[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023276641A1 - Cord-rubber composite body, rubber product and method for producing cord-rubber composite body - Google Patents

Cord-rubber composite body, rubber product and method for producing cord-rubber composite body Download PDF

Info

Publication number
WO2023276641A1
WO2023276641A1 PCT/JP2022/023658 JP2022023658W WO2023276641A1 WO 2023276641 A1 WO2023276641 A1 WO 2023276641A1 JP 2022023658 W JP2022023658 W JP 2022023658W WO 2023276641 A1 WO2023276641 A1 WO 2023276641A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
cord
metal nanoparticles
metal
steel
Prior art date
Application number
PCT/JP2022/023658
Other languages
French (fr)
Japanese (ja)
Inventor
良子 神田
英彰 境田
一樹 奥野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202280029211.0A priority Critical patent/CN117222791A/en
Priority to DE112022003318.5T priority patent/DE112022003318T5/en
Priority to US18/558,615 priority patent/US20240229351A1/en
Priority to JP2023531766A priority patent/JPWO2023276641A1/ja
Publication of WO2023276641A1 publication Critical patent/WO2023276641A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0666Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/201Wires or filaments characterised by a coating
    • D07B2201/2011Wires or filaments characterised by a coating comprising metals
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2075Rubbers, i.e. elastomers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3067Copper (Cu)
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3071Zinc (Zn)

