[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023248295A1 - 数値制御装置及び予想消費電力算出方法 - Google Patents

数値制御装置及び予想消費電力算出方法 Download PDF

Info

Publication number
WO2023248295A1
WO2023248295A1 PCT/JP2022/024543 JP2022024543W WO2023248295A1 WO 2023248295 A1 WO2023248295 A1 WO 2023248295A1 JP 2022024543 W JP2022024543 W JP 2022024543W WO 2023248295 A1 WO2023248295 A1 WO 2023248295A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
power consumption
deceleration
setting
control device
Prior art date
Application number
PCT/JP2022/024543
Other languages
English (en)
French (fr)
Inventor
諒 森橋
翔吾 篠田
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/024543 priority Critical patent/WO2023248295A1/ja
Publication of WO2023248295A1 publication Critical patent/WO2023248295A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Definitions

  • the present invention relates to a numerical control device that calculates expected power consumption and displays it together with actual power consumption, and a method for calculating expected power consumption.
  • Patent Document 1 describes a display device and a machine tool that can clearly display how improvements in a machining program affect the overall machining process. Specifically, Patent Document 1 describes a display device that displays information obtained from a machine tool that executes a machining program including a plurality of blocks as a plurality of program blocks identified by sequence numbers.
  • the display device includes a data acquisition unit that acquires status information indicating the operating status of the machine tool in terms of the amount of change and a time axis, and timing information indicating a predetermined timing of a machining program being executed by the machine tool; a time-series information generation unit that generates time-series information based on state information and timing information; a superposition unit that superimposes multiple pieces of time-series information with the timings indicated by the timing information aligned; A display unit that displays series information.
  • the display device acquires processing state data such as processing load, speed, amount of change in processing position, amount of change in power, etc. as state information.
  • Patent Document 2 describes a servo motor control device that can calculate the output of a servo motor with high precision.
  • a servo motor control device that controls a servo motor includes a memory section in which a predefined torque constant for the servo motor is stored, and a memory section that stores a predetermined torque constant for the servo motor, and
  • a torque constant correction section corrects the torque constant stored in the storage section, the torque constant stored in the storage section or the corrected torque constant calculated by the torque constant correction section, and the torque constant related to the current of the servo motor. and a value related to the speed of the servo motor.
  • Patent Document 3 describes a robot program modification system that modifies a robot's operation program with high precision.
  • a robot program modification system includes a robot control device and a program modification device.
  • the robot control device includes an information acquisition unit that executes an operation program and acquires robot detection information obtained from the robot, and a communication unit that transmits the acquired robot detection information to the program correction device.
  • the program modification device includes a simulation section that executes a simulation based on the motion program PR, and while repeating the simulation in the simulation section, modifies the motion program PR based on the robot detection information so that the simulation result satisfies predetermined evaluation criteria. It has a program modification section and a communication section that transmits the modified operation program PR1 to the robot control device.
  • the program modification unit modifies the commanded speed and commanded acceleration at the teaching points of the operation program PR using the speed, current value, etc. of each axis motor obtained from the robot control device so that the cycle time becomes the shortest.
  • a first aspect of the present disclosure includes a program storage unit that stores an operation program for operating a machine; an actual power consumption acquisition unit that operates the machine according to a first acceleration/deceleration setting based on the operation program and acquires actual power consumption by calculation or actual measurement; Estimated power consumption calculation that calculates expected power consumption by adding at least the actual power consumption and the increase/decrease in power consumption due to the change in acceleration/deceleration from the first acceleration/deceleration setting to the second acceleration/deceleration setting.
  • a second aspect of the present disclosure is that a computer serving as a numerical control device includes a program storage unit that stores an operation program for operating a machine. storing information necessary for calculating power consumption of a first acceleration/deceleration setting and a second acceleration/deceleration setting based on the operation program; operating the machine according to the first acceleration/deceleration setting and obtaining actual power consumption by calculation or actual measurement; Expected power consumption is calculated by adding at least the actual power consumption and an increase/decrease in power consumption due to a change in acceleration/deceleration from the first acceleration/deceleration setting to the second acceleration/deceleration setting. This is a power calculation method.
  • the aspect of the present disclosure it is possible to improve the accuracy of the predicted value of power consumption. Furthermore, by visualizing the actual power consumption and the expected power consumption, it becomes possible to easily compare and support power consumption reduction.
  • FIG. 1 is a block diagram showing the configuration of a numerically controlled machine tool including a numerical control device according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing an example of a configuration of a servo control device.
  • FIG. 1 is a block diagram showing the configuration of a numerical control device according to an embodiment of the present disclosure.
  • FIG. 6 is a characteristic diagram showing a change in speed over time before and after a change in linear acceleration/deceleration.
  • FIG. 3 is a characteristic diagram showing a temporal change in acceleration before and after a linear acceleration/deceleration change.
  • FIG. 3 is a characteristic diagram showing a change in speed over time before changing acceleration/deceleration.
  • FIG. 1 is a block diagram showing the configuration of a numerically controlled machine tool including a numerical control device according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing an example of a configuration of a servo control device.
  • FIG. 1 is a block diagram showing the
  • FIG. 3 is a characteristic diagram showing a time change in speed during acceleration before changing acceleration/deceleration.
  • FIG. 3 is a characteristic diagram showing a change in speed over time before and after a bell-shaped acceleration/deceleration change.
  • FIG. 3 is a characteristic diagram showing a temporal change in acceleration before and after a bell-shaped acceleration/deceleration change.
  • FIG. 6 is a characteristic diagram showing a change in speed over time before and after an acceleration/deceleration change in exponential acceleration/deceleration.
  • FIG. 6 is a characteristic diagram showing changes in acceleration over time before and after changing acceleration/deceleration of exponential acceleration/deceleration.
  • FIG. 2 is a block diagram showing an example of a configuration of a display setting section.
  • FIG. 1 is a block diagram showing the configuration of a numerically controlled machine tool including a numerical control device according to an embodiment of the present disclosure.
  • the numerically controlled machine tool 10 includes a numerical control device 20 such as a CNC (Computerized Numerical Control) device, a servo control device 30, a motor 40, and an external device 50.
  • Servo controller 30 controls motor 40 .
  • a machine tool will be described as a machine controlled by the numerical control device 20, and the operation program will be described as a machining program.
  • the numerical control device 20 outputs control commands such as position commands to the servo control device 30 based on a machining program that commands movement of a tool or a workpiece.
  • the numerical control device 20 calculates the actual power consumption in the program operation from the feedback information of the servo control device 30, or measures the actual power consumption with a wattmeter, and calculates the actual power consumption when changing the acceleration/deceleration in the program. Calculate the expected power consumption during the period. Then, the numerical control device 20 displays a power graph of the measured power consumption and the expected power consumption on the display screen of the display unit 212, which will be described later.
  • the numerical control device 20 may include a servo control device 30.
  • the servo control device 30 controls the motor 40 based on control commands such as position commands from the numerical control device 20.
  • the servo control device 30 includes an X-axis servo control unit that drives an X-axis motor, a Y-axis servo control unit that drives a Y-axis motor, a Z-axis servo control unit that drives a Z-axis motor, and a main shaft motor control unit that drives a main shaft motor.
  • FIG. 1 only one servo control section that controls the motor 40 is shown, and the configurations of the other servo control sections and the spindle motor control section are omitted.
  • the motor 40 is provided as part of a machine tool. However, it may also be provided as part of the servo control device 30. Although the motor 40 will be described below as a motor that performs rotational motion, it may also be a linear motor that performs linear motion.
  • the motor 40 is included in a machine tool such as a three-axis processing machine, and serves as an X-axis feed axis motor, for example.
  • a machine tool such as a three-axis processing machine
  • Y-axis and Z-axis motors are also provided as feed axis motors
  • the 3-axis processing machine has a main shaft that rotates a tool such as a ball end mill. It also has a motor.
  • the motor 40 When the motor 40 is a rotary motor used in a three-axis processing machine, the motor 40 linearly moves the table on which the work is placed in the X-axis direction via a ball screw or the like.
  • the configuration of the 3-axis processing machine is not limited to this configuration.
  • the tool may be fixed and the table may be moved linearly in the X-axis direction, Y-axis direction, and Z-axis direction, or the table may be fixed and the tool may be moved in the It may be linearly moved in the axial direction, the Y-axis direction, and the Z-axis direction.
  • the machine tool is not limited to a 3-axis processing machine, but may be a 5-axis processing machine, for example.
  • the external equipment 50 is a coolant pump that circulates coolant, a conveyor that collects chips, etc., a light, etc. Although one external device 50 is shown in FIG. 1, there may be a plurality of external devices 50.
  • the servo control device 30 includes an X-axis servo control section, a Y-axis servo control section, a Z-axis servo control section, and a spindle motor control section. Let's take a look at the section and explain it.
  • the configurations of the Y-axis servo control unit and the Z-axis servo control unit are similar to the X-axis servo control unit, and the configuration of the spindle motor control unit is described in, for example, Japanese Patent Application Publication No. 2019-040556.
