を有する化合物の公知の合成法を使用して合成できる。一般式(1)の合成法として、例えば、塩化シアヌルにナフトールを、三塩化アルミニウムを用いて付加反応させる方法等が挙げられる。一般式(2)の合成法として、例えば、2,4-ジクロロ-6-フェニル―1,3,5-トリアジンにナフトールを、三塩化アルミニウムを用いて付加反応させる方法等が挙げられる。一般式(3)の合成法として、例えば、2-クロロ-4,6-ジフェニル-1,3,5-トリアジンにナフトールを、三塩化アルミニウムを用いて付加反応させる方法等が挙げられる。他にも、例えば、2-ヒドロキシ-1-ナフトエ酸メチルとベンズアミジン塩酸塩を、ナトリウムメトキシドを用いて縮合環化反応させる方法等も挙げられるが、これらの合成法は代表的な製造法を記載したものであり、この限りでない。
<Method for producing ultraviolet absorbing dye (A)>
The compounds represented by general formulas (1) to (3) contained in the ultraviolet absorbing dye (A) can be synthesized using known methods for synthesizing compounds having a triazine structure. As a synthesis method of the general formula (1), for example, there is a method of addition reaction of cyanuric chloride with naphthol using aluminum trichloride. As a synthesis method of general formula (2), for example, a method of addition reaction of 2,4-dichloro-6-phenyl-1,3,5-triazine with naphthol using aluminum trichloride can be mentioned. As a synthesis method of the general formula (3), for example, a method of addition reaction of 2-chloro-4,6-diphenyl-1,3,5-triazine with naphthol using aluminum trichloride can be mentioned. In addition, for example, methyl 2-hydroxy-1-naphthoate and benzamidine hydrochloride may be condensed and cyclized using sodium methoxide, but these synthesis methods are typical production methods. It is described and is not limited to this.
<金属成分(B)>
 紫外線吸収剤に含まれる金属成分(B)は、Na、Mg、Al、K、Ca、およびFeからなる群から選ばれる1種以上の金属原子を含む。前記金属原子のうち、Alは前記合成法で用いられる酸触媒としてよく使用できることから、合成後の精製の方法によりAl量をコントロールすることで金属成分(B)の含有量をコントロールできる。また、紫外線吸収色素(A)の合成法によっては上記金属原子が全く含まれないこともあるため、紫外線吸収色素(A)を合成した後に別途、上記金属原子を添加して金属成分(B)の含有量をコントロールもよい。金属原子の測定には様々な方法が知られている。金属成分(B)の含有量は、例えば、紫外線吸収剤に硝酸を加えてマイクロウェーブで分解処理した溶液を、適当な濃度に希釈して誘導結合プラズマ発光分析(ICP)を用いて簡便に定量することができる。金属成分(B)の含有量は、紫外線吸収剤に対して0.1~50000ppmが好ましく、0.1~10000ppmがより好ましく、0.1~1000ppmがさらに好ましく、また1~48200ppmであってもよい。なお、金属成分(B)の含有量とは、Na、Mg、Al、K、Ca、およびFeの各イオンの含有量の合計値を意味する。
<Metal component (B)>
The metal component (B) contained in the ultraviolet absorber contains one or more metal atoms selected from the group consisting of Na, Mg, Al, K, Ca and Fe. Among the metal atoms, Al can be often used as an acid catalyst used in the synthesis method, so the content of the metal component (B) can be controlled by controlling the Al amount by the purification method after synthesis. Further, depending on the method for synthesizing the ultraviolet absorbing dye (A), the above metal atoms may not be contained at all. It is also good to control the content of Various methods are known for measuring metal atoms. The content of the metal component (B) can be easily determined by, for example, diluting a solution obtained by adding nitric acid to an ultraviolet absorber and decomposing it with microwaves to an appropriate concentration and using inductively coupled plasma emission spectrometry (ICP). can do. The content of the metal component (B) is preferably 0.1 to 50000 ppm, more preferably 0.1 to 10000 ppm, even more preferably 0.1 to 1000 ppm, and even if it is 1 to 48200 ppm, relative to the ultraviolet absorber. good. The content of the metal component (B) means the total content of ions of Na, Mg, Al, K, Ca, and Fe.
<紫外線吸収色素(A)の精製方法>
 金属成分(B)の含有量を調整するための合成後の紫外線吸収色素(A)の精製方法としては、紫外線吸収色素(A)の合成反応液に水を含むメタノール等の貧溶媒を加えて分液し、金属成分を取り除く方法;上記分液及び濾過後のウェットケーキ(金属成分の除去工程により濃縮された化合物)にメタノール等のアルコール又は水、もしくはその混合液をふりかけて洗浄する方法;ウェットケーキをメタノール等のアルコール又は水、もしくはその混合液にリスラリーして洗浄する方法;、ウェットケーキに1~5%程度の希釈塩酸等の酸溶液をふりかけてリスラリーして洗浄する方法などが挙げられるが、その限りでない。
<Method for Purifying Ultraviolet Absorbing Dye (A)>
As a method for purifying the UV-absorbing dye (A) after synthesis for adjusting the content of the metal component (B), a poor solvent such as methanol containing water is added to the reaction solution for synthesizing the UV-absorbing dye (A). A method of separating liquids and removing metal components; A method of washing by sprinkling alcohol such as methanol or water, or a mixture thereof, on the wet cake (compound concentrated by the step of removing metal components) after liquid separation and filtration; A method of reslurrying the wet cake in alcohol such as methanol or water, or a mixed solution thereof for washing; provided, but not limited to.
 紫外線吸収剤は、一般式(1)で示す化合物のCuKα線によるX線回折パターンにおいて、少なくともブラッグ角2θ(±0.3°)が7.6°、および13.2°に回折ピークを有し、これらの回折ピークの比率(XRD比率)が1:1.3~1:0.7であり、一般式(2)で示す化合物のCuKα線によるX線回折パターンにおいて、少なくともブラッグ角2θ(±0.3°)が8.0°、および14.5°に回折ピークを有し、これらの回折ピークの比率(XRD比率)が1:1.3~1:0.7であり、一般式(3)で示す化合物のCuKα線によるX線回折パターンにおいて、少なくともブラッグ角2θ(±0.3°)が8.1°、および16.3°に回折ピークを有し、これらの回折ピークの比率(XRD比率)が1:1~1:0.3であることが好ましい。 The ultraviolet absorber has diffraction peaks at least at Bragg angles 2θ (±0.3°) of 7.6° and 13.2° in the X-ray diffraction pattern of the compound represented by the general formula (1) with CuKα rays. The ratio of these diffraction peaks (XRD ratio) is 1:1.3 to 1:0.7, and the X-ray diffraction pattern of the compound represented by the general formula (2) with CuKα rays shows that at least the Bragg angle 2θ ( ±0.3°) has diffraction peaks at 8.0° and 14.5°, and the ratio of these diffraction peaks (XRD ratio) is 1:1.3 to 1:0.7. In the X-ray diffraction pattern of the compound represented by formula (3) with CuKα rays, there are diffraction peaks at least at Bragg angles 2θ (± 0.3 °) of 8.1 ° and 16.3 °, and these diffraction peaks ratio (XRD ratio) is preferably 1:1 to 1:0.3.
 例えば、一般式(1)で示す化合物の場合、ブラッグ角2θ(±0.3°)が7.6°、13.2°の回折ピークの比率が1:0.6以下の場合、結晶性が強く粒子が大きく成長し、成形体及び塗膜などの透明性が低下する恐れがある。また、上記比率が1:1.4以上の場合、結晶性が低く粒子が細かいが、凝集力が強いために成形体及び塗膜などの透明性が低下する恐れがある。上記X回折パターンを有する紫外線吸収剤を用いることで、結晶性と凝集力のバランスを適切に取ることができ、成形体及び塗膜の透明性をより向上できる。粉末X線回折スペクトルの測定方法、回折ピーク強度比の算出方法については後述する。 For example, in the case of the compound represented by the general formula (1), when the Bragg angle 2θ (±0.3°) is 7.6° and the ratio of the diffraction peaks at 13.2° is 1:0.6 or less, the crystallinity There is a risk that the particles will grow large due to the strong turbidity, and the transparency of the molded article and coating film will be reduced. On the other hand, when the ratio is 1:1.4 or more, the crystallinity is low and the particles are fine, but the cohesive force is strong, so there is a possibility that the transparency of the molded article and coating film may be lowered. By using an ultraviolet absorber having the X-diffraction pattern, the crystallinity and the cohesive force can be appropriately balanced, and the transparency of the molded article and coating film can be further improved. A method for measuring the powder X-ray diffraction spectrum and a method for calculating the diffraction peak intensity ratio will be described later.
 本発明の実施形態の紫外線吸収剤は、組成物中に溶解または粒子として存在できる。前記粒子は、平均一次粒子径5nm~100μm程度が好ましく、10nm~10μm程度がより好ましく、20nm~500nm程度がさらに好ましい。紫外線吸収剤は、適度な平均一次粒子径の粒子を有することで透明性の低下を抑制できる。なお、平均一次粒子径は、透過型電子顕微鏡を使用して1,000~10,000倍の拡大画像中の一次粒子20個程度について、一次粒子の長径を算術平均して求めることができる。 The ultraviolet absorber of the embodiment of the present invention can be dissolved or present as particles in the composition. The particles preferably have an average primary particle diameter of about 5 nm to 100 μm, more preferably about 10 nm to 10 μm, and even more preferably about 20 nm to 500 nm. The ultraviolet absorber can suppress deterioration in transparency by having particles with an appropriate average primary particle size. The average primary particle diameter can be obtained by arithmetically averaging the major diameters of about 20 primary particles in a magnified image of 1,000 to 10,000 times using a transmission electron microscope.
<紫外線吸収剤の製造方法>
 紫外線吸収剤は、例えば、紫外線吸収色素(A)に含まれる化合物を合成し、その後、紫外線吸収色素(A)の金属成分(B)の含有量を調整することにより製造することができ、例えば、金属成分(B)は、<紫外線吸収色素(A)の精製方法>により含有量を低減させたり、紫外線吸収色素(A)を合成した後に別途、金属原子を添加して含有量を増加させたりすることができる。
 例えば、紫外線吸収色素(A)に含まれる化合物の合成に必要な材料を三角フラスコに仕込み、撹拌して反応液を取得し、反応液を少しずつ水を含むメタノール等の貧溶媒を加えて分液し、金属成分を取り除く、さらに、上記分液及び濾過後のウェットケーキ(金属成分の除去工程により濃縮された化合物)にアルコール又は水、もしくはその混合液をふりかけて洗浄することにより、金属成分(B)の含有量を低減させた紫外線吸収剤の製造することができる。
<Method for producing ultraviolet absorber>
The UV absorber can be produced, for example, by synthesizing a compound contained in the UV absorbing dye (A) and then adjusting the content of the metal component (B) in the UV absorbing dye (A). , The content of the metal component (B) is reduced by <method for refining the ultraviolet absorbing dye (A)>, or the content is increased by adding a metal atom separately after synthesizing the ultraviolet absorbing dye (A). can be
For example, the materials necessary for synthesizing the compound contained in the ultraviolet absorbing dye (A) are placed in an Erlenmeyer flask, stirred to obtain a reaction solution, and a poor solvent such as methanol containing water is added little by little to the reaction solution for separation. The metal components are removed by removing the metal components, and the wet cake after the liquid separation and filtration (the compound concentrated by the metal component removal step) is sprinkled with alcohol or water, or a mixture thereof to wash the metal components. A UV absorber with a reduced content of (B) can be produced.
〔組成物〕
 本発明の実施形態の組成物は、一般式(1)~(3)で示す化合物以外の化合物であるトリアジン環含有化合物、ベンゾトリアゾール環含有化合物、およびベンゾフェノン環含有化合物からなる群から選ばれる少なくとも1種の第二の紫外線吸収剤(以下、「紫外線吸収剤(C)」とも記す。)を含有できる。紫外線領域全体を幅広い遮蔽を一般式(1)~(3)で示す化合物からなる群から選ばれる1種以上の紫外線吸収色素(A)で行うよりも紫外線吸収色素(A)と紫外線吸収剤(C)に含まれる上記化合物を組み合わせることで、紫外線領域を幅広く、かつ波長400~420nm程度の可視光短波長領域を簡易かつより効果的に遮蔽することができる。また、紫外線吸収色素(A)と紫外線吸収剤(C)に含まれる上記化合物が互いの化合物を保護するため、より良好な耐光性および耐熱性が得られる。
〔Composition〕
The composition of the embodiment of the present invention comprises at least One type of second ultraviolet absorber (hereinafter also referred to as "ultraviolet absorber (C)") can be contained. Rather than using one or more UV-absorbing dyes (A) selected from the group consisting of compounds represented by general formulas (1) to (3) to broadly shield the entire UV region, the UV-absorbing dye (A) and the UV absorber ( By combining the above compounds contained in C), it is possible to broaden the ultraviolet region and to easily and effectively shield the short wavelength region of visible light with a wavelength of about 400 to 420 nm. In addition, since the compounds contained in the ultraviolet absorbing dye (A) and the ultraviolet absorbent (C) protect each other, better light resistance and heat resistance can be obtained.
[紫外線吸収剤(C)]
 紫外線吸収剤(C)のうち、ベンゾトリアゾール環含有化合物は、一般的に波長360nm以下の光を吸収する化合物であり、例えば、2-(5メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)-2H-ベンゾトリアゾール、オクチル-3[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートと2-エチルヘキシル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートの混合物、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3-tブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、5%の2-メトキシ-1-メチルエチルアセテートと95%のベンゼンプロパン酸の混合物、3-(2H-ベンゾトリアゾール-2-イル)-(1,1-ジメチルエチル)-4-ヒドロキシ,C7-9側鎖および直鎖アルキルエステルの化合物、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)ベンゾトリアゾール、2-エチルヘキシル-3-[3-t-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネート、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチル-フェノール、2-(2H-ベンゾトリアゾール-2-イル)-3-t-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1-3,3-テトラメチルブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-3-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチル-フェノール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]等が挙げられる。
[Ultraviolet absorber (C)]
Among the ultraviolet absorbers (C), the benzotriazole ring-containing compound is generally a compound that absorbs light with a wavelength of 360 nm or less. 2-hydroxy-5-t-butylphenyl)-2H-benzotriazole, octyl-3[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate and 2-ethylhexyl-3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate, 2-[2-hydroxy-3,5 -bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3-tbutyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3,5-di -t-amyl-2-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5'-t-octylphenyl)benzotriazole, 5% 2-methoxy-1-methylethyl acetate and 95% benzenepropane Mixture of acids, 3-(2H-benzotriazol-2-yl)-(1,1-dimethylethyl)-4-hydroxy, C7-9 side chain and linear alkyl ester compound, 2-(2H-benzotriazole -2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol, 2-(2H-benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4 -(1,1,3,3-tetramethylbutyl)phenol, 2-(2'-hydroxy-3',5'-di-t-amylphenyl)benzotriazole, 2-(3-t-butyl-5 -methyl-2-hydroxyphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-5-t-octylphenyl)benzotriazole, 2-ethylhexyl-3-[3-t-butyl-4-hydroxy-5 -(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate, 2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methyl-phenol, 2-(2H-benzotriazole- 2-yl)-3-t-butylphenol, 2-(2H-benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4-(1,1-3,3-tetramethyl butyl)phenol, 2-(2H-benzotriazol-2-yl)-3-methylphenol, 2-(2H-benzotriazol-2-yl)-6-dodecyl-4-methyl-phenol, 2,2′-methylenebis[6- (2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol] and the like.
 紫外線吸収剤(C)に使用できる市販品は、BASFジャパン社製「TINUVIN P」、「TINUVIN PS」、「TINUVIN 109」、「TINUVIN 234」、「TINUVIN 326」、「TINUVIN 328」、「TINUVIN 329」、「TINUVIN 360」、「TINUVIN 384-2」、「TINUVIN 900」、「TINUVIN 928」、「TINUVIN 99-2」、「TINUVIN 1130」、株式会社ADEKA製「アデカスタブLA-29」、大塚化学社製「RUNA-93」等が挙げられる。 Commercially available products that can be used for the ultraviolet absorber (C) are "TINUVIN P", "TINUVIN PS", "TINUVIN 109", "TINUVIN 234", "TINUVIN 326", "TINUVIN 328", and "TINUVIN 329" manufactured by BASF Japan. ", "TINUVIN 360", "TINUVIN 384-2", "TINUVIN 900", "TINUVIN 928", "TINUVIN 99-2", "TINUVIN 1130", "ADEKA STAB LA-29" manufactured by ADEKA Co., Ltd., Otsuka Chemical Co., Ltd. and "RUNA-93" manufactured by K.K.
 紫外線吸収剤(C)のうち、一般式(1)~(3)で示す化合物以外の化合物であるトリアジン環含有化合物は、一般的に波長360nm以下の光を吸収する化合物であり、例えば、2-[4,6-ジ(2,4-キシリル)-1,3,5-トリアジン-2-イル]-5-オクチルオキシフェノール、2‐[4,6‐ビス(2,4‐ジメチルフェニル)‐1,3,5‐トリアジン‐2‐イル]‐5‐[3‐(ドデシルオキシ)‐2‐ヒドロキシプロポキシ]フェノール、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル-グリシド酸エステルの反応生成物、2,4-ビス「2-ヒドロキシ-4-ブトキシフェニル」-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシロキシフェノール(III-5)ビスエチルヘキシロキシフェノール、メトキシフェニルトリアジン等が挙げられる。 Among the ultraviolet absorbers (C), triazine ring-containing compounds other than the compounds represented by the general formulas (1) to (3) are generally compounds that absorb light having a wavelength of 360 nm or less. -[4,6-di(2,4-xylyl)-1,3,5-triazin-2-yl]-5-octyloxyphenol, 2-[4,6-bis(2,4-dimethylphenyl) -1,3,5-triazin-2-yl]-5-[3-(dodecyloxy)-2-hydroxypropoxy]phenol, 2-(2,4-dihydroxyphenyl)-4,6-bis(2, 2,4-bis "2-hydroxy-4-butoxyphenyl"-6-(2,4- dibutoxyphenyl)-1,3-5-triazine, 2,4-bis(2-hydroxy-4-butoxyphenyl)-6-(2,4-dibutoxyphenyl)-1,3,5-triazine, 2 -[4-[(2-hydroxy-3-(2′-ethyl)hexyl)oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine , 2-[4-[(2-hydroxy-3-(2′-ethyl)hexyl)oxy]-2-hydroxyphenyl-4,6-bis(2,4-dimethylphenyl)-1,3,5- triazine, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol (III-5) bisethylhexyloxyphenol, methoxyphenyltriazine and the like.
 一般式(1)~(3)で示す化合物以外の化合物であるトリアジン環含有化合物の市販品は、ケミプロ化成社製「KEMISORB 102」、BASFジャパン社製「TINUVIN 400」、「TINUVIN 405」、「TINUVIN 460」、「TINUVIN 477-DW」、「TINUVIN 479」、「TINUVIN 1577」、株式会社ADEKA製「アデカスタブLA-46」、「アデカスタブLA-F70」、サンケミカル社製「CYASORB UV-1164」等が挙げられる。 Commercially available triazine ring-containing compounds, which are compounds other than the compounds represented by formulas (1) to (3), include "KEMISORB 102" manufactured by Chemipro Kasei Co., Ltd., "TINUVIN 400", "TINUVIN 405", and "TINUVIN 405" manufactured by BASF Japan. TINUVIN 460", "TINUVIN 477-DW", "TINUVIN 479", "TINUVIN 1577", "ADEKA STAB LA-46", "ADEKA STAB LA-F70" manufactured by ADEKA Corporation, "CYASORB UV-1164" manufactured by Sun Chemical Co., Ltd., etc. is mentioned.
 紫外線吸収剤(C)のうち、ベンゾフェノン環含有化合物は、一般的に波長360nm以下の光を吸収する化合物であり、例えば、2,4-ジ-ヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルフォン酸ナトリウム、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2,2-ジ-ヒドロキシ-4-メトキシベンゾフェノン、ヘキシル2-(4-ジエチルアミノ-2-ヒドロキシベンゾイル)ベンゾエート、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、1,4-ビス(4-ベンゾイル-3-ヒドロキシフェノキシ)ブタン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルフォニックアシッド、2,2’,4,4’-テトラヒドロキシベンゾフェノン等が挙げられる。 Among the ultraviolet absorbers (C), benzophenone ring-containing compounds are generally compounds that absorb light with a wavelength of 360 nm or less, and examples thereof include 2,4-di-hydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, Sodium 2-hydroxy-4-methoxybenzophenone-5-sulfonate, 2-hydroxy-4-n-octoxybenzophenone, 2,2-di-hydroxy-4-methoxybenzophenone, hexyl 2-(4-diethylamino-2- hydroxybenzoyl)benzoate, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 1,4-bis(4-benzoyl-3-hydroxyphenoxy)butane, 2-hydroxy- 4-octoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2,2',4,4'-tetrahydroxybenzophenone and the like.
 ベンゾフェノン環含有化合物の市販品は、ケミプロ化成社製「KEMISORB 10」、「KEMISORB 11」、「KEMISORB 11S」、「KEMISORB 12」、「KEMISORB 111」、シプロ化成社製「SEESORB 101」、「SEESORB 107」、株式会社ADEKA製「アデカスタブ1413」等が挙げられる。 Commercial products of benzophenone ring-containing compounds are "KEMISORB 10", "KEMISORB 11", "KEMISORB 11S", "KEMISORB 12", "KEMISORB 111" manufactured by Chemipro Kasei Co., Ltd., and "SEESORB 101" and "SEESORB 107" manufactured by Sipro Kasei Co., Ltd. ”, “ADEKA STAB 1413” manufactured by ADEKA Corporation, and the like.
 紫外線吸収剤(C)の含有量は、組成物の不揮発分中、0.005~50質量%が好ましく、0.01~40質量%がより好ましい。目的の分光カット率によって紫外線吸収剤の含有量を設計することができる。 The content of the ultraviolet absorber (C) is preferably 0.005 to 50% by mass, more preferably 0.01 to 40% by mass, based on the non-volatile content of the composition. The content of the ultraviolet absorber can be designed according to the desired spectral cut rate.
 紫外線吸収色素(A)を含む紫外線吸収剤の含有量は、組成物の不揮発分中、0.005~50質量%が好ましく、0.01~40質量%がより好ましい。目的の分光カット率によって紫外線吸収剤の含有量を設計することができる。 The content of the ultraviolet absorber containing the ultraviolet absorbing dye (A) is preferably 0.005 to 50% by mass, more preferably 0.01 to 40% by mass, based on the non-volatile content of the composition. The content of the ultraviolet absorber can be designed according to the desired spectral cut rate.
[色材(D)]
 本発明の実施形態の組成物は、波長450~650nmの可視波長域に対して、波長域の80%以上を遮光する色材(以下、「色材(D)」とも記す。)を含有できる。色材(D)は、2種類以上の有彩色着色剤を含むことが好ましい。本発明の実施形態の紫外線吸収剤は、420nm以下の波長を強く吸収するため、450~650nmの特定の波長領域を吸収する有彩色着色剤と組み合わせることで、700nm以下の波長をカットして近赤外線領域の光を利用できるため、例えば、目的に応じ適宜分光を調整するバンドパス材料として使用できる。また、紫外線吸収剤が色材(D)を紫外線から保護するため、組成物全体の耐光性および耐熱性が向上する。
[Colorant (D)]
The composition of the embodiment of the present invention can contain a coloring material (hereinafter also referred to as "coloring material (D)") that blocks 80% or more of the visible wavelength range of 450 to 650 nm. . The colorant (D) preferably contains two or more chromatic colorants. Since the ultraviolet absorber of the embodiment of the present invention strongly absorbs wavelengths of 420 nm or less, it is combined with a chromatic coloring agent that absorbs a specific wavelength range of 450 to 650 nm to cut wavelengths of 700 nm or less. Since light in the infrared region can be used, for example, it can be used as a bandpass material that appropriately adjusts the spectrum depending on the purpose. In addition, since the ultraviolet absorber protects the coloring material (D) from ultraviolet rays, the light resistance and heat resistance of the composition as a whole are improved.
 色材(D)は、例えば、青色色素、黄色色素、紫色色素、赤色色素等が挙げられる。
 有機色素は、有機顔料を用いてもよく、例えば、ジケトピロロピロール系顔料、アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料、アミノアントラキノン、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、又はビオラントロン等のアントラキノン系顔料、キナクリドン系顔料、ペリノン系顔料、ペリレン系顔料、チオインジゴ系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、スレン系顔料、金属錯体系顔料等が挙げられる。
 また、有機色素として、染料を用いてもよく、例えば、アントラキノン系染料、モノアゾ系染料、ジスアゾ系染料、オキサジン系染料、アミノケトン系染料、キサンテン系染料、キノリン系染料、トリフェニルメタン系染料などが挙げられる。染料を用いる際には、アニオン性染料、カチオン性染料の極性基を用いて樹脂中に取り込み有機溶剤への溶解性を付与する方法が有効となる。
Examples of the coloring material (D) include blue pigments, yellow pigments, purple pigments, red pigments, and the like.
Organic pigments may be organic pigments, for example, diketopyrrolopyrrole pigments, azo pigments such as azo, disazo, and polyazo, aminoanthraquinone, diaminodianthraquinone, anthrapyrimidine, flavanthrone, anthantrone, and indanthrone. Anthraquinone pigments such as , pyranthrone, or violanthrone, quinacridone pigments, perinone pigments, perylene pigments, thioindigo pigments, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, threne pigments, metal complex pigments etc.
Dyes may also be used as organic dyes, and examples thereof include anthraquinone dyes, monoazo dyes, disazo dyes, oxazine dyes, aminoketone dyes, xanthene dyes, quinoline dyes, and triphenylmethane dyes. mentioned. When a dye is used, it is effective to use a polar group of an anionic dye or a cationic dye to incorporate it into the resin and impart solubility in an organic solvent.
(青色色素)
 青色顔料は、例えば、C.I.ピグメントブルー1、1:2、9、14、15、15:1、15:2、15:3、15:4、15:6、16、17、19、25、27、28、29、33、35、36、56、56:1、60、61、61:1、62、63、66、67、68、71、72、73、74、75、76、78、79等が挙げられる。なお、「C.I.」は、カラーインデックス(C.I.;The Society of Dyers and Colourists 発行)を意味する。
(blue pigment)
Blue pigments include, for example, C.I. I. Pigment Blue 1, 1:2, 9, 14, 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 17, 19, 25, 27, 28, 29, 33, 35, 36, 56, 56:1, 60, 61, 61:1, 62, 63, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79 and the like. In addition, "C.I." means a color index (C.I.; published by The Society of Dyers and Colorists).
 青色染料は、例えば、C.I.アシッドブルー1、2、3、4、5、6、7、8、9、11、13、14、15、17、19、21、22、23、24、25、26、27、29、34、35、37、40、41、41:1、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、62、62:1、63、64、65、68、69、70、73、75、78、79、80、81、83、8485、86、88、89、90、90:1、91、92、93、95、96、99、100、103、104、108、109、110、111、112、113、114、116、117、118、119、120、123、124、127、127:1、128、129、135、137、138、143、145、147、150、155、159、169、174、175、176、183、198、203、204、205、206、208、213、227、230、231、232、233、235、239、245、247、253、257、258、260、261、262、264、266、269、271、272、273、274、277、278、280等が挙げられる。 For example, the blue dye is C.I. I. acid blue 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 29, 34, 35, 37, 40, 41, 41:1, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 62, 62:1, 63, 64, 65, 68, 69, 70, 73, 75, 78, 79, 80, 81, 83, 8485, 86, 88, 89, 90, 90:1, 91, 92, 93, 95, 96, 99, 100, 103, 104, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 120, 123, 124, 127, 127: 1, 128, 129, 135, 137, 138, 143, 145, 147, 150, 155, 159, 169, 174, 175, 176, 183, 198, 203, 204, 205, 206, 208, 213, 227, 230, 231, 232, 233, 235, 239, 245, 247, 253, 257, 258, 260, 261, 262, 264, 266, 269, 271, 272, 273, 274, 277, 278, 280 and the like.
 また、例えば、C.I.ダイレクトブルー1、2、3、4、6、7、8、8:1、9、10、12、14、15、16、19、20、21、21:1、22、23、25、27、29、31、35、36、37、40、42、45、48、49、50、53、54、55、58、60、61、64、65、67、79、96、97、98:1、101、106、107、108、109、111、116、122、123、124、128、129130、130:1、132、136、138、140、145、146、149、152、153、154、156、158、158:1、164、165、166、167、168、169、170、174、177、181、184、185、188、190、192、193、206、207、209、213、215、225、226、229、230、231、242、243、244、253、254、260、263等が挙げられる。 Also, for example, C.I. I. Direct Blue 1, 2, 3, 4, 6, 7, 8, 8:1, 9, 10, 12, 14, 15, 16, 19, 20, 21, 21:1, 22, 23, 25, 27, 29, 31, 35, 36, 37, 40, 42, 45, 48, 49, 50, 53, 54, 55, 58, 60, 61, 64, 65, 67, 79, 96, 97, 98: 1, 101, 106, 107, 108, 109, 111, 116, 122, 123, 124, 128, 129130, 130:1, 132, 136, 138, 140, 145, 146, 149, 152, 153, 154, 156, 158, 158: 1, 164, 165, 166, 167, 168, 169, 170, 174, 177, 181, 184, 185, 188, 190, 192, 193, 206, 207, 209, 213, 215, 225, 226, 229, 230, 231, 242, 243, 244, 253, 254, 260, 263 and the like.
(黄色色素)
 黄色顔料は、例えば、C.I.ピグメントイエロー1、1:1、2、3、4、5、6、9、10、12、13、14、16、17、24、31、32、34、35、35:1、36、36:1、37、37:1、40、41、42、43、48、53、55、61、62、62:1、63、65、73、74、75,81、83、87、93、94、95、97、100、101、104、105、108、109、110、111、116、117、119、120、126、127、127:1、128、129、133、134、136、138、139、142、147、148、150、151、153、154、155、157、158、159、160、161、162、163、164、165、166、167、168、169、170、172、173、174、175、176、180、181、182、183、184、185、188、189、190、191、191:1、192、193、194、195、196、197、198、199、200、202、203、204、205、206、207、208等が挙げられる。
(yellow pigment)
Yellow pigments include, for example, C.I. I. Pigment Yellow 1, 1:1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 14, 16, 17, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 41, 42, 43, 48, 53, 55, 61, 62, 62: 1, 63, 65, 73, 74, 75, 81, 83, 87, 93, 94, 95,97,100,101,104,105,108,109,110,111,116,117,119,120,126,127,127:1,128,129,133,134,136,138,139, 142, 147, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 175, 176, 180, 181, 182, 183, 184, 185, 188, 189, 190, 191, 191: 1, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 205, 206, 207, 208 and the like.
 黄色染料は、例えば、C.I.アシッドイエロー2,3、4、5、6、7、8、9、9:1、10、11、11:1、12、13、14、15、16、17、17:1、18、20、21、22、23、25、26、27、29、30、31、33、34、36、38、39、40、40:1、41、42、42:1、43、44、46、48、51、53、55、56、60、63、65、66、67、68、69、72、76、82、83、84、86、87、90、94、105、115、117、122、127、131、132、136、141、142、143、144、145、146、149、153、159、166、168、169,172、174、175、178、180、183、187、188、189、190、191、192、199等が挙げられる。 A yellow dye is, for example, C.I. I. Acid yellow 2,3,4,5,6,7,8,9,9:1,10,11,11:1,12,13,14,15,16,17,17:1,18,20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 38, 39, 40, 40:1, 41, 42, 42:1, 43, 44, 46, 48, 51, 53, 55, 56, 60, 63, 65, 66, 67, 68, 69, 72, 76, 82, 83, 84, 86, 87, 90, 94, 105, 115, 117, 122, 127, 131, 132, 136, 141, 142, 143, 144, 145, 146, 149, 153, 159, 166, 168, 169, 172, 174, 175, 178, 180, 183, 187, 188, 189, 190, 191, 192, 199 and the like.
 また、例えば、C.I.ダイレクトイエロー1、2、4、5、12、13、15、20、24、25、26、32、33、34、35、41、42、44、44:1、45、46、48、49、50、51、61、66、67、69、70、71、72、73、74、81、84、86、90、91、92、95、107、110、117、118、119、120、121、126、127、129、132、133、134等が挙げられる。 Also, for example, C.I. I. Direct Yellow 1, 2, 4, 5, 12, 13, 15, 20, 24, 25, 26, 32, 33, 34, 35, 41, 42, 44, 44:1, 45, 46, 48, 49, 50, 51, 61, 66, 67, 69, 70, 71, 72, 73, 74, 81, 84, 86, 90, 91, 92, 95, 107, 110, 117, 118, 119, 120, 121, 126, 127, 129, 132, 133, 134 and the like.
(紫色色素)
 紫色顔料は、例えば、C.I.ピグメントバイオレット1、1:1、2、2:2、3、3:1、3:3、5、5:1、14、15、16、19、23、25、27、29、31、32、37、39、42、44、47、49、50等が挙げられる。
(purple pigment)
Purple pigments include, for example, C.I. I. Pigment Violet 1, 1:1, 2, 2:2, 3, 3:1, 3:3, 5, 5:1, 14, 15, 16, 19, 23, 25, 27, 29, 31, 32, 37, 39, 42, 44, 47, 49, 50 and the like.
 紫色染料は、例えば、C.I.アシッドバイオレット1、2、3、4、5、5:1、6、7、7:1、9、11、12、13、14、15、16、17、19、20、21、23、24、25、27、29、30、31、33、34、36、38、39、41、42、43、47、49、51、63、67、72、76、96、97、102、103、109等が挙げられる。 A purple dye is, for example, C.I. I. acid violet 1, 2, 3, 4, 5, 5:1, 6, 7, 7:1, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 30, 31, 33, 34, 36, 38, 39, 41, 42, 43, 47, 49, 51, 63, 67, 72, 76, 96, 97, 102, 103, 109, etc. is mentioned.
 また、例えば、C.I.ダイレクトバイオレット1、3、4、5、6、7、8、9、10、11、12、13、14、16、17、18、21、22、25、26、27、28、29、30、31、32、34、35、36、37、38、39、40、41、42、43、45、51、52、54、57、58、61、62、63、64、71、72、77、78、79、80、81、82、83、85、86、87、88、93、97等が挙げられる。 Also, for example, C.I. I. Direct Violet 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 51, 52, 54, 57, 58, 61, 62, 63, 64, 71, 72, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 93, 97 and the like.
(赤色色素)
 赤色顔料は、例えば、C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、12、14、15、16、17、21、22、23、31、32、37、38、41、47、48、48:1、48:2、48:3、48:4、49、49:1、49:2、50:1、52:1、52:2、53、53:1、53:2、53:3、57、57:1、57:2、58:4、60、63、63:1、63:2、64、64:1、68、69、81、81:1、81:2、81:3、81:4、83、88、90:1、101、101:1、104、108、108:1、109、112、113、114、122、123、144、146、147、149、151、166、168、169、170、172、173、174、175、176、177、178、179、181、184、185、187、188、190、193、194、200、202、206、207、208、209、210、214、216、220、221、224、230、231、232、233、235、236、237、238、239、242、243、245、247、249、250、251、253、254、255、256、257、258、259、260、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276等が挙げられる。
(red pigment)
Red pigments include, for example, C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 37, 38, 41, 47, 48, 48:1, 48:2, 48:3, 48:4, 49, 49:1, 49:2, 50:1, 52:1, 52:2, 53, 53:1, 53:2, 53: 3, 57, 57:1, 57:2, 58:4, 60, 63, 63:1, 63:2, 64, 64:1, 68, 69, 81, 81:1, 81:2, 81: 3, 81:4, 83, 88, 90:1, 101, 101:1, 104, 108, 108:1, 109, 112, 113, 114, 122, 123, 144, 146, 147, 149, 151, 166, 168, 169, 170, 172, 173, 174, 175, 176, 177, 178, 179, 181, 184, 185, 187, 188, 190, 193, 194, 200, 202, 206, 207, 208, 209, 210, 214, 216, 220, 221, 224, 230, 231, 232, 233, 235, 236, 237, 238, 239, 242, 243, 245, 247, 249, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276 and the like.
 赤色顔料と同様に作用するオレンジ色顔料は、例えば、C.I.ピグメントオレンジ36、38、43、51、55、59、61等のオレンジ色顔料等が挙げられる。  An orange pigment that acts similarly to a red pigment is, for example, C.I. I. and orange pigments such as Pigment Orange 36, 38, 43, 51, 55, 59, 61, and the like.
 赤色染料は、例えば、C.I.アシッドレッド1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、22、23、24、25、25:1、26、26:1、26:2、27、29、30、31、32、33、34、35、36、37、39、40、41、42、43、44、45、47、50、52、53、54、55、56、57、59、60、62、64、65、66、67、68、70、71、73、74、76、76:1、80、81、82、83、85、86、87、88、89、91、92、93、97、99、102、104、106、107、108、110、111、113、114、115、116、120、123、125、127、128、131、132、133、134、135、137、138、141、142、143、144、148、150、151、152、154、155、157、158、160、161、163、164、167、170、171、172、173、175、176、177、181、229、231、237、239、240、241、242、249、252、253、255、257、260、263、264、266、267、274、276、280、286、289、299、306、309、311、323、333、324、325、326、334、335、336、337、340、343、344、347、348、350、351、353、354、356、388等が挙げられる。 The red dye is, for example, C.I. I. acid red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 25:1, 26, 26:1, 26:2, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47, 50, 52, 53, 54, 55, 56, 57, 59, 60, 62, 64, 65, 66, 67, 68, 70, 71, 73, 74, 76, 76: 1, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 97, 99, 102, 104, 106, 107, 108, 110, 111, 113, 114, 115, 116, 120, 123, 125, 127, 128, 131, 132, 133, 134, 135, 137, 138, 141, 142, 143, 144, 148, 150, 151, 152, 154, 155, 157, 158, 160, 161, 163, 164, 167, 170, 171, 172, 173, 175, 176, 177, 181, 229, 231, 237, 239, 240, 241, 242, 249, 252, 253, 255, 257, 260, 263, 264, 266, 267, 274, 276, 280, 286, 289, 299, 306, 309, 311, 323, 333, 324, 325, 326, 334, 335, 336, 337, 340, 343, 344, 347, 348, 350, 351, 353, 354, 356, 388 and the like.
 また、例えば、C.I.ダイレクトレッド1、2、2:1、4、5、6、7、8、10、10:1、13、14、15、16、17、18、21、22、23、24、26、26:1、28、29、31、33、33:1、34、35、36、37、39、42、43、43:1、44、46、49、52、53、54、55、56、57、58、59、60、61、62、67、67:1、68、72、72:1、73、74、75、77、78、79、81、81:1、85、86、88、89、90、97、100、101、101:1、107、108、110、114、116、117、120、121、122、122:1、124、125、127、127:1、127:2、128、129、130、132、134、135、136、137、138、140、141、148、149、150、152、153、154、155、156、169、171、172、173、174、175、176、177、179、180、181、182、185、186、189、204、211、213、214、217、222、224、225、226、227、228、232、236、237、238等が挙げられる。 Also, for example, C.I. I. Direct Red 1, 2, 2: 1, 4, 5, 6, 7, 8, 10, 10: 1, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 26: 1, 28, 29, 31, 33, 33: 1, 34, 35, 36, 37, 39, 42, 43, 43: 1, 44, 46, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 67, 67:1, 68, 72, 72:1, 73, 74, 75, 77, 78, 79, 81, 81:1, 85, 86, 88, 89, 90, 97, 100, 101, 101:1, 107, 108, 110, 114, 116, 117, 120, 121, 122, 122:1, 124, 125, 127, 127:1, 127:2, 128, 129, 130, 132, 134, 135, 136, 137, 138, 140, 141, 148, 149, 150, 152, 153, 154, 155, 156, 169, 171, 172, 173, 174, 175, 176, 177, 179, 180, 181, 182, 185, 186, 189, 204, 211, 213, 214, 217, 222, 224, 225, 226, 227, 228, 232, 236, 237, 238 and the like.
 色材(D)において染料は、良好な分光特性を有し、発色性に優れるものの、耐光性、耐熱性に問題がある。そのため、これらの問題を改善するために、塩基性染料は、有機酸及び過塩素酸を用いて造塩化する造塩化合物して用いることが好ましい。有機酸は、有機スルホン酸、有機カルボン酸が好ましい。中でもトビアス酸等のナフタレンスルホン酸、過塩素酸が耐性の面で好ましい。
 また、アニオン基を有する樹脂と造塩化して用いることが好ましく、ベタイン構造を有する樹脂と有機酸とともに造塩する造塩化合物として用いることも好ましい。
 また、酸性染料、直接染料を含むアニオン性染料は、カチオン性基を有する化合物又はカチオン性基を有する樹脂をカウンターイオンとして用いた造塩化合物として用いることが耐熱性、耐光性、耐溶剤性の面で好ましい。また、造塩化合物の合成には、カチオン基を有する樹脂を用いることが好ましく、側鎖にカチオン基を有する樹脂と有機酸とともに造塩して用いることがより好ましい。
 また、アニオン性染料はスルホンアミド化してスルホン酸アミド化合物として用いることでも、耐性の面で好ましく使用できる。
Dyes in the coloring material (D) have good spectral characteristics and excellent color development properties, but have problems with light resistance and heat resistance. Therefore, in order to improve these problems, it is preferable to use the basic dye as a salt-forming compound that forms salt using an organic acid and perchloric acid. Organic acids are preferably organic sulfonic acids and organic carboxylic acids. Among them, naphthalenesulfonic acid such as Tobias acid and perchloric acid are preferable in terms of resistance.
Moreover, it is preferable to use it after forming a salt with a resin having an anionic group, and it is also preferable to use it as a salt-forming compound that forms a salt together with a resin having a betaine structure and an organic acid.
In addition, anionic dyes including acid dyes and direct dyes can be used as a salt-forming compound using a compound having a cationic group or a resin having a cationic group as a counter ion to improve heat resistance, light resistance, and solvent resistance. preferable in terms of In addition, it is preferable to use a resin having a cationic group in the synthesis of the salt-forming compound, and it is more preferable to use the resin having a cationic group in its side chain and an organic acid to form a salt.
Also, the anionic dye can be preferably used in terms of durability by sulfonamidating it and using it as a sulfonic acid amide compound.
 色材(D)は、塗工用途において、青色顔料にPigment.Blue.15:3もしくはPigment.Blue.15:6、黄色色素にPigment.Yellow.139、紫色色素にPigment.Violet.23を用いることが好ましい。また、成形用途において、青色顔料にPigment.Blue.15:3もしくはPigment.Blue.15:6、黄色色素にPigment.Yellow.147、赤色色素にSolvent.Red.52を用いることが好ましい。 The coloring material (D) is a blue pigment and Pigment. Blue. 15:3 or Pigment. Blue. 15:6, Pigment. Yellow. 139, Pigment. Violet. 23 is preferably used. In molding applications, Pigment. Blue. 15:3 or Pigment. Blue. 15:6, Pigment. Yellow. 147, Solvent. Red. 52 is preferably used.
 色材(D)の含有量は、組成物の不揮発分中、0.005~50質量%が好ましく、0.005~20質量%がより好ましく、0.5~50質量%がさらに好ましい。目的の分光カット率によって紫外線吸収剤の含有量を設計することができる。 The content of the coloring material (D) is preferably 0.005 to 50% by mass, more preferably 0.005 to 20% by mass, even more preferably 0.5 to 50% by mass, based on the non-volatile content of the composition. The content of the ultraviolet absorber can be designed according to the desired spectral cut rate.
 本発明の実施形態の組成物は、必要に応じて色素誘導体を添加することができる。 A dye derivative can be added to the composition of the embodiment of the present invention as necessary.
 色素誘導体は、有機色素残基に酸性基、塩基性基、中性基などを有する化合物である。色素誘導体は、例えば、スルホ基、カルボキシ基、リン酸基などの酸性置換基を有する化合物及びこれらのアミン塩、スルホンアミド基又は末端に3級アミノ基などの塩基性置換基を有する化合物、フェニル基又はフタルイミドアルキル基などの中性置換基を有する化合物が挙げられる。
 有機色素は、例えば、ジケトピロロピロール系顔料、アントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、ペリノン系顔料、ペリレン系顔料、チアジンインジゴ系顔料、トリアジン系顔料、ベンズイミダゾロン系顔料、ベンゾイソインドール等のインドール系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、ナフトール系顔料、スレン系顔料、金属錯体系顔料、アゾ、ジスアゾ、ポリアゾ等のアゾ系顔料、等が挙げられる。
A dye derivative is a compound having an acidic group, a basic group, a neutral group, or the like in an organic dye residue. Dye derivatives include, for example, compounds having an acidic substituent such as a sulfo group, a carboxyl group, and a phosphoric acid group; or compounds having neutral substituents such as phthalimidoalkyl groups.
Organic dyes include, for example, diketopyrrolopyrrole-based pigments, anthraquinone-based pigments, quinacridone-based pigments, dioxazine-based pigments, perinone-based pigments, perylene-based pigments, thiazineindigo-based pigments, triazine-based pigments, benzimidazolone-based pigments, benzo Indole pigments such as isoindole, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, naphthol pigments, threne pigments, metal complex pigments, azo pigments such as azo, disazo and polyazo. be done.
 色素誘導体は、それぞれ単独または2種以上を併用して使用できる。 The pigment derivatives can be used alone or in combination of two or more.
[近赤外線吸収剤(E)]
 本発明の実施形態の組成物は、シアニン化合物、フタロシアニン化合物、ナフタロシアニン化合物、インジゴ化合物、インモニウム化合物、アントラキノン化合物、ピロロピロール化合物、スクアリリウム化合物、およびクロコニウム化合物からなる群から選ばれる1種以上の近赤外線吸収剤(以下、「近赤外線吸収剤(E)とも記す。」を含有でき、近赤外線吸収剤(E)は波長600~1500nmの波長領域に極大吸収を有する。これにより、目的に応じ適宜分光を調整でき、本発明の実施形態の紫外線吸収剤が近赤外線吸収剤(E)の劣化を抑制するため、耐久性が向上する。
[Near-infrared absorber (E)]
The composition of the embodiment of the present invention comprises one or more selected from the group consisting of cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, indigo compounds, immonium compounds, anthraquinone compounds, pyrrolopyrrole compounds, squarylium compounds, and croconium compounds. A near-infrared absorbing agent (hereinafter also referred to as "near-infrared absorbing agent (E)") can be contained, and the near-infrared absorbing agent (E) has a maximum absorption in the wavelength range of 600 to 1500 nm. The spectrum can be appropriately adjusted, and the ultraviolet absorber of the embodiment of the present invention suppresses deterioration of the near-infrared absorber (E), thereby improving durability.
 近赤外線吸収剤(E)は、波長600~1500nmに極大吸収を有する化合物である。なお、極大吸収は、800~1000nmが好ましい。 The near-infrared absorber (E) is a compound that has maximum absorption at a wavelength of 600-1500 nm. The maximum absorption is preferably 800-1000 nm.
 シアニン化合物は、国際公開第2006/006573号、国際公開第2010/073857号、特開2013-241598号公報、特開2016-113501号公報、特開2016-113504号公報等;フタロシアニン化合物は、特開平4-23868号公報、特開平06-192584号公報、特開2000-63691号公報、国際公開第2014/208514号等;ナフタロシアニン化合物は、特開平11-152414号公報、特開2000-86919号公報、特開2009-29955号公報、国際公開第2018/186490号等;インジゴ化合物は、特開2013-230412号公報等;インモニウム化合物は、特開2005-336150号公報、特開2007-197492号公報、特開2008-88426号公報等;アントラキノン化合物は、特開昭62-903号公報、特開平1-172458号公報等;ピロロピロール化合物は、特開2009-263614号公報、特開2010-90313号公報、特開2011-068731号公報;スクアリリウム化合物は、特開2011-132361号公報、特開2016-142891号公報、国際公開第2017/135359号、国際公開第2018/225837号、特開2019-001987号公報、国際公開第2020/054718号等;クロコニウム化合物は、国際公開第2019/021767号等に記載の化合物が挙げられる。 Cyanine compounds, WO 2006/006573, WO 2010/073857, JP 2013-241598, JP 2016-113501, JP 2016-113504, etc.; JP-A-4-23868, JP-A-06-192584, JP-A-2000-63691, International Publication No. 2014/208514, etc.; JP, JP 2009-29955 A, International Publication No. 2018/186490, etc.; Indigo compounds, JP 2013-230412, etc.; 197492, JP 2008-88426, etc.; anthraquinone compounds, JP 62-903, JP 1-172458, etc.; pyrrolopyrrole compounds, JP 2009-263614, JP 2010-90313, JP-A-2011-068731; the squarylium compound is disclosed in JP-A-2011-132361, JP-A-2016-142891, WO 2017/135359, WO 2018/225837, Japanese Patent Application Laid-Open No. 2019-001987, International Publication No. 2020/054718, etc.; croconium compounds include compounds described in International Publication No. 2019/021767, etc.
(スクアリリウム化合物)
 スクアリリウム化合物は、下記一般式(4)で表される化合物が好ましい。
(squarylium compound)
The squarylium compound is preferably a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
 一般式(4)中、R~Rは、それぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR10、-COR11、-COOR12、-OCOR13、-NR1415、-NHCOR16、-CONR1718、-NHCONR1920、-NHCOOR21、-SR22、-SO23、-SOOR24、-NHSO25、-SONR2627、-B(OR28、および-NHBR2930からなる群より選択されるいずれかを表す。R10~R30は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基からなる群より選択されるいずれかを表す。なお、-COOR12のR12が水素の場合(すなわち、カルボキシル基)は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、-SOOR24のR24が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。また、RとR、RとRは互いに結合して環を形成してもよい。 In general formula (4), R 1 to R 4 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, —OR 10 , —COR 11 , —COOR 12 , —OCOR 13 , —NR 14 R 15 , —NHCOR 16 , —CONR 17 R 18 , —NHCONR 19 R 20 , —NHCOOR 21 , —SR 22 , —SO 2 R 23 , —SO 2 OR 24 , -NHSO 2 R 25 , -SO 2 NR 26 R 27 , -B(OR 28 ) 2 and -NHBR 29 R 30 ; each of R 10 to R 30 is independently selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, and an aralkyl group; represents When R 12 of —COOR 12 is hydrogen (ie, carboxyl group), the hydrogen atom may be dissociated (ie, carbonate group), or may be in the form of a salt. In addition, when R 24 of —SO 2 OR 24 is a hydrogen atom (ie sulfo group), the hydrogen atom may be dissociated (ie sulfonate group) or in a salt state. Also, R 1 and R 2 , R 3 and R 4 may combine with each other to form a ring.
 「置換基」としては、例えば、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR100、-COR101、-COOR102、-OCOR103、-NR104105、-NHCOR106、-CONR107108、-NHCONR109110、-NHCOOR111、-SR112、-SO113、-SOOR114、-NHSO115、または-SONR116117等が挙げられる。
 R100~R117は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、またはアラルキル基を表す。なお、-COOR102のR102が水素の場合(すなわち、カルボキシル基)は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、-SOOR114のR114が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。
The "substituent" includes, for example, a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, -OR 100 , -COR 101 , -COOR 102 , - OCOR 103 , —NR 104 R 105 , —NHCOR 106 , —CONR 107 R 108 , —NHCONR 109 R 110 , —NHCOOR 111 , —SR 112 , —SO 2 R 113 , —SO 2 OR 114 , —NHSO 2 R 115 , or —SO 2 NR 116 R 117 and the like.
R 100 to R 117 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group or an aralkyl group. When R 102 of —COOR 102 is hydrogen (ie, carboxyl group), the hydrogen atom may be dissociated (ie, carbonate group), or may be in a salt state. In addition, when R 114 of —SO 2 OR 114 is a hydrogen atom (ie, sulfo group), the hydrogen atom may be dissociated (ie, sulfonate group) or in a salt state.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルキル基の炭素数は、1~20が好ましく、1~12がさらに好ましく、1~8が特に好ましい。アルキル基は直鎖、分岐、環状のいずれでもよい。
 アルケニル基の炭素数は、2~20が好ましく、2~12がさらに好ましく、2~8が特に好ましい。アルケニル基は直鎖、分岐、環状のいずれでもよい。
 アルキニル基の炭素数は、2~20が好ましく、2~12がさらに好ましく、2~8が特に好ましい。アルキニル基は直鎖、分岐、環状のいずれでもよい。
 アリール基の炭素数は、6~25が好ましく、6~15がさらに好ましく、6~10が特に好ましい。
 アラルキル基のアルキル部分は、上記アルキル基と同様である。アラルキル基のアリール部分は、上記アリール基と同様である。アラルキル基の炭素数は、7~40が好ましく、7~30がさらに好ましく、7~25が特に好ましい。
 ヘテロアリール基は、単環または縮合環が好ましく、単環または縮合数が2~8の縮合環がさらに好ましく、単環または縮合数が2~4の縮合環が特に好ましい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子、または硫黄原子が好ましい。ヘテロアリール基は、5員環または6員環が好ましい。ヘテロアリール基の環を構成する炭素原子の数は3~30が好ましく、3~18がさらに好ましく、3~12が特に好ましい。
 アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基は置換基を有していてもよく、無置換であってもよい。置換基としては上述した「置換基」が挙げられる。
Halogen atoms include fluorine, chlorine, bromine and iodine atoms.
The number of carbon atoms in the alkyl group is preferably 1-20, more preferably 1-12, and particularly preferably 1-8. Alkyl groups may be linear, branched or cyclic.
The alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms. Alkenyl groups may be linear, branched or cyclic.
The alkynyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, and particularly preferably 2 to 8 carbon atoms. Alkynyl groups may be linear, branched or cyclic.
The aryl group preferably has 6 to 25 carbon atoms, more preferably 6 to 15 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
The alkyl portion of the aralkyl group is the same as the alkyl group described above. The aryl portion of the aralkyl group is the same as the above aryl group. The aralkyl group preferably has 7 to 40 carbon atoms, more preferably 7 to 30 carbon atoms, and particularly preferably 7 to 25 carbon atoms.
The heteroaryl group is preferably a single ring or a condensed ring, more preferably a single ring or a condensed ring with 2 to 8 condensed numbers, and particularly preferably a monocyclic ring or a condensed ring with 2 to 4 condensed numbers. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1-3. A heteroatom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom, or a sulfur atom. A heteroaryl group is preferably a 5- or 6-membered ring. The number of carbon atoms constituting the ring of the heteroaryl group is preferably 3-30, more preferably 3-18, particularly preferably 3-12.
Alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, and aralkyl groups may have a substituent or may be unsubstituted. Examples of the substituent include the "substituent" described above.
 スクアリリウム化合物は、耐光性、耐熱性の観点から、下記一般式(5)で表される化合物がより好ましい。 From the viewpoint of light resistance and heat resistance, the squarylium compound is more preferably a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
 一般式(5)中、R~Rは、それぞれ独立に、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アラルキル基、-OR50、-COR51、-COOR52、-OCOR53、-NR5455、-NHCOR56、-CONR5758、-NHCONR5960、-NHCOOR61、-SR62、-SO63、-SOOR64、-NHSO65、-SONR6667、-B(OR68、および-NHBR6970からなる群より選択されるいずれかを表す。R50~R70は、それぞれ独立に、水素原子、置換基を有してもよいアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、およびアラルキル基を表す。なお、-COOR52のR52が水素の場合(すなわち、カルボキシル基)は、水素原子が解離してもよく(すなわち、カルボネート基)、塩の状態であってもよい。また、-SOOR64のR64が水素原子の場合(すなわち、スルホ基)は、水素原子が解離してもよく(すなわち、スルホネート基)、塩の状態であってもよい。また、RとR、RとRはお互いに結合して環を形成してもよい。 In general formula (5), R 5 to R 8 each independently represent a halogen atom, a cyano group, a nitro group, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group, —OR 50 , —COR 51 , —COOR 52 , —OCOR 53 , —NR 54 R 55 , —NHCOR 56 , —CONR 57 R 58 , —NHCONR 59 R 60 , —NHCOOR 61 , —SR 62 , —SO 2 R 63 , —SO 2 OR 64 , —NHSO 2 R 65 , —SO 2 NR 66 R 67 , —B(OR 68 ) 2 and —NHBR 69 R 70 . R 50 to R 70 each independently represent a hydrogen atom, an optionally substituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group and aralkyl group. When R 52 of —COOR 52 is hydrogen (ie, carboxyl group), the hydrogen atom may be dissociated (ie, carbonate group), or it may be in the form of a salt. In addition, when R 64 of —SO 2 OR 64 is a hydrogen atom (ie, sulfo group), the hydrogen atom may be dissociated (ie, sulfonate group) or in a salt state. Also, R 5 and R 6 and R 7 and R 8 may combine with each other to form a ring.
 「置換基」は、上述の「置換基」と同様の意義である。 "Substituent" has the same meaning as the above-mentioned "substituent".
