WO2023282600A1 - 수술 중 또는 수술 후 예후 판단 장치 및 방법 - Google Patents
수술 중 또는 수술 후 예후 판단 장치 및 방법 Download PDFInfo
- Publication number
- WO2023282600A1 WO2023282600A1 PCT/KR2022/009712 KR2022009712W WO2023282600A1 WO 2023282600 A1 WO2023282600 A1 WO 2023282600A1 KR 2022009712 W KR2022009712 W KR 2022009712W WO 2023282600 A1 WO2023282600 A1 WO 2023282600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surgery
- prognosis
- level
- during
- blood pressure
- Prior art date
Links
- 238000001356 surgical procedure Methods 0.000 title claims abstract description 209
- 238000004393 prognosis Methods 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title description 15
- 238000005534 hematocrit Methods 0.000 claims abstract description 51
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 238000009534 blood test Methods 0.000 claims description 45
- 230000036772 blood pressure Effects 0.000 claims description 44
- 230000002980 postoperative effect Effects 0.000 claims description 35
- 238000001361 intraarterial administration Methods 0.000 claims description 31
- 230000003205 diastolic effect Effects 0.000 claims description 14
- 210000004369 blood Anatomy 0.000 claims description 11
- 239000008280 blood Substances 0.000 claims description 11
- 230000035487 diastolic blood pressure Effects 0.000 claims description 11
- 230000035488 systolic blood pressure Effects 0.000 claims description 11
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims description 10
- 108010082126 Alanine transaminase Proteins 0.000 claims description 10
- 108010003415 Aspartate Aminotransferases Proteins 0.000 claims description 10
- 102000004625 Aspartate Aminotransferases Human genes 0.000 claims description 10
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 claims description 10
- 239000011734 sodium Substances 0.000 claims description 10
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 claims description 6
- 208000009304 Acute Kidney Injury Diseases 0.000 claims description 6
- 108010000499 Thromboplastin Proteins 0.000 claims description 6
- 102000002262 Thromboplastin Human genes 0.000 claims description 6
- 201000010099 disease Diseases 0.000 claims description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 6
- 230000003680 myocardial damage Effects 0.000 claims description 6
- 102000009027 Albumins Human genes 0.000 claims description 5
- 108010088751 Albumins Proteins 0.000 claims description 5
- 206010002091 Anaesthesia Diseases 0.000 claims description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- 102000001554 Hemoglobins Human genes 0.000 claims description 5
- 108010054147 Hemoglobins Proteins 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 108010094028 Prothrombin Proteins 0.000 claims description 5
- 102100027378 Prothrombin Human genes 0.000 claims description 5
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 claims description 5
- 230000037005 anaesthesia Effects 0.000 claims description 5
- 229940109239 creatinine Drugs 0.000 claims description 5
- 238000002297 emergency surgery Methods 0.000 claims description 5
- 230000024924 glomerular filtration Effects 0.000 claims description 5
- 239000008103 glucose Substances 0.000 claims description 5
- 230000036961 partial effect Effects 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 229940039716 prothrombin Drugs 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 238000004891 communication Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 13
- 239000000284 extract Substances 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 6
- 238000010801 machine learning Methods 0.000 description 5
- 208000004550 Postoperative Pain Diseases 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 4
- 238000013480 data collection Methods 0.000 description 3
- 208000010444 Acidosis Diseases 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 206010012218 Delirium Diseases 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 208000002720 Malnutrition Diseases 0.000 description 2
- 208000035965 Postoperative Complications Diseases 0.000 description 2
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- 230000007950 acidosis Effects 0.000 description 2
- 208000026545 acidosis disease Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 208000007502 anemia Diseases 0.000 description 2
- 208000015294 blood coagulation disease Diseases 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000001071 malnutrition Effects 0.000 description 2
- 235000000824 malnutrition Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 208000015380 nutritional deficiency disease Diseases 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 201000004193 respiratory failure Diseases 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 206010043554 thrombocytopenia Diseases 0.000 description 2
- 208000019838 Blood disease Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 206010067268 Post procedural infection Diseases 0.000 description 1
- 208000031649 Postoperative Nausea and Vomiting Diseases 0.000 description 1
- 208000024799 Thyroid disease Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 208000021510 thyroid gland disease Diseases 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Definitions
- It relates to an apparatus and method for determining an intraoperative or postoperative prognosis based on a patient's intraoperative vital signs.
- An object of the present invention is to provide an apparatus and method for determining a prognosis during or after surgery based on vital signs of a patient during surgery.
- An apparatus for determining prognosis during or after surgery includes: a data acquisition unit for acquiring oxygen saturation measured during surgery of a patient, electrocardiogram measured during surgery, and hematocrit measured during surgery; and a processor determining a prognosis during or after surgery of the patient based on the obtained oxygen saturation level, the obtained electrocardiogram, and the obtained hematocrit; can include
- the processor extracts an ST segment from the acquired electrocardiogram, and determines a prognosis during or after surgery of the patient by using a prognostic judgment model based on the extracted ST segment, the acquired oxygen saturation level, and the acquired hematocrit. can judge
- the data obtaining unit further acquires at least one of blood test data before surgery, surgery information, clinical information, intra-arterial blood pressure measured during the surgery, volumetric pulse wave measured during the surgery, and heart rate measured during the surgery. and the processor determines a prognosis during or after surgery of the patient further based on at least one of the pre-surgery blood test data, the surgery information, the clinical information, the intra-arterial blood pressure, the volumetric pulse wave, and the heart rate can do.
- the preoperative blood test data includes prothrombin time, albumin level, hemoglobin level, platelet level, activated partial thromboplastin time, aspartate transaminase (AST) ) level, ALT (alanine transaminase) level, sodium (Na) level, potassium (K) level, glucose level, blood urea nitrogen (BUN) level, creatinine (Cr) level, estimated glomerular filtration rate (eGFR) and hematocrit can include
- the surgery information may include the type of surgery, emergency surgery, and the type of anesthesia used during surgery.
- the clinical information may include age, height, sex, and disease.
- the processor extracts, as a first feature, at least one of an area under an intra-arterial blood pressure waveform for each heartbeat, a mean blood pressure value, a systolic blood pressure value, and a diastolic blood pressure value from the intra-arterial blood pressure, and a systolic peak value from the volume pulse wave , at least one of a diastolic peak value, an average peak value, a peak velocity, an area under a waveform, a first order differential waveform, and a second order differential waveform is extracted as a second feature, and the extracted first feature and the extracted second A prognosis of the patient during or after surgery may be determined further based on at least one of the characteristics, the blood test data before surgery, the surgery information, the clinical information, and the heart rate.
- the intraoperative or postoperative prognosis may include the possibility of death during surgery, the possibility of death within a predetermined period after surgery, the possibility of massive blood transfusion, the possibility of hospitalization in an intensive care unit, the possibility of myocardial damage, and the possibility of acute renal injury.
- a method for determining prognosis during or after surgery includes acquiring oxygen saturation measured during surgery of a patient, electrocardiogram measured during surgery, and hematocrit measured during surgery; and determining an intraoperative or postoperative prognosis of the patient based on the acquired oxygen saturation level, the acquired electrocardiogram, and the acquired hematocrit.
- the determining may include extracting an ST segment from the obtained electrocardiogram; and determining an intraoperative or postoperative prognosis of the patient using a prognostic judgment model based on the extracted ST segment, the acquired oxygen saturation level, and the acquired hematocrit; can include
- the acquiring may further include at least one of blood test data before surgery, surgery information, clinical information, intra-arterial blood pressure measured during the surgery, volumetric pulse wave measured during the surgery, and heart rate measured during the surgery.
- Obtaining and the determining may further include at least one of the pre-surgery blood test data, the surgery information, the clinical information, the intra-arterial blood pressure, the volumetric pulse wave, and the heart rate during or after surgery of the patient. prognosis can be determined.
- the preoperative blood test data includes prothrombin time, albumin level, hemoglobin level, platelet level, activated partial thromboplastin time, aspartate transaminase (AST) ) level, ALT (alanine transaminase) level, sodium (Na) level, potassium (K) level, glucose level, blood urea nitrogen (BUN) level, creatinine (Cr) level, estimated glomerular filtration rate (eGFR) and hematocrit can include
- the surgery information may include the type of surgery, emergency surgery, and the type of anesthesia used during surgery.
- the clinical information may include age, height, sex, and disease.
- the determining may include extracting, as a first feature, at least one of an area under an intra-arterial blood pressure waveform for each heartbeat, a mean blood pressure value, a systolic blood pressure value, and a diastolic blood pressure value from the intra-arterial blood pressure; extracting at least one of a systolic peak value, a diastolic peak value, an average peak value, a peak velocity, an area under a waveform, a first order differential waveform, and a second order differential waveform from the volume pulse wave as a second feature; and the extracted first feature, the extracted second feature, the pre-surgery blood test data, the surgery information, the clinical information, and the heart rate further based on at least one of the patient's intraoperative or postoperative prognosis judging; can include
- the intraoperative or postoperative prognosis may include the possibility of death during surgery, the possibility of death within a predetermined period after surgery, the possibility of massive blood transfusion, the possibility of hospitalization in an intensive care unit, the possibility of myocardial damage, and the possibility of acute renal injury.
- the patient's prognosis during or after surgery can be accurately determined.
- FIG. 1 is a diagram illustrating a prognosis determination system during or after surgery according to an exemplary embodiment.
- FIG. 2 is a diagram illustrating an apparatus for generating a prognostic judgment model according to an exemplary embodiment.
- FIG. 3 is a diagram illustrating a prognosis determination device according to an exemplary embodiment.
- FIG. 4 is a diagram illustrating a prognosis determination device according to an exemplary embodiment.
- FIG. 5 is a diagram illustrating a method for generating a prognostic judgment model according to an exemplary embodiment.
- FIG. 6 is a diagram illustrating a method for determining a prognosis according to an exemplary embodiment.
- FIG. 7 is a diagram illustrating the performance of a mass transfusion determination model according to an exemplary embodiment.