  • FIG. 2 is a block diagram showing an example of the configuration of a servo control device.
  • the servo control device 30 includes a subtracter 301, a position control section 302, a subtracter 303, a speed control section 304, a subtracter 305, a current control section 306, and an integrator 307.
  • the subtracter 301 calculates the difference between the position command output from the numerical control device 20 and the detected position fed back, and outputs the difference to the position control unit 302 as a position deviation.
  • the position control unit 302 outputs a value obtained by multiplying the position deviation by the position gain PG to the subtracter 303 as a speed command value.
  • the subtracter 303 calculates the difference between the speed command value output from the position control unit 302 and the speed detection value subjected to speed feedback, and outputs the difference to the speed control unit 304 as a speed deviation.
  • the speed control unit 304 adds the value obtained by multiplying the speed deviation by the integral gain K1v and integrating the value and the value obtained by multiplying the speed deviation by the proportional gain K2v, and outputs the result to the subtracter 305 as a current command value.
  • the subtracter 305 calculates the difference between the current command value output from the speed control section 304 and the current detection value fed back, and outputs the difference to the current control section 306 as a current deviation.
  • Current control unit 306 generates a voltage command for driving motor 40 based on the current deviation, and outputs the voltage command to motor 40.
  • the rotational angular position of the motor 40 is detected by a rotary encoder (not shown), and the detected speed value is input to the subtracter 303 as speed feedback information (speed FB information).
  • the detected speed value is input to the numerical control device 20.
  • the integrator 307 integrates the speed detection value to obtain a position detection value, and inputs the position detection value to the subtractor 301 as position feedback information (position FB information).
  • a current detector (not shown) attached to the motor 40 detects the current and inputs the detected current value to the subtracter 305 as current feedback information (current FB information).
  • the detected current value is input to the numerical control device 20.
  • a voltage detector (not shown) attached to the motor 40 detects voltage and inputs the detected voltage value to the numerical control device 20 .
  • FIG. 3 is a block diagram showing the configuration of a numerical control device according to an embodiment of the present disclosure.
  • the numerical control device 20 includes a program storage section 201, a command analysis section 202, an interpolation section 203, an acceleration/deceleration control section 204, a command output section 205, a set value storage section 206, and an expected power consumption calculation section 207.
  • a setting change section 208 an FB acquisition section 209, an actual power consumption acquisition section 210, a display setting section 211, and a display section 212.
  • the program storage unit 201 stores machining programs.
  • the command analysis unit 202 sequentially reads and analyzes blocks containing commands for moving the X-axis, Y-axis, Z-axis, and main axis from the machining program, and generates movement command data for commanding the movement of each axis based on the analysis results. create.
  • the interpolation unit 203 generates interpolation data by interpolating points on the command route at an interpolation period based on the movement command instructed by the movement command data output from the command analysis unit 202.
  • the acceleration/deceleration control unit 204 performs acceleration/deceleration processing based on the interpolation data output from the interpolation unit 203, calculates the machining speed of each axis for each interpolation period, and outputs the machining speed to the command output unit 205, which will be described later.
  • the command output unit 205 generates a position command based on the machining speed of each axis output from the acceleration/deceleration control unit 204 and outputs it to the servo control device 30.
  • the setting value storage unit 206 stores motor specification values, measured values, power consumption of external devices, and parameter setting values.
  • the motor specification value is, for example, a torque constant. Measured values include viscous friction, Coulomb friction, etc. Parameter setting values include speed, acceleration, etc. The speed and acceleration as parameter setting values are changed by the setting changing unit 208.
  • the power consumption of the external device is determined by calculating the operating time from the operation signal input from the external device and by referring to the power consumption per unit time obtained from the catalog specifications.
  • the expected power consumption calculation unit 207 acquires the actual power consumption from the actual power consumption acquisition unit 210, and acquires the speed and acceleration (which become the first acceleration/deceleration settings) obtained from the machining program from the setting value storage unit 206. Also, the speed and acceleration changed by the setting changing unit 208 (which become the second acceleration/deceleration setting) are acquired from the setting value storage unit 206. Then, the expected power consumption calculation unit 207 calculates the expected power consumption using the actual power consumption, the speed and acceleration before the change (first acceleration/deceleration setting), and the speed and acceleration after the change (second acceleration/deceleration setting). calculate. A method for calculating expected power consumption will be described later. Note that acceleration includes both cases where the speed increases and cases where the speed decreases.
  • the speed and acceleration determined from the machining program may be stored in the setting change unit 208.
  • the expected power consumption calculation unit 207 can obtain the power consumption of the external device 50 from the setting value storage unit 206 and calculate the expected power consumption including the power consumption of the external device 50.
  • the setting change unit 208 issues an instruction to recalculate based on the changed second acceleration/deceleration settings
  • the expected power consumption calculation unit 207 calculates the speed, acceleration, etc. corresponding to the changed second acceleration/deceleration settings. Recalculate the expected power consumption using
  • the setting change unit 208 obtains speed and acceleration (first acceleration/deceleration settings) from the machining program stored in the program storage unit 201 and stores them in the setting value storage unit 206. Further, the setting changing unit 208 changes the speed and acceleration obtained from the machining program and stores the speed and acceleration (second acceleration/deceleration setting) in the setting value storage unit 206.
  • the speed and acceleration of the second acceleration/deceleration setting may be set by the user, or the amount of change may be determined in advance based on the first acceleration/deceleration setting.
  • the setting change unit 208 changes the acceleration/deceleration settings such as speed and acceleration that become the second acceleration/deceleration settings according to the user's designation of the time constant and expected power consumption, and stores the changed speed and acceleration in the setting value storage unit 206. to be memorized. Further, the setting change unit 208 sets the acceleration/deceleration time constant, constant speed time, etc. of the acceleration/deceleration control unit 204 so as to achieve the determined expected power consumption.
  • the acceleration/deceleration parameters to be changed differ depending on the acceleration/deceleration type, and if the acceleration/deceleration type is linear acceleration/deceleration described later, , for example, change the speed and acceleration, or the time constant during acceleration and deceleration.
  • the acceleration/deceleration type is a bell-shaped acceleration/deceleration described later, for example, the primary acceleration/deceleration time and secondary acceleration/deceleration time, or the time constant and speed change during acceleration/deceleration are changed.
  • the acceleration/deceleration type is an exponential acceleration/deceleration described later, for example, the time constant during acceleration/deceleration and the final attained speed are changed.
  • the FB acquisition unit 209 acquires a current detection value and a voltage detection value, or a current detection value and a speed detection value, which are feedback information from the servo control device 30.
  • Feedback information obtained from the servo control device 30 is obtained by operating the servo control device 30 based on a position command generated by the first acceleration/deceleration setting.
  • the actual power consumption acquisition unit 210 calculates actual power consumption using the detected current value and the detected voltage value, or the detected current value and the detected speed value acquired by the FB acquisition unit 209.
  • the actual power consumption acquisition unit 210 may acquire the actual power consumption using a wattmeter, and in this case, the FB acquisition unit 209 may be omitted.
  • the display setting unit 211 configures the display settings of the display unit 212 so that the actual power consumption acquired by the actual power consumption acquisition unit 210 and the expected power consumption calculated by the expected power consumption calculation unit 207 are displayed for each set period. conduct.
  • the display unit 212 displays actual power consumption and expected power consumption on the display screen based on the display settings of the display setting unit 211. Details of the configuration of the display setting section 211 and display examples by the display section 212 will be described later.
  • the user can view the predicted power consumption displayed on the display unit 212 and change the value of the predicted power consumption. As will be described later, if a time constant or the like is displayed on the display screen, the user can change the value of the expected power consumption by changing the time constant or the like.
  • the actual power consumption acquisition unit 210 acquires the actual power consumption based on the first acceleration/deceleration setting
  • the expected power consumption calculation unit 207 acquires the actual power consumption based on the second acceleration/deceleration setting. Calculate power.
  • the display unit 212 displays actual power consumption and expected power consumption.
  • the setting change unit 208 changes the second acceleration/deceleration settings such as speed, acceleration, etc.
  • the speed, acceleration, etc. are stored in the set value storage section 206.
  • the actual power consumption acquisition unit 210 can obtain the actual power consumption P by calculating using Equation 1 (Equation 1 below).
  • Iq represents a detected current that is current feedback
  • V represents a detected voltage
  • represents an angular velocity.
  • the detected current Iq and the detected voltage V are output from the servo control device 30.
  • the angular velocity ⁇ can be determined from a velocity detection value as velocity feedback, which will be described later.
  • the actual power consumption P can be calculated using the detected current Iq and the detected voltage V, or the detected current Iq and the angular velocity ⁇ . Further, the actual power consumption acquisition unit 210 can also acquire the actual power consumption P using a value actually measured from a wattmeter.
  • Equation 2 (Estimated power consumption calculation method)
  • power Pa is the expected power consumption of the servo control device at a certain time
  • time T is the time from the start position to the target position
  • Tx is the expected operating time of the machine
  • A is the consumption of the external device 50 at a certain time.