 以下、スクアリリウム化合物の具体例を示す。なお、本発明の実施形態はこれらに限定されない。 Specific examples of squarylium compounds are shown below. In addition, embodiment of this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
(ピロロピロール化合物)
 ピロロピロール化合物は、下記一般式(6)で表される化合物が好ましい。
(Pyrrolopyrrole compound)
The pyrrolopyrrole compound is preferably a compound represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
 一般式(6)中、R1x及びR1yは、それぞれ独立に、アルキル基、アリール基又はヘテロアリール基を表し、R及びRは、それぞれ独立に、水素原子又は置換基を表し、R及びRは、互いに結合して環を形成してもよく、Rは、水素原子、アルキル基、アリール基、ヘテロアリール基、-BR4x4y又は金属原子を表し、Rは、R1x、R1y及びRからなる群から選ばれる少なくとも1つと共有結合又は配位結合してもよく、R4x4yは、それぞれ独立に、置換基を表す。一般式(6)は、特開2009-263614号公報、特開2011-68731号公報、及び国際公開第2015/166873号に記載されている。 In general formula (6), R 1x and R 1y each independently represent an alkyl group, an aryl group or a heteroaryl group, R 2 and R 3 each independently represent a hydrogen atom or a substituent, and R 2 and R 3 may combine with each other to form a ring, R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, -BR 4x R 4y or a metal atom, and R 4 is It may be covalently or coordinately bonded to at least one selected from the group consisting of R 1x , R 1y and R 3 , and R 4x R 4y each independently represents a substituent. General formula (6) is described in JP-A-2009-263614, JP-A-2011-68731, and International Publication No. 2015/166873.
 R1x及びR1yは、それぞれ独立に、アリール基又はヘテロアリール基が好ましく、アリール基がより好ましい。また、R1x及びR1yが表すアルキル基、アリール基及びヘテロアリール基は、置換基を有してもよく、無置換であってもよい。置換基としては、アルコキシ基、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、-OCOR11、-SOR12、-SO13等が挙げられる。R11~R13は、それぞれ独立に、炭化水素基又はヘテロアリール基を表す。また、置換基としては、例えば、特開2009-263614号公報の段落0020~0022に記載の置換基が挙げられる。なかでも、置換基としては、アルコキシ基、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、-OCOR11、-SOR12、-SO13が好ましい。R1x及びR1yで表される基としては、分岐アルキル基を有するアルコキシ基、又は-OCOR11で表される基を置換基として有するアリール基であることが好ましい。分岐アルキル基の炭素数は、3~30が好ましく、3~20がより好ましい。 R 1x and R 1y are each independently preferably an aryl group or a heteroaryl group, more preferably an aryl group. In addition, the alkyl group, aryl group and heteroaryl group represented by R 1x and R 1y may have a substituent or may be unsubstituted. Examples of substituents include alkoxy groups, hydroxy groups, halogen atoms, cyano groups, nitro groups, —OCOR 11 , —SOR 12 , —SO 2 R 13 and the like. R 11 to R 13 each independently represent a hydrocarbon group or a heteroaryl group. Examples of substituents include those described in paragraphs 0020 to 0022 of JP-A-2009-263614. Among them, preferred substituents are alkoxy groups, hydroxy groups, halogen atoms, cyano groups, nitro groups, -OCOR 11 , -SOR 12 and -SO 2 R 13 . The group represented by R 1x and R 1y is preferably an alkoxy group having a branched alkyl group or an aryl group having a group represented by —OCOR 11 as a substituent. The branched alkyl group preferably has 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms.
 R及びRの少なくとも一方は電子吸引性基が好ましく、Rは電子吸引性基を表し、Rはヘテロアリール基を表すことがより好ましい。ヘテロアリール基は、5員環又は6員環が好ましい。また、ヘテロアリール基は、単環又は縮合環が好ましく、単環又は縮合数が2~8の縮合環が好ましく、単環又は縮合数が2~4の縮合環がより好ましい。ヘテロアリール基を構成するヘテロ原子の数は、1~3が好ましく、1~2がより好ましい。ヘテロ原子としては、例えば、窒素原子、酸素原子、硫黄原子が挙げられる。ヘテロアリール基は、窒素原子を1個以上有することが好ましい。一般式(6)における2個のR同士は同一であってもよく、異なっていてもよい。また、一般式(6)における2個のR同士は同一であってもよく、異なっていてもよい。 At least one of R 2 and R 3 is preferably an electron-withdrawing group, more preferably R 2 represents an electron-withdrawing group and R 3 represents a heteroaryl group. A heteroaryl group is preferably a 5- or 6-membered ring. The heteroaryl group is preferably a single ring or a condensed ring, preferably a single ring or a condensed ring with 2 to 8 condensed numbers, more preferably a monocyclic ring or a condensed ring with 2 to 4 condensed numbers. The number of heteroatoms constituting the heteroaryl group is preferably 1-3, more preferably 1-2. Heteroatoms include, for example, nitrogen atoms, oxygen atoms, and sulfur atoms. Heteroaryl groups preferably have one or more nitrogen atoms. Two R 2 groups in general formula (6) may be the same or different. Two R 3 groups in formula (6) may be the same or different.
 Rは、水素原子、アルキル基、アリール基、ヘテロアリール基、又は-BR4x4yで表される基であることが好ましく、水素原子、アルキル基、アリール基、又は-BR4x4yで表される基であることがより好ましく、-BR4x4yで表される基であることが特に好ましい。R4x4yが表す置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アリール基、又はヘテロアリール基が好ましく、アルキル基、アリール基、又はヘテロアリール基がより好ましく、アリール基が特に好ましい。これらの基は、更に置換基を有してもよい。一般式(6)における2個のR同士は同一または異なっていてもよい。 R 4 is preferably a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, or a group represented by -BR 4x R 4y , and is preferably a hydrogen atom, an alkyl group, an aryl group, or -BR 4x R 4y A group represented by —BR 4x R 4y is particularly preferable. The substituent represented by R 4x R 4y is preferably a halogen atom, an alkyl group, an alkoxy group, an aryl group, or a heteroaryl group, more preferably an alkyl group, an aryl group, or a heteroaryl group, and particularly preferably an aryl group. These groups may further have a substituent. Two R 4 groups in general formula (6) may be the same or different.
 以下、ピロロピロール化合物の具体例を示す。以下の構造式中、Meはメチル基、Phはフェニル基を表す。また、ピロロピロール化合物としては、例えば、特開2009-263614号公報の段落0016~0058、特開2011-68731号公報の段落0037~0052、特開2014-130343号公報の段落0014~0027、国際公開第2015/166873号の段落0010~0033に記載の化合物が挙げられる。なお、本発明の実施形態はこれらに限定されない。 Specific examples of pyrrolopyrrole compounds are shown below. In the following structural formulas, Me represents a methyl group and Ph represents a phenyl group. Further, as the pyrrolopyrrole compound, for example, paragraphs 0016 to 0058 of JP-A-2009-263614, paragraphs 0037-0052 of JP-A-2011-68731, paragraphs 0014-0027 of JP-A-2014-130343, international Examples include compounds described in paragraphs 0010-0033 of Publication No. 2015/166873. In addition, embodiment of this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
(ナフタロシアニン化合物)
 ナフタロシアニン化合物は、下記一般式(7)で表される化合物が好ましい。
(naphthalocyanine compound)
The naphthalocyanine compound is preferably a compound represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
 一般式(7)中、R~R24は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基、ニトリル基、カルボキシル基、スルホン基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアルコキシル基、置換基を有してもよいアリールオキシ基、置換基を有してもよいアルキルチオ基、置換基を有してもよいアリールチオ基、置換基を有してもよいアルキルアミノ基、置換基を有してもよいアリールアミノ基、または置換基を有してもよいスルファモイル基を表す。
 Zは、一般式(8)で示す単量体単位を含む重合体部位、または一般式(9)で表すリン化合物部位であり、*は、Alとの結合手である。)
In general formula (7), R 1 to R 24 each independently represent a hydrogen atom, a halogen atom, a nitro group, a nitrile group, a carboxyl group, a sulfone group, an optionally substituted alkyl group, or a substituent. optionally substituted aryl group, optionally substituted cycloalkyl group, optionally substituted alkoxyl group, optionally substituted aryloxy group, optionally substituted an optionally substituted alkylthio group, an optionally substituted arylthio group, an optionally substituted alkylamino group, an optionally substituted arylamino group, or an optionally substituted sulfamoyl group represents
Z is a polymer site containing a monomer unit represented by general formula (8) or a phosphorus compound site represented by general formula (9), and * is a bond with Al. )
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
 一般式(8)中、Xは、-CONH-R25-、-COO-R26-、-CONH-R27-O-、または-COO-R28-O-を表し、R25~R28は、炭素原子と炭素原子の間が、-O-、-CO-、-COO-、-OCO-、-CONH-、または-NHCO-で連結されていてもよいアルキレン基もしくはアリーレン基を表す。R31は水素原子またはメチル基を表す。) In general formula (8), X represents -CONH-R 25 -, -COO-R 26 -, -CONH-R 27 -O-, or -COO-R 28 -O-, and R 25 to R 28 represents an alkylene group or an arylene group optionally linked by -O-, -CO-, -COO-, -OCO-, -CONH- or -NHCO- between carbon atoms. R31 represents a hydrogen atom or a methyl group. )
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
 一般式(9)中、R29およびR30は、それぞれ独立に、水酸基、置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシル基、または置換基を有してもよいアリールオキシ基を表し、R29とR30は、互いに結合して環を形成してもよい。 In general formula (9), R 29 and R 30 each independently represent a hydroxyl group, an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted It represents an alkoxyl group or an optionally substituted aryloxy group, and R 29 and R 30 may combine with each other to form a ring.
 以下、ナフタロシアニン化合物の具体例を示す。なお、本発明はこれらに限定されない。 Specific examples of naphthalocyanine compounds are shown below. In addition, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
 近赤外線吸収剤(E)の含有量は、組成物の不揮発分中、0.005~50質量%が好ましく、0.01~40質量%がより好ましい。目的の分光カット率によって紫外線吸収剤の含有量を設計することができる。 The content of the near-infrared absorbent (E) is preferably 0.005 to 50% by mass, more preferably 0.01 to 40% by mass, based on the non-volatile content of the composition. The content of the ultraviolet absorber can be designed according to the desired spectral cut rate.
[樹脂]
 本発明の実施形態の組成物は、樹脂を含有できる。樹脂は、例えば、熱可塑性樹脂、光硬化性樹脂、熱硬化性樹脂等が挙げられる。
[resin]
Compositions of embodiments of the present invention may contain a resin. Resins include, for example, thermoplastic resins, photocurable resins, and thermosetting resins.
 本発明の実施形態の紫外線吸収剤、および熱可塑性樹脂を含む組成物を説明する。組成物は、例えば、成形体用途に使用できる。熱可塑性樹脂は、例えば、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリアクリル樹脂、ポリエステ樹脂ル、ポリアミド樹脂、ポリエーテルイミド樹脂、シクロオレフィン樹脂等が挙げられる。 A composition containing an ultraviolet absorber and a thermoplastic resin according to an embodiment of the present invention will be described. The composition can be used, for example, for molding applications. Examples of thermoplastic resins include polyolefin resins, polycarbonate resins, polyacrylic resins, polyester resins, polyamide resins, polyetherimide resins, cycloolefin resins, and the like.
(ポリオレフィン樹脂)
 ポリオレフィン樹脂は、例えば、ポリエチレン、ポリプロピレン、ポリブテン-1、およびポリ-4-メチルペンテン、ならびにこれらの共重合体等が挙げられる。
 ポリエチレンは、例えば、低密度ポリエチレン、高密度ポリエチレン等が挙げられる。
 ポリプロピレンは、例えば、結晶性または非晶性ポリプロピレン等が挙げられる。
 これらを用いた共重合体は、例えば、エチレン-プロピレンのランダム、ブロックあるいはグラフト共重合体、α-オレフィンとエチレンあるいはプロピレンの共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体等が挙げられる。
 これらの中でも結晶性または非晶性ポリプロピレン、エチレン-プロピレンのランダム、ブロックあるいはグラフト共重合体が好ましく、プロピレン-エチレンブロック共重合体がより好ましい。また、安価、かつ、比重が小さいために成形品を軽量化できる観点から、ポリプロピレン系樹脂が好ましい。
(polyolefin resin)
Polyolefin resins include, for example, polyethylene, polypropylene, polybutene-1, poly-4-methylpentene, and copolymers thereof.
Examples of polyethylene include low-density polyethylene, high-density polyethylene, and the like.
Polypropylene includes, for example, crystalline or amorphous polypropylene.
Copolymers using these include, for example, ethylene-propylene random, block or graft copolymers, α-olefin and ethylene or propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-methyl acrylate copolymers. polymers, ethylene-ethyl acrylate copolymers, ethylene-acrylic acid copolymers, and the like.
Among these, crystalline or amorphous polypropylene and ethylene-propylene random, block or graft copolymers are preferred, and propylene-ethylene block copolymers are more preferred. In addition, polypropylene-based resins are preferable from the viewpoint of being inexpensive and having a small specific gravity, so that the weight of molded articles can be reduced.
 ポリオレフィン樹脂の数平均分子量は、30,000~500,000程度である。 The number average molecular weight of polyolefin resin is about 30,000 to 500,000.
 ポリオレフィン樹脂のメルトフローレイト(MFR)は、1~100(g/10分)が好ましい。なお、MFRはJISK-7210に準拠して求めた数値である。 The melt flow rate (MFR) of the polyolefin resin is preferably 1 to 100 (g/10 minutes). Note that MFR is a numerical value determined according to JISK-7210.
(ポリカーボネート樹脂)
 ポリカーボネート樹脂は、非晶性樹脂であり、芳香族ジヒドロキシ化合物に、ホスゲン或いは炭酸ジエステル等のカーボネート前駆体を反応させて合成する。ホスゲンを用いる合成反応の場合は、例えば、界面法が好ましい。また、炭酸ジエステルを用いる合成反応の場合、溶融状で反応させるエステル交換法が好ましい。
(polycarbonate resin)
A polycarbonate resin is an amorphous resin, and is synthesized by reacting an aromatic dihydroxy compound with a carbonate precursor such as phosgene or carbonic acid diester. In the case of synthesis reactions using phosgene, for example, interfacial methods are preferred. Moreover, in the case of a synthetic reaction using a carbonic acid diester, a transesterification method in which the reaction is performed in a molten state is preferred.
 芳香族ジヒドロキシ化合物は、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類;4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等のジヒドロキシジアリールエーテル類;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィドのようなジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類等が挙げられる。また、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル類を混合して使用してもよい。 Aromatic dihydroxy compounds are, for example, 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2 - bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, bis(4-hydroxyphenyl)phenylmethane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxy-3-t-butylphenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy-3,5- bis(hydroxyaryl)alkanes such as dibromophenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl)propane; 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1- bis(hydroxyaryl)cycloalkanes such as bis(4-hydroxyphenyl)cyclohexane; dihydroxydiaryl ethers such as 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether;4, Dihydroxydiarylsulfides such as 4'-dihydroxydiphenylsulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfide; 4,4'-dihydroxydiphenylsulfoxide, 4,4'-dihydroxy-3,3' -dihydroxydiarylsulfoxides such as dimethyldiphenylsulfoxide; and dihydroxydiarylsulfones such as 4,4'-dihydroxydiphenylsulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfone. Also, piperazine, dipiperidylhydroquinone, resorcinol, and 4,4'-dihydroxydiphenyls may be mixed and used.
 カーボネート前駆体は、例えば、ホスゲン、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類等が挙げられる。 Examples of carbonate precursors include diaryl carbonates such as phosgene, diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate;
 芳香族ジヒドロキシ化合物およびカーボネート前駆体は、それぞれ単独または2種類以上を併用して使用できる。 The aromatic dihydroxy compound and the carbonate precursor can each be used alone or in combination of two or more.
 ポリカーボネート樹脂の粘度平均分子量は、15,000~30,000が好ましく、16,000~27,000がより好ましい。なお、本明細書における粘度平均分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算される値である。 The viscosity average molecular weight of the polycarbonate resin is preferably 15,000 to 30,000, more preferably 16,000 to 27,000. The viscosity-average molecular weight in this specification is a value converted from solution viscosity measured at a temperature of 25° C. using methylene chloride as a solvent.
 ポリカーボネート樹脂の市販品は、例えば、ユーピロンH-4000(三菱エンジニアリングプラスチック社製、粘度平均分子量16,000)ユーピロンS-3000(三菱エンジニアリングプラスチック社製、粘度平均分子量23,000)、ユーピロンE-2000(三菱エンジニアリングプラスチック社製、粘度平均分子量27,000)等が挙げられる。 Commercially available polycarbonate resins include, for example, Iupilon H-4000 (manufactured by Mitsubishi Engineering-Plastics, viscosity average molecular weight 16,000), Iupilon S-3000 (Mitsubishi Engineering-Plastics, viscosity average molecular weight 23,000), and Iupilon E-2000. (manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 27,000).
(ポリアクリル樹脂)
 ポリアクリル樹脂は、メタクリル酸メチルおよび/またはメタクリル酸エチル等のモノマーおよび必要に応じて使用する他のモノマーを公知の方法で重合した化合物である。ポリアクリル樹脂は、例えば、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体等が挙げられる。前記モノマーの他に、例えば、ブタジエン、α-メチルスチレン、無水マレイン酸等のモノマーを加えて重合することもでき、モノマー量と分子量によって耐熱性、流動性、衝撃性を調整することができる。
(polyacrylic resin)
A polyacrylic resin is a compound obtained by polymerizing monomers such as methyl methacrylate and/or ethyl methacrylate and optionally other monomers by a known method. Examples of polyacrylic resins include ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene-acrylic acid copolymers, and the like. In addition to the above monomers, monomers such as butadiene, α-methylstyrene, and maleic anhydride can be added for polymerization, and the heat resistance, fluidity, and impact resistance can be adjusted by adjusting the monomer weight and molecular weight.
(ポリエステル樹脂)
 ポリエステル樹脂は、分子の主鎖にエステル結合を有する樹脂であり、ジカルボン酸(その誘導体を含む)と、ジオール(2価アルコールまたは2価フェノール)とから合成した重縮合物;ジカルボン酸(その誘導体を含む)と、環状エーテル化合物とから合成した重縮合物;環状エーテル化合物の開環重合物等が挙げられる。ポリエステル樹脂は、ジカルボン酸とジオールでの重合体によるホモポリマー、複数の原料を使用するコポリマー、これらを混合するポリマーブレンド体等が挙げられる。なお、ジカルボン酸の誘導体とは、酸無水物、エステル化物等である。ジカルボン酸は、脂肪族および芳香族の2種類のジカルボン酸があり、耐熱性が向上する観点から、芳香族ジカルボン酸がより好ましい。
(polyester resin)
Polyester resin is a resin having an ester bond in the main chain of the molecule, and polycondensate synthesized from dicarboxylic acid (including derivatives thereof) and diol (dihydric alcohol or dihydric phenol); including) and a polycondensate synthesized from a cyclic ether compound; and a ring-opening polymer of a cyclic ether compound. The polyester resin includes a homopolymer obtained by polymerizing a dicarboxylic acid and a diol, a copolymer using a plurality of raw materials, a polymer blend obtained by mixing these materials, and the like. The dicarboxylic acid derivatives include acid anhydrides, esters and the like. There are two kinds of dicarboxylic acids, aliphatic and aromatic dicarboxylic acids, and aromatic dicarboxylic acids are more preferable from the viewpoint of improving heat resistance.
 芳香族ジカルボン酸は、例えば、テレフタル酸、イソフタル酸、フタル酸、クロルフタル酸、ニトロフタル酸、p-カルボキシルフェニル酢酸、m-フェニレンジグリゴール酸、p-フェニレンジグリコール酸、ジフェニルジ酢酸、ジフェニル-p,p’-ジカルボン酸、ジフェニル-4,4’-ジ酢酸、ジフェニルメタン-p,p’-ジカルボン酸、ジフェニルエタン-m,m’-ジカルボン酸、スチルベンジルカルボン酸、ジフェニルブタン-p,p’-ジカルボン酸、ベンゾフェノン-4,4’-ジカルボン酸、ナフタリン-1,4-ジカルボン酸、ナフタリン-1,5-ジカルボン酸、ナフタリン-2,6-ジカルボン酸、ナフタリン-2,7-ジカルボン酸、p-カルボキシフェノキシ酢酸、p-カルボキシフェノキシブチル酸、1,2-ジフェノキシプロパン-p,p’-ジカルボン酸、1,5-ジフェノキシペンタン-p,p’-ジカルボン酸、1,6-ジフェノキシヘキサン-p,p’-ジカルボン酸、p-(p-カルボキシフェノキシ)安息香酸、1,2-ビス(2-メトキシフェノキシ)-エタン-p,p’-ジカルボン酸、1,3-ビス(2-メトキシフェノキシ)プロパン-p,p’-ジカルボン酸、1,4-ビス(2-メトキシフェノキシ)ブタン-p,p’-ジカルボン酸、1,5-ビス(2-メトキシフェノキシ)-3-オキシペンタン-p,p’-ジカルボン酸等が挙げられる。
 脂肪族ジカルボン酸は、例えば、シュウ酸、コハク酸、アジピン酸、コルク酸、マゼライン酸、セバシン酸、ドデカンジカルボン酸、ウンデカンジカルボン酸、マレイン酸、フマル酸等が挙げられる。
Aromatic dicarboxylic acids are, for example, terephthalic acid, isophthalic acid, phthalic acid, chlorophthalic acid, nitrophthalic acid, p-carboxylphenylacetic acid, m-phenylenediglycolic acid, p-phenylenediglycolic acid, diphenyldiacetic acid, diphenyl-p , p'-dicarboxylic acid, diphenyl-4,4'-diacetic acid, diphenylmethane-p,p'-dicarboxylic acid, diphenylethane-m,m'-dicarboxylic acid, stilbenzylcarboxylic acid, diphenylbutane-p,p' -dicarboxylic acid, benzophenone-4,4'-dicarboxylic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, p-carboxyphenoxyacetic acid, p-carboxyphenoxybutyric acid, 1,2-diphenoxypropane-p,p'-dicarboxylic acid, 1,5-diphenoxypentane-p,p'-dicarboxylic acid, 1,6-di Phenoxyhexane-p,p'-dicarboxylic acid, p-(p-carboxyphenoxy)benzoic acid, 1,2-bis(2-methoxyphenoxy)-ethane-p,p'-dicarboxylic acid, 1,3-bis( 2-Methoxyphenoxy)propane-p,p'-dicarboxylic acid, 1,4-bis(2-methoxyphenoxy)butane-p,p'-dicarboxylic acid, 1,5-bis(2-methoxyphenoxy)-3- oxypentane-p,p'-dicarboxylic acid and the like.
Examples of aliphatic dicarboxylic acids include oxalic acid, succinic acid, adipic acid, corcic acid, mazelaic acid, sebacic acid, dodecanedicarboxylic acid, undecanedicarboxylic acid, maleic acid, and fumaric acid.
 2価アルコールは、例えば、エチレングリコール、トリメチレングリコール、ブタン-1,3-ジオール、ブタン-1,4-ジオール、2,2-ジメチルプロパン-1,4-ジオール、cis-2-ブテン-1,4-ジオール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、シクロヘキサンジメタノール等が挙げられる。これらの中でもエチレングリコール、ブタン-1,4-ジオール、シクロヘキサンジメタノールが好ましい。
2価フェノールは、例えば、ヒドロキノン、レゾルシノール、ビスフェノールA等が挙げられる。
 環状エーテル化合物は、例えば、エチレンオキサイド、プロピレンオキサイド等が挙げられる。
Dihydric alcohols are, for example, ethylene glycol, trimethylene glycol, butane-1,3-diol, butane-1,4-diol, 2,2-dimethylpropane-1,4-diol, cis-2-butene-1 ,4-diol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, cyclohexanedimethanol and the like. Among these, ethylene glycol, butane-1,4-diol and cyclohexanedimethanol are preferred.
Dihydric phenols include, for example, hydroquinone, resorcinol, bisphenol A and the like.
Examples of cyclic ether compounds include ethylene oxide and propylene oxide.
 ジカルボン酸及び2価アルコールは、それぞれ単独または2種類以上を併用して使用できる。 Dicarboxylic acids and dihydric alcohols can be used either alone or in combination of two or more.
(ポリアミド樹脂)
 ポリアミド樹脂は、結晶性樹脂であり、例えば、カルボン酸成分と、アミノ基を2個以上有する化合物(Am)とを脱水縮合反応させて合成できる。
(polyamide resin)
A polyamide resin is a crystalline resin, and can be synthesized, for example, by subjecting a carboxylic acid component and a compound (Am) having two or more amino groups to a dehydration condensation reaction.
 カルボン酸成分は、例えば、アジピン酸、セバシン酸、イソフタル酸、テレフタル酸等が挙げられる。なお、カルボン酸成分は、3以上のカルボキシル基を有する化合物を使用できる。
 アミノ基を2個以上有する化合物(Am)は、例えば、公知のものを使用することができ、例えば、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、トリエチレンテトラミン等の脂肪族ポリアミン;イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン等の脂環式ポリアミンを含む脂肪族ポリアミン;フェニレンジアミン、キシリレンジアミン等の芳香族ポリアミン;1,3-ジアミノ-2-プロパノール、1,4-ジアミノ-2-ブタノール、1-アミノ-3-(アミノメチル)-3,5,5-トリメチルシクロヘキサン-1-オール、4-(2-アミノエチル)-4,7,10-トリアザデカン-2-オール、3-(2-ヒドロキシプロピル)-o-キシレン-α,α’-ジアミン等のジアミノアルコールが挙げられる。
 ポリアミド樹脂の市販品は、例えば、6ナイロン(東レ社製)、66ナイロン(東レ社製)、610ナイロン(東レ社製)等が挙げられる。
Carboxylic acid components include, for example, adipic acid, sebacic acid, isophthalic acid, and terephthalic acid. A compound having 3 or more carboxyl groups can be used as the carboxylic acid component.
Known compounds (Am) having two or more amino groups can be used, for example, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, triethylene Aliphatic polyamines such as tetramine; Aliphatic polyamines including alicyclic polyamines such as isophoronediamine and dicyclohexylmethane-4,4'-diamine; Aromatic polyamines such as phenylenediamine and xylylenediamine; 1,3-diamino-2 -propanol, 1,4-diamino-2-butanol, 1-amino-3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-ol, 4-(2-aminoethyl)-4,7, Diaminoalcohols such as 10-triazadecan-2-ol and 3-(2-hydroxypropyl)-o-xylene-α,α'-diamine can be mentioned.
Examples of commercially available polyamide resins include nylon 6 (manufactured by Toray Industries, Inc.), nylon 66 (manufactured by Toray Industries, Inc.), and nylon 610 (manufactured by Toray Industries, Inc.).
(ポリエーテルイミド樹脂)
 ポリエーテルイミド樹脂は、ガラス転移温度が180℃超の非晶性樹脂であり、透明性良好で高強度、高耐熱性、高弾性率および広範な耐薬品性を有している。そのため自動車、遠隔通信、航空宇宙、電気/電子、輸送およびヘルスケアなどの多様な用途で広範に使用されている。
 ポリエーテルイミド樹脂の製造プロセスの1つは、ビスフェノールA二ナトリウム塩(BPA・Na)などのジヒドロキシ芳香族化合物のアルカリ金属塩とビス(ハロフタルイミド)との重合によるものである。得られたポリエーテルイミドの分子量は2つの方法で制御できる。第1の方法は、ジヒドロキシ芳香族化合物のアルカリ金属塩に対して、モル過剰のビス(ハロフタルイミド)を使用することである。第2の方法は、末端キャッピング剤を形成する無水フタル酸などの単官能性化合物の存在下でビス(無水ハロフタル酸)を調製することである。無水フタル酸は、有機ジアミンの一部と反応してモノハロ-ビス(フタルイミド)を形成する。モノハロ-ビス(フタルイミド)は、成長中のポリマー鎖におけるフェノキシド末端基との反応による重合ステップにおいて、末端-キャッピング剤として働く。
 ポリエーテルイミド樹脂の市販品は、例えば、ULTEM(サウジ基礎産業公社製)等が挙げられる。
(Polyetherimide resin)
A polyetherimide resin is an amorphous resin having a glass transition temperature of more than 180° C., and has good transparency, high strength, high heat resistance, high elastic modulus, and broad chemical resistance. As such, they are widely used in diverse applications such as automotive, telecommunications, aerospace, electrical/electronics, transportation and healthcare.
One process for making polyetherimide resins is by polymerization of alkali metal salts of dihydroxyaromatic compounds, such as bisphenol A disodium salt (BPA.Na 2 ), and bis(halophthalimide). The molecular weight of the resulting polyetherimide can be controlled in two ways. The first method is to use a molar excess of bis(halophthalimide) to the alkali metal salt of the dihydroxyaromatic compound. A second method is to prepare the bis(halophthalic anhydride) in the presence of a monofunctional compound such as phthalic anhydride which forms an endcapping agent. Phthalic anhydride reacts with some of the organic diamines to form monohalo-bis(phthalimides). Monohalo-bis(phthalimides) serve as end-capping agents in the polymerization step by reacting with phenoxide end groups in growing polymer chains.
Commercially available polyetherimide resins include, for example, ULTEM (manufactured by Saudi Basic Industries Corporation).
(シクロオレフィン樹脂)
 シクロオレフィン樹脂は、主鎖および又は側鎖に脂環構造を有する非晶性樹脂である。脂環構造の種類は、例えば、ノルボルネン重合体、単環の環状オレフィン重合体、環状共役ジエン重合体、およびビニル脂環式炭化水素重合体、ならびにこれらの水素化物等が挙げられる。これらの中でも成形性と透明性に優れることから、ノルボルネン重合体が好ましい。ノルボルネン単量体は、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)等が挙げられる。
 シクロオレフィン樹脂の市販品は、例えば、トパス(ポリプラスチックス社製)、アペル(三井化学社製)等が挙げられる。
(Cycloolefin resin)
A cycloolefin resin is an amorphous resin having an alicyclic structure in its main chain and/or side chains. Types of alicyclic structures include, for example, norbornene polymers, monocyclic cyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Among these, the norbornene polymer is preferred because of its excellent moldability and transparency. Norbornene monomers include, for example, bicyclo[2.2.1]hept-2-ene (common name: norbornene), tricyclo[4.3.0.12,5]deca-3,7-diene (common name : dicyclopentadiene), 7,8-benzotricyclo[4.3.0.12,5]dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo[4.4.0.12,5. 17,10]dodeca-3-ene (common name: tetracyclododecene) and the like.
Examples of commercially available cycloolefin resins include Topas (manufactured by Polyplastics) and APEL (manufactured by Mitsui Chemicals, Inc.).
(ポリビニルアセタール樹脂)
 ポリビニルアセタール樹脂は、ポリビニルアルコールをアルデヒドでアセタール化して得られるポリビニルアセタールが好ましい。ポリビニルアセタール樹脂は、ポリビニルブチラール樹脂より好ましい。ポリビニルブチラール樹脂は、例えば、ポリビニルアルコールとブチルアルデヒドを酸性条件下で反応させて合成できる。
(polyvinyl acetal resin)
Polyvinyl acetal resin is preferably polyvinyl acetal obtained by acetalizing polyvinyl alcohol with aldehyde. Polyvinyl acetal resins are preferred over polyvinyl butyral resins. Polyvinyl butyral resin can be synthesized, for example, by reacting polyvinyl alcohol and butyraldehyde under acidic conditions.
 熱可塑性樹脂は、単独または2種類以上を併用して使用できる。 The thermoplastic resin can be used alone or in combination of two or more.
 紫外線吸収剤の含有量は、熱可塑性樹脂100質量部に対して、0.01~10質量部が好ましく、0.05~1質量部がより好ましい。 The content of the ultraviolet absorber is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 1 part by mass, with respect to 100 parts by mass of the thermoplastic resin.
 紫外線吸収剤と熱可塑性樹脂を含む組成物は、例えば、紫外線吸収剤を高濃度で配合したマスターバッチとして製造することが好ましい。マスターバッチを作製し、次いで、希釈樹脂(熱可塑性樹脂)と溶融混錬して成形体を作製すると、マスターバッチを経ず作製した成形体と比較して、紫外線吸収剤を成形体中に均一に分散し易く、紫外線吸収剤の凝集を抑制できるこれにより、成形体の透明性が向上する。
 マスターバッチは、例えば、紫外線吸収剤と熱可塑性樹脂を溶融混練し、ペレタイザーを使用してペレット状に製造できる。なお、紫外線吸収剤の凝集を防ぐため、予め、紫外線吸収剤とワックスを溶融混練した分散体を作製した後、熱可塑性樹脂と共に、溶融混錬してマスターバッチを作製することが好ましい。ここで、分散体の作製は、例えば、ブレンドミキサー又は3本ロールミルを用いることが好ましい。
A composition containing an ultraviolet absorber and a thermoplastic resin is preferably produced, for example, as a masterbatch in which the ultraviolet absorber is blended at a high concentration. When a masterbatch is prepared and then melted and kneaded with a diluent resin (thermoplastic resin) to prepare a molded article, the UV absorber is more uniform in the molded article than a molded article prepared without the masterbatch. It is easy to disperse in water, and aggregation of the ultraviolet absorber can be suppressed. This improves the transparency of the molded article.
The masterbatch can be produced, for example, by melt-kneading an ultraviolet absorber and a thermoplastic resin and using a pelletizer to produce pellets. In order to prevent aggregation of the ultraviolet absorber, it is preferable to melt-knead the ultraviolet absorber and wax in advance to prepare a dispersion, and then melt-knead the dispersion together with the thermoplastic resin to prepare a masterbatch. Here, it is preferable to use, for example, a blend mixer or a three-roll mill for preparation of the dispersion.
 組成物をマスターバッチとして作製する場合、紫外線吸収剤の配合量は、熱可塑性樹脂100質量部に対して、0.1~30質量部が好ましく、0.5~3質量部がより好ましい。マスターバッチ(X)と希釈用樹脂(Y)との質量比は、X/Y=1/5~1/100が好ましい。この範囲にすると成形品は、良好な光特性が得やすい。 When the composition is produced as a masterbatch, the blending amount of the ultraviolet absorber is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 3 parts by mass, with respect to 100 parts by mass of the thermoplastic resin. The mass ratio between the masterbatch (X) and the diluent resin (Y) is preferably X/Y=1/5 to 1/100. Within this range, the molded product tends to have good optical properties.
 また、本発明の実施形態の組成物は、液状マスターバッチを作製し、次いで、希釈樹脂(熱可塑性樹脂)とともに溶融混錬して成形体を作製することができる。
 液状マスターバッチは、紫外線吸収剤を液体樹脂に溶解もしくは分散させて得られる。
Moreover, the composition of the embodiment of the present invention can be prepared into a molded body by preparing a liquid masterbatch and then melt-kneading it with a diluent resin (thermoplastic resin).
A liquid masterbatch is obtained by dissolving or dispersing an ultraviolet absorber in a liquid resin.
 液体樹脂は、25℃の粘度が8,000mPa・s以下の樹脂である。なお、粘度は、10~5,000mPa・sが好ましく、100~3,000mPa・sがより好ましい。上記範囲内であると、紫外線吸収剤を液状マスターバッチ中に容易に分散できる。本明細書における粘度はJIS K7117-1:1999に従ってB型粘度計を用いて25℃で測定した値である。 A liquid resin is a resin with a viscosity of 8,000 mPa·s or less at 25°C. The viscosity is preferably 10 to 5,000 mPa·s, more preferably 100 to 3,000 mPa·s. Within the above range, the ultraviolet absorber can be easily dispersed in the liquid masterbatch. Viscosity in this specification is a value measured at 25° C. using a Brookfield viscometer according to JIS K7117-1:1999.
 液体樹脂の含有量は、液状マスターバッチ100質量部中、50質量%以上が好ましく、60~95質量%がより好ましく、70~90質量%がさらに好ましい。この範囲内であることにより、例えば、溶融混錬の際、溶融粘度を抑制できるため、紫外線吸収剤を分散し易くなる。この液状マスターバッチを使用すると、透明性が高い成形体が得られる。 The content of the liquid resin is preferably 50% by mass or more, more preferably 60 to 95% by mass, and even more preferably 70 to 90% by mass, based on 100 parts by mass of the liquid masterbatch. By being within this range, for example, the melt viscosity can be suppressed during melt kneading, making it easier to disperse the ultraviolet absorber. Using this liquid masterbatch gives a molded article with high transparency.
 また、液体樹脂の数平均分子量(Mn)は、100~3000が好ましく、200~2000がより好ましく、500~1500がさらに好ましく、1000~1500が特に好ましい。Mnが100以上により成形体の成形性と透明性を両立し易い。また、Mnが3000以下により、分散性と帯電防止性が向上する。 The number average molecular weight (Mn) of the liquid resin is preferably 100-3000, more preferably 200-2000, even more preferably 500-1500, and particularly preferably 1000-1500. When Mn is 100 or more, it is easy to achieve both moldability and transparency of the molded product. Further, when Mn is 3000 or less, dispersibility and antistatic properties are improved.
 液体樹脂は、例えば、エポキシ化大豆油、エポキシ化アマニ油等のエポキシ系樹脂、脂肪族ポリエステル樹脂、ポリアルキレングリコール樹脂、ポリエーテルエステル樹脂、またはアセチルクエン酸トリブチル等が挙げられるが、主剤樹脂がポリエチレンテレフタレート(PET)及びポリカーボネートなどの高い成型温度が必要な場合にも、耐熱性が高く、帯電防止性も優れる点で、脂肪族ポリエステル、ポリアルキレングリコール樹脂、ポリエーテルエステル樹脂、またはアセチルクエン酸トリブチルが好ましい。 Liquid resins include, for example, epoxy resins such as epoxidized soybean oil and epoxidized linseed oil, aliphatic polyester resins, polyalkylene glycol resins, polyether ester resins, and tributyl acetylcitrate. Even when high molding temperatures such as polyethylene terephthalate (PET) and polycarbonate are required, aliphatic polyesters, polyalkylene glycol resins, polyether ester resins, or acetyl citric acid resins are used because they have high heat resistance and excellent antistatic properties. Tributyl is preferred.
(脂肪族ポリエステル樹脂)
 脂肪族ポリエステル樹脂は、脂肪族多価カルボン酸と多価アルコールとの反応によって得られる樹脂である。
(Aliphatic polyester resin)
An aliphatic polyester resin is a resin obtained by reacting an aliphatic polyhydric carboxylic acid and a polyhydric alcohol.
 脂肪族多価カルボン酸は、カルボキシル基を2つ以上有する脂肪族カルボン酸である。脂肪族多価カルボン酸は、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、トリカルバリル酸、1,3,6-ヘキサントリカルボン酸、1,3,5-ヘキサントリカルボン酸等が挙げられる。 An aliphatic polycarboxylic acid is an aliphatic carboxylic acid having two or more carboxyl groups. Aliphatic polycarboxylic acids include, for example, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, tricarballylic acid, 1,3,6-hexanetricarboxylic acid, 1 , 3,5-hexanetricarboxylic acid and the like.
 多価アルコールは、水酸基を2つ以上有するアルコールである。多価アルコールは、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等の脂肪族グリコール及びジエチレングリコール、ジプロピレングリコール等のポリアルキレングリコール等が挙げられる。 A polyhydric alcohol is an alcohol having two or more hydroxyl groups. Polyhydric alcohols are, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1 ,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1 ,3-propanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, Aliphatic glycols such as 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol and 1,12-octadecanediol, and polyalkylene glycols such as diethylene glycol and dipropylene glycol. be done.
 脂肪族カルボン酸および多価アルコールは、それぞれ単独または2種類以上併用して使用できる。 Aliphatic carboxylic acids and polyhydric alcohols can be used alone or in combination of two or more.
 脂肪族ポリエステル樹脂の凝固点は、-5℃以下が好ましく、-50℃~-10℃がより好ましい。 The freezing point of the aliphatic polyester resin is preferably -5°C or lower, more preferably -50°C to -10°C.
 脂肪族ポリエステル樹脂の市販品は、例えば、アデカサイザーPN‐170(株式会社ADEKA製、25℃での粘度800mPa・s、凝固点-15℃、アジピン酸ポリエステル)、アデカサイザーP-200(株式会社ADEKA製、25℃での粘度2,600mPa・s、凝固点-20℃、アジピン酸ポリエステル)、アデカサイザーPN-250(株式会社ADEKA製、25℃での粘度4,500mPa・s、凝固点-20℃、アジピン酸ポリエステル)等が挙げられる。 Commercially available aliphatic polyester resins include, for example, Adekasizer PN-170 (manufactured by ADEKA Co., Ltd., viscosity at 25 ° C.: 800 mPa s, freezing point -15 ° C., adipate polyester), Adekasizer P-200 (ADEKA Co., Ltd. manufactured by ADEKA CORPORATION, viscosity at 25 ° C. 2,600 mPa s, freezing point -20 ° C., adipate polyester), ADEKA CIZER PN-250 (manufactured by ADEKA Co., Ltd., viscosity at 25 ° C. 4,500 mPa s, freezing point -20 ° C., adipic acid polyester) and the like.
(ポリエーテル樹脂)
 ポリエーテル樹脂は、アルキレンオキシ基の繰り返し単位を有する樹脂である。アルキレンオキシ基の炭素数は1~6が好ましい。ポリエーテル樹脂は、25℃における粘度が10,000mPa・s以下が好ましい。この粘度であれば、液状マスターバッチ用途の使用に適している。なお、アルキレンオキシ基の炭素数は、2~4が好ましい。これにより相溶性が向上する一方、吸水性を抑制できる。
(polyether resin)
A polyether resin is a resin having repeating units of alkyleneoxy groups. The number of carbon atoms in the alkyleneoxy group is preferably 1-6. The polyether resin preferably has a viscosity of 10,000 mPa·s or less at 25°C. This viscosity is suitable for use in liquid masterbatch applications. The number of carbon atoms in the alkyleneoxy group is preferably 2-4. While compatibility improves by this, water absorption can be suppressed.
 ポリエーテル樹脂は、例えば、いずれも繰り返し単位中の炭素数が2であるポリエチレングリコール、いずれも繰り返し単位中の炭素数が3であるポリトリメチレングリコールおよびポリプロピレングリコール、及びいずれも繰り返し単位中の炭素数が4であるポリテトラメチレングリコールおよびポリブチレングリコール等が挙げられる。 Polyether resins include, for example, polyethylene glycol each having 2 carbon atoms in the repeating unit, polytrimethylene glycol and polypropylene glycol both having 3 carbon atoms in the repeating unit, and carbon Examples include polytetramethylene glycol and polybutylene glycol having a number of four.
(ポリエーテルエステル樹脂)
 ポリエーテルエステル樹脂は、脂肪族多価カルボン酸樹脂とアルキレングリコール樹脂とのエステル化合物である。
(polyether ester resin)
A polyether ester resin is an ester compound of an aliphatic polycarboxylic acid resin and an alkylene glycol resin.
 ポリエーテルエステル樹脂の市販品は、例えば、アデカサイザーRS‐107(株式会社ADEKA製、25℃での粘度20mPa・s、凝固点-47℃、アジピン酸エーテルエステル系樹脂)、アデカサイザーRS-700(株式会社ADEKA製、25℃での粘度30mPa・s、凝固点-53℃、ポリエーテルエステル系樹脂)等が挙げられる。 Commercially available polyetherester resins include, for example, Adekasizer RS-107 (manufactured by ADEKA Co., Ltd., viscosity at 25°C: 20 mPa s, freezing point: -47°C, adipate ether ester resin), Adekasizer RS-700 ( manufactured by ADEKA Co., Ltd., viscosity at 25° C. of 30 mPa·s, freezing point of −53° C., polyether ester resin) and the like.
 ポリエーテルエステル樹脂の凝固点は、-5℃以下が好ましく、-50℃~-10℃がより好ましい。 The freezing point of the polyetherester resin is preferably -5°C or lower, more preferably -50°C to -10°C.
 本明細書の組成物は、可塑剤分散液を作製し、次いで、希釈樹脂(熱可塑性樹脂)とともに溶融混錬して成形体を作製することができる。 For the composition of the present specification, a molded body can be produced by preparing a plasticizer dispersion and then melt-kneading it with a diluent resin (thermoplastic resin).
 紫外線吸収剤の含有量は、可塑剤分散液中、0.1~30質量%が好ましい。 The content of the ultraviolet absorber is preferably 0.1 to 30% by mass in the plasticizer dispersion.
 可塑剤分散液は、紫外線吸収剤を可塑剤に溶解もしくは分散して作製する。 A plasticizer dispersion is prepared by dissolving or dispersing an ultraviolet absorber in a plasticizer.
 可塑剤は、例えば、フタル酸エステル、アジピン酸エステル、トリメリット酸エステル、ポリエステル、リン酸エステル、クエン酸エステル、エポキシ化植物油、セバシン酸エステルなどが挙げられる。これらの中でもトリエチレングリコール-ジ-2-エチルヘキサノエート、トリエチレングリコール-ジ-n-ヘプタノエートが好ましく、トリエチレングリコール-ジ-2-エチルヘキサノエートがより好ましい。 Examples of plasticizers include phthalates, adipates, trimellitates, polyesters, phosphates, citrates, epoxidized vegetable oils, and sebacates. Among these, triethylene glycol-di-2-ethylhexanoate and triethylene glycol-di-n-heptanoate are preferred, and triethylene glycol-di-2-ethylhexanoate is more preferred.
 可塑剤は、単独または2種類以上併用して使用できる。 The plasticizer can be used alone or in combination of two or more.
 可塑剤の含有量は、可塑剤分散液中、60~99.9質量%が好ましい。 The content of the plasticizer is preferably 60 to 99.9% by mass in the plasticizer dispersion.
(樹脂型分散剤)
 本発明における液状マスターバッチ、及び可塑剤分散液は樹脂型分散剤を含んでもよい。これにより、液状マスターバッチ及び可塑剤分散液中で、紫外線吸収剤がより均一に分散されるため、成形体はさらに高い透明性が得られる。また、樹脂型分散剤を含むことで、液状マスターバッチ及び可塑剤分散液の保存安定性が向上する。
(resin type dispersant)
The liquid masterbatch and plasticizer dispersion in the present invention may contain a resin type dispersant. As a result, the UV absorber is more uniformly dispersed in the liquid masterbatch and the plasticizer dispersion, so that the molded article has even higher transparency. Moreover, the storage stability of the liquid masterbatch and the plasticizer dispersion is improved by containing the resin type dispersant.
 樹脂型分散剤は、紫外線吸収剤及び色材に吸着する性質を有する吸着部位と、紫外線吸収剤及び色材以外の成分と相溶性のある緩和部位とを有する樹脂である。樹脂型分散剤は、塩基性分散剤、酸性分散剤、中性分散剤又は両性分散剤等が挙げられる。樹脂型分散剤の主骨格は、例えば、ポリウレタン骨格、ポリオレフィン骨格、ポリ(メタ)アクリル骨格、ポリエステル骨格、ポリアミド骨格、ポリカーボネート骨格、ポリエーテル骨格、ポリシロキサン骨格、ポリビニル骨格、ポリイミド骨格、ポリウレア骨格等が挙げられ、さらにこれらの骨格の複合樹脂でもよい。また、樹脂型分散剤の分子構造に制限は無く、ランダム構造、ブロック構造、鎖状構造、櫛型構造又は星型構造等が挙げられる。 The resin-type dispersant is a resin that has an adsorption site that has the property of adsorbing to the ultraviolet absorber and the colorant, and a relaxation site that is compatible with components other than the ultraviolet absorber and the colorant. Examples of the resin-type dispersant include basic dispersants, acidic dispersants, neutral dispersants, amphoteric dispersants, and the like. The main skeleton of the resin-type dispersant is, for example, a polyurethane skeleton, a polyolefin skeleton, a poly(meth)acrylic skeleton, a polyester skeleton, a polyamide skeleton, a polycarbonate skeleton, a polyether skeleton, a polysiloxane skeleton, a polyvinyl skeleton, a polyimide skeleton, a polyurea skeleton, or the like. and composite resins of these skeletons may also be used. Moreover, the molecular structure of the resin-type dispersant is not limited, and examples thereof include a random structure, a block structure, a chain structure, a comb-like structure, a star-like structure, and the like.
 また、樹脂型分散剤が酸性基又は塩基性基を有する場合、その一部もしくは全てが中和されていてもよい。 Also, when the resin-type dispersant has an acidic group or a basic group, some or all of them may be neutralized.
 酸性基としては、例えば、スルホ基、フェノール部位、リン酸基またはカルボキシル基が挙げられる。これらの中でもカルボキシル基が好ましい。 Examples of acidic groups include sulfo groups, phenol moieties, phosphoric acid groups and carboxyl groups. Among these, a carboxyl group is preferred.
 塩基性基としては、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩部位が挙げられる。中でも、3級アミノ基、及び4級アンモニウム塩部位が好ましい。 Basic groups include primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium salt moieties. Among them, a tertiary amino group and a quaternary ammonium salt moiety are preferred.
 上記分散剤のうち少量の添加量で分散体の粘度が低くなるという理由から、塩基性官能基を有する樹脂型分散剤及び塩基性官能基を有する高分子分散剤が好ましく、窒素原子含有グラフト共重合体、側鎖に3級アミノ基、4級アンモニウム塩基、含窒素複素環などを含む官能基を有する、窒素原子含有アクリル系ブロック共重合体、ウレタン系樹脂型分散剤及びウレタン系高分子分散剤などが好ましい。 Among the above-mentioned dispersants, a resin type dispersant having a basic functional group and a polymeric dispersant having a basic functional group are preferred because the viscosity of the dispersion is lowered with a small addition amount. Polymers, nitrogen atom-containing acrylic block copolymers, urethane resin type dispersants and urethane polymer dispersions having functional groups containing tertiary amino groups, quaternary ammonium bases, nitrogen-containing heterocycles, etc. in side chains agents and the like are preferred.
 樹脂型分散剤は、単独または2種類以上併用して使用できる。 The resin-type dispersant can be used alone or in combination of two or more.
 樹脂型分散剤の含有量は、紫外線吸収剤100質量部に対して5~200質量%程度が好ましく、10~100質量%程度がより好ましい。 The content of the resin-type dispersant is preferably about 5-200% by mass, more preferably about 10-100% by mass, relative to 100 parts by mass of the ultraviolet absorber.
 樹脂型分散剤の市販品は、例えば、ビックケミー・ジャパン社製のDisperbyk-101、103、107、108、110、111、116、130、140、154、161、162、163、164、165、166、170、171、174、180、181、182、183、184、185、190、2000、2001、2020、2025、2050、2070、2095、2150、2155またはAnti-Terra-U、203、204、またはBYK-P104、P104S、220S、6919、またはLactimon、Lactimon-WSまたはBykumen等、日本ルーブリゾール社製のSOLSPERSE-3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、76500等、BASF社製のEFKA-46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503等、味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられる。 Commercially available resin-type dispersants include, for example, Disperbyk-101, 103, 107, 108, 110, 111, 116, 130, 140, 154, 161, 162, 163, 164, 165, 166 manufactured by BYK-Chemie Japan. , 170,171,174,180,181,182,183,184,185,190,2000,2001,2020,2025,2050,2070,2095,2150,2155 or Anti-Terra-U,203,204, or BYK-P104, P104S, 220S, 6919, or Lactimon, Lactimon-WS or Bykumen, SOLSPERSE-3000, 9000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000, 21000, manufactured by Nippon Lubrizol 24000, 26000, 27000, 28000, 31845, 32000, 32500, 32550, 33500, 32600, 34750, 35100, 36600, 38500, 41000, 41090, 53095, 55000, 76500, etc., BASF-486EFK, 486EFK, , 452, 4008, 4009, 4010, 4015, 4020, 4047, 4050, 4055, 4060, 4080, 4400, 4401, 4402, 4403, 4406, 4408, 4300, 4310, 4320, 4330, 4340, 450, 451, 453 , 4540, 4550, 4560, 4800, 5010, 5065, 5066, 5070, 7500, 7554, 1101, 120, 150, 1501, 1502, 1503, etc. Ajinomoto Fine-Techno Co., Inc. Ajisper PA111, PB711, PB821, PB822, PB824 etc.
 なお、樹脂型分散剤が有機溶剤に溶解した状態の場合は、液体樹脂を添加し、減圧して加熱し、溶媒を留去して使用することが好ましい。その場合、これを含有する液状マスターバッチも有機溶剤を含まないため、工程面でも使用しやすい。 When the resin-type dispersant is dissolved in an organic solvent, it is preferable to add the liquid resin, heat under reduced pressure, and distill off the solvent before use. In that case, since the liquid masterbatch containing this also does not contain an organic solvent, it is easy to use in the process.
<液状マスターバッチの製造方法>
 液状マスターバッチは、紫外線吸収剤と液状樹脂を混合することで作製できる。なお、作製には、樹脂型分散剤を用いることが好ましい。混合には、例えば、ニーダー、2本ロールミル、3本ロールミル、ボールミル、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、またはアトライター等の装置を使用できる。
<Method for producing liquid masterbatch>
A liquid masterbatch can be produced by mixing an ultraviolet absorber and a liquid resin. In addition, it is preferable to use a resin-type dispersant for the production. A device such as a kneader, a two-roll mill, a three-roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, an annular bead mill, or an attritor can be used for mixing.
<可塑剤分散液の製造方法>
 可塑剤分散液は、紫外線吸収剤と可塑剤を混合することで作製できる。なお、作製には、樹脂型分散剤を用いることが好ましい。混合には、前記「液状マスターバッチの製造方法」で説明した装置を使用できる。
<Method for producing plasticizer dispersion>
A plasticizer dispersion can be prepared by mixing an ultraviolet absorber and a plasticizer. In addition, it is preferable to use a resin-type dispersant for the production. For mixing, the apparatus described in the above "method for producing liquid masterbatch" can be used.
 本明細書の組成物は、熱可塑性樹脂、紫外線吸収剤以外に任意成分として、酸化防止剤、光安定剤、分散剤、ワックス等を含有できる。 The composition of the present specification can contain antioxidants, light stabilizers, dispersants, waxes, etc. as optional components in addition to thermoplastic resins and ultraviolet absorbers.
 紫外線吸収剤と熱可塑性樹脂を含む組成物は、例えば、塗料として使用できる。 A composition containing an ultraviolet absorber and a thermoplastic resin can be used, for example, as a paint.
 熱可塑性樹脂は、ガラス転移温度が、30℃以上の樹脂が好ましい。熱可塑性樹脂は、例えば、ニトロセルロース、ポリエステル等が挙げられる。 The thermoplastic resin preferably has a glass transition temperature of 30°C or higher. Examples of thermoplastic resins include nitrocellulose and polyester.
 塗料は、樹脂型分散剤としてカルボキシル基を有する樹脂型分散剤を含んでもよい。カルボキシル基を有する樹脂型分散剤の分子構造は、櫛型又は直鎖状等が挙げられる。 The paint may contain a resin-type dispersant having a carboxyl group as a resin-type dispersant. The molecular structure of the resin-type dispersant having a carboxyl group may be comb-shaped or linear.
(櫛型の樹脂型分散剤)
 カルボキシル基を有する櫛型の樹脂型分散剤としては、例えば、下記(S1)又は(S2)が挙げられる。
(Comb-shaped resin-type dispersant)
Examples of the comb-shaped resin-type dispersant having a carboxyl group include the following (S1) or (S2).
[樹脂型分散剤(S1)]
 樹脂型分散剤(S1)は、国際公開第2008/007776号、特開2008-029901号公報、及び特開2009-155406号公報等の公知の方法で製造することができる。
 例えば、水酸基を有する重合体の水酸基と、テトラカルボン酸二無水物の酸無水物基との反応生成物である樹脂型分散剤;及び水酸基を有する化合物の水酸基と、テトラカルボン酸二無水物の酸無水物基との反応生成物の存在下に、エチレン性不飽和単量体を重合した重合体である樹脂型分散剤等が挙げられる。
[Resin Dispersant (S1)]
The resin-type dispersant (S1) can be produced by known methods such as those disclosed in International Publication No. 2008/007776, JP-A-2008-029901, and JP-A-2009-155406.
For example, a resin-type dispersant that is a reaction product of a hydroxyl group of a polymer having a hydroxyl group and an acid anhydride group of a tetracarboxylic dianhydride; and a hydroxyl group of a compound having a hydroxyl group and a tetracarboxylic dianhydride. Examples thereof include resin-type dispersants, which are polymers obtained by polymerizing ethylenically unsaturated monomers in the presence of reaction products with acid anhydride groups.
[樹脂型分散剤(S2)]
 樹脂型分散剤(S2)は、国際公開第2008/007776号、特開2009-155406号公報、特開2010-185934号公報、及び特開2011-157416号公報等の公知の方法で製造することができる。
 例えば、水酸基を有する化合物の水酸基と、テトラカルボン酸二無水物の酸無水物基との反応生成物の存在下に、水酸基、t-ブチル基あるいはオキセタン骨格、ブロックイソシアネートなどの熱架橋基を有するエチレン性不飽和単量体とそれ以外を重合した側鎖をもつ樹脂型分散剤;さらにその側鎖の水酸基にイソシアネート基を有するエチレン性不飽和単量体を反応させて得られる樹脂型分散剤等が挙げられる。
[Resin Dispersant (S2)]
The resin type dispersant (S2) is manufactured by known methods such as WO 2008/007776, JP 2009-155406, JP 2010-185934, and JP 2011-157416. can be done.
For example, in the presence of a reaction product of a hydroxyl group of a compound having a hydroxyl group and an acid anhydride group of a tetracarboxylic dianhydride, a hydroxyl group, a t-butyl group, an oxetane skeleton, or a thermal cross-linking group such as a blocked isocyanate is present. A resin-type dispersant having a side chain obtained by polymerizing an ethylenically unsaturated monomer and other substances; a resin-type dispersant obtained by further reacting an ethylenically unsaturated monomer having an isocyanate group with the hydroxyl group of the side chain. etc.
