[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023276987A1 - 通信装置、マスタノード、及び通信制御方法 - Google Patents

通信装置、マスタノード、及び通信制御方法 Download PDF

Info

Publication number
WO2023276987A1
WO2023276987A1 PCT/JP2022/025661 JP2022025661W WO2023276987A1 WO 2023276987 A1 WO2023276987 A1 WO 2023276987A1 JP 2022025661 W JP2022025661 W JP 2022025661W WO 2023276987 A1 WO2023276987 A1 WO 2023276987A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell group
beam failure
base station
scg
secondary cell
Prior art date
Application number
PCT/JP2022/025661
Other languages
English (en)
French (fr)
Inventor
大輝 前本
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to BR112023025525A priority Critical patent/BR112023025525A2/pt
Priority to CN202280046519.6A priority patent/CN117643161A/zh
Priority to EP22833134.4A priority patent/EP4366446A1/en
Publication of WO2023276987A1 publication Critical patent/WO2023276987A1/ja
Priority to US18/392,436 priority patent/US20240129768A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present disclosure relates to communication devices, master nodes, and communication control methods used in mobile communication systems.
  • a communication device uses radio resources provided from a master node that manages a master cell group (MCG) and a secondary node that manages a secondary cell group (SCG).
  • MCG master cell group
  • SCG secondary cell group
  • a dual connection method that can be used is defined (see, for example, Non-Patent Document 1).
  • the communication device When the communication device detects a beam failure in a cell belonging to the SCG, it provides the secondary node with the information necessary to recover from the beam failure via signaling with the secondary node. This allows the communication device to recover from the beam failure (see Non-Patent Document 2, for example).
  • Non-Patent Document 3 In recent years, in the 3GPP (Third Generation Partnership Project) (registered trademark; hereinafter the same), which is a standardization project for mobile communication systems, deactivation of SCG is being considered in order to reduce the power consumption of communication devices ( For example, see Non-Patent Document 3). Beam obstruction detection in a deactivated SCG has also been investigated (see, for example, Non-Patent Document 4).
  • the communication device When the SCG is deactivated, the communication device detects a beam failure in the SCG, and cannot perform signaling between the communication device and the secondary node, so the information necessary for beam failure recovery is sent to the network side and cannot recover from beam failure.
  • an object of the present disclosure is to provide a communication device, a master node, and a communication control method that can provide the network side with information necessary for performing beam failure recovery even when the SCG is deactivated. do.
  • a communication device uses a dual connection scheme to connect to a master node (200-1) associated with a master cell group and a secondary node (200-1) associated with a secondary cell group. -2).
  • the communication device (100) includes a communication unit (120) that receives an RRC (Radio Resource Control) message containing information instructing deactivation of the secondary cell group, and a communication unit (120) that deactivates the secondary cell group according to the information. and a control unit (110).
  • RRC Radio Resource Control
  • the control unit (110) determines whether the cell in which the beam failure is detected is a primary cell belonging to the deactivated secondary cell group, and the communication unit (120) determines whether the cell is the When the control unit (110) determines that it is the primary cell, it transmits an SCGFailureInformation message regarding the failure of the secondary cell group to the master node (200-1).
  • a master node connects to a communication device together with a secondary node associated with a secondary cell group using a dual connection scheme.
  • the master node includes: a transmitting unit configured to transmit an RRC message including information instructing deactivation of the secondary cell group to the communication device; and the secondary cell group when the secondary cell group is deactivated. and a receiving unit that receives an SCGFailureInformation message regarding a failure of the communication device from the communication device.
  • the SCGFailureInformation message is sent from the communication device when a beam failure is detected in a primary cell belonging to the deactivated secondary cell group.
  • a communication control method uses a dual connection scheme to connect a master node associated with a master cell group and a communication device connected to a secondary node associated with a secondary cell group. is a communication control method executed in The communication control method comprises: receiving an RRC message containing information instructing deactivation of the secondary cell group; deactivating the secondary cell group according to the information; , determining whether the cell is a primary cell belonging to the deactivated secondary cell group; and sending to the master node (200-1).
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to one embodiment
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in a mobile communication system according to an embodiment
  • FIG. 3 is a diagram showing an operation example when a beam failure is detected in a secondary cell (SCell) in the SCG
  • Figure 4 is a diagram showing an operation example when a beam failure is detected in the PSCell (primary secondary cell) in the SCG
  • FIG. 5 is a diagram showing the configuration of a UE according to one embodiment
  • FIG. 6 is a diagram showing the configuration of a base station according to one embodiment
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to one embodiment
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in a mobile communication system according to an embodiment
  • FIG. 3 is a diagram showing an operation example when a beam failure is detected in a secondary cell (SCell) in the SCG
  • Figure 4 is a diagram showing an operation example
  • FIG. 7 is a diagram showing an operation example of a mobile communication system according to an embodiment
  • FIG. 8 is a diagram showing an example of information included in an SCGFailureInformation message according to one embodiment
  • FIG. 9 is a diagram showing an example of information included in an SCGFailureInformation message according to one embodiment
  • FIG. 10 is a diagram illustrating an example of information included in a CG-ConfigInfo message according to one embodiment.
  • the mobile communication system 1 is, for example, a mobile communication system conforming to Technical Specifications (TS) of 3GPP, which is a standardization project for mobile communication systems.
  • TS Technical Specifications
  • 3GPP 3GPP standard 5th Generation System
  • NR New Radio
  • the mobile communication system 1 includes a 5G radio access network (so-called Next Generation Radio Access Network: NG-RAN) 20, a 5G core network (5G Core Network: 5GC) 30, and communication devices (User Equipment: UE) 100.
  • 5G radio access network so-called Next Generation Radio Access Network: NG-RAN
  • 5G Core Network 5G Core Network: 5GC
  • UE User Equipment
  • NG-RAN 20 includes a base station 200, which is a node of the radio access network.
  • the base station 200 is a radio communication device that performs radio communication with the UE 100 .
  • Base station 200 manages one or more cells.
  • the base station 200 performs radio communication with the UE 100 that has established a connection with its own cell in the radio resource control (RRC) layer.
  • the base station 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, and/or a measurement control function for mobility control/scheduling, and the like.
  • RRM radio resource management
  • data user data
  • a "cell” is used as a term indicating the minimum unit of a wireless communication area.
  • a “cell” is also used as a term indicating a function or resource for radio communication with the UE 100 .
  • One cell belongs to one carrier frequency.
  • FIG. 1 shows an example in which the base station 200-1 manages the cell 260 and the base station 200-2 manages the cell 250.
  • FIG. UE 100 is located in the overlapping area of cell 260 and cell 250 .
  • the base station 200 is, for example, a gNB that provides NR user plane and control plane protocol termination towards the UE 100 and is connected to the 5GC 30 via the NG interface.
  • the base station 200 may be, for example, an eNB that provides Evolved Universal Terrestrial Radio Access (E-UTRA) user plane and control plane protocol termination towards the UE 100 in Long Term Evolution (LTE).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 may be a device that supports the control plane, and may be a device that performs various types of mobility management for the UE 100 .
  • the core network device 300 communicates with the UE 100 using NAS (Non-Access Stratum) signaling, and manages information on the tracking area in which the UE 100 resides.
  • Core network device 300 performs paging through base station 200 in order to notify UE 100 of an incoming call.
  • the core network device 300 may be a 5G/NR AMF (Access and Mobility Management Function) or a 4G/LTE MME (Mobility Management Entity).
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the UE 100 may be any device that is used by the user.
  • the UE 100 is, for example, a portable wireless communication device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided in the vehicle.
  • the UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided in a transport body other than a vehicle.
  • the UE 100 may be a sensor or a device provided in the sensor.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • a physical channel is composed of multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain and multiple subcarriers in the frequency domain.
  • One subframe consists of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers.
  • a frame may consist of 10 ms and may include 10 subframes of 1 ms.
  • a subframe can include a number of slots corresponding to the subcarrier spacing.
  • the physical downlink control channel plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
  • the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth).
  • the base station 200 sets a bandwidth part (BWP) consisting of consecutive PRBs (Physical Resource Blocks) for the UE 100 .
  • BWP bandwidth part
  • UE 100 transmits and receives data and control signals on the active BWP.
  • BWP bandwidth part
  • up to four BWPs can be configured for one cell.
  • Each BWP may have different subcarrier spacing and may overlap each other in frequency.
  • the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like.
  • Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • Control information transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 is sometimes called MAC CE (Control Element).
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . If there is an RRC connection between the RRC of UE 100 and the RRC of base station 200 (that is, the RRC connection is established), UE 100 is in the RRC connected state. When there is no RRC connection between the RRC of UE 100 and the RRC of base station 200 (ie, no RRC connection is established), UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of core network device 300 .
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • UE 100 in RRC connected state is configured to use radio resources provided by two different base stations 200 .
  • These base stations 200 are connected via non-ideal backhauls and have different schedulers for allocating the radio resources to the UE 100 .
  • One base station 200 operates as a master node that manages a master cell group (hereinafter, MCG), and the other base station 200 operates as a secondary node that manages an SCG (hereinafter, SCG). Therefore, the UE 100 can use radio resources provided by the master node and the secondary node.
  • MCG master cell group
  • SCG secondary node that manages an SCG
  • a master node is a radio access node that provides control plane connectivity to the core network 30 .
  • a master node may be referred to as a master eNB, a master ng-eNB, or a master gNB.
  • Secondary nodes have no control plane connection to the core network 30 and provide additional radio resources to the UE 100 .
  • a secondary node may be referred to as an en-gNB, a secondary ng-eNB, or a secondary gNB.
  • the master node and/or secondary node are logical entities.
  • the base station 200 may correspond to a master node and/or a secondary node. That is, the base station 200 may be replaced with a master node and/or a secondary node.
  • An MCG is a group of serving cells associated with a master node.
  • the MCG consists of a primary cell (PCell) and optionally one or more secondary cells (SCells).