  • the expected power consumption calculation unit 207 calculates the power consumption of the external device 50 within the time Tx, but the power consumption of the external device 50 does not need to be calculated.
  • the first term of Equation 2 represents the integral value of the expected power consumption Pa within time T
  • the final term of Equation 2 represents the integral of the expected power consumption A of the external device 50 during the expected operating time Tx of the machine. Show value.
  • the acceleration/deceleration operation performed within the time T is repeated n times within the expected operating time Tx.
  • the expected power consumption Pa in the first term of Equation 2 is determined by the change in acceleration/deceleration when the acceleration/deceleration in the machining program is changed (when changing from the first acceleration/deceleration setting to the second acceleration/deceleration setting).
  • the acceleration/deceleration setting for obtaining the actual power consumption corresponds to the first acceleration/deceleration setting.
  • the expected power consumption at the first acceleration/deceleration setting before the acceleration/deceleration change is Px1
  • the expected power consumption at the second acceleration/deceleration setting after the acceleration/deceleration change is Px2
  • Equation 2 is an integral value of expected power consumption Pa within time T, and indicates the expected power consumption in the first acceleration/deceleration operation in the machining program.
  • Equation 3 is a torque constant
  • Iqa current
  • Jm is inertia
  • F is viscous friction or Coulomb friction
  • angular velocity.
  • Inertia Jm, viscous friction, and friction F, which is Coulomb friction, are measured in advance and stored in the set value storage unit 206, and the angular velocity ⁇ and angular acceleration d ⁇ /dt are obtained from the machining program stored in the program storage unit 201. or from the velocity and acceleration stored in the set value storage section 206.
  • the power consumption Px obtained using the angular velocity ⁇ and the angular acceleration d ⁇ /dt before the change obtained from the machining program is the above-mentioned power consumption Px1, and the speed after the change stored in the set value storage unit 206,
  • the power consumption Px obtained using the angular velocity ⁇ and the angular acceleration d ⁇ /dt determined from the acceleration is the above-mentioned power consumption Px2.
  • FIG. 4 is a characteristic diagram showing a time change in speed before and after a change in linear acceleration/deceleration.
  • FIG. 5 is a characteristic diagram showing temporal changes in acceleration before and after changes in linear acceleration/deceleration.
  • the solid line shows the speed change before the acceleration/deceleration change
  • the broken line shows the speed change after the acceleration/deceleration change
  • the solid line shows the acceleration change before the acceleration/deceleration change
  • the broken line shows the acceleration change after the acceleration/deceleration change.
  • time T1 indicates the acceleration period before the acceleration/deceleration change
  • time T2 indicates the period of the difference between the constant speed periods before and after the acceleration/deceleration change
  • time T3 indicates the deceleration before the acceleration/deceleration change
  • the time T4 indicates the period of the difference between the deceleration periods before and after the acceleration/deceleration change.
  • Time T5 indicates a constant speed period before acceleration/deceleration change. Further, in FIG. 4, time T indicates the time from the start position to the target position after the acceleration/deceleration change, and time Ts indicates the time from the start position to the target position before the acceleration/deceleration change.
  • the speed after the acceleration/deceleration change has a longer acceleration period, a shorter constant speed period, and a longer deceleration period than the speed before the acceleration/deceleration change.
  • the integrated value of the expected power consumption Pa in the first term of Equation 2, which is the expected power consumption within time T, and the power of the external device 50 can be determined using Equation 5 below (Equation 5 below).
  • the expected power consumption in the acceleration/deceleration period after the acceleration/deceleration change is the expected power consumption in the acceleration period (T1+T2) and the deceleration period (T3+T4), as shown in FIG.
  • the expected power consumption during the deceleration period indicates the expected power consumption during the acceleration period T1 and the deceleration period T3.
  • (power during constant speed at time T2) and ((expected power consumption during acceleration/deceleration period after acceleration/deceleration change) - (expected power consumption during acceleration/deceleration period before acceleration/deceleration change)) are the external device power does not contain.
  • (Actual power consumption within period Ts) in Formula 5 includes external device power consumption, When the acceleration/deceleration is changed, the acceleration/deceleration time also changes, but the distance traveled during acceleration/deceleration also changes, so the time of constant speed also changes. Equation 5 is a formula that calculates the increase/decrease amount taking these two factors into consideration.
  • the power consumption during constant speed before acceleration/deceleration which does not include the power consumption of external equipment, can be calculated as follows. It can be determined using Equation 6 (Equation 6 below).
  • FIG. 6 is a characteristic diagram showing changes in speed over time before changing acceleration/deceleration.
  • time T1 indicates an acceleration period before acceleration/deceleration change
  • time T3 indicates a deceleration period before acceleration/deceleration change
  • time T5 indicates a constant speed period before acceleration/deceleration change. It shows.
  • the power consumption at time T5, which does not include the power consumption of external devices can be calculated using Equation 6 (Equation 6 below).
  • Equation 6 (actual power consumption up to period Ts) includes external device power consumption, and (power consumption during acceleration/deceleration period of time (T1+T5)) does not include external device power consumption.
  • a specific calculation formula can be obtained using Equation 7 (Equation 7 below).
  • the expected power consumption during constant speed may be calculated by extracting only the acquired actual power consumption during constant speed and using that value for the expected constant speed time. Specifically, the value per unit time (seconds, etc.) of the constant speed portion of the actual power consumption may be calculated and multiplied by the expected constant speed time.
  • Equation 8 the times T1, T2, T3, T4, T5 and the distance Z to the target position can be determined using Equation 8 (Equation 8 below).
  • Equation 8 v1 represents the final attained speed
  • a1 represents the acceleration before the acceleration/deceleration change
  • a2 represents the acceleration after the acceleration/deceleration change.
  • the final reached speed v1 is the same before and after the acceleration/deceleration change.
  • times T1 and T2 can be determined using the time constant. As an example, a case will be described in which the times T1 and T2 are determined. Assuming that the time constant during acceleration before changing the acceleration/deceleration is time constant T', and the time constant during acceleration after changing acceleration/deceleration is time constant T'', times T1 and T2 can be calculated using Equation 9 (Equation 9 below). can be found.
  • FIG. 7 is a characteristic diagram showing a time change in speed during acceleration before changing acceleration/deceleration.
  • FIG. 8 is a characteristic diagram showing a time change in speed before and after a change in acceleration/deceleration of the bell-shaped acceleration/deceleration.
  • FIG. 9 is a characteristic diagram showing changes in acceleration over time before and after changing the acceleration/deceleration of the bell-shaped acceleration/deceleration.
  • the solid line shows the speed change before the acceleration/deceleration change
  • the broken line shows the speed change after the acceleration/deceleration change.
  • the solid line shows the acceleration change before the acceleration/deceleration change
  • the broken line shows the acceleration change after the acceleration/deceleration change.
  • time T1 indicates the acceleration period before the acceleration/deceleration change
  • time T2 indicates the period of the difference between the constant speed periods before and after the acceleration/deceleration change
  • time T3 indicates the deceleration period before the acceleration/deceleration change
  • the time T4 indicates the period of the difference between the deceleration periods before and after the acceleration/deceleration change
  • Time T5 indicates a constant speed period before acceleration/deceleration change. As shown in FIG. 8, the speed after the acceleration/deceleration change has a longer acceleration period, a shorter constant speed period, and a longer deceleration period than the speed before the acceleration/deceleration change.
  • Equation 10 The integral value of the expected power consumption Pa in the first term of Equation 2 and the power of the external device within time T can be determined using Equation 10 below (Equation 10 below).
  • Equation 10 the expected power consumption in the acceleration/deceleration period after the acceleration/deceleration change indicates the expected power consumption in the acceleration period (T1+T2) and the deceleration period (T3+T4), and the expected power consumption in the acceleration/deceleration period before the acceleration/deceleration change is , shows the expected power consumption during the acceleration period T1 and the deceleration period T3.
  • Equation 10 is a formula that calculates the amount of increase/decrease in consideration of these two factors.
  • Equation 11 the times T1, T2, T3, T4, T5 and the distance Z to the target position can be determined using Equation 11 (Equation 11 below).
  • Equation 11 v1 represents the final attained speed
  • a1 represents the acceleration before the acceleration/deceleration change.
  • the final reached speed v1 is the same before and after the acceleration/deceleration change.
  • ⁇ 1 is the time constant before the acceleration/deceleration change
  • ⁇ 2 is the time constant after the acceleration/deceleration change
  • t1 is the primary acceleration/deceleration time before the acceleration/deceleration change
  • t2 is the secondary acceleration/deceleration before the acceleration/deceleration change.
  • the time T5 is the actually measured constant speed time. Note that T5-T2 indicates the expected constant speed time.
  • FIG. 10 is a characteristic diagram showing changes in speed over time before and after changes in acceleration/deceleration in exponential acceleration/deceleration.
