[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023286549A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2023286549A1
WO2023286549A1 PCT/JP2022/024896 JP2022024896W WO2023286549A1 WO 2023286549 A1 WO2023286549 A1 WO 2023286549A1 JP 2022024896 W JP2022024896 W JP 2022024896W WO 2023286549 A1 WO2023286549 A1 WO 2023286549A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
output voltage
terminal
abnormality
Prior art date
Application number
PCT/JP2022/024896
Other languages
English (en)
French (fr)
Inventor
邦昌 田中
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2023535198A priority Critical patent/JPWO2023286549A1/ja
Publication of WO2023286549A1 publication Critical patent/WO2023286549A1/ja
Priority to US18/403,427 priority patent/US20240235375A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • the present disclosure relates to power supply devices.
  • an IC that outputs a power good signal indicating whether the output voltage output from the power supply IC is normal (for example, Patent Document 1).
  • the IC has a power good terminal and a transistor.
  • the transistor is connected through the power good terminal to a power supply voltage application terminal outside the IC by a pull-up resistor.
  • the power good signal which is the voltage of the power good terminal
  • the power good signal is at low level (abnormal output voltage)
  • the power good signal is at high level (normal output voltage). That is, the logic level of the power good signal indicates the state of the output voltage.
  • the power good signal as described above is used as a reset signal for the subsequent circuit to which the output voltage is supplied. In this case, it is necessary to release the reset by a reset signal when the output voltage is started, and to give operation permission to the subsequent circuit. However, if the reset signal is abnormal, there is a risk that the subsequent circuit will operate abnormally.
  • an object of the present disclosure is to provide a power supply device capable of suppressing abnormal operation of a post-stage circuit supplied with the output voltage when the output voltage is started.
  • a power supply device includes a power supply circuit capable of supplying an output voltage to a subsequent circuit, an external terminal configured to be connectable to the latter circuit and a pull-up resistor to which the power supply voltage is applied, a transistor having a first end connected to the external terminal; a control unit that switches the transistor from an on state to an off state when the output voltage is within a normal range when the output voltage is started; An abnormality detection unit capable of detecting at least one of an open abnormality in which the terminal is open and a short abnormality in which the external terminal is short-circuited with the terminal to which the power supply voltage is applied is provided.
  • the power supply device it is possible to suppress abnormal operation of the subsequent circuit to which the output voltage is supplied when the output voltage is started.
  • FIG. 1 is a diagram showing the configuration of a power supply device according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a diagram mainly showing a configuration related to the power good function.
  • FIG. 3 is a diagram showing a specific example of the monitoring unit.
  • FIG. 4 is a diagram showing another specific example of the monitoring unit.
  • FIG. 5 is a timing chart showing an example of the startup operation of the power supply.
  • FIG. 6 is a timing chart showing an example of normal operation.
  • FIG. 7 is a timing chart showing an example of the operation when the PGOOD terminal has an open abnormality (when the PGOOD terminal abnormality detection function is not provided).
  • FIG. 8 is a timing chart showing an example of the operation when the PGOOD terminal has an open abnormality (when a PGOOD terminal abnormality detection function is provided).
  • FIG. 9 is a timing chart showing an example of the operation when the PGOOD terminal is short-circuited (when the PGOOD terminal abnormality detection function is not provided).
  • FIG. 10 is a timing chart showing an example of the operation when the PGOOD terminal is short-circuited (when a PGOOD terminal abnormality detection function is provided).
  • FIG. 11 is an external view showing one configuration example of a vehicle.
  • FIG. 1 is a diagram showing the configuration of a power supply device 10 according to an exemplary embodiment of the present disclosure.
  • the power supply device 10 is an IC package (semiconductor device) capable of generating an output voltage VO.
  • the power supply device 10 has external terminals for establishing electrical connection with the outside, such as a VIN terminal, a SW terminal, an EN terminal, an AGND terminal, a VOUT terminal, a PGND terminal, a PGOOD terminal, and an SDA terminal. , and SCL terminals.
  • external terminals for establishing electrical connection with the outside, such as a VIN terminal, a SW terminal, an EN terminal, an AGND terminal, a VOUT terminal, a PGND terminal, a PGOOD terminal, and an SDA terminal.
  • SCL terminals SCL terminals.
  • Various elements shown in FIG. 1 connected to the external terminals are discrete elements.
  • the power supply device 10 includes an internal voltage generation unit 1, a power supply voltage UVLO circuit 2, a control logic unit 3, an I2C input/output unit 4, a monitoring unit 5, and a DC/DC circuit. 6, a transistor M1, and a resistor R2 are integrated into one chip.
  • the VIN terminal is externally connected to the application end of the input power supply voltage Vin.
  • the internal voltage generator 1 generates an internal voltage Vreg based on the input power supply voltage Vin applied to the VIN terminal.
  • the internal voltage Vreg is used as a power supply voltage for each part in the power supply device 10 .
  • the power supply device 10 may have a VREG terminal capable of outputting the internal voltage Vreg.
  • the power supply voltage UVLO circuit 2 is an anomaly protection circuit that detects low voltage anomalies in the input power supply voltage Vin.
  • the power supply voltage UVLO circuit 2 outputs a UVLO signal UVLO_VIN to the control logic unit 3 .
  • the control logic unit 3 shuts down the IC when the low voltage abnormality of the input power supply voltage Vin is detected.
  • the DC/DC circuit 6 constitutes a DC/DC converter 60 together with an inductor L and an output capacitor Co arranged outside the power supply device 10 .
  • the DC/DC converter 60 is a boost converter that outputs an output voltage VO based on the input power supply voltage Vin applied to the VIN terminal.
  • the SW terminal is a terminal to which the switching output of the DC/DC circuit 6 is applied.
  • the SW terminal is connected to one end of the inductor L.
  • the other end of inductor L is connected to the VIN terminal.
  • the VOUT terminal is connected to one end of the output capacitor Co.
  • An output voltage VO is generated at the VOUT terminal by switching control in the DC/DC circuit 6 .
  • the DC/DC converter is not limited to a boost converter, and may be a step-down converter, for example.
  • the control logic unit 3 is a control unit that controls the power supply device 10 in an integrated manner.
  • the I2C input/output unit 4 performs I2C communication with the outside via the SDA terminal and SCL terminal.
  • I2C is a type of serial interface.
  • the SDA terminal is used for input/output of serial interface data.
  • the SCL terminal is used to input the serial interface clock.
  • the transistor M1, resistor R2, and monitoring unit 5 related to the power good function will be detailed later.
  • the DC/DC circuit 6 outputs a low voltage detection signal UVD.
  • a low voltage detection signal UVD is a low voltage detection signal of the output voltage VO. It should be noted that the power supply device 10 can generate an overvoltage detection signal, an overcurrent detection signal, an overheat detection signal, and the like as protection functions other than those shown in FIG.
  • FIG. 2 is a diagram mainly showing a configuration related to the power good function.
  • an output voltage VO output from a VOUT terminal is supplied as a power supply voltage to an MCU (Micro Control Unit) 30 as an example of a subsequent circuit.
  • MCU Micro Control Unit
  • a power supply system 40 is configured by the power supply device 10 and the MCU 30 .
  • the transistor M1 is composed of an NMOS transistor.
  • the drain of transistor M1 is connected to the PGOOD terminal (power good terminal).
  • the source of the transistor M1 is connected to the ground potential application terminal.
  • a gate signal Gt output from the control logic unit 3 is applied to the gate of the transistor M1.
  • the transistor M1 may be composed of a bipolar transistor.
  • the PGOOD terminal is connected to one end of a pull-up resistor R1 provided outside the power supply device 10 .
  • the other end of the pull-up resistor R1 is connected to the application end of the output voltage VO. That is, in the example of FIG. 2, the other end of the pull-up resistor R1 is short-circuited with the VOUT terminal. Thus, the voltage at the PGOOD terminal is pulled up.