  • a SCG is a group of serving cells associated with a secondary node.
  • An SCG is composed of the SCG's primary cell (PSCell) and optionally one or more secondary cells (SCells).
  • UE 100 is configured with one MAC entity for MCG and one MAC entity for SCG.
  • FIG. 3 (Overview of beam failure detection and recovery) Next, an overview of beam failure detection/recovery will be described with reference to FIGS. 3 and 4.
  • FIG. 3 (Overview of beam failure detection and recovery)
  • NR Compared to LTE, NR is capable of wideband transmission in high frequency bands such as the millimeter wave band or the terahertz wave band.
  • high directivity beamforming using a large number of antennas is used between the base station 200 and the UE 100 to obtain a high beam gain.
  • NR introduces a beam control technique for establishing and maintaining a beam pair between the base station 200 and the UE 100 . Beam fault detection and recovery techniques are one such beam control technique.
  • the base station 200 configures the UE 100 with downlink reference signal resources for detecting beam failures.
  • a reference signal resource is either SSB (SS: Synchronization Signal/PBCH Block) or CSI-RS (Channel State Information Reference Signal).
  • the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (Physical Broadcast Channel), and a demodulation reference signal (DMRS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH Physical Broadcast Channel
  • DMRS demodulation reference signal
  • an SSB may consist of four consecutive OFDM symbols in the time domain.
  • the SSB may consist of 240 consecutive subcarriers (ie, 20 resource blocks) in the frequency domain.
  • PBCH is a physical channel that carries a Master Information Block (MIB).
  • MIB Master Information Block
  • CSI-RS is a reference signal transmitted for the UE 100 to measure the radio channel state.
  • the SSB-based BFD is based on the SSB associated with the initial downlink BWP, and can be set only for the downlink BWP including the initial downlink BWP and the SSB associated therewith. For other downlink BWP, BFD is performed based on CSI-RS only.
  • the MAC layer counts beam failure events (beam failure instance indicator (BFI)) notified from the physical layer with a counter, and detects a beam failure when the count value reaches a specified number of times or more before the timer expires. (declare.
  • BFI beam failure instance indicator
  • FIG. 3 shows an operation example when a beam failure is detected in SCell in SCG.
  • FIG. 3 shows an example in which the base station 200-2 operates as a secondary node and manages a cell 250 (SCell 250B) which is an SCell.
  • the base station 200-2 forms a total of three beams from beam #0 to beam #2 in SCell 250B.
  • UE 100 detects a beam failure during communication using beam #0 in SCell 250B.
  • the UE 100 triggers beam failure recovery (BFR) by starting transmission of a beam failure recovery MAC control element (BFR MAC CE).
  • BFR MAC CE beam failure recovery MAC control element
  • the UE 100 selects a beam suitable for the SCell 250B (eg, beam #1) and indicates the selected beam information along with information on beam failures by BFR MAC CE.
  • the UE 100 receives the PDCCH indicating a new transmission uplink grant for the HARQ process used to transmit the BFR MAC CE, recovery from the SCell 250B beam failure is complete.
  • Fig. 4 shows an operation example when a beam failure is detected in PSCell in SCG.
  • FIG. 4 shows an example in which the base station 200-2 manages a PSCell cell 250 (PSCell 250A).
  • the base station 200-2 forms a total of three beams from beam #0 to beam #2 in PSCell 250A.
  • UE 100 detects a beam failure during communication using beam #0 in PSCell 250A.
  • UE 100 triggers BFR by starting a random access procedure for PSCell 250A.
  • the UE 100 selects an appropriate beam (eg, beam #1) to perform BFR.
  • BFR is complete when the random access procedure is completed.
  • 3GPP is considering deactivating the SCG in order to reduce the power consumption of the UE 100.
  • the UE 100 deactivates all cells 250 (PSCell and SCell) belonging to the SCG. Power consumption of the UE 100 can be reduced by stopping the transmission/reception operation in the deactivated cell 250 by the UE 100 .
  • Such transmission/reception operations include, for example, CSI (Channel Status Information) reporting, PDCCH monitoring, RACH (Random Access CHannel) transmission, SRS (Sounding Reference Signal) transmission, and/or UL-SCH (UL-Shared channel) transmission.
  • UE 100 deactivates the SCG, for example, by any one of the following methods.
  • Method 1 UE 100 deactivates SCG in response to receiving an instruction to deactivate SCG from the master node (base station 200-1).
  • the indication is sent either in RRC layer signaling (RRC message), MAC layer signaling (MAC CE), or PHY layer signaling (PDCCH).
  • RRC message RRC message
  • MAC CE MAC layer signaling
  • PDCCH PHY layer signaling
  • Method 2 The UE 100 deactivates the SCG upon expiration of the timer for deactivating the SCG.
  • the UE 100 performs the beam failure detection described above for each cell 250 belonging to the deactivated SCG. However, when the SCG is deactivated, the UE 100 does not perform transmission/reception operations in each cell 250, so the operations for triggering the BFR described above (random access procedure execution, BFR MAC CE transmission) cannot be performed. (do not run). Therefore, the UE 100 cannot recover from the beam failure of the cell 250 (PSCell and/or SCell) belonging to the SCG when the SCG is deactivated. In one embodiment, the UE 100 is able to recover from beam failures of cells 250 belonging to the SCG (PSCell and/or SCell) even when the SCG is deactivated.
  • the UE 100 has an antenna 110, a communication section 120, and a control section .
  • the communication unit 120 communicates with other communication devices by transmitting and receiving signals via the antenna 110.
  • the communication unit 120 receives radio signals from the base station 200 and transmits radio signals to the base station 200 .
  • the communication unit 120 may, for example, receive radio signals from other UEs and transmit radio signals to other UEs.
  • the antenna 110 may be provided outside the UE 100 .
  • the communication unit 120 has a receiving unit 121 and a transmitting unit 122.
  • Receiving section 121 converts a radio signal received by antenna 110 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to control section 130 .
  • Transmitting section 122 performs signal processing on a transmission signal, which is a baseband signal output from control section 130 , converts it into a radio signal, and transmits the radio signal from antenna 110 .
  • the receiving unit 121 may include one or more receivers.
  • Transmitter 122 may include one or more transmitters.
  • the receiver and transmitter may be configured by one transceiver.
  • the antenna 110 may be used for both reception and transmission.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 controls communication with the base station 200 or other UEs 100 via the communication unit 120, for example.
  • the operation of the UE 100 which will be described later, may be an operation under the control of the control unit 130.
  • the control unit 130 may include one or more processors capable of executing programs and a memory that stores the programs. One or more processors may execute programs to perform the operations of controller 130 .
  • the program may be a program for causing a processor to execute the operation of control unit 130 .
  • the processor performs digital processing of signals transmitted and received via the antenna 110 and the RF circuit.
  • the digital processing includes processing of the protocol stack of the RAN.
  • a processor may be a single processor.
  • a processor may include multiple processors.
  • the multiple processors may include a baseband processor for digital processing and one or more processors for other processing.
  • the memory stores programs executed by the processor, parameters for the programs, and data for the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
  • the controller 130 detects beam failures in cells 250 belonging to deactivated SCGs and determines candidate beams to use to recover from the beam failures.
  • Communication unit 120 transmits a failure notification including beam identification information identifying the determined candidate beam to base station 200-1 operating as a master node.
  • the network side base station 200-1 and base station 200-2 can grasp the candidate beam determined by UE 100, and can switch the transmission beam to the candidate beam in SCG. Therefore, even when the SCG is deactivated in the UE 100, it is possible to recover from the beam failure of the cell 250 (PSCell and/or SCell) belonging to the SCG.
  • the operation of the functional units included in the UE 100 may be described as the operation of the UE 100.
  • base station configuration A configuration example of the base station 200 will be described with reference to FIG. As shown in FIG. 4 , base station 200 has antenna 210 , radio communication section 220 , control section 230 and network communication section 240 .
  • the wireless communication unit 220 communicates with the UE 100 via the antenna 210 under the control of the control unit 230.
  • the radio communication unit 220 has a receiving unit 221 and a transmitting unit 222 .
  • Receiving section 221 converts a radio signal received by antenna 210 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to control section 230 .
  • the transmission unit 222 performs signal processing on the transmission signal, which is a baseband signal output from the control unit 230 , converts the signal into a radio signal, and transmits the radio signal from the antenna 210 .
  • the network communication unit 240 is connected to the core network device 300.
  • Network communication unit 240 performs network communication with core network device 300 under the control of control unit 230 .
  • the control unit 230 controls the wireless communication unit 220 and performs various controls in the base station 200 .
  • Control unit 230 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the memory may include at least one of ROM, EPROM, EEPROM, RAM and flash memory.
  • the processor may include a digital signal processor (DSP), which performs digital processing of digital signals, and a central processing unit (CPU), which executes programs. Note that part of the memory may be provided in the wireless communication unit 220 . Also, the DSP may be provided in the wireless communication unit 220 .
  • DSP digital signal processor
  • the radio communication unit 220 includes beam identification information that identifies candidate beams used to recover from beam failures in cells 250 belonging to the deactivated secondary cell group.
  • a failure notification is received from the UE 100 .
  • Network communication unit 240 transmits a failure notification to base station 200-2 operating as a secondary node.
  • the base station 200-2 can grasp the beam identification information that identifies the candidate beam determined by the UE 100, and can switch the transmission beam for the UE 100 to the candidate beam determined by the UE 100. Therefore, even when the SCG is deactivated in the UE 100, it is possible to recover from the beam failure of the cell 250 (PSCell and/or SCell) belonging to the SCG.
  • the operations of the functional units provided in the base station 200 may be described below as the operations of the base station 200.
  • the base station 200-1 operates as a master node
  • the base station 200-2 operates as a secondary node
  • the master node (base station 200-1) and secondary node (base station 200-2) may be referred to as a "network" as appropriate.
  • step S101 the base station 200-1 (radio communication unit 220) transmits an RRC reconfiguration message including SCG configuration information to the UE100.
  • UE 100 (communication unit 120) receives an RRC reconfiguration message including SCG configuration information from base station 200-1.
  • the SCG setting information is information for setting SCG radio resources in the UE 100 or updating SCG radio resources already set in the UE 100 .
  • the SCG setting information includes various parameters for setting radio resources of each cell 250 belonging to the SCG.
  • the UE 100 (control unit 130) uses the SCG radio resource based on the received various parameters.
  • the contents of the SCG setting information are set by the base station 200-2 operating as a secondary node.
  • the SCG setting information includes setting information (hereinafter referred to as BFR setting information) for implementing BFR in each cell 250 belonging to the SCG.
  • the BFR setting information includes a BFR-RS list, which is a list for setting a plurality of beam failure recovery reference signals (hereinafter referred to as BFR-RS), and a threshold for determining candidate beams used to perform BFR. (hereinafter referred to as BFR threshold).