  • FIG. 11 is a characteristic diagram showing temporal changes in acceleration before and after changing acceleration/deceleration in exponential acceleration/deceleration.
  • the solid line shows the speed change before the acceleration/deceleration change
  • the broken line shows the speed change after the acceleration/deceleration change
  • the solid line shows the acceleration change before the acceleration/deceleration change
  • the broken line shows the acceleration change after the acceleration/deceleration change.
  • time T1 indicates the acceleration period before the acceleration/deceleration change
  • time T2 indicates the period of the difference between the constant speed periods before and after the acceleration/deceleration change
  • time T3 indicates the deceleration period before the acceleration/deceleration change
  • time T4 indicates the period of the difference between the deceleration periods before and after the acceleration/deceleration change
  • Time T5 indicates a constant speed period before acceleration/deceleration change.
  • the speed after the acceleration/deceleration change has a longer acceleration period, a shorter constant speed period, and a longer deceleration period than the speed before the acceleration/deceleration change.
  • the integral value of the expected power consumption Pa in the first term of Equation 2 and the power of the external device within time T can be determined using Equation 12 below (Equation 12 below).
  • the expected power consumption in the acceleration/deceleration period after the acceleration/deceleration change indicates the expected power consumption in the acceleration period (T1+T2) and the deceleration period (T3+T4), and the expected power consumption in the acceleration/deceleration period before the acceleration/deceleration change is , shows the expected power consumption during the acceleration period T1 and the deceleration period T3.
  • (power consumption during constant speed at time T2) and ((expected power consumption during acceleration/deceleration period after acceleration/deceleration change) - (expected power consumption during acceleration/deceleration period before acceleration/deceleration change)) are Does not include electricity.
  • Formula 12 is a formula that calculates the increase/decrease amount taking these two factors into consideration.
  • Equation 13 the times T1, T2, T3, T4, T5 and the distance Z to the target position can be determined using Equation 13 (Equation 13 below) and Equation 14 (Equation 14 below).
  • Equation 13 and 14 v1 is the final attained speed
  • ⁇ 1 the time constant before acceleration/deceleration change
  • ⁇ 2 the time constant after acceleration/deceleration change
  • V1(t) is the speed during acceleration
  • V'1(t) is This is the speed when decelerating.
  • it is difficult to obtain an accurate time T1 so the time when the velocity feedback reaches v1 is defined as the time T1.
  • the time Ts may also be the actually measured time taken to reach the target position.
  • FIG. 12 is a block diagram showing an example of the configuration of the display setting section.
  • the display setting section 211 includes an actual power consumption input section 2111, an expected power consumption input section 2112, a period setting section 2113, a period division section 2114, and a display information generation section 2115.
  • the actual power consumption input unit 2111 outputs the actual power consumption input from the actual power consumption acquisition unit 210 to the display information generation unit 2115.
  • the expected power consumption input unit 2112 outputs the expected power consumption input from the expected power consumption calculation unit 207 to the display information generation unit 2115.
  • the period setting section 2113 outputs the setting period set by the user to the display information generating section 2115 as period setting information.
  • the period setting unit 2113 stores the set period. Note that although the user sets the setting period here, the setting period may be set in advance.
  • the period dividing section 2114 reads out the setting period from the period setting section 2113, divides the setting period, and displays the divided plurality of setting periods as period setting information. It is output to the information generation section 2115.
  • the display information generation unit 2115 stores the actual power consumption input from the actual power consumption input unit 2111 in chronological order, and stores the predicted power consumption input from the expected power consumption input unit 2112 in chronological order.
  • the display information generation unit 2115 reads out the actual power consumption and the expected display power within the set period set by the period setting unit 2113, graphs it, and outputs display information for displaying the graph on the screen to the display unit 212. do. If there are multiple expected power consumptions calculated from multiple acceleration/deceleration settings or acceleration/deceleration settings before and after the change, the multiple expected power consumptions and actual power consumption may be displayed in one graph or in one predicted power consumption. The display may be performed by providing a plurality of graphs that display power consumption and actual power consumption.
  • FIG. 13 is a diagram showing a first example of a graph display displayed on the display unit.
  • Figure 13 shows a graph (upper figure) showing changes over time between actual power consumption and expected power consumption from the start of machine operation, and a graph (lower figure) showing daily changes in actual power consumption and expected power consumption. It shows.
  • the user inputs the time and day for displaying the actual power consumption and expected power consumption in a graph in the period setting section 2113 of the display setting section 211.
  • the display unit 212 can also display the operating time or the number of operating cycles of the machining program. Furthermore, when the set period is divided by the period dividing section 2114, one or both of the upper and lower graphs in FIG. 13 can be divided into a plurality of graphs and displayed.
  • FIG. 14 is a diagram showing a second example of a graph display displayed on the display unit.
  • FIG. 14 shows a table displaying the integration period, period division, time constant, acceleration type, power consumption, cycle time, etc., and a graph of actual power consumption (current settings) and expected power consumption.
  • the accumulation period and the division of the period are input by the user into the display setting section 211, and are arbitrarily set, for example, from Monday to Friday, Saturday, and Sunday. When dividing the period, it can also be divided into Monday to Friday and Saturday and Sunday.
  • the time constant and acceleration/deceleration type are determined by the display information generation unit 2115 from the machining program or read from the setting value storage unit 206. Set. The user can also set it from the display screen.
  • the power consumption and cycle time are calculated by the expected power consumption calculation unit 207 and input to the display information generation unit 2115 of the display setting unit 211.
  • the power consumption (expected power consumption) and cycle time may be calculated by the display information generation unit 2115.
  • the display information generation unit 2115 may display the electricity rate instead of the cycle time on the display unit 212 according to the user's designation, or may display both the cycle time and the electricity rate.
  • the cycle time (axis operation time) can be determined from the time T shown in FIGS. 4, 6, and 10, for example.
  • the longest operation time is the cycle time. Waiting times such as dwell may also be added to the cycle time.
  • the operating time of the spindle is determined from the specified rotation time.
  • the table and graph shown in FIG. 14 can be linked; for example, if grams indicate actual power consumption and expected power consumption after change, and the user changes the value of power consumption (expected power consumption) in the table, , the length of the expected power consumption of the graph also changes. The user may be able to directly change the length of the expected power consumption graph.
  • the setting change unit 208 When the time constant and acceleration/deceleration type are input by the user, the setting change unit 208 outputs the time constant and acceleration/deceleration type to the expected power consumption calculation unit 207 .
  • the expected power consumption calculation unit 207 calculates expected power consumption from a time constant depending on the acceleration/deceleration type. When the expected power consumption is input by the user, it is calculated backward how to change the acceleration/deceleration to reach the target expected power consumption.
  • the acceleration/deceleration time changes and at the same time the constant speed time changes.
  • the optimum value is calculated by including changes in external equipment power due to acceleration/deceleration and increase/decrease in constant speed time.
  • the acceleration/deceleration may be changed by changing the rate of increase/decrease of all acceleration/deceleration time constants at the same rate, or the acceleration/deceleration may be set individually.
  • the expected power consumption can be changed within the range that can be changed by acceleration/deceleration. If the acceleration/deceleration type is linear acceleration/deceleration, the setting change unit 208 changes, for example, the time constant during acceleration/deceleration.
  • the setting changing unit 208 changes, for example, the primary acceleration/deceleration time and secondary acceleration/deceleration time, or the time constant and speed change during acceleration/deceleration.
  • the setting change unit 208 changes the time constant during acceleration/deceleration and the final attained speed.
  • the external equipment 50 includes a coolant pump that circulates coolant, a conveyor that collects chips, etc., a light, and the like. These include vibration measuring instruments, cameras, and brake equipment.
  • the power consumption of the external device 50 is determined based on the operating time of the external device 50 using the power consumption per unit time obtained from the catalog specifications.
  • FIG. 15 is a characteristic diagram showing the cumulative power consumption of the coolant pump, the cumulative power consumption of the conveyor, and the cumulative power consumption of the light with respect to the cumulative power consumption of the motor. In FIG.
  • te1 is motor waiting time (dwell)
  • te1 to te2 is acceleration time
  • te2 to te3 is constant speed time
  • te3 to te4 is deceleration time
  • te4 to te5 is motor waiting time (dwell)
  • te5 to te6 represent acceleration time
  • te6 to te7 represent constant speed time
  • te7 to te8 represent deceleration time
  • te8 to te9 represent motor waiting time (dwell).
  • the coolant pump operates in conjunction with the operation of the motor, and the power of the coolant pump is not consumed during the waiting time of the motor.
  • the conveyor that collects chips and lights operate independently of the motor operation. The conveyor operates when a certain amount of chips is present, and the conveyor's power is consumed. The light turns on even before the motor operates, and power is consumed for the light.
  • the numerical control device of the present embodiment described above it is possible to calculate a more accurate predicted power consumption than a simple predicted value from the actual power consumption and the increase/decrease in power consumption due to changes in acceleration/deceleration.
  • the numerical control device 20 and the servo control device 30 each include an arithmetic processing device such as a CPU (Central Processing Unit).
