WO2023277730A1 - Лекарственное средство для профилактики заражения sars-cov-2 - Google Patents
Лекарственное средство для профилактики заражения sars-cov-2 Download PDFInfo
- Publication number
- WO2023277730A1 WO2023277730A1 PCT/RU2022/000207 RU2022000207W WO2023277730A1 WO 2023277730 A1 WO2023277730 A1 WO 2023277730A1 RU 2022000207 W RU2022000207 W RU 2022000207W WO 2023277730 A1 WO2023277730 A1 WO 2023277730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sars
- cov
- rnase
- liposomes
- rna
- Prior art date
Links
- 239000003814 drug Substances 0.000 title claims abstract description 21
- 208000025721 COVID-19 Diseases 0.000 title claims abstract description 9
- 208000037847 SARS-CoV-2-infection Diseases 0.000 title claims abstract description 4
- 229940079593 drug Drugs 0.000 title claims description 16
- 238000011321 prophylaxis Methods 0.000 title abstract 3
- 239000002502 liposome Substances 0.000 claims abstract description 48
- 241001678559 COVID-19 virus Species 0.000 claims abstract description 41
- RJMUSRYZPJIFPJ-UHFFFAOYSA-N niclosamide Chemical compound OC1=CC=C(Cl)C=C1C(=O)NC1=CC=C([N+]([O-])=O)C=C1Cl RJMUSRYZPJIFPJ-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229960001920 niclosamide Drugs 0.000 claims abstract description 29
- 238000011282 treatment Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 16
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 claims description 8
- 102000005891 Pancreatic ribonuclease Human genes 0.000 claims description 8
- 208000001528 Coronaviridae Infections Diseases 0.000 claims description 7
- 230000002265 prevention Effects 0.000 claims description 7
- 229940126601 medicinal product Drugs 0.000 claims 1
- 102000006382 Ribonucleases Human genes 0.000 abstract description 46
- 108010083644 Ribonucleases Proteins 0.000 abstract description 46
- 108090000623 proteins and genes Proteins 0.000 abstract description 11
- 241000711573 Coronaviridae Species 0.000 abstract description 8
- 241000700605 Viruses Species 0.000 abstract description 8
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 abstract description 5
- 230000000840 anti-viral effect Effects 0.000 abstract description 5
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 5
- 208000025370 Middle East respiratory syndrome Diseases 0.000 abstract description 4
- 229940000425 combination drug Drugs 0.000 abstract description 4
- 239000002904 solvent Substances 0.000 abstract description 4
- 210000004779 membrane envelope Anatomy 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 210000002845 virion Anatomy 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 102000004169 proteins and genes Human genes 0.000 abstract 1
- 210000002345 respiratory system Anatomy 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 66
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 20
- 241001465754 Metazoa Species 0.000 description 15
- 241000283973 Oryctolagus cuniculus Species 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 12
- 108091034117 Oligonucleotide Proteins 0.000 description 10
- 230000009471 action Effects 0.000 description 10
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000001502 gel electrophoresis Methods 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 7
- 239000008347 soybean phospholipid Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 150000003904 phospholipids Chemical class 0.000 description 6
- 238000011534 incubation Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 238000010222 PCR analysis Methods 0.000 description 4
- 241000315672 SARS coronavirus Species 0.000 description 4
- 239000012620 biological material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000003757 reverse transcription PCR Methods 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 238000002123 RNA extraction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 210000003494 hepatocyte Anatomy 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000010257 thawing Methods 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 210000002159 anterior chamber Anatomy 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- 210000000795 conjunctiva Anatomy 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 238000001917 fluorescence detection Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 244000144993 groups of animals Species 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 210000000554 iris Anatomy 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 210000003928 nasal cavity Anatomy 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 2
- 210000003786 sclera Anatomy 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229960005215 dichloroacetic acid Drugs 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
Definitions
- the invention relates to medicine, pharmaceuticals and biotechnology.
- a new combined drug (pharmaceutical composition) is presented that has an antiviral effect against the SARS-CoV-2 coronavirus and related viruses, such as SARS-CoV, MERS, etc., whose genome is RNA, and the virions are provided with a lipid membrane, composition (i ) due to the destruction of the coronovirus genome by the enzyme RNase, composition (ii) due to the destruction of the coronovirus genome by the enzyme RNase and the drug niclosamide, which prevents the replication of SARS-CoV-2.
- the proposed compositions can be used on an outpatient basis to suppress the replication of the SARS-CoV-2 virus, reduce the viral load, and reduce the risk of infection transmission by airborne droplets.
- RNA of coronaviruses can be cleaved by the action of the enzyme ribonuclease (RNase) [2], which can cleave the RNA of coronaviruses, or additionally by suppressing the replication of coronaviruses under the action of niclosamide, a drug used to treat parasitic infections.
- RNase ribonuclease
- niclosamide can inhibit the replication of the SARS-CoV-2 virus [3-6].
- the combined drug is intended for inhalation or intranasal administration.
- the combination drugs of the present invention include: composition (i) - liposomes delivering an effective amount of RNase and composition (i) - liposomes delivering an effective amount of RNase and an effective amount of niclosamide. These pharmaceutical compositions provide cleavage of SARS-CoV-2 RNA.
- Combination medicines can be used as nasal drops or spray, as well as inhalation.
- the technical result is to create an effective and safe antiviral agent that ensures the destruction of SARS-CoV-2 RNA.
- the specified technical result is illustrated by the following examples.
- a combined drug for the prevention or treatment of coronavirus infection caused by SARS-CoV-2 is proposed, containing an effective amount of RNase molecules in liposomes.
- a combined drug for the prevention or treatment of coronavirus infection caused by SARS-CoV-2 is proposed, containing an effective amount of RNase and niclosamide molecules in liposomes.
- the above combination drugs may be intended for intranasal or inhalation administration.
- FIG. 1 shows the results of the experiment according to example 4.
- FIG. 2 shows the results of the experiment according to example 5 (gel electrophoresis method).
- Example 1 Obtaining liposomes with RNase.
- Phospholipids of both vegetable (soy lecithin) and animal origin (bovine brain) were used to obtain liposomes.
- ribonuclease a commercial preparation-enzyme RNase A with MM-13.7 kDa, pH optimum - 5, 0-6.0; 50i/mg from Mol BIO HIMEDIA, obtained from bovine pancreas or ribonuclease from bovine pancreas (RNase A) from SamsonMed ( Russia).
- phospholipids an extract from soy lecithin used in the food industry or phospholipids of animal origin (from the brain of cattle) were used.
- Dosage forms of the pharmaceutical compositions described herein can be obtained by any known method and contain other excipients capable of increasing the stability of compositions (i) and (ii) and RNase transfection.
- Niclosamide was used (crystalline substance, melting point 227-232 ° C.