Definitions

  • the present disclosure relates to cord-rubber composites, rubber products and methods of making cord-rubber composites.
  • This application claims priority based on Japanese Application No. 2021-109610 filed on June 30, 2021, and incorporates all the descriptions described in the above Japanese Application.
  • the cord-rubber composite of the present disclosure includes one or more steel cords including steel wire rods, and rubber covering at least a portion of the surface of the steel cords, and the steel cords are combined with the steel wire rods. , having a metal nanoparticle layer laminated on the surface of the steel wire, the metal nanoparticle layer containing first metal nanoparticles and second metal nanoparticles, the first metal nanoparticles containing copper, The second metal nanoparticles contain one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof.
  • the method for producing a cord-rubber composite of the present disclosure includes the steps of applying a metal nanoink containing metal nanoparticles and a solvent for dispersing the metal nanoparticles to the surface of a steel wire, and A step of drying the coating film of the metal nano-ink, a step of drawing the steel wire after the drying step, and a step of coating at least part of the surface of the steel cord formed after the drawing step with rubber.
  • the metal nanoparticles contain first metal nanoparticles and second metal nanoparticles, the first metal nanoparticles comprise copper, and the second metal nanoparticles are zinc, cobalt, tin, iron, nickel , aluminum and oxides thereof.
  • FIG. 1 is a schematic cross-sectional view of a cord-rubber composite according to one aspect of the present disclosure.
  • FIG. 2 is a schematic partial cross-sectional view of a rubber product according to one aspect of the present disclosure.
  • the hot diffusion plating method in which zinc is plated on the copper-plated layer and then the brass-plated layer is formed by thermal diffusion, is generally adopted as a means of brass plating. It is In recent years, while various environmental problems have been emphasized, there is a growing movement worldwide to reduce carbon dioxide and move toward a low-carbon society.
  • the present disclosure has been made based on the above circumstances, and can produce a cord-rubber composite having excellent adhesion between rubber and steel cord, and a cord-rubber composite having excellent adhesion between rubber and steel cord.
  • Another object of the present invention is to provide a method for producing a cord-rubber composite that can reduce carbon dioxide during production.
  • a cord-rubber composite according to an aspect of the present disclosure has excellent adhesion between rubber and steel cords. According to the method for producing a cord-rubber composite according to another aspect of the present disclosure, it is possible to produce a cord-rubber composite having excellent adhesion between rubber and steel cord, and to reduce carbon dioxide during production. can be done.
  • the cord-rubber composite of the present disclosure includes one or more steel cords including steel wire rods, and rubber covering at least a portion of the surface of the steel cords, and the steel cords are combined with the steel wire rods. , having a metal nanoparticle layer laminated on the surface of the steel wire, the metal nanoparticle layer containing first metal nanoparticles and second metal nanoparticles, the first metal nanoparticles containing copper, The second metal nanoparticles contain one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof.
  • the cord-rubber composite has excellent adhesion between rubber and steel cord, and can contribute to the reduction of carbon dioxide during manufacturing.
  • the reason why such an effect occurs is presumed as follows, for example. Since the metal nanoparticle layer laminated on the surface of the steel wire contains the first metal nanoparticles and the second metal nanoparticles, the copper- The sulfur layer exists three-dimensionally rather than planarly. As a result, the anchor effect can further improve the adhesiveness between the rubber and the steel cord.
  • the provision of the metal nanoparticle layer eliminates the need for a heat treatment process such as the thermal diffusion plating method, it can contribute to the reduction of carbon dioxide during production.
  • the second metal nanoparticles preferably contain zinc or zinc oxide.
  • zinc or zinc oxide in the second metal nanoparticles, the adhesion between the rubber and the steel cord in the cord-rubber composite can be further improved.
  • the mass ratio of the total amount of the first metal nanoparticles to the total amount of the second metal nanoparticles in the metal nanoparticle layer is preferably 1 or more and 9 or less.
  • the mass ratio of the total amount of the first metal nanoparticles to the total amount of the second metal nanoparticles in the metal nanoparticle layer is within the above range, the adhesion between the rubber and the steel cord in the cord-rubber composite can be improved.
  • the average thickness of the metal nanoparticle layer is preferably 0.01 ⁇ m or more and 1.0 ⁇ m or less. When the average thickness of the metal nanoparticle layer is within the above range, the adhesion between the metal nanoparticle layer and rubber can be further improved.
  • the rubber product of the present disclosure includes the cord-rubber composite having excellent adhesion between rubber and steel cord. Therefore, the rubber product can have improved durability.
  • the method for producing a cord-rubber composite of the present disclosure includes the steps of applying a metal nanoink containing metal nanoparticles and a solvent for dispersing the metal nanoparticles to the surface of a steel wire, and A step of drying the coating film of the metal nano-ink, a step of drawing the steel wire after the drying step, and a step of coating at least part of the surface of the steel cord formed after the drawing step with rubber.
  • the metal nanoparticles contain first metal nanoparticles and second metal nanoparticles, the first metal nanoparticles comprise copper, and the second metal nanoparticles are zinc, cobalt, tin, iron, nickel , aluminum and oxides thereof.
  • the hot diffusion plating method is generally used as a means of brass plating, in which zinc is plated on the copper plating layer, and then the brass plating layer is formed by thermal diffusion.
  • thermal diffusion causes carbon dioxide to be emitted from the factory.
  • the coating film of the metal nano-ink is dried on the surface of the steel wire, so a thermal diffusion process such as brass plating is unnecessary. Therefore, the cord-rubber composite production method can reduce carbon dioxide during production.
  • the metal nanoink for forming the coating film contains the first metal nanoparticles and the second metal nanoparticles, so that the steel wire and the rubber
  • the copper-sulfur layer of the first metal nanoparticles exists three-dimensionally, not planarly.
  • the anchor effect can further improve the adhesiveness between the rubber and the steel cord. Therefore, the method for producing a cord-rubber composite can produce a cord-rubber composite having excellent adhesion between rubber and steel cord, and can reduce carbon dioxide during production.
  • the primary particles of the metal nanoparticles have a particle diameter of more than 10 nm and less than 150 nm, and a median diameter of 30 nm or more and 100 nm or less.
  • the particle diameter and median diameter of the primary particles of the metal nanoparticles are within the above ranges, the dispersibility and stability of the metal nanoparticles can be improved, and the adhesion between the steel cord and the rubber can be improved.
  • the "metal nanoparticles" include the first metal nanoparticles and the second metal nanoparticles.
  • the “median diameter (D50)” is a value at which the volume-based integrated distribution calculated according to JIS-Z-8819-2 (2001) is 50%.
  • the median diameter of the metal nanoparticles in the metal nanoink is calculated from the volume-based cumulative distribution measured by the laser diffraction method. After coating the metal nanoink, it can be calculated by analyzing an SEM (Scanning Electron Microscope) image. Specifically, it is calculated from the average value for two fields of 100,000-fold SEM images.
  • nanoparticle is meant a particle having an average particle size of less than 1 ⁇ m, calculated as one-half of the sum of the maximum microscopic length and the maximum width perpendicular to this length.
  • Average thickness means the value obtained by measuring the thickness at 10 arbitrary points and averaging the values.
  • the cord-rubber composite exists in a form included in the rubber product and functions as a reinforcing material for the rubber product.
  • This cord-rubber composite does not require plating on the surface of the steel cord, but instead applies ink with dispersed nanoparticles, eliminating the need for a heat treatment process. of adhesion is obtained. Therefore, the steel cord of the present disclosure can improve the durability of rubber products.
  • FIG. 1 is a schematic cross-sectional view of the cord-rubber composite.
  • the cord-rubber composite 1 has one or a plurality of steel cords 10 containing steel wire rods 2 and rubber (topping rubber) 4 covering at least part of the surface of the steel cords 10 .
  • FIG. 1 shows a widthwise cross section of a steel cord 10 covered with rubber 4 .
  • the steel wire rod 2 has a metal nanoparticle layer 3 laminated on its surface. That is, the metal nanoparticle layer 3 exists at the interface between the rubber 4 and the steel wire 2 .
  • the steel cord 10 includes one or more steel wires 2 and a metal nanoparticle layer 3 laminated on the surface of the steel wires 2 .
  • the metal nanoparticle layer 3 may be laminated on the surfaces of only some of the plurality of steel wires 2.
  • the steel wire rod 2 is not particularly limited, but a high carbon steel wire is preferred.
  • a plurality of strands twisted together at a constant pitch or a plurality of strands aligned in parallel without being twisted together can be used.
  • the twisted structure of the steel wire 2 may be a single twist (1 ⁇ N) in which N wires are twisted once. exemplified. The number N of single-twisted filaments can be set as appropriate.
  • Another twisted structure of the steel wire 2 may be a laminar twist (N+M) in which M sheaths are wound around N cores in layers.
  • the cord-rubber composite 1 includes a metal nanoparticle layer 3 laminated on the surface of the steel wire 2 .
  • the metal nanoparticle layer 3 can be formed by drying a coating film of metal nanoink containing metal nanoparticles. Applying an ink in which metal nanoparticles are dispersed eliminates the need for a heat treatment process, which contributes to the reduction of carbon dioxide during production.
  • the metal nanoparticles contain first metal nanoparticles and second metal nanoparticles.
  • the first metal nanoparticles contain copper.
  • the second metal nanoparticles contain one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof.
  • the first metal nanoparticles and the second metal nanoparticles may be a single metal, or may form an alloy. Since the metal nanoparticle layer 3 contains the first metal nanoparticles and the second metal nanoparticles, the copper-sulfur layer of the first metal nanoparticles is flat between the steel wire 2 and the rubber 4. Instead, it exists three-dimensionally. As a result, the adhesiveness between the rubber 4 and the steel cord 10 can be further improved due to the anchor effect.
  • Combinations of the first metal nanoparticles and the second metal nanoparticles include, for example, copper and zinc oxide, copper and zinc, copper and zinc and cobalt, copper and zinc oxide and cobalt, copper and cobalt, copper and cobalt oxide (CoO , Co2O3 , Co3O4 , etc.), copper and tin, copper and tin oxide ( SnO, SnO2, SnO3 , etc.).
  • the second metal nanoparticles preferably contain zinc or zinc oxide.
  • zinc or zinc oxide in the second metal nanoparticles, the adhesion between the rubber 4 and the steel cord 10 in the cord-rubber composite 1 can be further improved.
  • the mass ratio of the total amount of the first metal nanoparticles to the total amount of the second metal nanoparticles is preferably 1 or more and 9 or less, more preferably 1.5 or more and 4 or less, and 2 or more. 3 or less is more preferable.
  • the mass ratio of the first metal nanoparticles to the second metal nanoparticles is within the above range, the adhesion between the rubber 4 and the steel cord 10 in the cord-rubber composite 1 can be further improved.
  • the average aspect ratio of the metal nanoparticles in the metal nanoparticle layer 3 is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, and even more preferably 1 or more and 5 or less.
  • Adhesion between the rubber 4 and the steel cord 10 can be obtained by setting the average aspect ratio of the metal nanoparticles within the above range.
  • the aspect ratio is measured using a cross-sectional image of the steel cord 10 by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the “aspect ratio” is defined as A/B, where A is the maximum length of the metal nanoparticles in the wire drawing direction of the steel cord 10 and B is the maximum width perpendicular to the maximum length. It is an index representing the shape.
  • Average aspect ratio means an average value obtained by measuring the aspect ratio at 10 points.
  • the lower limit of the average thickness of the metal nanoparticle layer 3 is preferably 0.01 ⁇ m, more preferably 0.02 ⁇ m.
  • the upper limit of the average thickness of the metal nanoparticle layer 3 is preferably 1.0 ⁇ m, more preferably 0.8 ⁇ m. If the average thickness of the metal nanoparticle layer 3 is less than 0.01 ⁇ m, there is a possibility that sufficient adhesion between the steel cord 10 and the rubber 4 cannot be obtained due to the thin adhesive layer. On the other hand, if the average thickness of the metal nanoparticle layer 3 exceeds 1.0 ⁇ m, cracks may occur in the metal nanoparticle layer 3 and sufficient adhesion between the steel cord 10 and the rubber 4 may not be obtained.
  • the lower limit of the area ratio of the metal nanoparticles in the cross section of the metal nanoparticle layer 3 is preferably 50%, more preferably 60%.
  • the upper limit of the area ratio of the metal nanoparticles in the cross section of the metal nanoparticle layer 3 is more preferably 100%.
  • the rubber (topping rubber) 4 that coats at least part of the surface of the steel cord 10 is not particularly limited, and a general rubber composition that has been conventionally used can be used.
  • the rubber composition may contain, for example, a rubber component, a vulcanizing agent, a filler and other various additives.
  • rubber components include modified natural rubber such as natural rubber, epoxidized natural rubber, deproteinized natural rubber, isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile-butadiene rubber ( NBR), isoprene-isobutylene rubber (IIR), ethylene-propylene-diene rubber (EPDM), halogenated butyl rubber (HR), chloroprene rubber (CR), and various other synthetic rubbers.
  • modified natural rubber such as natural rubber, epoxidized natural rubber, deproteinized natural rubber, isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile-butadiene rubber ( NBR), isoprene-isobutylene rubber (IIR), ethylene-propylene-diene rubber (EPDM), halogenated butyl rubber (HR), chloroprene rubber (CR), and various
  • Examples of the vulcanizing agent include sulfur and sulfur-containing compounds.
  • Examples of the filler include inorganic fillers such as carbon black and silica.
  • Various chemicals generally used in rubber compositions can be used as the additive. Examples of the above additives include vulcanization accelerators, vulcanization retarders, process oils, antioxidants, organic acids, organic cobalt compounds, zinc oxide and the like.
  • the cord-rubber composite has excellent adhesion between rubber and steel cord.
  • the metal nanoparticle layer is provided without the brass plating layer, the heat treatment process becomes unnecessary, which can contribute to the reduction of carbon dioxide during production.
  • a method for producing a cord-rubber composite includes a step of applying metal nano-ink containing metal nanoparticles and a solvent for dispersing the metal nanoparticles onto the surface of a steel wire (hereinafter referred to as coating a step of drying the metal nano-ink coating film applied to the steel wire (hereinafter also referred to as a drying step); and a step of drawing the steel wire after the drying step ( hereinafter also referred to as a wire drawing step), and a step of coating at least part of the surface of the steel cord formed after the wire drawing step with rubber (hereinafter also referred to as a rubber coating step).
  • the steel wire is coated with the metal nano-ink described above.
  • a metal nanoink includes, for example, a solvent, metal nanoparticles dispersed in the solvent, and a dispersant.
  • the metal nanoparticles contained in the metal nanoink can be formed by a wave high-temperature treatment method, a liquid phase reduction method, a gas phase method, or the like.
  • a liquid phase reduction method for precipitating is preferably used.
  • the metal nanoparticles contain first metal nanoparticles and second metal nanoparticles.
  • the first metal nanoparticles contain copper.
  • the second metal nanoparticles contain one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof. Since the details of the metal nanoparticles are as described above, the description is omitted.
  • the range of the particle size of the primary particles of the metal nanoparticles is preferably more than 10 nm and less than 150 nm, more preferably more than 10 nm and less than 100 nm, and even more preferably 30 nm or more and less than 80 nm. If the primary particle size of the metal nanoparticles is less than 10 nm, for example, the dispersibility and stability of the metal nanoparticles in the metal nanoink may be reduced. On the other hand, when the particle size of the primary particles of the metal nanoparticles exceeds 150 nm, the gaps between the metal nanoparticles become large, which may make it impossible to form a dense metal nanoparticle layer.
  • the lower limit of the median diameter of the primary particles of the metal nanoparticles is preferably 30 nm, more preferably 50 nm.
  • the upper limit of the median diameter of the primary particles of the metal nanoparticles is preferably 100 nm, more preferably 80 nm. If the median diameter of the primary particles of the metal nanoparticles is less than 30 nm, for example, the dispersibility and stability of the metal nanoparticles in the metal nanoink may be reduced.
  • the median diameter of the primary particles of the metal nanoparticles is 100 nm, the voids in the metal nanoparticle layer formed become large, and there is a risk that sufficient adhesion between the steel cord and the rubber cannot be obtained.
  • the type and blending ratio of the metal compound, dispersant, and other additives are adjusted, and the stirring speed, temperature, time, pH, etc. in the reduction step of reducing the metal compound are controlled. should be adjusted.
  • solvent for the metal nanoink is not particularly limited, but water is preferably used, and an organic solvent may be blended with water.
  • Various water-soluble organic solvents can be used as the organic solvent to be blended in the metal nanoink.
  • specific examples thereof include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol; ketones such as acetone and methyl ethyl ketone;
  • Examples include polyhydric alcohols such as ethylene glycol and glycerin, other esters, and glycol ethers such as ethylene glycol monoethyl ether and diethylene glycol monobutyl ether.
  • the content of water which is the solvent in the metal nanoink, is preferably 20 parts by mass or more and 1900 parts by mass or less per 100 parts by mass of the metal nanoparticles. If the water content is less than 20 parts by mass, the concentration of the metal nanoparticles becomes too high, and there is a risk that uniform coating with the metal nanoink will not be possible. On the other hand, when the content of water exceeds 1900 parts by mass, the proportion of metal nanoparticles in the metal nanoink is reduced, and a good metal having the thickness and density required for the surface of the steel wire rod of the cord-rubber composite. A nanoparticle layer may not be formed.
  • the metal nanoink may further contain a dispersant, for example.
  • a dispersant examples include polyethylene glycol, polyvinyl alcohol, and polymeric materials of polycarboxylic acid.
  • the content of the dispersant is preferably 0.5 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the metal nanoparticles.
  • the dispersant surrounds the metal nanoparticles to prevent aggregation and disperse the metal nanoparticles well. may become On the other hand, if the content of the dispersant exceeds 20 parts by mass, the excessive dispersant may reduce the adhesion between the steel wire and the metal nanoparticle layers.
  • the metal nanoink may contain other additives within a range that does not impede these effects.
  • Other additives include, for example, ascorbic acid and amine-based polymers.
  • the method for producing metal nanoink includes, for example, a step of depositing metal nanoparticles by a liquid phase reduction method, a step of separating the metal nanoparticles deposited in the step of depositing the metal nanoparticles, and a step of separating the metal nanoparticles.
  • the method of applying metal nano-ink to steel wire is not particularly limited.
  • the coating method conventionally known coating methods such as a spin coating method, a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method and a dip coating method can be used.
  • the metal nano-ink coating film on the steel wire is dried.
  • the metal nano-ink can be dried by cold air drying or natural drying. Therefore, no heating is required in the drying process.
  • the wind speed of the cold air is preferably set to a level that does not make the coating film rippling.
  • a specific wind speed of the cold air on the coating film surface can be, for example, 5 m/sec or more and 10 m/sec or less.
  • wire drawing process In the wire drawing step, the steel wire after the drying step is drawn. Through this process, the steel cord can have the desired size and strength.
  • wire drawing can be performed without heating after the ink is applied.
  • wire drawing conditions and the like are not particularly limited as long as the wire drawing is performed according to a conventional method using a wire drawing machine normally used in the wire drawing process of steel wire rods.
  • metal nanoparticles can be mixed in the liquid lubricating liquid, and the coating process and the wire drawing process can be performed at the same time.
  • Rubber coating process In the rubber coating step, at least part of the surface of the steel cord formed after the wire drawing step is coated with rubber.
  • the method of coating the steel cord with rubber is also not particularly limited, and known methods can be used. For example, it can be manufactured by arranging steel cords in parallel at regular intervals, embedding the steel cords in a rubber composition, and then vulcanizing the steel cords.
  • rubber compositions include compositions containing rubber components, vulcanizing agents, fillers and other various additives, as described above.
  • FIG. 2 is a schematic partial cross-sectional view of a rubber product according to one aspect of the present disclosure.
  • the rubber product 50 shown in FIG. 2 includes the cord-rubber composite 1 .
  • FIG. 2 shows a longitudinal section of the cord-rubber composite 1 embedded in the rubber substrate 8 of the rubber product 50.
  • a plurality of the cord-rubber composites 1 are embedded in the rubber base material 8, thereby forming a skeleton of a portion that requires durability such as repeated bending, for example. .
  • the steel cord of the present disclosure is embedded in a sheet-like unvulcanized rubber made of a rubber composition to obtain a reinforcing belt structure.
  • the rubber composition used for the rubber product for example, the same rubber compositions as those exemplified for the above rubber can be used. Thereafter, the reinforcing belt structure and the tire constituent members are bonded together, set in a vulcanizer, and vulcanized by pressing, heating, etc., to obtain a tire as a rubber composite. As a result, a tire with excellent durability can be manufactured.
  • Test No. 1 provided with a steel cord having a metal nanoparticle layer. 1 and test no. Two cord-rubber composites were made.
  • a metal nanoink containing metal nanoparticles with a weight ratio of zinc oxide and copper of 1:3 was prepared.
  • the metal nano-ink was applied to the surface of a steel wire rod cut to a diameter of ⁇ 1 mm and a length of 150 mm to a length of 75 mm from the tip, and the coating film was dried to prepare 30 steel cords. After that, 30 steel cords were embedded in rubber and vulcanized at 165° C. for 18 minutes. No. 1 cord-rubber composite was made. Test no. Observation of the cross section of No. 1 with a transmission electron microscope confirmed a metal nanoparticle layer at the interface between the steel wire and the rubber. The average thickness of the metal nanoparticle layer was 0.05 ⁇ m.
  • the composition of the brass plating layer was such that the mass ratio of zinc and copper was 1:3.
  • Other test no. Wire drawing was performed in the same manner as in 1 to prepare 30 steel cords. After that, 30 steel cords were embedded in rubber and vulcanized at 165° C. for 18 minutes. Two cord-rubber composites were made. Test no. Observation of the cross section of No. 2 with a transmission electron microscope confirmed a uniform brass plating layer at the interface between the steel wire rod and the rubber. The average thickness of the brass plating layer was 0.25 ⁇ m.
  • Test No. provided with steel cords laminated with metal nanoparticle layers containing first metal nanoparticles and second metal nanoparticles.
  • the cord-rubber composite of No. 1 had excellent adhesion between the steel cord and the rubber.
  • Test No. 1 was provided with a steel cord in which copper plating and zinc plating were sequentially applied to the surface of a steel wire material, and a brass plating layer was laminated by performing thermal diffusion treatment. 2 cord-rubber composite was tested in test no. The adhesion was inferior to that of the cord-rubber composite of No. 1.
  • the cord-rubber composite has excellent adhesion between rubber and steel cord, and does not require heat diffusion treatment unlike the brass plating layer, which reduces carbon dioxide emissions during manufacturing. can be planned.
  • cord - rubber composite 1 steel wire rod 3 metal nanoparticle layer 4 rubber (topping rubber) 8 rubber substrate 10 steel cord 50 rubber product

