WO2023280183A1 - 分腔转子容积机构 - Google Patents
分腔转子容积机构 Download PDFInfo
- Publication number
- WO2023280183A1 WO2023280183A1 PCT/CN2022/104012 CN2022104012W WO2023280183A1 WO 2023280183 A1 WO2023280183 A1 WO 2023280183A1 CN 2022104012 W CN2022104012 W CN 2022104012W WO 2023280183 A1 WO2023280183 A1 WO 2023280183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- sub
- cavity
- cylinder body
- arc surface
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 39
- 230000033001 locomotion Effects 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 13
- 230000006835 compression Effects 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 9
- 238000007789 sealing Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000009471 action Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/082—Details specially related to intermeshing engagement type machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/082—Details specially related to intermeshing engagement type machines or engines
- F01C1/084—Toothed wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/082—Details specially related to intermeshing engagement type machines or engines
- F01C1/086—Carter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/12—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C19/00—Sealing arrangements in rotary-piston machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/18—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/082—Details specially related to intermeshing engagement type pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/082—Details specially related to intermeshing engagement type pumps
- F04C18/084—Toothed wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/082—Details specially related to intermeshing engagement type pumps
- F04C18/086—Carter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/06—Silencing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention relates to a cavity-divided rotor volume mechanism.
- Positive displacement compressors currently include reciprocating piston type and rotary type.
- the reciprocating piston type mechanism uses a crank connecting rod to drive the piston to reciprocate in the cylinder liner and is equipped with an intake and exhaust valve.
- the intake valve opens the exhaust valve in the downward section of the piston. Close the suction, close the intake valve and open the exhaust valve in the upward section of the piston, and the gas is compressed and discharged from the exhaust valve;
- the rotary type has two types: screw type and vortex type, and the screw type uses the closed space formed by the rotation of the male and female rotors on the curved surface at low pressure.
- the side suction is compressed and transported to the high-pressure side and discharged.
- the vortex type is that the dynamic and static vortex disks of two double function equations mesh with each other to form a crescent space, and the gas is sucked in from the side and compressed to the center of the vortex to be discharged.
- the invention patent of the prior art "rotor compressor” patent number: 201310125259.4 the invention includes a cylinder, a main rotor and at least two sub-rotors, the groove of the sub-rotor is driven by the internal meshing gear, and the convex point of the cylinder is Conjugate relationship, the two side lines of the groove of the sub-rotor and the cylinder body are in a conjugate relationship on the convex surface, the seal between the outer arc surface of the main rotor and the cylinder body is a line seal, the intake and exhaust ports are in the middle of the curved surface, and the sub-rotor is in the middle of the curved surface.
- the rotor turns to the protruding position of the cylinder block, part of the volume of the sub-rotor cannot be used for intake and exhaust work.
- the reciprocating piston compressor has many structural parts, complex structure, and reciprocating inertial force;
- the screw type and the vortex type of rotary compression are both curved surfaces, which require high processing and assembly precision;
- the object of the present invention is to provide a volumetric rotor mechanism with sub-chambers, which has a simple structure, easy processing and assembly, no reciprocating motion, stable operation, no vibration, low noise and high volumetric efficiency.
- the present invention provides the following technical solutions:
- the chamber-divided rotor volume mechanism of the present invention is characterized in that it comprises a cylinder body, a main rotor, a chamber-divided rotor, a rotor end cover, a cylinder body end cover, and a gear train;
- Both ends of the main rotor have a main rotating shaft, on which a rotor end cover is sleeved and fixed, and a cylinder block is provided on the outer side of the rotor end cover, and the cylinder end cover has a through hole for the main rotating shaft to pass through.
- the rotor can rotate relative to the cylinder body, the main rotor and the rotor cover are relatively fixed, the main rotor has a first arc groove, the first arc groove is embedded with the sub-cavity rotor, and the shaft of the sub-cavity rotor It is installed in the channel of the rotor end cover to realize the relative rotation between the sub-cavity rotor and the rotor end cover.
- One end of the shaft of the sub-cavity rotor is fixed with a gear, and an idler gear meshing with the gear is provided on the end surface of the rotor end cover.
- the inner side of the end cover of the cylinder body is fixedly provided with a fixed gear meshing with the idler gear;
- the sub-cavity rotor has a second curved surface groove, and an inner protrusion is provided on the cylinder body, and the inner protrusion is provided with There are air inlet holes and air outlet holes;
- the idler gear on the rotor cover, the sub-cavity rotor and the gear revolve around the fixed gear, and at the same time the gear meshes with the fixed gear and the gear rotates, and drives the gear and the sub-cavity to rotate, and the sub-cavity rotor rotates in the opposite direction to the main rotor .
- the outer circular surface of the above-mentioned rotor end cover, the inner circular surface of the cylinder end cover and the arc center of the cylinder body are coaxial with the main rotor; the outer circular surface of the rotor end cover and the inner circular surface of the cylinder end cover There is a movement gap between the inner end surface of the rotor cover and the end surface of the raised part in the cylinder body; the through hole of the cylinder end cover is coaxial with the arc surface of the cylinder body, and the through hole allows the main shaft of the main rotor to Pass through and the main rotor bearing sits on the end cover of the cylinder block to play a supporting role.
- the inner wall of the above-mentioned cylinder is N groups of units with a length of H, and each group of units consists of a large arc surface with a radius slightly larger than L+r, and a small arc with a radius R and an arc length S coaxial with the large arc surface.
- Surface two symmetrical surfaces that are tangent to the large arc surface and connected to the small arc surface.
- the symmetrical surface is composed of the axis of the small arc surface and the center line of the small arc. cloth, so that N inner protrusions are formed inside the cylinder body, and each inner protrusion is provided with air ports on both sides of the small arc surface as the air inlet channel and the air outlet channel;
- the rotating shaft of the main rotor is on the central axis of the arc surface of the cylinder body, and the inner part of the cylinder body is a cylinder with a radius slightly smaller than R and a length slightly greater than H.
- N arc grooves with a radius slightly greater than r on the cylinder and the arc
- the distance between the central axis of the groove and the central axis of the main rotor is L, and one end of the rotor passes through the rotor end cover and the cylinder end cover as the power input and output shaft;
- the rotating shaft of the split-cavity rotor is coaxial with the central axis of the arc surface groove of the main rotor, and the part of the split-cavity rotor inside the cylinder body is a cylinder containing a groove composed of two symmetrical curved surfaces and an intermediate curved surface connecting the two symmetrical curved surfaces.
- the radius of the arc surface is r
- the length is H
- the centroid of the sub-cavity rotor is located on its rotating shaft.