  • BFR-RS is associated with one BFR beam.
  • Each BFR-RS may be an SSB and/or a CSI-RS.
  • the BFR-RS list contains an identifier for each BFR-RS.
  • a BFR-RS list is provided for each downlink BWP belonging to the cell 250 .
  • the corresponding BFR-RS list may be called “candidateBeamRSList” and the corresponding BFR threshold may be called “rsrp-ThresholdSSB”. If the cell 250 is a SCell, the corresponding BRF-RS list may be called “candidateBeamRSSCellList” and the corresponding BFR threshold may be called “rsrp-ThresholdBFR”.
  • the SCG setting information includes, for each cell 250 belonging to the SCG, setting information (hereinafter referred to as BFD setting information) for detecting beam failure in the cell 250 concerned.
  • the BFD setting information includes information for setting a reference signal resource for beam failure detection (hereinafter referred to as a BFD resource), information for setting a timer value of a timer for beam failure detection (hereinafter referred to as a BFD timer), and and information for setting a count value for beam failure detection (hereinafter referred to as BFD count value).
  • a BFD resource includes one or more BFD reference signals.
  • the reference signal for BFD is SSB or CSI-RS.
  • the SCG setting information may further include SCG state information that sets the initial state of the SCG (activated state or deactivated state).
  • the SCG configuration information may further include information indicating the timer value of the SCG deactivation timer for deactivating the SCG.
  • step S102 the UE 100 (control unit 130) deactivates the SCG. Specifically, UE 100 (control unit 130) deactivates SCG by any one of the following methods.
  • Method 1 UE 100 (control unit 130) deactivates SCG in response to receiving an instruction to deactivate SCG from base station 200-1.
  • the instruction is transmitted by any of RRC layer signaling (RRC message), MAC layer signaling (MAC CE), and PHY layer signaling (PDCCH).
  • Method 2 UE 100 (control unit 130) deactivates SCG upon expiration of the SCG deactivation timer. Specifically, first, in step S101, the UE 100 (control unit 130) sets the initial state of the SCG to activated in response to receiving the SCG setting information, and at the same time sets the SCG deactivation timer. to start.
  • the SCG setting information includes SCG state information for setting the initial state of the SCG to activated, and information indicating the timer value of the SCG deactivation timer.
  • step S102 the UE 100 (control unit 130) deactivates the SCG upon expiration of the SCG deactivation timer.
  • step S103 the UE 100 (control unit 130) detects SCG beam failure.
  • Beam obstruction detection is performed in the following manner.
  • the physical layer of the UE 100 evaluates the radio link quality of BFD resources set in the target BWP for each cell 250 belonging to the SCG.
  • the radio link quality may be the block error rate (BLER) of PDCCH and/or RSRP (Reference Signal Received Power).
  • BLER block error rate
  • RSRP Reference Signal Received Power
  • the RSRP of the present disclosure may be read as Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), and/or other information related to power or quality.
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Ratio
  • the target BWP is the BWP that the UE 100 should use to detect beam failure when the SCG is deactivated.
  • the UE 100 may autonomously select any one of a plurality of configured downlink BWPs as the target BWP. For example, the UE 100 selects the BWP with the widest bandwidth as the target BWP. The UE 100 may select the active BWP immediately before the SCG is deactivated as the target BWP. The UE 100 may select the initial BWP as the target BWP. Alternatively, the base station 200-2 may designate the target BWP to the UE 100 using the SCG setting information.
  • the physical layer of the UE 100 if the radio link quality of all reference signal resources in the BFD resource configured in the target BWP is worse than the threshold, the beam failure instance indicator to the MAC layer of the UE 100 periodically Output.
  • This cycle is set to, for example, the minimum cycle of the reference signal in the BFD resource or 2 ms, whichever is larger.
  • the physical layer may output together the identifier of the BWP corresponding to the BFD resource and the identifier of the cell 250 along with the beam failure instance indicator.
  • the MAC layer of the UE 100 detects beam failure based on the beam failure instance indicator received from the physical layer. Specifically, the MAC layer manages BFD timers and BFD counters for each cell 250 belonging to the SCG. Then, when the MAC layer receives the beam failure instance indicator corresponding to the cell 250 from the physical layer, it starts the BFD timer corresponding to the cell 250 and increments the BFD counter corresponding to the cell 250 (that is, 1 to add. The MAC layer detects a beam failure for the corresponding cell 250 when the count value of the BFD counter reaches or exceeds the set BFD count value before the BFD timer expires.
  • the MAC layer When the MAC layer detects a beam failure, it outputs an indication indicating that a beam failure has been detected to the RRC layer.
  • the RRC layer may detect beam failures.
  • the above BFD timer and BFD counter may be managed by the RRC layer instead of the MAC layer.
  • step S104 the UE 100 (control unit 130) determines candidate beams to be used for recovery from beam failure. Specifically, first, the physical layer measures the RSRP of each BFR-RS in the BFR-RS list corresponding to the BWP where BFD is detected. Second, the physical layer determines the beams corresponding to the BFR-RS for which the measured RSRP is greater than or equal to the BFR threshold as candidate beams to be used to recover from the beam failure.
  • the physical layer outputs the identifiers of the determined candidate beams to the MAC layer.
  • the physical layer may determine multiple candidate beams. In this case, the physical layer outputs identifiers of the determined candidate beams to the MAC layer.
  • the physical layer outputs the identifiers of the determined candidate beams to the RRC layer.
  • step S105 the UE 100 (communication unit 120) transmits a beam failure notification to the base station 200-1.
  • the base station 200-1 radio communication unit 220 receives the beam failure notification from the UE100.
  • the beam failure notification is a message for notifying the network from the UE 100 of information regarding beam failures detected in each cell 250 belonging to the deactivated SCG.
  • the beam failure notification includes, for each cell 250 in which a beam failure is detected, the cell identifier of that cell 250, the BWP identifier of the target BWP of that cell, and the beam identification that identifies the candidate beams determined to recover from the beam failure. including information;
  • a beam failure notification may not contain a cell identifier. If only one downlink BWP is configured for the cell 250 where the beam failure is detected, the beam failure notification may not contain the BWP identifier.
  • the beam identification information is the identifier of the BFR-RS corresponding to the determined candidate beam.
  • a beam failure notification transmitted from the UE 100 to the base station 200-1 may be transmitted using an RRC message and/or MAC CE.
  • the RRC message is, for example, the SCGFailureInformation message.
  • a determination condition for the UE 100 to determine whether or not to transmit a beam failure notification may be set in the UE 100 by the network.
  • the judgment condition is, for example, the following 1) or 2).
  • a beam failure in any one cell 250 (PSCell or SCell) belonging to the SCG has been detected and candidate beams have been determined to recover from the beam failure.
  • the cell 250 in which the beam failure was detected is the PSCell, and candidate beams for recovery from the beam failure in the cell 250 have been determined.
  • UE 100 does not transmit a beam failure notification. If there is no PSCell beam failure, the UE 100 can communicate with the secondary node (base station 200-2) via the PSCell when activating the SCG even if only the SCell has a beam failure. Therefore, compared to PSCell, there is less need to notify the network of beam failure in SCell.
  • the judgment conditions are not limited to 1) or 2) above.
  • the UE 100 detects a beam failure in the SCG within a certain period of time, and when the certain period of time ends, when a beam failure is detected in at least one cell 250, a beam failure notification may be transmitted.
  • the determination condition may not be set in the UE 100 from the network, but may be defined in advance by technical specifications. Note that if the determination condition is not set in the UE 100, the UE 100 may transmit the beam failure notification at any timing after the beam failure is detected.
  • the SCGFailureInformation message includes a beam failure information element list (beamFailureDeactivatedSCG-InfoList-r17) 410 as beam failure notification.
  • beamFailureDeactivatedSCG-InfoList-r17 beam failure information element list
  • the beam failure information element list (beamFailureDeactivatedSCG-InfoList-r17) 410 includes beam failure information elements (BeamFailureDeactivatedSCG-Info-r17) 411 up to maxNrofServingCells.
  • Each beam failure information element (BeamFailureDeactivatedSCG-Info-r17) 411 includes a cell identifier (servCellIndex-r17) that identifies the cell 250 in which the beam failure corresponding to the beam failure information element 411 is detected, and the beam failure detected. and beam identification information (candidateBeamRS-Id) identifying a candidate beam to use to recover from the beam failure.
  • cellIndex-r17 cell identifier
  • step S106 the base station 200-1 (network communication unit 240) transmits the beam failure notification received from the UE 100 to the base station 200-2.
  • Base station 200-2 (network communication unit 240) receives the beam failure notification from base station 200-1.
  • the beam failure notification transmitted from the base station 200-1 to the base station 200-2 may be transmitted using a cell group configuration information (CG-ConfigInfo) message, as shown in FIG. 10, for example.
  • CG-ConfigInfo cell group configuration information
  • step S107 the base station 200-2 (control unit 230) switches the transmission beam for the UE 100 to the candidate beam indicated in the beam failure notification.
  • "Transmit beam to UE 100" is the beam used for downlink transmission to UE 100 in cell 250 indicated in the failure notification when the SCG is activated.
  • Such downlink transmission is, for example, PDCCH transmission.
  • the base station 200-2 selects one candidate beam from among the plurality of candidate beams, and transmits the beam to the UE 100. to the selected candidate beam.
  • the base station 200-2 may select a candidate beam serving a small number of UEs 100 from among the plurality of candidate beams.
  • the base station 200-2 transmits to the base station 200-1 a beam recovery notification indicating that the transmission beam for the UE 100 has been switched to the candidate beam.
  • Base station 200-1 receives the beam recovery notification from base station 200-2.
  • the base station 200-2 selects one candidate beam from a plurality of candidate beams, the base station 200-2 transmits information specifying the selected candidate beam in a beam recovery notification.
  • step S109 the base station 200-1 transmits to the UE 100 the beam recovery notification received from the base station 200-1.
  • UE 100 receives the beam recovery notification from base station 200-1.
  • a beam recovery notification to be sent to the UE 100 is sent by an RRC message or MAC CE. Thereby, the UE 100 grasps the transmission beam to the UE 100 in the cell 250 where the beam failure is detected.
  • the UE 100 activates the SCG.
  • UE 100 activates SCG, for example, according to an instruction from base station 200-1.
  • Such indications are sent either in RRC messages, MAC CE, and PDCCH.
  • the UE 100 receives downlink transmission (eg, PDCCH) from the base station 200-1 using the transmission beam learned in step S109.
  • downlink transmission eg, PDCCH
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the base station 200 may include multiple units.
  • the plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack.
  • the upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer.
  • the first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit).
  • the plurality of units may include a third unit that performs processing below the PHY layer.
  • the second unit may perform processing above the PHY layer.
  • the third unit may be an RU (Radio Unit).
  • Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