- the IR spectrum of the test sample corresponded to the IR spectrum of anhydrous niclosamide - standard, the structural formula of niclosamide has the following form:
- composition i liposomes containing RNase (composition i) and liposomes containing RNase A and niclosamide (composition ii)
- lecithin solution 1 ml
- chloroform 6 ml
- the solvent was distilled off in a vacuum (4 ⁇ 2 mmHg) at a temperature of +40°C.
- 50 ⁇ l of Ribonuclease A, 30 ⁇ l of niclosamide solution (10% solution in DMSO) and 5 ml of physiological saline were added to the flask.
- the resulting mixture was frozen at minus 20° ⁇ for 20 min, then the mixture was thawed at 23° ⁇ for 30 min.
- Dosage forms of the pharmaceutical compositions provided herein may be prepared by any known method and contain other excipients capable of increasing the stability of compositions (i) and (i) and the transfection of RNase and niclosamide.
- Example 3 Synthesis of primers for the N gene of SARS-CoV-2 The PCR method was used to determine whether SARS-CoV-2 RNA could be cleaved.
- the N gene was chosen as the most stable for such types of coronaviruses as SARS and MERS, encoding the nucleocapsid [9-11]. Primers and a fluorescent probe were synthesized for the N gene using open international data from the CDC (US Center for Disease Control and Prevention) [12].
- Primers were synthesized on an ASM-2000 DNA synthesizer by the phosphoramidite solid-phase method [13]. After synthesis, the oligonucleotides were removed from the solid phase with concentrated 30% aqueous ammonia for 2 hours at a temperature of 60°C. The oligonucleotide solution was evaporated to remove ammonia and precipitated in 70% ethanol in the presence of 0.3M sodium acetate and 50 mM magnesium chloride. Oligonucleotides were precipitated by centrifugation at 14,000 rpm for 20 minutes. The precipitate was washed twice with 70% ethanol and dried at room temperature for 30 minutes.
- oligonucleotides were purified from short incompletely synthesized molecules. To do this, at the end of the synthesis, the last step of removing the DMT group was not carried out; as a result, only fully synthesized oligonucleotides at the 5' end contain a DMT group for purification on cartridges by reverse phase chromatography. Reverse phase chromatography was carried out under the following conditions: oligonucleotides were washed with 5% acetonitrile with sodium chloride at a concentration of 100 mg/ml. To remove the DMT group from oligonucleotides used 3% dichloroacetic acid solution.
- oligonucleotides After removal of the DMT group, 50% acetonitrile in 100 mM Tris buffer pH 8.5 was used to elute the purified oligonucleotides from the cartridge.
- the purified oligonucleotides were precipitated with 70% ethanol in the presence of 50 mM magnesium chloride, by centrifugation at 14,000 rpm for 20 minutes.
- the resulting precipitate of oligonucleotides was dissolved in TE buffer pH 8.0 to a concentration of 20 ⁇ M.
- the resulting primer solution was used to carry out the PCR reaction.
- the content of the virus in biological samples was determined by PCR, and gel electrophoresis of the samples was performed as described in examples 4 and 5.
- RNA and detection of the SARS-CoV-2 virus was carried out according to the standard method using certified DNA-Technology reagent kits [14,15], as well as using primers and a probe synthesized by us.
- the effectiveness of the action of liposomes was determined by cycle threshold shift (AACt) in PCR analysis.
- AACt cycle threshold shift
- RNA isolation we used the DNA-Technology reagent kit and the certified ENKOR kit developed by us. RNA detection in the samples was carried out with the synthesized primers and probe described in Example 3.
- both the DNA-Technology SARS-CoV-2/SARS-CoV reagent kit and the PCR kit developed by us were used under the following conditions: mix 25 ⁇ l, 1x PCR buffer (20 mM Tris-HCl pH 8.5, 20 mM ammonium sulfate, 20 mM potassium chloride, 0.1 ⁇ g/ml BSA), 3 mM magnesium chloride, 0.8 mM dNTP, 400 nm each primer, 200 nM probe, 1 u. polymerase, 25 units.
- PCR program 50°C - 15 minutes; 95°C - 15 minutes; 40 cycles (95° ⁇ - 10 seconds; 60° ⁇ - 40 seconds, signal reading via FAM channel).
- PCR analysis 5 ⁇ l of RNA sample were used.
- composition (i) and (i) were also studied by gel electrophoresis [16] using primers synthesized by us for the N gene (466 bp).
- composition i D - sample after incubation with RNase-containing liposomes (composition i) F - sample after incubation with liposomes containing RNase and niclosamide (composition i)
- K - negative control - a sample not containing the SARS-CoV-2 virus.
- mice in group 1 were instilled with 20 ⁇ l of physiological saline into the nasal cavity, animals of groups 3 and 4 were injected with 20 ⁇ l of compositions (i) and (ii), respectively, animals of group 5 were injected with 20 ⁇ l of RNase (1 unit/ ⁇ l). After 1 hour, all animals (except group 1) were injected with 20 ⁇ l of biological material positive for SARS-CoV-2 with a viral load of Ct 20. Then, after 1 hour, samples were taken from the nasal cavity in all animals as described in [14 ]. All obtained samples were analyzed by PCR with the DNA-Technology SARS-CoV-2/SARS-CoV reagent kit [15]. The results of the experiments are presented in table. 3. Table 3
- compositions (i) and (ii) Study of the in vivo effect of compositions (i) and (ii) on SARS-CoV-2 RNA inhibition by a quantitative PCR method using hybridization-fluorescence detection
- compositions (i) - group 3 and compositions (ii) - group 4 were not detected.
- group 2 and group 5 the average value of Ct 26-27 practically does not change.
- compositions (i) and (ii) The results indicate that under the action of compositions (i) and (ii) the RNA of the SARS-CoV-2 virus is cleaved, while free RNase practically does not work in vivo.
- compositions (i) and (ii) in vivo were also studied by gel electrophoresis ( Figure 2) [16].
- Free RNase (gr. 5) does not cleave coronavirus RNA in vivo (Table 3 and gr. 5).
- compositions (i) were incubated at 36°C for various time intervals from one to six hours (table. 4). Then, biological material with coronavirus infection SARS-CoV-2 was added to each sample of composition (i) and again incubated at 36°C for one hour. The experiment was carried out as described in example 4. RNA isolation and detection of the SARS-CoV-2 virus were carried out according to the standard method using certified DNA-Technology reagent kits [15]. The experiment was carried out in 5 repetitions.
- Table 4 shows data on the study of the stability of liposomes with RNase-composition (i) by RT-PCR.
- composition (i) the threshold cycle (Ct) is shifted by 8 cycles, which indicates that the viral load is reduced by about 10 3 times.