- the above-mentioned sub-cavity rotor is reversed at N times the speed of the main rotor driven by the gear train, and the two symmetrical curved surfaces of the sub-cavity rotor are from the arc surface to a middle contact line and the two straight lines of the small arc surface of the cylinder body It is a conjugate relationship, and the middle contact line is the coincidence line of the small arc surface on the same side when the symmetry plane of the sub-cavity rotor coincides with the symmetry plane of the small arc.
- the two symmetrical curved surfaces of the sub-cavity rotor During the rotation process, there is a gap between the contact line in the middle part and the connection line between the two symmetrical curved surfaces and the small arc surface of the cylinder without contact.
- the two symmetrical curved surfaces on the side are in a conjugate relationship, and the above-mentioned dimensions L, R, r, and S satisfy the above-mentioned two conjugate relationships;
- the arc groove of the main rotor always includes a part of the sub-cavity rotor, that is, when the sub-cavity rotor is located in the middle of the large arc surface of the cylinder body, the two arc edges of the sub-cavity rotor are at the center of the main rotor. in the slot of the rotor.
- the gear train includes a central gear fixed on the end cover of the cylinder coaxial with the arc surface of the cylinder, N idler gears mounted on the rotor end cover and N driving sub-cavity rotor gears, the central gear of the gear train and
- the speed change ratio of the drive sub-cavity rotor gear is -1:N.
- the rotor end cover is fixed on the main rotor and rotates together with the main rotor.
- the radius of the rotor end cover is greater than or equal to the radius of the large arc surface of the cylinder body.
- the rotor shaft hole, the rotor cover on the gear train side has a shaft for mounting the idler gear.
- Said N is greater than 1, when the sub-chamber rotor turns to the convex position of the cylinder body and the symmetrical plane of the sub-cavity rotor coincides with the symmetrical plane of the convex part of the cylinder body, each working area is divided into three areas by the sub-cavity rotor, There is a closed cavity on the outer side of the arc surface of the sub-chamber rotor, and two cavities formed on the inner side of the sealed rotor and the two curved surfaces of the cylinder body communicate with the intake and exhaust ports respectively; as the rotor rotates, the cavity communicated with the intake port becomes larger, The cavity connected with the exhaust port becomes smaller and disappears when the sub-cavity rotor passes the small arc surface of the cylinder body.
- the sub-cavity rotor divides the working area into two chambers, the main rotor continues to rotate, and the sub-cavity rotor
- the cavities on the side become larger and smaller at the same time.
- the sub-cavity rotor turns to the next protruding position and the sealing line of the sub-cavity rotor just passes the sealing port, three cavities are formed in each working area, and then the sub-cavity rotor rotates.
- a check valve is installed on the exhaust port to prevent high pressure The gas returns to the compression chamber; if it is used as an expander, each working area completes an exhaust and expansion cycle.
- the seal between the arc surface of the main rotor and the cylinder body of the present invention is a surface seal, and the center distance between the sub-rotor and the main rotor is not limited by the internal meshing gear.
- the space formed by the rotor and the cylinder body can also be effectively utilized. Therefore, the present invention has a simple structure, a mass balance of the rotor, and stable operation.
- Fig. 6 is an exploded view of a perspective of an embodiment
- Fig. 7 is an exploded view of another perspective of an embodiment
- Figure 8 is an exploded view of another embodiment from another perspective
- Fig. 9 is an exploded view of another embodiment from another perspective.
- Figure 1 is a single cavity rotor volume mechanism.
- the volume mechanism is composed of a main rotor 1, a sub-cavity rotor 4, a cylinder body 5, rotor end covers 3 and 6, cylinder end covers 2 and 7, a gear 8, an idler gear 9, a fixed gear 10, and a bearing 11.
- the inner wall of the cylinder body 5 is connected by a large arc surface with a radius slightly larger than L+r, a stretched curved surface of a curve l2, a small arc surface with a radius of R and an arc length S, and a stretched curved surface of l2' symmetrical to the curve l2.
- the stretched surface is tangent to the large arc surface, and the points of the tangent line on the section are D3 and D4.
- the outer surface of the sub-cavity rotor 4 includes an arc surface with a radius of r, two symmetrical curves l1, l1' stretched surface, and the centroid of the sub-cavity rotor 4 is on its rotating shaft.
- the rotor covers 3 and 6 are connected to the main rotor 1 through fasteners, the outer circular surfaces of the rotor covers 3 and 6, the inner circular surfaces of the cylinder cover 2 and 7 and the arc center of the cylinder 5, and the main rotor 1 are coaxial ; There is a movement gap between the outer circular surfaces of the rotor end covers 3 and 6 and the inner circular surfaces of the cylinder end covers 2 and 7; Leave room for movement.
- the cylinder end covers 2 and 7 are fixed on the cylinder body, and the cylinder end cover has a through hole coaxial with the arc surface of the cylinder body, the through hole allows the shaft of the main rotor to pass through and the main rotor bearing is located on the cylinder end cover Play a supporting role.
- the radius of the main rotor 1 is R, and the main rotor 1 has an arc groove (the first arc groove) with a radius slightly larger than r.
- the distance between the axis line of the arc groove and the axis line of the main rotor 1 is L.
- the speed ratio between gear 8 and gear 10 is -1:1
- the fixed gear 10 is fixed on the cylinder end cover 7
- the shaft of the fixed gear 10 is coaxial with the main rotor 1
- the idler gear 9 is installed on the rotor end cover 6, and the gear 8 are fixedly installed on the drive shaft of the sub-cavity rotor.
- the section curve l1' of the sub-cavity rotor 4 is composed of two sections with the point D2' as the boundary.
- the section from the point D2' to the outer arc surface of the sub-chamber rotor 4 is called the outer section of l1', and the point D2' is symmetrical to the sub-chamber rotor 4.
- a section of the face is called the inner section of l1'.
- the main rotor 1 and the sub-cavity rotor 4 rotate until the center plane of the groove of the main rotor 1 coincides with the symmetrical center plane of the cylinder block, and the main rotor 1 and the sub-cavity rotor 4 continue to rotate until the center plane of the sub-cavity rotor and the cylinder body 5 protrude
- this process obtains the trajectories of point D4 shown in Figure 3 and the points on the lower half of the small circular arc section of the cylinder body 5 on the circular section of the sub-cavity rotor 4, and these trajectories are taken close to the sub-cavity
- the curve formed by connecting the points of the center points of the outer circular arc of the rotor 4 and offset by a little movement gap is the inner section of l1'.
- the section curve l1 of the sub-cavity rotor 4 is obtained by mirroring l1' on the symmetrical central plane of the sub-cavity rotor 4.
- the protruding section curve l2' of the cylinder block 5 is as follows;
- the lower edge of the groove of the main rotor 1 and the lower edge of the small circular surface of the cylinder body 5 coincide with the position D2
- the main rotor 1 rotates clockwise
- the sub-cavity rotor 4 rotates counterclockwise at the same speed, and rotates to the cylinder body.