UE(100)は、二重接続方式を利用して、マスタセルグループに関連付けられたマスタノード(200-1)と接続されるとともに、セカンダリセルグループに関連付けられたセカンダリノード(200-2)と接続される。UE(100)は、前記セカンダリセルグループの非アクティブ化を指示する情報を含むRRCメッセージを受信する通信部と、前記情報に従って前記セカンダリセルグループを非アクティブ化する制御部と、を備える。制御部(110)は、ビーム障害を検出したセルが、非アクティブ化された前記セカンダリセルグループに属するプライマリセルであるか否かを判断し、通信部(120)は、前記セルが前記プライマリセルであると前記制御部が判断した場合、前記セカンダリセルグループの障害に関するSCGFailureInformationメッセージを、前記マスタノード(200-1)に送信する。

Description

通信装置、マスタノード、及び通信制御方法 関連出願の相互参照
 本出願は、2021年6月29日に出願された特許出願番号2021-107737号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、移動通信システムで用いる通信装置、マスタノード、及び通信制御方法に関する。
 第5世代(5G)の移動通信システム(5Gシステム)では、マスタセルグループ(MCG)を管理するマスタノードとセカンダリセルグループ(SCG)を管理するセカンダリノードとから提供される無線リソースを通信装置が利用できる二重接続方式(いわゆる、Dual Connectivity)が規定されている(例えば、非特許文献1参照)。
 通信装置は、SCGに属するセルにおけるビーム障害を検出した場合、セカンダリノードとのシグナリングを介して、ビーム障害回復を行うために必要な情報をセカンダリノードに提供する。これにより、通信装置は、ビーム障害から回復できる(例えば、非特許文献2参照)。
 近年、移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)(登録商標。以下同じ)では、通信装置の消費電力を抑えるために、SCGの非アクティブ化(deactivation)が検討されている(例えば、非特許文献3参照)。また、非アクティブ化されたSCGにおけるビーム障害の検出が検討されている(例えば、非特許文献4参照)。
3GPP技術仕様書:TS37.340 V16.5.0 3GPP技術仕様書:TS38.321 V16.5.0 3GPP寄書:RP-201040 3GPP寄書:R2-2103808
 通信装置は、SCGが非アクティブ化された場合、当該SCGにおけるビーム障害を検出すると、通信装置とセカンダリノードとの間のシグナリングの実行ができないため、ビーム障害回復を行うために必要な情報をネットワーク側に提供することができず、ビーム障害から回復することができない。
 そこで、本開示は、SCGが非アクティブ化された場合においても、ビーム障害回復を行うために必要な情報をネットワーク側に提供できる通信装置、マスタノード、及び通信制御方法を提供することを目的とする。
 第1の態様に係る通信装置は、二重接続方式を利用して、マスタセルグループに関連付けられたマスタノード(200-1)と接続されるとともに、セカンダリセルグループに関連付けられたセカンダリノード(200-2)と接続される。前記通信装置(100)は、前記セカンダリセルグループの非アクティブ化を指示する情報を含むRRC(Radio Resource Control)メッセージを受信する通信部(120)と、前記情報に従って前記セカンダリセルグループを非アクティブ化する制御部(110)と、を備える。前記制御部(110)は、ビーム障害を検出したセルが、非アクティブ化された前記セカンダリセルグループに属するプライマリセルであるか否かを判断し、前記通信部(120)は、前記セルが前記プライマリセルであると前記制御部(110)が判断した場合、前記セカンダリセルグループの障害に関するSCGFailureInformationメッセージを、前記マスタノード(200-1)に送信する。
 第2の態様に係るマスタノードは、二重接続方式を利用して、セカンダリセルグループに関連付けられたセカンダリノードとともに通信装置に接続する。前記マスタノードは、前記セカンダリセルグループの非アクティブ化を指示する情報を含むRRCメッセージを前記通信装置に送信する送信部と、前記セカンダリセルグループが非アクティブ化されている場合において、前記セカンダリセルグループの障害に関するSCGFailureInformationメッセージを、前記通信装置から受信する受信部と、を備える。前記SCGFailureInformationメッセージは、非アクティブ化された前記セカンダリセルグループに属するプライマリセルにおいてビーム障害が検出される場合、前記通信装置から送信される。
 第3の態様に係る通信制御方法は、二重接続方式を利用して、マスタセルグループに関連付けられたマスタノードと接続されるとともに、セカンダリセルグループに関連付けられたセカンダリノードと接続される通信装置において実行される通信制御方法である。前記通信制御方法は、前記セカンダリセルグループの非アクティブ化を指示する情報を含むRRCメッセージを受信するステップと、前記情報に従って前記セカンダリセルグループを非アクティブ化するステップと、ビーム障害を検出したセルが、非アクティブ化された前記セカンダリセルグループに属するプライマリセルであるか否かを判断するステップと、前記セルが前記プライマリセルであると判断した場合、前記セカンダリセルグループの障害に関するSCGFailureInformationメッセージを、前記マスタノード(200-1)に送信するステップと、を有する。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態に係る移動通信システムの構成を示す図であり、 図2は、一実施形態に係る移動通信システムにおけるプロトコルスタックの構成例を示す図であり、 図3は、SCGにおけるセカンダリセル(SCell)でビーム障害が検出された場合の動作例を示す図であり、 図4は、SCGにおけるPSCell(プライマリセカンダリセル)でビーム障害が検出された場合の動作例を示す図であり、 図5は、一実施形態に係るUEの構成を示す図であり、 図6は、一実施形態に係る基地局の構成を示す図であり、 図7は、一実施形態に係る移動通信システムの動作例を示す図であり、 図8は、一実施形態に係るSCGFailureInformationメッセージに含まれる情報の一例を示す図であり、 図9は、一実施形態に係るSCGFailureInformationメッセージに含まれる情報の一例を示す図であり、 図10は、一実施形態に係るCG-ConfigInfoメッセージに含まれる情報の一例を示す図である。
 以下、添付の図面を参照して本開示の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一又は類似の符号を付することにより重複説明が省略され得る。
 (移動通信システム)
 図1を参照して、本開示の実施形態に係る移動通信システム1の構成の例を説明する。移動通信システム1は、例えば、移動通信システムの標準化プロジェクトである3GPPの技術仕様(Technical Specification:TS)に準拠した移動通信システムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
 図1に示すように、移動通信システム1は、5Gの無線アクセスネットワーク(いわゆる、Next Generation Radio Access Network:NG-RAN)20と、5Gのコアネットワーク(5G Core Network:5GC)30と、通信装置(User Equipment:UE)100と、を含む。
 NG-RAN20は、無線アクセスネットワークのノードである基地局200を含む。基地局200は、UE100との無線通信を行う無線通信装置である。基地局200は、1又は複数のセルを管理する。基地局200は、自セルとの無線リソース制御(RRC)レイヤにおける接続を確立したUE100との無線通信を行う。基地局200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、及び/又はモビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。図1において、基地局200-1がセル260を管理し、基地局200-2がセル250を管理する一例を示している。UE100は、セル260及びセル250の重複領域に位置している。
 基地局200は、例えば、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続されるgNBである。なお、基地局200は、例えばLTE(Long Term Evolution)においてUE100へ向けたE-UTRA(Evolved Universal Terrestrial Radio Access)ユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、制御プレーンに対応した装置であって、UE100に対する各種モビリティ管理を行う装置であってよい。コアネットワーク装置300は、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信し、UE100が在圏するトラッキングエリアの情報を管理する。コアネットワーク装置300は、UE100に対して着信を通知するために、基地局200を通じてページングを行う。コアネットワーク装置300は、5G/NRのAMF(Access and Mobility Management Function)、又は4G/LTEのMME(Mobility Management Entity)であってもよい。
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。
 UE100は、ユーザにより利用される装置であればよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な無線通信装置である。また、UE100は、車両(例えば、車、電車など)又は車両に設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又は車両以外の輸送機体に設けられる装置であってよい。また、UE100は、センサ又はセンサに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
 (プロトコルスタックの構成例)
 次に、図2を参照して、実施形態に係る移動通信システム1におけるプロトコルスタックの構成例について説明する。