  • the voltage applied to the other end of the pull-up resistor R1 is not limited to the output voltage VO, and may be a voltage different from the output voltage VO, such as the input power supply voltage Vin.
  • the output voltage generated by a DC/DC circuit different from the DC/DC circuit 6 is applied to the other end of the pull-up resistor R1. may be applied to
  • the transistor M1 When the output voltage VO is in a normal state (within a predetermined normal range), the transistor M1 is turned off by the control logic unit 3, and the voltage of the PGOOD terminal is at high level. On the other hand, when the output voltage VO is in an abnormal state (outside the predetermined normal range), the transistor M1 is turned on by the control logic unit 3, and the voltage of the PGOOD terminal is at low level. That is, the state of the output voltage VO is output as the logic level of the PGOOD terminal.
  • the PGOOD terminal is connected to the RST terminal (reset terminal) of MCU30.
  • the voltage of the PGOOD terminal power good signal
  • the MCU 30 can be reset by the reset signal that switches to low level.
  • the reset of the MCU 30 can be canceled by a reset signal that switches to a high level.
  • the power supply device 10 has an abnormality detection section 10A that detects an abnormality of the PGOOD terminal.
  • the abnormality detection section 10A has a control logic section 3 and a monitoring section 5 .
  • the anomaly detector 10A can detect an open anomaly and a short anomaly of the PGOOD terminal, as will be detailed later.
  • the PGOOD terminal short-circuit abnormality is an abnormality in which both ends of the pull-up resistor R1 are short-circuited, so that the PGOOD terminal is short-circuited with the application terminal of the power supply voltage (output voltage VO).
  • the short-circuit abnormality is caused by, for example, the generation of water droplets.
  • the monitoring unit 5 monitors the voltage of the PGOOD terminal and outputs to the control logic unit 3 a monitoring signal Sm having a logic level corresponding to the voltage of the PGOOD terminal.
  • the control logic unit 3 determines whether the PGOOD terminal is abnormal based on the monitor signal Sm from the monitor unit 5 . Further, when the control logic unit 3 detects an abnormality of the PGOOD terminal, it performs a predetermined operation which will be described later.
  • the resistor R2 is connected between the PGOOD terminal and the ground potential application end.
  • the resistor R2 prevents the voltage of the PGOOD terminal from becoming unstable in order to detect an open abnormality of the PGOOD terminal.
  • FIG. 3 is a diagram showing a specific example of the monitoring unit 5.
  • the monitoring unit 5 shown in FIG. 3 has an inverter 50 .
  • the inverter 50 has a PMOS transistor 51 and an NMOS transistor 52 .
  • the source of the PMOS transistor 51 is connected to the application end of the internal voltage Vreg.
  • the drain of PMOS transistor 51 is connected to the drain of NMOS transistor 52 at node N5.
  • the source of the NMOS transistor 52 is connected to the ground potential application terminal.
  • a gate of the PMOS transistor 51 and a gate of the NMOS transistor 52 are connected to the PGOOD terminal.
  • Monitoring signal Sm is output from node N5.
  • FIG. 4 is a diagram showing another specific example of the monitoring unit 5.
  • the monitoring unit 5 shown in FIG. 4 has a comparator 5A.
  • a PGOOD terminal is connected to the non-inverting input terminal (+) of the comparator 5A.
  • the inverting input terminal (-) of the comparator 5A is connected to the application terminal of the reference voltage Vref.
  • the monitor signal Sm is output as a comparison result between the voltage of the PGOOD terminal and the reference voltage Vref by the comparator 5A.
  • the input power supply voltage Vin starts to rise.
  • the internal voltage Vreg also starts to rise, the enable signal is low level, the output voltage VO is 0 V, and the voltage of the PGOOD terminal is low level (the transistor M1 is on).
  • the internal voltage Vreg also rises with the rise of the input power supply voltage Vin. Then, when the input power supply voltage Vin reaches the UVLO cancellation voltage at timing t2, a UVLO signal UVLO_VIN indicating UVLO cancellation is output to the control logic unit 3 .
  • the control logic unit 3 When the enable signal rises to a high level at timing t3, the control logic unit 3 outputs the enable signal EN1 to the DC/DC circuit 6 to activate the DC/DC circuit 6. This activates the output voltage VO.
  • a low voltage detection signal UVD indicating this is output to the control logic unit 3.
  • the control logic unit 3 switches the voltage of the PGOOD terminal to a high level by switching the transistor M1 to an off state at a timing t5 after a predetermined waiting period T1 has passed from the timing t4.
  • the voltage of the PGOOD terminal is input to the reset terminal RST of the MCU 30, so the reset of the MCU 30 is released.
  • FIG. 6 is a timing chart showing normal operation. Note that waveform examples of the enable signal, the output voltage VO, the voltage of the PGOOD terminal, and the voltage of the reset terminal RST are shown in order from the top of FIG. This also applies to FIGS. 7 to 10, which will be described later.
  • the enable signal rises at timing t11 (similar to timing t3 in FIG. 5). After that, at timing t12, the output voltage VO starts to rise.
  • FIG. 6 shows the normal range of the output voltage VO for the MCU 30 to operate normally, and the normal range is defined as being equal to or higher than the lower limit voltage Vl and equal to or lower than the upper limit voltage Vh.
  • the control logic unit 3 determines that the standby period T1 has elapsed. At this timing, the transistor M1 is switched off, and the voltage of the PGOOD terminal is switched to high level (timing t14). As a result, the reset terminal RST is also switched to high level, so that the reset of the MCU 30 is released.
  • the MCU 30 starts preparations (initialization) for operation.
  • the waiting period T1 is set longer than the time required for initialization.
  • the initialization is completed, and the operation of the MCU 30 can be permitted by canceling the reset.
  • the control logic unit 3 switches the transistor M1 to It switches to the off state, and switches the voltage of the PGOOD terminal to high level (timing t17). As a result, the voltage of the reset terminal RST is also switched to high level, and the reset of the MCU 30 is released.
  • FIG. 7 shows the operation in this case, but shows the operation in the case where the abnormality detection function of the PGOOD terminal as in this embodiment is not provided.
  • the enable signal rises (timing t11), and then the output voltage VO starts rising (timing t12).
  • the voltage of the PGOOD terminal becomes unstable.
  • the voltage on the PGOOD terminal is kept low for convenience.
  • the voltage of the reset terminal RST becomes the same voltage as the output voltage VO and rises in the same manner as the output voltage VO.
  • FIG. 8 shows the operation when the PGOOD terminal has an open abnormality when the PGOOD terminal abnormality detection function according to the present embodiment is provided. As shown in FIG. 8, when the output voltage VO starts rising at timing t12, the voltage at the reset terminal RST also starts rising.
  • the control logic unit 3 checks the monitor signal Sm output from the monitor unit 5 .
  • the control logic unit 3 instructs the DC/DC circuit 6 with the enable signal EN1 to stop the output of the output voltage VO as shown in FIG. As a result, power supply to the MCU 30 is stopped.
  • the control logic unit 3 activates the output voltage VO again (timing t19).
  • the output voltage VO reaches the lower limit voltage Vl and falls within the normal range (timing t20)
  • the output voltage VO continues to be within the normal range during the standby period T1 from timing t20.
  • the control logic unit 3 checks the monitor signal Sm output from the monitor unit 5 .
  • the control logic unit 3 stops the output of the output voltage VO.
  • the control logic unit 3 stops outputting the output voltage VO thereafter. That is, the system of power supply 10 is stopped.
  • the predetermined number of times may be any number of times equal to or greater than two.
  • the monitoring signal Sm when used to detect that the PGOOD terminal is abnormally open, the output of the output voltage VO is stopped. can be suppressed. Further, when the PGOOD terminal continues to be open-circuited, the system of the power supply 10 is stopped, so that activation of the MCU 30 can be prohibited.
  • the control logic unit 3 continues to output the output voltage VO. As a result, the operation of the MCU 30 can be continued when the PGOOD terminal recovers from the open failure to the normal state.
  • FIG. 9 shows the operation in this case, but shows the operation in the case where the abnormality detection function of the PGOOD terminal as in this embodiment is not provided.
  • the enable signal rises (timing t11), and then the output voltage VO starts rising (timing t12).
  • the voltage of the PGOOD terminal becomes the same voltage as the output voltage VO and rises in the same manner as the output voltage VO.