(直鎖状の樹脂型分散剤)
 直鎖状の樹脂型分散剤は、公知の方法を利用して製造することができ、例えば、特開2009-251481号公報、特開2007-23195号公報、及び特開平8-143651号公報、に示されるような公知の方法を利用して合成することができる。直鎖の分散剤の製造方法の一例として、カルボキシル基を有する分散剤は、片末端に1つの水酸基を有するビニル系重合体を原料として、トリカルボン酸無水物を水酸基に付加することによって製造することができる。
(Linear resin-type dispersant)
A linear resin-type dispersant can be produced using a known method. can be synthesized using a known method as shown in . As an example of a method for producing a linear dispersant, a dispersant having a carboxyl group can be produced by adding a tricarboxylic acid anhydride to the hydroxyl group of a vinyl polymer having one hydroxyl group at one end. can be done.
(その他の樹脂型分散剤)
 その他の樹脂型分散剤としては、紫外線吸収剤及び色材に吸着する性質を有する親和性部位と、紫外線吸収剤や色材担体と相溶性のある部位とを有し、添加紫外線吸収剤及び色材に吸着して着色剤担体への分散を安定化する作用を有するものであればよく、前述と重複するものも含めて、具体的には、ポリウレタン、ポリアクリレート等のポリカルボン酸エステル、不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカルボン酸エステル、これらの変性物、ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミド及びその塩等の油性分散剤、(メタ)アクリル酸-スチレン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-マレイン酸共重合体、ポリビニルアルコ-ル、ポリビニルピロリドン等の水溶性樹脂、水溶性高分子化合物、ポリエステル系、変性ポリアクリレート系、エチレンオキサイド/プロピレンオキサイド付加化合物、リン酸エステル系等が用いられ、これらは単独または2種以上を混合して用いることができる。
 塩基性官能基を有する高分子分散剤としては、窒素原子含有グラフト共重合体、側鎖に3級アミノ基、4級アンモニウム塩基、含窒素複素環などを含む官能基を有する、窒素原子含有アクリル系ブロック共重合体及びウレタン系高分子分散剤などが挙げられる。
(Other resin-type dispersants)
Other resin-type dispersants have an affinity site that has the property of adsorbing to the ultraviolet absorber and the colorant, and a site that is compatible with the ultraviolet absorber and the colorant carrier. Any material can be used as long as it has an action of adsorbing to the material and stabilizing the dispersion in the colorant carrier. Saturated polyamide, polycarboxylic acid, polycarboxylic acid (partial) amine salt, polycarboxylic acid ammonium salt, polycarboxylic acid alkylamine salt, polysiloxane, long-chain polyaminoamide phosphate, hydroxyl group-containing polycarboxylic acid ester, modification thereof oil-based dispersants such as amides and salts thereof formed by the reaction of poly(lower alkyleneimine) and polyesters having free carboxyl groups, (meth)acrylic acid-styrene copolymers, (meth)acrylic acid- (Meth)acrylic acid ester copolymer, styrene-maleic acid copolymer, polyvinyl alcohol, water-soluble resin such as polyvinylpyrrolidone, water-soluble polymer compound, polyester, modified polyacrylate, ethylene oxide/propylene oxide Addition compounds, phosphate esters and the like are used, and these can be used alone or in combination of two or more.
Examples of polymeric dispersants having basic functional groups include nitrogen atom-containing graft copolymers, nitrogen atom-containing acrylic resins having functional groups containing tertiary amino groups, quaternary ammonium bases, nitrogen-containing heterocycles, etc. in side chains. system block copolymers and urethane polymer dispersants.
 樹脂型分散剤の市販品は、前記同様である。 Commercially available resin-type dispersants are the same as above.
 次に、本発明の実施形態の紫外線吸収剤、および光硬化性樹脂を含む組成物を説明する。組成物は、例えば、ハードコート層、トップコート層、各種積層体の中間層などの塗膜層用途に使用できる。この場合、組成物は、紫外線吸収剤、光重合性化合物および光重合開始剤を含むことが好ましい。また、組成物中の紫外線吸収剤は光硬化性部位を含むことがより好ましい。また、組成物は、樹脂を含有できる。また、組成物は、光硬化性組成物として公知の添加剤及び必要に応じて有機溶剤を含有できる。 Next, a composition containing an ultraviolet absorber and a photocurable resin according to an embodiment of the present invention will be described. The composition can be used, for example, for coating layers such as hard coat layers, top coat layers, and intermediate layers of various laminates. In this case, the composition preferably contains an ultraviolet absorber, a photopolymerizable compound and a photopolymerization initiator. Moreover, it is more preferable that the ultraviolet absorber in the composition contains a photocurable site. The composition can also contain a resin. In addition, the composition can contain known additives for photocurable compositions and, if necessary, an organic solvent.
 光重合性化合物は、モノマーおよびオリゴマーを含む。光重合性化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、トリメチロールプロパンPO変性トリ(メタ)アクリレート、トリメチロールプロパンEO変性トリ(メタ)アクリレート、イソシアヌル酸EO変性ジ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,6-ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、ネオペンチルグリコールジグリシジルエーテルジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、エステルアクリレート、メチロール化メラミンの(メタ)アクリル酸エステル、エポキシ(メタ)アクリレート、ウレタンアクリレート等の各種アクリル酸エステル及びメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、N-ビニルホルムアミド、アクリロニトリル等が挙げられる。  Photopolymerizable compounds include monomers and oligomers. Photopolymerizable compounds include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, β-carboxyethyl (meth) ) acrylate, polyethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, phenoxy Tetraethylene glycol (meth)acrylate, phenoxyhexaethyleneglycol (meth)acrylate, trimethylolpropane PO-modified tri(meth)acrylate, trimethylolpropane EO-modified tri(meth)acrylate, isocyanuric acid EO-modified di(meth)acrylate, isocyanurate Acid EO modified tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, 1,6-hexanediol diglycidyl ether di(meth)acrylate, bisphenol A diglycidyl ether di(meth)acrylate, neopentyl glycol diglycidyl ether di(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, tricyclodecanyl(meth)acrylate, ester Various acrylic and methacrylic esters such as acrylates, methylolated melamine (meth)acrylates, epoxy (meth)acrylates, urethane acrylates, (meth)acrylic acid, styrene, vinyl acetate, hydroxyethyl vinyl ether, ethylene glycol di vinyl ether, pentaerythritol trivinyl ether, (meth)acrylamide, N-hydroxymethyl(meth)acrylamide, N-vinylformamide, acrylonitrile and the like.
 光重合開始剤は、例えば、アセトフェノンアセトフェノン環含有化合物、ベンゾイン環含有化合物、ベンゾフェノン環含有化合物、チオキサントン環含有化合物、トリアジン環含有化合物、オキシムエステル系化合物、ホスフィン系化合物、キノン系化合物、ボレート系化合物、カルバゾール環含有化合物、イミダゾール環含有化合物、チタノセン系化合物等が挙げられる。これらの中でも高感度の面でオキシムエステル系化合物が好ましい。 Photopolymerization initiators include, for example, acetophenone acetophenone ring-containing compounds, benzoin ring-containing compounds, benzophenone ring-containing compounds, thioxanthone ring-containing compounds, triazine ring-containing compounds, oxime ester compounds, phosphine compounds, quinone compounds, and borate compounds. , carbazole ring-containing compounds, imidazole ring-containing compounds, titanocene compounds, and the like. Among these, oxime ester compounds are preferred in terms of high sensitivity.
 次に、本発明の実施形態の紫外線吸収剤、および熱硬化性樹脂を含む、組成物を説明する。組成物は、例えば、塗料、粘着剤用途に使用できる。この場合、組成物は、紫外線吸収剤、熱硬化性樹脂を含むことが好ましく、さらに硬化剤を含むことが好ましい。換言すると組成物は、紫外線吸収剤、熱硬化性樹脂(粘着性樹脂)、および硬化剤を含有することが好ましい。 Next, a composition containing an ultraviolet absorber and a thermosetting resin according to an embodiment of the present invention will be described. The composition can be used, for example, for paints and adhesives. In this case, the composition preferably contains an ultraviolet absorber and a thermosetting resin, and further preferably contains a curing agent. In other words, the composition preferably contains an ultraviolet absorber, a thermosetting resin (adhesive resin), and a curing agent.
 粘着性樹脂は、ガラス転移温度が-50~-20℃の樹脂である。粘着性樹脂の種類は、例えば、アクリル樹脂、ポリエステル、ウレタン樹脂等が挙げられる。また、粘着性樹脂は、硬化剤と反応可能な官能基を有することが好ましい。官能基は、例えば、カルボキシル基、水酸基等が挙げられる。 The adhesive resin is a resin with a glass transition temperature of -50 to -20°C. Types of adhesive resins include, for example, acrylic resins, polyesters, and urethane resins. Also, the adhesive resin preferably has a functional group capable of reacting with the curing agent. Functional groups include, for example, carboxyl groups and hydroxyl groups.
 硬化剤は、例えば、イソシアネート硬化剤、エポキシ硬化剤、アジリジン硬化剤、金属キレート硬化剤等が挙げられる。 Curing agents include, for example, isocyanate curing agents, epoxy curing agents, aziridine curing agents, and metal chelate curing agents.
≪成形体≫
 本発明の実施形態の成形体は、紫外線吸収剤と樹脂などを含む組成物を溶融混錬して成形して作製することができる。組成物がマスターバッチである場合、マスターバッチと希釈樹脂を溶融混錬して成形体を作製することが好ましい。なお、本発明の実施形態において成型体は型に樹脂を投入し物品を得るものである。また、成形体は、プラスチックフィルムなど型を使用せずに得た物品と成型体を含む。なお、希釈樹脂は、既に説明した熱可塑性樹脂を使用することが好ましい。
≪Molded body≫
A molded article according to an embodiment of the present invention can be produced by melting and kneading a composition containing an ultraviolet absorber, a resin, and the like, and molding the composition. When the composition is a masterbatch, it is preferable to melt-knead the masterbatch and the diluent resin to produce a compact. In the embodiment of the present invention, the molded article is obtained by putting resin into a mold. Molded articles include articles and molded articles obtained without using a mold, such as plastic films. As for the diluent resin, it is preferable to use the already explained thermoplastic resin.
 溶融混練には、例えば、単軸混練押出機、二軸混練押出機、タンデム式二軸混練押出機等を用いることが好ましい。溶融混錬温度は、熱可塑性樹脂の種類により異なるが、通常150~320℃程度である。 For melt-kneading, it is preferable to use, for example, a single-screw kneading extruder, a twin-screw kneading extruder, a tandem-type twin-screw kneading extruder, or the like. The melt-kneading temperature varies depending on the type of thermoplastic resin, but is usually about 150 to 320°C.
 成形方法は、例えば、押出成形、射出成形、ブロー成形などが挙げられる。押出成形は、例えば、コンプレッション成形、パイプ押出成形、ラミネート成形、Tダイ成形、インフレーション成形、溶融紡糸等が挙げられる。 Examples of molding methods include extrusion molding, injection molding, and blow molding. Examples of extrusion molding include compression molding, pipe extrusion molding, laminate molding, T-die molding, inflation molding, and melt spinning.
 成形温度は、希釈樹脂の軟化点によるが、通常160~320℃である。 The molding temperature is usually 160-320°C, depending on the softening point of the diluted resin.
 本発明の実施形態の成形体は、例えば、医薬品包装材、食品包装材、ディスプレイ、ガラス中間膜、光学レンズ、太陽電池、ウィンドウフィルム、眼鏡レンズ用途に使用することができる。 The molded bodies of the embodiments of the present invention can be used for pharmaceutical packaging materials, food packaging materials, displays, glass interlayer films, optical lenses, solar cells, window films, and spectacle lenses, for example.
 医薬品包装材及び食品包装材は、熱可塑性樹脂に、例えば、ポリエステル樹脂、及びシクロオレフィン樹脂等を使用することが好ましい。これら成形体は、柔軟性および視認性が向上し、内容物の劣化を抑制できる。 For pharmaceutical packaging materials and food packaging materials, it is preferable to use thermoplastic resins such as polyester resins and cycloolefin resins. These molded articles have improved flexibility and visibility, and can suppress deterioration of contents.
 ディスプレイ、ガラス中間膜、光学レンズ、太陽電池用途で使用できる成形体は、熱可塑性樹脂から構成されている成形体であれば何でもよいが、所望の波長に対して透明な性質を有する樹脂からなるフィルムであることが好ましい。このような成形体を構成する樹脂としては、ポリエーテルイミド系樹脂、ポリエーテルスルホン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリスルホン系樹脂、ポリアリレート系樹脂、ポリアミド、ポリカーボネート系樹脂、脂環構造を有するオレフィンポリマー系樹脂(脂環式オレフィンポリマー系樹脂)、セルロースエステル系樹脂などが挙げられる。 Molded articles that can be used for displays, glass interlayer films, optical lenses, and solar cell applications may be any molded articles that are made of thermoplastic resin, but are made of a resin that has a property of being transparent to a desired wavelength. A film is preferred. Examples of resins constituting such a molded body include polyetherimide resins, polyethersulfone resins, polyethylene terephthalate resins, polyimide resins, polysulfone resins, polyarylate resins, polyamides, polycarbonate resins, alicyclic Structured olefin polymer-based resins (alicyclic olefin polymer-based resins), cellulose ester-based resins, and the like are included.
≪塗膜≫
 本発明の実施形態の塗膜は、紫外線吸収剤と樹脂を含む組成物、および有機溶剤などを含む塗料を基板などに塗工して乾燥し作製することができる。例えば、ハードコート層、トップコート層、各種積層体の中間層などの塗膜層、粘着剤層などが挙げられる。
≪Paint film≫
The coating film of the embodiment of the present invention can be produced by coating a substrate or the like with a composition containing an ultraviolet absorber and a resin, and a paint containing an organic solvent and the like, followed by drying. Examples thereof include a hard coat layer, a top coat layer, a coating layer such as an intermediate layer of various laminates, and an adhesive layer.
 ハードコート層、トップコート層、各種積層体の中間層などの塗膜層は、例えば、ディスプレイ用材料、センサー用材料、光学制御材料、各種産業用被覆材、自動車用部品、家電製品、住宅等の建材、トイレタリー用品などの用途で、基材などに塗工して紫外線を遮蔽する膜を形成し、有機材料などの劣化を抑制することができる。 Coating layers such as hard coat layers, top coat layers, intermediate layers of various laminates, for example, display materials, sensor materials, optical control materials, various industrial coating materials, automobile parts, home appliances, housing, etc. In applications such as building materials and toiletry products, it can be applied to base materials to form a film that blocks ultraviolet rays and suppress deterioration of organic materials.
 粘着剤層は、例えば、剥離シート上に塗工し、乾燥することで粘着剤層を形成し、粘着剤層上に基材を貼り合わせて粘着シートを作製できる。 For example, the adhesive layer can be coated on a release sheet and dried to form an adhesive layer, and a base material can be attached to the adhesive layer to produce an adhesive sheet.
 本明細書の粘着シートは、例えば、ディスプレイ(例えば、テレビ、パソコン、スマホ等)、自動車用部品、センサー用部材、家電製品、住宅等の建材、ガラス中間膜用途などの用途で、各基材に貼り合わせる使用することが好ましい。粘着シートは、本発明の実施形態の紫外線吸収剤を含むことで、バックライト及び太陽光に含まれる紫外線、並びに可視光の短波長領域の光を吸収し、目及び人体への悪影響を抑制すること、並びにディスプレイの表示素子の劣化を抑制することができる。なお、シート、フィルムおよびテープは同義語である。 The pressure-sensitive adhesive sheet of the present specification is used, for example, in displays (e.g., televisions, personal computers, smartphones, etc.), automotive parts, sensor members, home appliances, building materials for housing, glass interlayer applications, etc. It is preferable to use it by laminating to. By containing the ultraviolet absorber of the embodiment of the present invention, the adhesive sheet absorbs ultraviolet light contained in backlight and sunlight, and light in the short wavelength region of visible light, and suppresses adverse effects on the eyes and the human body. and deterioration of the display element of the display can be suppressed. Sheet, film and tape are synonyms.
<用途および効果>
 本発明の実施形態の紫外線吸収剤、組成物、成形体および塗膜を後述の用途に用いることで、波長400nm未満の紫外線、および400~420nm程度の可視光短波長領域の光から、有機物及び人体に与えるダメージを低減することが可能である。
<Usage and effect>
By using the ultraviolet absorber, composition, molded article and coating film of the embodiments of the present invention for the applications described later, from ultraviolet rays with a wavelength of less than 400 nm and light in the visible light short wavelength region of about 400 to 420 nm, organic substances and It is possible to reduce the damage inflicted on the human body.
 ディスプレイ用途では、例えば、テレビ、パソコン、スマホ等に使用できる光学フィルム等で使用できる。本発明の実施形態の成形体もしくは塗膜を使用した積層体は、ディスプレイのバックライトに含まれる紫外線及び可視光の短波長領域の光を吸収することで、目への悪影響を抑制することができ、また、太陽光に含まれる紫外線及び可視光の短波長領域の光を吸収することで、ディスプレイの表示素子の劣化を抑制できる。 For display applications, for example, it can be used in optical films that can be used in televisions, personal computers, smartphones, etc. The laminated body using the molded article or the coating film of the embodiment of the present invention can suppress adverse effects on the eyes by absorbing light in the short wavelength region of ultraviolet rays and visible light contained in the backlight of the display. In addition, deterioration of the display element of the display can be suppressed by absorbing light in the short wavelength region of ultraviolet light and visible light contained in sunlight.
 ガラス中間膜用途では、例えば、自動車及び建築物等の合わせガラス等で使用できる。上記の組成物を含む成形体を使用した合わせガラスは、太陽光に含まれる紫外線及び可視光の短波長領域の光を吸収することで、目及び人体への悪影響を抑制することができる。 For glass interlayer applications, for example, it can be used in laminated glass for automobiles and buildings. A laminated glass using a molded article containing the above composition absorbs light in the short wavelength region of ultraviolet light and visible light contained in sunlight, thereby suppressing adverse effects on the eyes and the human body.
 レンズ用途では、例えば、眼鏡及び光学センサー等に使用できるレンズ等で使用できる。上記の組成物を含む成形体を使用したレンズは、例えば、眼鏡用途では太陽光に含まれる紫外線及び可視光の短波長領域の光を吸収することで、目及び人体への悪影響を抑制することができ、光学センサー用途ではノイズに成り得る不要な波長の光をカットすることで、センサーの感度を高めることができる。 For lens applications, for example, it can be used in lenses that can be used in eyeglasses and optical sensors. A lens using a molded body containing the above composition, for example, for spectacle applications, absorbs light in the short wavelength region of ultraviolet light and visible light contained in sunlight, thereby suppressing adverse effects on the eyes and the human body. In optical sensor applications, it is possible to increase the sensitivity of the sensor by cutting unnecessary wavelengths of light that can become noise.
 医薬品薬剤及び化粧品等の包装材料では、内容物であるビタミンなどの特定の成分は、400~420nm程度の可視光短波長領域の光においても劣化するため、従来の紫外線吸収剤に比べ劣化をより低減することができる。 In packaging materials for pharmaceuticals, cosmetics, etc., specific ingredients such as vitamins are degraded even by light in the visible short wavelength region of about 400 to 420 nm. can be reduced.
 一般的に、紫外線および400~420nm程度の可視光短波長領域の光は樹脂を劣化するため、本発明の実施形態の紫外線吸収剤を使用すると樹脂を使用する用途全般において樹脂の劣化を低減できるため、成形体及び塗膜の寿命を延ばし、結果として廃棄物を削減できる。 In general, ultraviolet rays and light in the visible light short wavelength region of about 400 to 420 nm deteriorate resins, so the use of the ultraviolet absorber of the embodiment of the present invention can reduce the deterioration of resins in general applications using resins. Therefore, it is possible to extend the life of the molded article and coating film, and as a result, reduce the amount of waste.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値と任意に組み合わせることができる。 In this specification, a numerical range indicated using "to" indicates a range that includes the numerical values before and after "to" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit or lower limit of the numerical range in one step can be arbitrarily combined with the upper limit or lower limit of the numerical range in another step.
 本発明は2021年7月14日出願の日本特許出願番号2021-116306の主題に関連し、その全開示内容を参照により本明細書に取り込む。 The present invention relates to the subject matter of Japanese Patent Application No. 2021-116306 filed on July 14, 2021, the entire disclosure of which is incorporated herein by reference.
以下、本発明をさらに詳しく説明する。なお、本発明は実施例に限定されない。また、「質量部」は「部」、「質量%」は「%」と記載する。 The present invention will be described in more detail below. In addition, the present invention is not limited to the examples. Also, "parts by mass" is described as "parts", and "% by mass" is described as "%".
<紫外線吸収色素(A-1)の製造方法>
(紫外線吸収色素A-1)
 300mL三角フラスコに、ニトロベンゼンを160部、塩化シアヌルを8部、塩化アルミニウムを17.4部仕込み、撹拌して懸濁させた。次に、氷水で冷却しながら、2-ナフトールを21.9部、少しずつ添加した。その後、徐々に室温に戻しながら終夜撹拌し、反応液(A‘-1)を得た。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、反応液(A‘-1)を少しずつ滴下した。30分撹拌後、ろ別し、紫外線吸収色素(A-1)を含むウェットケーキ(a-1)を得た。
<Method for producing ultraviolet absorbing dye (A-1)>
(Ultraviolet absorbing dye A-1)
160 parts of nitrobenzene, 8 parts of cyanuric chloride and 17.4 parts of aluminum chloride were placed in a 300 mL Erlenmeyer flask and stirred to suspend. Next, while cooling with ice water, 21.9 parts of 2-naphthol was added little by little. Thereafter, the mixture was stirred overnight while gradually returning to room temperature to obtain a reaction liquid (A'-1). On the other hand, a 500 mL beaker was charged with 38.1 parts of water, 10.0 parts of 35% hydrochloric acid and 45.0 parts of methanol, and the reaction solution (A'-1) was added dropwise little by little. After stirring for 30 minutes, the mixture was filtered to obtain a wet cake (a-1) containing the ultraviolet absorbing dye (A-1).
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
<紫外線吸収剤1~4の製造方法>
[紫外線吸収剤1]
 ウェットケーキ(a-1)に、メタノール45gをふりかけて洗浄し、濾別してウェットケーキ(a-2)を得た。得られたウェットケーキ(a-2)を80℃で終夜乾燥し、紫外線吸収色素(A-1)を含む紫外線吸収剤1を得た。
<Method for producing UV absorbers 1 to 4>
[Ultraviolet absorber 1]
The wet cake (a-1) was washed by sprinkling 45 g of methanol and separated by filtration to obtain a wet cake (a-2). The resulting wet cake (a-2) was dried overnight at 80° C. to obtain UV absorber 1 containing UV absorbing dye (A-1).
(化合物の同定方法)
 本発明の実施形態の一般式(1)~(3)で示される紫外線吸収色素(A)の同定には、NMRを用いた。
<測定条件>
  装置:BRUKER AVANCE400
  共振周波数:400MHz(H-NMR)
  溶媒:ジメチルスルホキシド-d
 H-NMRの内部標準物質として、テトラメチルシランを用い、ケミカルシフト値はδ値(ppm)、カップリング定数はHertzで示した。また、sはsinglet、dはdoublet、mはmultipletの略とする。得られたNMRスペクトルの内容は以下のとおりである。
δ=12.05(s,3H),8.70(d,J=8.4Hz,3H),8.07(d,J=8.8Hz,3H),7.93(d,J=8.0Hz,3H),7.46-7.50(m,3H),7.38-7.42(m,3H),7.34(d,J=9.2Hz,3H)
(Compound identification method)
NMR was used to identify the UV-absorbing dye (A) represented by formulas (1) to (3) in the embodiment of the present invention.
<Measurement conditions>
Device: BRUKER AVANCE400
Resonance frequency: 400MHz ( 1 H-NMR)
Solvent: dimethyl sulfoxide-d 8
Tetramethylsilane was used as an internal standard substance for 1 H-NMR, chemical shift values were indicated by δ values (ppm), and coupling constants were indicated by Hertz. Also, s stands for singlet, d for doublet, and m for multiplet. The content of the obtained NMR spectrum is as follows.
δ = 12.05 (s, 3H), 8.70 (d, J = 8.4Hz, 3H), 8.07 (d, J = 8.8Hz, 3H), 7.93 (d, J = 8 .0Hz, 3H), 7.46-7.50 (m, 3H), 7.38-7.42 (m, 3H), 7.34 (d, J = 9.2Hz, 3H)
 上記の通り、紫外線吸収色素(A-1)のNMR測定を行った結果、上記構造を支持する結果が得られた。他の紫外線吸収色素も上記同様にNMRで構造同定を行ったがデータは省略する。 As described above, the results of NMR measurement of the UV-absorbing dye (A-1) yielded results that support the above structure. Structures of other UV-absorbing dyes were identified by NMR in the same manner as above, but the data are omitted.
(金属成分の測定方法)
 本発明の実施形態の紫外線吸収剤の金属成分(B)の測定には、ICP発光分析を用いた。
(Method for measuring metal components)
ICP emission spectrometry was used to measure the metal component (B) of the ultraviolet absorber of the embodiment of the present invention.
<測定条件>
 紫外線吸収剤1を約0.2g精秤し、マイクロウェーブ試料前処理装置(Milestone General社製のMLS-1200MEGA)で分解処理(分解試薬として精密分析用硝酸2mLを添加)を行った。次いで、得られた分解液に超純水を加え、濾過した後の濾液25mLをメスフラスコで定容する。この溶液をICP発光分析(株式会社バリアン製、720-ES ICP オプティカル・エミッション・スペクトロメーター)で測定し、金属イオンを定量した。尚、本実施例で示す金属成分(B)の含有量とは、Na、Mg、Al、K、Ca、およびFeの各イオンの含有量の合計値を意味する。
 紫外線吸収色素1の金属分析を行った結果、Na:1432ppm、Mg:836ppm、Al:42750ppm、K:147ppm、Ca:2428ppm、Fe:548ppmの結果が得られた。金属成分(B)の合計値は、48141ppmであった。
<Measurement conditions>
About 0.2 g of the ultraviolet absorber 1 was precisely weighed and subjected to decomposition treatment (2 mL of nitric acid for precision analysis was added as a decomposition reagent) using a microwave sample pretreatment device (MLS-1200MEGA manufactured by Milestone General). Next, ultrapure water is added to the resulting decomposed solution, and 25 mL of the filtered filtrate is placed in a constant volume in a volumetric flask. This solution was measured by ICP emission spectrometry (720-ES ICP optical emission spectrometer manufactured by Varian Co., Ltd.) to quantify metal ions. The content of the metal component (B) shown in this example means the total content of ions of Na, Mg, Al, K, Ca, and Fe.
As a result of metal analysis of the ultraviolet absorbing dye 1, Na: 1432 ppm, Mg: 836 ppm, Al: 42750 ppm, K: 147 ppm, Ca: 2428 ppm and Fe: 548 ppm were obtained. The total value of metal component (B) was 48141 ppm.
 上記の通り、本明細書では紫外線吸収剤1を例にしてICP発光分析による金属原子の測定を行った。他の紫外線吸収剤も上記と同様に測定した。測定結果を表1に示す。 As described above, in this specification, the metal atoms were measured by ICP emission spectrometry, using UV absorber 1 as an example. Other UV absorbers were also measured in the same manner as above. Table 1 shows the measurement results.
(紫外線吸収剤の粉末X線回折測定方法)
 紫外線吸収剤のX線回折パターンの測定には、粉末X線回折装置を用いた。
 粉末X線回折測定は、日本工業規格JIS K0131(X線回折分析通則)に準じて、回折角(2θ)が、3°から35°の範囲で測定した。
(Powder X-ray diffraction measurement method for ultraviolet absorber)
A powder X-ray diffractometer was used to measure the X-ray diffraction pattern of the ultraviolet absorber.
The powder X-ray diffraction measurement was carried out in accordance with Japanese Industrial Standards JIS K0131 (general rules for X-ray diffraction analysis) with a diffraction angle (2θ) in the range of 3° to 35°.
 測定条件は下記の通りとした。
X線回折装置:株式会社リガク製RINT2100
サンプリング幅:0.02°
スキャンスピード:2.0°/min
発散スリット:1°
発散縦制限スリット:10mm
散乱スリット:2°
受光スリット:0.3mm
管球:Cu
管電圧:40kV
管電流:40mA
The measurement conditions were as follows.
X-ray diffractometer: RINT2100 manufactured by Rigaku Corporation
Sampling width: 0.02°
Scan speed: 2.0°/min
Divergence slit: 1°
Divergence longitudinal limiting slit: 10mm
Scattering slit: 2°
Light receiving slit: 0.3mm
Tube: Cu
Tube voltage: 40kV
Tube current: 40mA
 図1に、紫外線吸収剤の粉末X線回折による回折パターンの一例を示す。図1において、X軸はブラッグ角(2θ)、Y軸は回折ピークの強度(count)である。以下に回折ピークの強度比の算出方法を説明する。 Fig. 1 shows an example of a diffraction pattern obtained by powder X-ray diffraction of an ultraviolet absorber. In FIG. 1, the X-axis is the Bragg angle (2θ), and the Y-axis is the diffraction peak intensity (count). A method for calculating the intensity ratio of diffraction peaks will be described below.
 図1における回折パターンのバックグランド除去は、通常の方法で行った。例として、ブラッグ角(2θ)7.6°の低角度側のすその6°付近と高角度側のすその8.5°付近に接する直線を引き、この直線上の値をバックグラウンドとして除去した。同様にして、ブラッグ角(2θ)13.2°の低角度側のすその12°付近と高角度側のすその14°付近に接する直線を引き、この直線上の値をバックグラウンドとして除去した。ブラッグ角(2θ)7.6°のピーク強度をIα、13.2°のピーク強度をIβとし、回折ピークの強度比はIα/Iβとして算出した。 Background removal of the diffraction pattern in Fig. 1 was performed by a normal method. As an example, draw a straight line that touches the low-angle side 6° and the high-angle side 8.5° of the Bragg angle (2θ) 7.6°, and remove the values on this straight line as the background. bottom. In the same way, a straight line was drawn in contact with the low-angle side 12° and the high-angle side 14° of the Bragg angle (2θ) of 13.2°, and the values on this straight line were removed as the background. . The peak intensity at the Bragg angle (2θ) of 7.6° was Iα, the peak intensity at 13.2° was Iβ, and the diffraction peak intensity ratio was calculated as Iα/Iβ.
[紫外線吸収剤2]
 ウェットケーキ(a-2)をメタノール100g中に戻して室温で30分リスラリーを行い、濾別してウェットケーキ(a-3)を得た。得られたウェットケーキ(a-3)を80℃で終夜乾燥し、紫外線吸収色素(A-1)を含む紫外線吸収剤2を得た。
[Ultraviolet absorber 2]
The wet cake (a-2) was returned to 100 g of methanol, reslurried at room temperature for 30 minutes, and separated by filtration to obtain a wet cake (a-3). The resulting wet cake (a-3) was dried overnight at 80° C. to obtain UV absorber 2 containing UV absorbing dye (A-1).
[紫外線吸収剤3]
 ウェットケーキ(a-3)を得た後、水45gをふりかけて洗浄し、濾別してウェットケーキ(a-4)を得た。得られたウェットケーキ(a-4)を80℃で終夜乾燥し、紫外線吸収色素(A-1)を含む紫外線吸収剤3を得た。
[Ultraviolet absorber 3]
After obtaining the wet cake (a-3), 45 g of water was sprinkled to wash the cake, followed by filtration to obtain the wet cake (a-4). The resulting wet cake (a-4) was dried overnight at 80° C. to obtain UV absorber 3 containing UV absorbing dye (A-1).
[紫外線吸収剤4]
 ウェットケーキ(a-4)を水150g中に戻して室温で30分リスラリーを行い、濾別してウェットケーキ(a-5)を得た。得られたウェットケーキ(a-5)を80℃で終夜乾燥し、紫外線吸収色素(A-1)を含む紫外線吸収剤4を得た。
[Ultraviolet absorber 4]
The wet cake (a-4) was returned to 150 g of water, reslurried at room temperature for 30 minutes, and separated by filtration to obtain a wet cake (a-5). The resulting wet cake (a-5) was dried overnight at 80° C. to obtain UV absorber 4 containing UV absorbing dye (A-1).
<紫外線吸収色素(A-2)の製造方法>
(紫外線吸収色素A-2)
 300mL三角フラスコに、クロロベンゼンを160部、2,4-ジクロロ-6-フェニル-1,3,5-トリアジンを8部、塩化アルミニウムを11.8部仕込み、撹拌して懸濁させた。次に、氷水で冷却しながら、2-ナフトールを12.8部、少しずつ添加した。その後、徐々に室温に戻しながら終夜撹拌し、反応液(A‘-2)を得た。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、反応液(A‘-2)を少しずつ滴下した。30分撹拌後、ろ別し、紫外線吸収色素(A-2)を含むウェットケーキ(a-6)を得た。
<Method for producing ultraviolet absorbing dye (A-2)>
(Ultraviolet absorption dye A-2)
A 300 mL conical flask was charged with 160 parts of chlorobenzene, 8 parts of 2,4-dichloro-6-phenyl-1,3,5-triazine, and 11.8 parts of aluminum chloride, and stirred to suspend. Next, while cooling with ice water, 12.8 parts of 2-naphthol was added little by little. Thereafter, the mixture was stirred overnight while gradually returning to room temperature to obtain a reaction liquid (A'-2). On the other hand, 38.1 parts of water, 10.0 parts of 35% hydrochloric acid and 45.0 parts of methanol were charged into a 500 mL beaker, and the reaction solution (A'-2) was added dropwise little by little. After stirring for 30 minutes, the mixture was filtered to obtain a wet cake (a-6) containing the ultraviolet absorbing dye (A-2).
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
<紫外線吸収剤5~8の製造方法>
[紫外線吸収剤5~8]
 紫外線吸収剤1~4と同様の方法で、ウェットケーキ(a-7)~(a-10)を得て、紫外線吸収色素(A-2)を含む紫外線吸収剤5~8を得た。
<Method for producing UV absorbers 5 to 8>
[Ultraviolet absorbers 5 to 8]
Wet cakes (a-7) to (a-10) were obtained in the same manner as for UV absorbers 1 to 4, and UV absorbers 5 to 8 containing UV absorbing dye (A-2) were obtained.
<紫外線吸収色素(A-3)の製造方法>
(紫外線吸収色素A-3)
 300mL三角フラスコに、トルエンを160部、2-クロロ-4、6-ジフェニル-1,3,5-トリアジンを8部、塩化アルミニウムを8.0部仕込み、撹拌して懸濁させた。次に、氷水で冷却しながら、2-ナフトールを6.5部、少しずつ添加した。その後、徐々に室温に戻しながら終夜撹拌した。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、先の反応液を少しずつ滴下した。30分撹拌後、ろ別し、紫外線吸収色素(A-3)を含むウェットケーキ(a-11)を得た。
<Method for producing ultraviolet absorbing dye (A-3)>
(Ultraviolet absorbing dye A-3)
A 300 mL conical flask was charged with 160 parts of toluene, 8 parts of 2-chloro-4,6-diphenyl-1,3,5-triazine, and 8.0 parts of aluminum chloride, and stirred to suspend. Next, while cooling with ice water, 6.5 parts of 2-naphthol was added little by little. Then, the mixture was stirred overnight while the temperature was gradually returned to room temperature. On the other hand, 38.1 parts of water, 10.0 parts of 35% hydrochloric acid and 45.0 parts of methanol were placed in a 500 mL beaker, and the above reaction solution was added dropwise little by little. After stirring for 30 minutes, the mixture was filtered to obtain a wet cake (a-11) containing the ultraviolet absorbing dye (A-3).
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
<紫外線吸収剤9~12の製造方法>
[紫外線吸収剤9~12]
 紫外線吸収剤1~4と同様の方法で、ウェットケーキ(a-12)~(a-15)を得て、紫外線吸収色素(A-3)を含む紫外線吸収剤9~12を得た。
<Method for producing UV absorbers 9 to 12>
[Ultraviolet absorbers 9 to 12]
Wet cakes (a-12) to (a-15) were obtained in the same manner as for UV absorbers 1 to 4, and UV absorbers 9 to 12 containing UV absorbing dye (A-3) were obtained.
<紫外線吸収剤13の製造方法>
[紫外線吸収剤13]
 300mL三角フラスコに、キシレンを160部、塩化シアヌルを8部、塩化アルミニウムを17.4部仕込み、撹拌して懸濁させた。次に、2-ナフトールを21.9部、少しずつ添加した。その後、80℃で6時間撹拌し、反応液(A‘-3)を得た。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、反応液(A’-3)を少しずつ滴下した。30分撹拌後、ろ別し、紫外線吸収色素(A-1)を含むウェットケーキ(a-16)を得た。得られたウェットケーキ(a-16)を80℃で終夜乾燥し、乾燥物を得た。
 メタンスルホン酸1000部に、前記乾燥物40.0部を、撹拌しながら徐々に加え、4時間撹拌し溶解させた。次いで、溶解液を25℃の水8000部に撹拌しながら30分かけて徐々に滴下し、濾過、水洗浄を行い、80℃で乾燥させ、紫外線吸収色素(A-1)を含む紫外線吸収剤13を得た。
<Method for Producing UV Absorber 13>
[Ultraviolet absorber 13]
160 parts of xylene, 8 parts of cyanuric chloride and 17.4 parts of aluminum chloride were charged into a 300 mL Erlenmeyer flask and stirred to suspend. Next, 21.9 parts of 2-naphthol was added in portions. After that, the mixture was stirred at 80° C. for 6 hours to obtain a reaction liquid (A'-3). On the other hand, 38.1 parts of water, 10.0 parts of 35% hydrochloric acid and 45.0 parts of methanol were placed in a 500 mL beaker, and the reaction solution (A'-3) was added dropwise little by little. After stirring for 30 minutes, the mixture was filtered to obtain a wet cake (a-16) containing the ultraviolet absorbing dye (A-1). The resulting wet cake (a-16) was dried overnight at 80°C to obtain a dried product.
To 1000 parts of methanesulfonic acid, 40.0 parts of the dried product was gradually added with stirring, and dissolved by stirring for 4 hours. Next, the solution is gradually added dropwise to 8000 parts of water at 25° C. over 30 minutes with stirring, filtered, washed with water, dried at 80° C., and an ultraviolet absorber containing the ultraviolet absorbing dye (A-1). 13 was obtained.
<紫外線吸収剤14の製造方法>
[紫外線吸収剤14]
 紫外線吸収剤13を300部、塩化ナトリウムを1500部、ジエチレングリコールを400部、3L双腕型ニーダーに仕込み、ドウを形成後、材料温度60℃で6時間混練した。得られたドウ(混錬された塊)を取出し、ドウの約10重量倍量の水にリスラリーして25℃で1.5時間撹拌後、濾過した。さらに再びリスラリーし、濾過水洗してペースト顔料を得、加熱オーブンにて80℃で48時間乾燥させ、紫外線吸収色素(A-1)を含む紫外線吸収剤14を得た。
<Method for Producing UV Absorber 14>
[Ultraviolet absorber 14]
300 parts of UV absorber 13, 1500 parts of sodium chloride, and 400 parts of diethylene glycol were charged into a 3 L double-arm kneader to form a dough, which was then kneaded at a material temperature of 60° C. for 6 hours. The resulting dough (kneaded mass) was taken out, reslurried in water of about 10 times the weight of the dough, stirred at 25°C for 1.5 hours, and filtered. Further, it was reslurried again, filtered and washed with water to obtain a paste pigment, and dried in a heating oven at 80° C. for 48 hours to obtain an ultraviolet absorber 14 containing an ultraviolet absorbing dye (A-1).
<紫外線吸収剤15の製造方法>
[紫外線吸収剤15]
 300mL三角フラスコに、安息香酸メチルを160部、2,4-ジクロロ-6-フェニル-1,3,5-トリアジンを8部、塩化アルミニウムを11.8部仕込み、撹拌して懸濁させた。次に、氷水で冷却しながら、2-ナフトールを12.8部、少しずつ添加した。その後、徐々に室温に戻しながら終夜撹拌した。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、先の反応液を少しずつ滴下した。30分撹拌後、ろ別し、紫外線吸収色素(A-2)を含むウェットケーキ(a-17)を得た。得られたウェットケーキ(a-17)を80℃で終夜乾燥し、乾燥物を得た。
 メタンスルホン酸1000部に、前記乾燥物40.0部を、撹拌しながら徐々に加え、4時間撹拌し溶解させた。次いで、溶解液を25℃の水8000部に撹拌しながら30分かけて徐々に滴下し、濾過、水洗浄を行い、80℃で乾燥させ、紫外線吸収色素(A-2)を含む紫外線吸収剤15を得た。
<Method for Producing UV Absorber 15>
[Ultraviolet absorber 15]
A 300 mL conical flask was charged with 160 parts of methyl benzoate, 8 parts of 2,4-dichloro-6-phenyl-1,3,5-triazine and 11.8 parts of aluminum chloride, and stirred to suspend. Next, while cooling with ice water, 12.8 parts of 2-naphthol was added little by little. Then, the mixture was stirred overnight while the temperature was gradually returned to room temperature. On the other hand, 38.1 parts of water, 10.0 parts of 35% hydrochloric acid and 45.0 parts of methanol were placed in a 500 mL beaker, and the above reaction solution was added dropwise little by little. After stirring for 30 minutes, the mixture was filtered to obtain a wet cake (a-17) containing the ultraviolet absorbing dye (A-2). The resulting wet cake (a-17) was dried overnight at 80°C to obtain a dried product.
To 1000 parts of methanesulfonic acid, 40.0 parts of the dried product was gradually added with stirring, and dissolved by stirring for 4 hours. Next, the solution is gradually added dropwise to 8000 parts of water at 25° C. over 30 minutes with stirring, filtered, washed with water, dried at 80° C., and an ultraviolet absorber containing an ultraviolet absorbing dye (A-2). 15 was obtained.
<紫外線吸収剤16の製造方法>
[紫外線吸収剤16]
 300mL三角フラスコに、キシロールを128部、安息香酸メチルを32部、2-クロロ-4、6-ジフェニル-1,3,5-トリアジンを8部、塩化アルミニウムを8.0部仕込み、撹拌して懸濁させた。次に、氷水で冷却しながら、2-ナフトールを6.5部、少しずつ添加した。その後、徐々に室温に戻しながら終夜撹拌した。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、先の反応液を少しずつ滴下した。30分攪拌後、ろ別し、紫外線吸収色素(A-3)を含むウェットケーキ(a-18)を得た。得られたウェットケーキ(a-18)を80℃で終夜乾燥し、乾燥物を得た。
 メタンスルホン酸1000部に、前記乾燥物40.0部を、撹拌しながら徐々に加え、4時間撹拌し溶解させた。次いで、溶解液を25℃の水8000部に撹拌しながら30分かけて徐々に滴下し、濾過、水洗浄を行い、80℃で乾燥させ、紫外線吸収色素(A-3)を含む紫外線吸収剤16を得た。
<Method for Producing UV Absorber 16>
[Ultraviolet absorber 16]
A 300 mL conical flask is charged with 128 parts of xylol, 32 parts of methyl benzoate, 8 parts of 2-chloro-4,6-diphenyl-1,3,5-triazine, and 8.0 parts of aluminum chloride, and stirred. Suspended. Next, while cooling with ice water, 6.5 parts of 2-naphthol was added little by little. Then, the mixture was stirred overnight while the temperature was gradually returned to room temperature. On the other hand, 38.1 parts of water, 10.0 parts of 35% hydrochloric acid and 45.0 parts of methanol were placed in a 500 mL beaker, and the above reaction solution was added dropwise little by little. After stirring for 30 minutes, the mixture was filtered to obtain a wet cake (a-18) containing the ultraviolet absorbing dye (A-3). The resulting wet cake (a-18) was dried overnight at 80°C to obtain a dried product.
To 1000 parts of methanesulfonic acid, 40.0 parts of the dried product was gradually added with stirring, and dissolved by stirring for 4 hours. Then, the solution is gradually added dropwise to 8000 parts of water at 25° C. over 30 minutes with stirring, filtered, washed with water, dried at 80° C., and an ultraviolet absorber containing an ultraviolet absorbing dye (A-3). 16 was obtained.
<紫外線吸収剤17の製造方法>
[紫外線吸収剤17]
 メタンスルホン酸1000部に、紫外線吸収剤1を40.0部撹拌しながら徐々に加え、4時間撹拌し溶解させた。次いで、溶解液を0℃の水50000部に撹拌しながら30分かけて徐々に滴下し、濾過、水洗浄を行い、80℃で乾燥させ、紫外線吸収色素(A-1)を含む紫外線吸収剤17を得た。
<Method for Producing UV Absorber 17>
[Ultraviolet absorber 17]
To 1000 parts of methanesulfonic acid, 40.0 parts of UV absorber 1 was gradually added with stirring, and dissolved by stirring for 4 hours. Next, the solution is gradually added dropwise to 50,000 parts of water at 0° C. over 30 minutes with stirring, filtered, washed with water, dried at 80° C., and an ultraviolet absorber containing the ultraviolet absorbing dye (A-1). 17 was obtained.
<紫外線吸収剤18の製造方法>
[紫外線吸収剤18]
 紫外線吸収剤3を35.0部、ジエチレングリコール350部を混合し、120℃で3時間加熱撹拌した。濾過、温水洗浄を行い、80℃で乾燥させ、一般式(1)で示される紫外線吸収色素(A-1)を含む紫外線吸収剤18を得た。
<Method for Producing UV Absorber 18>
[Ultraviolet absorber 18]
35.0 parts of UV absorber 3 and 350 parts of diethylene glycol were mixed, and the mixture was heated and stirred at 120° C. for 3 hours. Filtration, washing with warm water, and drying at 80° C. were carried out to obtain an ultraviolet absorber 18 containing the ultraviolet absorbing dye (A-1) represented by general formula (1).
<紫外線吸収剤19の製造方法>
[紫外線吸収剤19]
 紫外線吸収剤1の代わりに紫外線吸収剤9を用いる以外は、紫外線吸収剤17の製造と同じ方法で、紫外線吸収色素(A-3)を含む紫外線吸収剤19を得た。
<Method for Producing UV Absorber 19>
[Ultraviolet absorber 19]
A UV absorber 19 containing the UV absorbing dye (A-3) was obtained in the same manner as the UV absorber 17, except that the UV absorber 9 was used instead of the UV absorber 1.
<紫外線吸収剤20の製造方法>
[紫外線吸収剤20]
 紫外線吸収剤3の代わりに紫外線吸収剤11を用いる以外は、紫外線吸収剤18の製造と同じ方法で、紫外線吸収色素(A-3)を含む紫外線吸収剤20を得た。
<Method for producing ultraviolet absorber 20>
[Ultraviolet absorber 20]
A UV absorber 20 containing a UV absorbing dye (A-3) was obtained in the same manner as the UV absorber 18, except that the UV absorber 11 was used instead of the UV absorber 3.
<紫外線吸収剤21の製造方法>
(紫外線吸収色素A-4) 
 紫外線吸収色素(A-1)の製造において、2-ナフトール21.9部の代わりに1,3-ジヒドロキシナフタレン24.3部を添加した以外は同様な方法で製造し、紫外線吸収色素(A-4)を含むウェットケーキ(a-19)を得た。ウェットケーキ(a-19)に、メタノール45gをふりかけ洗浄し、濾別してウェットケーキ(a-20)を得た。次いで、前記ウェットケーキ(a-20)をメタノール100g中に戻して室温で30分リスラリーを行い、濾別した。さらに、水45gをふりかけて洗浄し、濾別してウェットケーキ(a-21)を得た。得られたウェットケーキ(a-21)を80℃で終夜乾燥し、紫外線吸収色素(A-4)を含む紫外線吸収剤21を得た。
<Method for Producing UV Absorber 21>
(Ultraviolet absorption dye A-4)
The ultraviolet absorbing dye (A-1) was produced in the same manner, except that 24.3 parts of 1,3-dihydroxynaphthalene was added instead of 21.9 parts of 2-naphthol. A wet cake (a-19) containing 4) was obtained. The wet cake (a-19) was washed by sprinkling 45 g of methanol and separated by filtration to obtain a wet cake (a-20). Next, the wet cake (a-20) was reslurried in 100 g of methanol at room temperature for 30 minutes, and filtered. Further, 45 g of water was sprinkled to wash the cake, and the cake was separated by filtration to obtain a wet cake (a-21). The resulting wet cake (a-21) was dried overnight at 80° C. to obtain UV absorber 21 containing UV absorbing dye (A-4).
<紫外線吸収剤22の製造方法>
(紫外線吸収色素A-5)
 紫外線吸収剤21の製造において、1,3-ジヒドロキシナフタレン24.3部の代わりに6-ブロモ-2-ナフトール33.9部を添加した以外は同様な方法で製造し、紫外線吸収剤(A-5)を含む紫外線吸収剤22を得た。
<Method for Producing UV Absorber 22>
(Ultraviolet absorbing dye A-5)
Ultraviolet absorbent (A- 5) was obtained.
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
<紫外線吸収剤23の製造方法>
(紫外線吸収色素A-6)
 紫外線吸収色素(A-3)の製造において、2-ナフトール6.5部の代わりに6-ヒドロキシ-2-ナフトエ酸メチル9.1部を添加した以外は同様な方法で製造し、紫外線吸収色素(A-6)を含むウェットケーキ(a-22)を得た。ウェットケーキ(a-22)に、メタノール45gをふりかけて洗浄し、濾別してウェットケーキ(a-23)を得た。次いで、ウェットケーキ(a-23)をメタノール100g中に戻して室温で30分リスラリーを行い、濾別した。さらに、水45gをふりかけて洗浄し、濾別してウェットケーキ(a-24)を得た。得られたウェットケーキ(a-24)を80℃で終夜乾燥し、紫外線吸収色素(A-6)を含む紫外線吸収剤23を得た。
<Method for Producing UV Absorber 23>
(Ultraviolet absorbing dye A-6)
A UV absorbing dye (A-3) was produced in the same manner except that 9.1 parts of methyl 6-hydroxy-2-naphthoate was added instead of 6.5 parts of 2-naphthol. A wet cake (a-22) containing (A-6) was obtained. The wet cake (a-22) was washed by sprinkling 45 g of methanol and separated by filtration to obtain a wet cake (a-23). Then, the wet cake (a-23) was returned to 100 g of methanol, reslurried at room temperature for 30 minutes, and separated by filtration. Further, 45 g of water was sprinkled to wash the cake, and the cake was separated by filtration to obtain a wet cake (a-24). The resulting wet cake (a-24) was dried at 80° C. overnight to obtain UV absorber 23 containing UV absorbing dye (A-6).
<紫外線吸収剤24の製造方法>
(紫外線吸収色素A-7)
 紫外線吸収剤23の製造において、6-ヒドロキシ-2-ナフトエ酸メチル9.1部の代わりに6-ヒドロキシ-2-ナフトエ酸8.4部を添加した以外は同様な方法で製造し、紫外線吸収剤(A-7)を含む紫外線吸収剤24を得た。
<Method for Producing UV Absorber 24>
(Ultraviolet absorbing dye A-7)
Ultraviolet absorber 23 was produced in the same manner except that 8.4 parts of 6-hydroxy-2-naphthoic acid was added instead of 9.1 parts of methyl 6-hydroxy-2-naphthoate. An ultraviolet absorber 24 containing agent (A-7) was obtained.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<紫外線吸収剤25の製造方法>
(紫外線吸収色素A-8)
 紫外線吸収剤23の製造において、6-ヒドロキシ-2-ナフトエ酸メチル9.1部の代わりに2-ナフトール-6-スルホン酸ナトリウム水和物11.0部を添加した以外は同様な方法で製造し、紫外線吸収剤(A-8)を含む紫外線吸収剤25を得た。
<Method for Producing UV Absorber 25>
(Ultraviolet absorption dye A-8)
Manufactured in the same manner as UV absorber 23, except that 11.0 parts of sodium 2-naphthol-6-sulfonate hydrate was added instead of 9.1 parts of methyl 6-hydroxy-2-naphthoate. to obtain UV absorber 25 containing UV absorber (A-8).
<紫外線吸収剤26の製造方法>
(紫外線吸収色素A-9)
 紫外線吸収色素(A-2)の製造において、2,4-ジクロロ-6-フェニル-1,3,5-トリアジン8部、2-ナフトール12.8部、塩化アルミニウム11.8部の代わりに、2-(4-ビフェニリル)-4,6-ジクロロ-1,3,5-トリアジン8部、2-ナフトール9.5部、塩化アルミニウム8.8部を添加した以外は同様な方法で製造し、紫外線吸収色素(A-9)を含むウェットケーキ(a-25)を得た。ウェットケーキ(a-25)に、メタノール45gをふりかけて洗浄し、濾別してウェットケーキ(a-26)を得た。次いで、ウェットケーキ(a-26)をメタノール100g中に戻して室温で30分リスラリーを行い、濾別した。さらに、水45gをふりかけて洗浄し、濾別してウェットケーキ(a-27)を得た。得られたウェットケーキ(a-27)を80℃で終夜乾燥し、紫外線吸収色素(A-9)を含む紫外線吸収剤26を得た。
<Method for Producing UV Absorber 26>
(Ultraviolet absorbing dye A-9)
In the production of the ultraviolet absorbing dye (A-2), instead of 8 parts of 2,4-dichloro-6-phenyl-1,3,5-triazine, 12.8 parts of 2-naphthol and 11.8 parts of aluminum chloride, Manufactured in the same manner except that 8 parts of 2-(4-biphenylyl)-4,6-dichloro-1,3,5-triazine, 9.5 parts of 2-naphthol and 8.8 parts of aluminum chloride were added, A wet cake (a-25) containing the ultraviolet absorbing dye (A-9) was obtained. The wet cake (a-25) was washed by sprinkling 45 g of methanol and separated by filtration to obtain a wet cake (a-26). Then, the wet cake (a-26) was returned to 100 g of methanol, reslurried at room temperature for 30 minutes, and separated by filtration. Furthermore, 45 g of water was sprinkled to wash the cake, and the cake was separated by filtration to obtain a wet cake (a-27). The obtained wet cake (a-27) was dried at 80° C. overnight to obtain an ultraviolet absorber 26 containing an ultraviolet absorbing dye (A-9).
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
<紫外線吸収剤27の製造方法>
(紫外線吸収色素A-10)
 300mL三角フラスコに、紫外線吸収剤1を8部、N-メチル-2-ピロリドンを80部仕込み、撹拌して溶解させた。次に、リン酸三カリウムを5.4部仕込み、撹拌して懸濁させた。次いで、1-ヨードブタンを5.8部仕込み、撹拌しながら110℃まで加熱し、3時間撹拌して反応液を得た。一方、1Lビーカーに水400部を仕込み、前記反応液を少しずつ滴下した。一晩撹拌後、濾別し、ウェットケーキ(a-28)を得た。ウェットケーキ(a-28)を水400gに再度リスラリーし、3時間攪拌後、濾別してウェットケーキ(a-29)を得た。得られたウェットケーキ(a-29)を80℃で終夜乾燥し、得られた乾燥物を80メッシュで粉砕し、紫外線吸収色素A-10を含む紫外線吸収剤27を得た。
<Method for Producing UV Absorber 27>
(Ultraviolet absorption dye A-10)
8 parts of UV absorber 1 and 80 parts of N-methyl-2-pyrrolidone were placed in a 300 mL Erlenmeyer flask and dissolved by stirring. Next, 5.4 parts of tripotassium phosphate was charged and stirred to suspend. Then, 5.8 parts of 1-iodobutane was charged, heated to 110° C. with stirring, and stirred for 3 hours to obtain a reaction liquid. On the other hand, 400 parts of water was charged into a 1 L beaker, and the reaction liquid was added dropwise little by little. After stirring overnight, the mixture was filtered to obtain a wet cake (a-28). The wet cake (a-28) was reslurried in 400 g of water, stirred for 3 hours, and filtered to obtain a wet cake (a-29). The resulting wet cake (a-29) was dried overnight at 80° C., and the resulting dried product was pulverized with 80 mesh to obtain UV absorber 27 containing UV absorbing dye A-10.
<紫外線吸収剤28の製造方法>
(紫外線吸収色素A-11)
 500mL三角フラスコに、N-メチル-2-ピロリドンを100部、紫外線吸収剤24を10部を仕込んで溶解した。次いで、2-エチルヘキシルグリシジルエーテルを6.7部、3,5-ルチジンを0.3部仕込み、120℃に昇温して6時間撹拌し、反応液を得た。反応液を50℃以下に冷却後、前記反応液に35%塩酸を40部、メタノールを200部、少しずつ滴下した。30分撹拌後、ろ別し、得られたウェットケーキ(a-30)をメチルエチルケトン100部に戻し、40℃で30分撹拌した。次いで、メタノールを100部添加し、氷冷しながら30分攪拌後に濾別した。得られたウェットケーキ(a-31)をメタノール100部に戻し、30分撹拌後、ろ別した。得られたウェットケーキ(a-32)を80℃で終夜乾燥し、紫外線吸収色素A-11を含む紫外線吸収剤28を得た。
<Method for Producing Ultraviolet Absorber 28>
(Ultraviolet absorbing dye A-11)
In a 500 mL Erlenmeyer flask, 100 parts of N-methyl-2-pyrrolidone and 10 parts of UV absorber 24 were charged and dissolved. Then, 6.7 parts of 2-ethylhexyl glycidyl ether and 0.3 parts of 3,5-lutidine were charged, heated to 120° C. and stirred for 6 hours to obtain a reaction solution. After cooling the reaction liquid to 50° C. or lower, 40 parts of 35% hydrochloric acid and 200 parts of methanol were added dropwise to the reaction liquid. After stirring for 30 minutes, the obtained wet cake (a-30) was filtered off, reconstituted with 100 parts of methyl ethyl ketone, and stirred at 40° C. for 30 minutes. Then, 100 parts of methanol was added, and the mixture was stirred for 30 minutes while cooling with ice, and filtered. The resulting wet cake (a-31) was returned to 100 parts of methanol, stirred for 30 minutes, and filtered. The resulting wet cake (a-32) was dried overnight at 80° C. to obtain UV absorber 28 containing UV absorbing dye A-11.
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000037
 