  • the numerical control device 20 and the servo control device 30 also include an auxiliary storage device such as an HDD (Hard Disk Drive) that stores various control programs such as application software or an OS (Operating System), and an arithmetic processing device that stores the programs. It also includes a main storage device such as RAM (Random Access Memory) for storing data temporarily required for execution.
  • RAM Random Access Memory
  • each arithmetic processing device reads the application software or OS from the auxiliary storage device, and while deploying the read application software or OS in the main storage device, these application software or Performs arithmetic processing based on the OS. Also, based on this calculation result, various hardware included in each device is controlled. Thereby, the functional blocks of this embodiment are realized. In other words, this embodiment can be realized through cooperation between hardware and software.
  • the numerical control device 20 may include a servo control device 30, and in this case, an arithmetic processing device such as a CPU (Central Processing Unit), an auxiliary storage device, and a main storage device are shared, and the numerical control device 300 and the servo control device There is no need to provide each for 400.
  • an arithmetic processing device such as a CPU (Central Processing Unit)
  • an auxiliary storage device such as a hard disk drive, a hard disk drive, or a main storage device.
  • a personal computer may be equipped with a GPU (Graphics Processing Units), and a technology called GPGPU (General-Purpose computing on Graphics Processing Units) may be used to It is good to use it for calculation processing associated with machine learning because it allows high-speed processing.
  • GPGPU General-Purpose computing on Graphics Processing Units
  • multiple computers equipped with such GPUs are used to construct a computer cluster, and the multiple computers included in this computer cluster perform parallel processing. You can.
  • FIG. 16 is a flowchart showing the operation of the numerical control device 20 in this embodiment.
  • the actual power consumption acquisition unit 210 acquires the detected current value and the detected voltage value from the FB acquisition unit 209, and calculates the actual power consumption.
  • the expected power consumption calculation unit 207 calculates the operating time of the external device 50, and calculates the power consumption of the external device 50 using the power consumption per unit time obtained from the catalog specifications.
  • step S13 an increase/decrease in power consumption due to the change in acceleration/deceleration is calculated.
  • the expected power consumption calculation unit 207 reads the inertia Jm, the friction F which is viscous friction, and the Coulomb friction from the set value storage unit 206, and stores the angular velocity ⁇ and the angular acceleration d ⁇ /dt in the program storage unit 201. It is determined from the machining program that has been created, or from the speed and acceleration stored in the set value storage section 206.
  • the expected power consumption calculation unit 207 also obtains changes in acceleration/deceleration from the setting change unit 208 .
  • the expected power consumption calculation unit 207 uses Equation 4 into which Equation 3 is inserted to calculate the increase/decrease in power consumption due to the change in acceleration/deceleration.
  • the expected power consumption calculation unit 207 calculates the expected power consumption by adding the actual power consumption, the increase/decrease in power consumption due to the change in acceleration/deceleration, and the power consumption of the external device 50.
  • step S15 the display setting unit 211 causes the display unit 212 to display the actual power consumption acquired by the actual power consumption acquisition unit 210 and the expected power consumption calculated by the expected power consumption calculation unit 207 for each set period.
  • the display unit 212 displays the actual power consumption and the expected power consumption in a graph.
  • the user who looks at the display screen of the display unit 212 determines whether to use the current power consumption (actual power consumption), the expected power consumption, or recalculate a new expected power consumption.
  • step S16 if the user who has viewed the display screen of the display unit 212 inputs an acceleration/deceleration change or a change in power consumption to the setting change unit 208 in order to recalculate a new expected power consumption, the setting is changed.
  • the unit 208 determines to change the acceleration/deceleration set value (“new power consumption” in step S16). Then, the setting change unit 208 instructs the expected power consumption calculation unit 207 to recalculate the expected power consumption, stores the changed values of the speed, acceleration, etc. in the setting value storage unit 206, and returns to step S13. In steps S13 and S14, expected power consumption is recalculated.
  • step S16 if the user inputs the expected power consumption into the setting change unit 208, the process moves to step S17.
  • the setting change unit 208 changes the acceleration/deceleration of the acceleration/deceleration control unit 204 so that the predicted power consumption is achieved, and the process ends.
  • step 16 if the user inputs the actual power consumption into the setting change unit 208, there is no change in acceleration or deceleration, so the process ends.
  • Each component included in the numerical control device 10 described above can be realized by hardware, software, or a combination thereof. Further, the control parameter adjustment method performed by the cooperation of each component included in the numerical control device 10 described above can also be realized by hardware, software, or a combination thereof.
  • being realized by software means being realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/ W, semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).
  • the program may also be supplied to the computer via various types of transitory computer readable media.
  • a program storage unit for example, program storage unit 201 that stores an operation program for operating the machine; an actual power consumption acquisition unit (for example, actual power consumption acquisition unit 210) that operates the machine according to a first acceleration/deceleration setting based on the operation program and acquires actual power consumption by calculation or actual measurement;
  • Estimated power consumption calculation that calculates expected power consumption by adding at least the actual power consumption and the increase/decrease in power consumption due to the change in acceleration/deceleration from the first acceleration/deceleration setting to the second acceleration/deceleration setting.
  • a setting value storage unit for example, a setting value storage unit that stores at least a part of information necessary for calculating the power consumption of the first acceleration/deceleration setting and the second acceleration/deceleration setting in the expected power consumption calculation unit. 206) and a display unit (for example, display unit 212) that displays the actual power consumption and the predicted power consumption;
  • a numerical control device for example, the numerical control device 20. According to this numerical control device, it is possible to improve the accuracy of the predicted value of power consumption. Furthermore, by visualizing the actual power consumption and the expected power consumption, it becomes possible to easily compare and support power consumption.
  • the numerical control device is connected to a servo control device (for example, servo control device 30) that operates the machine,
  • a feedback acquisition unit e.g., FB feedback acquisition unit
  • the actual power consumption acquisition unit acquires the actual power consumption by calculation using the feedback information.
  • the above (1) comprising a display setting section (for example, display setting section 211) that performs display settings for displaying the actual power consumption and the predicted power consumption on the display section for each set period.
  • a display setting section for example, display setting section 211
  • the display setting section includes a period setting section (for example, period setting section 2113) that sets the period, and a period dividing section (for example, period dividing section 2114) that divides the period set by the period setting section.
  • the numerical control device according to (3) above, wherein the display setting section performs display settings for displaying the actual power consumption and the predicted power consumption for each divided period on the display section.
  • (5) comprising a setting changing unit (for example, setting changing unit 208) that changes the first acceleration/deceleration setting to the second acceleration/deceleration setting,
  • the setting changing unit changes the second acceleration/deceleration setting,
  • the numerical control device wherein the expected power consumption calculation unit recalculates the expected power consumption based on the second acceleration/deceleration setting changed by the setting changing unit.
  • the expected power consumption calculation unit obtains the power consumption of an external device from the setting value storage unit, and calculates the expected power consumption including the power consumption of the external device, as described in (1) above. Numerical control device.
  • the expected power consumption calculation unit calculates an increase or decrease in the actual power consumption before and after changing the acceleration/deceleration setting from the first acceleration/deceleration setting to the second acceleration/deceleration setting with respect to power consumption during constant speed. and an increase/decrease in power consumption during acceleration/deceleration before and after changing the acceleration/deceleration setting from the first acceleration/deceleration setting to the second acceleration/deceleration setting to calculate the expected power consumption.
  • the numerical control device according to any one of (1) to (6) above.
  • the first and second acceleration/deceleration settings are set to linear acceleration/deceleration; comprising a setting changing unit (for example, setting changing unit 208) that changes the first acceleration/deceleration setting to the second acceleration/deceleration setting,
  • a setting changing unit for example, setting changing unit 208
  • the setting change section changes a time constant during acceleration/deceleration.
  • the first and second acceleration/deceleration settings are set to bell-shaped acceleration/deceleration; comprising a setting changing unit (for example, setting changing unit 208) that changes the first acceleration/deceleration setting to the second acceleration/deceleration setting,
  • a setting changing unit for example, setting changing unit 208 that changes the first acceleration/deceleration setting to the second acceleration/deceleration setting
  • the setting change unit changes a primary acceleration/deceleration time and a secondary acceleration/deceleration time, or a time constant and speed change during acceleration/deceleration.
  • the first and second acceleration/deceleration settings are set to exponential acceleration/deceleration; comprising a setting changing unit (for example, setting changing unit 208) that changes the first acceleration/deceleration setting to the second acceleration/deceleration setting,
  • a setting changing unit for example, setting changing unit 208
  • the setting change section changes a time constant during acceleration/deceleration and a final attained speed.