- the section curve l2 of the cylinder body 5 is symmetrical to the curve l2', and the plane of symmetry is the center plane of symmetry of the small arc surface of the cylinder body 5.
- the two side lines of the sub-cavity rotor groove are in the groove of the main rotor 3 when the sub-cavity rotor 4 is forwarded to the middle part of the large arc surface of the cylinder body.
- the speed ratio of the fixed gear 10 and the gear 8 is -1:1
- the sub-chamber rotor 4 and the main rotor 1 rotate at the same speed in the opposite direction
- the sub-chamber rotor 4 and the cylinder body are in the curved surface section of the cylinder body Conjugate motion, in the large arc section of the cylinder body, the outer arc surface of the sub-cavity rotor is kept tangent to the large arc surface of the cylinder body.
- Figure 2 is a radial cross-sectional view when the symmetry plane of the sub-chamber rotor of the single-chamber rotor volume mechanism coincides with the symmetry plane of the cylinder body.
- the sub-chamber rotor encloses the cylinder body, the main rotor, and the rotor end cover to form a working space It is divided into three parts A1, A2 and A3, and A1 and A2 are respectively connected to the exhaust port and the air intake port.
- a one-way valve is installed on the exhaust port to prevent the discharged gas from returning.
- the mechanical power drives the main rotor 1 to rotate clockwise, and the sub-chamber rotor 4 rotates counterclockwise at a constant speed.
- Large gas enters from the air inlet, the volume of the chambers A1 and A3 becomes smaller, and the closed gas is compressed.
- the chamber A3 also communicates with the exhaust port, and the volume of the chamber A3 The gas is gradually compressed.
- the one-way valve is opened to discharge the compressed gas.
- the sub-cavity rotor When the sub-cavity rotor turns back to its slot just past the air inlet, the sub-cavity rotor divides the working space into A1 again. Then, the symmetry plane of the sub-chamber rotor of the single-chamber rotor volume mechanism coincides with the symmetry plane of the cylinder body again, and the sub-chamber rotor rotating volume mechanism completes a working cycle of intake air compression, and the mechanical work drives the main body As the rotor rotates continuously, the gas is continuously inhaled, compressed and discharged.
- the single-chamber rotor volume mechanism acts as an expander, and high-pressure gas enters the A2 chamber from the air inlet.
- the high-pressure gas generates a clockwise rotational torque on the sub-chamber rotor and the main rotor.
- the main rotor rotates clockwise, and the sub-chamber rotor rotates counterclockwise.
- the chamber A2 becomes larger and the gas expands to do work.
- the chamber A3 communicates with the exhaust port and discharges the expanded gas.
- the main rotor completes a working cycle after one revolution and outputs mechanical work.
- the high-pressure gas continuously enters the air inlet and expands to do work. Finally, it is discharged from the exhaust port, and the mechanical work can be continuously output.
- the double-chamber volume mechanism consists of a main rotor 1 with a radius of R, two sub-chamber rotors 4 with a radius of r, a cylinder body 5, a gear 8, two idler gears 9, two
- the fixed gear 10 is composed of the rotor end cover covering the main rotor 1 and the two sub-cavity rotors 4, and the cylinder end caps covering the two ends of the cylinder block.
- the center distance between the main rotor and the sub-cavity rotor is L.
- the main rotor has two symmetrical grooves
- the cylinder body has two protrusions
- the rotor cover on one side corresponds to two sub-chamber rotor shaft holes evenly distributed around the circumference
- the rotor cover on the other side has two
- the shaft holes of the uniformly distributed sub-cavity rotor also have two idler gear shafts distributed uniformly around the circumference. Since the rotating parts are distributed symmetrically on the circumference, as long as the moving parts are homogeneous, the center of mass will be on the shaft of the main rotor 1.
- the speed ratio of the gear 8 and the fixed gear 10 of the double-chamber volumetric mechanism is -2:1,
- the inner wall of the cylinder body of the double-chamber volumetric mechanism has two uniformly distributed protrusions similar to the method 1.
- the two symmetrical curved surfaces of the convex and the two symmetrical curved surfaces of the divided-cavity rotor groove can also be obtained by simulating conjugate motion Curved surface, there is a large arc surface with a radius slightly larger than L+r between the two protrusions, and a small arc surface with a radius of R on each of the two protrusions.
- the sub-chamber rotor is located on the large arc surface of the cylinder body When in the middle position, both sides of the groove of the sub-cavity rotor are in the groove of the main rotor.
- the main rotor 1 of the double-chamber rotor volume mechanism rotates clockwise, and the two-chamber rotor rotates counterclockwise at twice the speed of the main rotor under the action of the gear train 8, 9, and 10.
- the two chambers A2 , A2 2 become larger, intake air from the corresponding air inlet, chambers A1, A1 2 become smaller, exhaust air from the corresponding exhaust port, chambers A3, A3 2 are compressed, and then the groove edge of the sub-chamber rotor rotates through the discharge port
- the air port chambers A3, A32 communicate with the exhaust port for exhaust.
- the double-chamber rotor volume mechanism completes two intake and exhaust cycles, and the main rotor rotates one circle to complete four intake and exhaust cycles. Due to the symmetrical layout of the structure, The radial force of the main rotor is balanced with each other, and the operation is more stable than the mode 1.
- the volume mechanism of the sub-chamber rotor is similar to the structure of the double-chamber volume mechanism.
- the volume mechanism of the N-chamber rotor consists of the main rotor 1 with a radius of R, and N sub-chambers with a radius of r.
- the main rotor 1 has N circumferentially evenly distributed grooves
- the cylinder body 5 has N circumferentially uniformly distributed protrusions
- one side of the rotor cover corresponds to N circumferentially uniformly distributed sub-chamber rotor shaft holes.
- N idler gear shafts uniformly distributed on the circumference. Since the rotating parts are distributed symmetrically on the circumference, as long as the moving parts are homogeneous and the center of mass will be in the The rotating shaft of main rotor 1 is on.
- the fixed gear 8, N idler gears 9, and N gears 10 of the N sub-chamber volume mechanism form N groups of transmission groups, and the speed ratio of each group is -N:1,
- the inner wall of the N-chamber volume mechanism cylinder has N circumferentially uniform protrusions similar to the method 1, and the two symmetrical surfaces of each protrusion and the two symmetrical surfaces of the sub-cavity rotor groove can also be obtained by simulating conjugate motion
- the curved surface there is a large arc surface with a radius slightly larger than L+r between the N protrusions, and a small arc surface with a radius of R on each of the N protrusions.