Landscapes

  • Ropes Or Cables (AREA)

Abstract

A cord-rubber composite body (1) according to the present disclosure is provided with: one or more steel cords (10) each of which comprises a steel wire rod (2); and a rubber (4) which covers at least a part of the surface of each one of the steel cords (10). Each one of the steel cords (10) comprises the steel wire rod (2) and a metal nanoparticle layer (3) that is superposed on the surface of the steel wire rod (2). The metal nanoparticle layer (3) contains first metal nanoparticles and second metal nanoparticles; the first metal nanoparticles contain copper; and the second metal nanoparticles contain one or more substances that are selected from among zinc, cobalt, tin, iron, nickel, aluminum, and oxides of these elements.

Description

コード-ゴム複合体、ゴム製品及びコード-ゴム複合体の製造方法Cord-rubber composite, rubber product and method for producing cord-rubber composite
 本開示は、コード-ゴム複合体、ゴム製品及びコード-ゴム複合体の製造方法に関する。
 本出願は、2021年6月30日出願の日本出願第2021-109610号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to cord-rubber composites, rubber products and methods of making cord-rubber composites.
This application claims priority based on Japanese Application No. 2021-109610 filed on June 30, 2021, and incorporates all the descriptions described in the above Japanese Application.
 タイヤ等のゴム製品においては、種々のゴム補強繊維材料が使用されているが、これらの中でも鋼線材を使用したスチールコードが幅広く使用されている。例えば従来技術においては、スチールコードが埋設されたコード-ゴム複合体からなるカーカス層を備えた空気入りスチールラジアルゴム製品において、スチールコードを構成するスチールワイヤの表面に所定のブラスめっきを施すことが開示されている(特許文献1参照)。スチールコードがブラスめっき層(Cu-Zn合金)で被覆されていることで、ゴム加硫時に上記ブラスめっき層とゴムとの界面反応が起こって反応層(銅-硫黄層)が形成される。これによりブラスめっき層とゴムとが接着されることになる。 Various rubber reinforcing fiber materials are used in rubber products such as tires, and among these, steel cords using steel wire rods are widely used. For example, in the prior art, in a pneumatic steel radial rubber product having a carcass layer composed of a cord-rubber composite in which steel cords are embedded, the surfaces of the steel wires that make up the steel cords are given a predetermined brass plating. disclosed (see Patent Document 1). Since the steel cord is coated with a brass-plated layer (Cu--Zn alloy), an interfacial reaction between the brass-plated layer and the rubber occurs during vulcanization of the rubber to form a reaction layer (copper-sulfur layer). As a result, the brass plating layer and the rubber are bonded together.
特開平8-253004号公報JP-A-8-253004
 本開示のコード-ゴム複合体は、鋼線材を含む1又は複数のスチールコードと、上記スチールコードの表面の少なくとも一部を被覆するゴムとを備えており、上記スチールコードが、上記鋼線材と、上記鋼線材の表面に積層される金属ナノ粒子層を有し、上記金属ナノ粒子層が第一金属ナノ粒子及び第二金属ナノ粒子を含有し、上記第一金属ナノ粒子が銅を含み、上記第二金属ナノ粒子が亜鉛、コバルト、錫、鉄、ニッケル、アルミニウム及びこれらの酸化物から選ばれる1種又は2種以上を含む。 The cord-rubber composite of the present disclosure includes one or more steel cords including steel wire rods, and rubber covering at least a portion of the surface of the steel cords, and the steel cords are combined with the steel wire rods. , having a metal nanoparticle layer laminated on the surface of the steel wire, the metal nanoparticle layer containing first metal nanoparticles and second metal nanoparticles, the first metal nanoparticles containing copper, The second metal nanoparticles contain one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof.
 本開示のコード-ゴム複合体の製造方法は、金属ナノ粒子とこの金属ナノ粒子を分散する溶媒とを含有する金属ナノインクを鋼線材の表面に塗工する工程と、上記鋼線材に塗工された当該金属ナノインクの塗工膜を乾燥する工程と、上記乾燥工程後の鋼線材を伸線する工程と上記伸線工程後に形成されるスチールコードの表面の少なくとも一部をゴムで被覆する工程とを備え、上記金属ナノ粒子が第一金属ナノ粒子及び第二金属ナノ粒子を含有し、上記第一金属ナノ粒子が銅を含み、上記第二金属ナノ粒子が亜鉛、コバルト、錫、鉄、ニッケル、アルミニウム及びこれらの酸化物から選ばれる1種又は2種以上を含む。 The method for producing a cord-rubber composite of the present disclosure includes the steps of applying a metal nanoink containing metal nanoparticles and a solvent for dispersing the metal nanoparticles to the surface of a steel wire, and A step of drying the coating film of the metal nano-ink, a step of drawing the steel wire after the drying step, and a step of coating at least part of the surface of the steel cord formed after the drawing step with rubber. wherein the metal nanoparticles contain first metal nanoparticles and second metal nanoparticles, the first metal nanoparticles comprise copper, and the second metal nanoparticles are zinc, cobalt, tin, iron, nickel , aluminum and oxides thereof.
図1は、本開示の一態様に係るコード-ゴム複合体の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a cord-rubber composite according to one aspect of the present disclosure. 図2は、本開示の一態様に係るゴム製品の模式的部分断面図である。FIG. 2 is a schematic partial cross-sectional view of a rubber product according to one aspect of the present disclosure.
[本開示が解決しようとする課題]
 上述のスチールワイヤの表面にブラスめっきが施されたスチールコードが埋設されたコード-ゴム複合体においては、スチールコードとゴムとの接着はゴム中の硫黄とスチールコードが持つブラスめっき中の銅とが反応し接着層となっている。従来の製造プロセスでは、上記反応層である銅-硫黄層が均一の膜であるため、欠陥がある場合、破壊起点から面で剥離が生じやすく、密着性が低下するおそれがある。
[Problems to be Solved by the Present Disclosure]
In the above-mentioned cord-rubber composite, in which the brass-plated steel cord is embedded on the surface of the steel wire, the adhesion between the steel cord and the rubber is due to sulfur in the rubber and copper in the brass plating of the steel cord. reacts to form an adhesive layer. In the conventional manufacturing process, since the copper-sulfur layer, which is the reaction layer, is a uniform film, if there is a defect, peeling is likely to occur on the surface from the fracture starting point, and adhesion may decrease.
 また、従来のブラスめっきスチールワイヤの製造過程では、ブラスめっきの手段として、銅めっき層の上に亜鉛めっきを行い、その後、熱拡散によりブラスめっき層を生成する熱拡散めっき法が一般的に採用されている。近年、さまざまな環境問題が重要視される中、世界的にも二酸化炭素の削減や低炭素社会への動きが高まっている。 In addition, in the conventional brass-plated steel wire manufacturing process, the hot diffusion plating method, in which zinc is plated on the copper-plated layer and then the brass-plated layer is formed by thermal diffusion, is generally adopted as a means of brass plating. It is In recent years, while various environmental problems have been emphasized, there is a growing movement worldwide to reduce carbon dioxide and move toward a low-carbon society.
 本開示は上記事情に基づいてなされたものであり、ゴムとスチールコードとの接着性に優れたコード-ゴム複合体、及びゴムとスチールコードとの接着性に優れるコード-ゴム複合体を製造できるとともに、製造時における二酸化炭素の削減を図ることができるコード-ゴム複合体の製造方法を提供することを目的とする。 The present disclosure has been made based on the above circumstances, and can produce a cord-rubber composite having excellent adhesion between rubber and steel cord, and a cord-rubber composite having excellent adhesion between rubber and steel cord. Another object of the present invention is to provide a method for producing a cord-rubber composite that can reduce carbon dioxide during production.
[本開示の効果]
 本開示の一態様に係るコード-ゴム複合体は、ゴムとスチールコードとの接着性に優れる。本開示の他の態様に係るコード-ゴム複合体の製造方法によれば、ゴムとスチールコードとの接着性に優れるコード-ゴム複合体を製造できるとともに、製造時における二酸化炭素の削減を図ることができる。
[Effect of the present disclosure]
A cord-rubber composite according to an aspect of the present disclosure has excellent adhesion between rubber and steel cords. According to the method for producing a cord-rubber composite according to another aspect of the present disclosure, it is possible to produce a cord-rubber composite having excellent adhesion between rubber and steel cord, and to reduce carbon dioxide during production. can be done.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described.
 本開示のコード-ゴム複合体は、鋼線材を含む1又は複数のスチールコードと、上記スチールコードの表面の少なくとも一部を被覆するゴムとを備えており、上記スチールコードが、上記鋼線材と、上記鋼線材の表面に積層される金属ナノ粒子層を有し、上記金属ナノ粒子層が第一金属ナノ粒子及び第二金属ナノ粒子を含有し、上記第一金属ナノ粒子が銅を含み、上記第二金属ナノ粒子が亜鉛、コバルト、錫、鉄、ニッケル、アルミニウム及びこれらの酸化物から選ばれる1種又は2種以上を含む。 The cord-rubber composite of the present disclosure includes one or more steel cords including steel wire rods, and rubber covering at least a portion of the surface of the steel cords, and the steel cords are combined with the steel wire rods. , having a metal nanoparticle layer laminated on the surface of the steel wire, the metal nanoparticle layer containing first metal nanoparticles and second metal nanoparticles, the first metal nanoparticles containing copper, The second metal nanoparticles contain one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof.
 当該コード-ゴム複合体は、ゴムとスチールコードとの接着性に優れ、製造時における二酸化炭素の削減に寄与することができる。このような効果が生じる理由としては、例えば以下のように推測される。上記鋼線材の表面に積層される金属ナノ粒子層が第一金属ナノ粒子及び第二金属ナノ粒子を含有することで、鋼線材とゴムとの間においては、上記第一金属ナノ粒子の銅-硫黄層が、平面状ではなく、3次元的に存在する。その結果、アンカー効果により、ゴムとスチールコードとの接着性をより向上できる。また、金属ナノ粒子層を備えることで、熱拡散めっき法のような熱処理工程が不要になるので、製造時における二酸化炭素の削減に寄与することができる。 The cord-rubber composite has excellent adhesion between rubber and steel cord, and can contribute to the reduction of carbon dioxide during manufacturing. The reason why such an effect occurs is presumed as follows, for example. Since the metal nanoparticle layer laminated on the surface of the steel wire contains the first metal nanoparticles and the second metal nanoparticles, the copper- The sulfur layer exists three-dimensionally rather than planarly. As a result, the anchor effect can further improve the adhesiveness between the rubber and the steel cord. In addition, since the provision of the metal nanoparticle layer eliminates the need for a heat treatment process such as the thermal diffusion plating method, it can contribute to the reduction of carbon dioxide during production.
 上記第二金属ナノ粒子は、亜鉛又は亜鉛の酸化物を含むことが好ましい。上記第二金属ナノ粒子が亜鉛又は亜鉛の酸化物を含むことで、当該コード-ゴム複合体におけるゴムとスチールコードとの接着性をより向上できる。 The second metal nanoparticles preferably contain zinc or zinc oxide. By including zinc or zinc oxide in the second metal nanoparticles, the adhesion between the rubber and the steel cord in the cord-rubber composite can be further improved.
 上記金属ナノ粒子層中の上記第二金属ナノ粒子の総量に対する上記第一金属ナノ粒子の総量の質量比が、1以上9以下であることが好ましい。上記金属ナノ粒子層中の上記第二金属ナノ粒子の総量に対する上記第一金属ナノ粒子の総量の質量比が上記範囲であることで、当該コード-ゴム複合体におけるゴムとスチールコードとの接着性をより向上できる。 The mass ratio of the total amount of the first metal nanoparticles to the total amount of the second metal nanoparticles in the metal nanoparticle layer is preferably 1 or more and 9 or less. When the mass ratio of the total amount of the first metal nanoparticles to the total amount of the second metal nanoparticles in the metal nanoparticle layer is within the above range, the adhesion between the rubber and the steel cord in the cord-rubber composite can be improved.
 上記金属ナノ粒子層の平均厚さが0.01μm以上1.0μm以下であることが好ましい。上記金属ナノ粒子層の平均厚さが上記範囲であることで、金属ナノ粒子層とゴムとの接着力をより向上できる。 The average thickness of the metal nanoparticle layer is preferably 0.01 μm or more and 1.0 μm or less. When the average thickness of the metal nanoparticle layer is within the above range, the adhesion between the metal nanoparticle layer and rubber can be further improved.
 本開示のゴム製品は、ゴムとスチールコードとの接着性に優れた当該コード-ゴム複合体を含む。従って、当該ゴム製品は、耐久性を向上できる。 The rubber product of the present disclosure includes the cord-rubber composite having excellent adhesion between rubber and steel cord. Therefore, the rubber product can have improved durability.
 本開示のコード-ゴム複合体の製造方法は、金属ナノ粒子とこの金属ナノ粒子を分散する溶媒とを含有する金属ナノインクを鋼線材の表面に塗工する工程と、上記鋼線材に塗工された当該金属ナノインクの塗工膜を乾燥する工程と、上記乾燥工程後の鋼線材を伸線する工程と上記伸線工程後に形成されるスチールコードの表面の少なくとも一部をゴムで被覆する工程とを備え、上記金属ナノ粒子が第一金属ナノ粒子及び第二金属ナノ粒子を含有し、上記第一金属ナノ粒子が銅を含み、上記第二金属ナノ粒子が亜鉛、コバルト、錫、鉄、ニッケル、アルミニウム及びこれらの酸化物から選ばれる1種又は2種以上を含む。 The method for producing a cord-rubber composite of the present disclosure includes the steps of applying a metal nanoink containing metal nanoparticles and a solvent for dispersing the metal nanoparticles to the surface of a steel wire, and A step of drying the coating film of the metal nano-ink, a step of drawing the steel wire after the drying step, and a step of coating at least part of the surface of the steel cord formed after the drawing step with rubber. wherein the metal nanoparticles contain first metal nanoparticles and second metal nanoparticles, the first metal nanoparticles comprise copper, and the second metal nanoparticles are zinc, cobalt, tin, iron, nickel , aluminum and oxides thereof.