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 物理チャネルは、時間領域における複数のOFDM(Orthogonal Frequency Division Multiplexing)シンボルと周波数領域における複数のサブキャリアとで構成される。1つのサブフレームは、時間領域で複数のOFDMシンボルで構成される。リソースブロックは、リソース割当単位であり、複数のOFDMシンボルと複数のサブキャリアとで構成される。フレームは、10msで構成されることができ、1msで構成された10個のサブフレームを含むことができる。サブフレーム内には、サブキャリア間隔に応じた数のスロットが含まれることができる。
 物理チャネルの中で、物理下りリンク制御チャネル(PDCCH)は、例えば、下りリンクスケジューリング割り当て、上りリンクスケジューリンググラント、及び送信電力制御等の目的で中心的な役割を果たす。
 NRでは、UE100は、システム帯域幅(すなわち、セルの帯域幅)よりも狭い帯域幅を使用できる。基地局200は、連続するPRB(Physical Resource Block)からなる帯域幅部分(BWP)をUE100に設定する。UE100は、アクティブなBWPにおいてデータ及び制御信号を送受信する。UE100には、例えば、1つのセルについて最大4つのBWPが設定可能である。各BWPは、異なるサブキャリア間隔を有していてもよいし、周波数が相互に重複していてもよい。UE100に対して複数のBWPが設定されている場合、基地局200は、ダウンリンクにおける制御によって、どのBWPをアクティブ化するかを指定できる。これにより、基地局200は、UE100のデータトラフィックの量等に応じてUE帯域幅を動的に調整でき、UE電力消費を減少させ得る。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。UE100のMACレイヤと基地局200のMACレイヤとの間で伝送される制御情報は、MAC CE(Control Element)と称されることがある。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある(すなわち、RRC接続が確立されている)場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない(すなわち、RRC接続が確立されていない)場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (二重接続方式)
 二重接続方式(いわゆる、Dual Connectivity)では、RRCコネクティッド状態にあるUE100が2つの異なる基地局200により提供される無線リソースを利用するように構成される。これらの基地局200は、非理想的なバックホールを介して接続されており、当該無線リソースをUE100に割り当てるための互いに異なるスケジューラを有する。一方の基地局200は、マスタセルグループ(以下、MCG)を管理するマスタノードとして動作し、他方の基地局200は、SCG(以下、SCG)を管理するセカンダリノードとして動作する。従って、UE100は、マスタノードとセカンダリノードとから提供される無線リソースを利用できる。
 マスタノードは、コアネットワーク30への制御プレーン接続を提供する無線アクセスノードである。マスタノードは、マスタeNB、マスタng-eNB、又はマスタgNBと称されてよい。セカンダリノードは、コアネットワーク30への制御プレーン接続がなく、UE100へ追加的な無線リソースを提供する。セカンダリノードは、en-gNB、セカンダリng-eNB、又はセカンダリgNBと称されてよい。ここで、マスタノード及び/又はセカンダリノードは、論理的なエンティティ(logical entity)である。本実施形態において、基地局200は、マスタノード及び/又はセカンダリノードに対応してもよい。すなわち、基地局200は、マスタノード及び/又はセカンダリノードに置き換えられてもよい。
 MCGは、マスタノードに関連付けられているサービングセルのグループである。MCGは、プライマリセル(PCell)と、オプションで1以上のセカンダリセル(SCell)とで構成される。SCGは、セカンダリノードに関連付けられているサービングセルのグループである。SCGは、SCGのプライマリセル(PSCell)と、オプションで1以上のセカンダリセル(SCell)とで構成される。なお、UE100には、MCG用の1つのMACエンティティとSCG用の1つのMACエンティティとが設定される。
 (ビーム障害検出・回復の概要)
 次に、図3及び図4を参照して、ビーム障害検出・回復の概要について説明する。
 NRは、LTEに比べて、ミリ波帯又はテラヘルツ波帯といった高周波数帯による広帯域伝送が可能である。NRでは、このような高周波数帯の電波における電波減衰を補うために、基地局200とUE100との間で、多数のアンテナを使用した高指向性のビームフォーミングを利用し、高いビーム利得を得ている。NRでは、基地局200とUE100との間のビームペアを確立及び維持するためのビーム制御技術が導入されている。ビーム障害検出・回復技術は、このようなビーム制御技術の1つである。
 ビーム障害検出(BFD)に関し、基地局200は、ビーム障害を検出するための下りリンクの参照信号リソースをUE100に設定する。このような参照信号リソースは、SSB(SS:Synchronization Signal/PBCH Block)及びCSI-RS(Channel State Information Reference Signal)のいずれかである。SSBは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、PBCH(Physical Broadcast Channel)、及び復調参照信号(DMRS)を含む。例えば、SSBは、時間領域において連続した4つのOFDMシンボルから構成されてもよい。また、SSBは、周波数領域において連続した240サブキャリア(すなわち、20リソースブロック)から構成されてもよい。PBCHは、マスタ情報ブロック(MIB)を運ぶ物理チャネルである。CSI-RSは、無線チャネルの状態をUE100が測定するために送信される参照信号である。
 なお、SSBベースのBFDは、イニシャル下りリンクBWPに関連付けられたSSBに基づいており、イニシャル下りリンクBWP及びこれに関連付けられたSSBを含む下りリンクBWPに対してのみ設定できる。他の下りリンクBWPの場合、BFDはCSI-RSのみに基づいて実行される。
 UE100において、MACレイヤは、物理レイヤから通知されるビーム障害イベント(ビーム障害インスタンス指示子(BFI))をカウンタでカウントし、タイマの満了前にカウント値が規定回数以上になると、ビーム障害を検出(宣言)する。
 図3に、SCGにおけるSCellでビーム障害が検出された場合の動作例を示す。
 図3において、基地局200-2が、セカンダリノードとして動作し、SCellであるセル250(SCell250B)を管理する一例を示している。基地局200-2は、SCell250Bにおいてビーム#0乃至ビーム#2の合計3つのビームを形成している。UE100は、SCell250Bにおいて、ビーム#0を用いた通信中にビーム障害を検出する。
 この場合、UE100は、ビーム障害回復MAC制御要素(BFR MAC CE)の送信を開始することにより、ビーム障害回復(BFR)をトリガする。ここで、UE100は、SCell250Bに適したビーム(例えば、ビーム#1)を選択し、ビーム障害に関する情報とともに選択ビーム情報をBFR MAC CEにより示す。UE100は、BFR MAC CEの送信に使用されたHARQプロセスの新しい送信のアップリンクグラントを示すPDCCHを受信すると、SCell250Bのビーム障害からの回復が完了する。
 図4に、SCGにおけるPSCellでビーム障害が検出された場合の動作例を示す。
 図4において、基地局200-2が、PSCellであるセル250(PSCell250A)を管理する一例を示している。基地局200-2は、PSCell250Aにおいてビーム#0乃至ビーム#2の合計3つのビームを形成している。UE100は、PSCell250Aにおいて、ビーム#0を用いた通信中にビーム障害を検出する。
 この場合、UE100は、PSCell250Aに対するランダムアクセス手順を開始することにより、BFRをトリガする。ここで、UE100は、BFRを実行するために適切なビーム(例えば、ビーム#1)を選択する。ランダムアクセス手順が完了すると、BFRが完了する。
 (SCGの非アクティブ化)
 次に、SCGの非アクティブ化について説明する。
 3GPPでは、UE100の消費電力を抑えるために、SCGの非アクティブ化が検討されている。UE100は、SCGを非アクティブ化した場合、SCGに属する全てのセル250(PSCell及びSCell)を非アクティブ化する。UE100が、非アクティブ化されたセル250における送受信動作を停止することで、UE100の消費電力が抑えられる。このような送受信動作は、例えば、CSI(Channel Status Information)の報告、PDCCHの監視、RACH(Random Access CHannel)の送信、SRS(Sounding Reference Signal)の送信、及び/又はUL-SCH(UL-Shared CHannel)の送信などである。
 UE100は、例えば、以下のいずれか1つの方法により、SCGを非アクティブ化する。
 方法1:UE100は、SCGを非アクティブ化する指示をマスタノード(基地局200-1)から受信することに応じて、SCGを非アクティブ化する。当該指示は、RRCレイヤのシグナリング(RRCメッセージ)、MACレイヤのシグナリングで(MAC CE)、及びPHYレイヤのシグナリング(PDCCH)のうちのいずれかで送信される。
 方法2:UE100は、SCGを非アクティブ化するためのタイマの満了に応じて、SCGを非アクティブ化する。
 UE100は、非アクティブ化されたSCGに属する各セル250について、上述のビーム障害検出を行う。しかしながら、SCGが非アクティブ化された場合、UE100は、各セル250における送受信動作を行わないため、上述のBFRをトリガするための動作(ランダムアクセス手順の実行、BFR MAC CEの送信)を実施できない(実行しない)。このため、UE100は、SCGが非アクティブ化された場合において、SCGに属するセル250(PSCell及び/又はSCell)のビーム障害から回復することができない。一実施形態では、UE100は、SCGが非アクティブ化された場合においても、SCGに属するセル250(PSCell及び/又はSCell)のビーム障害から回復することを可能とする。
 (通信装置の構成)
 次に、図5を参照して、一実施形態に係るUE100の構成例について説明する。図5に示すように、UE100は、アンテナ110と、通信部120と、制御部130とを有する。