- composition i the average value of the threshold cycle (Ct) during PCR with liposomes containing RNase (composition i) practically does not change in the time interval from 1 to 6 hours, which indicates the stability of liposomes containing RNase (composition i) for 6 hours .
- compositions (ii) were incubated at 36°C for various time intervals from one to six hours (table. 5). Then, biological material with SARS-CoV-2 coronavirus infection was added to each sample of composition (ii) and incubated again at 36°C for one hour. The experiment was carried out as described in example 4. RNA isolation and detection of the SARS-CoV-2 virus were carried out according to the standard method using certified DNA-Technology reagent kits [15].
- composition ii Study of the stability of liposomes with RNase and niclosamide (composition ii) by RT-PCR
- composition (ii) As can be seen from Table 5, under the action of composition (ii), the threshold cycle (Ct) is shifted by 8 cycles, which indicates that the viral the load is reduced by about 10 times. It was found that the average value of the threshold cycle (Ct) during PCR practically does not change in the time interval from 1 to 6 hours, which indicates the stability of liposomes containing RNase and niclosamide (composition i) for 6 hours.
- Fibroblast cells were obtained by us according to the method [17]. Rat liver hepatocytes were obtained according to the method [18].
- compositions (i) and (ii) were determined by the in vitro MTT method [19]. Data are presented as mean value (from 3 experiments). The cytotoxic effect of each of the studied samples of the compositions was compared with the control cytostatic "Cisplatin” (Teva Pharmaceutical Industries, Ltd., Israel).
- compositions (i) and (ii) do not have a cytotoxic effect on normal cells.
- mice were carried out in vivo on 4 groups of animals, 5 rabbits each (Giant breed, weighing 1.6 - 1.8 kg) and outbred mice (weighing 18 - 20 g), 10 mice per group.
- the studied compositions were instilled into the eyes of the animals 2 times a day (morning and evening), 50 ⁇ l of saline in the right eye - control, and in the left eye 50 ⁇ l - composition - (i) and (ii) for 5 days.
- the first group - control (physiological solution)
- composition (s) The fourth group - liposomes from soy lecithin with RNase and niclosamide (composition (s)).
- test samples 20 ⁇ l were injected intranasally into each nostril.
- Tables 8 and 9 show the biochemical parameters of the studied animals.
- compositions (i) and (i) on mucous membranes were studied by studying the dynamic control of the eyes of rabbits.
- the first test was carried out one day after the instillation of compositions (i) and (ii) and soy lecithin liposomes.
- compositions (i) and (i) are not toxic to the eyes of rabbits.
- Patent RU 2746362 (application 2021106335 dated March 11, 2021) - "Combined drug with antiviral effect against the new coronavirus SARS-CoV-2".
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Communicable Diseases (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- Pain & Pain Management (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
Abstract
Изобретение относится к медицине, фармацевтике и биотехнологии. Представлена новая фармацевтическая композиция, обладающая противовирусным эффектом в отношении коронавируса SARS-CoV-2 и родственных вирусов, таких как SARS, MERS и др., геном которых представлен РНК, а вирионы снабжены липидной оболочкой. Комбинированное лекарственное средство для профилактики заражения (лечения) SARS-CoV-2 представляет собой (i) - липосому с эффективным количеством фермента РНКазы, или (ii) - липосому с эффективным количеством фермента РНКазы и эффективным количеством препарата никлозамида, вспомогательное средство - растворитель, разрешенный к применению в фармацевтике. Изобретение обеспечивает разрушение генетического материала - РНК коронавирусов, что дает возможность профилактики от РНК-содержащих вирусов, в том числе SARS-CoV-2, попадающих в организм человека через верхние дыхательные пути.
Description
ЛЕКАРСТВЕННОЕ СРЕДСТВО ДЛЯ ПРОФИЛАКТИКИ ЗАРАЖЕНИЯ SARS-COV-2
ОПИСАНИЕ Область техники
Изобретение относится к медицине, фармацевтике и биотехнологии. Представлено новое комбинированное лекарственное средство (фармацевтическая композиция), обладающая противовирусным эффектом в отношении коронавируса SARS-CoV-2 и родственных вирусов, таких как SARS-CoV, MERS и др., геном которых представлен РНК, а вирионы снабжены липидной оболочкой, композиция (i) за счет разрушения генома короновируса ферментом РНКазой, композиция (ii) за счет разрушения генома короновируса ферментом РНКазой и препаратом никлозамидом, препятствующим репликации SARS-CoV-2. Предложенные композиции могут применяться амбулаторно для подавления репликации вируса SARS- CoV-2, снижения вирусной нагрузки, снижения риска передачи инфекции воздушно-капельным путем.
Уровень техники
В мире разработан целый ряд профилактических вакцин, а также средств терапии для лечения коронавирусной инфекции. Имеется патент RU 2746362 (заявка 2021106335 от 11.03.2021) - «Комбинированное лекарственное средство, обладающее противовирусным эффектом в отношении нового коронавируса SARS-CoV-2» [1] в котором описано “блокирование передачи инфекции и уменьшение риска развития клинических осложнений” за счет применения малых интерферирующих РНК (ми РНК). Основой вышеуказанного патента является получение комбинированного лекарственного средства с созданными молекулами РНК, способными опосредовать мишень-специфические подавление репликации вируса SARS-CoV-2.
Однако не предложено препаратов, способных уничтожать коронавирусы путем прямого разрушения их генома - одноцепочечную (+)РНК. Очевидно, что прямое разрушения генома вируса может быть осуществлено путем воздействия фермента рибонуклеазы (РНКазы) [2], способного расщеплять РНК коронавирусов или дополнительно путем подавления репликации коронавирусов под действием никлозамида - лекарственного средства, применяемого для лечения паразитарных инфекций. В настоящее время показано, что никлозамид может ингибировать репликацию вируса SARS-CoV-2 [3-6].
Раскрытие изобретения
Комбинированное лекарственное средство предназначено для ингаляционного или интраназального введения.
Внедрение в практику препаратов на основе РНКаз и никлозамида ограничивается рядом факторов, к которым относятся недостаточная эффективность и безопасность доставки РНКазы и никлозамида в вирусные частица-мишени. Применение липосом [7] для доставки вышеуказанных препаратов (РНКазы и никлозамида) решает эту проблему, так как SARS- CoV-2, а также родственные ему вирусы MERS, SARS-CoV имеют липидную оболочку, позволяющие трансфецировать (проникать) липосомам и внедрять РНКазу и никлозамид непосредственно внутрь вируса.
Таким образом, в настоящее время существует необходимость в разработке нового противовирусного средства способного разрушать РНК коронавируса.