 上述のように、従来のブラスめっき鋼線の製造過程では、ブラスめっきの手段として、銅めっき層の上に亜鉛めっきを行い、その後熱拡散によりブラスめっき層を生成する熱拡散めっき法が一般的に採用されている。このような工程では、熱拡散により工場から二酸化炭素が排出されることになる。当該コード-ゴム複合体の製造方法においては、鋼線材の表面に金属ナノインクの塗工膜を乾燥させるので、ブラスめっきのような熱拡散工程が不要になる。そのため、当該コード-ゴム複合体の製造方法は、製造時における二酸化炭素の削減を図ることができる。また、当該コード-ゴム複合体の製造方法においては、塗工膜を形成するための金属ナノインクが第一金属ナノ粒子及び第二金属ナノ粒子を含有することで、鋼線材とゴムとの間においては、上記第一金属ナノ粒子の銅-硫黄層が、平面状ではなく、3次元的に存在する。その結果、アンカー効果により、ゴムとスチールコードとの接着性をより向上できる。従って、当該コード-ゴム複合体の製造方法は、ゴムとスチールコードとの接着性に優れるコード-ゴム複合体を製造できるともに、製造時における二酸化炭素の削減を図ることができる。 As described above, in the conventional brass-plated steel wire manufacturing process, the hot diffusion plating method is generally used as a means of brass plating, in which zinc is plated on the copper plating layer, and then the brass plating layer is formed by thermal diffusion. adopted by In such a process, thermal diffusion causes carbon dioxide to be emitted from the factory. In the method for producing the cord-rubber composite, the coating film of the metal nano-ink is dried on the surface of the steel wire, so a thermal diffusion process such as brass plating is unnecessary. Therefore, the cord-rubber composite production method can reduce carbon dioxide during production. In addition, in the method for producing the cord-rubber composite, the metal nanoink for forming the coating film contains the first metal nanoparticles and the second metal nanoparticles, so that the steel wire and the rubber In the above, the copper-sulfur layer of the first metal nanoparticles exists three-dimensionally, not planarly. As a result, the anchor effect can further improve the adhesiveness between the rubber and the steel cord. Therefore, the method for producing a cord-rubber composite can produce a cord-rubber composite having excellent adhesion between rubber and steel cord, and can reduce carbon dioxide during production.
 当該コード-ゴム複合体の製造方法においては、上記金属ナノ粒子の一次粒子における粒径が10nm超150nm未満であり、メジアン径が30nm以上100nm以下であることが好ましい。上記金属ナノ粒子の一次粒子における粒径及びメジアン径が上記範囲であることで、金属ナノ粒子の分散性及び安定性を良好にするとともに、スチールコードとゴムとの接着性を向上できる。上記「金属ナノ粒子」には、上記第一金属ナノ粒子及び上記第二金属ナノ粒子が含まれる。 In the method for producing the cord-rubber composite, it is preferable that the primary particles of the metal nanoparticles have a particle diameter of more than 10 nm and less than 150 nm, and a median diameter of 30 nm or more and 100 nm or less. When the particle diameter and median diameter of the primary particles of the metal nanoparticles are within the above ranges, the dispersibility and stability of the metal nanoparticles can be improved, and the adhesion between the steel cord and the rubber can be improved. The "metal nanoparticles" include the first metal nanoparticles and the second metal nanoparticles.
 ここで、「メジアン径(D50)」とは、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値である。金属ナノインクにおける金属ナノ粒子のメジアン径は、レーザ回折法で測定した体積基準の累積分布から算出される。金属ナノインクの塗工後は、SEM(走査電子顕微鏡:Scanning Electron Microscope)画像を解析することにより、算出することができる。具体的には、10万倍のSEM画像の2視野分の平均値から算出する。「ナノ粒子」とは、顕微鏡観察による最大長さとこの長さ方向に垂直な方向の最大幅との和の2分の1として算出される粒径の平均値が1μm未満である粒子を意味する。「平均厚さ」とは、任意の箇所の厚さを10点測定し、平均した値を意味する。 Here, the "median diameter (D50)" is a value at which the volume-based integrated distribution calculated according to JIS-Z-8819-2 (2001) is 50%. The median diameter of the metal nanoparticles in the metal nanoink is calculated from the volume-based cumulative distribution measured by the laser diffraction method. After coating the metal nanoink, it can be calculated by analyzing an SEM (Scanning Electron Microscope) image. Specifically, it is calculated from the average value for two fields of 100,000-fold SEM images. By “nanoparticle” is meant a particle having an average particle size of less than 1 μm, calculated as one-half of the sum of the maximum microscopic length and the maximum width perpendicular to this length. . "Average thickness" means the value obtained by measuring the thickness at 10 arbitrary points and averaging the values.
[本開示の実施形態の詳細]
<コード-ゴム複合体>
 以下、本開示の一実施形態に係るコード-ゴム複合体について詳説する。
[Details of the embodiment of the present disclosure]
<Cord-rubber composite>
A cord-rubber composite according to an embodiment of the present disclosure will be described in detail below.
 当該コード-ゴム複合体は、ゴム製品に含まれる形で存在し、ゴム製品の補強材として機能する。当該コード-ゴム複合体は、スチールコードの表面にめっきではなく、ナノ粒子を分散させたインクを塗布することで、熱処理工程が不要になり、従来のブラス拡散めっき鋼線と同等以上のゴムとの密着性が得られる。このため、本開示のスチールコードにより、ゴム製品の耐久性を向上させることができる。 The cord-rubber composite exists in a form included in the rubber product and functions as a reinforcing material for the rubber product. This cord-rubber composite does not require plating on the surface of the steel cord, but instead applies ink with dispersed nanoparticles, eliminating the need for a heat treatment process. of adhesion is obtained. Therefore, the steel cord of the present disclosure can improve the durability of rubber products.
 図1は、当該コード-ゴム複合体の模式的断面図である。当該コード-ゴム複合体1は、鋼線材2を含む1又は複数のスチールコード10と、上記スチールコード10の表面の少なくとも一部を被覆するゴム(トッピングゴム)4とを有する。図1は、ゴム4に被覆されたスチールコード10の幅方向の断面を示している。上記鋼線材2は、表面に積層される金属ナノ粒子層3を有する。すなわち、金属ナノ粒子層3はゴム4と鋼線材2との界面に存在する。 FIG. 1 is a schematic cross-sectional view of the cord-rubber composite. The cord-rubber composite 1 has one or a plurality of steel cords 10 containing steel wire rods 2 and rubber (topping rubber) 4 covering at least part of the surface of the steel cords 10 . FIG. 1 shows a widthwise cross section of a steel cord 10 covered with rubber 4 . The steel wire rod 2 has a metal nanoparticle layer 3 laminated on its surface. That is, the metal nanoparticle layer 3 exists at the interface between the rubber 4 and the steel wire 2 .
(スチールコード)
 スチールコード10は、1又は複数の鋼線材2と、鋼線材2の表面に積層される金属ナノ粒子層3を含む。ここで、当該コード-ゴム複合体1においては、鋼線材2が複数の場合、複数本の鋼線材2のうちの一部のみの表面に金属ナノ粒子層3が積層されていてもよい。
(steel cord)
The steel cord 10 includes one or more steel wires 2 and a metal nanoparticle layer 3 laminated on the surface of the steel wires 2 . Here, in the cord-rubber composite 1, when there are a plurality of steel wires 2, the metal nanoparticle layer 3 may be laminated on the surfaces of only some of the plurality of steel wires 2.
〈鋼線材〉
 鋼線材2は特に限定されないが、高炭素鋼線が好ましい。鋼線材2としては、複数の素線を一定のピッチで撚り合せたものや、複数の素線を撚り合わせずに平行に引き揃えたものを用いることができる。鋼線材2として、複数の素線を撚り合せた撚素線を用いる場合、鋼線材2の撚り構造としては、N本の素線を一回撚り合わせる単撚り(1×N)である場合が例示される。単撚りのフィラメントの本数Nについては、適宜設定することができる。また、鋼線材2の他の撚り構造としては、N本のコアに、M本のシースを層状に巻き付けた層撚り(N+M)であってもよい。
〈Steel wire rod〉
The steel wire rod 2 is not particularly limited, but a high carbon steel wire is preferred. As the steel wire material 2, a plurality of strands twisted together at a constant pitch or a plurality of strands aligned in parallel without being twisted together can be used. When a twisted wire obtained by twisting a plurality of wires is used as the steel wire 2, the twisted structure of the steel wire 2 may be a single twist (1×N) in which N wires are twisted once. exemplified. The number N of single-twisted filaments can be set as appropriate. Another twisted structure of the steel wire 2 may be a laminar twist (N+M) in which M sheaths are wound around N cores in layers.
〈金属ナノ粒子層〉
 当該コード-ゴム複合体1は、鋼線材2の表面に積層される金属ナノ粒子層3を備える。上記金属ナノ粒子層3は、金属ナノ粒子を含有する金属ナノインクの塗工膜の乾燥を行うことにより形成できる。金属ナノ粒子を分散させたインクを塗布することで、熱処理工程が不要になり、製造時における二酸化炭素の削減に寄与することができる。
<Metal nanoparticle layer>
The cord-rubber composite 1 includes a metal nanoparticle layer 3 laminated on the surface of the steel wire 2 . The metal nanoparticle layer 3 can be formed by drying a coating film of metal nanoink containing metal nanoparticles. Applying an ink in which metal nanoparticles are dispersed eliminates the need for a heat treatment process, which contributes to the reduction of carbon dioxide during production.
 上記金属ナノ粒子層3を形成するための金属ナノインクは、上記金属ナノ粒子が第一金属ナノ粒子及び第二金属ナノ粒子を含有する。第一金属ナノ粒子は銅を含む。第二金属ナノ粒子は、亜鉛、コバルト、錫、鉄、ニッケル、アルミニウム及びこれらの酸化物から選ばれる1種又は2種以上を含む。第一金属ナノ粒子及び第二金属ナノ粒子は、単独の金属であってもよいし、合金を形成していてもよい。金属ナノ粒子層3が第一金属ナノ粒子及び第二金属ナノ粒子を含有することで、鋼線材2とゴム4との間においては、上記第一金属ナノ粒子の銅-硫黄層が、平面状ではなく、3次元的に存在する。その結果、アンカー効果により、ゴム4とスチールコード10との接着性をより向上できる。 In the metal nanoink for forming the metal nanoparticle layer 3, the metal nanoparticles contain first metal nanoparticles and second metal nanoparticles. The first metal nanoparticles contain copper. The second metal nanoparticles contain one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof. The first metal nanoparticles and the second metal nanoparticles may be a single metal, or may form an alloy. Since the metal nanoparticle layer 3 contains the first metal nanoparticles and the second metal nanoparticles, the copper-sulfur layer of the first metal nanoparticles is flat between the steel wire 2 and the rubber 4. Instead, it exists three-dimensionally. As a result, the adhesiveness between the rubber 4 and the steel cord 10 can be further improved due to the anchor effect.
 第一金属ナノ粒子及び第二金属ナノ粒子の組み合わせとしては、例えば、銅及び酸化亜鉛、銅及び亜鉛、銅並びに亜鉛及びコバルト、銅並びに酸化亜鉛及びコバルト、銅及びコバルト、銅及び酸化コバルト(CoO、Co、Co等)、銅及び錫、銅及び酸化錫(SnO、SnO、SnO等)などが挙げられる。 Combinations of the first metal nanoparticles and the second metal nanoparticles include, for example, copper and zinc oxide, copper and zinc, copper and zinc and cobalt, copper and zinc oxide and cobalt, copper and cobalt, copper and cobalt oxide (CoO , Co2O3 , Co3O4 , etc.), copper and tin, copper and tin oxide ( SnO, SnO2, SnO3 , etc.).
 第二金属ナノ粒子は、亜鉛又は亜鉛の酸化物を含むことが好ましい。第二金属ナノ粒子が亜鉛又は亜鉛の酸化物を含むことで、当該コード-ゴム複合体1におけるゴム4とスチールコード10との接着性をより向上できる。 The second metal nanoparticles preferably contain zinc or zinc oxide. By including zinc or zinc oxide in the second metal nanoparticles, the adhesion between the rubber 4 and the steel cord 10 in the cord-rubber composite 1 can be further improved.
 上記金属ナノ粒子層3において、上記第二金属ナノ粒子の総量に対する上記第一金属ナノ粒子の総量の質量比としては、1以上9以下が好ましく、1.5以上4以下がより好ましく、2以上3以下がさらに好ましい。上記第二金属ナノ粒子に対する上記第一金属ナノ粒子の質量比が上記範囲であることで、当該コード-ゴム複合体1におけるゴム4とスチールコード10との接着性をより向上できる。 In the metal nanoparticle layer 3, the mass ratio of the total amount of the first metal nanoparticles to the total amount of the second metal nanoparticles is preferably 1 or more and 9 or less, more preferably 1.5 or more and 4 or less, and 2 or more. 3 or less is more preferable. When the mass ratio of the first metal nanoparticles to the second metal nanoparticles is within the above range, the adhesion between the rubber 4 and the steel cord 10 in the cord-rubber composite 1 can be further improved.
 上記金属ナノ粒子層3の金属ナノ粒子の平均アスペクト比としては、1以上20以下が好ましく、1以上10以下がより好ましく、1以上5以下がさらに好ましい。金属ナノ粒子の平均アスペクト比が上記範囲であることで、ゴム4とスチールコード10との密着性を得ることができる。上記アスペクト比は、透過型電子顕微鏡(TEM)によるスチールコード10の断面画像を用いて測定される。「アスペクト比」とは、スチールコード10の伸線方向における金属ナノ粒子の最大長径をAとし、上記最大長径に直交する最大幅をBとした場合のA/Bで表される金属ナノ粒子の形状を表す指数である。「平均アスペクト比」とは、アスペクト比を10点測定し、平均した値を意味する。 The average aspect ratio of the metal nanoparticles in the metal nanoparticle layer 3 is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, and even more preferably 1 or more and 5 or less. Adhesion between the rubber 4 and the steel cord 10 can be obtained by setting the average aspect ratio of the metal nanoparticles within the above range. The aspect ratio is measured using a cross-sectional image of the steel cord 10 by a transmission electron microscope (TEM). The “aspect ratio” is defined as A/B, where A is the maximum length of the metal nanoparticles in the wire drawing direction of the steel cord 10 and B is the maximum width perpendicular to the maximum length. It is an index representing the shape. "Average aspect ratio" means an average value obtained by measuring the aspect ratio at 10 points.