 通信部120は、制御部130の制御下で、アンテナ110を介して信号を送受信することによって他の通信装置との通信を行う。通信部120は、例えば、基地局200からの無線信号を受信し、基地局200への無線信号を送信する。また、通信部120は、例えば、他のUEからの無線信号を受信し、他のUEへの無線信号を送信してよい。なお、アンテナ110は、UE100の外部に設けられてよい。
 通信部120は、受信部121と送信部122とを有する。受信部121は、アンテナ110が受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部130に出力する。送信部122は、制御部130が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナ110から送信する。
 なお、受信部121は、1つ又は複数の受信機を含んでよい。送信部122は、1つ又は複数の送信機を含んでよい。受信機と送信機とは、1つの送受信機により構成されてよい。また、アンテナ110は、受信と送信とで兼用されてよい。
 制御部130は、UE100における各種の制御を行う。制御部130は、例えば、通信部120を介した基地局200又は他のUE100との通信を制御する。後述のUE100の動作は、制御部130の制御による動作であってよい。
 制御部130は、プログラムを実行可能な1つ以上のプロセッサ及びプログラムを記憶するメモリを含んでよい。1つ以上のプロセッサは、プログラムを実行して、制御部130の動作を行ってもよい。プログラムは、制御部130の動作をプロセッサに実行させるためのプログラムであってもよい。
 プロセッサは、アンテナ110及びRF回路を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサは、単一のプロセッサであってよい。プロセッサは、複数のプロセッサを含んでもよい。当該複数のプロセッサは、デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 一実施形態に係るUE100において、制御部130は、非アクティブ化されたSCGに属するセル250におけるビーム障害を検出し、ビーム障害から回復するために使用する候補ビームを決定する。通信部120は、決定した候補ビームを特定するビーム特定情報を含む障害通知を、マスタノードとして動作する基地局200-1に送信する。これにより、ネットワーク側(基地局200-1及び基地局200-2)は、UE100が決定した候補ビームを把握することができ、SCGにおいて送信ビームを当該候補ビームに切り替えることができる。このため、UE100において、SCGが非アクティブ化された場合においても、SCGに属するセル250(PSCell及び/又はSCell)のビーム障害から回復することを可能とする。
 なお、以下において、UE100が備える機能部(具体的には、通信部120及び制御部130)の動作を、UE100の動作として説明することがある。
 (基地局の構成)
 図6を参照して、基地局200の構成例について説明する。図4に示すように、基地局200は、アンテナ210と、無線通信部220と、制御部230と、ネットワーク通信部240とを有する。
 無線通信部220は、制御部230の制御下で、アンテナ210を介してUE100との通信を行う。無線通信部220は、受信部221と、送信部222とを有する。受信部221は、アンテナ210が受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部230に出力する。送信部222は、制御部230が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナ210から送信する。
 ネットワーク通信部240は、コアネットワーク装置300と接続される。ネットワーク通信部240は、制御部230の制御下で、コアネットワーク装置300とのネットワーク通信を行う。
 制御部230は、無線通信部220を制御するとともに、基地局200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。メモリは、ROM、EPROM、EEPROM、RAM及びフラッシュメモリの少なくとも1つを含んでもよい。プロセッサは、デジタル信号のデジタル処理を行うデジタル信号プロセッサ(DSP)と、プログラムを実行する中央演算処理装置(CPU)とを含んでもよい。なお、メモリの一部は無線通信部220に設けられていてもよい。また、DSPは、無線通信部220に設けられていてもよい。
 一実施形態に係る基地局200-1において、無線通信部220は、非アクティブ化されたセカンダリセルグループに属するセル250におけるビーム障害から回復するために使用する候補ビームを特定するビーム特定情報を含む障害通知を、UE100から受信する。ネットワーク通信部240は、障害通知を、セカンダリノードとして動作する基地局200-2に送信する。これにより、基地局200-2は、UE100が決定した候補ビームを特定するビーム特定情報を把握することができ、UE100への送信ビームを、UE100が決定した候補ビームに切り替えることができる。このため、UE100において、SCGが非アクティブ化された場合においても、SCGに属するセル250(PSCell及び/又はSCell)のビーム障害から回復することを可能とする。
 なお、以下において、基地局200が備える機能部(具体的には、無線通信部220、制御部230及びネットワーク通信部240)の動作を、基地局200の動作として説明することがある。
 (動作例)
 次に、図7乃至図10を参照して、本開示の実施形態に係るUE100及び基地局200(基地局200-1、基地局200-2)の動作例を説明する。
 本動作例において、基地局200-1はマスタノードとして動作し、基地局200-2は、セカンダリノードとして動作する。以下において、マスタノード(基地局200-1)及びセカンダリノード(基地局200-2)を適宜「ネットワーク」として称することがある。
 図7に示すように、ステップS101において、基地局200-1(無線通信部220)は、SCG設定情報を含むRRC再設定メッセージをUE100に送信する。UE100(通信部120)は、SCG設定情報を含むRRC再設定メッセージを基地局200-1から受信する。
 SCG設定情報は、UE100にSCGの無線リソースを設定する又はすでにUE100に設定したSCGの無線リソースを更新するための情報である。SCG設定情報は、SCGに属する各セル250について、当該セル250の無線リソースを設定する各種パラメータを含む。UE100(制御部130)は、受信した各種パラメータに基づいて、SCGの無線リソースを使用する。SCG設定情報の内容は、セカンダリノードとして動作する基地局200-2によって設定される。
 SCG設定情報は、SCGに属する各セル250について、当該セル250におけるBFRを実施するための設定情報(以下、BFR設定情報と呼ぶ)を含む。BFR設定情報は、複数のビーム障害回復用参照信号(以下、BFR-RSと呼ぶ)を設定するリストであるBFR-RSリストと、BFRを実施するために使用する候補ビームを決定するための閾値(以下、BFR閾値と呼ぶ)を示す情報とを含む。1つのBFR-RSは、1つのBFR用ビームと対応付けられる。各BFR-RSは、SSB、及び/又はCSI-RSであってもよい。BFR-RSリストは、各BFR-RSの識別子を含む。BFR-RSリストは、セル250に属する下りリンクBWPごとに設けられる。
 セル250がPSCellである場合、対応するBFR-RSリストは、「candidateBeamRSList」と呼ばれ、対応するBFR閾値は、「rsrp-ThresholdSSB」と呼ばれることがある。セル250がSCellである場合、対応するBRF-RSリストは、「candidateBeamRSSCellList」と呼ばれ、対応するBFR閾値は、「rsrp-ThresholdBFR」と呼ばれることがある。
 SCG設定情報は、SCGに属する各セル250について、当該セル250におけるビーム障害の検出を実施するための設定情報(以下、BFD設定情報と呼ぶ)を含む。BFD設定情報は、ビーム障害検出用の参照信号リソース(以下、BFDリソースと呼ぶ)を設定する情報と、ビーム障害検出用のタイマ(以下、BFDタイマと称する)のタイマ値を設定する情報と、ビーム障害検出用のカウント値(以下、BFDカウント値)を設定する情報と、を含む。BFDリソースは、1つ以上のBFD用参照信号を含む。BFD用参照信号は、SSB又はCSI-RSである。
 SCG設定情報は、SCGの初期状態(アクティブ化状態又は非アクティブ化状態)を設定するSCG状態情報をさらに含んでもよい。
 SCG設定情報は、SCGを非アクティブ化するためのSCG非アクティブ化タイマのタイマ値を示す情報をさらに含んでもよい。
 ステップS102において、UE100(制御部130)は、SCGを非アクティブ化する。具体的には、UE100(制御部130)は、以下のいずれか1つの方法により、SCGを非アクティブ化する。
 方法1:UE100(制御部130)は、SCGを非アクティブ化する指示を基地局200-1から受信することに応じて、SCGを非アクティブ化する。当該指示は、RRCレイヤのシグナリング(RRCメッセージ)、MACレイヤのシグナリング(MAC CE)、及びPHYレイヤのシグナリング(PDCCH)のいずれかで送信される。
 方法2:UE100(制御部130)は、SCG非アクティブ化タイマの満了に応じて、SCGを非アクティブ化する。具体的には、第1に、ステップS101において、UE100(制御部130)は、SCG設定情報を受信することに応じて、SCGの初期状態をアクティブ化に設定すると同時に、SCG非アクティブ化タイマを起動する。SCG設定情報は、SCGの初期状態をアクティブ化に設定するSCG状態情報と、SCG非アクティブ化タイマのタイマ値を示す情報とを含む。第2に、ステップS102において、UE100(制御部130)は、SCG非アクティブ化タイマの満了に応じて、SCGを非アクティブ化する。
 ステップS103において、UE100(制御部130)は、SCGのビーム障害を検出する。ビーム障害の検出は、以下の方法で行われる。
 第1に、UE100の物理レイヤは、SCGに属する各セル250について、対象BWPに設定されたBFDリソースの無線リンク品質を評価する。無線リンク品質は、PDCCHのブロック誤り率(BLER)、及び/又はRSRP(Reference Signal Received Power)であってもよい。なお、本開示のRSRPは、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、及び/又はその他の電力又は品質に関する情報で読み替えられてもよい。