- each step may occur in a different order from the specified order unless a specific order is clearly described in context. That is, each step may be performed in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
- each component in the present specification is merely a classification for each main function in charge of each component. That is, two or more components may be combined into one component, or one component may be divided into two or more for each more subdivided function.
- each component may additionally perform some or all of the functions of other components in addition to its main function, and some of the main functions of each component are dedicated to other components. may be performed.
- Each component may be implemented in hardware (eg, a processor or memory, etc.) or software, or a combination of hardware and software.
- FIG. 1 is a diagram illustrating a prognosis determination system during or after surgery according to an exemplary embodiment.
- an intraoperative or postoperative prognosis determination system 10 (hereinafter, a prognosis determination system) according to an exemplary embodiment is an intraoperative or postoperative prognosis determination model generating device 100 (hereinafter, a prognosis determination model) generation device) and an intraoperative or postoperative prognosis determination device 200 (hereinafter referred to as a prognosis determination device).
- the prognostic judgment model generation apparatus 100 uses at least one of vital sign data during surgery, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information for a plurality of patients to generate machine information.
- a model (hereinafter referred to as a prognosis estimation model) capable of determining the prognosis of a patient undergoing surgery during or after surgery may be generated through running or deep learning.
- vital sign data during surgery is a vital signal of a patient measured during surgery and may include intra-arterial blood pressure, heart rate, oxygen saturation, plethysmograph, and electrocardiogram.
- the volume pulse wave may be a photoplethysmograph, but is not limited thereto.
- Preoperative blood test data is blood test data tested before surgery, including prothrombin time, albumin level, hemoglobin level, platelet level, activated partial thromboplastin time.
- Surgical information includes the type of surgery, emergency surgery, and type of anesthesia used during surgery, and clinical information includes age, height, gender, and disease (e.g., liver disease, vascular disease, heart disease, and nervous system disease). , hypertension, diabetes, tuberculosis, asthma, thyroid disease, kidney disease, blood disease, chronic obstructive pulmonary disease, other diseases, etc.).
- the intraoperative or postoperative prognosis is, for example, the possibility of death during surgery, the possibility of death within a certain period after surgery, the possibility of acute renal injury, the possibility of massive blood transfusion, the possibility of hospitalization in an intensive care unit, the possibility of myocardial damage, the possibility of infection after surgery, Possible postoperative pain, possible time to reach adequate postoperative pain, possible nausea and vomiting, possible postoperative delirium, possible postoperative complications, possible respiratory failure, possible acute anemia, possible thrombocytopenia, possible heart failure, possible coagulopathy, possible acidosis , likelihood of malnutrition, likelihood of sepsis, likelihood of an acute coronary event, likelihood of shock, and likelihood of a longer than average hospital stay after surgery for a similar procedure in a similar hospital setting.
- the prognostic judgment device 200 uses the prognostic estimation model generated by the prognostic judgment model generating device 100 to provide vital sign data during surgery, hematocrit data measured during surgery, preoperative blood test data, surgical information, and clinical data of the target patient.
- a prognosis during or after surgery of a target patient may be determined from at least one of the pieces of information.
- prognosis judgment model generating device 100 and the prognosis judgment device 200 will be described in detail with reference to FIGS. 2 and 3 .
- FIG. 2 is a diagram illustrating an apparatus for generating a prognostic judgment model according to an exemplary embodiment.
- an apparatus 100 for generating a prognosis judgment model may include a data collection unit 110 and a processor 120 .
- the data collection unit 110 collects vital sign data during surgery, hematocrit data measured during surgery, blood test data before surgery, surgery information, and clinical information of a plurality of patients, and the condition during or after surgery of the patient.
- the condition during or after surgery is, for example, death during surgery, death within a predetermined period after surgery, acute renal injury, massive blood transfusion, intensive care unit admission, myocardial damage, postoperative infection, surgery Postoperative pain, time to reach adequate postoperative pain, nausea and vomiting, postoperative delirium, postoperative complications, respiratory failure, acute anemia, thrombocytopenia, heart failure, coagulopathy, acidosis, These may include malnutrition, sepsis, acute coronary events, shock, and longer-than-average length of stay in hospital for similar procedures performed in similar hospital settings.
- the data collection unit 110 collects vital sign data during surgery, hematocrit data measured during surgery, blood test data before surgery, surgery information, and clinical data for a plurality of patients from a medical database using wired/wireless communication technology. information can be collected.
- the wireless communication technology includes Bluetooth communication, Bluetooth Low Energy (BLE) communication, Near Field Communication (NFC), WLAN communication, Zigbee communication, Infrared Data Association (IrDA) communication, It may include Wi-Fi Direct (WFD) communication, ultra-wideband (UWB) communication, Ant+ communication, Wi-Fi communication, Radio Frequency Identification (RFID) communication, 3G communication, 4G communication, and 5G communication, but this is an example. only, and is not limited thereto.
- the processor 120 may control overall operations of the apparatus 100 for generating a prognosis judgment model.
- the processor 120 may extract features to be used in generating a prognostic judgment model from the collected intraoperative vital sign data. For example, if the collected vital sign data during surgery is intra-arterial blood pressure data, the processor 120 characterizes the area under the intra-arterial blood pressure waveform for each heartbeat, the systolic blood pressure value, the diastolic blood pressure value, the average blood pressure value, and the like. can be calculated or extracted. Also, if the collected intraoperative vital sign data is an electrocardiogram, the processor 120 may extract the ST segment as a feature.
- the processor 120 calculates a systolic peak value, a diastolic peak value, and an average peak value ((systolic peak value + diastolic peak value * 2 )/3), the rate of the peak identified by the interval between the waveforms, the area under the curve, the first differential waveform (velocity plethysmography), and the second differential waveform (acceleration plethysmography). can be calculated or extracted.
- the processor 120 learns at least one of intraoperative vital sign data or features extracted therefrom, hematocrit data measured during surgery, preoperative blood test data, surgical information, and clinical information, and a corresponding intraoperative or postoperative state. Using the data as data, a prognostic judgment model may be generated through machine learning or deep learning. According to an exemplary embodiment, the processor 120 determines during surgery based on at least one of vital sign data during surgery or features extracted therefrom, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information. Alternatively, a machine learning or deep learning model can be trained to predict a patient's condition after surgery.
- FIG. 3 is a diagram illustrating a prognosis determination device according to an exemplary embodiment.
- an apparatus 200 for determining prognosis may include a data acquirer 210 and a processor 220 .
- the data acquisition unit 210 may acquire vital sign data during surgery and hematocrit data measured during surgery of the patient.
- the data acquisition unit 210 may be disposed in an operating room to measure vital signs of a patient undergoing surgery, such as a blood pressure measuring device, a heart rate measuring device, an oxygen saturation measuring device, a pulse wave measuring device, and an electrocardiogram measuring device. It includes devices and the like, and it is possible to obtain vital sign data of a patient during surgery using these devices.
- the data acquisition unit 210 includes a hematocrit measurement device capable of measuring hematocrit, and the hematocrit of a patient undergoing surgery may be obtained by using the hematocrit device.
- the data acquisition unit 210 receives vital sign data during surgery and hematocrit measured during surgery from an external device that measures and/or stores vital signs and/or hematocrit of the patient during surgery, thereby providing a patient of intraoperative vital sign data and intraoperatively measured hematocrit can be obtained.
- the data acquisition unit 210 may use a wired or wireless communication technology.
- the data acquisition unit 210 may acquire preoperative blood test data of the patient, surgical information, and clinical information of the patient.
- the data acquisition unit 210 includes a predetermined input means, and receives pre-surgery blood test data, surgical information, clinical information, etc. of a patient from a user through the predetermined input means, thereby pre-surgery blood test data. , surgery information and clinical information can be acquired.
- the data acquisition unit 210 receives pre-surgery blood test data, surgical information, patient clinical information, and the like from an external device that stores pre-surgery blood test data, surgical information, and clinical information. Preoperative blood test data of the patient, surgical information, and clinical information of the patient may be obtained.
- the processor 220 may control overall operations of the prognosis determination device 200 .
- the processor 220 may determine a prognosis during or after surgery of the patient based on at least one of vital sign data during surgery, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information of the patient. .
- the processor 220 may extract features from the patient's intraoperative vital sign data. For example, if the acquired intraoperative vital sign data is intra-arterial blood pressure data, the processor 220 characterizes the area under the intra-arterial blood pressure waveform for each heartbeat, the systolic blood pressure value, the diastolic blood pressure value, and the average blood pressure value. or can be extracted. In addition, if the acquired intraoperative vital sign data is an electrocardiogram, the processor 220 may extract the ST segment as a feature.
- the processor 220 calculates a systolic peak value, a diastolic peak value, an average peak value ((systolic peak value+diastolic peak value*2)/3), and It can be calculated or extracted as features such as the velocity of the peak identified at intervals, the area under the waveform, the first differential waveform, and the second differential waveform.
- the processor 220 uses the prognosis judgment model to determine whether or not during surgery is performed based on at least one of vital sign data during surgery or features extracted therefrom, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information. Prognosis can be assessed after surgery.
- the processor 220 may determine an intraoperative or postoperative prognosis based on oxygen saturation measured during surgery, ST segment, and hematocrit measured during surgery.
- the processor 220 may calculate or extract features (e.g., below the intra-arterial blood pressure waveform for each heartbeat) from the intra-arterial blood pressure data, in addition to oxygen saturation, ST-segment, and hematocrit measured during the surgery.
- features e.g., below the intra-arterial blood pressure waveform for each heartbeat
- systolic blood pressure value e.g., systolic blood pressure value, diastolic blood pressure value, and mean blood pressure value
- features calculated or extracted from the volume pulse wave e.g., systolic peak value, diastolic peak value, average peak value, velocity of the peak identified by the interval between waveforms, below the waveform
- An intraoperative or postoperative prognosis may be determined by further using at least one of area, first differential waveform, and second differential waveform), heart rate, blood test data before surgery, surgical information, and clinical information.