 上記金属ナノ粒子層3の平均厚さの下限としては、0.01μmが好ましく、0.02μmがより好ましい。一方、金属ナノ粒子層3の平均厚さの上限としては、1.0μmが好ましく、0.8μmがより好ましい。金属ナノ粒子層3の平均厚さが0.01μmに満たない場合、接着層が薄いために、スチールコード10とゴム4との十分な密着性が得られないおそれがある。一方、金属ナノ粒子層3の平均厚さが1.0μmを超える場合、金属ナノ粒子層3内でクラックが生じ、スチールコード10とゴム4との十分な密着性が得られないおそれがある。 The lower limit of the average thickness of the metal nanoparticle layer 3 is preferably 0.01 μm, more preferably 0.02 μm. On the other hand, the upper limit of the average thickness of the metal nanoparticle layer 3 is preferably 1.0 μm, more preferably 0.8 μm. If the average thickness of the metal nanoparticle layer 3 is less than 0.01 μm, there is a possibility that sufficient adhesion between the steel cord 10 and the rubber 4 cannot be obtained due to the thin adhesive layer. On the other hand, if the average thickness of the metal nanoparticle layer 3 exceeds 1.0 μm, cracks may occur in the metal nanoparticle layer 3 and sufficient adhesion between the steel cord 10 and the rubber 4 may not be obtained.
 金属ナノ粒子層3の断面における金属ナノ粒子の面積率の下限としては、50%が好ましく、60%がより好ましい。一方、金属ナノ粒子層3の断面における金属ナノ粒子の面積率の上限としては、100%がより好ましい。金属ナノ粒子層3の断面における金属ナノ粒子の面積率が上記範囲であることで、アンカー効果をより発揮できるので、ゴム4とスチールコード10との接着性をより向上できる。 The lower limit of the area ratio of the metal nanoparticles in the cross section of the metal nanoparticle layer 3 is preferably 50%, more preferably 60%. On the other hand, the upper limit of the area ratio of the metal nanoparticles in the cross section of the metal nanoparticle layer 3 is more preferably 100%. When the area ratio of the metal nanoparticles in the cross section of the metal nanoparticle layer 3 is within the above range, the anchor effect can be further exhibited, so that the adhesion between the rubber 4 and the steel cord 10 can be further improved.
(ゴム)
 上記スチールコード10の表面の少なくとも一部を被覆するゴム(トッピングゴム)4としては、特に限定されず、従来から用いられている一般的なゴム組成物を用いることができる。上記ゴム組成物としては、例えばゴム成分、加硫剤、充填材及びその他各種添加剤を含んでいてもよい。
(rubber)
The rubber (topping rubber) 4 that coats at least part of the surface of the steel cord 10 is not particularly limited, and a general rubber composition that has been conventionally used can be used. The rubber composition may contain, for example, a rubber component, a vulcanizing agent, a filler and other various additives.
 ゴム成分としては、例えば、天然ゴム、エポキシ化天然ゴム、脱蛋白天然ゴム等の変性天然ゴム、イソプレンゴム(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリル・ブタジエンゴム(NBR)、イソプレン・イソブチレンゴム(IIR)、エチレン・プロピレン-ジエンゴム(EPDM)、ハロゲン化ブチルゴム(HR)、クロロプレンゴム(CR)等の各種の合成ゴムなどが挙げられる。上記ゴム成分は、複数のゴム成分を組み合わせてもよい。 Examples of rubber components include modified natural rubber such as natural rubber, epoxidized natural rubber, deproteinized natural rubber, isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile-butadiene rubber ( NBR), isoprene-isobutylene rubber (IIR), ethylene-propylene-diene rubber (EPDM), halogenated butyl rubber (HR), chloroprene rubber (CR), and various other synthetic rubbers. The rubber component may be a combination of multiple rubber components.
 上記加硫剤としては、例えば硫黄、硫黄含有化合物等が挙げられる。上記充填材としては、例えばカーボンブラック、シリカ等の無機充填材が挙げられる。上記添加剤としては、一般的にゴム組成物に用いられる各種薬品を用いることができる。上記添加剤としては、例えば加硫促進剤、加硫遅延剤、プロセスオイル、老化防止剤、有機酸、有機コバルト化合物、酸化亜鉛等が挙げられる。 Examples of the vulcanizing agent include sulfur and sulfur-containing compounds. Examples of the filler include inorganic fillers such as carbon black and silica. Various chemicals generally used in rubber compositions can be used as the additive. Examples of the above additives include vulcanization accelerators, vulcanization retarders, process oils, antioxidants, organic acids, organic cobalt compounds, zinc oxide and the like.
 当該コード-ゴム複合体は、ゴムとスチールコードとの接着性に優れる。また、ブラスめっき層を備えず、金属ナノ粒子層を備えることで、熱処理工程が不要になるので、製造時における二酸化炭素の削減に寄与することができる。 The cord-rubber composite has excellent adhesion between rubber and steel cord. In addition, since the metal nanoparticle layer is provided without the brass plating layer, the heat treatment process becomes unnecessary, which can contribute to the reduction of carbon dioxide during production.
<コード-ゴム複合体の製造方法>
 次に、本開示の一実施形態に係るコード-ゴム複合体の製造方法について詳説する。
<Method for producing cord-rubber composite>
Next, a method for producing a cord-rubber composite according to an embodiment of the present disclosure will be described in detail.
 本開示の一実施形態に係るコード-ゴム複合体の製造方法は、金属ナノ粒子とこの金属ナノ粒子を分散する溶媒とを含有する金属ナノインクを鋼線材の表面に塗工する工程(以下、塗工工程ともいう。)と、上記鋼線材に塗工された金属ナノインクの塗工膜を乾燥する工程(以下、乾燥工程ともいう。)と、上記乾燥工程後の鋼線材を伸線する工程(以下、伸線工程ともいう。)と、上記伸線工程後に形成されるスチールコードの表面の少なくとも一部をゴムで被覆する工程(以下、ゴム被覆工程ともいう。)とを備える。 A method for producing a cord-rubber composite according to an embodiment of the present disclosure includes a step of applying metal nano-ink containing metal nanoparticles and a solvent for dispersing the metal nanoparticles onto the surface of a steel wire (hereinafter referred to as coating a step of drying the metal nano-ink coating film applied to the steel wire (hereinafter also referred to as a drying step); and a step of drawing the steel wire after the drying step ( hereinafter also referred to as a wire drawing step), and a step of coating at least part of the surface of the steel cord formed after the wire drawing step with rubber (hereinafter also referred to as a rubber coating step).
[塗工工程]
 上記塗工工程では、上述の金属ナノインクを鋼線材に塗工する。
[Coating process]
In the coating step, the steel wire is coated with the metal nano-ink described above.
(金属ナノインク)
 金属ナノインクは、例えば溶媒、この溶媒中に分散される金属ナノ粒子及び分散剤を含む。
(Metal nano ink)
A metal nanoink includes, for example, a solvent, metal nanoparticles dispersed in the solvent, and a dispersant.
(金属ナノ粒子)
 金属ナノインクに含有される金属ナノ粒子は、波高温処理法、液相還元法、気相法等によって形成することができ、中でも、水溶液中で還元剤により金属イオンを還元することで金属ナノ粒子を析出させる液相還元法が好適に用いられる。
(Metal nanoparticles)
The metal nanoparticles contained in the metal nanoink can be formed by a wave high-temperature treatment method, a liquid phase reduction method, a gas phase method, or the like. A liquid phase reduction method for precipitating is preferably used.
 上記金属ナノ粒子層を形成するための金属ナノインクは、上記金属ナノ粒子が第一金属ナノ粒子及び第二金属ナノ粒子を含有する。第一金属ナノ粒子は銅を含む。第二金属ナノ粒子は、亜鉛、コバルト、錫、鉄、ニッケル、アルミニウム及びこれらの酸化物から選ばれる1種又は2種以上を含む。上記金属ナノ粒子の詳細は上述したとおりであるので説明を省略する。 In the metal nanoink for forming the metal nanoparticle layer, the metal nanoparticles contain first metal nanoparticles and second metal nanoparticles. The first metal nanoparticles contain copper. The second metal nanoparticles contain one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof. Since the details of the metal nanoparticles are as described above, the description is omitted.
 上記金属ナノ粒子の一次粒子における粒径の範囲としては、10nm超150nm未満が好ましく、10nm超100nm未満がより好ましく、30nm以上80nm未満がさらに好ましい。上記金属ナノ粒子の一次粒子における粒径が10nmに満たない場合、例えば上記金属ナノインク中での金属ナノ粒子の分散性及び安定性が低下するおそれがある。一方、上記金属ナノ粒子の一次粒子における粒径が150nmを超える場合、金属ナノ粒子間の隙間が大きくなり、緻密な金属ナノ粒子層を形成できないおそれがある。 The range of the particle size of the primary particles of the metal nanoparticles is preferably more than 10 nm and less than 150 nm, more preferably more than 10 nm and less than 100 nm, and even more preferably 30 nm or more and less than 80 nm. If the primary particle size of the metal nanoparticles is less than 10 nm, for example, the dispersibility and stability of the metal nanoparticles in the metal nanoink may be reduced. On the other hand, when the particle size of the primary particles of the metal nanoparticles exceeds 150 nm, the gaps between the metal nanoparticles become large, which may make it impossible to form a dense metal nanoparticle layer.
 上記金属ナノ粒子の一次粒子におけるメジアン径の下限としては、30nmが好ましく、50nmがより好ましい。一方、上記金属ナノ粒子の一次粒子におけるメジアン径の上限としては、100nmが好ましく、80nmがより好ましい。上記金属ナノ粒子の一次粒子におけるメジアン径が30nmに満たない場合、例えば上記金属ナノインク中での金属ナノ粒子の分散性及び安定性が低下するおそれがある。一方、上記金属ナノ粒子の一次粒子におけるメジアン径が100nm場合、形成される金属ナノ粒子層中の空隙が大きくなり、スチールコードとゴムとの十分な接着性が得られないおそれがある。 The lower limit of the median diameter of the primary particles of the metal nanoparticles is preferably 30 nm, more preferably 50 nm. On the other hand, the upper limit of the median diameter of the primary particles of the metal nanoparticles is preferably 100 nm, more preferably 80 nm. If the median diameter of the primary particles of the metal nanoparticles is less than 30 nm, for example, the dispersibility and stability of the metal nanoparticles in the metal nanoink may be reduced. On the other hand, when the median diameter of the primary particles of the metal nanoparticles is 100 nm, the voids in the metal nanoparticle layer formed become large, and there is a risk that sufficient adhesion between the steel cord and the rubber cannot be obtained.
 金属ナノ粒子の粒径を調整するには、金属化合物、分散剤、その他の添加剤の種類及び配合割合を調整すると共に、金属化合物を還元反応させる還元工程における攪拌速度、温度、時間、pH等を調整すればよい。 In order to adjust the particle size of the metal nanoparticles, the type and blending ratio of the metal compound, dispersant, and other additives are adjusted, and the stirring speed, temperature, time, pH, etc. in the reduction step of reducing the metal compound are controlled. should be adjusted.
(溶媒)
 金属ナノインクの溶媒としては、特に限定されるものではないが、水が好適に用いられ、水に有機溶媒を配合してもよい。
(solvent)
The solvent for the metal nanoink is not particularly limited, but water is preferably used, and an organic solvent may be blended with water.
 上記金属ナノインクに配合する有機溶媒として、水溶性である種々の有機溶媒が使用可能である。その具体例としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、エチレングリコール、グリセリン等の多価アルコールやその他のエステル類、エチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のグリコールエーテル類等を挙げることができる。 Various water-soluble organic solvents can be used as the organic solvent to be blended in the metal nanoink. Specific examples thereof include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol and tert-butyl alcohol; ketones such as acetone and methyl ethyl ketone; Examples include polyhydric alcohols such as ethylene glycol and glycerin, other esters, and glycol ethers such as ethylene glycol monoethyl ether and diethylene glycol monobutyl ether.
 金属ナノインクにおける溶媒となる水の含有割合としては、金属ナノ粒子100質量部当たり20質量部以上1900質量部以下が好ましい。上記水の含有割合が20質量部に満たない場合、金属ナノ粒子の濃度が高くなり過ぎて、金属ナノインクによる均一な塗工ができなくなるおそれがある。一方、上記水の含有割合が1900質量部を超える場合、金属ナノインク中の金属ナノ粒子の割合が少なくなり、コード-ゴム複合体の鋼線材の表面に必要な厚さと密度とを有する良好な金属ナノ粒子層を形成できないおそれがある。 The content of water, which is the solvent in the metal nanoink, is preferably 20 parts by mass or more and 1900 parts by mass or less per 100 parts by mass of the metal nanoparticles. If the water content is less than 20 parts by mass, the concentration of the metal nanoparticles becomes too high, and there is a risk that uniform coating with the metal nanoink will not be possible. On the other hand, when the content of water exceeds 1900 parts by mass, the proportion of metal nanoparticles in the metal nanoink is reduced, and a good metal having the thickness and density required for the surface of the steel wire rod of the cord-rubber composite. A nanoparticle layer may not be formed.
(分散剤)
 金属ナノインクは、例えばさらに分散剤を含んでいてもよい。分散剤としては、例えば、ポリエチレングリコール、ポリビニルアルコール、ポリカルボン酸の重合材等が挙げられる。
(dispersant)
The metal nanoink may further contain a dispersant, for example. Examples of the dispersant include polyethylene glycol, polyvinyl alcohol, and polymeric materials of polycarboxylic acid.
 分散剤の含有割合としては、金属ナノ粒子100質量部当たり0.5質量部以上20質量部以下が好ましい。分散剤は金属ナノ粒子を取り囲むことで凝集を防止して金属ナノ粒子を良好に分散させるが、上記分散剤の含有割合が0.5質量部に満たない場合、この凝集防止効果が不十分となるおそれがある。一方、上記分散剤の含有割合が20質量部を超える場合、過剰の分散剤により鋼線材及び上記金属ナノ粒子層間の密着性が低下するおそれがある。 The content of the dispersant is preferably 0.5 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the metal nanoparticles. The dispersant surrounds the metal nanoparticles to prevent aggregation and disperse the metal nanoparticles well. may become On the other hand, if the content of the dispersant exceeds 20 parts by mass, the excessive dispersant may reduce the adhesion between the steel wire and the metal nanoparticle layers.