- both sides of the groove of the sub-cavity rotor are in the groove of the main rotor.
- the main rotor 1 of the sub-cavity rotor volume mechanism starts to rotate clockwise, and the N sub-chamber rotor rotates counterclockwise at N times the speed of the main rotor under the action of the gear train 8, 9, 10, and the N cavities A2, A2 2 , A2 3 ?? A2 n becomes larger, intake air from the corresponding inlet, N chambers A1, A1 2 , A1 3 ?? A1 n becomes smaller, exhaust from the corresponding exhaust port, N chambers A3, A3 2 , A3 3 ... A3 n are compressed, and then the grooves of N sub-chamber rotors turn around the exhaust port and N chambers A3, A3 2 , A3 3 ...
- A3 n communicate with the exhaust port to exhaust ;
- Mode 4 In mode 1.2.3, the inlet and outlet of the cylinder body 5 are widened to the point that when the sub-cavity rotor 4 is facing the protrusion of the cylinder body, both sides of the groove of the sub-cavity rotor 4 are aligned with the inlet and outlet sides of the cylinder body 5, In this way, the cavity A3 can always keep one of the inlet and the outlet connected, which can be applied to liquid pumps and motors.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
一种分腔转子容积机构,其包含缸体(5)、主转子(1)、分腔转子(4)、转子端盖(3)、缸体端盖(2)、齿轮系;主转子(1)的两端具有主转轴,在主转轴上套设固定有转子端盖(3),转子端盖(3)外侧罩设有缸体(5),且缸体端盖(2)上具有通孔用于主转轴穿过,主转子(1)可相对缸体(5)转动,主转子(1)与转子端盖(3)相对固定,主转子(1)上具有第一圆弧槽,第一圆弧槽内嵌设有分腔转子(4),分腔转子(4)的转轴穿设在转子端盖(3)的孔道内,以实现分腔转子(4)与转子端盖(3)的可相对转动。该分腔转子容积机构结构简单,无往复运动且运行平稳、无振动、噪音小、容积效率高。
Description
本发明涉及一种分腔转子容积机构。
容积式压缩机现有包括往复活塞式与旋转式,往复活塞式机构是用曲柄连杆驱动活塞在缸套中往复运动并配进气排气阀,在活塞下行段进气阀打开排气阀关闭吸气,在活塞上行段进气阀关闭排气阀打开气体被压缩从排气阀排出;旋转式是螺杆式与旋涡式两种,螺杆式是利用曲面阴阳转子转动形成的密闭空间在低压侧吸气并压缩运送到高压侧并排出,旋涡式是两个双函数方程线的动静涡盘相互咬合形成月牙空间将气体从边上吸入并压缩到旋涡中心排出。
现有技术中发明专利《转子压缩机》专利号:201310125259.4,该发明包括缸体、主转子和至少两个子转子,子转子的凹槽在内啮合齿轮的驱动下,与缸体的凸点是共轭关系,子转子的凹槽的两边线与缸体在凸起曲面是共轭关系,主转子外圆弧面与缸体的密封是线密封,进排气口是在曲面的中部,子转子转到缸体的凸起位置时子转子有部分容积不能用于进排气工作。
但由于往复活塞式压缩机结构零件多、结构复杂、存在往复惯性力;旋转式压缩的螺杆式与旋涡式都是曲面咬合,要求加工与装配精度高;
发明专利《转子压缩机》专利号:201310125259.4该压缩机的主转子圆弧面与缸体的密封是线密封,子转子驱动采用内齿轮结构,使得子转子与主转子中心距要大于主转子半径、也使得子转子数量要大于等于2,子转子槽与缸体凸起对正时子转子与缸体形成的空间不能利用。
有鉴于此,本发明的目的在于提供一种分腔转子容积机构,该分腔转子容积机构结构简单,易于加工装配,无往复运动且运行平稳、无振动、噪音小、容积 效率高。
为实现上述目的,本发明提供了以下技术方案:
本发明分腔转子容积机构,其特征在于:包含缸体、主转子、分腔转子、转子端盖、缸体端盖、齿轮系;
主转子的两端具有主转轴,在主转轴上套设固定有转子端盖,转子端盖外侧罩设有缸体,且所述缸体端盖上具有通孔用于主转轴穿过,主转子可相对缸体转动,主转子与转子端盖相对固定,主转子上具有第一圆弧槽,所述第一圆弧槽内嵌设有所述分腔转子,所述分腔转子的转轴穿设在转子端盖的孔道内,以实现分腔转子与转子端盖的可相对转动,所述分腔转子转轴的一端固定设有齿轮,在转子端盖端面设有与齿轮啮合的惰齿轮,所述缸体端盖一内侧固定设有与惰齿轮啮合的固定齿轮;所述分腔转子上具有第二曲面凹槽,在缸体上设有内凸起,所述内凸起上设有进气孔道和出气孔道;
主转子转动时,转子端盖上的惰齿轮、分腔转子及齿轮绕固定齿轮公转,同时齿轮啮合固定齿轮、齿轮自转,并带动齿轮与分腔转自转,分腔转子与主转子反向转动。
进一步的,上述转子端盖的外圆面、缸体端盖的内圆面及缸体圆弧中心与主转子同轴;转子端盖外圆面、缸体端盖的内圆面两者之间留有运动间隙;转子端盖内端面与缸体内凸起部分端面之间留有运动间隙;缸体端盖的通孔与缸体圆弧面同轴,该通孔让主转子的主轴穿过且主转子轴承坐落在缸体端盖上起支撑作用。
进一步的,上述缸体内壁为N组长度为H的单元,每组单元由半径略大于L+r的大圆弧面、半径为R弧长为S与大圆弧面同轴的小圆弧面、两对称且与大圆弧面相切与小圆弧面相连的曲面,对称面由小圆弧面轴与小圆弧中心线组成,N>1时N组单元按圆弧面中心轴均布,这样缸体内部形成N个内凸起,每个内凸起在小圆弧面的两侧均设有气口作为所述进气孔道和出气孔道;