В состав комбинированных лекарственных средств по настоящему изобретению входит: композиция (i) - липосомы, осуществляющие доставку эффективного количество РНКазы и композиция (и) - липосомы, осуществляющие доставку эффективного количество РНКазы и
эффективного количество никлозамида. Эти фармацевтические композиции обеспечивают расщепление РНК SARS-CoV-2.
Комбинированные лекарственные средства можно употреблять в виде назальных капель или спрея, а также в виде ингаляции.
Технический результат заключается в создании эффективного и безопасного противовирусного средства, обеспечивающего разрушения РНК SARS-CoV-2. Указанный технический результат поясняется следующими примерами.
Для достижения вышеуказанного технического результата предложено комбинированное лекарственное средство для профилактики или лечения коронавирусной инфекции, вызываемой SARS-CoV-2, содержащее эффективное количество молекул РНКазы в липосомах.
Также для достижения вышеуказанного технического результата предложено комбинированное лекарственное средство для профилактики или лечения коронавирусной инфекции, вызываемой SARS-CoV-2, содержащее эффективное количество молекул РНКазы и никлозамида в липосомах.
Согласно настоящему изобретению вышеуказанные комбинированные лекарственные средства могут быть предназначены для интраназального или ингаляционного введения.
Также для достижения вышеуказанного технического результата предложен способ профилактики или лечения SARS-CoV-2 инфекции, в котором вышеуказанное(ые) комбинированное(ые) лекарственное(ые) средство(а) вводятся одновременно, отдельно или последовательно с другими терапевтическими средствами.
Краткое описание чертежей
На Фиг. 1 приведены результаты эксперимента по примеру 4.
На Фиг. 2 приведены результаты эксперимента по примеру 5 (метод гель-электрофореза).
Осуществление изобретения
Указанный выше технический результат поясняется следующими примерами.
Пример 1. Получение липосом с РНКазой.
Для получения липосом использовали фосфолипиды как растительного (соевый лецитин), так и животного происхождения (из мозга крупного рогатого скота). В качестве рибонуклеазы использовали коммерческий препарат-фермент РНКаза А с ММ-13.7 кД, pH оптимум - 5, 0-6,0; 50и/мг фирмы Mol BIO HIMEDIA, полученный из поджелудочной железы крупного рогатого скота или рибонуклеазу из поджелудочной железы крупного рогатого скота (РНКаза А) фирмы “СамсонМед” (Россия).
В качестве фосфолипидов использовали экстракт из соевого лецитина, применяемого в пищевой промышленности или фосфолипиды животного происхождения (из мозга крупного рогатого скота).
Для получения липосом - 1 г коммерческого (VEROLEC FLS, China) соевого лецитина растворяли в 20 мл хлороформ-метанольной смеси при соотношении 2:1. Смесь выдерживали в течение 10 ч при температуре 2 - 4°С. Затем смесь центрифугировали при 4500 об/мин в течение 5 мин. Отбирали 1 мл надосадочной жидкости и растворяли в 6 мл хлороформа. Далее растворитель отгоняли в вакууме (4±2 мм.рт ст), при температуре +40°С. После полного удаления растворителя добавляли 50 мкл Рибонуклеазы А (Ш/мкл) и 5 мл физиологического раствора. Полученную смесь замораживали при -20°С в течение 20 мин, затем смесь размораживали при перемешивании при 23 °С в течение 30 мин. (процесс замораживания и оттаивания повторяли четырежды). Затем полученную смесь обрабатывали ультразвуком при 22 кГц, 30 сек в 4 повторах.
Аналогичным образом получали липосомы на основе фосфолипидов из мозга крупного рогатого скота, которые были выделены по методу [8].
Лекарственные формы фармацевтической композиции, приведенных в настоящем документе могут быть получены любым известным способом и содержать другие вспомогательные вещества, способные увеличивать стабильность композиций (i) и (ii), и трансфекцию РНКазы.
Пример 2. Получение липосом с никлозамидом и РНКазой.
Использовали никлозамид (кристаллическое вещество, температура плавления 227-232 °С. ИК-спектр тестируемого образца соответствовал ИК- спектру безводного никлозамида - стандарта, структурная формула никлозамида имеет следующий вид:
Для получения липосом, содержащих РНКазу (композиция i) и липосом, содержащих РНКазу А и никлозамид (композиция ii), 1 мл раствора лецитина (1,075мМ) смешивали с 6 мл хлороформа. Далее растворитель отгоняли в вакууме (4±2 мм.рт.ст.), при температуре +40°С. После удаления хлороформа в колбу добавляли 50 мкл Рибонуклеазы А, 30 мкл раствора никлозамида (10% раствор в ДМСО) и 5 мл физиологического раствора. Полученную смесь замораживали при минус 20°С в течение 20 мин, затем смесь размораживали при 23 °С в течение 30 мин. при перемешивании (процесс замораживания и оттаивания повторяли четырежды). Затем полученную смесь обрабатывали ультразвуком при 22 кГц, 30 сек. Аналогичным образом получали липосомы на основе фосфолипидов из мозга крупного рогатого скота, которые были выделены по методу [8].
Лекарственные формы фармацевтических композиций, приведенных в настоящем документе могут быть получены любым известным способом и содержать другие вспомогательные вещества, способные увеличивать стабильность композиций (i) и (и), и трансфекцию РНКазы и никлозамида. Пример 3. Синтез праймеров на N ген SARS-CoV-2 Для определения возможности расщепления РНК SARS-CoV-2 использовали ПЦР метод. В качестве мишени для определения возможности расщепления РНКазой генома коронавируса SARS-CoV-2 был выбран N ген, как наиболее стабильный для таких типов коронавирусов как SARS и MERS, кодирующий нуклеокапсид [9-11]. На N ген были синтезированы праймеры и флуоресцентный зонд, используя открытые международные данные CDC (Центр по контролю и профилактике заболеваний США) [12].
Синтез праймеров проводили на приборе ДНК-синтезаторе ASM-2000 фосфорамидитным твёрдофазным методом [13]. После синтеза, олигонуклеотиды снимали с твёрдой фазы концентрированным 30% водным аммиаком в течении 2 часов при температуре 60°С. Раствор олигонуклеотидов выпаривали для удаления аммиака и осаждали в 70% этаноле в присутствии 0,ЗМ ацетата натрия и 50 мМ хлорида магния. Для осаждения олигонуклеотидов центрифугировали при 14000 об/мин в течение 20 минут. Осадок промывали дважды 70% этанолом и высушивали при комнатной температуре в течение 30 минут.