 金属ナノインクは、上記分散剤以外にこれらの効果を阻害しない範囲で、その他の添加剤を含有してもよい。その他の添加剤としては、例えばアスコルビン酸、アミン系高分子等が挙げられる。 In addition to the dispersant described above, the metal nanoink may contain other additives within a range that does not impede these effects. Other additives include, for example, ascorbic acid and amine-based polymers.
 金属ナノインクの製造方法としては、例えば液相還元法により金属ナノ粒子を析出させる工程と、上記金属ナノ粒子を析出させる工程で析出された上記金属ナノ粒子を分離する工程と、上記金属ナノ粒子を分離する工程で得られた上記金属ナノ粒子を上記溶媒に分散させる工程と、上記分散させる工程で調製された分散液に分散剤、その他の添加剤を添加する工程とを備える。 The method for producing metal nanoink includes, for example, a step of depositing metal nanoparticles by a liquid phase reduction method, a step of separating the metal nanoparticles deposited in the step of depositing the metal nanoparticles, and a step of separating the metal nanoparticles. A step of dispersing the metal nanoparticles obtained in the separating step in the solvent, and a step of adding a dispersant and other additives to the dispersion liquid prepared in the dispersing step.
 鋼線材に金属ナノインクを塗工する方法としては、特に限定されない。塗工方法としては、例えばスピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法等の従来公知の塗工方法を用いることができる。 The method of applying metal nano-ink to steel wire is not particularly limited. As the coating method, conventionally known coating methods such as a spin coating method, a spray coating method, a bar coating method, a die coating method, a slit coating method, a roll coating method and a dip coating method can be used.
[乾燥工程]
 上記乾燥工程では、鋼線材上の金属ナノインクの塗工膜を乾燥させる。上記塗工工程後後は、冷風乾燥又はそのまま自然乾燥により金属ナノインクを乾燥することができる。従って、乾燥工程においては、加熱することを要しない。冷風の風速としては、塗工膜を波立たせない程度とすることが好ましい。具体的な冷風の塗工膜表面での風速としては、例えば5m/秒以上10m/秒以下とすることができる。
[Drying process]
In the drying step, the metal nano-ink coating film on the steel wire is dried. After the coating step, the metal nano-ink can be dried by cold air drying or natural drying. Therefore, no heating is required in the drying process. The wind speed of the cold air is preferably set to a level that does not make the coating film rippling. A specific wind speed of the cold air on the coating film surface can be, for example, 5 m/sec or more and 10 m/sec or less.
[伸線工程]
 伸線工程では、上記乾燥工程後の鋼線材を伸線する。本工程により、スチールコードにおいて目的とするサイズと強度を得ることができる。当該コード-ゴム複合体の製造方法においては、インク塗布後、加熱することなく伸線することができる。伸線工程については、鋼線材の伸線工程において通常使用される伸線機を用いて、常法に従って伸線加工を行うものであれば、伸線条件等については特に限定されない。
[Wire drawing process]
In the wire drawing step, the steel wire after the drying step is drawn. Through this process, the steel cord can have the desired size and strength. In the method for producing the cord-rubber composite, wire drawing can be performed without heating after the ink is applied. Regarding the wire drawing process, wire drawing conditions and the like are not particularly limited as long as the wire drawing is performed according to a conventional method using a wire drawing machine normally used in the wire drawing process of steel wire rods.
 なお、伸線工程で、液体潤滑液を用いた湿式伸線を行う場合、液体潤滑液に金属ナノ粒子を混合し、塗工工程と伸線工程を同時に行うこともできる。 In addition, when performing wet wire drawing using a liquid lubricating liquid in the wire drawing process, metal nanoparticles can be mixed in the liquid lubricating liquid, and the coating process and the wire drawing process can be performed at the same time.
[ゴム被覆工程]
 ゴム被覆工程では、上記伸線工程後に形成されるスチールコードの表面の少なくとも一部をゴムで被覆する。スチールコードをゴムで被覆する方法についても特に制限はなく、既知の方法を用いることができる。例えば、スチールコードを一定間隔で平行に並べ、このスチールコードをゴム組成物に埋設し、その後、加硫することにより製造することができる。ゴム組成物としては、上述の通り、例えばゴム成分、加硫剤、充填材及びその他各種添加剤を含む組成物が挙げられる。
[Rubber coating process]
In the rubber coating step, at least part of the surface of the steel cord formed after the wire drawing step is coated with rubber. The method of coating the steel cord with rubber is also not particularly limited, and known methods can be used. For example, it can be manufactured by arranging steel cords in parallel at regular intervals, embedding the steel cords in a rubber composition, and then vulcanizing the steel cords. Examples of rubber compositions include compositions containing rubber components, vulcanizing agents, fillers and other various additives, as described above.
 当該コード-ゴム複合体の製造方法によれば、ゴムとスチールコードとの接着性に優れるコード-ゴム複合体を製造できるともに、製造時における二酸化炭素の削減を図ることができる。 According to the method for producing a cord-rubber composite, it is possible to produce a cord-rubber composite with excellent adhesion between rubber and steel cord, and to reduce carbon dioxide during production.
<ゴム製品>
 当該ゴム製品は、ゴムとスチールコードとの接着性に優れた当該コード-ゴム複合体を含む。従って、当該ゴム製品は、耐久性を向上できる。当該ゴム製品としては、例えばタイヤ、ホース、搬送ベルト等が挙げられる。図2は、本開示の一態様に係るゴム製品の模式的部分断面図である。図2に示す当該ゴム製品50は、当該コード-ゴム複合体1を含む。図2は、当該ゴム製品50のゴム基材8に埋設された当該コード-ゴム複合体1の長手方向の断面を示している。当該ゴム製品50は、複数本の当該コード-ゴム複合体1がゴム基材8の中に埋設されることで、例えば屈曲が繰り返されるような耐久性を要求される部位の骨格が形成される。
<Rubber products>
The rubber product includes the cord-rubber composite having excellent adhesion between rubber and steel cord. Therefore, the rubber product can have improved durability. Examples of such rubber products include tires, hoses, and conveyor belts. FIG. 2 is a schematic partial cross-sectional view of a rubber product according to one aspect of the present disclosure. The rubber product 50 shown in FIG. 2 includes the cord-rubber composite 1 . FIG. 2 shows a longitudinal section of the cord-rubber composite 1 embedded in the rubber substrate 8 of the rubber product 50. As shown in FIG. In the rubber product 50, a plurality of the cord-rubber composites 1 are embedded in the rubber base material 8, thereby forming a skeleton of a portion that requires durability such as repeated bending, for example. .
 本開示のゴム製品としてタイヤを製造する場合、例えば、ゴム組成物からなるシート状の未加硫ゴムに本開示のスチールコードを埋め込み、補強ベルト構造を得る。上記ゴム製品に用いられるゴム組成物は、例えば上記ゴムで例示されたゴム組成物と同様のものを用いることができる。その後、補強ベルト構造とタイヤ構成部材とを貼り合わせて加硫機にセットし、プレス、加熱等を施すことによって加硫処理を行い、ゴム複合体としてタイヤを得る。これにより、耐久性に優れたタイヤを製造できる。 When manufacturing a tire as the rubber product of the present disclosure, for example, the steel cord of the present disclosure is embedded in a sheet-like unvulcanized rubber made of a rubber composition to obtain a reinforcing belt structure. As the rubber composition used for the rubber product, for example, the same rubber compositions as those exemplified for the above rubber can be used. Thereafter, the reinforcing belt structure and the tire constituent members are bonded together, set in a vulcanizer, and vulcanized by pressing, heating, etc., to obtain a tire as a rubber composite. As a result, a tire with excellent durability can be manufactured.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is not limited to the configuration of the above-described embodiment, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims. be.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 本開示の効果を検証するために、金属ナノ粒子層を有するスチールコードを備える試験No.1及び試験No.2のコード-ゴム複合体を作製した。  In order to verify the effects of the present disclosure, Test No. 1 provided with a steel cord having a metal nanoparticle layer. 1 and test no. Two cord-rubber composites were made.
<試験No.1>
 初めに、酸化亜鉛及び銅の質量比が1:3の金属ナノ粒子を含有する金属ナノインクを製造した。次に、直径φ1mmで長さ150mmにカットした鋼線材の表面に上記金属ナノインクをそれぞれ先端から75mmの長さまで塗工し、塗工膜を乾燥させて30本のスチールコードを作製した。その後、30本のスチールコードをゴムに埋設し、165℃で18分間加硫して、試験No.1のコード-ゴム複合体を作製した。試験No.1について断面を透過型電子顕微鏡で観察すると、鋼線材とゴムとの界面で金属ナノ粒子層を確認することができた。金属ナノ粒子層の平均厚さは、0.05μmであった。
<Test No. 1>
First, a metal nanoink containing metal nanoparticles with a weight ratio of zinc oxide and copper of 1:3 was prepared. Next, the metal nano-ink was applied to the surface of a steel wire rod cut to a diameter of φ1 mm and a length of 150 mm to a length of 75 mm from the tip, and the coating film was dried to prepare 30 steel cords. After that, 30 steel cords were embedded in rubber and vulcanized at 165° C. for 18 minutes. No. 1 cord-rubber composite was made. Test no. Observation of the cross section of No. 1 with a transmission electron microscope confirmed a metal nanoparticle layer at the interface between the steel wire and the rubber. The average thickness of the metal nanoparticle layer was 0.05 μm.
<試験No.2>
 直径φ1mm、線径150mmの鋼線材の表面に、銅めっき及び亜鉛めっきを順次施し、600℃10秒で熱拡散処理を行うことによりブラスめっき層を積層した。ブラスめっき層の組成は、亜鉛及び銅の質量比を1:3とした。その他は試験No.1と同様に、伸線を行い、30本のスチールコードを作製した。その後、30本のスチールコードをゴムに埋設し、165℃で18分間加硫して、試験No.2のコード-ゴム複合体を作製した。試験No.2について断面を透過型電子顕微鏡で観察すると、鋼線材とゴムとの界面で均一なブラスめっき層を確認することができた。ブラスめっき層の平均厚さは、0.25μmであった。
<Test No. 2>
Copper plating and zinc plating were sequentially applied to the surface of a steel wire material having a diameter of φ1 mm and a wire diameter of 150 mm, and a brass plating layer was laminated by performing thermal diffusion treatment at 600° C. for 10 seconds. The composition of the brass plating layer was such that the mass ratio of zinc and copper was 1:3. Other test no. Wire drawing was performed in the same manner as in 1 to prepare 30 steel cords. After that, 30 steel cords were embedded in rubber and vulcanized at 165° C. for 18 minutes. Two cord-rubber composites were made. Test no. Observation of the cross section of No. 2 with a transmission electron microscope confirmed a uniform brass plating layer at the interface between the steel wire rod and the rubber. The average thickness of the brass plating layer was 0.25 μm.
[評価]
(スチールコードとゴムとの接着性評価)
 80℃、RH95%の環境下で5日間保持後、ゴムからスチールコードを剥がした際に、スチールコードの表面に残存したゴムの割合を測定した。スチールコードとゴムとの接着性についてはA~Dの4段階で評価した。上記接着性の評価基準は以下の通りとした。接着性の評価がAからCであれば合格とする。評価結果を表1に示す。
 A:90質量%以上
 B:75質量%以上
 C:40質量%以上
 D:40質量%未満
[evaluation]
(Evaluation of adhesion between steel cord and rubber)
After holding for 5 days in an environment of 80° C. and 95% RH, the steel cord was peeled off from the rubber, and the percentage of rubber remaining on the surface of the steel cord was measured. The adhesion between the steel cord and the rubber was evaluated on a scale of A to D. The evaluation criteria for the adhesiveness were as follows. If the evaluation of adhesiveness is from A to C, it is considered acceptable. Table 1 shows the evaluation results.
A: 90% by mass or more B: 75% by mass or more C: 40% by mass or more D: less than 40% by mass
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、第一金属ナノ粒子及び第二金属ナノ粒子を含有する金属ナノ粒子層が積層されたスチールコードを備える試験No.1のコード-ゴム複合体は、スチールコードとゴムとの接着性が優れていた。
 一方、鋼線材の表面に、銅めっき及び亜鉛めっきを順次施し、熱拡散処理を行うことによりブラスめっき層を積層したスチールコードを備える試験No.2のコード-ゴム複合体は、試験No.1のコード-ゴム複合体よりも接着性が劣っていた。
As shown in Table 1, Test No. provided with steel cords laminated with metal nanoparticle layers containing first metal nanoparticles and second metal nanoparticles. The cord-rubber composite of No. 1 had excellent adhesion between the steel cord and the rubber.
On the other hand, Test No. 1 was provided with a steel cord in which copper plating and zinc plating were sequentially applied to the surface of a steel wire material, and a brass plating layer was laminated by performing thermal diffusion treatment. 2 cord-rubber composite was tested in test no. The adhesion was inferior to that of the cord-rubber composite of No. 1.
 以上の結果が示すように、当該コード-ゴム複合体は、ゴムとスチールコードとの接着性に優れ、ブラスめっき層のような熱拡散処理が不要であるため、製造時における二酸化炭素の削減を図ることができる。 As the above results show, the cord-rubber composite has excellent adhesion between rubber and steel cord, and does not require heat diffusion treatment unlike the brass plating layer, which reduces carbon dioxide emissions during manufacturing. can be planned.
 1   コード-ゴム複合体
 2   鋼線材
 3   金属ナノ粒子層
 4   ゴム(トッピングゴム)
 8   ゴム基材
 10  スチールコード
 50  ゴム製品
1 cord - rubber composite 2 steel wire rod 3 metal nanoparticle layer 4 rubber (topping rubber)
8 rubber substrate 10 steel cord 50 rubber product