所述主转子转轴在缸体圆弧面中心轴,在缸体内部部分为半径略小于R圆 柱体,长度略大于H,圆柱体上有N个半径略大于r的圆弧凹槽,圆弧凹槽中心轴与主转子中心轴的距离为L,转子的一端穿过转子端盖与缸体端盖做为功率输入输出轴;
所述分腔转子转轴与主转子圆弧面槽的中心轴同轴,分腔转子在缸体内部的部分为圆柱体含一个由两对称曲面及连接两对称曲面的中间曲面组成组成的槽,圆弧面的半径为r,长度为H,分腔转子的质心位于其转轴上。
进一步的,上述分腔转子在齿轮系的驱动下以N倍于主转子转速反转,分腔转子的两对称曲面从圆弧面到一中部接触线与缸体的小圆弧面两直线边线是共轭关系,所述中部接触线是分腔转子对称面与小圆弧的对称面重合时同侧小圆弧面直线边线分腔转子槽的重合直线,分腔转子的两对称曲面从所述中部接触线到两对称曲面的连接线部分在转动过程中与缸体的小圆弧面留有间隙没有接触,分腔转子的外圆弧面两直线边线与缸体的小圆弧面两侧的两对称曲面是共轭关系,上述尺寸L、R、r、S满足形成所述的两共轭关系;
上述尺寸L、R、r、S满足主转子圆弧凹槽始终包含分腔转子的一部分,即分腔转子位于缸体大圆弧面的中间位置时,分腔转子的两圆弧边线在主转子的槽内。
所述齿轮系包含与缸体圆弧面同轴的固定在缸体端盖上的中心齿轮及N个安装在转子端盖上的惰齿轮及N个驱动分腔转子齿轮,齿轮系中心轮与驱动分腔转子齿轮速变比为-1:N。
所述转子端盖固定于主转子上与主转子一起转动,转子端盖的半径大于或等于缸体的大圆弧面半径,转子端盖上有N个分腔转子的转轴孔,中心有主转子转轴孔,在齿轮系侧的转子端盖有用于安装惰齿轮的轴。
进一步的,上述N为1时,当分腔转子转到缸体的凸起位置且分腔转子的对称面与缸体的的对称面重合时,工作区被分腔转子分割成三个区,分腔转子圆弧面外侧一个封闭空腔、分腔转子内侧与缸体的两曲面形成两空腔分别与进排气口相通;随着转子的转动,与进气口相通的空腔变大,与排气口相通的空腔变小, 到分腔转子过了缸体小圆弧面边时消失,此时分腔转子将工作区分成两个腔室,主转子继续转动,分腔转子两侧的空腔一边变大一边变小,当分腔转子再次转到凸起位置且分腔转子的密封线刚过密封口时,又形成三部分空腔,接着分腔转子转到缸体的凸起位置且分腔转子的对称面与缸体的的对称面再次重合,若做为压缩机完成一次进气与压缩循环、排气口上配单向阀防止高压气体返回压缩腔;若做为膨胀机完成一次膨胀与排气循环。
所述N大于1,当分腔转子转到缸体的凸起位置且分腔转子的对称面与缸体凸起部分的对称面重合时,每个工作区被分腔转子分割成三个区,分腔转子圆弧面外侧一个封闭空腔、密封转内侧与缸体的两曲面形成两空腔分别与进排气口相通;随着转子的转动,与进气口相通的空腔变大,与排气口相通的空腔变小,到分腔转子过了缸体小圆弧面边时消失,封此时分腔转子将工作区分成两个腔室,主转子继续转动,分腔转子两侧的空腔一边变大一边变小,当分腔转子转到下一个凸起位置且分腔转子的密封线刚过密封口时,每个工作区又形成三部分空腔,接着分腔转子转到缸体的凸起位置且分腔转子的对称面与缸体凸起部分的对称面再次重合,若做为压缩机每个工作区完成一次与压缩循环、排气口上配单向阀防止高压气体返回压缩腔;若做为膨胀机每个工作区完成一次排气与膨胀循环。
本发明的主转子圆弧面与缸体的密封是面密封,子转子与主转子中心距不受内啮合齿轮的限制,分腔转子的凹弧槽与缸体凸起对正时,分腔转子与缸体形成的空间也能有效利用,因此,本发明的结构简单、转子质量平衡运转平稳、主转子、分腔转子是拉伸曲面加工较螺杆式、旋涡式对比,易于加工。
为使本发明的目的、技术方案及优点更加清楚明白,以下通过具体的实施例和相关附图,对本发明作进一步详细说明。
图1是N=1分腔转子旋转容积机构轴向剖面图。
图2是N=1分腔转子旋转容积机构径向剖面图。
图3是N=1分腔转子旋转容积机构的工作示意图。
图4是N=2分腔转子旋转容积机构示意图。
图5是N=3分腔转子旋转容积机构示意图。
图6是一种实施例一视角的爆炸图;
图7是一种实施例另一视角的爆炸图;
图8是另一种实施例另一视角的爆炸图;
图9是另一种实施例另一视角的爆炸图。
方式1:
如图1是单分腔转子容积机构。所述容积机构由主转子1、分腔转子4、缸体5、转子端盖3与6、缸体端盖2与7,齿轮8、惰齿轮9、固定齿轮10组成、轴承11组成。
所述缸体5内壁由半径略大于L+r的大圆弧面、曲线l2拉伸曲面、半径为R弧长为S的小圆弧面、与曲线l2对称的l2’拉伸曲面连接而成,拉伸曲面与大圆弧面相切,相切线在剖面上点为D3、D4,在小圆弧面两侧的曲面上各有一个气口,该气口一边挨着小圆弧面,小圆弧面两直线边在剖面上的点为D1、D2。
所述分腔转子4外表面包含由半径为r的圆弧面、两对称曲线l1、l1’拉伸面,分腔转子4的质心在其转轴上。
转子端盖3与6通过紧固件与主转子1连接,转子端盖3与6外圆面、缸体端盖2与7的内圆面及缸体5圆弧中心、主转子1同轴;转子端盖3与6外圆面、缸体端盖2与7的内圆面两者之间留有运动间隙;转子端盖3与6内端面、缸体5内凸出部分端面之间留有运动间隙。
缸体端盖2与7固定在缸体上、缸体端盖有通孔与缸体圆弧面同轴,该通孔让主转子的轴穿过且主转子轴承坐落在缸体端盖上起支撑作用。
所述主转子1半径为R,主转子1有一个半径略大于r的圆弧槽(第一圆弧凹槽),圆弧槽轴心线与主转子1的轴心线距离为L。
齿轮8与齿轮10的速比是-1:1,固定齿轮10固定在缸体端盖7上,固定齿轮10的轴与主转子1同轴,惰齿轮9装于转子端盖6上,齿轮8固定装在分腔转子的驱动轴上。
分腔转子4的截面曲线l1’由以D2’点为分界的两段组成,D2’点到分腔转子4外圆弧面一段称为l1’外段,D2’点到分腔转子4对称面一段称为l1’内段。
如图3当主转子1的凹槽下边线与缸体5的小圆弧面下边线重合位置D2开始,主转子1顺时针转动,同时分腔转子4以同样的转速逆时针转动,转动到主转子1凹槽中心面与缸体5的小圆弧面的中心面重合位置,这个过程获得缸体5上的D2点在分腔转子4圆截面上留下的轨迹,这轨迹向分腔转子4外圆弧方向偏置一点运动间隙即为曲线l1’外段。
主转子1凹槽中心面与缸体5的小圆弧面的中心面重合时,分腔转子的对称面也与缸体5的小圆弧面的中心面重合,在此可以确定分腔转子的对称中心面,在图2、图3所示的是中心线。
主转子1与分腔转子4转动到主转子1凹槽中心面与缸体凸起对称中心面重合位置,主转子1与分腔转子4继续转动到分腔转子中心面与缸体5凸起的小圆弧面下边重合时,这个过程获得图3所示D4点及缸体5小圆弧段下半段上的各点在分腔转子4圆截面上的轨迹,这些轨迹取靠近分腔转子4外圆弧中心点的点连成的曲线并偏置一点运动间隙即为l1’内段。
分腔转子4的截面曲线l1是以分腔转子4的对称中心面从l1’镜像获得。
缸体5凸起的截面曲线l2’如下;