После синтеза олигонуклеотиды очищали от коротких не полностью синтезированных молекул. Для этого в конце синтеза не проводили последний этап снятия ДМТ группы, в результате только полностью синтезированные олигонуклеотиды на 5’ конце содержат ДМТ группу для очистки на картриджах методом обратно-фазовой хроматографии. Обратно- фазовую хроматографию проводили в следующих условиях: промывку олигонуклеотидов проводили с помощью 5% ацетонитрила с хлоридом натрия в концентрации 100 мг/мл. Для удаления ДМТ группы с
олигонуклеотидов использовали 3% раствор дихлоруксусной кислоты. После удаления ДМТ группы для элюирования очищенных олигонуклеотидов с картриджа использовали 50% ацетонитрил в 100 мМ трис буфере pH 8,5. Очищенные олигонуклеотиды осаждали 70% этанолом в присутствии 50 мМ хлорид магния, центрифугированием при 14000 об/мин в течение 20 минут. Полученный осадок олигонуклеотидов растворяли в ТЕ буфере pH 8,0 до концентрации 20 мкМ. Полученный раствор праймеров использовали для проведения ПЦР реакции.
Таблица 1
Последовательность праймеров и флуоресцентного зонда на N ген
С помощью данных праймеров и зонда специфичных к участку N гена РНК SARS-CoV-2 методом ПЦР определяли содержание вируса в биологических образцах, и проводили гель-электрофорез образцов как описано в примерах 4 и 5.
Пример 4. Изучение действия липосом с РНКазой на SARS-CoV-2 методом RT-ПЦР in vitro.
Выделение РНК и выявление вируса SARS-CoV-2 проводили по стандартному методу с помощью сертифицированных наборов реагентов « ДНК-Т ехнол огия» [14,15], а так же с помощью праймеров и зонда синтезированных нами. Эффективность действия липосом определяли по
смещению порогового цикла (AACt) в ПЦР анализе. Пороговый цикл показывает какое количество РНК содержится в пробах, и он обратно пропорционален логарифму начального количества копий.
Для выделения РНК использовали набор реагентов «ДНК-Технология» так и разработанный нами сертифицированный набор «ЭНКОР». Детекцию РНК в образцах проводили с синтезированными праймерами и зондом, описанных в Примере 3. Для проведения ПЦР анализа использовали как набор реагентов «ДНК-Технология» SARS-CoV-2/SARS-CoV, так и разработанный нами ПЦР набор в следующих условиях: объём смеси 25 мкл, 1х ПЦР буфер (20 мМ трис-НС1 pH 8,5, 20 мМ сульфат аммония, 20 мМ хлорид калия, 0,1 мкг/мл БСА), 3 мМ хлорид магния, 0,8 мМ дНТФ, 400 нм каждого праймера, 200 нМ зонда, 1 ед. полимеразы, 25 ед. ревертазы. Программа ПЦР: 50°С - 15 минут; 95°С - 15 минут; 40 циклов (95°С - 10 секунд; 60°С - 40 секунд, считывание сигнала по каналу FAM). Для ПЦР анализа использовали по 5 мкл РНК образца.
Образцы биологического материала человека (по 80 мкл мазка из носоглотки), содержащие коронавирус SARS-CoV-2 инкубировали с 20 мкл композиции (i) и (и) (полученных как описано в примерах 1 и 2), в течение 1 часа при 36°С. Параллельно проводили инкубирование тех же образцов с 20 мкл свободной РНКазы (1 ед./мкл), а также с «пустыми» липосомами, не содержащими РНКазу. Результаты экспериментов представлены в табл. 2.
Таблица 2
Изучение действия in vitro липосом с РНКазой на N ген SARS-CoV-2 ПЦР методом с помощью гибридизационно-флуоресцентной детекции
Как видно из приведенных данных (табл. 2), под действием «пустых» липосом пороговый цикл (Ct.) реакции RT-ПЦР практически не меняется, что свидетельствует о том, что липосомы сами по себе не могут разрушать РНК SARS-CoV-2. В то же время наибольшее воздействие, и сдвиг Ct происходит под действием липосом, содержащих РНКазу - на 9 циклов, и липосом, содержащих РНКазу и никлозамид - на 10 циклов, что свидетельствует о том, что липосомы, содержащие РНКазу расщепляют РНК коронавируса и снижают концентрацию РНК примерно в 103 раз. При этом сама РНКаза в наших экспериментах сдвигает Ct на 3 цикла, по-видимому, за счет расщепления «свободных» РНК COVID-19. Следует отметить, что липосомы, содержащие РНКазу с никлозамидом проявляли практически такое же действие, что и липосомы, содержащие только РНКазу, что и следовало ожидать из биологической активности никлозамида.
Действие композиции (i) и (и) исследовалось также методом гель- электрофореза [16], используя синтезированные нами праймеры на N ген (466 п.н.).
Результаты эксперимента приведены на Фиг. 1.
Фиг.1. Гель электрофорез в 3 % агарозном геле [16].
Образцы - амплификатов N гена:
А- исходный образец, положительный по COVID-19
В- образец после инкубации с “пустыми” липосомами
С- образец после инкубации с РНКазой
Д- образец после инкубации с липосомами, содержащими РНКазу (композиция i)
F- образец после инкубации с липосомами содержащими РНКазу и никлозамид (композиция и)
К- отрицательный контроль - образец не содержащий вирус SARS- CoV-2.
Гель электрофорез (Фиг. 1) ПЦР анализа выявил, что после инкубации позитивных SARS-CoV-2 образцов с композициями (i) и (и) приводит к разложению N гена, так как продукт амплификации на гель электрофорезе отсутствует, что свидетельствует о том, что произошло расщепления N гена SARS-CoV-2.
Пример 5. Изучение действия липосом с РНКазой на SARS-CoV-2 in vivo.
Исследования проводили на 5 группах кроликов породы «Великан», весом 1,6-1, 8 кг, возраста 3-4 месяца, по 5 животных в каждой группе:
Группа 1- отрицательный контроль (физиологический раствор)
Группа 2- положительный контроль, образец мазка содержащий SARS-CoV-2 Группа 3 -композиция (i)
Группа 4-композиция (ii)
Группа 5-РНКаза (1ед./мкл)
В носовую полость животным в группе 1 закапывали 20 мкл физиологического раствора, животным группы 3 и 4 вводили по 20 мкл композиций (i) и (ii), соответственно, животным группы 5 вводили по 20 мкл РНКазы (1 ед/мкл). Через 1 час всем животным (кроме группы 1) вводили по 20 мкл биологического материала, позитивного по SARS-CoV-2 с вирусной нагрузкой - Ct 20. Далее через 1 час у всех животных был сделан забор образцов из носовой полости как описано в [14]. Все полученные образцы анализировали методом ПЦР с набором реагентов «ДНК-Технология» SARS- CoV-2/SARS-CoV [15]. Результаты экспериментов представлены в табл. 3.
Таблица 3
Изучение действия in vivo композиции (i) и (ii) на ингибирование РНК SARS-CoV-2 количественным ПЦР методом с помощью гибридизационно- флуоресцентной детекции
Как видно из табл.З, при введении животным композиций (i) - группа 3, и композиций (ii) - группа 4 ,РНК SARS-CoV-2 не обнаруживается. В то же время в группе 2 и группе 5 среднее значение Ct 26-27 практически не меняется.