Claims (7)

  1.  鋼線材を含む1又は複数のスチールコードと、
     上記スチールコードの表面の少なくとも一部を被覆するゴムと
    を備えており、
     上記スチールコードが、上記鋼線材と、上記鋼線材の表面に積層される金属ナノ粒子層を有し、
     上記金属ナノ粒子層が第一金属ナノ粒子及び第二金属ナノ粒子を含有し、
     上記第一金属ナノ粒子が銅を含み、
     上記第二金属ナノ粒子が亜鉛、コバルト、錫、鉄、ニッケル、アルミニウム及びこれらの酸化物から選ばれる1種又は2種以上を含むコード-ゴム複合体。
    one or more steel cords comprising steel wire;
    and rubber covering at least part of the surface of the steel cord,
    The steel cord has the steel wire and a metal nanoparticle layer laminated on the surface of the steel wire,
    The metal nanoparticle layer contains first metal nanoparticles and second metal nanoparticles,
    the first metal nanoparticles comprise copper;
    A cord-rubber composite in which the second metal nanoparticles include one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof.
  2.  上記第二金属ナノ粒子が亜鉛又は亜鉛の酸化物を含む請求項1に記載のコード-ゴム複合体。 The cord-rubber composite according to claim 1, wherein the second metal nanoparticles contain zinc or zinc oxide.
  3.  上記金属ナノ粒子層中の上記第二金属ナノ粒子の総量に対する上記第一金属ナノ粒子の総量の質量比が、1以上9以下である請求項1又は請求項2に記載のコード-ゴム複合体。 The cord-rubber composite according to claim 1 or claim 2, wherein the mass ratio of the total amount of the first metal nanoparticles to the total amount of the second metal nanoparticles in the metal nanoparticle layer is 1 or more and 9 or less. .
  4.  上記金属ナノ粒子層の平均厚さが0.01μm以上1.0μm以下である請求項1、請求項2又は請求項3に記載のコード-ゴム複合体。 The cord-rubber composite according to claim 1, claim 2, or claim 3, wherein the metal nanoparticle layer has an average thickness of 0.01 μm or more and 1.0 μm or less.
  5.  請求項1から請求項4のいずれか1項に記載のコード-ゴム複合体を含むゴム製品。 A rubber product comprising the cord-rubber composite according to any one of claims 1 to 4.
  6.  金属ナノ粒子とこの金属ナノ粒子を分散する溶媒とを含有する金属ナノインクを鋼線材の表面に塗工する工程と、
     上記鋼線材に塗工された当該金属ナノインクの塗工膜を乾燥する工程と、
     上記乾燥工程後の鋼線材を伸線する工程と
     上記伸線工程後に形成されるスチールコードの表面の少なくとも一部をゴムで被覆する工程と
     を備え、
     上記金属ナノ粒子が第一金属ナノ粒子及び第二金属ナノ粒子を含有し、
     上記第一金属ナノ粒子が銅を含み、
     上記第二金属ナノ粒子が亜鉛、コバルト、錫、鉄、ニッケル、アルミニウム及びこれらの酸化物から選ばれる1種又は2種以上を含むコード-ゴム複合体の製造方法。
    a step of applying a metal nanoink containing metal nanoparticles and a solvent for dispersing the metal nanoparticles onto the surface of the steel wire;
    a step of drying the coating film of the metal nano-ink applied to the steel wire;
    a step of drawing the steel wire after the drying step; and a step of covering at least part of the surface of the steel cord formed after the drawing step with rubber,
    The metal nanoparticles contain first metal nanoparticles and second metal nanoparticles,
    the first metal nanoparticles comprise copper;
    A method for producing a cord-rubber composite, wherein the second metal nanoparticles include one or more selected from zinc, cobalt, tin, iron, nickel, aluminum and oxides thereof.
  7.  上記金属ナノ粒子の一次粒子における粒径が10nm超150nm未満であり、メジアン径が30nm以上100nm以下である請求項6に記載のコード-ゴム複合体の製造方法。
     