<紫外線吸収剤29の製造方法>
(紫外線吸収色素A-12)
 300mL三角フラスコに98%硫酸を100部、紫外線吸収剤9を10部、2-クロロ-2メチルプロパンを9.9部仕込み、氷浴中で10℃以下に保ちながら6時間撹拌し、反応液を得た。次に、氷200部、水400部の混合液に前記反応液を少しずつ滴下した。30分撹拌後、ろ別し、得られたウェットケーキ(a-33)をメタノール/水=10/1の混合液450部中に戻して室温で30分リスラリーを行い、濾別した。次いで得られたウェットケーキ(a-34)を50℃以上の水100部中に戻して室温で30分リスラリーを行い、濾別した。得られたウェットケーキ(a-35)を80℃で終夜乾燥し、紫外線吸収色素A-12を含む紫外線吸収剤29を得た。
<Method for Producing UV Absorber 29>
(Ultraviolet absorbing dye A-12)
A 300 mL Erlenmeyer flask was charged with 100 parts of 98% sulfuric acid, 10 parts of UV absorber 9, and 9.9 parts of 2-chloro-2-methylpropane. got Next, the reaction solution was added dropwise little by little to a mixed solution of 200 parts of ice and 400 parts of water. After stirring for 30 minutes, the resulting wet cake (a-33) was filtered and reslurried in 450 parts of a mixture of methanol/water=10/1 for 30 minutes at room temperature, followed by filtration. The resulting wet cake (a-34) was then returned to 100 parts of water at 50° C. or higher, reslurried at room temperature for 30 minutes, and separated by filtration. The resulting wet cake (a-35) was dried overnight at 80° C. to obtain UV absorber 29 containing UV absorbing dye A-12.
<紫外線吸収剤30の製造方法>
(紫外線吸収色素A-13)
 500mL三角フラスコに、N-メチル-2-ピロリドンを100部、紫外線吸収剤24を10部、メチルヒドロキノンを0.01部、メタクリル酸グリシジルを6.8部、N,N-ジメチルベンジルアミンを0.3部仕込み、100℃に昇温して4時間撹拌した後、40℃まで降温させ反応液を得た。次いで、前記反応液に、メタノールを100部、35%塩酸を50部、水を50部、少しずつ滴下した。30分撹拌後、ろ別し、得られたウェットケーキ(a-36)をメタノール100部に戻し、30分撹拌後、ろ別した。次いで、得られたウェットケーキ(a-37)を水100部に戻し、30分攪拌後、ろ別した。得られたウェットケーキ(a-38)を60℃で減圧乾燥し、紫外線吸収色素A-13を含む紫外線吸収剤30を得た。
<Method for Producing UV Absorber 30>
(UV absorbing dye A-13)
In a 500 mL Erlenmeyer flask, 100 parts of N-methyl-2-pyrrolidone, 10 parts of UV absorber 24, 0.01 parts of methylhydroquinone, 6.8 parts of glycidyl methacrylate, 0 parts of N,N-dimethylbenzylamine After 3 parts were charged, the temperature was raised to 100° C. and stirred for 4 hours, the temperature was lowered to 40° C. to obtain a reaction liquid. Then, 100 parts of methanol, 50 parts of 35% hydrochloric acid, and 50 parts of water were added dropwise to the reaction solution. After stirring for 30 minutes, the obtained wet cake (a-36) was filtered, and the obtained wet cake (a-36) was returned to 100 parts of methanol, stirred for 30 minutes, and filtered. Then, the obtained wet cake (a-37) was returned to 100 parts of water, stirred for 30 minutes, and filtered. The obtained wet cake (a-38) was dried under reduced pressure at 60° C. to obtain UV absorber 30 containing UV absorbing dye A-13.
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000038
 