  • the voltage of the reset terminal RST becomes the same voltage as the output voltage VO, and rises in the same manner as the output voltage VO.
  • FIG. 10 shows the operation when the PGOOD terminal is short-circuited when the PGOOD terminal abnormality detection function according to the present embodiment is provided.
  • the output voltage VO starts rising at timing t12
  • the voltage at the PGOOD terminal and the voltage at the reset terminal RST also start rising.
  • the control logic unit 3 starts monitoring the monitoring signal Sm output from the monitoring unit 5. Specifically, the control logic unit 3 causes the level of the monitoring signal Sm to reach the level corresponding to the voltage of the PGOOD terminal reaching the predetermined threshold voltage Vth before the output voltage VO reaches the lower limit voltage Vl. Watch for switching.
  • the PGOOD terminal is maintained at a low level until the output voltage VO reaches the lower limit voltage Vl. , the output voltage VO reaches the threshold voltage Vth (timing t22).
  • the control logic unit 3 stops outputting the output voltage VO as shown in FIG. As a result, power supply to the MCU 30 is stopped.
  • control logic unit 3 activates the output voltage VO again (timing t23).
  • control logic unit 3 starts monitoring the monitor signal Sm output from the monitor unit 5 again.
  • the control logic unit 3 stops outputting the output voltage VO thereafter. That is, the system of power supply 10 is stopped.
  • the predetermined number of times may be two or more.
  • the output of the output voltage VO is stopped. can be suppressed. Further, when the short-circuit abnormality of the PGOOD terminal continues, since the system of the power supply device 10 is stopped, activation of the MCU 30 can be prohibited.
  • the control logic unit 3 continues to output the output voltage VO, assuming that the PGOOD terminal is normal. As a result, the MCU 30 can be operated when the PGOOD terminal recovers from the short-circuit abnormality.
  • the threshold voltage Vth may be set to a level that the voltage of the PGOOD terminal can reach after the output voltage VO reaches the lower limit voltage Vl and before the standby period T1 elapses.
  • the control logic unit 3 starts monitoring the monitor signal Sm when the output voltage VO reaches the lower limit voltage Vl, and monitors whether the level of the monitor signal Sm changes before the standby period T1 elapses.
  • the output of the output voltage VO is stopped as an operation performed by the control logic unit 3 when an abnormality of the PGOOD terminal is detected.
  • Abnormality notification may be made using the SDA terminal and SCL terminal shown in FIG. In particular, it is effective when the malfunction of the PGOOD terminal does not seriously affect the operation of the MCU 30 .
  • the embodiment may be such that only one of the open abnormality and the short abnormality of the PGOOD terminal can be detected.
  • FIG. 11 is an external view showing one configuration example of a vehicle.
  • the vehicle X of this configuration example is equipped with a battery (not shown in the drawing) and various electronic devices X11 to X18 that operate with power supply voltage supplied from the battery. Note that the mounting positions of the electronic devices X11 to X18 in this figure may differ from the actual ones for convenience of illustration.
  • the electronic device X11 is an engine control unit that performs engine-related controls (injection control, electronic throttle control, idling control, oxygen sensor heater control, auto-cruise control, etc.).
  • the electronic device X12 is a lamp control unit that controls lighting and extinguishing of HID [high intensity discharged lamp] and DRL [daytime running lamp].
  • the electronic device X13 is a transmission control unit that performs controls related to the transmission.
  • the electronic device X14 is a body control unit that performs controls related to the movement of the vehicle X (ABS [anti-lock brake system] control, EPS [electric power steering] control, electronic suspension control, etc.).
  • ABS anti-lock brake system
  • EPS electric power steering
  • electronic suspension control etc.
  • the electronic device X15 is a security control unit that performs drive control such as door locks and security alarms.
  • Electronic device X16 includes wipers, electric door mirrors, power windows, dampers (shock absorbers), electric sunroofs, electric seats, and other electronic devices built into vehicle X at the factory shipment stage as standard equipment or manufacturer options. is.
  • the electronic device X17 is an electronic device that is arbitrarily attached to the vehicle X as a user option, such as an in-vehicle A/V [audio/visual] device, a car navigation system, and an ETC [electronic toll collection system].
  • the electronic device X18 is an electronic device equipped with a high withstand voltage motor, such as an in-vehicle blower, oil pump, water pump, and battery cooling fan.
  • a high withstand voltage motor such as an in-vehicle blower, oil pump, water pump, and battery cooling fan.
  • the power supply device 10 described above can be incorporated in any of the electronic devices X11 to X18.
  • the power supply device (10) is a power supply circuit (6) capable of supplying an output voltage (VO) to a subsequent circuit (30); an external terminal (PGOOD) configured to be connectable to the latter circuit and a pull-up resistor (R1) to which a power supply voltage (VO) is applied; a transistor (M1) having a first end connected to the external terminal; a control unit (3) for switching the transistor from an ON state to an OFF state when the output voltage is within a normal range at the start of the output voltage; an abnormality detection unit (10A) capable of detecting at least one of an open abnormality in which the external terminal is open and a short abnormality in which the external terminal is short-circuited with the terminal to which the power supply voltage is applied; (first configuration).
  • the abnormality detection section (10A) issues a command to the power supply circuit (6) to stop the output of the output voltage when the open abnormality or the short abnormality is detected. It is good also as a structure which makes it carry out (2nd structure).
  • the abnormality detection section (10A) restarts the output voltage after stopping the output of the output voltage, When stopping the output of the output voltage is repeated a predetermined number of times, the abnormality detection section may stop the output of the output voltage thereafter (third configuration).
  • the abnormality detection section (10A) detects the open abnormality or the short abnormality
  • the output voltage continues to be output, and the post-stage circuit (30) is detected by communication. (fourth configuration).
  • control section (3) controls the output voltage to remain within the normal range for a predetermined period of time after the output voltage reaches a predetermined lower limit voltage.
  • the abnormality detection section (10A) may be configured to detect the open abnormality based on the voltage of the external terminal (PGOOD) when the predetermined period of time has elapsed since the output voltage reached the lower limit voltage ( fifth configuration).
  • a configuration having a resistor (R2) configured to be connectable between the external terminal (PGOOD) and the terminal to which the ground potential is applied (sixth configuration).
  • the abnormality detection section (10A) detects that the voltage of the external terminal (PGOOD) is at a timing when the voltage of the external terminal (PGOOD) is originally at a low level, and the voltage of the external terminal is a predetermined threshold value.
  • the short-circuit abnormality may be detected by detecting that the voltage (Vth) has been reached (seventh configuration).
  • the power supply voltage (VO) application terminal may be configured to be connectable to the output voltage (VO) application terminal (eighth configuration).
  • the abnormality detection section (10A) includes a monitoring section (5 ) and a control logic unit (3) for detecting an abnormality based on the monitor signal (ninth configuration).
  • the monitoring section (5) may have an inverter (50) to which the voltage of the external terminal (PGOOD) is input (tenth configuration).
  • the monitoring section (5) may have a comparator (5A) to which the voltage of the external terminal (PGOOD) and the reference voltage (Vref) are input (the eleventh configuration). Constitution).
  • the external terminal may be configured to be connectable to the reset terminal (RST) of the MCU (30) as the post-stage circuit (the twelfth configuration).
  • the power supply device (10) having any one of the first to twelfth configurations may be for vehicle use (thirteenth configuration).
  • a power supply system (40) includes a power supply device (10) having any of the above configurations, and the post-stage circuit (30) supplied with the output voltage from the power supply device.
  • the present disclosure can be used, for example, in an in-vehicle power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