- the processor 220 may update the prognosis determination model based on the user's feedback if there is a user's feedback on symptoms during or after the patient's surgery. For example, if the prognosis determined based on the prognosis judgment model is different from the intraoperative or postoperative symptom input as user's feedback, the processor 220 may use the patient's vital sign data during surgery or features extracted therefrom, during surgery
- a prognostic judgment model may be additionally trained by using at least one of measured hematocrit data, preoperative blood test data, surgical information, and clinical information, and intraoperative or postoperative symptoms input as user feedback as new learning data. Accordingly, it is possible to increase the diagnostic accuracy of the prognosis judgment model.
- the function of updating the prognostic judgment model may be performed by the apparatus 100 for generating a prognostic judgment model.
- the prognosis determination device 300 may be another embodiment of the prognosis determination device 200 of FIG. 1 .
- the prognosis determination apparatus 400 includes a data acquisition unit 210, a processor 220, an input unit 410, a storage unit 420, a communication unit 430, and an output unit ( 440) may be included.
- a data acquisition unit 210 the data acquisition unit 210 and the processor 220 are the same as those described above with reference to FIG. 3, detailed descriptions thereof will be omitted.
- the input unit 410 may receive various manipulation signals and information from the user.
- the input unit 410 includes a key pad, a dome switch, a touch pad, a jog wheel, a jog switch, and hardware/software buttons. etc. may be included.
- a touch pad forms a mutual layer structure with a display, it may be referred to as a touch screen.
- the storage unit 420 may store programs or commands for operation of the prognosis determination apparatus 400 , and may store data input or collected in the prognosis determination apparatus 400 and processed data. Also, the storage unit 420 may store a prognosis judgment model and the like.
- the storage unit 420 is a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg, SD or XD memory, etc.), RAM (Random Access Memory, RAM), SRAM (Static Random Access Memory), ROM (Read Only Memory, ROM), EEPROM (Electrically Erasable Programmable Read Only Memory), PROM (Programmable Read Only Memory), magnetic memory, magnetic disk, optical disk At least one type of storage medium may be included.
- the prognosis determination device 400 may operate an external storage medium such as a web storage that performs the storage function of the storage unit 420 on the Internet.
- the communication unit 430 may communicate with an external device.
- the communication unit 430 transmits data input to the prognosis determination device 400, stored data, processed data, etc. to an external device, or receives various data for determining a prognosis during or after surgery from the external device.
- the external device may be a medical device using data input to the prognosis determination device 400, stored data, processed data, or the like, or a printing or display device for outputting results.
- the external device may be a digital TV, desktop computer, mobile phone, smart phone, tablet, laptop, PDA (Personal Digital Assistants), PMP (Portable Multimedia Player), navigation device, MP3 player, digital camera, wearable device, etc., but is limited thereto It doesn't work.
- the communication unit 430 may communicate with an external device using wired or wireless communication technology.
- the wireless communication technology includes Bluetooth communication, BLE (Bluetooth Low Energy) communication, Near Field Communication (NFC), WLAN communication, Zigbee communication, Infrared Data Association (IrDA) communication, and WFD. (Wi-Fi Direct) communication, UWB (ultra-wideband) communication, Ant+ communication, WIFI communication, RFID (Radio Frequency Identification) communication, 3G communication, 4G communication, and 5G communication, etc., but this is only an example. , but is not limited thereto.
- the output unit 440 may output data input to the prognosis determination device 400, stored data, and processed data. According to an embodiment, the output unit 440 may output the prognosis determination result and the like using at least one of an auditory method, a visual method, and a tactile method. To this end, the output unit 440 may include a display, a speaker, a vibrator, and the like.
- FIG. 5 is a diagram illustrating a method for generating a prognostic judgment model according to an exemplary embodiment.
- the method for generating the prognostic judgment model of FIG. 5 may be performed by the apparatus 100 for generating the prognostic judgment model of FIG. 2 .
- the apparatus for generating a prognostic judgment model provides vital sign data during surgery, hematocrit data measured during surgery, blood test data before surgery, surgical information and clinical information for a plurality of patients, and during surgery of the corresponding patient.
- postoperative conditions may be collected (510).
- the prognostic judgment model generating device uses wired/wireless communication technology to collect vital sign data during surgery, hematocrit data measured during surgery, blood test data before surgery, surgery information, and clinical information for a plurality of patients from a medical database using wired/wireless communication technology. etc. can be collected.
- the device for generating a prognostic judgment model is a prognostic judgment model using at least one of intraoperative vital sign data, intraoperative hematocrit data, preoperative blood test data, surgical information, and clinical information, and a patient's intraoperative or postoperative condition. can be generated (520).
- the apparatus for generating a prognostic judgment model may extract features to be used in generating a prognostic judgment model from collected intraoperative vital sign data. For example, if the vital sign data collected during surgery is intra-arterial blood pressure data, the prognostic judgment model generating device features the area under the intra-arterial blood pressure waveform of each heartbeat, systolic blood pressure value, diastolic blood pressure value, average blood pressure value, etc. can be extracted with In addition, when the collected intraoperative vital sign data is an electrocardiogram, the apparatus for generating a prognostic judgment model may extract the ST segment as a feature.
- the prognostic judgment model generating device is a systolic peak value, a diastolic peak value, an average peak value ((systolic peak value + diastolic peak value * 2) / 3), between waveforms It can be calculated or extracted based on the speed of the peak identified at the interval of , the area under the waveform, the first differential waveform, and the second differential waveform.
- the prognostic judgment model generation device includes at least one of vital sign data during surgery or features extracted therefrom, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information, and a corresponding intraoperative or postoperative state
- a prognostic judgment model may be generated through machine learning or deep learning by using as learning data.
- the device for generating a prognostic judgment model is based on at least one of vital sign data during surgery or features extracted therefrom, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information, during surgery or surgery. Then, machine learning or deep learning models can be trained to predict the patient's condition.
- FIG. 6 is a diagram illustrating a method for determining a prognosis according to an exemplary embodiment.
- the prognosis determination method of FIG. 6 may be performed by the prognosis determination apparatus 200 or 400 of FIG. 3 or 4 .
- the apparatus for determining prognosis may acquire vital sign data during surgery, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information of the patient (610).
- the prognosis determination device may include various devices disposed in an operating room to measure vital signs of a patient undergoing surgery, such as a blood pressure measuring device, a heart rate measuring device, an oxygen saturation measuring device, a pulse wave measuring device, and an electrocardiogram measuring device. It can be used to obtain vital sign data of a patient during surgery.
- the prognosis determination device may obtain the hematocrit of a patient undergoing surgery using a hematocrit device.
- the prognosis determination device may determine the patient's prognosis during or after surgery based on at least one of vital sign data during surgery, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information of the patient ( 620).
- the prognosis determination device may extract features from the patient's intraoperative vital sign data. For example, if the acquired vital sign data during surgery is intra-arterial blood pressure data, the prognosis determination device may extract features of the area under the intra-arterial blood pressure waveform for each heartbeat, the systolic blood pressure value, the diastolic blood pressure value, and the average blood pressure value. can In addition, when the obtained intraoperative vital sign data is an electrocardiogram, the prognosis determination device may extract the ST segment as a feature.
- the prognostic judgment device is a systolic peak value, a diastolic peak value, an average peak value ((systolic peak value + diastolic peak value * 2) / 3), and the interval between waveforms.
- the speed of the peak identified by , the area under the waveform, the first differential waveform, and the second differential waveform can be extracted as features.
- the prognostic judgment device uses a prognostic judgment model, based on at least one of vital sign data during surgery or features extracted therefrom, hematocrit data measured during surgery, blood test data before surgery, surgical information, and clinical information during surgery or surgery. prognosis can be assessed.
- the device for determining prognosis may determine an intraoperative or postoperative prognosis based on oxygen saturation measured during surgery, ST segment, and hematocrit measured during surgery.
- the prognostic device may include features extracted from intra-arterial blood pressure data (e.g., area under the intra-arterial blood pressure waveform for each heartbeat, systolic blood pressure value, diastolic blood pressure value, and mean blood pressure value), features extracted from the volume pulse wave (e.g., systolic peak value, diastolic peak value, average peak value, peak velocity determined by the interval between waveforms, area under the waveform, first derivative A prognosis during or after surgery may be determined by further using at least one of a waveform, a second differential waveform), a heart rate, pre-surgery blood test data, surgical information, and clinical information.
- intra-arterial blood pressure data e.g., area under the intra-arterial blood pressure waveform for each heartbeat, systolic blood pressure value, diastolic blood pressure value, and mean blood pressure value
- features extracted from the volume pulse wave e.g., systolic peak value, di
- the prognosis determination device may update the prognosis determination model based on the user's feedback.
- the prognostic determination device may be used to measure intraoperative or postoperative symptoms input as user feedback and a prognosis determined based on a prognostic judgment model, the patient's intraoperative vital sign data or features extracted therefrom, and intraoperative measurement.
- the prognosis judgment model may be additionally trained by using at least one of the received hematocrit data, preoperative blood test data, surgical information, and clinical information, and intraoperative or postoperative symptoms input as user feedback as new learning data.
- a total of 17,986 patient data were collected from the Seoul National University Hospital database.
- a total of 17,986 patient data was randomly divided, and 12,535 patient data were used as a training set to generate a mass transfusion judgment model, and 5,451 patient data were used as a verification set to verify the performance of the mass transfusion judgment model.
- Massive transfusion was defined as transfusion of 3 or more red blood cells over 1 hour.
- Intra-arterial blood pressure waveform for each heartbeat extracted from oxygen saturation measured during surgery, heart rate measured during surgery, hematocrit measured during surgery, blood test data before surgery, surgical information and clinical information, and intra-arterial blood pressure data measured during surgery A mass transfusion judgment model was created using the lower area, systolic blood pressure value, diastolic blood pressure value, average blood pressure value, and the ST segment extracted from electrocardiogram data measured during surgery, and its performance was judged. As a result, FIG. 7 was obtained.