 ここで、対象BWPは、SCGが非アクティブ化される場合にUE100がビーム障害を検出するために使用すべきBWPである。UE100は、設定された複数の下りリンクBWPのいずれか1つを対象BWPとして自律的に選択してもよい。例えば、UE100は、帯域幅の最も広いBWPを対象BWPとして選択する。UE100は、SCGが非アクティブ化される直前のアクティブなBWPを対象BWPとして選択してもよい。UE100は、イニシャルBWPを対象BWPとして選択してもよい。或いは、基地局200-2は、SCG設定情報により、対象BWPをUE100に指定してもよい。
 第2に、UE100の物理レイヤは、対象BWPに設定されたBFDリソース内のすべての参照信号リソースの無線リンク品質が閾値よりも悪い場合、ビーム障害インスタンス指示子をUE100のMACレイヤに周期的に出力する。この周期は、例えば、BFDリソース内の最小の参照信号の周期及び2msのうち、いずれか大きい方に設定される。物理レイヤは、ビーム障害インスタンス指示子とともに、BFDリソースに対応するBWPの識別子及びセル250の識別子を一緒に出力してもよい。
 第3に、UE100のMACレイヤは、物理レイヤから受け取ったビーム障害インスタンス指示子に基づいて、ビーム障害を検出する。具体的には、MACレイヤは、SCGに属するセル250ごとにBFDタイマ及びBFDカウンタを管理する。そして、MACレイヤは、物理レイヤから、セル250に対応するビーム障害インスタンス指示子を受け取ると、セル250に対応するBFDタイマを始動するとともに、セル250に対応するBFDカウンタをインクリメント(すなわち、1を加算)する。MACレイヤは、BFDタイマの満了前にBFDカウンタのカウント値が、設定されたBFDカウント値以上になると、対応するセル250についてビーム障害を検出する。
 MACレイヤは、ビーム障害を検出すると、ビーム障害が検出された旨を示す指示子(Indication)をRRCレイヤに出力する。
 なお、MACレイヤの代わりに、RRCレイヤがビーム障害の検出を行ってもよい。この場合、上述のBFDタイマ及びBFDカウンタは、MACレイヤでなく、RRCレイヤによって管理されていてもよい。
 ステップS104において、UE100(制御部130)は、ビーム障害から回復するために使用する候補ビームを決定する。具体的には、第1に、物理レイヤは、BFDが検出されたBWPに対応するBFR-RSリストにおける各BFR-RSのRSRPを測定する。第2に、物理レイヤは、BFR閾値以上のRSRPを測定したBFR-RSに対応するビームを、ビーム障害から回復するために使用する候補ビームとして決定する。
 物理レイヤは、決定した候補ビームの識別子をMACレイヤに出力する。物理レイヤは、複数の候補ビームを決定してもよい。この場合、物理レイヤは、決定した複数の候補ビームの識別子をMACレイヤに出力する。なお、MACレイヤの代わりにRRCレイヤがビーム障害検出を行う場合、物理レイヤは、決定した候補ビームの識別子をRRCレイヤに出力する。
 ステップS105において、UE100(通信部120)は、ビーム障害通知を基地局200-1に送信する。基地局200-1(無線通信部220)は、ビーム障害通知をUE100から受信する。ビーム障害通知は、非アクティブ化されたSCGに属する各セル250において検出されたビーム障害に関する情報をUE100からネットワークに通知するためのメッセージである。
 ビーム障害通知は、ビーム障害が検出された各セル250について、当該セル250のセル識別子と、当該セルの対象BWPのBWP識別子と、ビーム障害から回復するために決定した候補ビームを特定するビーム特定情報と、を含む。なお、SCGがPSCellのみを含む場合、ビーム障害通知はセル識別子を含まなくてもよい。ビーム障害が検出されたセル250に1つのみの下りリンクBWPが設定された場合、ビーム障害通知はBWP識別子を含まなくてもよい。ビーム特定情報は、決定した候補ビームに対応するBFR-RSの識別子である。
 UE100から基地局200-1に送信するビーム障害通知は、RRCメッセージ、及び/又はMAC CEで送信されてもよい。RRCメッセージは、例えば、SCGFailureInformationメッセージである。
 ビーム障害通知を送信するか否かをUE100が判断するための判断条件をネットワークからUE100に設定してもよい。判断条件は、例えば、以下の1)又は2)である。
 1)SCGに属するいずれか1つのセル250(PSCell又はSCell)におけるビーム障害が検出され、かつ、当該ビーム障害から回復するための候補ビームが決定された。
 2)ビーム障害が検出されたセル250がPSCellであり、かつ、当該セル250でのビーム障害から回復するための候補ビームが決定された。この場合、PSCellではないセル250においてビーム障害が検出されても、UE100はビーム障害通知を送信しない。PSCellのビーム障害がなければ、SCellだけビーム障害があったとしても、SCGをアクティブ化する際に、UE100はPSCell経由でセカンダリノード(基地局200-2)と通信できる。そのため、PSCellに比べて、SCellのビーム障害をネットワークに通知する必要性が低い。
 判断条件は、上述の1)又は2)に限られていない。例えば、UE100は、一定期間内にSCGにおけるビーム障害の検出を行い、当該一定期間が終了した時点で、少なくとも1つのセル250においてビーム障害が検出されたら、ビーム障害通知を送信してもよい。判断条件は、ネットワークからUE100に設定されるものでなく、技術仕様により予め規定されるものであってもよい。なお、判断条件がUE100に設定されない場合、UE100は、ビーム障害が検出された後の任意のタイミングでビーム障害通知を送信してもよい。
 次に、図8及び図9を参照して、ビーム障害通知を送信するためのSCGFailureInformationメッセージの具体例について説明する。
 図8及び図9に示すように、SCGFailureInformationメッセージは、ビーム障害通知として、ビーム障害情報要素リスト(beamFailureDeactivatedSCG-InfoList-r17)410を含む。
 ビーム障害情報要素リスト(beamFailureDeactivatedSCG-InfoList-r17)410は、最大でmaxNrofServingCells個までのビーム障害情報要素(BeamFailureDeactivatedSCG-Info-r17)411を含む。
 各ビーム障害情報要素(BeamFailureDeactivatedSCG-Info-r17)411は、当該ビーム障害情報要素411に対応するビーム障害が検出されたセル250を識別するセル識別子(servCellIndex-r17)と、当該ビーム障害が検出されたBWPを識別するBWP識別子(bwp-Id)と、当該ビーム障害から回復するために使用する候補ビームを特定するビーム特定情報(candidateBeamRS-Id)とを含む。
 図7に戻り、ステップS106において、基地局200-1(ネットワーク通信部240)は、UE100から受信したビーム障害通知を基地局200-2に送信する。基地局200-2(ネットワーク通信部240)は、ビーム障害通知を基地局200-1から受信する。
 基地局200-1から基地局200-2に送信するビーム障害通知は、例えば、図10に示すように、セルグループ設定情報(CG-ConfigInfo)メッセージにより送信されてもよい。
 ステップS107において、基地局200-2(制御部230)は、UE100への送信ビームを、ビーム障害通知に示される候補ビームに切り替える。「UE100への送信ビーム」は、SCGがアクティブ化される際に、障害通知に示されるセル250においてUE100へ下りリンク送信が使用するビームである。このような下りリンク送信は、例えば、PDCCHの送信である。
 ビーム障害通知が1つのセル250について複数の候補ビームを示す場合、基地局200-2(制御部230)は、当該複数の候補ビームのうち、1つの候補ビームを選択し、UE100への送信ビームを当該選択した候補ビームに切り替える。例えば、基地局200-2(制御部230)は、複数の候補ビームのうち、サービングしているUE100の数の少ない候補ビームを選択してもよい。
 ステップS108において、基地局200-2(ネットワーク通信部240)は、UE100への送信ビームが候補ビームに切り替えられたことを示すビーム回復通知を、基地局200-1に送信する。基地局200-1(ネットワーク通信部240)は、ビーム回復通知を基地局200-2から受信する。基地局200-2が複数の候補ビームから1つの候補ビームを選択した場合、基地局200-2は、当該選択した候補ビームを特定する情報をビーム回復通知に含めて送信する。
 ステップS109において、基地局200-1は、基地局200-1から受信したビーム回復通知を、UE100に送信する。UE100は、ビーム回復通知を基地局200-1から受信する。UE100へ送信するビーム回復通知は、RRCメッセージ又はMAC CEで送信される。これにより、UE100は、ビーム障害が検出されたセル250においてUE100への送信ビームを把握する。
 ステップS110において、UE100は、SCGをアクティブ化する。UE100は、例えば、基地局200-1からの指示に応じて、SCGをアクティブ化する。このような指示は、RRCメッセージ、MAC CE、及びPDCCHのいずれかで送信される。その後、UE100は、ステップS109において把握した送信ビームを用いて、基地局200-1からの下りリンク送信(例えば、PDCCH)を受信する。
 (その他の実施形態)
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 上述の実施形態において、基地局200は、複数のユニットを含んでもよい。複数のユニットは、プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のユニットと、プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のユニットとを含んでよい。上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでよく、下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでよい。第1のユニットは、CU(central unit)であってよく、第2のユニットは、DU(Distributed Unit)であってよい。複数のユニットは、PHYレイヤの下位の処理を行う第3のユニットを含んでよい。第2のユニットは、PHYレイヤの上位の処理を行ってよい。第3のユニットは、RU(Radio Unit)であってよい。基地局200は、複数のユニットのうちの1つであってよく、複数のユニットのうちの他のユニットと接続されていてよい。また、基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 