電源装置(10)は、後段回路(30)への出力電圧の供給を可能とする電源回路(6)と、前記後段回路および電源電圧(VO)が印加されるプルアップ抵抗(R1)と接続可能に構成される外部端子(PGOOD)と、前記外部端子に接続される第1端を有するトランジスタ(M1)と、前記出力電圧の起動時において前記出力電圧が正常範囲内となった場合に前記トランジスタをオン状態からオフ状態へ切り替える制御部(3)と、前記外部端子がオープンであるオープン異常と、前記外部端子が前記電源電圧の印加端と短絡されるショート異常とのうち、少なくとも一方を検出可能である異常検出部(10A)と、を有する。

Description

電源装置
 本開示は、電源装置に関する。
 従来、電源ICから出力される出力電圧が正常であるか否かを示すパワーグッド信号を出力するICが知られている(例えば特許文献1)。上記ICは、パワーグッド端子と、トランジスタと、を有する。上記トランジスタは、上記パワーグッド端子を介してIC外部において電源電圧の印加端にプルアップ抵抗により接続されている。上記トランジスタがオン状態の場合、パワーグッド端子の電圧であるパワーグッド信号がローレベル(出力電圧異常)となり、上記トランジスタがオフ状態の場合、パワーグッド信号がハイレベル(出力電圧正常)となる。すなわち、パワーグッド信号の論理レベルにより、出力電圧の状態を示す。
特開2020-177358号公報
 上記のようなパワーグッド信号は、上記出力電圧を供給される後段回路のリセット信号として使用することが考えられる。この場合、出力電圧の起動時にリセット信号によってリセットを解除して後段回路に動作許可を与える必要がある。しかしながら、リセット信号が異常である場合、後段回路が異常な動作をしてしまう虞がある。
 上記状況に鑑み、本開示は、出力電圧の起動時に、上記出力電圧を供給される後段回路の異常な動作を抑制できる電源装置を提供することを目的とする。
 例えば、本開示に係る電源装置は、後段回路への出力電圧の供給を可能とする電源回路と、前記後段回路および電源電圧が印加されるプルアップ抵抗と接続可能に構成される外部端子と、前記外部端子に接続される第1端を有するトランジスタと、前記出力電圧の起動時において前記出力電圧が正常範囲内となった場合に前記トランジスタをオン状態からオフ状態へ切り替える制御部と、前記外部端子がオープンであるオープン異常と、前記外部端子が前記電源電圧の印加端と短絡されるショート異常とのうち、少なくとも一方を検出可能である異常検出部と、を有する。
 本開示に係る電源装置によれば、出力電圧の起動時に、上記出力電圧を供給される後段回路の異常な動作を抑制できる。
図1は、本開示の例示的な実施形態に係る電源装置の構成を示す図である。 図2は、パワーグッド機能に関する構成を要部的に示す図である。 図3は、監視部の具体例を示す図である。 図4は、監視部の別の具体例を示す図である。 図5は、電源装置の起動動作の一例を示すタイミングチャートである。 図6は、通常動作の一例を示すタイミングチャートである。 図7は、PGOOD端子がオープン異常の場合の動作(PGOOD端子の異常検出機能を設けない場合)の一例を示すタイミングチャートである。 図8は、PGOOD端子がオープン異常の場合の動作(PGOOD端子の異常検出機能を設ける場合)の一例を示すタイミングチャートである。 図9は、PGOOD端子がショート異常の場合の動作(PGOOD端子の異常検出機能を設けない場合)の一例を示すタイミングチャートである。 図10は、PGOOD端子がショート異常の場合の動作(PGOOD端子の異常検出機能を設ける場合)の一例を示すタイミングチャートである。 図11は、車両の一構成例を示す外観図である。
 以下、本開示の例示的な実施形態について、図面を参照して説明する。
<1.電源装置の全体構成>
 図1は、本開示の例示的な実施形態に係る電源装置10の構成を示す図である。
 電源装置10は、出力電圧VOを生成可能なICパッケージ(半導体装置)である。
 図1に示すように、電源装置10は、外部との電気的接続を確立するための外部端子として、VIN端子、SW端子、EN端子、AGND端子、VOUT端子、PGND端子、PGOOD端子、SDA端子、および、SCL端子を有している。なお、上記各外部端子に接続される図1に示す各種素子は、それぞれディスクリートな素子である。
 また、図1に示すように、電源装置10は、内部電圧生成部1と、電源電圧UVLO回路2と、制御ロジック部3と、I2C入出力部4と、監視部5と、DC/DC回路6と、トランジスタM1と、抵抗R2と、を1チップに集積化して有している。
 VIN端子は、入力電源電圧Vinの印加端に外部接続される。内部電圧生成部1は、VIN端子に印加される入力電源電圧Vinに基づき内部電圧Vregを生成する。内部電圧Vregは、電源装置10における各部の電源電圧として利用される。なお、電源装置10は、内部電圧Vregを出力可能に構成されるVREG端子を有してもよい。
 電源電圧UVLO回路2は、入力電源電圧Vinの低電圧異常を検出する異常保護回路である。電源電圧UVLO回路2は、UVLO信号UVLO#VINを制御ロジック部3に出力する。制御ロジック部3は、入力電源電圧Vinの低電圧異常が検出されると、ICをシャットダウンさせる。
 DC/DC回路6は、電源装置10外部に配置されるインダクタL、および出力コンデンサCoとともにDC/DCコンバータ60を構成する。DC/DCコンバータ60は、VIN端子に印加される入力電源電圧Vinに基づき出力電圧VOを出力する昇圧コンバータ(Boost  Converter)である。
 SW端子は、DC/DC回路6のスイッチング出力が印加される端子である。SW端子は、インダクタLの一端に接続される。インダクタLの他端は、VIN端子に接続される。VOUT端子は、出力コンデンサCoの一端に接続される。
 DC/DC回路6におけるスイッチング制御により、VOUT端子に出力電圧VOが生成される。なお、DC/DCコンバータは、昇圧コンバータに限らず、例えば降圧コンバータとしてもよい。
 制御ロジック部3は、電源装置10を統括的に制御する制御部である。
 I2C入出力部4は、SDA端子およびSCL端子を介して外部との間でI2C通信を行う。I2Cは、シリアルインタフェースの一種である。SDA端子は、シリアルインタフェースデータの入出力に使用される。SCL端子は、シリアルインタフェースクロックの入力に使用される。
 なお、パワーグッド機能に関するトランジスタM1、抵抗R2、および監視部5については、後に詳述する。
 また、DC/DC回路6は、低電圧検出信号UVDを出力する。低電圧検出信号UVDは、出力電圧VOの低電圧検出信号である。なお、電源装置10においては、保護機能として、図1に図示する以外にも、過電圧検出信号、過電流検出信号、および過熱検出信号などを生成可能である。
<2.パワーグッド機能に関する構成>
 図2は、パワーグッド機能に関する構成を要部的に示す図である。図2に示すように、VOUT端子から出力される出力電圧VOは、後段回路の一例としてのMCU(Micro  Control Unit)30に電源電圧として供給される。なお、図2に示すように、電源装置10とMCU30とから給電システム40が構成される。
 図2に示すように、トランジスタM1は、NMOSトランジスタにより構成される。トランジスタM1のドレインは、PGOOD端子(パワーグッド端子)に接続される。トランジスタM1のソースは、グランド電位の印加端に接続される。トランジスタM1のゲートには、制御ロジック部3から出力されるゲート信号Gtが印加される。なお、トランジスタM1は、バイポーラトランジスタで構成してもよい。
 PGOOD端子は、電源装置10外部に設けられるプルアップ抵抗R1の一端に接続される。プルアップ抵抗R1の他端は、出力電圧VOの印加端に接続される。すなわち、図2の例では、プルアップ抵抗R1の他端は、VOUT端子と短絡されている。このように、PGOOD端子の電圧は、プルアップされている。なお、プルアップ抵抗R1の他端に印加される電圧は、出力電圧VOに限らず、例えば入力電源電圧Vinなど、出力電圧VOとは異なる電圧としてもよい。また、電源装置10がDC/DC回路6を含む複数のDC/DC回路を有する場合は、DC/DC回路6とは異なるDC/DC回路により生成される出力電圧をプルアップ抵抗R1の他端に印加してもよい。