- a computer-readable recording medium may include all types of recording devices storing data that can be read by a computer system. Examples of computer-readable recording media may include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, and the like. In addition, the computer-readable recording medium may be distributed among computer systems connected through a network, and may be written and executed as computer-readable codes in a distributed manner.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
일 실시예에 따른 수술 중 또는 수술 후 예후 판단 장치는, 환자의 수술 중에 측정된 산소 포화도, 상기 수술 중에 측정된 심전도 및 상기 수술 중에 측정된 헤마토크리트를 획득하는 데이터 획득부; 및 상기 획득된 산소 포화도, 상기 획득된 심전도 및 상기 획득된 헤마토크리트를 기반으로 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 프로세서; 를 포함한다.
Description
환자의 수술 중 활력 징후를 기반으로 수술 중 또는 수술 후 예후를 판단하는 장치 및 방법과 관련된다.
수술 후에 합병증이 발생하면 막대한 의료비용 발생과 함께, 사회경제적인 비용 증가와 환자의 삶의 질 저하가 발생한다.
한편, 최근 데이터의 중요성이 강조되면서, 의료 빅데이터를 이용하여 수술 중 또는 수술 후 예후를 판단하는 모델을 확보하고자 하는 요구가 증대하고 있으며, 이러한 요구에 따라 수술 중 또는 수술 후의 예후를 실시간으로 정확히 예측할 수 있는 기술 개발에 대한 연구가 지속되고 있다.
환자의 수술 중 활력 징후를 기반으로 수술 중 또는 수술 후 예후를 판단하는 장치 및 방법을 제공하는 것을 목적으로 한다.
일 양상에 따른 수술 중 또는 수술 후 예후 판단 장치는, 환자의 수술 중에 측정된 산소 포화도, 상기 수술 중에 측정된 심전도 및 상기 수술 중에 측정된 헤마토크리트를 획득하는 데이터 획득부; 및 상기 획득된 산소 포화도, 상기 획득된 심전도 및 상기 획득된 헤마토크리트를 기반으로 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 프로세서; 를 포함할 수 있다.
상기 프로세서는, 상기 획득된 심전도로부터 ST 분절을 추출하고, 상기 추출된 ST 분절, 상기 획득된 산소 포화도 및 상기 획득된 헤마토크리트를 기반으로 예후 판단 모델을 이용하여 상기 환자의 수술 중 또는 수술 후 예후를 판단할 수 있다.
상기 데이터 획득부는 상기 환자에 대한 수술 전 혈액검사 데이터, 수술 정보, 임상 정보, 상기 수술 중에 측정된 동맥내 혈압, 상기 수술 중에 측정된 용적맥파, 및 상기 수술 중에 측정된 심박수 중 적어도 하나를 더 획득하고, 상기 프로세서는 상기 수술 전 혈액검사 데이터, 상기 수술 정보, 상기 임상 정보, 상기 동맥내 혈압, 상기 용적맥파, 및 상기 심박수 중 적어도 하나에 더 기반하여 상기 환자의 수술 중 또는 수술 후 예후를 판단할 수 있다.
상기 수술 전 혈액검사 데이터는 프로트롬빈 시간(Prothrombin time), 알부민(Albumin) 수치, 헤모글로빈(Hemoglobin) 수치, 혈소판(Platelet) 수치, 활성화 부분 트롬보플라스틴 시간(Activated partial thromboplastin time), AST(Aspartate transaminase) 수치, ALT(Alanine transaminase) 수치, 나트륨(Na) 수치, 칼륨(K) 수치, 글루코스(glucose) 수치, 혈액요소질소(BUN) 수치, 크레아티닌(Cr) 수치, 추정사구체여과율(eGFR) 및 헤마토크리트를 포함할 수 있다.
상기 수술 정보는 수술 집도과, 응급수술 여부 및 수술시 사용되는 마취 종류를 포함할 수 있다.
상기 임상 정보는 나이, 키, 성별 및 질환 여부를 포함할 수 있다.
상기 프로세서는, 상기 동맥내 혈압으로부터 각 심장 박동의 동맥내 혈압 파형 아래 면적, 평균 혈압값, 수축기 혈압값, 및 이완기 혈압값 중 적어도 하나를 제1 특징으로 추출하고, 상기 용적맥파로부터 수축기 피크값, 이완기 피크값, 평균 피크값, 피크 의 속도, 파형 아래 면적, 1차 미분 파형, 및 2차 미분 파형 중 적어도 하나를 제2 특징으로 추출하고, 상기 추출된 제1 특징, 상기 추출된 제2 특징, 상기 수술 전 혈액검사 데이터, 상기 수술 정보, 상기 임상 정보, 및 상기 심박수 중 적어도 하나에 더 기반하여 상기 환자의 수술 중 또는 수술 후 예후를 판단할 수 있다.
상기 수술 중 또는 수술 후 예후는 수술 중 사망 가능성, 수술 후 소정 기간 내 사망 가능성, 대량 수혈 가능성, 중환자실 입원 가능성, 심근손상 가능성 및 급성 신손상 가능성을 포함할 수 있다.
다른 양상에 따른 수술 중 또는 수술 후 예후 판단 방법은, 환자의 수술 중에 측정된 산소 포화도, 상기 수술 중에 측정된 심전도 및 상기 수술 중에 측정된 헤마토크리트를 획득하는 단계; 및 상기 획득된 산소 포화도, 상기 획득된 심전도 및 상기 획득된 헤마토크리트를 기반으로 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 단계; 를 포함할 수 있다.
상기 판단하는 단계는, 상기 획득된 심전도로부터 ST 분절을 추출하는 단계; 및 상기 추출된 ST 분절, 상기 획득된 산소 포화도 및 상기 획득된 헤마토크리트를 기반으로 예후 판단 모델을 이용하여 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 단계; 를 포함할 수 있다.
상기 획득하는 단계는 상기 환자에 대한 수술 전 혈액검사 데이터, 수술 정보, 임상 정보, 상기 수술 중에 측정된 동맥내 혈압, 상기 수술 중에 측정된 용적맥파, 및 상기 수술 중에 측정된 심박수 중 적어도 하나를 더 획득하고, 상기 판단하는 단계는 상기 수술 전 혈액검사 데이터, 상기 수술 정보, 상기 임상 정보, 상기 동맥내 혈압, 상기 용적맥파, 및 상기 심박수 중 적어도 하나에 더 기반하여 상기 환자의 수술 중 또는 수술 후 예후를 판단할 수 있다.
상기 수술 전 혈액검사 데이터는 프로트롬빈 시간(Prothrombin time), 알부민(Albumin) 수치, 헤모글로빈(Hemoglobin) 수치, 혈소판(Platelet) 수치, 활성화 부분 트롬보플라스틴 시간(Activated partial thromboplastin time), AST(Aspartate transaminase) 수치, ALT(Alanine transaminase) 수치, 나트륨(Na) 수치, 칼륨(K) 수치, 글루코스(glucose) 수치, 혈액요소질소(BUN) 수치, 크레아티닌(Cr) 수치, 추정사구체여과율(eGFR) 및 헤마토크리트를 포함할 수 있다.
상기 수술 정보는 수술 집도과, 응급수술 여부 및 수술시 사용되는 마취 종류를 포함할 수 있다.
상기 임상 정보는 나이, 키, 성별 및 질환 여부를 포함할 수 있다.
상기 판단하는 단계는, 상기 동맥내 혈압으로부터 각 심장 박동의 동맥내 혈압 파형 아래 면적, 평균 혈압값, 수축기 혈압값, 및 이완기 혈압값 중 적어도 하나를 제1 특징으로 추출하는 단계; 상기 용적맥파로부터 수축기 피크값, 이완기 피크값, 평균 피크값, 피크 의 속도, 파형 아래 면적, 1차 미분 파형, 및 2차 미분 파형 중 적어도 하나를 제2 특징으로 추출하는 단계; 및 상기 추출된 제1 특징, 상기 추출된 제2 특징, 상기 수술 전 혈액검사 데이터, 상기 수술 정보, 상기 임상 정보, 및 상기 심박수 중 적어도 하나에 더 기반하여 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 단계; 를 포함할 수 있다.
상기 수술 중 또는 수술 후 예후는 수술 중 사망 가능성, 수술 후 소정 기간 내 사망 가능성, 대량 수혈 가능성, 중환자실 입원 가능성, 심근손상 가능성 및 급성 신손상 가능성을 포함할 수 있다.
수술 중 활력 징후 데이터와 머신러닝 또는 딥러닝 기술을 이용함으로써 환자의 수술 중 또는 수술 후 예후를 정확히 판단할 수 있다.
또한, 수술 중 실시간으로 측정된 활력 징후 데이터를 이용함으로써 수술 중 실시간으로 수술 중 또는 수술 후 예후를 판단할 수 있으며, 이를 통해 수술 중 혈역학적 파라미터 교정, 예방법 모색 등을 수행할 수 있다.
도 1은 예시적 실시예에 따른 수술 중 또는 수술 후 예후 판단 시스템을 도시한 도면이다.
도 2는 예시적 실시예에 따른 예후 판단 모델 생성 장치를 도시한 도면이다.
도 3은 예시적 실시예에 따른 예후 판단 장치를 도시한 도면이다.
도 4는 예시적 실시예에 예후 판단 장치를 도시한 도면이다.
도 5는 예시적 실시예에 따른 예후 판단 모델 생성 방법을 도시한 도면이다.
도 6은 예시적 실시예에 따른 예후 판단 방법을 도시한 도면이다.