Claims (5)

  1.  二重接続方式を利用して、マスタセルグループに関連付けられたマスタノード(200-1)と接続されるとともに、セカンダリセルグループに関連付けられたセカンダリノード(200-2)と接続される通信装置(100)であって、
     前記セカンダリセルグループの非アクティブ化を指示する情報を含むRRC(Radio Resource Control)メッセージを受信する通信部(120)と、
     前記情報に従って前記セカンダリセルグループを非アクティブ化する制御部(110)と、を備え、
     前記制御部(110)は、ビーム障害を検出したセルが、非アクティブ化された前記セカンダリセルグループに属するプライマリセルであるか否かを判断し、
     前記通信部(120)は、前記セルが前記プライマリセルであると前記制御部(110)が判断した場合、前記セカンダリセルグループの障害に関するSCGFailureInformationメッセージを、前記マスタノード(200-1)に送信する
     通信装置(100)。
  2.  前記通信部(120)は、前記セルが前記プライマリセルではないと前記制御部(110)が判断した場合、前記SCGFailureInformationメッセージを送信しない制御を行う
     請求項1に記載の通信装置(100)。
  3.  前記制御部(110)は、物理レイヤと、MAC(Medium Access Control)レイヤと、RRCレイヤとを備え、
     前記MACレイヤは、前記物理レイヤからビーム障害インスタンス指示子を受信し、前記ビーム障害インスタンス指示子とカウンタの値とに基づいて、前記ビーム障害を前記RRCレイヤに通知する
     請求項1に記載の通信装置。
  4.  二重接続方式を利用して、セカンダリセルグループに関連付けられたセカンダリノード(200-2)とともに通信装置(100)に接続するマスタノード(200-1)であって、
     前記セカンダリセルグループの非アクティブ化を指示する情報を含むRRCメッセージを前記通信装置(100)に送信する送信部(222)と、
     前記セカンダリセルグループが非アクティブ化されている場合において、前記セカンダリセルグループの障害に関するSCGFailureInformationメッセージを、前記通信装置(100)から受信する受信部(221)と、を備え、
     前記SCGFailureInformationメッセージは、非アクティブ化された前記セカンダリセルグループに属するプライマリセルにおいてビーム障害が検出される場合、前記通信装置(100)から送信される
     マスタノード(200-1)。
  5.  二重接続方式を利用して、マスタセルグループに関連付けられたマスタノード(200-1)と接続されるとともに、セカンダリセルグループに関連付けられたセカンダリノード(200-2)と接続される通信装置(100)において実行される通信制御方法であって、
     前記セカンダリセルグループの非アクティブ化を指示する情報を含むRRC(Radio Resource Control)メッセージを受信するステップと、
     前記情報に従って前記セカンダリセルグループを非アクティブ化するステップと、
     ビーム障害を検出したセルが、非アクティブ化された前記セカンダリセルグループに属するプライマリセルであるか否かを判断するステップと、
     前記セルが前記プライマリセルであると判断した場合、前記セカンダリセルグループの障害に関するSCGFailureInformationメッセージを、前記マスタノード(200-1)に送信するステップと、を有する
     通信制御方法。
     
PCT/JP2022/025661 2021-06-29 2022-06-28 通信装置、マスタノード、及び通信制御方法 WO2023276987A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112023025525A BR112023025525A2 (pt) 2021-06-29 2022-06-28 Aparelho de comunicação, nó mestre, e, método de controle de comunicação
CN202280046519.6A CN117643161A (zh) 2021-06-29 2022-06-28 通信设备、主节点以及通信控制方法
EP22833134.4A EP4366446A1 (en) 2021-06-29 2022-06-28 Communication device, master node, and communication control method
US18/392,436 US20240129768A1 (en) 2021-06-29 2023-12-21 Communication apparatus, master node, and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021107737A JP2023005673A (ja) 2021-06-29 2021-06-29 ユーザ装置及び通信制御方法
JP2021-107737 2021-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/392,436 Continuation US20240129768A1 (en) 2021-06-29 2023-12-21 Communication apparatus, master node, and communication control method

Publications (1)

Publication Number Publication Date
WO2023276987A1 true WO2023276987A1 (ja) 2023-01-05

Family

ID=84689931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025661 WO2023276987A1 (ja) 2021-06-29 2022-06-28 通信装置、マスタノード、及び通信制御方法

Country Status (6)

Country Link
US (1) US20240129768A1 (ja)
EP (1) EP4366446A1 (ja)
JP (1) JP2023005673A (ja)
CN (1) CN117643161A (ja)
BR (1) BR112023025525A2 (ja)
WO (1) WO2023276987A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088565A1 (zh) * 2018-10-31 2020-05-07 华为技术有限公司 检测波束失败的方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088565A1 (zh) * 2018-10-31 2020-05-07 华为技术有限公司 检测波束失败的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "UE measurements and reporting in deactivated SCG", 3GPP DRAFT; R2-2103893, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20210412 - 20210420, 1 April 2021 (2021-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051992291 *

Also Published As

Publication number Publication date
JP2023005673A (ja) 2023-01-18
CN117643161A (zh) 2024-03-01
US20240129768A1 (en) 2024-04-18
EP4366446A1 (en) 2024-05-08
BR112023025525A2 (pt) 2024-02-27

Similar Documents

Publication Publication Date Title
US9780933B2 (en) Communication system, base station apparatus, mobile station apparatus, measurement method, and integrated circuit
US9686065B2 (en) Communication system, base station apparatus, mobile station apparatus, measurement method, and integrated circuit
CN115088384A (zh) 利用模式1和模式2调度的不连续接收配置与侧向链路操作
WO2019161273A1 (en) Method of performing beam failure recovery procedure and user equipment
JP2024119972A (ja) 方法、ユーザ装置、プロセッサ、プログラム及び通信システム
WO2023276987A1 (ja) 通信装置、マスタノード、及び通信制御方法
WO2023276988A1 (ja) 通信装置及び通信制御方法
US20240357685A1 (en) Communication apparatus and communication method
US20240357672A1 (en) Communication apparatus and communication method
US20240155387A1 (en) Communication apparatus, base station, and communication method
US20240129767A1 (en) Communication apparatus, base station, and communication method
US20240138013A1 (en) Communication apparatus, base station, and communication method
US20240129014A1 (en) Communication apparatus, base station, and communication method
WO2023068355A1 (ja) 通信装置、基地局、及び通信方法
US20240129015A1 (en) Communication apparatus, base station, and communication method
WO2023068350A1 (ja) 通信装置、基地局、及び通信方法
WO2023068356A1 (ja) 通信装置、基地局、及び通信方法
WO2023068353A1 (ja) 通信装置、基地局、及び通信方法
JPWO2015141726A1 (ja) 通信制御方法、基地局及びユーザ端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833134

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023025525

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202280046519.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202417002109

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022833134

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833134

Country of ref document: EP

Effective date: 20240129

ENP Entry into the national phase

Ref document number: 112023025525

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231205