 出力電圧VOが正常状態である場合(所定の正常範囲内にある場合)、制御ロジック部3によりトランジスタM1はオフ状態であり、PGOOD端子の電圧はハイレベルである。一方、出力電圧VOが異常状態である場合(所定の正常範囲外にある場合)、制御ロジック部3によりトランジスタM1はオン状態であり、PGOOD端子の電圧はローレベルである。すなわち、出力電圧VOの状態がPGOOD端子の論理レベルとして出力される。
 ここで、PGOOD端子は、MCU30のRST端子(リセット端子)に接続される。これにより、PGOOD端子の電圧(パワーグッド信号)をリセット信号としてRST端子に送ることができる。従って、出力電圧VOが異常状態となった場合、ローレベルに切り替わるリセット信号によりMCU30をリセットさせることができる。また、出力電圧VOが正常状態になった場合、ハイレベルに切り替わるリセット信号によりMCU30をリセット解除させることができる。
<3.PGOOD端子異常検出機能>
 図2に示すように、電源装置10は、PGOOD端子の異常を検出する異常検出部10Aを有している。異常検出部10Aは、制御ロジック部3と、監視部5と、を有している。異常検出部10Aは、後に詳述するように、PGOOD端子のオープン異常およびショート異常を検出することができる。
 PGOOD端子がオープンであるオープン異常は、電源装置10の基板への実装時に不具合があった場合、または実装後に電源装置10の基板からの外れが生じた場合などに発生する。また、PGOOD端子のショート異常は、プルアップ抵抗R1の両端が短絡することにより、PGOOD端子が電源電圧(出力電圧VO)の印加端と短絡する異常である。上記ショート異常は、例えば水滴の発生などにより生じる。
 監視部5は、PGOOD端子の電圧を監視し、PGOOD端子の電圧に応じた論理レベルの監視信号Smを制御ロジック部3に出力する。制御ロジック部3は、監視部5からの監視信号Smに基づきPGOOD端子が異常であるかを判定する。また、制御ロジック部3は、PGOOD端子の異常を検出した場合、後述する所定の動作を行う。
 また、抵抗R2は、PGOOD端子とグランド電位の印加端との間に接続される。抵抗R2は、PGOOD端子のオープン異常を検出するために、PGOOD端子の電圧が不定となることを抑制する。
 図3は、監視部5の具体例を示す図である。図3に示す監視部5は、インバータ50を有する。具体的には、インバータ50は、PMOSトランジスタ51と、NMOSトランジスタ52と、を有している。PMOSトランジスタ51のソースは、内部電圧Vregの印加端に接続される。PMOSトランジスタ51のドレインは、ノードN5においてNMOSトランジスタ52のドレインに接続される。NMOSトランジスタ52のソースは、グランド電位の印加端に接続される。PMOSトランジスタ51のゲートとNMOSトランジスタ52のゲートは、PGOOD端子に接続される。ノードN5から監視信号Smが出力される。
 また、図4は、監視部5の別の具体例を示す図である。図4に示す監視部5は、コンパレータ5Aを有する。コンパレータ5Aの非反転入力端(+)には、PGOOD端子が接続される。コンパレータ5Aの反転入力端(-)には、基準電圧Vrefの印加端が接続される。監視信号Smは、コンパレータ5AによるPGOOD端子の電圧と基準電圧Vrefとの比較結果として出力される。
<4.電源装置の起動動作>
 次に、図5に示すタイミングチャートを参照して電源装置10の起動動作について説明する。なお、図5においては、上段から順に、入力電源電圧Vin、内部電圧Vreg、EN端子に入力されるイネーブル信号、出力電圧VO、およびPGOOD端子の電圧の各波形例を示す。
 図5に示すタイミングt1で、入力電源電圧Vinの立ち上がりが開始する。このとき、内部電圧Vregも立ち上がりを開始するとともに、イネーブル信号はローレベル、出力電圧VOは0V、PGOOD端子の電圧はローレベル(トランジスタM1はオン状態)である。
 入力電源電圧Vinの立ち上がりに伴って内部電圧Vregも立ち上がる。そして、入力電源電圧Vinがタイミングt2でUVLO解除電圧に到達すると、UVLO解除を示すUVLO信号UVLO#VINが制御ロジック部3に出力される。
 その後、タイミングt3でイネーブル信号がハイレベルに立ち上がると、制御ロジック部3は、イネーブル信号EN1をDC/DC回路6に出力することでDC/DC回路6を起動させる。これにより、出力電圧VOが起動する。出力電圧VOが立ち上がって、正常範囲を規定する所定の下限電圧に到達すると(タイミングt4)、その旨を示す低電圧検出信号UVDが制御ロジック部3に出力される。すると、制御ロジック部3は、タイミングt4から所定の待機期間T1を経過したタイミングt5において、トランジスタM1をオフ状態に切り替えることで、PGOOD端子の電圧をハイレベルに切り替える。先述した図2に示す構成のように、PGOOD端子の電圧はMCU30のリセット端子RSTに入力されるため、MCU30はリセット解除される。
<5.リセット機能に関する通常動作>
 図6は、通常動作を示すタイミングチャートである。なお、図6の上段から順に、イネーブル信号、出力電圧VO、PGOOD端子の電圧、およびリセット端子RSTの電圧の各波形例を示す。これは、後述する図7~図10についても同様である。
 図6に示すようにタイミングt11でイネーブル信号が立ち上がる(図5のタイミングt3と同様)。その後、タイミングt12において、出力電圧VOの立ち上げが開始される。
 ここで、図6には、MCU30が正常に動作するための出力電圧VOの正常範囲を示しており、当該正常範囲は、下限電圧Vl以上かつ上限電圧Vh以下として規定される。出力電圧VOが立ち上がって下限電圧Vlに到達すると(タイミングt13)、その旨を示す低電圧検出信号UVDが制御ロジック部3に出力される。
 そして、制御ロジック部3は、出力電圧VOが立ち上がって下限電圧Vlに到達したタイミングt13から所定の待機期間T1の間、出力電圧VOが正常範囲内の状態を維持した場合、待機期間T1が経過したタイミングでトランジスタM1をオフ状態に切り替え、PGOOD端子の電圧をハイレベルに切り替える(タイミングt14)。これにより、リセット端子RSTもハイレベルに切り替わるため、MCU30はリセット解除される。
 このように、出力電圧VOが正常範囲内となったタイミングt13でリセット端子RSTの電圧はローレベルであり、MCU30は動作のための準備(初期化)を開始する。待機期間T1は、初期化に要する時間以上に設定している。これにより、待機期間T1が経過したタイミングt14においては、初期化が完了しており、リセット解除によりMCU30に動作を許可することができる。
 また、図6に示すように、出力電圧VOが下限電圧Vlを下回った場合(タイミングt15)、その旨を示す低電圧検出信号UVDが制御ロジック部3に出力される。これにより、制御ロジック部3は、トランジスタM1をオン状態に切り替え、PGOOD端子の電圧をローレベルに切り替える。これに伴い、リセット端子RSTの電圧もローレベルに切り替わるため、MCU30がリセットされる。従って、出力電圧VOが正常範囲を外れた場合に、MCU30の動作を停止できる。
 その後、出力電圧VOが正常範囲内に復帰すると(タイミングt16)、そのタイミングから待機期間T1の間、出力電圧VOが正常範囲内の状態が維持されると、制御ロジック部3は、トランジスタM1をオフ状態に切り替え、PGOOD端子の電圧をハイレベルに切り替える(タイミングt17)。これにより、リセット端子RSTの電圧もハイレベルに切り替わり、MCU30はリセット解除される。
<6.PGOOD端子がオープン異常の場合の動作>
 次に、PGOOD端子がオープン異常の場合の動作について説明する。図7は、この場合の動作を示すが、本実施形態のようなPGOOD端子の異常検出機能を設けない場合の動作を示す。