Результаты свидетельствуют о том, что под действием композиций (i) и (ii) происходит расщепление РНК вируса SARS-CoV-2, тогда как свободная РНКаза практически не действует в условиях in vivo.
Действие композиции (i) и (ii) in vivo исследовалось также методом гель-электрофореза (Фиг.2) [16].
Фиг.2. Гель электрофорез в 3 % агарозном геле [16].
Группа 1- отрицательный контроль (физиологический раствор)
Группа 2- положительный контроль, образец мазка содержащий SARS-CoV-2
Группа 3 -композиция (i)
Группа 4-композиция (и)
Группа 5-РНКаза (1 ед./мкл)
Как видно из Фиг. 2, в контрольных образцах (исходный К+ - группа 2) имеется фрагмент N гена COVID-19, тогда как под действием композиций (i) и (ii) (гр. Зи гр. 4) происходит разрушение N ген вируса SARS-CoV-2.
Свободная РНКаза (гр.5) не расщепляет РНК коронавируса in vivo (табл. 3 и гр. 5).
Пример 6. Стабильность липосом с РНКазой (композиция (i))
Для определения стабильности композицию (i) инкубировали при 36°С в течение различных интервалов времени от одного до шести часов (табл. 4). Затем к каждому образцу композиции (i) добавляли биологический материл с коронавирусной инфекцией SARS-CoV-2 и вновь инкубировали при 36°С один час. Эксперимент проводили как описано в примере 4. Выделение РНК и выявление вируса SARS-CoV-2 проводили по стандартному методу с помощью сертифицированных наборов реагентов «ДНК-Технология» [15]. Эксперимент проводили в 5 повторах.
В табл.4 приведены данные по изучению стабильности липосом с РНКазой -композиция (i) методом RT-ПЦР.
Таблица 4
Исследование стабильности липосом с РНКазой- композиция (i) методом RT-
ПЦР
Из приведённой таблицы видно, что под действием композиции (i) пороговый цикл (Ct) смещается на 8 циклов, что свидетельствует о том, что вирусная нагрузка уменьшается примерно в 103 раз. При этом установлено, что среднее значение порогового цикла (Ct) при ПЦР с липосомами содержащими РНК азу (композиция i) практически не меняется в интервале времени от 1 до 6 часов, что свидетельствует о стабильности липосом содержащих РНКазу (композиция i) в течение 6 часов.
Пример 7. Стабильность липосом с РНКазой и никлозамидом (композиция (ii))
Для определения стабильности композицию (ii) инкубировали при 36°С в течение различных интервалов времени от одного до шести часов (табл. 5). Затем к каждому образцу композиции (ii) добавляли биологический материл с коронавирусной инфекцией SARS-CoV-2 и вновь инкубировали при 36°С один час. Эксперимент проводили как описано в примере 4. Выделение РНК и выявление вируса SARS-CoV-2 проводили по стандартному методу с помощью сертифицированных наборов реагентов «ДНК-Технология» [15].
Таблица 5
Как видно из таблицы 5, что под действием композиции (ii) пороговый цикл (Ct) смещается на 8 циклов, что свидетельствует о том, что вирусная
нагрузка уменьшается примерно в 10 раз. При этом установлено, что среднее значение порогового цикла (Ct) при ПЦР практически не меняется в интервале времени от 1 до 6 часов, что свидетельствует о стабильности липосом содержащих РНКазу и никлозамид (композиция и) в течение 6 часов.
Пример 8. Исследование безопасности и токсичности композиции (i) и (ii) на животных in vivo (кролики и мыши), а также на культурах клеток (фибробласты и гепатоциты) in vitro.
Клетки фибробластов были получены нами по методу [17]. Гепатоциты печени крысы получены по методу [18].
Цитотоксические свойства композиций (i) и (ii) определяли методом МТТ in vitro [19]. Данные, представлены в виде среднего значения (из 3 экспериментов). Цитотоксический эффект каждого из исследуемых образцов композиций сравнивали с контролем цитостатиком «Цисплатин» (Teva Pharmaceutical Industries, Ltd., Израиль).
Таблица 6.
Как видно из полученных данных (Таблицы 6 и 7), в диапазоне концентраций 10 - 100 мкг/мл образцы не подавляли рост нормальных клеток по сравнению с препаратом сравнения (цисплатин). Таким образом, композиции (i) и (ii) не обладают цитотоксическим эффектом для нормальных клеток.
Пример 9. Изучение общей токсичности композиций на кроликах и мышах in vivo
Исследования проводили in vivo на 4 группах животных по 5 кроликов (породы “Великан”, массой 1,6 - 1,8 кг) и беспородных мышей (массой 18 - 20 г) по 10 мышей в группе. Исследуемые композиции закапывали в глаза животных 2 раза в день (утром и вечером) по 50 мкл физиологического раствора в правый глаз - контроль, а в левый глаз 50 мкл - композиция - (i) и (ii) в течение 5 дней.
Первая группа - контроль (физиологический раствор)
Вторая группа - липосомы из соевого лецитина,
Третья группа - липосомы из соевого лецитина с РНКазой (композиция
(i)),
Четвертая группа - липосомы из соевого лецитина с РНКазой и с никлозамидом (композиция (и)).
Параллельно в каждой группе кроликов вводили интраназально по 20 мкл испытуемых образцов в каждую ноздрю.
Через 5 дней введения вышеперечисленных растворов определяли визуальные изменения, происходящие в глазах кроликов и общее состояние животных, а также снимали биохимические показатели крови животных (мышей и кроликов) по методу [20]. Визуальное наблюдение показало, что самочувствие экспериментальных и контрольной группы животных было одинаковым.
В таблице 8 и 9 приведены биохимические показатели исследованных животных.
Таблица 8
Таблица 9
Как видно из полученных данных (табл.8 и табл. 9), значения основных показателей крови практически не отличаются от контрольных, что свидетельствует, о не токсичности композиций (i) и (ii) на животных.
Пример 10. Биомикроскопическое исследование слизистых глаз экспериментальных животных (кролики)
Действие липосом, содержащих композиции (i) и (и) на слизистые было изучено путем исследования динамического контроля глаз кроликов.
В ходе эксперимента проводился динамический контроль состояния глаз (офтальмологический статус) кроликов методом биомикроскопии. Биомикроскопическое исследование осуществляли при помощи офтальмологического биомикроскопа - щелевой лампы «SL 115» фирмы Carl Zeiss (Германия) при увеличении в 10 и 16 раз ежедневно в течение всего срока наблюдения. Оценивали состояние конъюнктивы, склеры, роговицы, передней камеры, радужки и рефлекс с глазного дна. Различные степени увеличения (х10, х16) при биомикроскопии позволяли более детально изучить состояние структур переднего сегмента глаза.