<比較材料1の製造方法>
[比較材料1]
 ウェットケーキ(a-1)を80℃で終夜乾燥し、一般式(1)で示される紫外線吸収色素(A-1)を含む比較材料1を得た。
<Manufacturing method of comparative material 1>
[Comparative material 1]
The wet cake (a-1) was dried overnight at 80° C. to obtain Comparative Material 1 containing the UV-absorbing dye (A-1) represented by general formula (1).
<比較材料2の製造方法>
[比較材料2]
 反応液(A‘-1)に水を加えて抽出・分液操作を行い、得られた有機層に5%重曹水と飽和食塩水を加えて分液した。得られた有機層を減圧濃縮し比較材料2を得た。
<Manufacturing method of comparative material 2>
[Comparative material 2]
Water was added to the reaction solution (A'-1) to carry out extraction/liquid separation operations, and 5% aqueous sodium bicarbonate solution and saturated brine were added to the obtained organic layer to separate the layers. The obtained organic layer was concentrated under reduced pressure to obtain a comparative material 2.
<比較材料3の製造方法>
[比較材料3]
 ウェットケーキ(a-6)を80℃で終夜乾燥し、一般式(1)で示される紫外線吸収色素(A-2)を含む比較材料3を得た。
<Manufacturing method of comparative material 3>
[Comparative material 3]
The wet cake (a-6) was dried overnight at 80° C. to obtain Comparative Material 3 containing the UV-absorbing dye (A-2) represented by general formula (1).
<比較材料4の製造方法>
[比較材料4]
 反応液(A‘-2)に水を加えて抽出・分液操作を行い、得られた有機層に5%重曹水と飽和食塩水を加えて分液した。得られた有機層を減圧濃縮し比較材料4を得た。
<Manufacturing method of comparative material 4>
[Comparative material 4]
Water was added to the reaction solution (A'-2) to carry out extraction/liquid separation operations, and 5% aqueous sodium bicarbonate solution and saturated brine were added to the obtained organic layer to separate the layers. The obtained organic layer was concentrated under reduced pressure to obtain Comparative Material 4.
<比較材料5の製造方法>
[比較材料5]
 ウェットケーキ(a-11)を80℃で終夜乾燥し、紫外線吸収色素(A-3)を含む比較材料5を得た。
<Manufacturing method of comparative material 5>
[Comparative material 5]
The wet cake (a-11) was dried overnight at 80° C. to obtain Comparative Material 5 containing UV absorbing dye (A-3).
<比較材料6の製造方法>
[比較材料6]
 反応液(A‘-3)に水を加えて抽出・分液操作を行い、得られた有機層に5%重曹水と飽和食塩水を加えて分液した。得られた有機層を減圧濃縮し比較材料6を得た。
<Manufacturing method of comparative material 6>
[Comparative material 6]
Water was added to the reaction solution (A'-3) to carry out an extraction/liquid separation operation, and 5% aqueous sodium bicarbonate solution and saturated brine were added to the resulting organic layer to separate the layers. The obtained organic layer was concentrated under reduced pressure to obtain Comparative Material 6.
<比較材料7の製造方法>
[比較材料7]
 比較材料1を35.0部、ジエチレングリコール350部を混合し、120℃で3時間加熱撹拌した。濾過、温水洗浄を行い、80℃で乾燥させ、一般式(1)で示される紫外線吸収色素(A-1)を含む比較材料7を得た。
<Manufacturing method of comparative material 7>
[Comparative material 7]
35.0 parts of Comparative Material 1 and 350 parts of diethylene glycol were mixed, and the mixture was heated and stirred at 120° C. for 3 hours. Filtration, washing with warm water, and drying at 80° C. gave Comparative Material 7 containing the UV-absorbing dye (A-1) represented by the general formula (1).
<比較材料8の製造方法>
[比較材料8]
 メタンスルホン酸1000部に、比較材料2を40.0部撹拌しながら徐々に加え、4時間撹拌し溶解させた。次いで、溶解液を0℃の水50000部に撹拌しながら30分かけて徐々に滴下し、濾過、水洗浄を行い、80℃で乾燥させ、紫外線吸収色素(A-1)を含む比較材料8を得た。
<Manufacturing method of comparative material 8>
[Comparative material 8]
To 1000 parts of methanesulfonic acid, 40.0 parts of Comparative Material 2 was gradually added with stirring, and dissolved by stirring for 4 hours. Then, the solution was gradually added dropwise to 50,000 parts of water at 0° C. over 30 minutes with stirring, filtered, washed with water, dried at 80° C., and comparative material 8 containing ultraviolet absorbing dye (A-1). got
<比較材料9の製造方法>
[比較材料9]
 比較材料1の代わりに比較材料5を用いる以外は、比較材料7の製造と同じ方法で、紫外線吸収色素(A-3)を含む比較材料9を得た。
<Manufacturing method of comparative material 9>
[Comparative material 9]
A comparative material 9 containing an ultraviolet absorbing dye (A-3) was obtained in the same manner as the comparative material 7 except that the comparative material 5 was used instead of the comparative material 1.
<比較材料10の製造方法>
[比較材料10]
 比較材料2の代わりに比較材料6を用いる以外は、比較材料8の製造と同じ方法で、紫外線吸収色素(A-3)を含む比較材料10を得た。
<Method for producing comparative material 10>
[Comparative material 10]
A comparative material 10 containing an ultraviolet absorbing dye (A-3) was obtained in the same manner as in the production of comparative material 8, except that comparative material 6 was used instead of comparative material 2.
 表1に、得られた紫外線吸収剤1~30および比較材料1~10の金属量、X線回折ピークの比率を示す。 Table 1 shows the metal amounts and X-ray diffraction peak ratios of the obtained UV absorbers 1 to 30 and comparative materials 1 to 10.
Figure JPOXMLDOC01-appb-T000039
 