도 7은 예시적 실시예에 따른 대량 수혈 판단 모델의 성능을 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예를 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
한편, 각 단계들에 있어, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 수행될 수 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하고, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 명세서에서의 구성부들에 대한 구분은 각 구성부가 담당하는 주 기능별로 구분한 것에 불과하다. 즉, 2개 이상의 구성부가 하나의 구성부로 합쳐지거나 또는 하나의 구성부가 보다 세분화된 기능별로 2개 이상으로 분화되어 구비될 수도 있다. 그리고 구성부 각각은 자신이 담당하는 주기능 이외에도 다른 구성부가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성부 각각이 담당하는 주기능 중 일부 기능이 다른 구성부에 의해 전담되어 수행될 수도 있다. 각 구성부는 하드웨어(예컨대, 프로세서 또는 메모리 등) 또는 소프트웨어로 구현되거나 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 예시적 실시예에 따른 수술 중 또는 수술 후 예후 판단 시스템을 도시한 도면이다.
도 1을 참조하면, 예시적 실시예에 따른 수술 중 또는 수술 후 예후 판단 시스템(10)(이하, 예후 판단 시스템)은 수술 중 또는 수술 후 예후 판단 모델 생성 장치(100)(이하, 예후 판단 모델 생성 장치) 및 수술 중 또는 수술 후 예후 판단 장치(200)(이하, 예후 판단 장치)를 포함할 수 있다.
예후 판단 모델 생성 장치(100)는 복수의 환자들에 대한, 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트(Hematocrit) 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 이용하여 머신러닝 또는 딥러닝을 통해 수술 중인 대상 환자의 수술 중 또는 수술 후 예후를 판단할 수 있는 모델(이하, 예후 추정 모델)을 생성할 수 있다.
여기서 수술 중 활력 징후 데이터는 수술 중에 측정된 환자의 생체 신호로서, 동맥내 혈압, 심박수, 산소포화도, 용적맥파(Plethysmograph), 및 심전도(Electrocardiogram) 등을 포함할 수 있다. 여기서 용적맥파는 광전용적맥파(Photoplethysmograph)일 수 있으나 이에 한정되는 것은 아니다. 수술 전 혈액검사 데이터는 수술 전에 검사한 혈액 검사 데이터로서, 프로트롬빈 시간(Prothrombin time), 알부민(Albumin) 수치, 헤모글로빈(Hemoglobin) 수치, 혈소판(Platelet) 수치, 활성화 부분 트롬보플라스틴 시간(Activated partial thromboplastin time), AST(Aspartate transaminase) 수치, ALT(Alanine transaminase) 수치, 나트륨(Na) 수치, 칼륨(K) 수치, 글루코스(glucose) 수치, 혈액요소질소(BUN) 수치, 크레아티닌(Cr) 수치, 추정사구체여과율(eGFR) 및 헤마토크리트 등을 포함할 수 있다. 수술 정보는 수술 집도과, 응급수술 여부 및 수술시 사용되는 마취 종류 등을 포함하고, 임상 정보는 나이, 키, 성별 및 질환 여부(예컨대, 간질환 여부, 혈관질환 여부, 심장질환 여부, 신경계질환 여부, 고혈압 여부, 당뇨 여부, 결핵 여부, 천식 여부, 감상선 질환 여부, 신장질환 여부, 혈액질환 여부, 만성 폐쇄성 폐질환 여부, 기타질환 여부 등) 등을 포함할 수 있다.
또한, 수술 중 또는 수술 후 예후는 예를 들어, 수술 중 사망 가능성, 수술 후 소정 기간 내 사망 가능성, 급성 신손상 가능성, 대량 수혈 가능성, 중환자실 입원 가능성, 심근손상 가능성, 수술 후 감염 발병 가능성, 수술 후 통증 가능성, 적절한 수준의 수술 후 통증에 도달할 시간, 메스꺼움 및 구토 가능성, 수술후 섬망 가능성, 수술후 합병증 가능성, 호흡 부전 가능성, 급성 빈혈 가능성, 혈소판 감소증 가능성, 심부전 가능성, 응고 병증 가능성, 산증 가능성, 영양 실조 가능성, 패혈증 가능성, 급성 관상 동맥 이벤트 가능성, 쇼크 가능성, 유사 병원 환경에서 유사한 절차로 수술 후 병원 입원 기간이 평균보다 길 가능성 등을 포함할 수 있다.
예후 판단 장치(200)는 예후 판단 모델 생성 장치(100)에서 생성된 예후 추정 모델을 이용하여 대상 환자의 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나로부터 대상 환자의 수술 중 또는 수술 후 예후를 판단할 수 있다.
이하, 도 2 및 도 3을 참조하여, 예후 판단 모델 생성 장치(100) 및 예후 판단 장치(200)를 상세히 설명한다.
도 2는 예시적 실시예에 따른 예후 판단 모델 생성 장치를 도시한 도면이다.
도 2를 참조하면, 예시적 실시예에 따른 예후 판단 모델 생성 장치(100)는 데이터 수집부(110) 및 프로세서(120)를 포함할 수 있다.
데이터 수집부(110)는 복수의 환자들에 대한, 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 등과, 해당 환자의 수술 중 또는 수술 후 상태를 수집할 수 있다. 여기서 수술 중 또는 수술 후 상태는 예를 들어, 수술 중 사망 여부, 수술 후 소정 기간 내 사망 여부, 급성 신손상 여부, 대량 수혈 여부, 중환자실 입원 여부, 심근손상 여부, 수술 후 감염 발병 여부, 수술 후 통증 여부, 적절한 수준의 수술 후 통증에 도달할 시간, 메스꺼움 및 구토 여부, 수술후 섬망 여부, 수술후 합병증 여부, 호흡 부전 여부, 급성 빈혈 여부, 혈소판 감소증 여부, 심부전 여부, 응고 병증 여부, 산증 여부, 영양 실조 여부, 패혈증 여부, 급성 관상 동맥 이벤트 여부, 쇼크 여부, 유사 병원 환경에서 유사한 절차로 수술한 경우 병원 입원 기간이 평균보다 긴지 여부 등을 포함할 수 있다.
예를 들어, 데이터 수집부(110)는 유무선 통신기술을 이용하여 의료 데이터베이스로부터 복수의 환자들에 대한, 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 등을 수집할 수 있다. 이때, 무선 통신기술은 블루투스(Bluetooth) 통신, BLE(Bluetooth Low Energy) 통신, 근거리 무선 통신(Near Field Communication, NFC), WLAN 통신, 지그비(Zigbee) 통신, 적외선(Infrared Data Association, IrDA) 통신, WFD(Wi-Fi Direct) 통신, UWB(ultra-wideband) 통신, Ant+ 통신, Wi-Fi 통신, RFID(Radio Frequency Identification) 통신, 3G 통신, 4G 통신 및 5G 통신 등을 포함할 수 있으나 이는 일 예에 불과할 뿐이며, 이에 한정되는 것은 아니다.
프로세서(120)는 예후 판단 모델 생성 장치(100)의 전반적인 동작을 제어할 수 있다.
프로세서(120)는 수집된 수술 중 활력 징후 데이터로부터 예후 판단 모델 생성에 이용될 특징을 추출할 수 있다. 예를 들어, 수집된 수술 중 활력 징후 데이터가 동맥내 혈압 데이터인 경우, 프로세서(120)는 각 심장 박동의 동맥내 혈압 파형 아래 면적, 수축기 혈압값, 이완기 혈압값 및 평균 혈압값 등을 특징으로 산출 또는 추출할 수 있다. 또한 수집된 수술 중 활력 징후 데이터가 심전도인 경우, 프로세서(120)는 ST 분절을 특징으로 추출할 수 있다. 또한, 수집된 수술 중 활력 징후 데이터가 용적맥파인 경우, 프로세서(120)는 수축기 피크값(Systolic peak), 이완기 피크값(Diastolic peak), 평균 피크값((수축기 피크값+이완기 피크값*2)/3), 파형 사이의 간격으로 확인한 피크의 속도(rate), 파형 아래 면적(Area under the curve), 1차 미분 파형(velocity plethysmography), 및 2차 미분 파형(acceleration plethysmography) 등을 특징으로 산출 또는 추출할 수 있다.
프로세서(120)는 수술 중 활력 징후 데이터 또는 그로부터 추출된 특징, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나와, 그에 대응하는 수술 중 또는 수술 후 상태를 학습 데이터로 이용하여 머신러닝 또는 딥러닝을 통해 예후 판단 모델을 생성할 수 있다. 예시적 실시예에 따르면, 프로세서(120)는 수술 중 활력 징후 데이터 또는 그로부터 추출된 특징, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 기반으로, 수술 중 또는 수술 후 환자의 상태를 예측하도록 머신러닝 또는 딥러닝 모델을 학습시킬 수 있다.
도 3은 예시적 실시예에 따른 예후 판단 장치를 도시한 도면이다.
도 3을 참조하면, 예시적 실시예에 따른 예후 판단 장치(200)는 데이터 획득부(210) 및 프로세서(220)를 포함할 수 있다.
데이터 획득부(210)는 환자의 수술 중 활력 징후 데이터와 수술 중에 측정된 헤마토크리트 데이터를 획득할 수 있다.
예를 들어, 데이터 획득부(210)는 수술장에 배치되어 수술 중인 환자의 활력 징후를 측정하는 다양한 장치, 예컨대, 혈압 측정 장치, 심박수 측정 장치, 산소포화도 측정 장치, 용적맥파 측정 장치 및 심전도 측정 장치 등을 포함하며, 이들 장치를 이용하여 환자의 수술 중 활력 징후 데이터를 획득할 수 있다. 또한, 데이터 획득부(210)는 헤마토크리트를 측정할 수 있는 헤마토크리트 측정 장치를 포함하며, 이 헤마토크리트 장치를 이용하여 수술 중인 환자의 헤마토크리트를 획득할 수 있다.
다른 예를 들어, 데이터 획득부(210)는 수술 중인 환자의 활력 징후 및/또는 헤마토크리트를 측정 및/또는 저장하는 외부 장치로부터 환자의 수술 중 활력 징후 데이터 및 수술 중에 측정된 헤마토크리트를 수신함으로써, 환자의 수술 중 활력 징후 데이터 및 수술 중에 측정된 헤마토크리트를 획득할 수 있다. 이때, 데이터 획득부(210)는 유무선 통신 기술을 이용할 수 있다.