Перед проведением биомикроскопических исследований всех кроликов туго пеленали, голову плотно фиксировали за щелевой лампой.
В ходе проведения биомикроскопических исследований парные глаза кроликов были приняты за норму и использовались в качестве контроля в ходе экспериментов.
Первая проверка проводилась через сутки после закапывания композиций (i) и (ii) и липосом из соевого лецитина.
При осмотре методом биомикроскопии отмечалось, что глаза были спокойны без отделяемого, роговица прозрачная и гладкая, конъюнктива век бледно розовая и блестящая, склера белая без инъекции сосудов. Влага передней камеры также была прозрачной без примеси каких-либо элементов. Радужка рельефна, зрачок круглый, реакция на свет живая. Оптические среды на всех глазах оставались прозрачными, рефлекс с глазного дна был розовый. Признаков воспаления и токсико-аллергической реакции выявлено не было.
За весь период наблюдения у всех кроликов офтальмологический статус обоих глаз был идентичным без клинических признаков воспалительных и аллергических реакций.
Эти данные свидетельствуют о том, что композиции (i) и (и) не токсичны для глаз кроликов.
Литература
1. Патент RU 2746362 (заявка 2021106335 от 11.03.2021) - «Комбинированное лекарственное средство, обладающее противовирусным эффектом в отношении нового коронавируса SARS-CoV-2».
2. О. Н. Ильинская, Р. Шах Махмуд. РИБОНУКЛЕАЗЫ КАК ПРОТИВОВИРУСНЫЕ АГЕНТЫ // МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, 2014, том 48, No 5, с. 707-717.
3. Wu С, Jan J, et int., and Hsu JTA. Inhibition of Severe Acute Respiratory Syndrome Coronavirus Replication by Niclosamide. Antimicrobial Agents and Chemotherapy, 2004. doi.org/10.1128/aac.48.7.2693-2696.2004.
4. Ashlee D. Brunaugh, Hyojong Seo, Zachary Wamken, Li Ding, Sang
Heui Seo, Hugh D. C. Smyth. Development and evaluation of inhalable composite niclosamide-lysozyme particles: A broad-spectrum, patient-adaptable treatment for coronavirus infections and sequalae. Published: February 11, 2021 doi.org/ 10.1371 /j oumal.pone.0246803.
5. http://www.pmewswire.com/news-releases/hvundai-bioscience- announced-that-its-covid-19-oral-drug-solved-niclosamides-inhibitorv- concentration-problem-301188126.html.
6. ANA Therapeutics Begins Phase 2/3 Clinical Trial of Proprietary Oral Niclosamide Formulation to Treat COVID-19. Study is first in U.S. to test safety and efficacy of niclosamide as an antiviral for COVID-19. October 26, 2020 08:44 AM Eastern Daylight Time.
7. Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Archives of Biochemistry and Biophysics, 212(1), 186-194. doi:10.1016/0003-9861(81)90358-l
(https://doi.org/10.1016/00Q3-986 К8П90358-П
8. Прохорова М.И. Методы биохимических исследований (Липидный и энергетический обмен). Учебное пособие. Ленинград 1982.
9. Sergio С. Oliveira, Mariana T.Q. de Magalhaes and E. Jane Homan. Immunoinformatic Analysis of SARS-CoV-2 Nucleocapsid Protein and Identification of COVID-19 Vaccine Targets. 2020. Front. Immunol. 11: 587615. https://doi.org/l 0.3389/fimmu.2020.587615.
10. Kim TW, Lee JH, Hung CF, Peng S, Roden R, Wang MC, Viscidi R, Tsai YC, He L, Chen PJ, Boyd DA, Wu TC. Generation and Characterization of DNA Vaccines Targeting the Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus. 2004. J Virol. https://doi.Org/10.1128/JVI.78.9.4638- 4645.2004.
11. Ya Peng, Ning Du, Yuqing Lei, Sonam Doije, Jianxun Qi, Tingrong Luo, George F Gao, Hao Song. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. The EMBO Journal (2020) 39: el05938.
12. DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service Centers for Disease Control and Prevention (CDC) Atlanta, GA 3033324, Jan 2020.
13. Advances in the Synthesis of Oligonucleotides by the Phosphoramidite Approach. Твёрдофазный амидофосфитный метод или фосфорамидитный метод. Beaucage S. L., Iyer R. Р. (англ.) // Tetrahedron. 1992. Vol. 48, no.12, P. 2223-2311. doi: 10.1016/S0040-4020(01)88752-4.
14. Лабораторное тестирование случаев, подозреваемых на коронавирусную инфекцию (COVID-19). 19 марта 2020 г, ВОЗ.
15. ООО «НПО ДНК-Технология». Инструкция по применению набора реагентов для выявления РНК коронавирусов SARS-CoV-2 и подобных SARS-CoV методом обратной транскрипции и полимеразной цепной реакции в режиме реального времени SARS-CoV-2/SARS-CoV.
16. Green M.R., Sambrook J. Molecular cloning. A laboratory manual. Fourth edition. New York: Cold Spring Harbor Laboratory Press; 2012.
17. Khan M., Gasser S. Generating primary fibroblast cultures from mouse Ear and Tissues / Journal of Visualized Experiment. 1/10/2016.
18. Cabral, F., Miller, C.M., Kudma, K.M., Hass, B.E., Daubendiek, J.G., Kellar, B.M., Harris, E.N. Purification of Hepatocytes and Sinusoidal Endothelial Cells from Mouse Liver Perfusion. Journal of Visualized Experiments. 2/12/2018.
19. Niks M., Otto M. Towards an optimized MTT assay// Journal of Immunological Methods, 1990, 130, p.149- 151
20. Дерюгина A.B., Корягин А. С., Копылова С. В., Таламанова М. Н. // Методы изучения стрессовых и адаптационных реакций организма по показателям системы крови. Нижний Новгород - 2010. - стр. 11.
Claims
1. Применение лекарственного средства, содержащее в липосомах эффективное количество молекул РНКазы А, для профилактики или лечения коронавирусной инфекции, вызываемой SARS-CoV-2.
2. Применение по п.1 для интраназального или ингаляционного введения.
3. Применение лекарственного средства, содержащее в липосомах эффективное количество молекул РНКазы А с никлозамидом, для профилактики или лечения коронавирусной инфекции, вызываемой SARS-CoV-2.
4. Применение по п.З для интраназального или ингаляционного введения.