Figure JPOXMLDOC01-appb-T000039
 
<溶液分光>
(実施例1-1~1-30、比較例1-1~1-10)
<Solution spectroscopy>
(Examples 1-1 to 1-30, Comparative Examples 1-1 to 1-10)
 紫外線吸収剤1~30、比較材料1~10について、紫外~可視吸収スペクトルを測定した。結果を表2に示す。また、吸光度測定用の溶液調整方法、および測定条件は以下の通りである。 The UV-visible absorption spectrum was measured for UV absorbers 1-30 and comparative materials 1-10. Table 2 shows the results. Moreover, the solution preparation method for absorbance measurement and the measurement conditions are as follows.
<溶液調整方法>
(実施例1-1)
 紫外線吸収剤1を1部、テトラヒドロフランを1000部混合し、完全に溶解させた。続いて、先の溶解液2部、テトラヒドロフラン98部を均一に混合し、濃度20ppmの溶液を調整した。
<Solution adjustment method>
(Example 1-1)
1 part of UV absorber 1 and 1000 parts of tetrahydrofuran were mixed and dissolved completely. Subsequently, 2 parts of the previous solution and 98 parts of tetrahydrofuran were uniformly mixed to prepare a solution having a concentration of 20 ppm.
 紫外線吸収剤2~30、比較材料1~10についても、表2に記載の濃度になるように調整した。 The concentrations of ultraviolet absorbers 2 to 30 and comparative materials 1 to 10 were also adjusted as shown in Table 2.
<測定条件>
  装置:U-3500(株式会社日立製作所製)
  測定波長:300~700nm
  溶媒:テトラヒドロフラン
  濃度:表1に記載
<Measurement conditions>
Device: U-3500 (manufactured by Hitachi, Ltd.)
Measurement wavelength: 300-700nm
Solvent: Tetrahydrofuran Concentration: Listed in Table 1
 紫外~可視吸収スペクトルの評価基準は以下の通りである。AA、A、Bが、実用上問題ないレベルである。
[評価基準]
AA:波長400nmの吸光度が0.8以上
A:波長400nmの吸光度が0.4以上、0.8未満
B:波長400nmの吸光度が0.2以上、0.4未満
C:波長400nmの吸光度が0.2未満
Evaluation criteria for the ultraviolet to visible absorption spectrum are as follows. AA, A, and B are practically no problem levels.
[Evaluation criteria]
AA: The absorbance at a wavelength of 400 nm is 0.8 or more A: The absorbance at a wavelength of 400 nm is 0.4 or more and less than 0.8 B: The absorbance at a wavelength of 400 nm is 0.2 or more and less than 0.4 C: The absorbance at a wavelength of 400 nm is less than 0.2
Figure JPOXMLDOC01-appb-T000040
 
Figure JPOXMLDOC01-appb-T000040
 
 表2に示す通り、金属成分が50000ppm以下であると、波長400nmにおける吸光度が高く、吸収性が良好であることがわかった。また、金属成分が10000ppm以下では、より吸収性が良好であった。 As shown in Table 2, it was found that when the metal component was 50000 ppm or less, the absorbance at a wavelength of 400 nm was high and the absorbency was good. Moreover, when the metal component was 10000 ppm or less, the absorbability was better.
<成形体>
 実施例において使用した紫外線吸収剤(C)を以下に示す。
(C-1):TINUVIN 326(BASFジャパン社製、ベンゾトリアゾール系)
(C-2):TINUVIN 400(BASFジャパン社製、トリアジン系)
(C-3):アデカスタブ1413(株式会社ADEKA製、ベンゾフェノン系)
<Molded body>
The ultraviolet absorbers (C) used in the examples are shown below.
(C-1): TINUVIN 326 (manufactured by BASF Japan, benzotriazole)
(C-2): TINUVIN 400 (manufactured by BASF Japan, triazine system)
(C-3): Adekastab 1413 (manufactured by ADEKA Co., Ltd., benzophenone type)
 実施例において使用した色材(D)を以下に示す。
(D-1)C.I.ピグメントブルー PB15:6
(D-2)C.I.ソルベントレッド SR52
(D-3)C.I.ピグメントイエロー PY147
The coloring materials (D) used in the examples are shown below.
(D-1) C.I. I. Pigment Blue PB15:6
(D-2) C.I. I. Solvent Red SR52
(D-3) C.I. I. Pigment Yellow PY147
 実施例において使用した近赤外線吸収剤(E)を以下に示す。 The near-infrared absorbent (E) used in the examples is shown below.
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000041
 
 実施例において使用した熱可塑性樹脂を以下に示す。
(F-1)ポリエチレン(サンテックLD M2270、MFR=7g/10min、旭化成ケミカルズ社製)
(F-2-2)ポリエチレン(ノバテックUJ790、MFR=50g/10min、日本ポリエチレン社製)
(F-3)ポリプロピレン(ノバテックPP FA3EB、MFR=10.5g/10min、日本ポリプロ社製)
(F-4)ポリプロピレン(プライムポリプロJ226T、MFR=20g/10min、プライムポリマー社製)
(G-1)ポリエステルMA-2101M(ポリエステル、ユニチカ社製、結晶性樹脂、融点264℃、MFR45g/10min(280℃/2.16kg))
(G-2)ユーピロンS-3000(ポリカーボネート樹脂、三菱エンジニアリングプラスチックス社製、非晶性樹脂、ガラス転移温度145℃、MFR15g/10min(300℃/1.2kg))
(G-3)トパス6013M-07(シクロオレフィン樹脂、ポリプラスチックス社製、非晶性樹脂、ガラス転移温度142℃、MFR13g/10min(260℃/2.16kg))
(G-4)アペル(シクロオレフィン樹脂、三井化学社製、非晶性樹脂、ガラス転移温度135℃、MFR11g/10min以上(260℃/2.16kg))
(G-5)アミランCM3001-N(ポリアミド、東レ社製、結晶性樹脂、融点265℃、MFR7g/10min以上(235℃/2.16kg))
(G-6)ULTEM(ポリエーテルイミド、サウジ基礎産業公社製、非晶性樹脂、ガラス転移温度217℃、MFR8g/10min以上(337℃/6.6kg))
The thermoplastic resins used in the examples are shown below.
(F-1) polyethylene (Suntech LD M2270, MFR = 7 g/10 min, manufactured by Asahi Kasei Chemicals)
(F-2-2) Polyethylene (Novatec UJ790, MFR = 50 g/10 min, manufactured by Japan Polyethylene Co., Ltd.)
(F-3) Polypropylene (Novatec PP FA3EB, MFR = 10.5 g/10 min, manufactured by Japan Polypro Co., Ltd.)
(F-4) Polypropylene (Prime Polypro J226T, MFR = 20 g/10 min, manufactured by Prime Polymer Co., Ltd.)
(G-1) Polyester MA-2101M (polyester, manufactured by Unitika Ltd., crystalline resin, melting point 264°C, MFR 45g/10min (280°C/2.16kg))
(G-2) Iupilon S-3000 (polycarbonate resin, manufactured by Mitsubishi Engineering-Plastics, amorphous resin, glass transition temperature 145°C, MFR 15g/10min (300°C/1.2kg))
(G-3) Topas 6013M-07 (cycloolefin resin, manufactured by Polyplastics, amorphous resin, glass transition temperature 142° C., MFR 13 g/10 min (260° C./2.16 kg))
(G-4) APEL (cycloolefin resin, manufactured by Mitsui Chemicals, amorphous resin, glass transition temperature 135°C, MFR 11g/10min or more (260°C/2.16kg))
(G-5) Amilan CM3001-N (polyamide, manufactured by Toray Industries, crystalline resin, melting point 265° C., MFR 7 g/10 min or more (235° C./2.16 kg))
(G-6) ULTEM (polyetherimide, manufactured by Saudi Basic Industries Corporation, amorphous resin, glass transition temperature 217° C., MFR 8 g/10 min or more (337° C./6.6 kg))
 実施例において使用した液体樹脂を以下に示す。
(H-1):ユニオールD-1200(日油社製、ポリアルキレングリコール樹脂、ポリプロピレングリコール樹脂、数平均分子量1200、粘度200mPa・s)
(H-2):PEG-400(三洋化成工業社製、ポリアルキレングリコール樹脂、ポリプロピレングリコール樹脂、数平均分子量400、粘度90mPa・s)
(H-3):ユニオールD-400(日油社製、ポリアルキレングリコール樹脂、ポリプロピレングリコール樹脂、数平均分子量400、粘度100mPa・s)
(H-4):アデカサイザーRS-107(株式会社ADEKA製、エーテルエステル樹脂、アジピン酸エーテルエステル樹脂、数平均分子量430、粘度20mPa・s)
(H-5):アデカサイザーRS-700(株式会社ADEKA製、エーテルエステル樹脂、数平均分子量550、粘度30mPa・s)
(H-6):アデカサイザーPN-250(株式会社ADEKA製、脂肪酸ポリエステル、アジピン酸ポリエステル、数平均分子量2100、粘度4,500mPa・s)
(H-7):アデカサイザーPN-350(株式会社ADEKA製、脂肪酸ポリエステル、アジピン酸ポリエステル、数平均分子量4500、粘度10,000mPa・s)
Liquid resins used in the examples are shown below.
(H-1): Uniol D-1200 (manufactured by NOF Corporation, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 1200, viscosity 200 mPa s)
(H-2): PEG-400 (manufactured by Sanyo Chemical Industries, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 400, viscosity 90 mPa s)
(H-3): Uniol D-400 (manufactured by NOF Corporation, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 400, viscosity 100 mPa s)
(H-4): Adekasizer RS-107 (manufactured by ADEKA Co., Ltd., ether ester resin, adipate ether ester resin, number average molecular weight 430, viscosity 20 mPa s)
(H-5): ADEKA CIZER RS-700 (manufactured by ADEKA Co., Ltd., ether ester resin, number average molecular weight 550, viscosity 30 mPa s)
(H-6): Adekasizer PN-250 (manufactured by ADEKA Co., Ltd., fatty acid polyester, adipate polyester, number average molecular weight 2100, viscosity 4,500 mPa s)
(H-7): Adekasizer PN-350 (manufactured by ADEKA Co., Ltd., fatty acid polyester, adipate polyester, number average molecular weight 4500, viscosity 10,000 mPa s)
 実施例において使用した可塑剤を以下に示す。
(I-1)トリエチレングリコール-ジ-2-エチルヘキサノエート
(I-2)トリエチレングリコール-ジ-n-ヘプタノエート
The plasticizers used in the examples are shown below.
(I-1) triethylene glycol-di-2-ethylhexanoate (I-2) triethylene glycol-di-n-heptanoate
<樹脂型分散剤(J)>
(樹脂型分散剤溶液(J-1)の製造)
 不揮発分60%であるビックケミー・ジャパン社製のBYK-LPN6919に、BYK-LPN6919と同量の液体樹脂(H-4)を加え、100℃に加熱し減圧して溶剤を留去することにより、BYK-LPN6919の不揮発分/液体樹脂(H-4)=1/1の樹脂型分散剤溶液(J-1)を得た。
<Resin type dispersant (J)>
(Production of resin type dispersant solution (J-1))
By adding the same amount of liquid resin (H-4) as BYK-LPN6919 to BYK-LPN6919 manufactured by BYK-Chemie Japan Co., Ltd., which has a non-volatile content of 60%, heating to 100 ° C. and reducing the pressure to distill off the solvent, A resin-type dispersant solution (J-1) of BYK-LPN6919 non-volatile matter/liquid resin (H-4)=1/1 was obtained.
 [エチレン性不飽和単量体(b-5)の合成]
 撹拌機、温度計を備えた反応容器に、メタクリル酸2-イソシアナトエチル60部、3-(ジメチルアミノ)プロピルアミン29部、テトラヒドロフラン(THF)120部を仕込み、室温で5時間撹拌した。FT-IRで反応が完結していることを確認したのち、ロータリーエバポレーターで溶媒を留去し、淡黄色透明の液体の、下記のエチレン性不飽和単量体(b-5)を73部得た(収率82%)。得られた化合物の同定は、H-NMRで実施した。
[Synthesis of ethylenically unsaturated monomer (b-5)]
A reactor equipped with a stirrer and a thermometer was charged with 60 parts of 2-isocyanatoethyl methacrylate, 29 parts of 3-(dimethylamino)propylamine and 120 parts of tetrahydrofuran (THF) and stirred at room temperature for 5 hours. After confirming that the reaction was completed by FT-IR, the solvent was distilled off with a rotary evaporator to obtain 73 parts of the following ethylenically unsaturated monomer (b-5) as a pale yellow transparent liquid. (82% yield). Identification of the obtained compound was carried out by 1 H-NMR.
[エチレン性不飽和単量体(b-9)の合成]
 撹拌機、温度計を備えた反応容器に、エチレン性不飽和単量体(b-5)の合成で得られた、エチレン性不飽和単量体(b-5)6.6部、イオン交換水5部を仕込み、室温で撹拌したのち、35%塩酸水溶液8部を滴下した。アミン価測定で反応が完結していることを確認し、淡黄色透明液体の、エチレン性不飽和単量体(b-9)水溶液を20部得た。得られた化合物の同定は、H-NMRで実施した。
[Synthesis of ethylenically unsaturated monomer (b-9)]
In a reaction vessel equipped with a stirrer and a thermometer, 6.6 parts of the ethylenically unsaturated monomer (b-5) obtained in the synthesis of the ethylenically unsaturated monomer (b-5), ion exchange After 5 parts of water was charged and stirred at room temperature, 8 parts of 35% hydrochloric acid aqueous solution was added dropwise. Completion of the reaction was confirmed by amine value measurement, and 20 parts of an ethylenically unsaturated monomer (b-9) aqueous solution of pale yellow transparent liquid was obtained. Identification of the obtained compound was carried out by 1 H-NMR.
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000042
 
(樹脂型分散剤溶液(J-2)の製造)
 ガス導入管、コンデンサー、撹拌翼、及び温度計を備え付けた反応槽に、メチルメタクリレート17.7部、n-ブチルメタクリレート53.2部、テトラメチルエチレンジアミン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル2.6部、塩化第一銅5.6部、PGMAc100部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
 次に、この反応槽に、PGMAc20部、第二ブロックモノマーとしてエチレン性不飽和単量体(b-5)21.2部、エチレン性不飽和単量体(b-9)水溶液27部(不揮発分38%)を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。2時間後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認し、反応溶液を室温まで冷却して重合を停止した。
 先に合成したブロック共重合体溶液に不揮発分が40質量%になるようにPGMAcを添加した。このようにして、不揮発分当たりのアミン価が50mgKOH/g、4級アンモニウム塩価が20mgKOH/g、重量平均分子量(Mw)9,800、不揮発分が40質量%の樹脂型分散剤溶液を得た。
 さらに、この樹脂型分散剤溶液の不揮発分と同量の液体樹脂(H-4)を加え、100℃に加熱し減圧してPGMAcと水を留去することにより、この樹脂型分散剤溶液の不揮発分/液体樹脂(H-4)=1/1の樹脂型分散剤溶液(J-2)を得た。
(Production of resin type dispersant solution (J-2))
17.7 parts of methyl methacrylate, 53.2 parts of n-butyl methacrylate, and 13.2 parts of tetramethylethylenediamine were charged into a reaction tank equipped with a gas inlet tube, condenser, stirring blade, and thermometer, and the mixture was stirred for 50 minutes while flowing nitrogen. The mixture was stirred at ℃ for 1 hour, and the inside of the system was replaced with nitrogen. Next, 2.6 parts of ethyl bromoisobutyrate, 5.6 parts of cuprous chloride, and 100 parts of PGMAc were charged, and the temperature was raised to 110° C. under a nitrogen stream to initiate polymerization of the first block. After polymerization for 4 hours, the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more in terms of the non-volatile content.
Next, 20 parts of PGMAc, 21.2 parts of an ethylenically unsaturated monomer (b-5) as a second block monomer, and 27 parts of an ethylenically unsaturated monomer (b-9) aqueous solution (non-volatile 38%) was added, and the mixture was stirred while maintaining the temperature at 110°C under nitrogen atmosphere to continue the reaction. After 2 hours, the polymerization solution was sampled and the non-volatile content was measured to confirm that the polymerization conversion rate of the second block was 98% or more in terms of the non-volatile content, and the reaction solution was cooled to room temperature to stop the polymerization. bottom.
PGMAc was added to the previously synthesized block copolymer solution so that the non-volatile content was 40% by mass. Thus, a resin-type dispersant solution having an amine value per nonvolatile content of 50 mgKOH/g, a quaternary ammonium salt value of 20 mgKOH/g, a weight average molecular weight (Mw) of 9,800, and a nonvolatile content of 40% by mass was obtained. rice field.
Furthermore, the same amount of liquid resin (H-4) as the non-volatile content of this resin-type dispersant solution is added, heated to 100° C. and reduced in pressure to distill off PGMAc and water, thereby obtaining this resin-type dispersant solution. A resin-type dispersant solution (J-2) having a non-volatile content/liquid resin (H-4) ratio of 1/1 was obtained.
(実施例2-1)
<マスターバッチの製造>
 紫外線吸収色素1を2部と、ポリオレフィン樹脂(F-1)を98部とを同じ供給口からスクリュー径30mmの二軸押出機(株式会社日本製鋼所製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(K-1)を作製した。
(Example 2-1)
<Production of masterbatch>
2 parts of the UV absorbing dye 1 and 98 parts of the polyolefin resin (F-1) were fed from the same supply port into a twin-screw extruder with a screw diameter of 30 mm (manufactured by Japan Steel Works, Ltd.) and melt-mixed at 240 ° C. After kneading, the mixture was cut into pellets using a pelletizer to prepare a masterbatch (K-1).
<フィルム成形>
 希釈樹脂のポリオレフィン樹脂(F-1)90部に対して、得られたマスターバッチ(K-1)10部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度180℃で溶融混合し、厚さ250μmのフィルム(X-1)を成形した。
<Film molding>
10 parts of the obtained masterbatch (K-1) was mixed with 90 parts of polyolefin resin (F-1) as a diluted resin, and the temperature was 180°C using a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.). to form a film (X-1) having a thickness of 250 μm.
(実施例2-2~2-30、比較例2-1~2-10)
 実施例2-1と同様に、表3に記載の材料を用いて、厚さ250μmのフィルム(X-2)~(X-30)、(XX-1)~(XX-10)を成形した。
(Examples 2-2 to 2-30, Comparative Examples 2-1 to 2-10)
Films (X-2) to (X-30) and (XX-1) to (XX-10) having a thickness of 250 μm were formed using the materials shown in Table 3 in the same manner as in Example 2-1. .
[紫外線吸収性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。AA、A、Bが、実用上問題ないレベルである。
[評価基準]
AA:波長400~420nmの光透過率が全領域にわたって1%未満:非常に良好
A:波長400~420nmの光透過率が全領域にわたって1%以上5%未満:良好
B:波長400~420nmの光透過率が全領域にわたって5%以上10%未満:実用域
C:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[Ultraviolet absorption]
The transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. AA, A, and B are practically no problem levels.
[Evaluation criteria]
AA: Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
[透明性]
 得られたフィルムの透明性を目視評価した。評価基準は以下の通りである。A、Bが、実用上問題ないレベルである。
[評価基準]
A:濁りが全く認められない。:良好
B:濁りが若干認められる。:実用域
C:明らかに濁りが認められる。:実用不可
[transparency]
The transparency of the resulting film was visually evaluated. Evaluation criteria are as follows. A and B are practically no problem levels.
[Evaluation criteria]
A: Turbidity is not recognized at all. : Good B: Slight turbidity is observed. : Practical range C: Turbidity is clearly observed. : Impossible
[耐光性]
 得られたフィルムをキセノンウェザーメーターで、60W/mの照度(波長300~400nm)で1000時間暴露した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:極大吸収波長の吸光度の減少率が10%未満:良好
B:極大吸収波長の吸光度の減少率が10%以上、30%未満:実用域
C:極大吸収波長の吸光度の減少率が30%以上:実用不可
[Lightfastness]
The resulting film was exposed for 1000 hours with a xenon weather meter at an illumination intensity of 60 W/m 2 (wavelength 300 to 400 nm). A and B are practically no problem levels.
[Evaluation criteria]
A: The rate of decrease in absorbance at the maximum absorption wavelength is less than 10%: Good B: The rate of decrease in absorbance at the maximum absorption wavelength is 10% or more and less than 30%: Practical range C: The rate of decrease in absorbance at the maximum absorption wavelength is 30% Above: Not practical
Figure JPOXMLDOC01-appb-T000043
 