데이터 획득부(210)는 환자의 수술 전 혈액검사 데이터, 수술 정보 및 환자의 임상 정보 등을 획득할 수 있다.
예를 들면, 데이터 획득부(210)는 소정의 입력 수단을 포함하며, 소정의 입력 수단을 통해 사용자로부터 환자의 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 등을 입력받음으로써 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 등을 획득할 수 있다.
다른 예를 들면, 데이터 획득부(210)는 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 등을 저장하는 외부 장치로부터 환자의 수술 전 혈액검사 데이터, 수술 정보 및 환자의 임상 정보 등을 수신함으로써, 환자의 수술 전 혈액검사 데이터, 수술 정보 및 환자의 임상 정보 등을 획득할 수 있다.
프로세서(220)는 예후 판단 장치(200)의 전반적인 동작을 제어할 수 있다.
프로세서(220)는 환자의 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 기반으로 환자의 수술 중 또는 수술 후 예후를 판단할 수 있다.
프로세서(220)는 환자의 수술 중 활력 징후 데이터로부터 특징을 추출할 수 있다. 예를 들어, 획득된 수술 중 활력 징후 데이터가 동맥내 혈압 데이터인 경우, 프로세서(220)는 각 심장 박동의 동맥내 혈압 파형 아래 면적, 수축기 혈압값, 이완기 혈압값 및 평균 혈압값을 특징으로 산출 또는 추출할 수 있다. 또한, 획득된 수술 중 활력 징후 데이터가 심전도인 경우, 프로세서(220)는 ST 분절을 특징으로 추출할 수 있다. 또한, 수집된 수술 중 활력 징후 데이터가 용적맥파인 경우, 프로세서(220)는 수축기 피크값, 이완기 피크값, 평균 피크값((수축기 피크값+이완기 피크값*2)/3), 파형 사이의 간격으로 확인한 피크의 속도, 파형 아래 면적, 1차 미분 파형, 및 2차 미분 파형 등을 특징으로 산출 또는 추출할 수 있다.
프로세서(220)는 예후 판단 모델을 이용하여, 수술 중 활력 징후 데이터 또는 그로부터 추출된 특징, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 기반으로 수술 중 또는 수술 후 예후를 판단할 수 있다.
예를 들면, 프로세서(220)는 수술 중에 측정된 산소 포화도, ST 분절, 및 수술 중에 측정된 헤마토크리트를 기반으로 수술 중 또는 수술 후 예후를 판단할 수 있다.
다른 예를 들면, 프로세서(220)는 수술 중에 측정된 산소 포화도, ST 분절, 및 수술 중에 측정된 헤마토크리트 이외에, 동맥내 혈압 데이터로부터 산출 또는 추출된 특징(예컨대, 각 심장 박동의 동맥내 혈압 파형 아래 면적, 수축기 혈압값, 이완기 혈압값 및 평균 혈압값), 용적맥파로부터 산출 또는 추출된 특징(예컨대, 수축기 피크값, 이완기 피크값, 평균 피크값, 파형 사이의 간격으로 확인한 피크의 속도, 파형 아래 면적, 1차 미분 파형, 2차 미분 파형), 심박수, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 더 이용하여 수술 중 또는 수술 후 예후를 판단할 수 있다.
프로세서(220)는 환자의 수술 중 또는 수술 후 증상에 대한 사용자의 피드백이 있으면, 사용자의 피드백을 기반으로 예후 판단 모델을 갱신할 수 있다. 예를 들어, 프로세서(220)는 사용자의 피드백으로 입력된 수술 중 또는 수술 후 증상과, 예후 판단 모델을 기반으로 판단한 예후가 상이한 경우, 환자의 수술 중 활력 징후 데이터 또는 그로부터 추출된 특징, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나와, 사용자의 피드백으로 입력된 수술 중 또는 수술 후 증상을 새로운 학습 데이터로 이용하여 예후 판단 모델을 추가 학습시킬 수 있다. 이에 따라 예후 판단 모델의 진단 정확도를 높일 수 있다.
일 실시예에 따르면, 예후 판단 모델의 갱신 기능은 예후 판단 모델 생성 장치(100)가 수행할 수도 있다.
도 4는 예시적 실시예에 예후 판단 장치를 도시한 도면이다. 도 4의 예시적 실시예에 따른 예후 판단 장치(300)는 도 1의 예후 판단 장치(200)의 다른 실시예일 수 있다.
도 4를 참조하면, 예시적 실시예에 따른 예후 판단 장치(400)는 데이터 획득부(210), 프로세서(220), 입력부(410), 저장부(420), 통신부(430) 및 출력부(440)를 포함할 수 있다. 여기서, 데이터 획득부(210) 및 프로세서(220)는 도 3을 참조하여 전술한 바와 같으므로 그 상세한 설명은 생략하기로 한다.
입력부(410)는 사용자로부터 다양한 조작신호 및 정보를 입력 받을 수 있다. 일 실시예에 따르면, 입력부(410)는 키 패드(key pad), 돔 스위치(dome switch), 터치 패드(touch pad), 조그 휠(Jog wheel), 조그 스위치(Jog switch), 하드웨어/소프트웨어 버튼 등을 포함할 수 있다. 특히, 터치 패드가 디스플레이와 상호 레이어 구조를 이룰 경우, 이를 터치 스크린이라 부를 수 있다.
저장부(420)는 예후 판단 장치(400)의 동작을 위한 프로그램 또는 명령들을 저장할 수 있고, 예후 판단 장치(400)에 입력 또는 수집되는 데이터 및 처리된 데이터를 저장할 수 있다. 또한, 저장부(420)는 예후 판단 모델 등을 저장할 수 있다.
저장부(420)는 플래시 메모리 타입(flash memory type), 하드 디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예컨대, SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read Only Memory), PROM(Programmable Read Only Memory), 자기 메모리, 자기 디스크, 광디스크 등 적어도 하나의 타입의 저장매체를 포함할 수 있다. 또한, 예후 판단 장치(400)는 인터넷 상에서 저장부(420)의 저장 기능을 수행하는 웹 스토리지(web storage) 등 외부 저장 매체를 운영할 수도 있다.
통신부(430)는 외부 장치와 통신을 수행할 수 있다. 예컨대, 통신부(430)는 예후 판단 장치(400)에 입력된 데이터, 저장된 데이터, 처리된 데이터 등을 외부 장치로 전송하거나, 외부 장치로부터 수술 중 또는 수술 후 예후를 판단하기 위한 다양한 데이터를 수신할 수 있다.
이때, 외부 장치는 예후 판단 장치(400)에 입력된 데이터, 저장된 데이터, 처리된 데이터 등을 사용하는 의료 장비, 결과물을 출력하기 위한 프린트 또는 디스플레이 장치일 수도 있다. 이외에도 외부 장치는 디지털 TV, 데스크탑 컴퓨터, 휴대폰, 스마트 폰, 태블릿, 노트북, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션 장치, MP3 플레이어, 디지털 카메라, 웨어러블 디바이스 등일 수 있으나, 이에 제한되지 않는다.
통신부(430)는 유무선 통신 기술을 이용하여 외부 장치와 통신할 수 있다. 이때 무선 통신 기술은 블루투스(bluetooth) 통신, BLE(Bluetooth Low Energy) 통신, 근거리 무선 통신(Near Field Communication, NFC), WLAN 통신, 지그비(Zigbee) 통신, 적외선(Infrared Data Association, IrDA) 통신, WFD(Wi-Fi Direct) 통신, UWB(ultra-wideband) 통신, Ant+ 통신, WIFI 통신, RFID(Radio Frequency Identification) 통신, 3G 통신, 4G 통신 및 5G 통신 등을 포함할 수 있으나 이는 일 예에 불과할 뿐이며, 이에 한정되는 것은 아니다.
출력부(440)는 예후 판단 장치(400)에 입력된 데이터, 저장된 데이터, 처리된 데이터 등을 출력할 수 있다. 일 실시예에 따르면, 출력부(440)는 예후 판단 결과 등을 청각적 방법, 시각적 방법 및 촉각적 방법 중 적어도 하나의 방법으로 출력할 수 있다. 이를 위해 출력부(440)는 디스플레이, 스피커, 진동기 등을 포함할 수 있다.
도 5는 예시적 실시예에 따른 예후 판단 모델 생성 방법을 도시한 도면이다.
도 5의 예후 판단 모델 생성 방법은 도 2의 예후 판단 모델 생성 장치(100)에 의해 수행될 수 있다.
도 5를 참조하면, 예후 판단 모델 생성 장치는 복수의 환자들에 대한, 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 등과, 해당 환자의 수술 중 또는 수술 후 상태를 수집할 수 있다(510).
예를 들어, 예후 판단 모델 생성 장치는 유무선 통신기술을 이용하여 의료 데이터베이스로부터 복수의 환자들에 대한, 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 등을 수집할 수 있다.
예후 판단 모델 생성 장치는 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나와, 해당 환자의 수술 중 또는 수술 후 상태를 이용하여 예후 판단 모델을 생성할 수 있다(520).
예시적 실시예에 따르면 예후 판단 모델 생성 장치는 수집된 수술 중 활력 징후 데이터로부터 예후 판단 모델 생성에 이용될 특징을 추출할 수 있다. 예를 들어, 수집된 수술 중 활력 징후 데이터가 동맥내 혈압 데이터인 경우, 예후 판단 모델 생성 장치는 각 심장 박동의 동맥내 혈압 파형 아래 면적, 수축기 혈압값, 이완기 혈압값 및 평균 혈압값 등을 특징으로 추출할 수 있다. 또한 수집된 수술 중 활력 징후 데이터가 심전도인 경우, 예후 판단 모델 생성 장치는 ST 분절을 특징으로 추출할 수 있다. 또한, 수집된 수술 중 활력 징후 데이터가 용적맥파인 경우, 예후 판단 모델 생성 장치는 수축기 피크값, 이완기 피크값, 평균 피크값((수축기 피크값+이완기 피크값*2)/3), 파형 사이의 간격으로 확인한 피크의 속도, 파형 아래 면적, 1차 미분 파형, 및 2차 미분 파형 등을 특징으로 산출 또는 추출할 수 있다.