 図7において、先述した図6と同様に、イネーブル信号が立ち上がり(タイミングt11)、その後、出力電圧VOが立ち上がりを開始する(タイミングt12)。ここで、PGOOD端子がオープンとなっているため、PGOOD端子の電圧は不定となる。図7では、PGOOD端子の電圧は、便宜上、ローレベルに維持されている。リセット端子RSTの電圧は、出力電圧VOと同じ電圧となり、出力電圧VOと同様に立ち上がる。
 これにより、出力電圧VOが下限電圧Vlに到達して正常範囲内となるタイミングt13において、リセット端子RSTの電圧も出力電圧VOと同じ電圧まで立ち上がっている。従って、タイミングt13においてMCU30が初期化を開始しようとしても、リセット端子RSTの電圧がハイレベルとなっているため、初期化が行えない虞がある。
 また、図7に示すように、出力電圧VOが正常範囲から外れた場合でも(タイミングt15)、PGOOD端子がオープンであるため、リセット端子RSTの電圧は出力電圧VOと同じ電圧で挙動する。従って、MCU30をリセットできない虞がある。
 これに対し、図8は、本実施形態に係るPGOOD端子の異常検出機能を設ける場合での、PGOOD端子がオープン異常の場合の動作を示す。図8に示すように、タイミングt12で出力電圧VOが立ち上がりを開始すると、リセット端子RSTの電圧も同様に立上りを開始する。
 そして、出力電圧VOが下限電圧Vlに到達して正常範囲内になると、そのタイミングt13から待機期間T1の間、出力電圧VOが正常範囲内の状態を継続すると、制御ロジック部3は、トランジスタM1をオフ状態に切り替える(タイミングt18)。ここで、制御ロジック部3は、監視部5から出力される監視信号Smを確認する。
 もしPGOOD端子がオープン異常であれば、PGOOD端子の電圧が本来はハイレベルとなるところがローレベルとなる。なお、抵抗R2は、プルアップ抵抗R1よりも抵抗値を十分に大きくしており、PGOOD端子の電圧が不定となることを抑制している。監視信号Smの論理レベルは、PGOOD端子の電圧のローレベルに応じたレベルとなる。この場合、制御ロジック部3は、DC/DC回路6にイネーブル信号EN1により指令して、図8に示すように、出力電圧VOの出力を停止させる。これにより、MCU30への電源供給が停止される。
 その後、制御ロジック部3は、再度、出力電圧VOを起動させる(タイミングt19)。そして、出力電圧VOが下限電圧Vlに到達して正常範囲内になると(タイミングt20)、そのタイミングt20から待機期間T1の間、出力電圧VOが正常範囲内の状態を継続すると、制御ロジック部3は、トランジスタM1をオフ状態に切り替える(タイミングt21)。ここで、制御ロジック部3は、監視部5から出力される監視信号Smを確認する。
 ここで、監視信号Smの論理レベルが、PGOOD端子がオープン異常である場合のレベルであった場合、制御ロジック部3は、出力電圧VOの出力を停止させる。
 図8に示すような出力電圧VOの停止が所定回数繰り返される場合は、制御ロジック部3は、以降、出力電圧VOの出力を停止させる。すなわち、電源装置10のシステムが停止される。上記所定回数は、2回以上の任意の回数であればよい。
 このように、本実施形態であれば、監視信号Smを用いてPGOOD端子がオープン異常であることを検出すると、出力電圧VOの出力を停止させるため、MCU30が想定されない異常な動作を行うことを抑制できる。また、PGOOD端子のオープン異常が継続された場合は、電源装置10のシステムが停止されるので、MCU30の起動を禁止できる。
 なお、先述のように待機期間T1の経過したタイミングで監視信号Smを確認する場合に(タイミングt18またはt21)、監視信号Smが正常を示すレベル(PGOOD端子の電圧=ハイレベル)であった場合、制御ロジック部3は、出力電圧VOの出力を継続させる。これにより、PGOOD端子がオープン異常から正常状態に復帰した場合に、MCU30の動作を継続させることができる。
<7.PGOOD端子がショート異常の場合の動作>
 次に、PGOOD端子がショート異常の場合の動作について説明する。図9は、この場合の動作を示すが、本実施形態のようなPGOOD端子の異常検出機能を設けない場合の動作を示す。
 図9において、先述した図6と同様に、イネーブル信号が立ち上がり(タイミングt11)、その後、出力電圧VOが立ち上がりを開始する(タイミングt12)。ここで、PGOOD端子は出力電圧VOの印加端と短絡されるショート異常となっているため、PGOOD端子の電圧は、出力電圧VOと同じ電圧となり、出力電圧VOと同様に立ち上がる。また、リセット端子RSTの電圧も、出力電圧VOと同じ電圧となり、出力電圧VOと同様に立ち上がる。
 これにより、出力電圧VOが下限電圧Vlに到達して正常範囲内となるタイミングt13において、リセット端子RSTの電圧も出力電圧VOと同じ電圧まで立ち上がっている。従って、タイミングt13においてMCU30が初期化を開始しようとしても、リセット端子RSTの電圧がハイレベルとなっているため、初期化が行えない虞がある。
 また、図9に示すように、出力電圧VOが正常範囲から外れた場合でも(タイミングt15)、PGOOD端子がショート異常であるため、リセット端子RSTの電圧は出力電圧VOと同じ電圧で挙動する。従って、MCU30をリセットできない虞がある。
 これに対し、図10は、本実施形態に係るPGOOD端子の異常検出機能を設ける場合での、PGOOD端子がショート異常の場合の動作を示す。図10に示すように、タイミングt12で出力電圧VOが立ち上がりを開始すると、PGOOD端子の電圧、およびリセット端子RSTの電圧も同様に立上りを開始する。
 出力電圧VOの立ち上がり開始のタイミングt12で、制御ロジック部3は、監視部5から出力される監視信号Smの監視を開始する。具体的には、制御ロジック部3は、出力電圧VOが下限電圧Vlに到達するまでに、監視信号Smのレベルが、PGOOD端子の電圧が所定の閾値電圧Vthに到達したことに対応するレベルに切り替わるかを監視する。
 本来であれば、図6に示すように、出力電圧VOが下限電圧Vlに到達するまでは、PGOOD端子はローレベルに維持されるが、PGOOD端子のショート異常の場合は、図10に示すように、出力電圧VOが閾値電圧Vthに到達する(タイミングt22)。このように、監視信号Smのレベルが切り替わった場合、制御ロジック部3は、図10に示すように、出力電圧VOの出力を停止させる。これにより、MCU30への電源供給が停止される。
 その後、制御ロジック部3は、再度、出力電圧VOを起動させる(タイミングt23)。ここで、制御ロジック部3は、監視部5から出力される監視信号Smの監視を再度、開始する。
 ここで、図10に示すように、再度、PGOOD端子の電圧が閾値電圧Vthに到達して監視信号Smの論理レベルが切り替わった場合、制御ロジック部3は、出力電圧VOの出力を再度、停止させる(タイミングt24)。
 図10に示すような出力電圧VOの停止が所定回数繰り返される場合は、制御ロジック部3は、以降、出力電圧VOの出力を停止させる。すなわち、電源装置10のシステムが停止される。上記所定回数は、2回以上であればよい。
 このように、本実施形態であれば、監視信号Smを用いてPGOOD端子がショート異常であることを検出すると、出力電圧VOの出力を停止させるため、MCU30が想定されない異常な動作を行うことを抑制できる。また、PGOOD端子のショート異常が継続された場合は、電源装置10のシステムが停止されるので、MCU30の起動を禁止できる。
 また、出力電圧VOが下限電圧Vlに到達するまでに監視信号Smが切り替わらなかった場合は、PGOOD端子が正常であるとして、制御ロジック部3は、出力電圧VOの出力を継続させる。これにより、PGOOD端子がショート異常から正常状態に復帰した場合に、MCU30を動作させることができる。
 なお、閾値電圧Vthは、出力電圧VOが下限電圧Vlに到達してから待機期間T1が経過するまでにPGOOD端子の電圧が到達できるレベルに設定されてもよい。この場合、制御ロジック部3は、出力電圧VOが下限電圧Vlに到達すると監視信号Smの監視を開始し、待機期間T1が経過するまでに監視信号Smのレベルが切り替わるかを監視すればよい。