    7. The method for producing a cord-rubber composite according to claim 6, wherein the primary particles of the metal nanoparticles have a particle diameter of more than 10 nm and less than 150 nm, and a median diameter of 30 nm or more and 100 nm or less.
PCT/JP2022/023658 2021-06-30 2022-06-13 Cord-rubber composite body, rubber product and method for producing cord-rubber composite body WO2023276641A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280029211.0A CN117222791A (en) 2021-06-30 2022-06-13 Cord-rubber composite, rubber product, and method for producing cord-rubber composite
DE112022003318.5T DE112022003318T5 (en) 2021-06-30 2022-06-13 CORD-RUBBER COMPOSITE MATERIAL, RUBBER PRODUCT AND METHOD FOR PRODUCING A CORD-RUBBER COMPOSITE MATERIAL
US18/558,615 US20240229351A1 (en) 2021-06-30 2022-06-13 Cord-rubber composite body, rubber product and method for producing cord-rubber composite body
JP2023531766A JPWO2023276641A1 (en) 2021-06-30 2022-06-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109610 2021-06-30
JP2021-109610 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276641A1 true WO2023276641A1 (en) 2023-01-05

Family

ID=84692243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023658 WO2023276641A1 (en) 2021-06-30 2022-06-13 Cord-rubber composite body, rubber product and method for producing cord-rubber composite body

Country Status (5)

Country Link
US (1) US20240229351A1 (en)
JP (1) JPWO2023276641A1 (en)
CN (1) CN117222791A (en)
DE (1) DE112022003318T5 (en)
WO (1) WO2023276641A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063951A1 (en) * 2005-12-01 2007-06-07 Sumitomo Rubber Industries, Ltd. Metallic cord, rubber/cord composite object, and pneumatic tire obtained using the same
WO2007102233A1 (en) * 2006-03-08 2007-09-13 Kabushiki Kaisha Bridgestone Brass plated steel wire for rubber article reinforcement and process for producing the same
JP2015511998A (en) * 2012-02-06 2015-04-23 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme Elongated steel element with ternary or quaternary brass alloy coating and corresponding method
WO2020156967A1 (en) * 2019-01-31 2020-08-06 Nv Bekaert Sa Steel cord with a brass coating enriched with iron particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375565B2 (en) 2020-01-15 2023-11-08 株式会社ジェイテクト steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063951A1 (en) * 2005-12-01 2007-06-07 Sumitomo Rubber Industries, Ltd. Metallic cord, rubber/cord composite object, and pneumatic tire obtained using the same
WO2007102233A1 (en) * 2006-03-08 2007-09-13 Kabushiki Kaisha Bridgestone Brass plated steel wire for rubber article reinforcement and process for producing the same
JP2015511998A (en) * 2012-02-06 2015-04-23 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme Elongated steel element with ternary or quaternary brass alloy coating and corresponding method
WO2020156967A1 (en) * 2019-01-31 2020-08-06 Nv Bekaert Sa Steel cord with a brass coating enriched with iron particles

Also Published As

Publication number Publication date
CN117222791A (en) 2023-12-12
DE112022003318T5 (en) 2024-05-23
US20240229351A1 (en) 2024-07-11
JPWO2023276641A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
CN102947109B (en) There is the manufacture method of the Pneumatic vehicle tire of exhaust curve and the conductive coating for this exhaust curve
KR20080075877A (en) Metal cord, rubber-cord complex, and pneumatic tire using the same
CN102459751A (en) Rubber/steel cord composite and pneumatic radial tire
CN106367979A (en) High-abrasion-resisting glass fiber fabric and preparation method thereof
CN108192169A (en) A kind of anti-slippery safety tread tread rubber and preparation method thereof
CN107698906A (en) Undersea detection steady phase high-strength composite cable and preparation method thereof
JP2014019974A (en) Rubber/cord composite body and pneumatic tire using the same
JP2008202196A (en) Method for producing steel cord, the resultant steel cord, and pneumatic tire
WO2023276641A1 (en) Cord-rubber composite body, rubber product and method for producing cord-rubber composite body
JP4015379B2 (en) Steel cord for reinforcing rubber, method for producing steel cord for reinforcing rubber, and pneumatic tire
EP0431822B1 (en) Bead wire for tyres
JP4393172B2 (en) Adhesive rubber composition for steel cord and pneumatic tire
JP2002338749A (en) Composite of steel cord with rubber composition and tire using the same
CN104204065B (en) Manufacture method, rubber-metal complex, tire, industrial band and the rubber belt track of rubber composition, rubber-metal composite
DE102010004059A1 (en) A rubber composition for coating textile cord and tire using the same
CN107383713A (en) Undersea detection high-strength composite rubber and preparation method thereof
CN107674254A (en) A kind of production method of tire tread glue
JP4448442B2 (en) Pneumatic tire manufacturing method
KR102567446B1 (en) Cobalt-plated steel cord and radial tire comprising the same
DE602004001322T2 (en) Composite article and its manufacture
JP2012107359A (en) Rubber/cord composite material and rubber composition used in the same, and pneumatic tire using rubber/cord composite material
JP6623727B2 (en) Rubber cord composite and pneumatic tire using the same
JP2011032325A (en) Rubber composition for coating steel cord, steel cord/rubber composite and pneumatic tire
JPWO2023276641A5 (en)
JP2005146051A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280029211.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023531766

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18558615

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2301008302

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202347088008

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 22832797

Country of ref document: EP

Kind code of ref document: A1