  • a computer as a numerical control device is equipped with a program storage unit that stores an operation program for operating a machine, storing information necessary for calculating power consumption of a first acceleration/deceleration setting and a second acceleration/deceleration setting based on the operation program; operating the machine according to the first acceleration/deceleration setting and obtaining actual power consumption by calculation or actual measurement; Expected power consumption is calculated by adding at least the actual power consumption and an increase/decrease in power consumption due to a change in acceleration/deceleration from the first acceleration/deceleration setting to the second acceleration/deceleration setting. Power calculation method. According to this method of calculating predicted power consumption, it is possible to improve the accuracy of the predicted value of power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

消費電力の予想値の精度の向上を図る。また、実消費電力と予想消費電力とを可視化することで、比較を容易にして消費電力の支援をする。 数値制御装置が、機械を動作させる動作プログラムを記憶するプログラム記憶部と、動作プログラムに基づく第1の加減速設定により前記機械を動作させて、計算又は実測により実消費電力を取得する実消費電力取得部と、少なくとも、実消費電力と、第1の加減速設定から第2の加減速設定への加減速の変更分の消費電力の増減分とを加算して予想消費電力を算出する予想消費電力算出部と、予想消費電力算出部における、第1の加減速設定及び第2の加減速設定の消費電力の計算に必要な情報の少なくとも一部を記憶する設定値記憶部と、実消費電力と予想消費電力とを表示する表示部と、を備える。

Description

数値制御装置及び予想消費電力算出方法
 本発明は、予想消費電力を算出し、実消費電力とともに表示する数値制御装置及び予想消費電力算出方法に関する。
 経済的な面、又は昨今注目を浴びている省エネルギーの面から、機械動作を変更した際の消費電力の予想値を求めることが望ましい。
 特許文献1には、全体の加工工程において、加工プログラムの改良がどのように影響しているのかを分かりやすく表示することができる表示装置及び工作機械が記載されている。
 具体的には、特許文献1には、シーケンス番号で識別される複数のプログラムブロックとして、複数のブロックを含む加工プログラムを実行する工作機械から得られる情報を表示する表示装置が記載されている。表示装置は、工作機械の動作中の状態を変化量及び時間軸で示す状態情報と工作機械が実行している加工プログラムの所定のタイミングを示すタイミング情報とを取得するデータ取得部と、取得された状態情報及びタイミング情報に基づいて時系列情報を生成する時系列情報生成部と、タイミング情報によって示されるタイミングを揃えて、複数の時系列情報を重畳する重畳部と、重畳された複数の時系列情報を表示する表示部と、を備えている。表示装置は、加工負荷や速度、加工位置の変化量や、電力の変化量等の処理状態のデータを、状態情報として取得する。
 特許文献2には、サーボモータの出力を高精度に計算することができるサーボモータ制御装置が記載されている。
 具体的には、特許文献2には、サーボモータを制御するサーボモータ制御装置が、サーボモータに対して予め規定されたトルク定数が記憶される記憶部と、サーボモータの巻線の磁気飽和発生時に、記憶部に記憶されたトルク定数を補正するトルク定数補正部と、記憶部に記憶されたトルク定数もしくはトルク定数補正部によって計算された補正後のトルク定数と、サーボモータの電流に関連する値と、サーボモータの速度に関連する値と、に基づいて、サーボモータの出力を計算する出力計算部と、を備えることが記載されている。
 特許文献3には、ロボットの動作プログラムを高精度に修正するロボットプログラム修正システムが記載されている。
 具体的には、特許文献3には、ロボットプログラム修正システムが、ロボット制御装置とプログラム修正装置とを備えることが記載されている。ロボット制御装置は、動作プログラムを実行してロボットから得られるロボット検出情報を取得する情報取得部と取得されたロボット検出情報をプログラム修正装置に送信する通信部とを有する。プログラム修正装置は、動作プログラムPRに基づきシミュレーションを実行するシミュレーション部と、シミュレーション部でシミュレーションを繰り返しながら、シミュレーションの結果が予め定めた評価基準を満たすようにロボット検出情報に基づき動作プログラムPRを修正するプログラム修正部と、修正動作プログラムPR1をロボット制御装置に送信する通信部とを有する。プログラム修正部は、ロボット制御装置から得られた各軸モータの速度、電流値等を用いてサイクルタイムが最短となるように、動作プログラムPRの教示点における指令速度および指令加速度を修正する。
特開2019-133346号公報 特開2018-153041号公報 特開2016-16488号公報
 消費電力の予想値は、正確な予想値が得られるように精度の向上が望まれている。また、実消費電力と予想消費電力とを可視化することで、比較を容易にして消費電力削減の支援をすることが望まれている。
 (1) 本開示の第1の態様は、機械を動作させる動作プログラムを記憶するプログラム記憶部と、
 前記動作プログラムに基づく第1の加減速設定により前記機械を動作させて、計算又は実測により実消費電力を取得する実消費電力取得部と、
 少なくとも、前記実消費電力と、前記第1の加減速設定から第2の加減速設定への加減速の変更分の消費電力の増減分とを加算して予想消費電力を算出する予想消費電力算出部と、
 前記予想消費電力算出部における、前記第1の加減速設定及び前記第2の加減速設定の消費電力の計算に必要な情報の少なくとも一部を記憶する設定値記憶部と、
 前記実消費電力と前記予想消費電力とを表示する表示部と、
 を備えた数値制御装置である。
 (2) 本開示の第2の態様は、機械を動作させる動作プログラムを記憶するプログラム記憶部を備えた、数値制御装置としてのコンピュータが、
 前記動作プログラムに基づく第1の加減速設定及び第2の加減速設定の消費電力の計算に必要な情報を記憶し、
 前記第1の加減速設定により前記機械を動作させて、計算又は実測により実消費電力を取得し、
 少なくとも、前記実消費電力と、前記第1の加減速設定から前記第2の加減速設定への加減速の変更分の消費電力の増減分とを加算して予想消費電力を算出する、予想消費電力算出方法である。
 本開示の態様によれば、消費電力の予想値の精度の向上を図ることができる。また、実消費電力と予想消費電力とを可視化することで、比較を容易にして消費電力削減の支援をすることが可能となる。
本開示の一実施形態の数値制御装置を含む数値制御工作機械の構成を示すブロック図である。 サーボ制御装置の一構成例を示すブロック図である。 本開示の一実施形態の数値制御装置の構成を示すブロック図である。 直線加減速の加減速変更前後における速度の時間変化を示す特性図である。 直線加減速の加減速変更前後における加速度の時間変化を示す特性図である。 加減速変更前における速度の時間変化を示す特性図である。 加減速変更前における加速時の速度の時間変化を示す特性図である。 ベル形加減速の加減速変更前後における速度の時間変化を示す特性図である。 ベル形加減速の加減速変更前後における加速度の時間変化を示す特性図である。 指数形加減速の加減速変更前後における速度の時間変化を示す特性図である。 指数形加減速の加減速変更前後における加速度の時間変化を示す特性図である。 表示設定部の一構成例を示すブロック図である。 表示部に表示されるグラフ表示の第1例を示す図である。 表示部に表示されるグラフ表示の第2例を示す図である。 モータの積算電力に対する、クーラント用ポンプの積算電力、コンベアの積算電力、ライトの積算電力を示す特性図である。 本実施形態における数値制御装置の動作を示すフローチャートである。
 以下、本開示の実施形態について図面を用いて詳細に説明する。
 図1は、本開示の一実施形態の数値制御装置を含む数値制御工作機械の構成を示すブロック図である。
 図1に示すように、数値制御工作機械10は、CNC(Computerized Numerical Control)装置等の数値制御装置20、サーボ制御装置30、モータ40及び外部機器50を備えている。サーボ制御装置30はモータ40を制御する。本実施形態では、数値制御装置20が制御する機械として工作機械を取り上げ、動作プログラムは加工プログラムであるとして説明する。