Figure JPOXMLDOC01-appb-T000043
 
(実施例2-31)
<マスターバッチの製造>
 紫外線吸収色素1を2部と、ポリエステル(G-1)を98部と、を同じ供給口からスクリュー径30mmの二軸押出機(株式会社日本製鋼所製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(K-31)を製造した。
(Example 2-31)
<Production of masterbatch>
2 parts of the ultraviolet absorbing dye 1 and 98 parts of the polyester (G-1) are fed from the same supply port into a twin-screw extruder with a screw diameter of 30 mm (manufactured by Japan Steel Works, Ltd.) and melt-mixed at 240 ° C. After kneading, the material was cut into pellets using a pelletizer to produce a masterbatch (K-31).
<フィルム成形>
 希釈樹脂のポリエステル(G-1)95部に対して、得られたマスターバッチ(K-31)10部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度180℃で溶融混合し、厚さ250μmのフィルム(X-21)を成形した。
<Film molding>
10 parts of the obtained masterbatch (K-31) was mixed with 95 parts of the diluted resin polyester (G-1), and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used at a temperature of 180 ° C. The mixture was melt-blended to form a film (X-21) having a thickness of 250 μm.
(実施例2-32~2-60、比較例2-11~2-20)
 実施例2-21と同様に、表4-1に記載の材料を用いて、厚さ250μmのフィルム(X-32)~(X-60)、(XX-11)~(XX-20)を成形した。
(Examples 2-32 to 2-60, Comparative Examples 2-11 to 2-20)
Films (X-32) to (X-60) and (XX-11) to (XX-20) having a thickness of 250 μm were prepared using the materials listed in Table 4-1 in the same manner as in Example 2-21. Molded.
(実施例2-61)
<液状マスターバッチの製造>
 紫外線吸収剤1を10部と、液体樹脂(H-1)を90部と、をロールで混錬することにより、液状マスターバッチ(K-61)を製造した。
(Example 2-61)
<Production of liquid masterbatch>
A liquid masterbatch (K-61) was produced by kneading 10 parts of the ultraviolet absorber 1 and 90 parts of the liquid resin (H-1) with a roll.
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(G-1)99.5部に対して、得られた液状マスターバッチ(K-61)0.5部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度300℃で溶融混合し、厚さ250μmのフィルム(X-61)を成形した。
<Film molding>
0.5 parts of the obtained liquid masterbatch (K-61) is mixed with 99.5 parts of the thermoplastic resin (G-1) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) is used. was melt-mixed at a temperature of 300° C. to form a film (X-61) having a thickness of 250 μm.
(実施例2-62~2-90)
 実施例2-61と同様に、表4-2に記載の材料を用いて、厚さ250μmのフィルム(X-62)~(X-90)を成形した。
(Examples 2-62 to 2-90)
In the same manner as in Example 2-61, films (X-62) to (X-90) with a thickness of 250 μm were formed using the materials listed in Table 4-2.
(実施例2-91)
<液状マスターバッチの製造>
 紫外線吸収色素1を10部、樹脂型分散剤(J-1)を20部と、液体樹脂(H-1)を70部と、をビーズミルで分散することにより、液状マスターバッチ(K-91)を製造した。
(Example 2-91)
<Production of liquid masterbatch>
10 parts of the ultraviolet absorbing dye 1, 20 parts of the resin type dispersant (J-1), and 70 parts of the liquid resin (H-1) are dispersed in a bead mill to obtain a liquid masterbatch (K-91). manufactured.
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(G-1)99.5部に対して、得られた液状マスターバッチ(K-91)0.5部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度300℃で溶融混合し、厚さ250μmのフィルム(X-91)を成形した。
<Film molding>
0.5 parts of the obtained liquid masterbatch (K-91) is mixed with 99.5 parts of the thermoplastic resin (G-1) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) is used. was melt-mixed at a temperature of 300° C. to form a film (X-91) having a thickness of 250 μm.
(実施例2-92~2-120)
 実施例2-91と同様に、表4-2に記載の材料を用いて、厚さ250μmのフィルム(X-92)~(X-120)を成形した。
(Examples 2-92 to 2-120)
Films (X-92) to (X-120) with a thickness of 250 μm were formed using the materials shown in Table 4-2 in the same manner as in Example 2-91.
(実施例2-121)
<可塑剤分散液の製造>
 紫外線吸収剤1を10部と、可塑剤(I-1)を90部と、をビーズ分散することにより、可塑剤分散液(K-121)を製造した。
(Example 2-121)
<Production of plasticizer dispersion>
A plasticizer dispersion (K-121) was prepared by bead-dispersing 10 parts of UV absorber 1 and 90 parts of plasticizer (I-1).
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(G-1)98部に対して、得られた可塑剤分散液(K-121)2部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度280℃で溶融混合し、厚さ250μmのT-ダイフィルム(X-121)を成形した。
<Film molding>
2 parts of the obtained plasticizer dispersion (K-121) was mixed with 98 parts of the thermoplastic resin (G-1) of the diluted resin, and using a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.), The mixture was melt-blended at a temperature of 280° C. to form a T-die film (X-121) having a thickness of 250 μm.
(実施例2-122~2-150)
 実施例2-121と同様に、表4-3に記載の材料を用いて、厚さ250μmのフィルム(X-122)~(X-150)を成形した。
(Examples 2-122 to 2-150)
Films (X-122) to (X-150) with a thickness of 250 μm were formed using the materials shown in Table 4-3 in the same manner as in Example 2-121.
(実施例2-151)
<可塑剤分散液の製造>
 紫外線吸収色素1を10部、樹脂型分散剤(J-1)を20部と、可塑剤(I-1)を70部と、をビーズミルで分散することにより、可塑剤分散液(K-151)を製造した。
(Example 2-151)
<Production of plasticizer dispersion>
A plasticizer dispersion (K-151 ) was manufactured.
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(G-1)99.5部に対して、得られた可塑剤分散液(K-151)0.5部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度280℃で溶融混合し、厚さ250μmのフィルム(X-151)を成形した。
<Film molding>
0.5 parts of the obtained plasticizer dispersion (K-151) is mixed with 99.5 parts of the thermoplastic resin (G-1) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) were melt-mixed at a temperature of 280° C. to form a film (X-151) having a thickness of 250 μm.
(実施例2-152~2-180)
 実施例2-151と同様に、表4-3に記載の材料を用いて、厚さ250μmのフィルム(X-152)~(X-180)を成形した。
(Examples 2-152 to 2-180)
Films (X-152) to (X-180) with a thickness of 250 μm were formed using the materials shown in Table 4-3 in the same manner as in Example 2-151.
Figure JPOXMLDOC01-appb-T000044
 
Figure JPOXMLDOC01-appb-T000044
 
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-I000046
 
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-I000046
 
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-I000048
 
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-I000048
 
[紫外線吸収性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。AA、A、Bが、実用上問題ないレベルである。
[評価基準]
AA:波長400~420nmの光透過率が全領域にわたって1%未満:非常に良好
A:波長400~420nmの光透過率が全領域にわたって1%以上5%未満:良好
B:波長400~420nmの光透過率が全領域にわたって5%以上10%未満:実用域
C:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[Ultraviolet absorption]
The transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. AA, A, and B are practically no problem levels.
[Evaluation criteria]
AA: Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
[透明性]
 得られたフィルムの透明性を目視評価した。評価基準は以下の通りである。A、Bが、実用上問題ないレベルである。
[評価基準]
A:濁りが全く認められない。:良好
B:濁りが若干認められる。:実用域
C:明らかに濁りが認められる。:実用不可
[transparency]
The transparency of the resulting film was visually evaluated. Evaluation criteria are as follows. A and B are practically no problem levels.
[Evaluation criteria]
A: Turbidity is not recognized at all. : Good B: Slight turbidity is observed. : Practical range C: Turbidity is clearly observed. : Impossible
<ヘーズ値>
 得られたフィルムに対し、ヘーズメーターでヘーズ値を測定し、下記基準で評価した。AAA、AA、A、Bが、実用上問題ないレベルである。
[評価基準]
AAA:0.2未満:極めて良好
AA:0.2以上0.5未満:非常に良好
A:0.5以上2未満:良好
B:2以上5未満:良好
C:5以上:実用不可
<Haze value>
The haze value of the obtained film was measured with a haze meter and evaluated according to the following criteria. AAA, AA, A, and B are practically acceptable levels.
[Evaluation criteria]
AAA: less than 0.2: very good AA: 0.2 or more and less than 0.5: very good A: 0.5 or more and less than 2: good B: 2 or more and less than 5: good C: 5 or more: not practical
[耐光性]
 得られたフィルムをキセノンウェザーメーターで、60W/mの照度(波長300~400nm)で1000時間暴露した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:極大吸収波長の吸光度の減少率が10%未満:良好
B:極大吸収波長の吸光度の減少率が10%以上、30%未満:実用域
C:極大吸収波長の吸光度の減少率が30%以上:実用不可
[Lightfastness]
The resulting film was exposed for 1000 hours with a xenon weather meter at an illumination intensity of 60 W/m 2 (wavelength 300 to 400 nm). A and B are practically no problem levels.
[Evaluation criteria]
A: The rate of decrease in absorbance at the maximum absorption wavelength is less than 10%: Good B: The rate of decrease in absorbance at the maximum absorption wavelength is 10% or more and less than 30%: Practical range C: The rate of decrease in absorbance at the maximum absorption wavelength is 30% Above: Not practical
Figure JPOXMLDOC01-appb-T000049
 
Figure JPOXMLDOC01-appb-T000049
 
Figure JPOXMLDOC01-appb-T000050
 
Figure JPOXMLDOC01-appb-T000050
 
 表4-4及び表4-5に示す通り、本発明の実施形態の成形体は、400~420nmの可視光短波長領域において、単位重量当たりの紫外線吸収性が高く、耐光性が高い。また、少量添加で実用域に至るためフィルムの透明性が高く、ヘーズが低いことがわかった。 As shown in Tables 4-4 and 4-5, the molded articles of the embodiments of the present invention have high UV absorption per unit weight and high light resistance in the visible light short wavelength region of 400 to 420 nm. In addition, it was found that the transparency of the film is high and the haze is low because the addition of a small amount reaches the practical range.
(実施例3-1)
<マスターバッチの製造>
 紫外線吸収色素1を2部と熱可塑性樹脂(G-1)を98部と、を同じ供給口からスクリュー径30mmの二軸押出機(株式会社日本製鋼所製)に投入し、300℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(K-31)を製造した。
(Example 3-1)
<Production of masterbatch>
2 parts of the ultraviolet absorbing dye 1 and 98 parts of the thermoplastic resin (G-1) are put into a twin-screw extruder with a screw diameter of 30 mm (manufactured by Japan Steel Works, Ltd.) from the same supply port, and melted at 300 ° C. After kneading, the mixture was cut into pellets using a pelletizer to produce a masterbatch (K-31).
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(G-1)90部に対して、得られたマスターバッチ(K-31)10部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度300℃で溶融混合した。次いで、20分間300℃で滞留させた。その後、厚さ250μmのフィルム(Y-1)を成形した。
<Film molding>
10 parts of the obtained masterbatch (K-31) is mixed with 90 parts of the thermoplastic resin (G-1) of the diluted resin, and the temperature is 300 using a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.). °C and melt-mixed. It was then held at 300° C. for 20 minutes. After that, a film (Y-1) having a thickness of 250 μm was formed.
(実施例3-2~3-150、比較例3-1~3-10)
 実施例3-1と同様に、表4-1~4-3に記載の材料を用いて、厚さ250μmのフィルム(Y-2)~(Y-150)、(YY-1)~(YY-10)を成形した。
(Examples 3-2 to 3-150, Comparative Examples 3-1 to 3-10)
In the same manner as in Example 3-1, films (Y-2) to (Y-150), (YY-1) to (YY) having a thickness of 250 μm were prepared using the materials listed in Tables 4-1 to 4-3. -10) was molded.
[紫外線吸収性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。AA、A、Bが、実用上問題ないレベルである。
[評価基準]
AA:波長400~420nmの光透過率が全領域にわたって1%未満:非常に良好
A:波長400~420nmの光透過率が全領域にわたって1%以上5%未満:良好
B:波長400~420nmの光透過率が全領域にわたって5%以上10%未満:実用域
C:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[Ultraviolet absorption]
The transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. AA, A, and B are practically no problem levels.
[Evaluation criteria]
AA: Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
[耐熱性]
 得られたフィルム(Y-1)~(Y-150)について、実施例(2-31)~(2-180)、比較例(2-11)~(2-20)で得られたフィルム(X-31)~(X-180)、(XX-11)~(XX-20)との紫外線吸収性の差を比較し評価した。評価基準は以下の通りである。A、Bが、実用上問題ないレベルである。
[評価基準]
A:波長400~420nmの光透過率の差が1%未満:良好
B:波長400~420nmの光透過率の差が1%以上5%未満:実用域
C:波長400~420nmの光透過率の差が5%以上:実用不可
[Heat-resistant]
For the obtained films (Y-1) to (Y-150), the films ( X-31) to (X-180) and (XX-11) to (XX-20) were evaluated by comparing the difference in UV absorption. Evaluation criteria are as follows. A and B are practically no problem levels.
[Evaluation criteria]
A: Difference in light transmittance at wavelength 400 to 420 nm is less than 1%: Good B: Difference in light transmittance at wavelength 400 to 420 nm is 1% or more and less than 5%: Practical range C: Light transmittance at wavelength 400 to 420 nm difference is 5% or more: impractical
 なお、実施例3-1~3-150および比較例3-1~3-10の原料および配合比は、それぞれ実施例2-31~2-180および比較例2-11~2-20と同一であるため、表5-1及び表5-2には結果のみを記載する。 The raw materials and compounding ratios of Examples 3-1 to 3-150 and Comparative Examples 3-1 to 3-10 are the same as those of Examples 2-31 to 2-180 and Comparative Examples 2-11 to 2-20, respectively. Therefore, only the results are shown in Tables 5-1 and 5-2.
Figure JPOXMLDOC01-appb-T000051
 
Figure JPOXMLDOC01-appb-T000051
 
Figure JPOXMLDOC01-appb-T000052
 
Figure JPOXMLDOC01-appb-T000052
 
 表5-1及び表5-2に示す通り、本発明の実施形態の紫外線吸収剤を用いた成形体は、フィルム成形時の溶融混合時の滞留時間による紫外線吸収性の変化率が小さい。よって。良好な耐熱性を保有していることが確認された。 As shown in Tables 5-1 and 5-2, the molded article using the ultraviolet absorber of the embodiment of the present invention has a small rate of change in ultraviolet absorption due to residence time during melt mixing during film molding. Therefore. It was confirmed that it possessed good heat resistance.
(実施例4-1)
<紫外線領域吸収マスターバッチの製造>
 紫外線吸収剤3を1部、紫外線吸収剤C-1を1部、紫外線吸収剤ポリエステル(G-1)を98部と、を同じ供給口からスクリュー径30mmの二軸押出機(株式会社日本製鋼所製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(K-121)を製造した。
(Example 4-1)
<Production of UV region absorbing masterbatch>
1 part of UV absorber 3, 1 part of UV absorber C-1, and 98 parts of UV absorber polyester (G-1) are fed from the same supply port into a twin-screw extruder with a screw diameter of 30 mm (Nippon Steel Co., Ltd. (manufactured by the company), melted and kneaded at 240° C., and cut into pellets using a pelletizer to produce a masterbatch (K-121).
<フィルム成形>
 希釈樹脂のポリエステル(G-1)90部に対して、得られたマスターバッチ(K-121)10部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度180℃で溶融混合し、厚さ250μmのフィルム(Z-1)を成形した。
<Film molding>
10 parts of the obtained masterbatch (K-121) was mixed with 90 parts of the diluted resin polyester (G-1), and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used at a temperature of 180 ° C. A film (Z-1) having a thickness of 250 μm was formed by melt mixing.
(実施例4-2~4-3)
 実施例4-1と同様に、表6-1に記載の材料を用いて、厚さ250μmのフィルム(Z-2)~(Z-3)を成形した。
(Examples 4-2 to 4-3)
Films (Z-2) to (Z-3) having a thickness of 250 μm were formed using the materials shown in Table 6-1 in the same manner as in Example 4-1.
[分光特性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:波長400~420nmの光透過率が全領域にわたって1%未満:非常に良好
B:波長400~420nmの光透過率が全領域にわたって1%以上5%未満:良好
C:波長400~420nmの光透過率が全領域にわたって5%以上実用不可
[Spectral characteristics]
The transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. A and B are practically no problem levels.
[Evaluation criteria]
A: Light transmittance at a wavelength of 400 to 420 nm is less than 1% over the entire region: Very good B: Light transmittance at a wavelength of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good C: A wavelength of 400 to 420 nm Light transmittance of 5% or more over the entire area is not practical
[耐光性]
 得られたフィルムをキセノンウェザーメーターで、60W/mの照度(波長300~400nm)で1000時間暴露した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:極大吸収波長の吸光度の減少率が10%未満:良好
B:極大吸収波長の吸光度の減少率が10%以上、30%未満:実用域
C:極大吸収波長の吸光度の減少率が30%以上:実用不可
[Lightfastness]
The resulting film was exposed for 1000 hours with a xenon weather meter at an illumination intensity of 60 W/m 2 (wavelength 300 to 400 nm). A and B are practically no problem levels.
[Evaluation criteria]
A: The rate of decrease in absorbance at the maximum absorption wavelength is less than 10%: Good B: The rate of decrease in absorbance at the maximum absorption wavelength is 10% or more and less than 30%: Practical range C: The rate of decrease in absorbance at the maximum absorption wavelength is 30% Above: Not practical
[耐熱性]
 実施例3と同様の方法で耐熱性を評価した。評価基準は以下の通りである。A、Bが、実用上問題ないレベルである。
[評価基準]
A:波長400~420nmの光透過率の差が1%未満:良好
B:波長400~420nmの光透過率の差が1%以上5%未満:実用域
C:波長400~420nmの光透過率の差が5%以上:実用不可
[Heat-resistant]
Heat resistance was evaluated in the same manner as in Example 3. Evaluation criteria are as follows. A and B are practically no problem levels.
[Evaluation criteria]
A: Difference in light transmittance at wavelength 400 to 420 nm is less than 1%: Good B: Difference in light transmittance at wavelength 400 to 420 nm is 1% or more and less than 5%: Practical range C: Light transmittance at wavelength 400 to 420 nm difference is 5% or more: impractical
[透明性]
 得られたフィルムの透明性を目視評価した。評価基準は以下の通りである。A、Bが、実用上問題ないレベルである。
[評価基準]
A:濁りが全く認められない。:良好
B:濁りが若干認められる。:実用域
C:明らかに濁りが認められる。:実用不可
[transparency]
The transparency of the resulting film was visually evaluated. Evaluation criteria are as follows. A and B are practically no problem levels.
[Evaluation criteria]
A: Turbidity is not recognized at all. : Good B: Slight turbidity is observed. : Practical range C: Turbidity is clearly observed. : Impossible
(実施例4-4)
<紫外・可視光領域吸収マスターバッチの製造>
 紫外線吸収剤3を1部、色材D-1を1部、色材D-2を1部、色材D-3を1部、紫外線吸収剤ポリエステル(G-1)を96部、を同じ供給口からスクリュー径30mmの二軸押出機(株式会社日本製鋼所製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(K-124)を製造した。
(Example 4-4)
<Production of ultraviolet/visible light absorption masterbatch>
1 part of UV absorber 3, 1 part of colorant D-1, 1 part of colorant D-2, 1 part of colorant D-3, 96 parts of UV absorber polyester (G-1), the same It is put into a twin-screw extruder with a screw diameter of 30 mm (manufactured by The Japan Steel Works, Ltd.) from the supply port, melted and kneaded at 240 ° C., and then cut into pellets using a pelletizer to masterbatch (K-124). manufactured.
<フィルム成形>
 希釈樹脂のポリエステル(G-1)90部に対して、得られたマスターバッチ(K-124)10部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度180℃で溶融混合し、厚さ250μmのフィルム(Z-4)を成形した。
<Film molding>
10 parts of the obtained masterbatch (K-124) was mixed with 90 parts of the diluted resin polyester (G-1), and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used at a temperature of 180 ° C. They were melt-blended to form a film (Z-4) having a thickness of 250 μm.
(実施例4-5~4-6)
 実施例4-4と同様に、表6-1記載の材料を用いて、厚さ250μmのフィルム(Z-5)~(Z-6)を成形した。
(Examples 4-5 to 4-6)
Films (Z-5) to (Z-6) with a thickness of 250 μm were formed using the materials shown in Table 6-1 in the same manner as in Example 4-4.
[分光特性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:波長400~650nmの光透過率が全領域にわたって1%未満であり、:良好
B:波長400~650nmの光透過率が1%以上5%未満:実用域
C:波長400~650nmの光透過率が5%以上:実用不可
[Spectral characteristics]
The transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. A and B are practically no problem levels.
[Evaluation criteria]
A: Light transmittance at wavelengths of 400 to 650 nm is less than 1% over the entire region: Good B: Light transmittance at wavelengths from 400 to 650 nm is 1% or more and less than 5%: Practical range C: Light at wavelengths from 400 to 650 nm Transmittance of 5% or more: Not practical
 実施例4-1と同様の方法で、耐光性と耐熱性を評価した。 The light resistance and heat resistance were evaluated in the same manner as in Example 4-1.
(実施例4-7)
<紫外・近赤外領域マスターバッチの製造>
 紫外線吸収剤3を1部、近赤外収集色素E-1を1部、紫外線吸収剤ポリエステル(G-1)を98部と、を同じ供給口からスクリュー径30mmの二軸押出機(株式会社日本製鋼所製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(K-127)を製造した。
(Example 4-7)
<Production of UV/Near Infrared Region Masterbatch>
1 part of UV absorber 3, 1 part of near-infrared collecting dye E-1, and 98 parts of UV absorber polyester (G-1) are fed from the same supply port into a twin-screw extruder with a screw diameter of 30 mm (Co., Ltd. Japan Steel Works), melted and kneaded at 240° C., and cut into pellets using a pelletizer to produce a masterbatch (K-127).
<フィルム成形>
 希釈樹脂のポリエステル(G-1)90部に対して、得られたマスターバッチ(K-127)10部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度180℃で溶融混合し、厚さ250μmのフィルム(Z-7)を成形した。
<Film molding>
10 parts of the obtained masterbatch (K-127) was mixed with 90 parts of the diluted resin polyester (G-1), and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used at a temperature of 180 ° C. Melt mixing was performed to form a film (Z-7) having a thickness of 250 μm.
(実施例4-8~4-11)
 実施例4-7と同様に、表6-1に記載の材料を用いて、厚さ250μmのフィルム(Z-8)~(Z-11)を成形した。
(Examples 4-8 to 4-11)
Films (Z-8) to (Z-11) having a thickness of 250 μm were formed using the materials shown in Table 6-1 in the same manner as in Example 4-7.
[分光特性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:波長400~420nmかつ波長700~800nmの光透過率が全領域にわたって1%未満:良好
B:波長400~420nmかつ波長700~800nmの光透過率が全領域にわたって1%以上5%未満:実用域
C:波長400~420nmかつ波長700~800nmの光透過率が全領域にわたって5%以上:実用不可
[Spectral characteristics]
The transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. A and B are practically no problem levels.
[Evaluation criteria]
A: Light transmittance at a wavelength of 400 to 420 nm and a wavelength of 700 to 800 nm is less than 1% over the entire region: Good B: Light transmittance at a wavelength of 400 to 420 nm and a wavelength of 700 to 800 nm is 1% or more and less than 5% over the entire region: Practical range C: Light transmittance of wavelength 400 to 420 nm and wavelength 700 to 800 nm is 5% or more over the entire region: Not practical
 実施例4-1と同様の方法で、耐光性と耐熱性を評価した。 The light resistance and heat resistance were evaluated in the same manner as in Example 4-1.
(実施例4-12)
<紫外・近赤外領域吸収マスターバッチの製造>
 紫外線吸収剤3を1部、紫外線吸収剤C-1を1部、近赤外収集色素E-1を1部、紫外線吸収剤ポリエステル(G-1)を97部と、を同じ供給口からスクリュー径30mmの二軸押出機(株式会社日本製鋼所製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(K-132)を製造した。
(Example 4-12)
<Production of ultraviolet/near-infrared absorption masterbatch>
1 part of the UV absorber 3, 1 part of the UV absorber C-1, 1 part of the near-infrared collecting dye E-1, and 97 parts of the UV absorber polyester (G-1) are fed from the same supply port to the screw. It was put into a twin-screw extruder with a diameter of 30 mm (manufactured by The Japan Steel Works, Ltd.), melted and kneaded at 240° C., and cut into pellets using a pelletizer to produce a masterbatch (K-132).
<フィルム成形>
 希釈樹脂のポリエステル(G-1)90部に対して、得られたマスターバッチ(K-132)10部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度180℃で溶融混合し、厚さ250μmのフィルム(Z-12)を成形した。
<Film molding>
10 parts of the obtained masterbatch (K-132) was mixed with 90 parts of the diluted resin polyester (G-1), and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used at a temperature of 180 ° C. Melt mixing was performed to form a film (Z-12) having a thickness of 250 μm.
(実施例4-13~4-16)
 実施例4-12と同様に、表6-1に記載の材料を用いて、厚さ250μmのフィルム(Z-13)~(Z-16)を成形した。
(Examples 4-13 to 4-16)
Films (Z-13) to (Z-16) having a thickness of 250 μm were formed using the materials shown in Table 6-1 in the same manner as in Example 4-12.
[分光特性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:波長300~420nmかつかつ波長700~800nmの光透過率が全領域にわたって1%未満:良好
B:波長300~420nmかつ波長700~800nmの光透過率が全領域にわたって1%以上5%未満:実用域
C:波長300~420nmかつ波長700~800nmの光透過率が全領域にわたって5%以上:実用不可
[Spectral characteristics]
The transmittance of the obtained film was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. A and B are practically no problem levels.
[Evaluation criteria]
A: Light transmittance at a wavelength of 300 to 420 nm and a wavelength of 700 to 800 nm is less than 1% over the entire region: Good B: Light transmittance at a wavelength of 300 to 420 nm and a wavelength of 700 to 800 nm is 1% or more and less than 5% over the entire region: Practical range C: Light transmittance of wavelength 300 to 420 nm and wavelength 700 to 800 nm is 5% or more over the entire region: Not practical
 実施例4-1と同様の方法で、耐光性と耐熱性を評価した。結果を表6-2に示す。 The light resistance and heat resistance were evaluated in the same manner as in Example 4-1. The results are shown in Table 6-2.
Figure JPOXMLDOC01-appb-T000053
 
Figure JPOXMLDOC01-appb-T000053
 
Figure JPOXMLDOC01-appb-T000054
 
Figure JPOXMLDOC01-appb-T000054
 
<塗料>
(実施例5-1)
 以下の組成で撹拌混合を行い、塗料を調整した。
紫外線吸収剤1                  0.5部
ポリエステル(バイロンGK250、東洋紡社製)  9.5部
メチルエチルケトン                90.0部
<Paint>
(Example 5-1)
Stirring and mixing were performed with the following composition to prepare a paint.
Ultraviolet absorber 1 0.5 parts Polyester (Vylon GK250, manufactured by Toyobo) 9.5 parts Methyl ethyl ketone 90.0 parts
(実施例5-2~5-20、比較例5-1~5-10)
 表7に示すように、実施例5-1と同様に調整し、それぞれ実施例5-2~5-30、比較例5-1~5-10の塗料を得た。
(Examples 5-2 to 5-20, Comparative Examples 5-1 to 5-10)
As shown in Table 7, preparations were made in the same manner as in Example 5-1 to obtain paints of Examples 5-2 to 5-30 and Comparative Examples 5-1 to 5-10, respectively.
<塗膜の形成>
 得られた塗料を厚さ1000μmのガラス基板にバーコーターを用いて乾燥膜厚で10μmとなるよう塗布し、100℃2分で乾燥させて塗膜を形成した。
<Formation of coating film>
The obtained paint was applied to a glass substrate having a thickness of 1000 μm using a bar coater so that the dry film thickness was 10 μm, and dried at 100° C. for 2 minutes to form a coating film.
(塗膜の評価)
 得られた塗膜を、以下の方法で評価した。
(Evaluation of coating film)
The obtained coating film was evaluated by the following methods.
[紫外線吸収性]
 得られた塗工物の透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。AA、A、Bが、実用上問題ないレベルである。
[評価基準]
AA:波長400~420nmの光透過率が全領域にわたって1%未満:非常に良好
A:波長400~420nmの光透過率が全領域にわたって1%以上5%未満:良好
B:波長400~420nmの光透過率が全領域にわたって5%以上10%未満:実用域
C:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[Ultraviolet absorption]
The transmittance of the obtained coated material was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. AA, A, and B are practically no problem levels.
[Evaluation criteria]
AA: Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
[耐光性]              
 得られた塗工物をキセノンウェザーメーターで、60W/mの照度(波長300~400nm)で1000時間暴露した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:極大吸収波長の吸光度の減少率が10%未満:良好
B:極大吸収波長の吸光度の減少率が10%以上、30%未満:実用域
C:極大吸収波長の吸光度の減少率が30%以上:実用不可
[Lightfastness]
The resulting coated product was exposed to an illumination intensity of 60 W/m 2 (wavelength 300 to 400 nm) for 1000 hours using a xenon weather meter. A and B are practically no problem levels.
[Evaluation criteria]
A: The rate of decrease in absorbance at the maximum absorption wavelength is less than 10%: Good B: The rate of decrease in absorbance at the maximum absorption wavelength is 10% or more and less than 30%: Practical range C: The rate of decrease in absorbance at the maximum absorption wavelength is 30% Above: Not practical
[透明性]
 得られた塗工物の透明性を目視評価した。なお評価基準は以下の通りである。A、Bが、実用上問題ないレベルである。
[評価基準]
A:濁りが全く認められない。良好
B:濁りが若干認められる。実用域
C:明らかに濁りが認められる。実用不可
[transparency]
The transparency of the resulting coating was visually evaluated. The evaluation criteria are as follows. A and B are practically no problem levels.
[Evaluation criteria]
A: Turbidity is not recognized at all. Good B: Slight turbidity is observed. Practical range C: Turbidity is clearly observed. impractical
Figure JPOXMLDOC01-appb-T000055
 