5. Способ профилактики или лечения SARS-CoV-2 инфекции, в котором молекулы РНКазы А с никлозамидом, содержащиеся в эффективном количестве в липосомах лекарственного средства вводятся одновременно, отдельно или последовательно.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280047238.2A CN117651550A (zh) | 2021-07-02 | 2022-06-30 | 用于预防SARS-CoV-2感染的药物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021119487 | 2021-07-02 | ||
RU2021119487A RU2021119487A (ru) | 2021-07-02 | Комбинированное лекарственное средство, обладающее противовирусным эффектом для профилактики заражения SARS-CoV-2 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023277730A1 true WO2023277730A1 (ru) | 2023-01-05 |
Family
ID=84690534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2022/000207 WO2023277730A1 (ru) | 2021-07-02 | 2022-06-30 | Лекарственное средство для профилактики заражения sars-cov-2 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117651550A (ru) |
WO (1) | WO2023277730A1 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090047272A1 (en) * | 2004-04-14 | 2009-02-19 | Appelbaum Jacob G | Compositions with Modified Nucleases Targeted to Viral Nucleic Acids and Methods of Use for Prevention and Treatment of Viral Diseases |
US11045434B1 (en) * | 2020-04-01 | 2021-06-29 | UNION therapeutics A/S | Niclosamide formulations for treating disease |
-
2022
- 2022-06-30 CN CN202280047238.2A patent/CN117651550A/zh active Pending
- 2022-06-30 WO PCT/RU2022/000207 patent/WO2023277730A1/ru active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090047272A1 (en) * | 2004-04-14 | 2009-02-19 | Appelbaum Jacob G | Compositions with Modified Nucleases Targeted to Viral Nucleic Acids and Methods of Use for Prevention and Treatment of Viral Diseases |
US11045434B1 (en) * | 2020-04-01 | 2021-06-29 | UNION therapeutics A/S | Niclosamide formulations for treating disease |
Non-Patent Citations (4)
Title |
---|
CHRISTENSEN DENNIS ET AL.: "Cationic liposomes as vaccine adjuvants", EXPERT REVIEW OF VACCINES, vol. 6, no. 5, 2007, pages 785 - 796, XP008137314, DOI: 10.1586/14760584.6.5.785 * |
ILYINSKAYA O.N., SHAH MAHMOOD R. : "Ribonukleazy kak protivovirusnye agenty", MOLEKULYARNAYA BIOLOGIYA, IZDATEL'STVO NAUKA, RU, vol. 48, no. 5, 30 November 2013 (2013-11-30), RU , pages 707 - 717, XP009542395, ISSN: 0026-8984, DOI: 10.7868/S0026898414040053 * |
NISHIBATA YUKA, KOSHIMOTO SHOTA, OGAKI KENTA, ISHIKAWA ERIKA, WADA KOSUKE, YOSHINARI MIKU, TAMURA YUTO, UOZUMI RYO, MASUDA SAKIKO,: "RNase in the saliva can affect the detection of severe acute respiratory syndrome coronavirus 2 by real-time one-step polymerase chain reaction using saliva samples", PATHOLOGY - RESEARCH AND PRACTICE, ELSEVIER, AMSTERDAM, NL, vol. 220, 1 April 2021 (2021-04-01), AMSTERDAM, NL , pages 153381, XP093021765, ISSN: 0344-0338, DOI: 10.1016/j.prp.2021.153381 * |
ROSSI GIOVANNI A. ET AL.: "Diferences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases", INFECTION, vol. 48, 2020, pages 665 - 669, XP037255803, DOI: 10.1007/s15010-020-01486-5 * |
Also Published As
Publication number | Publication date |
---|---|
CN117651550A (zh) | 2024-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9629884B2 (en) | Compositions and methods for increasing lifespan and health span | |
US10195145B2 (en) | Method for treating fibrosis using siRNA and a retinoid-lipid drug carrier | |
EP3087988A2 (en) | Use of inhibitors of toll-like receptors in the prevention and treatment of hypercholesterolemia and hyperlipidemia and diseases related thereto | |
WO2005004903A1 (fr) | Methode de traitement de maladies oncologiques | |
CN101115505A (zh) | 治疗由过氧亚硝酸盐过度表达引起的哺乳动物疾病和创伤的方法和组合物 | |
JP7001599B2 (ja) | 急性骨髄性白血病の処置のためのダクチノマイシン組成物および方法 | |
KR20060063788A (ko) | 올리고 핵산 담지 복합체, 이 복합체를 함유하는 의약조성물 | |
US20060241066A1 (en) | Decoy composition for treating and preventing inflammatory disease | |
Xiaohong et al. | CFLAR is a critical regulator of cerebral ischaemia-reperfusion injury through regulating inflammation and endoplasmic reticulum (ER) stress | |
JP2004512287A (ja) | 糖尿病性網膜症の予防または処置のための網膜細胞アポトーシス抑制剤の使用 | |
CN110564842B (zh) | 细胞色素酶cyp26a1在制备治疗神经病理性疼痛的药物中的应用 | |
EP1418922A1 (en) | Compositions comprising negatively charched phospholipids for treatment and/or prevention of macular degeneration and method for its manufacture | |
WO2023277730A1 (ru) | Лекарственное средство для профилактики заражения sars-cov-2 | |
Pan et al. | Valproate reduces retinal ganglion cell apoptosis in rats after optic nerve crush | |
EA042253B1 (ru) | Комбинированное лекарственное средство, обладающее противовирусным эффектом для профилактики заражения sars-cov-2 | |
EA043501B1 (ru) | ЛЕКАРСТВЕННОЕ СРЕДСТВО, ОБЛАДАЮЩЕЕ ПРОТИВОВИРУСНЫМ ЭФФЕКТОМ ДЛЯ ПРОФИЛАКТИКИ ЗАРАЖЕНИЯ SARS-CoV-2 | |
CN113082208B (zh) | 阻断微生物感染、降低胆固醇、防治相关肿瘤的药物及其应用 | |
Gakhramanov | Effect of natural antioxidants on antioxidant activity and lipid peroxidation in eye tissue of rabbits with chemical burns | |
CN112569338B (zh) | Tdfa在制备预防和/或治疗眼表炎症疾病的药物中的应用 | |
RU2245137C1 (ru) | Фармацевтическая композиция для лечения воспалительных процессов вирусной этиологии в глазном яблоке | |
Shukurova et al. | A study into the effectiveness of the application of saffron extract in ocular pathologies in experiment | |
US20070219150A1 (en) | Nerve Cell Differentiation Inducer | |
ES2920052T3 (es) | Formulaciones de alicaforsen | |
WO2002080938A1 (fr) | Application de nucleospermate de sodium pour traiter le sida et procede de traitement | |
CN116077503A (zh) | Mettl3酶抑制剂在制备白癜风药物中的应用及其药物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22833748 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280047238.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22833748 Country of ref document: EP Kind code of ref document: A1 |