如图3主转子1的凹槽下边线与缸体5的小圆弧面下边线重合位置D2开始,主转子1顺时针转动,同时分腔转子4以同样的转速逆时针转动,转动到缸体5的圆弧圆心、分腔转子4圆弧圆心、分腔转子4外圆弧与曲线l1’的交点D4’三点一线位置,这个过程获得D4’在缸体5截面上的轨迹,此轨迹向背离缸体中心方向偏置一点运动间隙即为缸体5凸起的截面曲线l2’。
缸体5的截面曲线l2与曲线l2’对称,对称面为缸体5的小圆弧面的对称中心面。
图3中分腔转子4转到缸体大圆弧面中部时分腔转子凹槽(第二曲面凹槽)的两边线在主转子3的凹槽里头。
通过各零件的质量分配使得主转子1、分腔转子4、转子端盖3与6、惰齿轮9、齿轮10的合质心落在主转子转轴上。
主转子1转动时,转子端盖6上的惰齿轮9、分腔转子4及其齿轮8绕固定齿轮10公转,同时齿轮9啮合固定齿轮10、齿轮9自转,并带动齿轮8与分腔 转4自转,固定齿轮10与齿轮8的速比是-1:1,分腔转子4就与主转子1等速反向转动,分腔转子在缸体的曲面段分腔转子4与缸体是共轭运动,在缸体大圆弧段分腔转子外圆弧面与缸体的大圆弧面保持相切。
如图2是单分腔转子容积机构的分腔转子对称面与缸体的对称面重合时的径向截面图,在这个位置分腔转子将缸体、主转子、转子端盖围成工作空间分成A1、A2、A3容腔三个部分,A1、A2分别与排气口、进气口联通。
单分腔转子容积机构作为压缩机时排气口上装有单向阀阻止排出的气体回流,机械功驱动主转子1顺时针转动,分腔转子4等速逆时针转动,容腔A2的容积变大气体从进气口进入,容腔A1、A3的容积变小封闭的气体被压缩,分腔转子的槽上边线到排气口时,容腔A3也与排气口相通,容腔A3的气体逐渐被压缩,当压力高于排气口外界压力时,打开单向阀排出压缩的气体,当分腔转子转回到其槽刚好过了进气口时,分腔转子再次将工作空间分成A1、A2、A3容腔三个部分,接着单分腔转子容积机构的分腔转子对称面与缸体的对称面再次重合,分腔转子旋转容积机构完成一个进气压缩工作循环,机械功驱动主转子连续转动气体就不断地吸入压缩排出。
单分腔转子容积机构作为膨胀机高压气体从进气口进入到A2腔,高压气体对分腔转子与主转子产生一个顺时针的旋转力矩,主转子顺时针转动,分腔转子逆时针转动,容腔A2变大气体膨胀做功,容腔A3与排气口相通后排出膨胀后的气体,主转子旋转一圈后完成一个工作循环并输出机械功,高压气体不断的从进气口进入膨胀做功后从排气口排出,就能连续的输出机械功。
方式2:
如图4是双分腔转子容积机构,双分腔容积机构由半径为R的主转子1、两个半径为r分腔转子4、缸体5、齿轮8、两个惰齿轮9、两个固定齿轮10、及盖住主转子1与两分腔转子4的转子端盖、盖住缸体两端的缸体端盖组成,主转子与分腔转子的中心距为L。
方式1相比主转子有两个对称的凹槽、缸体有两个凸起、一边转子端盖上对应的是两个圆周均布的分腔转子转轴孔、另一边转子端盖除了两个圆周均布的分腔转子的转轴孔还有两个圆周均布的惰齿轮轴,由于转动部件是圆周对称分布只要运动件是均质的合质心就会在主转子1的转轴上了。
双分腔容积机构的齿轮8与固定齿轮10的速比-2:1,
双分腔容积机构的缸体的内壁有类同方式1的两个圆周均布的凸起,这个凸起的两对称曲面与分腔转子凹槽的两对称曲面也可以通过模拟共轭运动获得曲面,两凸起之间有半径略大于L+r大圆弧曲面,两凸起上各有一小段半径为R的小圆弧曲面,如图4所示分腔转子位于缸体大圆弧面的中间位置时,分腔转子的凹槽两边在主转子的凹槽内。
如图4位置开始双分腔转子容积机构的主转子1顺时针转动,两分腔转子在齿轮系8、9、10的作用下以两倍于主转子转速逆时针转动,两个容腔A2、A2
2变大从相应的进气口进气,容腔A1、A1
2变小从相应的排气口排气,容腔A3、A3
2被压缩,接着分腔转子的槽边转过排气口容腔A3、A3
2与排气口相通排气。主转子转动半圈时在两个分腔转子的作用下双分腔转子容积机构完成两次进排气循环,主转子转动一圈完成4次进排气循环,且由于结构上的对称布置,主转子的径向受力相互均衡,运转比方式1更加平稳。
方式3:
N≥3时分腔转子容积机构,结构类似双分腔容积机构按图5的3分腔转子示意图来说明,N分腔转子容积机构由半径为R的主转子1、N个半径为r分腔转子4、缸体5、固定齿轮8、N个惰齿轮9、N个齿轮10、及盖住主转子1与N分腔转子4的转子端盖、盖住缸体两端的缸体端盖组成,主转子1与分腔转子4的中心距为L。
与方式2相比主转子1有N个圆周均布的凹槽、缸体5有N个圆周均布的凸起、一边转子端盖上对应的是N个圆周均布的分腔转子转轴孔、另一边转子端盖除了N个圆周均布的分腔转子的转轴孔还有N个圆周均布的惰齿轮轴,由于转动部件是圆周对称分布只要运动件是均质的合质心就会在主转子1的转轴上了。
N分腔容积机构的固定齿轮8、N个惰齿轮9、N个齿轮10组成N组传动组,每组的速比是-N:1,
N分腔容积机构缸体的内壁有类同方式1的N个圆周均布的凸起,每个凸起的两对称曲面与分腔转子凹槽的两对称曲面也可以通过模拟共轭运动获得曲面,N凸起之间有半径略大于L+r大圆弧曲面,N凸起上各有一小段半径为R的小圆弧曲面。如图5所示分腔转子位于缸体大圆弧面的中间位置时,分腔转子的凹槽两边在主转子的凹槽内。
如图5位置开始分腔转子容积机构的主转子1顺时针转动,N分腔转子在齿轮系8、9、10的作用下以N倍于主转子转速逆时针转动,N个容腔A2、A2
2、A2
3……A2
n变大从相应的进气口进气,N个容腔A1、A1
2、A1
3……A1
n变小从相应的排气口排气,N容个腔A3、A3
2、A3
3……A3
n被压缩,接着N个分腔转子的槽边转过排气口N个容腔A3、A3
2、A3
3……A3
n与排气口相通排气;主转子转动1/N圈时在N个分腔转子的作用下N分腔转子容积机构完成N^2次进排气循环,主转子转动一圈完成N^2次进排气循环,且由于结构上的圆周均布,主转子的径向受力均衡,转动件运行非常平稳。
方式4:方式1.2.3中,缸体5的进出口加宽到当分腔转子4正对着缸体的凸起时,分腔转子4的凹槽两边与缸体5的进出口边对齐,这样容腔A3能一直保持进口与出口之一相通,就能应用到液体泵与马达。
上列较佳实施例,对本发明的目的、技术方案和优点进行了进一步详细说明,所应理解的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (6)