<8.変形例>
 先述した実施形態では、PGOOD端子の異常を検出した場合に、制御ロジック部3が実施する動作として、出力電圧VOの出力の停止を行ったが、出力電圧VOの出力は継続させ、かつ、I2Cによる通信によってMCU30に異常を通知してもよい。異常の通知は、図2に示すSDA端子およびSCL端子を用いればよい。特に、PGOOD端子の異常がMCU30の動作に重大な影響を与えないような場合に有効である。
 また、PGOOD端子のオープン異常とショート異常のうち、一方のみを検出可能な実施形態としてもよい。
<9.車両への適用>
 図11は、車両の一構成例を示す外観図である。本構成例の車両Xは、バッテリ(本図では不図示)と、バッテリから電源電圧の供給を受けて動作する種々の電子機器X11~X18と、を搭載している。なお、本図における電子機器X11~X18の搭載位置については、図示の便宜上、実際とは異なる場合がある。
 電子機器X11は、エンジンに関連する制御(インジェクション制御、電子スロットル制御、アイドリング制御、酸素センサヒータ制御、及び、オートクルーズ制御など)を行うエンジンコントロールユニットである。
 電子機器X12は、HID[high intensity  discharged  lamp]やDRL[daytime  running lamp]などの点消灯制御を行うランプコントロールユニットである。
 電子機器X13は、トランスミッションに関連する制御を行うトランスミッションコントロールユニットである。
 電子機器X14は、車両Xの運動に関連する制御(ABS[anti-lock  brake system]制御、EPS[electric power  steering]制御、電子サスペンション制御など)を行うボディコントロールユニットである。
 電子機器X15は、ドアロックや防犯アラームなどの駆動制御を行うセキュリティコントロールユニットである。
 電子機器X16は、ワイパー、電動ドアミラー、パワーウィンドウ、ダンパー(ショックアブソーバー)、電動サンルーフ、及び、電動シートなど、標準装備品やメーカーオプション品として、工場出荷段階で車両Xに組み込まれている電子機器である。
 電子機器X17は、車載A/V[audio/visual]機器、カーナビゲーションシステム、及び、ETC[electronic toll collection system]など、ユーザオプション品として任意で車両Xに装着される電子機器である。
 電子機器X18は、車載ブロア、オイルポンプ、ウォーターポンプ、バッテリ冷却ファンなど、高耐圧系モータを備えた電子機器である。
 なお、先に説明した電源装置10は、電子機器X11~X18のいずれにも組み込むことが可能である。
<10.付記>
 以上の通り、例えば、本開示に係る電源装置(10)は、
後段回路(30)への出力電圧(VO)の供給を可能とする電源回路(6)と、
 前記後段回路および電源電圧(VO)が印加されるプルアップ抵抗(R1)と接続可能に構成される外部端子(PGOOD)と、
 前記外部端子に接続される第1端を有するトランジスタ(M1)と、
 前記出力電圧の起動時において前記出力電圧が正常範囲内となった場合に前記トランジスタをオン状態からオフ状態へ切り替える制御部(3)と、
 前記外部端子がオープンであるオープン異常と、前記外部端子が前記電源電圧の印加端と短絡されるショート異常とのうち、少なくとも一方を検出可能である異常検出部(10A)と、
 を有する構成としている(第1の構成)。
 また、上記第1の構成において、前記異常検出部(10A)は、前記オープン異常または前記ショート異常を検出した場合に、前記電源回路(6)への指令を行って前記出力電圧の出力を停止させる構成としてもよい(第2の構成)。
 また、上記第2の構成において、前記異常検出部(10A)は、前記出力電圧の出力の停止後に、前記出力電圧を再起動させ、
 前記出力電圧の出力の停止が所定回数繰り返された場合は、前記異常検出部は、以降、前記出力電圧の出力を停止させる構成としてもよい(第3の構成)。
 また、上記第1の構成において、前記異常検出部(10A)は、前記オープン異常または前記ショート異常を検出した場合に、前記出力電圧の出力は継続させ、かつ、通信によって前記後段回路(30)に異常を通知する構成としてもよい(第4の構成)。
 また、上記第1から第4のいずれかの構成において、前記制御部(3)は、前記出力電圧が所定の下限電圧に到達してから所定期間の間、前記出力電圧が前記正常範囲内の状態を維持した場合に、前記トランジスタ(M1)をオン状態からオフ状態へ切り替え、
 前記異常検出部(10A)は、前記出力電圧が前記下限電圧に到達してから前記所定期間経過したときに、前記外部端子(PGOOD)の電圧に基づき前記オープン異常を検出する構成としてもよい(第5の構成)。
 また、上記第5の構成において、前記外部端子(PGOOD)とグランド電位の印加端との間に接続可能に構成される抵抗(R2)を有する構成としてもよい(第6の構成)。
 また、上記第1から第6のいずれかの構成において、前記異常検出部(10A)は、前記外部端子(PGOOD)の電圧が本来はローレベルであるタイミングで前記外部端子の電圧が所定の閾値電圧(Vth)に到達したことを検出することで、前記ショート異常を検出する構成としてもよい(第7の構成)。
 また、上記第1から第7のいずれかの構成において、前記電源電圧(VO)の印加端は、前記出力電圧(VO)の印加端と接続可能である構成としてもよい(第8の構成)。
 また、上記第1から第8のいずれかの構成において、前記異常検出部(10A)は、前記外部端子(PGOOD)の電圧に応じた論理レベルの監視信号(Sm)を出力する監視部(5)と、前記監視信号に基づき異常を検出する制御ロジック部(3)と、を有する構成としてもよい(第9の構成)。
 また、上記第9の構成において、前記監視部(5)は、前記外部端子(PGOOD)の電圧が入力されるインバータ(50)を有する構成としてもよい(第10の構成)。
 また、上記第9の構成において、前記監視部(5)は、前記外部端子(PGOOD)の電圧と基準電圧(Vref)とが入力されるコンパレータ(5A)を有する構成としてもよい(第11の構成)。
 また、上記第1から第11のいずれかの構成において、前記外部端子(PGOOD)は、前記後段回路としてのMCU(30)のリセット端子(RST)に接続可能である構成としてもよい(第12の構成)。
 また、上記第1から第12のいずれかの構成の電源装置(10)は、車載用であることとしてもよい(第13の構成)。
 また、本開示に係る給電システム(40)は、上記いずれかの構成である電源装置(10)と、前記電源装置から前記出力電圧を供給される前記後段回路(30)と、を有する構成としている。
<11.その他>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本開示の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味および範囲内に属する全ての変更が含まれると理解されるべきである。
本開示は、例えば、車載用の電源装置に利用することが可能である。
   1   内部電圧生成部
   2   電源電圧UVLO回路
   3   制御ロジック部
   4   I2C入出力部
   5   監視部
   5A  コンパレータ
   6   DC/DC回路
   10   電源装置
   10A  異常検出部
   30   MCU
   40   給電システム
   50   インバータ
   51   PMOSトランジスタ
   52   NMOSトランジスタ
   60   DC/DCコンバータ
   Co   出力コンデンサ
   L   インダクタ
   M1   トランジスタ
   R1   プルアップ抵抗
   R2   抵抗
   RST   リセット端子
   X   車両
   X11~X18   電子機器