또한 예후 판단 모델 생성 장치는 수술 중 활력 징후 데이터 또는 그로부터 추출된 특징, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나와, 그에 대응하는 수술 중 또는 수술 후 상태를 학습 데이터로 이용하여 머신러닝 또는 딥러닝을 통해 예후 판단 모델을 생성할 수 있다. 예를 들면, 예후 판단 모델 생성 장치는 수술 중 활력 징후 데이터 또는 그로부터 추출된 특징, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 기반으로, 수술 중 또는 수술 후 환자의 상태를 예측하도록 머신러닝 또는 딥러닝 모델을 학습시킬 수 있다.
도 6은 예시적 실시예에 따른 예후 판단 방법을 도시한 도면이다.
도 6의 예후 판단 방법은 도 3 또는 도 4의 예후 판단 장치(200, 400)에 의해 수행될 수 있다.
도 6을 참조하면, 예후 판단 장치는 환자의 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 환자의 수술 전 혈액검사 데이터, 수술 정보 및 환자의 임상 정보 등을 획득할 수 있다(610).
예를 들어, 예후 판단 장치는 수술장에 배치되어 수술 중인 환자의 활력 징후를 측정하는 다양한 장치, 예컨대, 혈압 측정 장치, 심박수 측정 장치, 산소포화도 측정 장치, 용적맥파 측정 장치 및 심전도 측정 장치 등을 이용하여 환자의 수술 중 활력 징후 데이터를 획득할 수 있다. 또한, 예후 판단 장치는 헤마토크리트 장치를 이용하여 수술 중인 환자의 헤마토크리트를 획득할 수 있다.
예후 판단 장치는 환자의 수술 중 활력 징후 데이터, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 기반으로 환자의 수술 중 또는 수술 후 예후를 판단할 수 있다(620).
예시적 실시예에 따르면, 예후 판단 장치는 환자의 수술 중 활력 징후 데이터로부터 특징을 추출할 수 있다. 예를 들어, 획득된 수술 중 활력 징후 데이터가 동맥내 혈압 데이터인 경우, 예후 판단 장치는 각 심장 박동의 동맥내 혈압 파형 아래 면적, 수축기 혈압값, 이완기 혈압값 및 평균 혈압값을 특징으로 추출할 수 있다. 또한, 획득된 수술 중 활력 징후 데이터가 심전도인 경우, 예후 판단 장치는 ST 분절을 특징으로 추출할 수 있다. 또한, 수집된 수술 중 활력 징후 데이터가 용적맥파인 경우, 예후 판단 장치는 수축기 피크값, 이완기 피크값, 평균 피크값((수축기 피크값+이완기 피크값*2)/3), 파형 사이의 간격으로 확인한 피크의 속도, 파형 아래 면적, 1차 미분 파형, 및 2차 미분 파형 등을 특징으로 추출할 수 있다.
예후 판단 장치는 예후 판단 모델을 이용하여, 수술 중 활력 징후 데이터 또는 그로부터 추출된 특징, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 기반으로 수술 중 또는 수술 후 예후를 판단할 수 있다.
예를 들면, 예후 판단 장치는 수술 중에 측정된 산소 포화도, ST 분절, 및 수술 중에 측정된 헤마토크리트를 기반으로 수술 중 또는 수술 후 예후를 판단할 수 있다.
다른 예를 들면, 예후 판단 장치는 수술 중에 측정된 산소 포화도, ST 분절, 및 수술 중에 측정된 헤마토크리트 이외에, 동맥내 혈압 데이터로부터 추출된 특징(예컨대, 각 심장 박동의 동맥내 혈압 파형 아래 면적, 수축기 혈압값, 이완기 혈압값 및 평균 혈압값), 용적맥파로부터 추출된 특징(예컨대, 수축기 피크값, 이완기 피크값, 평균 피크값, 파형 사이의 간격으로 확인한 피크의 속도, 파형 아래 면적, 1차 미분 파형, 2차 미분 파형), 심박수, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나를 더 이용하여 수술 중 또는 수술 후 예후를 판단할 수 있다.
예시적인 실시예에 다르면, 예후 판단 장치는 환자의 수술 중 또는 수술 후 증상에 대한 사용자의 피드백이 있으면, 사용자의 피드백을 기반으로 예후 판단 모델을 갱신할 수 있다. 예를 들어, 예후 판단 장치는 사용자의 피드백으로 입력된 수술 중 또는 수술 후 증상과, 예후 판단 모델을 기반으로 판단한 예후가 상이한 경우, 환자의 수술 중 활력 징후 데이터 또는 그로부터 추출된 특징, 수술 중에 측정된 헤마토크리트 데이터, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보 중 적어도 하나와, 사용자의 피드백으로 입력된 수술 중 또는 수술 후 증상을 새로운 학습 데이터로 이용하여 예후 판단 모델을 추가 학습시킬 수 있다.
[실시예]
서울대학교병원 데이터베이스로부터 총 17,986명의 환자 데이터를 수집하였다. 총 17,986명의 환자 데이터를 랜덤하게 분할하여 12,535명의 환자 데이터를 학습세트로 대량 수혈 판단 모델 생성에 이용하고, 5,451명의 환자 데이터를 검증세트로서 대량 수혈 판단 모델의 성능 검증에 이용하였다.
대량 수혈은 1시간에 걸쳐 3 유닛 이상의 적혈구를 수혈하는 것으로 정의하였다.
수술 중에 측정된 산소 포화도, 수술 중에 측정된 심박수, 수술 중에 측정된 헤마토크리트, 수술 전 혈액검사 데이터, 수술 정보 및 임상 정보, 수술 중에 측정된 동맥내 혈압 데이터로부터 추출된 각 심장 박동의 동맥내 혈압 파형 아래 면적, 수축기 혈압값, 이완기 혈압값 및 평균 혈압값과, 수술 중에 측정된 심전도 데이터로부터 추출된 ST 분절을 이용하여 대량 수혈 판단 모델을 생성하여 그 성능을 판단한 결과 도 7을 획득할 수 있었다.
도 7을 참조하면, 전술한 변수들을 이용하여 생성된 대량 수혈 판단 모델의 AUROC(area under the receiver characteristic curve)는 약 0.974로 매우 높은 수준이라는 것을 확인할 수 있었다.
상술한 실시예들은 컴퓨터로 읽을 수 있는 기록 매체에 컴퓨터가 읽을 수 있는 코드로서 구현될 수 있다. 컴퓨터가 읽을 수 있는 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함할 수 있다. 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 디스크 등을 포함할 수 있다. 또한, 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산 방식으로 컴퓨터가 읽을 수 있는 코드로 작성되고 실행될 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 범위는 전술한 실시예에 한정되지 않고 특허청구범위에 기재된 내용과 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다.
Claims (16)
- 환자의 수술 중에 측정된 산소 포화도, 상기 수술 중에 측정된 심전도 및 상기 수술 중에 측정된 헤마토크리트를 획득하는 데이터 획득부; 및상기 획득된 산소 포화도, 상기 획득된 심전도 및 상기 획득된 헤마토크리트를 기반으로 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 프로세서; 를 포함하는,수술 중 또는 수술 후 예후 판단 장치.
- 제1항에 있어서,상기 프로세서는,상기 획득된 심전도로부터 ST 분절을 추출하고, 상기 추출된 ST 분절, 상기 획득된 산소 포화도 및 상기 획득된 헤마토크리트를 기반으로 예후 판단 모델을 이용하여 상기 환자의 수술 중 또는 수술 후 예후를 판단하는,수술 중 또는 수술 후 예후 판단 장치.
- 제1항에 있어서,상기 데이터 획득부는 상기 환자에 대한 수술 전 혈액검사 데이터, 수술 정보, 임상 정보, 상기 수술 중에 측정된 동맥내 혈압, 상기 수술 중에 측정된 용적맥파, 및 상기 수술 중에 측정된 심박수 중 적어도 하나를 더 획득하고,상기 프로세서는 상기 수술 전 혈액검사 데이터, 상기 수술 정보, 상기 임상 정보, 상기 동맥내 혈압, 상기 용적맥파, 및 상기 심박수 중 적어도 하나에 더 기반하여 상기 환자의 수술 중 또는 수술 후 예후를 판단하는,수술 중 또는 수술 후 예후 판단 장치.
- 제3항에 있어서,상기 수술 전 혈액검사 데이터는 프로트롬빈 시간(Prothrombin time), 알부민(Albumin) 수치, 헤모글로빈(Hemoglobin) 수치, 혈소판(Platelet) 수치, 활성화 부분 트롬보플라스틴 시간(Activated partial thromboplastin time), AST(Aspartate transaminase) 수치, ALT(Alanine transaminase) 수치, 나트륨(Na) 수치, 칼륨(K) 수치, 글루코스(glucose) 수치, 혈액요소질소(BUN) 수치, 크레아티닌(Cr) 수치, 추정사구체여과율(eGFR) 및 헤마토크리트를 포함하는,수술 중 또는 수술 후 예후 판단 장치.
- 제3항에 있어서,상기 수술 정보는 수술 집도과, 응급수술 여부 및 수술시 사용되는 마취 종류를 포함하는,수술 중 또는 수술 후 예후 판단 장치.
- 제3항에 있어서,상기 임상 정보는 나이, 키, 성별 및 질환 여부를 포함하는,수술 중 또는 수술 후 예후 판단 장치.
- 제3항에 있어서,상기 프로세서는,상기 동맥내 혈압으로부터 각 심장 박동의 동맥내 혈압 파형 아래 면적, 평균 혈압값, 수축기 혈압값, 및 이완기 혈압값 중 적어도 하나를 제1 특징으로 추출하고, 상기 용적맥파로부터 수축기 피크값, 이완기 피크값, 평균 피크값, 피크 의 속도, 파형 아래 면적, 1차 미분 파형, 및 2차 미분 파형 중 적어도 하나를 제2 특징으로 추출하고, 상기 추출된 제1 특징, 상기 추출된 제2 특징, 상기 수술 전 혈액검사 데이터, 상기 수술 정보, 상기 임상 정보, 및 상기 심박수 중 적어도 하나에 더 기반하여 상기 환자의 수술 중 또는 수술 후 예후를 판단하는,수술 중 또는 수술 후 예후 판단 장치.