 数値制御装置20は、工具又はワークの移動を指令する加工プログラムに基づいてサーボ制御装置30に位置指令等の制御指令を出力する。また、数値制御装置20は、サーボ制御装置30のフィードバック情報からプログラム運転での実消費電力を算出、又は電力計で実消費電力を実測し、そのプログラム中の加減速を変更した際の設定した期間中の予想消費電力を算出する。そして、数値制御装置20は、後述する表示部212の表示画面に実測消費電力と予想消費電力の電力グラフを表示する。
 数値制御装置20は、サーボ制御装置30を含んでもよい。
 サーボ制御装置30は、数値制御装置20からの位置指令等の制御指令に基づいて、モータ40を制御する。サーボ制御装置30は、X軸モータを駆動するX軸サーボ制御部、Y軸モータを駆動するY軸サーボ制御部、Z軸モータを駆動するZ軸サーボ制御部及び主軸モータを駆動する主軸モータ制御部を備えているが、図1においては、モータ40を制御する1つのサーボ制御部のみが示され、他のサーボ制御部及び主軸モータ制御部の構成は省略されている。
 モータ40は、工作機械の一部として設けられる。しかし、サーボ制御装置30の一部として設けられてもよい。モータ40は、以下の説明では回転運動をするモータとして説明するが、直線運動をするリニアモータであってもよい。
 モータ40は、3軸加工機等の工作機械に含まれ、例えば、X軸の送り軸モータとなる。数値制御工作機械10が3軸加工機に用いられる場合、送り軸モータとしては他にY軸及びZ軸のモータが設けられており、また3軸加工機はボールエンドミル等の工具を回転させる主軸モータも備えている。
 モータ40が、3軸加工機に用いられる回転運動をするモータである場合、モータ40は、ボールねじ等を介して、ワークが載せられたテーブルをX軸方向に直線移動させる。なお、3軸加工機の構成は係る構成に限定されず、例えば、工具を固定し、テーブルをX軸方向、Y軸方向及びZ軸方向に直線移動させたり、テーブルを固定し、工具をX軸方向、Y軸方向及びZ軸方向に直線移動させたりしてもよい。工作機械は3軸加工機に限定されず、例えば5軸加工機でもよい。
 外部機器50は、クーラントを循環させるクーラント用ポンプ、切り屑等を集めるコンベア、ライト、等である。図1では外部機器50は1つ示されているが、外部機器50は複数あってもよい。
 次にサーボ制御装置30、数値制御装置20及び外部機器50の構成及び動作について更に詳細に説明する。 
<サーボ制御装置>
 サーボ制御装置30は、3軸加工機の場合、X軸サーボ制御部、Y軸サーボ制御部、Z軸サーボ制御部及び主軸モータ制御部を備えているが、以下の説明では、X軸サーボ制御部を取り上げて説明する。Y軸サーボ制御部及びZ軸サーボ制御部の構成はX軸サーボ制御部と同様な構成であり、主軸モータ制御部の構成は例えば、特開2019-040556号に記載されている。
 図2は、サーボ制御装置の一構成例を示すブロック図である。
 図2に示すように、サーボ制御装置30は、減算器301、位置制御部302、減算器303、速度制御部304、減算器305、電流制御部306及び積分器307を備えている。
 減算器301は、数値制御装置20から出力される位置指令と位置フィードバックされた検出位置との差を求め、その差を位置偏差として位置制御部302に出力する。
 位置制御部302は、位置偏差にポジションゲインPGを乗じた値を、速度指令値として減算器303に出力する。
 減算器303は、位置制御部302から出力される速度指令値と速度フィードバックされた速度検出値との差を求め、その差を速度偏差として速度制御部304に出力する。
 速度制御部304は、速度偏差に積分ゲインK1vを乗じて積分した値と、速度偏差に比例ゲインK2vを乗じた値とを加算して、電流指令値として減算器305に出力する。
 減算器305は、速度制御部304から出力される電流指令値と電流フィードバックされた電流検出値との差を求め、その差を電流偏差として電流制御部306に出力する。
 電流制御部306は、電流偏差に基づいてモータ40を駆動するための電圧指令を生成し、その電圧指令をモータ40に出力する。
 モータ40の回転角度位置は、不図示のロータリーエンコーダによって検出され、速度検出値は速度フィードバック情報(速度FB情報)として減算器303に入力される。速度検出値は、数値制御装置20に入力される。
 積分器307は、速度検出値を積分して位置検出値を求め、位置検出値を位置フィードバック情報(位置FB情報)として、減算器301に入力する。
 モータ40に取り付けられた、不図示の電流検出器は、電流を検出して、電流検出値を電流フィードバック情報(電流FB情報)として、減算器305に入力する。電流検出値は、数値制御装置20に入力される。
 また、モータ40に取り付けられた、不図示の電圧検出器は、電圧を検出して、電圧検出値を数値制御装置20に入力する。
 なお、後述する、実消費電力の計算で、電圧検出値を用いない場合には電圧検出値を数値制御装置20に入力しなくともよく、速度検出値を用いない場合には速度検出値を数値制御装置20に入力しなくともよい。
<数値制御装置>
 図3は、本開示の一実施形態の数値制御装置の構成を示すブロック図である。
 図3に示すように、数値制御装置20は、プログラム記憶部201、指令解析部202、補間部203、加減速制御部204、指令出力部205、設定値記憶部206、予想消費電力算出部207、設定変更部208、FB取得部209、実消費電力取得部210、表示設定部211及び表示部212を備えている。
 プログラム記憶部201には、加工プログラムが記憶される。
 指令解析部202は、加工プログラムからX軸、Y軸、Z軸及び主軸の移動の指令を含むブロックを逐次読みだして解析し、解析結果に基づいて各軸の移動を指令する移動指令データを作成する。
 補間部203は、指令解析部202から出力される移動指令データにより指令される移動指令に基づいて、指令経路上の点を補間周期で補間計算した補間データを生成する。
 加減速制御部204は、補間部203から出力される補間データに基づいて、加減速処理を行い補間周期ごとの各軸の加工速度を計算して後述する指令出力部205に出力する。
 指令出力部205は、加減速制御部204から出力される各軸の加工速度に基づいて位置指令を生成し、サーボ制御装置30に出力する。
 設定値記憶部206には、モータ諸元値、測定値、外部機器の消費電力及びパラメータ設定値が記憶される。モータ諸元値は、例えば、トルク定数である。測定値は、粘性摩擦、クーロン摩擦等である。パラメータ設定値は、速度、加速度等である。パラメータ設定値としての速度、加速度は、設定変更部208により変更される。外部機器の消費電力は外部機器からの入力される動作信号より稼働時間を求め、カタログスペックから得られる単位時間あたりの消費電力を参照して求められる。
 予想消費電力算出部207は、実消費電力取得部210から実消費電力を取得し、加工プログラムから求められた速度、加速度(第1の加減速設定となる)を設定値記憶部206から取得し、また、設定値記憶部206から、設定変更部208によって変更された速度、加速度(第2の加減速設定となる)を取得する。そして、予想消費電力算出部207は、実消費電力、変更前の速度、加速度(第1の加減速設定)、変更後の速度、加速度(第2の加減速設定)を用いて予想消費電力を計算する。予想消費電力の算出方法については後述する。なお、加速度は、速度が増加する場合と、速度が減少する場合の両方を含む。加工プログラムから求められる、速度及び加速度は設定変更部208に記憶されていてもよい。予想消費電力算出部207は、設定値記憶部206より外部機器50の消費電力を取得し、外部機器50の消費電力を含めて予想消費電力を算出することができる。
 予想消費電力算出部207は、設定変更部208から、変更された第2の加減速設定による再計算の指示が出された場合は、変更された第2の加減速設定となる速度、加速度等を用いて予想消費電力を再計算する。
 設定変更部208は、例えば、プログラム記憶部201に記憶された加工プログラムから速度、加速度(第1の加減速設定)を求め設定値記憶部206に記憶する。また、設定変更部208は、加工プログラムから求められた速度、加速度を変更して速度、加速度(第2の加減速設定)を設定値記憶部206に記憶する。第2の加減速設定の速度、加速度はユーザが設定してもよく、第1の加減速設定に基づいて変更量を予め決めておいてもよい。
 設定変更部208は、ユーザによる時定数、予想消費電力の指定により、第2の加減速設定となる速度、加速度等の加減速設定を変更し、変更された速度、加速度を設定値記憶部206に記憶する。また、設定変更部208は、決定した予想消費電力となるように、加減速制御部204の加減速時定数、一定速時間等の設定をする。
 なお、以上の説明では、設定変更部208が速度と加速度を変更する例について説明したが、加減速タイプによって変更する加減速のパラメータが異なり、加減速タイプが後述する直線加減速である場合は、例えば、速度と加速度、又は加減速時の時定数を変更する。加減速タイプが後述するベル形加減速である場合は、例えば、加減速時の1次加減速時間及び2次加減速時間、又は時定数及び速度変化を変更する。加減速タイプが後述する指数形加減速である場合は、例えば、加減速時の時定数及び最終到達速度を変更する。
 FB取得部209は、サーボ制御装置30からのフィードバック情報となる、電流検出値及び電圧検出値、又は電流検出値及び速度検出値を取得する。サーボ制御装置30から得られるフィードバック情報は、第1の加減速設定により生成される位置指令に基づいてサーボ制御装置30を動作することで得られる。
 実消費電力取得部210は、FB取得部209によって取得された、電流検出値及び電圧検出値、又は電流検出値及び速度検出値を用いて実消費電力を算出する。実消費電力取得部210は、電力計により実消費電力を取得してもよく、この場合、FB取得部209はなくともよい。
 表示設定部211は、実消費電力取得部210で取得された実消費電力と、予想消費電力算出部207で算出した予想消費電力を設定した期間ごとに表示するように表示部212の表示設定を行う。