- 一种分腔转子容积机构,其特征在于:包含缸体(5)、主转子(1)、分腔转子(4)、转子端盖(3)、缸体端盖(2)、齿轮系;主转子(1)的两端具有主转轴,在主转轴上套设固定有转子端盖,转子端盖外侧罩设有缸体,且所述缸体端盖(2)上具有通孔用于主转轴穿过,主转子(1)可相对缸体转动,主转子(1)与转子端盖相对固定,主转子(1)上具有第一圆弧槽,所述第一圆弧槽内嵌设有所述分腔转子,所述分腔转子的转轴穿设在转子端盖的孔道内,以实现分腔转子与转子端盖的可相对转动,所述分腔转子转轴的一端固定设有齿轮,在转子端盖端面设有与齿轮啮合的惰齿轮,所述缸体端盖一内侧固定设有与惰齿轮啮合的固定齿轮;所述分腔转子上具有第二曲面凹槽,在缸体(5)上设有带一段小圆弧面的内凸起,所述内凸起上小圆弧面两侧设有进气孔道和出气孔道;主转子(1)转动时,转子端盖(6)上的惰齿轮(9)、分腔转子(4)及齿轮(8)绕固定齿轮(10)公转,同时齿轮(9)啮合固定齿轮(10)、齿轮(9)自转,并带动齿轮(8)与分腔转子(4)自转,分腔转子(4)与主转子(1)反向转动,分腔转子(4)转动到缸体(5)大圆弧面的中间位置时,分腔转子(4)的第二曲面凹槽两边在主转子(1)的第一圆弧槽内,分腔转子(4)的两槽边与缸体(5)内凸起小圆弧面相邻的两侧曲面是共轭关系,缸体(5)内凸起小圆弧面两侧的边线与分腔转子(4)的第二曲面凹槽曲面外段是共轭关系。
- 根据权利要求1所述的分腔转子容积机构,其特征在于:所述转子端盖的外圆面、缸体端盖的内圆面及缸体圆弧中心与主转子同轴;转子端盖外圆面、缸体端盖的内圆面两者之间留有运动间隙;转子端盖内端面与缸体内凸起部分端面之间留有运动间隙;缸体端盖的通孔与缸体圆弧面同轴,该通孔让主转子的主轴穿过且主转子轴承坐落在缸体端盖上起支撑作用。
- 根据权利要求1所述的分腔转子容积机构,其特征在于:所述缸体内壁为N组长度为H的单元,每组单元由半径略大于L+r的大圆弧面、半径为R弧长为S与大圆弧面同轴的小圆弧面、两对称且与大圆弧面相切与小圆弧面相连的曲面,对称面由小圆弧面轴与小圆弧中心线组成,N>1时N组单元按圆弧面中心轴均布,这样缸体内部形成N个内凸起,每个内凸起在小圆弧面的两侧均设有气口作为所述进气孔道和出气孔道;所述主转子转轴在缸体圆弧面中心轴,在缸体内部部分为半径略小于R圆柱体,长度略大于H,圆柱体上有N个半径略大于r的圆弧凹槽,圆弧凹槽中心轴与主转子中心轴的距离为L,转子的一端穿过转子端盖与缸体端盖做为功率输入输出轴;所述分腔转子转轴与主转子圆弧面槽的中心轴同轴,分腔转子在缸体内部的部分为圆柱体含一个由两对称曲面及连接两对称曲面的中间曲面组成组成的槽,圆弧面的半径为r,长度为H,分腔转子的质心位于其转轴上。
- 根据权利要求3所述的分腔转子容积机构,其特征在于:所述分腔转子在齿轮系的驱动下以N倍于主转子转速反转,分腔转子的两对称曲面从圆弧面到一中部接触线与缸体的小圆弧面两直线边线是共轭关系,所述中部接触线是分腔转子对称面与小圆弧的对称面重合时同侧小圆弧面直线边线分腔转子槽的重合直线,分腔转子的两对称曲面从所述中部接触线到两对称曲面的连接线部分在转动过程中与缸体的小圆弧面留有间隙没有接触,分腔转子的外圆弧面两直线边线与缸体的小圆弧面两侧的两对称曲面是共轭关系,上述尺寸L、R、r、S满足形成所述的两共轭关系;上述尺寸L、R、r、S满足主转子圆弧凹槽始终包含分腔转子的一部分,即分腔转子位于缸体大圆弧面的中间位置时,分腔转子的两圆弧边线在主转子的槽内。所述齿轮系包含与缸体圆弧面同轴的固定在缸体端盖上的中心齿轮及N个安装在转子端盖上的惰齿轮及N个驱动分腔转子齿轮,齿轮系中心轮与驱动分腔转子齿轮速变比为-1:N。所述转子端盖固定于主转子上与主转子一起转动,转子端盖的半径大于或等于缸体的大圆弧面半径,转子端盖上有N个分腔转子的转轴孔,中心有主转子转轴孔,在齿轮系侧的转子端盖有用于安装惰齿轮的轴。
- 根据权利要求1所述容积机构,其特征在于:所述N为1时,当分腔转子转到缸体的凸起位置且分腔转子的对称面与缸体的的对称面重合时,工作区被分腔转子分割成三个区,分腔转子圆弧面外侧一个封闭空腔、分腔转子内侧与缸体的两曲面形成两空腔分别与进排气口相通;随着转子的转动,与进气口相通的空腔变大,与排气口相通的空腔变小,到分腔转子过了缸体小圆弧面边时消失,此时分腔转子将工作区分成两个腔室,主转子继续转动,分腔转子两侧的空腔一边变 大一边变小,当分腔转子再次转到凸起位置且分腔转子的密封线刚过密封口时,又形成三部分空腔,接着分腔转子转到缸体的凸起位置且分腔转子的对称面与缸体的的对称面再次重合,若做为压缩机完成一次进气与压缩循环、排气口上配单向阀防止高压气体返回压缩腔;若做为膨胀机完成一次膨胀与排气循环。所述N大于1,当分腔转子转到缸体的凸起位置且分腔转子的对称面与缸体凸起部分的对称面重合时,每个工作区被分腔转子分割成三个区,分腔转子圆弧面外侧一个封闭空腔、密封转内侧与缸体的两曲面形成两空腔分别与进排气口相通;随着转子的转动,与进气口相通的空腔变大,与排气口相通的空腔变小,到分腔转子过了缸体小圆弧面边时消失,封此时分腔转子将工作区分成两个腔室,主转子继续转动,分腔转子两侧的空腔一边变大一边变小,当分腔转子转到下一个凸起位置且分腔转子的密封线刚过密封口时,每个工作区又形成三部分空腔,接着分腔转子转到缸体的凸起位置且分腔转子的对称面与缸体凸起部分的对称面再次重合,若做为压缩机每个工作区完成一次与压缩循环、排气口上配单向阀防止高压气体返回压缩腔;若做为膨胀机每个工作区完成一次排气与膨胀循环。
- 根据权利要求1所述容积机构,进出孔道扩大到当分腔转子(4)正对着缸体(5)的凸起时,分腔转子(4)的凹槽两边与缸体(5)的进出口边对齐;这样的容积机构可以用作液体泵与马达使用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110759671.6 | 2021-07-06 | ||
CN202110759671.6A CN113404694A (zh) | 2021-07-06 | 2021-07-06 | 分腔转子容积机构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023280183A1 true WO2023280183A1 (zh) | 2023-01-12 |
Family
ID=77681276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/104012 WO2023280183A1 (zh) | 2021-07-06 | 2022-07-06 | 分腔转子容积机构 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113404694A (zh) |
WO (1) | WO2023280183A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113404694A (zh) * | 2021-07-06 | 2021-09-17 | 陈崟 | 分腔转子容积机构 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999024716A1 (en) * | 1997-11-10 | 1999-05-20 | Jenkins, Graeme, Reid | Pump |