Figure JPOXMLDOC01-appb-T000055
 
 表7に示す通り、本発明の実施形態の紫外線吸収剤を用いた塗膜は、400~420nmの可視光短波長領域における紫外線吸収性が高く、耐光性が高い。少量添加で実用域に至るため塗工物の透明性を損なわないことがわかった。 As shown in Table 7, the coating film using the UV absorber of the embodiment of the present invention has high UV absorption in the visible light short wavelength region of 400 to 420 nm and high light resistance. It was found that the transparency of the coated material is not impaired because it reaches the practical range with the addition of a small amount.
<光硬化性組成物>
(実施例6-1)
 以下の組成で、各原料を撹拌混合し、光硬化性組成物を調整した。
紫外線吸収剤1            1.0部
光重合性化合物(多官能アクリレート「KAYARAD DPHA」日本化薬社製)
18.0部
光重合開始剤(IGM ResinBV製「Omnirad 184」)1.0部 
プロピレングリコールモノメチルエーテル   80.0部
<Photocurable composition>
(Example 6-1)
In the following composition, each raw material was stirred and mixed to prepare a photocurable composition.
UV absorber 1 1.0 parts Photopolymerizable compound (polyfunctional acrylate "KAYARAD DPHA" manufactured by Nippon Kayaku Co., Ltd.)
18.0 parts Photopolymerization initiator (IGM ResinBV "Omnirad 184") 1.0 parts
Propylene glycol monomethyl ether 80.0 parts
(実施例6-2~6-30、比較例6-1~6-10)
 表8に示すように、実施例6-1と同様に調整し、それぞれ実施例6-2~6-30、比較例6-1~6-10の光硬化性組成物を得た。
(Examples 6-2 to 6-30, Comparative Examples 6-1 to 6-10)
As shown in Table 8, preparations were made in the same manner as in Example 6-1 to obtain photocurable compositions of Examples 6-2 to 6-30 and Comparative Examples 6-1 to 6-10, respectively.
(塗膜の形成)
 上記の光硬化性組成物をバーコーターを用いて厚さ1mmのガラス基板に乾燥膜厚で6μmとなるよう塗布した。得られた塗布層を、100℃1分で乾燥したのち、高圧水銀ランプで400mJ/cmの紫外線を照射して硬化し塗工物を形成した。
(Formation of coating film)
The above photocurable composition was applied to a glass substrate having a thickness of 1 mm using a bar coater so that the dry film thickness was 6 μm. The resulting coating layer was dried at 100° C. for 1 minute and then cured by irradiating ultraviolet rays of 400 mJ/cm 2 with a high-pressure mercury lamp to form a coating.
(塗膜の評価)
 得られた塗膜を、以下の方法で評価した。
(Evaluation of coating film)
The obtained coating film was evaluated by the following methods.
[紫外線吸収性]
 得られた塗工物の透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。AA、A、Bが、実用上問題ないレベルである。
[評価基準]
AA:波長400~420nmの光透過率が全領域にわたって1%未満:非常に良好
A:波長400~420nmの光透過率が全領域にわたって1%以上5%未満:良好
B:波長400~420nmの光透過率が全領域にわたって5%以上10%未満:実用域
C:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[Ultraviolet absorption]
The transmittance of the obtained coated material was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. AA, A, and B are practically no problem levels.
[Evaluation criteria]
AA: Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
[耐光性]
 得られた塗工物をキセノンウェザーメーターで、60W/mの照度(波長300~400nm)で1000時間暴露した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:極大吸収波長の吸光度の減少率が10%未満:良好
B:極大吸収波長の吸光度の減少率が10%以上、30%未満:実用域
C:極大吸収波長の吸光度の減少率が30%以上:実用不可
[Lightfastness]
The resulting coated product was exposed to an illumination intensity of 60 W/m 2 (wavelength 300 to 400 nm) for 1000 hours using a xenon weather meter. A and B are practically no problem levels.
[Evaluation criteria]
A: The rate of decrease in absorbance at the maximum absorption wavelength is less than 10%: Good B: The rate of decrease in absorbance at the maximum absorption wavelength is 10% or more and less than 30%: Practical range C: The rate of decrease in absorbance at the maximum absorption wavelength is 30% Above: Not practical
[透明性]
 得られた塗工物の透明性を目視評価した。なお評価基準は以下の通りである。A、Bが、実用上問題ないレベルである。
[評価基準]
A:濁りが全く認められない。良好
B:濁りが若干認められる。実用域
C:明らかに濁りが認められる。実用不可
[transparency]
The transparency of the resulting coating was visually evaluated. The evaluation criteria are as follows. A and B are practically no problem levels.
[Evaluation criteria]
A: Turbidity is not recognized at all. Good B: Slight turbidity is observed. Practical range C: Turbidity is clearly observed. impractical
[耐擦傷性]
 塗工物を学振試験機にセットし、スチールウールを用いて、荷重250gで10回学振させた。取り出した塗工物について、キズのつき具合を以下の5段階の目視評価に従って判断した。数値が大きいほど、硬化膜の耐擦傷性が良好であることを示す。
[評価基準]
5:キズが全くない。
4:僅かにキズが付いている。
3:キズは付いているが、基材は見えていない。
2:キズが付き、一部硬化膜が剥がれている。
1:硬化膜が剥がれてしまい、基材が剥き出しの状態。
[Scratch resistance]
The coated material was set in a Gakushin tester and subjected to Gakushin 10 times with a load of 250 g using steel wool. With respect to the coated article taken out, the degree of scratches was judged according to the following 5-grade visual evaluation. A larger value indicates better scratch resistance of the cured film.
[Evaluation criteria]
5: No scratches at all.
4: Slightly scratched.
3: Scratches are observed, but the substrate is not visible.
2: Scratches and partially peeled cured film.
1: The cured film was peeled off, and the substrate was exposed.
Figure JPOXMLDOC01-appb-T000056
 
Figure JPOXMLDOC01-appb-T000056
 
 表8に示す通り、本発明の実施形態の紫外線吸収剤を用いた塗膜は、400~420nmの可視光短波長領域における紫外線吸収性が高く、耐光性が高い。少量添加で実用域に至るため塗工物の透明性を損なわないことがわかった。また、良好な耐擦傷性があることがわかった。 As shown in Table 8, the coating film using the UV absorber of the embodiment of the present invention has high UV absorption in the visible light short wavelength region of 400 to 420 nm and high light resistance. It was found that the transparency of the coated material is not impaired because it reaches the practical range with the addition of a small amount. It was also found to have good scratch resistance.
<粘着剤>
(粘着性樹脂(L-1)の製造例)
 撹拌機、還流冷却機、窒素導入管、温度計、滴下管を備えた反応装置を使用して、窒素雰囲気下にてn-ブチルアクリレート96.0部と、2-ヒドロキシルエチルアクリレート4.0部の合計量のうちの50%、及び重合開始剤として2,2’-アゾビスイソブチルニトリルを0.2部、溶剤として酢酸エチルを150部反応槽に仕込み、前記合計量の残りの50%と適量の酢酸エチルを滴下槽に仕込んだ。次いで、加熱を開始して反応槽内での反応開始を確認してから、還流下、滴下管の内容物、及び0.01部の2,2’-アゾビスイソブチルニトリルの酢酸エチル希釈液を滴下した。滴下終了後、還流状態を維持したまま5時間反応を行った。反応終了後、冷却し、適量の酢酸エチルを添加することで、アクリル系樹脂である粘着性樹脂(L-1)を得た。得られた粘着剤樹脂(L-1)の重量平均分子量は50万、不揮発分は40%、粘度は3,200mPa・sであった。
<Adhesive>
(Production example of adhesive resin (L-1))
96.0 parts of n-butyl acrylate and 4.0 parts of 2-hydroxyethyl acrylate under a nitrogen atmosphere using a reactor equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer and dropping tube. 50% of the total amount, 0.2 parts of 2,2'-azobisisobutylnitrile as a polymerization initiator, and 150 parts of ethyl acetate as a solvent are charged into a reactor, and the remaining 50% of the total amount An appropriate amount of ethyl acetate was charged into the dropping tank. Next, after starting heating and confirming the start of the reaction in the reaction vessel, the contents of the dropping tube and 0.01 part of 2,2'-azobisisobutylnitrile diluted with ethyl acetate were added under reflux. Dripped. After the dropwise addition was completed, the reaction was carried out for 5 hours while maintaining the reflux state. After completion of the reaction, the reaction mixture was cooled, and an appropriate amount of ethyl acetate was added to obtain an adhesive resin (L-1), which is an acrylic resin. The pressure-sensitive adhesive resin (L-1) obtained had a weight average molecular weight of 500,000, a non-volatile content of 40%, and a viscosity of 3,200 mPa·s.
(粘着性樹脂(L-2)の製造例)
 撹拌機、還流冷却機、窒素導入管、温度計、滴下管を備えた反応装置を使用して、窒素雰囲気下にてn-ブチルアクリレート96.0部と、アクリル酸4.0部の合計量のうちの50%、及び重合開始剤として2,2’-アゾビスイソブチルニトリルを0.2部、溶剤として酢酸エチルを150部反応槽に仕込み、前記合計量の残りの50%と適量の酢酸エチルを滴下槽に仕込んだ。次いで、加熱を開始して反応槽内での反応開始を確認してから、還流下、滴下管の内容物、及び0.01部の2,2’-アゾビスイソブチルニトリルの酢酸エチル希釈液を滴下した。滴下終了後、還流状態を維持したまま5時間反応を行った。反応終了後、冷却し、適量の酢酸エチルを添加することで、アクリル系樹脂である粘着性樹脂(L-2)を得た。得られた粘着剤樹脂(L-2)の重量平均分子量は60万、不揮発分は40%、粘度は4,000mPa・sであった。
(Production example of adhesive resin (L-2))
Using a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer and a dropping tube, the total amount of 96.0 parts of n-butyl acrylate and 4.0 parts of acrylic acid was added under a nitrogen atmosphere. 50% of the above, 0.2 parts of 2,2'-azobisisobutylnitrile as a polymerization initiator, and 150 parts of ethyl acetate as a solvent are charged into a reaction vessel, and the remaining 50% of the total amount and an appropriate amount of acetic acid Ethyl was charged to the drip tank. Next, after starting heating and confirming the start of the reaction in the reaction vessel, the contents of the dropping tube and 0.01 part of 2,2'-azobisisobutylnitrile diluted with ethyl acetate were added under reflux. Dripped. After the dropwise addition was completed, the reaction was carried out for 5 hours while maintaining the reflux state. After completion of the reaction, the reaction mixture was cooled, and an appropriate amount of ethyl acetate was added to obtain a tacky resin (L-2), which is an acrylic resin. The pressure-sensitive adhesive resin (L-2) obtained had a weight average molecular weight of 600,000, a non-volatile content of 40%, and a viscosity of 4,000 mPa·s.
(実施例7-1)
 粘着性樹脂として、粘着性樹脂(L-1)の不揮発分100部に対して、紫外線吸収剤1を1.0部混合し、シランカップリング剤としてKBM-403(信越化学工業社製)を0.1部、硬化剤としてトリレンジイソシアネートのトリメチロールプロパンアダクト体(略号:TDI-TMP、NCO価=13.2、不揮発分=75%)を0.4部加え、よく撹拌し粘着剤を得た。その後、この粘着剤を厚さ38μmのポリエチレンテレフタレート基材の剥離フィルム上に、乾燥後の厚みが50μmになるように塗布し、100℃の熱風オーブンで2分間乾燥させた。そして、粘着剤層側に25μmのポリエチレンテレフタレートフィルムを貼り合せ、この状態で室温にて7日間エージングさせ、粘着シートを得た。
(Example 7-1)
As the adhesive resin, 1.0 parts of the ultraviolet absorber 1 is mixed with 100 parts of the nonvolatile content of the adhesive resin (L-1), and KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.) is used as the silane coupling agent. Add 0.1 part of tolylene diisocyanate trimethylolpropane adduct (abbreviation: TDI-TMP, NCO value = 13.2, non-volatile content = 75%) as a curing agent, and stir well to remove the adhesive. Obtained. Thereafter, this pressure-sensitive adhesive was applied onto a polyethylene terephthalate release film having a thickness of 38 μm so that the thickness after drying was 50 μm, and dried in a hot air oven at 100° C. for 2 minutes. Then, a 25 μm polyethylene terephthalate film was adhered to the pressure-sensitive adhesive layer side, and aged in this state at room temperature for 7 days to obtain a pressure-sensitive adhesive sheet.
(実施例7-2~7-30、比較例7-1~7-10)
 表9に示すように、実施例7-1と同様に調整して、それぞれ実施例7-2~7-30、比較例7-1~7-10の粘着シートを得た。
(Examples 7-2 to 7-30, Comparative Examples 7-1 to 7-10)
As shown in Table 9, pressure-sensitive adhesive sheets of Examples 7-2 to 7-30 and Comparative Examples 7-1 to 7-10 were obtained by adjusting in the same manner as in Example 7-1.
(粘着シートの評価)
[粘着力]
 得られた粘着シートを幅25mm・縦150mmの大きさに準備した。23℃、相対湿度50%雰囲気下、前記粘着シートから剥離性フィルムを剥がして露出した粘着剤層をガラス板に貼り付け、2kgロールで1往復圧着した。24時間放置した後に引張試験機を用いて180度方向に300mm/分の速度で引き剥がす180°ピール試験において粘着力を測定し、下記の評価基準に基づいて評価を行った(JIS Z0237:2000に準拠)。Aが、実用上問題ないレベルである。
[評価基準]
A:粘着力が10N以上であり、良好。
C:粘着力が10N未満であり、実用不可。
(Evaluation of adhesive sheet)
[Adhesive force]
The obtained pressure-sensitive adhesive sheet was prepared in a size of 25 mm in width and 150 mm in length. In an atmosphere of 23° C. and a relative humidity of 50%, the peelable film was removed from the adhesive sheet, and the exposed adhesive layer was attached to a glass plate and crimped once with a 2 kg roll. After being left for 24 hours, the adhesive strength was measured in a 180° peel test in which a tensile tester was used to peel off at a speed of 300 mm/min in the 180° direction, and evaluation was performed based on the following evaluation criteria (JIS Z0237: 2000). ). A is a practically acceptable level.
[Evaluation criteria]
A: The adhesive strength is 10 N or more, which is good.
C: Adhesive strength is less than 10 N, not practical.
[保持力]
 得られた粘着シートを幅25mm・縦150mmの大きさに準備した。JIS Z0237:2000に準拠して前記粘着シートから剥離性シートを剥がして、研磨した幅30mm・縦150mmのステンレス板の下端部幅25mm・横25mmの部分に粘着剤層を貼着し、2kgロールで1往復圧着した後、40℃雰囲気で1kgの荷重をかけ、7万秒放置することで保持力を測定した。評価は、粘着シート貼付面上端部が下にずれた長さを測定した。Aが、実用上問題ないレベルである。
[評価基準]
A:粘着シートのずれた長さが0.5mm未満である。良好。
C:粘着シートのずれた長さが0.5mm以上である。実用不可。
[Holding power]
The obtained pressure-sensitive adhesive sheet was prepared in a size of 25 mm in width and 150 mm in length. In accordance with JIS Z0237: 2000, the release sheet was peeled off from the adhesive sheet, and an adhesive layer was attached to a polished stainless steel plate having a width of 30 mm and a length of 150 mm. After one reciprocating pressure bonding with , a load of 1 kg was applied in an atmosphere of 40° C., and the holding force was measured by leaving it for 70,000 seconds. For evaluation, the length by which the upper end of the adhesive sheet pasting surface shifted downward was measured. A is a practically acceptable level.
[Evaluation criteria]
A: The deviated length of the adhesive sheet is less than 0.5 mm. Good.
C: The length of deviation of the adhesive sheet is 0.5 mm or more. Not practical.
[紫外線吸収性]
 得られた粘着シートの透過率を、紫外可視近赤外分光光度計(株式会社島津製作所製)を用いて測定し、以下の条件を満たすか否かを評価した。AA、A、Bが、実用上問題ないレベルである。
[評価基準]
AA:波長400~420nmの光透過率が全領域にわたって1%未満:非常に良好
A:波長400~420nmの光透過率が全領域にわたって1%以上5%未満:良好
B:波長400~420nmの光透過率が全領域にわたって5%以上10%未満:実用域
C:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[Ultraviolet absorption]
The transmittance of the obtained pressure-sensitive adhesive sheet was measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by Shimadzu Corporation) to evaluate whether or not the following conditions were satisfied. AA, A, and B are practically no problem levels.
[Evaluation criteria]
AA: Light transmittance at wavelengths of 400 to 420 nm is less than 1% over the entire region: Very good A: Light transmittance at wavelengths of 400 to 420 nm is 1% or more and less than 5% over the entire region: Good B: Wavelengths of 400 to 420 nm Light transmittance of 5% or more and less than 10% over the entire region: Practical range C: Light transmittance of 400 to 420 nm wavelength of 10% or more over the entire region: Not practical
[耐光性]
 得られた粘着シートをキセノンウェザーメーターで、60W/mの照度(300~400nm)で1000時間暴露した。A、Bが、実用上問題ないレベルである。
[評価基準]
A:極大吸収波長の吸光度の減少率が10%未満:良好
B:極大吸収波長の吸光度の減少率が10%以上、30%未満:実用域
C:極大吸収波長の吸光度の減少率が30%以上:実用不可
[Lightfastness]
The pressure-sensitive adhesive sheet thus obtained was exposed for 1000 hours with a xenon weather meter at an illumination intensity of 60 W/m 2 (300 to 400 nm). A and B are practically no problem levels.
[Evaluation criteria]
A: The rate of decrease in absorbance at the maximum absorption wavelength is less than 10%: Good B: The rate of decrease in absorbance at the maximum absorption wavelength is 10% or more and less than 30%: Practical range C: The rate of decrease in absorbance at the maximum absorption wavelength is 30% Above: Not practical
[透明性]
 得られた粘着シートの透明性を目視評価した。なお、評価基準は以下の通りである。A、Bが、実用上問題ないレベルである。
[評価基準]
A:濁りが全く認められない。良好
B:濁りが若干認められる。実用域
C:明らかに濁りが認められる。実用不可
[transparency]
The transparency of the obtained pressure-sensitive adhesive sheet was visually evaluated. In addition, the evaluation criteria are as follows. A and B are practically no problem levels.
[Evaluation criteria]
A: Turbidity is not recognized at all. Good B: Slight turbidity is observed. Practical range C: Turbidity is clearly observed. impractical
Figure JPOXMLDOC01-appb-T000057
 
Figure JPOXMLDOC01-appb-T000057
 
 表9に示す通り、本発明の実施形態の紫外線吸収剤を用いた塗膜は、400~420nmの可視光短波長領域における紫外線吸収性が高く、耐光性が高い。少量添加で実用域に至るため粘着シートの透明性を損なわないことがわかった。また、良好な粘着力と保持力があることがわかった。
 
As shown in Table 9, the coating film using the ultraviolet absorber of the embodiment of the present invention has high ultraviolet absorption in the visible light short wavelength region of 400 to 420 nm and high light resistance. It was found that the transparency of the pressure-sensitive adhesive sheet is not impaired because it can be practically used by adding a small amount. It was also found to have good adhesion and holding power.

Claims (13)

  1.  下記一般式(1)~(3)で示す化合物からなる群から選ばれる1種以上の紫外線吸収色素、ならびにNa、Mg、Al、K、Ca、およびFeからなる群から選ばれる1種以上の金属原子を含む金属成分を含む紫外線吸収剤であって、前記金属成分の含有量が前記紫外線吸収剤に対して0.1~50000ppmである、紫外線吸収剤。
    Figure JPOXMLDOC01-appb-C000001
     
     (一般式(1)~(3)中、R1b~R1g、R2a~R2g、及びR3a~R3gは、それぞれ独立に、水素原子、水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、スルホ基、R、Ar、及び下記一般式(4-1)~(4-3)で示す基からなる群より選択されるいずれかを表す。
     Rは、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルコシキ基、及び炭素数1~20のアルケニルオキシ基からなる群より選択されるいずれかを表し、水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基の置換基を有してもよく、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルコシキ基、及び炭素数1~20のアルケニルオキシ基の炭素原子と炭素原子の間が一つまたは複数の-O-、-CO-、-COO-、-OCO-、-CONH-、または-NHCO-で連結されていてもよい。
     Arは、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、及びビフェニル基からなる群より選択されるいずれかを表し、水酸基、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数6~20のアリール基、炭素数1~20のアルコシキ基、炭素数1~20のアルケニルオキシ基、炭素数6~20のアリールオキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基の置換基を有してもよい。
     一般式(2)~(3)中、R、R、Rは、それぞれ独立に、水酸基、R、及びArからなる群より選択されるいずれかを表す。
    Figure JPOXMLDOC01-appb-C000002
     
     一般式(4-1)中、Xは、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、Rは、水素原子、水酸基、R、及びArからなる群より選択されるいずれかを表す。ただし、一般式(4-1)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000003
     
     一般式(4-2)中、X、Xは、それぞれ独立に、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、Rは、炭素数6~20のアリーレン基を表し、R10は、RまたはArを表す。ただし、一般式(4-2)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000004
     
     一般式(4-3)中、X、Xは、それぞれ独立に、-CO-、-COO-、-OCO-、-CONH-、及び-NHCO-からなる群より選択されるいずれかを表し、R11は、直鎖または分岐鎖状の炭素数1~20のアルキレン基、または炭素数6~20のアリーレン基を表し、R12は、RまたはArを表し、nは1~20である。ただし、一般式(4-3)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。)
    One or more ultraviolet absorbing dyes selected from the group consisting of compounds represented by the following general formulas (1) to (3), and one or more selected from the group consisting of Na, Mg, Al, K, Ca, and Fe A UV absorber containing a metal component containing a metal atom, wherein the content of the metal component is 0.1 to 50000 ppm relative to the UV absorber.
    Figure JPOXMLDOC01-appb-C000001

    (In general formulas (1) to (3), R 1b to R 1g , R 2a to R 2g , and R 3a to R 3g each independently represent a hydrogen atom, a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, represents any one selected from the group consisting of an iodine atom, a nitrile group, a nitro group, a sulfo group, R 7 , Ar 1 , and groups represented by general formulas (4-1) to (4-3) below.
    R 7 is any selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyloxy group having 1 to 20 carbon atoms. represents a hydroxyl group, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitrile group, a nitro group, a carboxyl group, or a sulfo group. 1 to 20 alkenyl groups, alkoxy groups having 1 to 20 carbon atoms, and alkenyloxy groups having 1 to 20 carbon atoms, and one or more -O-, -CO-, -COO between carbon atoms -, -OCO-, -CONH-, or -NHCO- may be linked.
    Ar 1 represents any one selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a biphenyl group, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, a carbon alkenyl group having 1 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkenyloxy group having 1 to 20 carbon atoms, aryloxy group having 6 to 20 carbon atoms, fluorine atom, chlorine It may have substituents of atoms, bromine atoms, iodine atoms, nitrile groups, nitro groups, carboxyl groups, or sulfo groups.
    In general formulas (2) to (3), R 4 , R 5 and R 6 each independently represent any one selected from the group consisting of a hydroxyl group, R 7 and Ar 1 .
    Figure JPOXMLDOC01-appb-C000002

    In general formula (4-1), X 1 represents any selected from the group consisting of -CO-, -COO-, -OCO-, -CONH-, and -NHCO-, and R 8 is hydrogen represents any one selected from the group consisting of an atom, a hydroxyl group, R7 and Ar1 . However, * in general formula (4-1) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
    Figure JPOXMLDOC01-appb-C000003

    In general formula (4-2), X 2 and X 3 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO- R 9 represents an arylene group having 6 to 20 carbon atoms, and R 10 represents R 7 or Ar 1 . However, * in general formula (4-2) represents a bonding site with the naphthalene ring of general formulas (1) to (3).
    Figure JPOXMLDOC01-appb-C000004

    In general formula (4-3), X 4 and X 5 are each independently selected from the group consisting of -CO-, -COO-, -OCO-, -CONH- and -NHCO- wherein R 11 represents a linear or branched alkylene group having 1 to 20 carbon atoms or an arylene group having 6 to 20 carbon atoms, R 12 represents R 7 or Ar 1 , and n is 1 to is 20. However, * in general formula (4-3) represents a bonding site with the naphthalene ring of general formulas (1) to (3). )
  2.  前記紫外線吸収色素は、下記式で示す化合物からなる群から選ばれる1種以上の化合物を含む、請求項1に記載の紫外線吸収剤。
    Figure JPOXMLDOC01-appb-C000005
     
    2. The ultraviolet absorber according to claim 1, wherein the ultraviolet absorbing dye contains one or more compounds selected from the group consisting of compounds represented by the following formulas.
    Figure JPOXMLDOC01-appb-C000005
  3.  前記金属成分がAlを含む、請求項1または2に記載の紫外線吸収剤。 The ultraviolet absorber according to claim 1 or 2, wherein the metal component contains Al.
  4.  請求項1~3のいずれか1項に記載の紫外線吸収剤、ならびに一般式(1)~(3)で示す化合物以外の化合物であるトリアジン環含有化合物、ベンゾトリアゾール環含有化合物、およびベンゾフェノン環含有化合物からなる群から選択される少なくとも1種以上の第2の紫外線吸収剤を含む、組成物。 The ultraviolet absorber according to any one of claims 1 to 3, and the triazine ring-containing compound, the benzotriazole ring-containing compound, and the benzophenone ring-containing compound, which are compounds other than the compounds represented by the general formulas (1) to (3) A composition comprising at least one second UV absorber selected from the group consisting of compounds.
  5.  請求項1~3のいずれか1項に記載の紫外線吸収剤、および波長450~650nmの可視波長域の光を遮光する色材を含む、組成物。 A composition comprising the ultraviolet absorber according to any one of claims 1 to 3 and a coloring material that blocks light in the visible wavelength range of 450 to 650 nm.
  6.  前記色材は、2種類以上の有彩色着色剤を含む、請求項5に記載の組成物。 The composition according to claim 5, wherein the colorant contains two or more chromatic colorants.
  7.  請求項1~3のいずれか1項に記載の紫外線吸収剤、ならびにフタロシアニン化合物、ナフタロシアニン化合物、スクアリリウム化合物、シアニン化合物、およびジケトピロロピロールからなる群から選択される1種以上の近赤外線吸収剤を含み、
     前記近赤外線吸収剤は波長600~1500nmの波長領域に極大吸収を有する、組成物。
    4. The ultraviolet absorber according to any one of claims 1 to 3, and one or more near-infrared absorbents selected from the group consisting of phthalocyanine compounds, naphthalocyanine compounds, squarylium compounds, cyanine compounds, and diketopyrrolopyrroles. containing agents;
    The composition, wherein the near-infrared absorbing agent has a maximum absorption in a wavelength range of 600 to 1500 nm.
  8.  請求項1~3のいずれか1項に記載の紫外線吸収剤、および樹脂を含む、組成物。 A composition comprising the ultraviolet absorber according to any one of claims 1 to 3 and a resin.
  9.  前記樹脂が熱可塑性樹脂を含む、請求項8に記載の組成物。 The composition according to claim 8, wherein the resin comprises a thermoplastic resin.
  10.  請求項1~3のいずれか1項に記載の紫外線吸収剤、光重合性化合物、及び光重合開始剤を含む、組成物。 A composition comprising the ultraviolet absorber according to any one of claims 1 to 3, a photopolymerizable compound, and a photopolymerization initiator.
  11.  請求項4~10のいずれか1項に記載の組成物から成形されてなる、成形体。 A molded article molded from the composition according to any one of claims 4 to 10.
  12.  請求項4~10のいずれか1項に記載の組成物から形成されてなる、塗膜。 A coating film formed from the composition according to any one of claims 4 to 10.
  13.  請求項1~3のいずれか1項に記載の紫外線吸収剤の製造方法であって、
     前記紫外線吸収色素の合成反応液に水を含む貧溶媒を加えて分液し、金属成分を取り除く工程;前記分液及び濾過後にアルコール又は水、もしくはその混合液を用いて前記紫外線吸収色素を洗浄する工程;アルコール又は水、もしくはその混合液に前記紫外線吸収色素をリスラリーして洗浄する工程;及び、酸溶液を用いて前記紫外線吸収色素をリスラリーして洗浄する工程からなる群から選択される1つ以上の工程を行うことにより、前記紫外線吸収色素に含まれる金属成分の含有量を調整する、紫外線吸収剤の製造方法。
     
    A method for producing the ultraviolet absorber according to any one of claims 1 to 3,
    A step of adding a poor solvent containing water to the reaction solution for synthesizing the UV-absorbing dye, separating the liquids, and removing the metal component; after the liquid separation and filtering, washing the UV-absorbing dye with alcohol, water, or a mixture thereof. washing by reslurrying the ultraviolet absorbing dye in alcohol or water, or a mixture thereof; and washing by reslurrying the ultraviolet absorbing dye with an acid solution. A method for producing an ultraviolet absorber, wherein the content of the metal component contained in the ultraviolet absorbing dye is adjusted by performing one or more steps.
PCT/JP2022/027201 2021-07-14 2022-07-11 Uv absorber and manufacturing method thereof, composition, molded body and coating film WO2023286725A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280048114.6A CN117651750A (en) 2021-07-14 2022-07-11 Ultraviolet absorber, method for producing same, composition, molded article, and coating film
KR1020237044600A KR20240033216A (en) 2021-07-14 2022-07-11 Ultraviolet absorber and its manufacturing method, composition, molded body, coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-116306 2021-07-14
JP2021116306 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286725A1 true WO2023286725A1 (en) 2023-01-19

Family

ID=83887087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027201 WO2023286725A1 (en) 2021-07-14 2022-07-11 Uv absorber and manufacturing method thereof, composition, molded body and coating film

Country Status (4)

Country Link
JP (1) JP7164783B1 (en)
KR (1) KR20240033216A (en)
CN (1) CN117651750A (en)
WO (1) WO2023286725A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1107143A (en) * 1966-02-01 1968-03-20 Ciba Ltd Di-(hydroxynaphthyl)-triazines and processes for their manufacture and use
JPH09176135A (en) * 1995-12-19 1997-07-08 Givaudan Roure Internatl Sa Compound useful as light-blocking agent
EP1298126A1 (en) * 2001-09-27 2003-04-02 Cytec Technology Corp. Novel red-shifted triazine ultraviolet light absorbers
DE202008010003U1 (en) * 2008-07-22 2008-11-13 Beiersdorf Ag Cosmetic preparation with naphthyltriazines
WO2021132247A1 (en) * 2019-12-24 2021-07-01 東洋インキScホールディングス株式会社 Resin composition and molded article

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6309614B2 (en) 2013-04-02 2018-04-11 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Coated carbon fiber reinforced plastic parts
JP6994748B2 (en) 2017-04-13 2022-01-14 シプロ化成株式会社 Benzotriazole derivative compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1107143A (en) * 1966-02-01 1968-03-20 Ciba Ltd Di-(hydroxynaphthyl)-triazines and processes for their manufacture and use
JPH09176135A (en) * 1995-12-19 1997-07-08 Givaudan Roure Internatl Sa Compound useful as light-blocking agent
EP1298126A1 (en) * 2001-09-27 2003-04-02 Cytec Technology Corp. Novel red-shifted triazine ultraviolet light absorbers
DE202008010003U1 (en) * 2008-07-22 2008-11-13 Beiersdorf Ag Cosmetic preparation with naphthyltriazines
WO2021132247A1 (en) * 2019-12-24 2021-07-01 東洋インキScホールディングス株式会社 Resin composition and molded article

Also Published As

Publication number Publication date
CN117651750A (en) 2024-03-05
JP2023014019A (en) 2023-01-26
KR20240033216A (en) 2024-03-12
JP7164783B1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
KR101490574B1 (en) Resin-treated pigment, method for producing the pigment, and pigment dispersion
JP3366697B2 (en) Long wavelength ultraviolet absorber and method for producing the same
WO2006006731A1 (en) Resin composition and molded object thereof
TW201506461A (en) Optical filter and apparatus using the optical filter
CN1147546C (en) Material having pigment coating on its substrate, and its use and digital-information reading method
TW201506462A (en) Optical filter and apparatus using the optical filter
TWI636099B (en) Colored curable composition, method for manufacturing colored curable composition, cured film, color filter, method for manufacturing color filter, solid-state image sensing device, and image display device
CN114846085B (en) Resin composition and molded article
JP7164783B1 (en) Ultraviolet absorber and its manufacturing method, composition, molded article, coating film
JP2022067588A (en) Near-infrared absorbent pigment, near-infrared absorbent composition, and near-infrared cut filter
CN1668709A (en) Polymerisable diketopyrrolopyrroles, use of such compounds in colour filters and polymers prepared from these compounds
JP2012153813A (en) Phthalocyanine compound
JP5289813B2 (en) Phthalocyanine compounds
US20210221977A1 (en) Opaque multi-layer body made of polycarbonate and having weathering stability
JP4740844B2 (en) Colored polymer resin composition, product and production method thereof
JP2023013321A (en) Composition, molding and coated film
JP2024125559A (en) Ultraviolet absorbents and their uses
JP2022072558A (en) Near-infrared ray absorbing colorant, near-infrared ray absorbing composition and near-infrared ray cut filter
JP2023152199A (en) Ultraviolet absorber, composition, molded article, and coating film
JP2024092315A (en) Ultraviolet absorber, composition, molded product and ultraviolet absorption sheet
JPWO2020138050A1 (en) Thermoplastic resin composition and optical members using it
JP7147827B2 (en) UV absorber, composition, molded article and laminate
JP2023012693A (en) Ultraviolet absorber and use thereof
TW202204347A (en) Composition and compound
JP2012153812A (en) Phthalocyanine compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280048114.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842069

Country of ref document: EP

Kind code of ref document: A1