- 제1항에 있어서,상기 수술 중 또는 수술 후 예후는 수술 중 사망 가능성, 수술 후 소정 기간 내 사망 가능성, 대량 수혈 가능성, 중환자실 입원 가능성, 심근손상 가능성 및 급성 신손상 가능성을 포함하는,수술 중 또는 수술 후 예후 판단 장치.
- 환자의 수술 중에 측정된 산소 포화도, 상기 수술 중에 측정된 심전도 및 상기 수술 중에 측정된 헤마토크리트를 획득하는 단계; 및상기 획득된 산소 포화도, 상기 획득된 심전도 및 상기 획득된 헤마토크리트를 기반으로 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 단계; 를 포함하는,수술 중 또는 수술 후 예후 판단 방법.
- 제9항에 있어서,상기 판단하는 단계는,상기 획득된 심전도로부터 ST 분절을 추출하는 단계; 및상기 추출된 ST 분절, 상기 획득된 산소 포화도 및 상기 획득된 헤마토크리트를 기반으로 예후 판단 모델을 이용하여 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 단계; 를 포함하는,수술 중 또는 수술 후 예후 판단 방법.
- 제9항에 있어서,상기 획득하는 단계는 상기 환자에 대한 수술 전 혈액검사 데이터, 수술 정보, 임상 정보, 상기 수술 중에 측정된 동맥내 혈압, 상기 수술 중에 측정된 용적맥파, 및 상기 수술 중에 측정된 심박수 중 적어도 하나를 더 획득하고,상기 판단하는 단계는 상기 수술 전 혈액검사 데이터, 상기 수술 정보, 상기 임상 정보, 상기 동맥내 혈압, 상기 용적맥파, 및 상기 심박수 중 적어도 하나에 더 기반하여 상기 환자의 수술 중 또는 수술 후 예후를 판단하는,수술 중 또는 수술 후 예후 판단 방법.
- 제11항에 있어서,상기 수술 전 혈액검사 데이터는 프로트롬빈 시간(Prothrombin time), 알부민(Albumin) 수치, 헤모글로빈(Hemoglobin) 수치, 혈소판(Platelet) 수치, 활성화 부분 트롬보플라스틴 시간(Activated partial thromboplastin time), AST(Aspartate transaminase) 수치, ALT(Alanine transaminase) 수치, 나트륨(Na) 수치, 칼륨(K) 수치, 글루코스(glucose) 수치, 혈액요소질소(BUN) 수치, 크레아티닌(Cr) 수치, 추정사구체여과율(eGFR) 및 헤마토크리트를 포함하는,수술 중 또는 수술 후 예후 판단 방법.
- 제11항에 있어서,상기 수술 정보는 수술 집도과, 응급수술 여부 및 수술시 사용되는 마취 종류를 포함하는,수술 중 또는 수술 후 예후 판단 방법.
- 제11항에 있어서,상기 임상 정보는 나이, 키, 성별 및 질환 여부를 포함하는,수술 중 또는 수술 후 예후 판단 방법.
- 제11항에 있어서,상기 판단하는 단계는,상기 동맥내 혈압으로부터 각 심장 박동의 동맥내 혈압 파형 아래 면적, 평균 혈압값, 수축기 혈압값, 및 이완기 혈압값 중 적어도 하나를 제1 특징으로 추출하는 단계;상기 용적맥파로부터 수축기 피크값, 이완기 피크값, 평균 피크값, 피크 의 속도, 파형 아래 면적, 1차 미분 파형, 및 2차 미분 파형 중 적어도 하나를 제2 특징으로 추출하는 단계; 및상기 추출된 제1 특징, 상기 추출된 제2 특징, 상기 수술 전 혈액검사 데이터, 상기 수술 정보, 상기 임상 정보, 및 상기 심박수 중 적어도 하나에 더 기반하여 상기 환자의 수술 중 또는 수술 후 예후를 판단하는 단계; 를 포함하는,수술 중 또는 수술 후 예후 판단 방법.
- 제9항에 있어서,상기 수술 중 또는 수술 후 예후는 수술 중 사망 가능성, 수술 후 소정 기간 내 사망 가능성, 대량 수혈 가능성, 중환자실 입원 가능성, 심근손상 가능성 및 급성 신손상 가능성을 포함하는,수술 중 또는 수술 후 예후 판단 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210090227 | 2021-07-09 | ||
KR10-2021-0090227 | 2021-07-09 | ||
KR10-2022-0082843 | 2022-07-06 | ||
KR1020220082843A KR102510680B1 (ko) | 2021-07-09 | 2022-07-06 | 수술 중 또는 수술 후 예후 판단 장치 및 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023282600A1 true WO2023282600A1 (ko) | 2023-01-12 |
Family
ID=84800724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/009712 WO2023282600A1 (ko) | 2021-07-09 | 2022-07-06 | 수술 중 또는 수술 후 예후 판단 장치 및 방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023282600A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002330937A (ja) * | 2000-12-29 | 2002-11-19 | Ge Medical Systems Information Technologies Inc | 心血管リスクの術中評価方法及び装置 |
JP2006314800A (ja) * | 2005-05-13 | 2006-11-24 | Sorin Group Italia Srl | 心肺バイパスを用いた心臓手術のためのモニタリング・システム及び方法 |
JP2007534363A (ja) * | 2003-12-18 | 2007-11-29 | インバーネス メディカル スウィッツァーランド ゲーエムベーハー | モニタリング方法およびモニタリング装置 |
KR20170067759A (ko) * | 2014-10-09 | 2017-06-16 | 아쇼크 레디 | 생리학적 데이터를 기반으로 환자의 연속 심박출량(cco)을 예측하기 위한 시스템 및 방법 |
KR20190105163A (ko) * | 2018-02-21 | 2019-09-16 | 주식회사 삼육오엠씨네트웍스 | 인공지능 기반의 환자상태 예측 장치 및 이를 이용한 환자상태 예측 방법 |
-
2022
- 2022-07-06 WO PCT/KR2022/009712 patent/WO2023282600A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002330937A (ja) * | 2000-12-29 | 2002-11-19 | Ge Medical Systems Information Technologies Inc | 心血管リスクの術中評価方法及び装置 |
JP2007534363A (ja) * | 2003-12-18 | 2007-11-29 | インバーネス メディカル スウィッツァーランド ゲーエムベーハー | モニタリング方法およびモニタリング装置 |
JP2006314800A (ja) * | 2005-05-13 | 2006-11-24 | Sorin Group Italia Srl | 心肺バイパスを用いた心臓手術のためのモニタリング・システム及び方法 |
KR20170067759A (ko) * | 2014-10-09 | 2017-06-16 | 아쇼크 레디 | 생리학적 데이터를 기반으로 환자의 연속 심박출량(cco)을 예측하기 위한 시스템 및 방법 |
KR20190105163A (ko) * | 2018-02-21 | 2019-09-16 | 주식회사 삼육오엠씨네트웍스 | 인공지능 기반의 환자상태 예측 장치 및 이를 이용한 환자상태 예측 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Santos et al. | Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook | |
Seshadri et al. | Wearable sensors for COVID-19: a call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments | |
US12080419B2 (en) | Converting unorganized medical data for viewing | |
CN104305972B (zh) | 基于智能手表的多参数监测与健康管理系统 | |
US20070027367A1 (en) | Mobile, personal, and non-intrusive health monitoring and analysis system | |
TW201247166A (en) | Physiological signal measure apparatus and method with identification function | |
Lymberis et al. | New paradigms in telemedicine: ambient intelligence, wearable, pervasive and personalized | |
WO2014002823A1 (ja) | 妊婦・胎児心電計測装置、妊婦・胎児心電計測システム、腹帯、妊婦・胎児心電計測方法およびプログラムを記録したコンピュータ読み取り可能な記録媒体 | |
WO2014036651A1 (en) | Method for multi-scale quality assessment for variability analysis | |
Cheng et al. | Predicting transitions in oxygen saturation using phone sensors | |
Angelucci et al. | Fitbit data to assess functional capacity in patients before elective surgery: pilot prospective observational study | |
WO2023282600A1 (ko) | 수술 중 또는 수술 후 예후 판단 장치 및 방법 | |
Gravina et al. | Enabling multiple BSN applications using the SPINE framework | |
Rahman et al. | BreathEasy: Assessing respiratory diseases using mobile multimodal sensors | |
Volmer et al. | Wireless Body Sensor Network for low-power motion-tolerant syncronized vital sign measurment | |
Mestrom et al. | Validation of heart rate extracted from wrist-based photoplethysmography in the perioperative setting: prospective observational study | |
Stylianides et al. | Intensive care window: real-time monitoring and analysis in the intensive care environment | |
Valliappan et al. | A Portable real time ECG device for arrhythmia detection using raspberry pi | |
KR102510680B1 (ko) | 수술 중 또는 수술 후 예후 판단 장치 및 방법 | |
WO2022181947A1 (ko) | 심전계를 이용한 실시간 다중 모니터링 장치 및 방법 | |
US20230033963A1 (en) | Multiple Physiological Data Collection and Analysis Device and System | |
WO2018097541A1 (ko) | 순환계질환 발생잠재도를 판단하는 장치 및 그 방법 | |
Utsha et al. | CardioHelp: A smartphone application for beat-by-beat ECG signal analysis for real-time cardiac disease detection using edge-computing AI classifiers | |
Ianchulev et al. | Use of a respiratory volume monitor to assess respiratory competence in cardiac surgery patients after extubation | |
CN107349073A (zh) | 一种临床护理方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22837952 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22837952 Country of ref document: EP Kind code of ref document: A1 |