US20070119408A1 (en) * | 2003-01-31 | 2007-05-31 | Kang Julian Z C | Rotary machine with major and satellite rotors |
CN103233782A (zh) * | 2012-09-07 | 2013-08-07 | 胡武琼 | 旋塞式旋转压缩膨胀机构 |
CN103291365A (zh) * | 2013-05-27 | 2013-09-11 | 周觉明 | 具有转轮涡旋机构的流体机械与发动机 |
CN104100527A (zh) * | 2013-04-11 | 2014-10-15 | 刘千省 | 转子压缩机 |
CN113404694A (zh) * | 2021-07-06 | 2021-09-17 | 陈崟 | 分腔转子容积机构 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1337661A (fr) * | 1962-10-25 | 1963-09-13 | Moteur à pistons rotatifs | |
US3330215A (en) * | 1965-09-10 | 1967-07-11 | Yamane Seiji | Reversible rotary pump |
JPS575502A (en) * | 1980-06-11 | 1982-01-12 | Teruyasu Mochizuki | Rotor type rotary machine |
-
2021
- 2021-07-06 CN CN202110759671.6A patent/CN113404694A/zh active Pending
-
2022
- 2022-07-06 WO PCT/CN2022/104012 patent/WO2023280183A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999024716A1 (en) * | 1997-11-10 | 1999-05-20 | Jenkins, Graeme, Reid | Pump |
US20070119408A1 (en) * | 2003-01-31 | 2007-05-31 | Kang Julian Z C | Rotary machine with major and satellite rotors |
CN103233782A (zh) * | 2012-09-07 | 2013-08-07 | 胡武琼 | 旋塞式旋转压缩膨胀机构 |
CN104100527A (zh) * | 2013-04-11 | 2014-10-15 | 刘千省 | 转子压缩机 |
CN103291365A (zh) * | 2013-05-27 | 2013-09-11 | 周觉明 | 具有转轮涡旋机构的流体机械与发动机 |
CN113404694A (zh) * | 2021-07-06 | 2021-09-17 | 陈崟 | 分腔转子容积机构 |
Also Published As
Publication number | Publication date |
---|---|
CN113404694A (zh) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6659744B1 (en) | Rotary two axis expansible chamber pump with pivotal link | |
US11506056B2 (en) | Rotary machine | |
JP3853355B2 (ja) | 回転ピストン機械 | |
US3396632A (en) | Volumetric maching suitable for operation as pump, engine, or motor pump | |
US4844708A (en) | Elliptical-drive oscillating compressor and pump | |
JP5265705B2 (ja) | 回転式圧縮機 | |
JP4823455B2 (ja) | ギヤとこのギヤによる一対の係合ギヤを備えた流体機械 | |
JP2000506587A (ja) | 双円筒インペラ型ポンプ | |
WO2023280183A1 (zh) | 分腔转子容积机构 | |
US3387772A (en) | Rotary vacuum pump | |
JPS6115241B2 (zh) | ||
US5071328A (en) | Double rotor compressor with two stage inlets | |
CN103452836B (zh) | 转子流体机械变容机构 | |
CN103821715B (zh) | 平动旋转式压缩机械 | |
JPH05507536A (ja) | ロータリピストン型内燃機関 | |
JPH06272671A (ja) | 回転ピストン機械 | |
US4174195A (en) | Rotary compressor and process of compressing compressible fluids | |
US3671154A (en) | Epitrochoidal compressor | |
CN207906071U (zh) | 一种双偏心滚柱泵 | |
US1853394A (en) | Rotary machine or pump | |
US4137022A (en) | Rotary compressor and process of compressing compressible fluids | |
CN214424691U (zh) | 一种三角转子泵 | |
US4135864A (en) | Rotary compressor and process of compressing compressible fluids | |
JPH11101190A (ja) | 圧縮機 | |
CN203835721U (zh) | 平动旋转式压缩机械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22836932 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22836932 Country of ref document: EP Kind code of ref document: A1 |