Claims (14)

  1.  後段回路への出力電圧の供給を可能とする電源回路と、
     前記後段回路および電源電圧が印加されるプルアップ抵抗と接続可能に構成される外部端子と、
     前記外部端子に接続される第1端を有するトランジスタと、
     前記出力電圧の起動時において前記出力電圧が正常範囲内となった場合に前記トランジスタをオン状態からオフ状態へ切り替える制御部と、
     前記外部端子がオープンであるオープン異常と、前記外部端子が前記電源電圧の印加端と短絡されるショート異常とのうち、少なくとも一方を検出可能である異常検出部と、
     を有する、電源装置。
  2.  前記異常検出部は、前記オープン異常または前記ショート異常を検出した場合に、前記電源回路への指令を行って前記出力電圧の出力を停止させる、請求項1に記載の電源装置。
  3.  前記異常検出部は、前記出力電圧の出力の停止後に、前記出力電圧を再起動させ、
     前記出力電圧の出力の停止が所定回数繰り返された場合は、前記異常検出部は、以降、前記出力電圧の出力を停止させる、請求項2に記載の電源装置。
  4.  前記異常検出部は、前記オープン異常または前記ショート異常を検出した場合に、前記出力電圧の出力は継続させ、かつ、通信によって前記後段回路に異常を通知する、請求項1に記載の電源装置。
  5.  前記制御部は、前記出力電圧が所定の下限電圧に到達してから所定期間の間、前記出力電圧が前記正常範囲内の状態を維持した場合に、前記トランジスタをオン状態からオフ状態へ切り替え、
     前記異常検出部は、前記出力電圧が前記下限電圧に到達してから前記所定期間経過したときに、前記外部端子の電圧に基づき前記オープン異常を検出する、請求項1から請求項4のいずれか1項に記載の電源装置。
  6.  前記外部端子とグランド電位の印加端との間に接続可能に構成される抵抗を有する、請求項5に記載の電源装置。
  7.  前記異常検出部は、前記外部端子の電圧が本来はローレベルであるタイミングで前記外部端子の電圧が所定の閾値電圧に到達したことを検出することで、前記ショート異常を検出する、請求項1から請求項6のいずれか1項に記載の電源装置。
  8.  前記電源電圧の印加端は、前記出力電圧の印加端と接続可能である、請求項1から請求項7のいずれか1項に記載の電源装置。
  9.  前記異常検出部は、
     前記外部端子の電圧に応じた論理レベルの監視信号を出力する監視部と、
     前記監視信号に基づき異常を検出する制御ロジック部と、
     を有する、請求項1から請求項8のいずれか1項に記載の電源装置。
  10.  前記監視部は、前記外部端子の電圧が入力されるインバータを有する、請求項9に記載の電源装置。
  11.   前記監視部は、前記外部端子の電圧と基準電圧とが入力されるコンパレータを有する、請求項9に記載の電源装置。
  12.  前記外部端子は、前記後段回路としてのMCUのリセット端子に接続可能である、請求項1から請求項11のいずれか1項に記載の電源装置。
  13.  車載用である請求項1から請求項12のいずれか1項に記載の電源装置。
  14.  請求項1から請求項13のいずれか1項に記載の電源装置と、
     前記電源装置から前記出力電圧を供給される前記後段回路と、
     を有する、給電システム。
PCT/JP2022/024896 2021-07-16 2022-06-22 電源装置 WO2023286549A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023535198A JPWO2023286549A1 (ja) 2021-07-16 2022-06-22
US18/403,427 US20240235375A9 (en) 2021-07-16 2024-01-03 Power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-117613 2021-07-15
JP2021117613 2021-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/403,427 Continuation US20240235375A9 (en) 2021-07-16 2024-01-03 Power supply device

Publications (1)

Publication Number Publication Date
WO2023286549A1 true WO2023286549A1 (ja) 2023-01-19

Family

ID=84926268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024896 WO2023286549A1 (ja) 2021-07-16 2022-06-22 電源装置

Country Status (3)

Country Link
US (1) US20240235375A9 (ja)
JP (1) JPWO2023286549A1 (ja)
WO (1) WO2023286549A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430070B1 (en) * 2001-05-23 2002-08-06 Winbond Electronics Corp. Synchronous PWM switching regulator system
US20130175869A1 (en) * 2012-01-10 2013-07-11 Green Solution Technology Co., Ltd. Power-good signal generator and controller with power sequencing free
JP2019187050A (ja) * 2018-04-06 2019-10-24 新日本無線株式会社 開放・地絡検出回路
JP2020182022A (ja) * 2019-04-23 2020-11-05 ローム株式会社 遅延回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430070B1 (en) * 2001-05-23 2002-08-06 Winbond Electronics Corp. Synchronous PWM switching regulator system
US20130175869A1 (en) * 2012-01-10 2013-07-11 Green Solution Technology Co., Ltd. Power-good signal generator and controller with power sequencing free
JP2019187050A (ja) * 2018-04-06 2019-10-24 新日本無線株式会社 開放・地絡検出回路
JP2020182022A (ja) * 2019-04-23 2020-11-05 ローム株式会社 遅延回路

Also Published As

Publication number Publication date
US20240235375A9 (en) 2024-07-11
US20240136914A1 (en) 2024-04-25
JPWO2023286549A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
JP2023052044A (ja) スイッチ装置
JP7228721B2 (ja) 電源制御装置
JP7201385B2 (ja) スイッチ装置
JP6009810B2 (ja) 電源装置、車載機器、車両
JP7427819B2 (ja) 電源制御装置
JP6762419B2 (ja) 負荷駆動装置
US9391603B2 (en) Semiconductor device, electronic appliance, and vehicle
JP7481868B2 (ja) 過電流保護回路
JP2017073872A (ja) チャージポンプ回路
JP5985949B2 (ja) タイマー回路、並びに、これを用いたパワーオンリセット回路、電子機器及び車両
WO2023286549A1 (ja) 電源装置
JP2019192870A (ja) 半導体集積回路装置
JP6030335B2 (ja) 電源装置、車載機器、車両
US12142910B2 (en) Power control device
JP4730356B2 (ja) 電源制御装置
JP2009065771A (ja) スイッチング電源回路の異常検出回路
JP6670636B2 (ja) 電源装置
WO2024075407A1 (ja) スイッチ装置、電子機器、車両
JP2015116905A (ja) 車載装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535198

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841893

Country of ref document: EP

Kind code of ref document: A1