 表示部212は、表示設定部211の表示設定に基づいて表示画面に実消費電力と予想消費電力との表示を行う。
 表示設定部211の構成の詳細及び表示部212による表示例については、後述する。
 ユーザは、表示部212で表示された予想消費電力を見て、予想消費電力の値を変更することができる。ユーザは、後述するように、表示画面に時定数等が表示された場合は、時定数等を変更することで予想消費電力の値を変更することができる。
 以上説明した数値制御装置20は、実消費電力取得部210によって、第1の加減速設定に基づく実消費電力を取得し、予想消費電力算出部207によって、第2の加減速設定に基づく予想消費電力を計算する。表示部212は、実消費電力と予想消費電力とを表示する。表示部212の表示画面を見たユーザが、時定数等を変更、又は予想消費電力を変更すると、設定変更部208は、速度、加速度等の第2の加減速設定を変更し、変更された速度、加速度等を設定値記憶部206に記憶する。
 以下、これらの動作について更に詳細に説明する。
 まず、実消費電力取得部210による実消費電力取得方法について説明する。
 (実消費電力取得方法)
 実消費電力取得部210は、実消費電力Pを、数式1(以下の数1)を用いて計算することで求めることができる。数式1において、Iqは電流フィートバックである検出電流、Vは検出電圧、ωは角速度を示す。検出電流Iq及び検出電圧Vは、サーボ制御装置30から出力される。角速度ωは、後述する速度フィードバックとしての速度検出値から求めることができる。実消費電力Pは、検出電流Iq及び検出電圧V、又は検出電流Iq及び角速度ωを用いて計算することができる。
Figure JPOXMLDOC01-appb-M000001
 また、実消費電力取得部210は、実消費電力Pを、電力計から実際に計測された値を実消費電力Pとして取得することもできる。
 次に、予想消費電力算出部207による予想消費電力算出方法について説明する。
(予想消費電力算出方法)
 加工プログラムにおいて、n回(nは自然数)加減速動作があるときの、全体予想消費電力Peは数式2(以下の数2)で示される。数式2において、電力Paはある時刻でのサーボ制御装置の予想消費電力、時間Tは開始位置から目標位置までの時間、Txは機械の予想稼働時間、Aはある時刻での外部機器50の消費電力を示す。ここでは、予想消費電力算出部207は、時間Tx内での外部機器50の消費電力を計算しているが、外部機器50の消費電力は計算しなくともよい。
Figure JPOXMLDOC01-appb-M000002
 数式2の第1項の式は、時間T内における予想消費電力Paの積分値を示し、数式2の最終項の式は、機械の予想稼働時間Txにおける外部機器50の予想消費電力Aの積分値を示す。時間T内で行われる加減速動作は、予想稼働時間Tx内においてn回繰り返される。同じ加減速動作がn回繰り返される場合は、数式2の第1項の式はn個ある。
 数式2の第1項の予想消費電力Paは、加工プログラム中の加減速を変更した際に(第1の加減速設定から第2の加減速設定に変更した際に)、加減速変更分による消費電力の増減分を計算で求め、その増減分を実消費電力Pに加減算することで算出される。実消費電力を得るための加減速の設定は第1の加減速設定に対応する。
 例えば、ある時刻での、加減速の変更前の第1の加減速設定での予想消費電力をPx1、加減速の変更後の第2の加減速設定での予想消費電力をPx2、実消費電力をPとすると、ある時刻での数式2の第1項の予想消費電力Paは、Pa=(Px2-Px1)+Pで求めることができる。
 数式2の第1項は、時間T内における予想消費電力Paの積分値であり、加工プログラムにおける第1回目の加減速動作における予想消費電力を示す。
 ここで、設定された加減速での消費電力をPxとすると、消費電力Pxは、数式3(以下の数3)を数式4(以下の数式4)に挿入することで求めることができる。数式3及び数式4において、Ktはトルク定数、Iqaは電流、Jmはイナーシャ、Fは粘性摩擦又はクーロン摩擦であり、ωは角速度である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 イナーシャJm、粘性摩擦及びクーロン摩擦である摩擦Fは予め測定されて、設定値記憶部206に記憶されており、角速度ω及び角加速度dω/dtは、プログラム記憶部201に記憶された加工プログラムから求める、又は、又は設定値記憶部206に記憶された速度、加速度から求める。加工プログラムから求められた、変更前の角速度ω及び角加速度dω/dtを用いて得られた消費電力Pxは上記の消費電力Px1であり、設定値記憶部206に記憶された変更後の速度、加速度から求められた、角速度ω及び角加速度dω/dtを用いて得られた消費電力Pxは上記の消費電力Px2である。
 以下、時間T内での数式2の予想消費電力Peの積分値を求める方法について具体例を用いて説明する。
 (直線加減速)
 以下、工作機械が直線加減速で動作する場合において、加減速変更により位置到達の時間が増加する例について説明する。
 直線加減速の場合は、速度変化又は時定数を変更して予想消費電力を算出する。
 図4は、直線加減速の加減速変更前後における速度の時間変化を示す特性図である。図5は直線加減速の加減速変更前後における加速度の時間変化を示す特性図である。
 図4において、実線は加減速変更前の速度変化を示し、破線は加減速変更後の速度変化を示す。図5において、実線は加減速変更前の加速度変化を示し、破線は加減速変更後の加速度変化を示す。図4及び図5において、時間T1は、加減速変更前の加速期間を示し、時間T2は加減速変更前後での一定速期間の差分の期間を示し、時間T3は、加減速変更前の減速期間を示し、時間T4は加減速変更前後での減速期間の差分の期間を示している。時間T5は加減速変更前の一定速期間を示している。
 また、図4において、時間Tは加減速変更後の開始位置から目標位置までの時間、時間Tsは加減速変更前の開始位置から目標位置までの時間を示している。
 図4に示すように、加減速変更後の速度は、加減速変更前の速度に比べて加速期間が長くなり、一定速期間が短くなり、減速期間が長くなる。
 時間T内における予想消費電力となる、数式2の第1項の予想消費電力Paの積分値、及び外部機器50の電力は、以下の数式5(以下の数5)で求めることができる。
Figure JPOXMLDOC01-appb-M000005
 数式5において、加減速変更後の加減速期間の予想消費電力は、図4に示すように、加速期間(T1+T2))と減速期間(T3+T4)における予想消費電力を示し、加減速変更前の加減速期間の予想消費電力は、加速期間T1と減速期間T3における予想消費電力を示す。
 数式5の(時間T2における一定速中の電力)及び((加減速変更後の加減速期間の予想消費電力)-(加減速変更前の加減速期間の予想消費電力))は、外部機器電力を含んでいない。数式5の(期間Ts内の実消費電力)は外部機器消費電力を含み、
 加減速を変更した場合、加減速時間も変化するが加減速中に移動する距離も変化するので一定速の時間も変化する。数式5は、この2つを考慮した増減分を計算した式である。
 外部機器の消費電力を含まない、加減速前の一定速中の消費電力は次のように求められる。数式6(以下の数6)で求めることができる。
 図6は、加減速変更前における速度の時間変化を示す特性図である。図6において、図4と同様に、時間T1は、加減速変更前の加速期間を示し、時間T3は、加減速変更前の減速期間を示し、時間T5は加減速変更前の一定速期間を示している。
 外部機器の消費電力を含まない、時間T5での消費電力は、数式6(以下の数6)で求めることができる。数式6の(期間Tsまでの実消費電力)は外部機器消費電力を含み、(時間(T1+T5)の加減速期間の消費電力)は外部機器消費電力を含んでいない。
Figure JPOXMLDOC01-appb-M000006
 具体的な計算式は、数式7(以下の数7)で求めることができる。
Figure JPOXMLDOC01-appb-M000007
 また、一定速中の予想消費電力は、取得した実消費電力を一定速中分のみ抜き出し、その値を予想される一定速時間分にして算出してもよい。具体的には実消費電力中の一定速部分の単位時間当たり(秒等)の値を算出して、予想される一定速の時間を乗算するようにしてもよい。
 直線加減速の場合の時間T1、T2、T3、T4、T5、目的位置までの距離Zは数式8(以下の数8)で求めることができる。数式8において、v1は最終到達速度、a1は加減速変更前の加速度、a2は加減速変更後の加速度を示す。最終到達速度v1は加減速変更の前後で同じである。
Figure JPOXMLDOC01-appb-M000008
 時定数が指定された場合には、時定数を用いて、時間T1、T2を求めることができる。
 一例として、時間T1、T2を求める場合について説明する。
 加減速変更前の加速時の時定数を時定数T’、加減速変更後の加速時の時定数を時定数T’’とすると、時間T1、T2は数式9(以下の数9)を用いて求めることができる。
Figure JPOXMLDOC01-appb-M000009
 図7は、加減速変更前における加速時の速度の時間変化を示す特性図である。
 (ベル形加減速)
 以下、工作機械がベル形加減速で動作する場合において、加減速変更により位置到達の時間が増加する例について説明する。
 ベル加速の場合は、一次加減速時間t1、2次加減速時間t2の変化から予想消費電力を算出する。加減速変更後の加減速設定(第2の加減速設定)は、加減速変更前の加減速設定(第1の加減速設定)の一次加減速時間t1、2次加減速時間t2を変更することで得られる。
 図8は、ベル形加減速の加減速変更前後における速度の時間変化を示す特性図である。図9はベル形加減速の加減速変更前後における加速度の時間変化を示す特性図である。
 図8において、実線は加減速変更前の速度変化を示し、破線は加減速変更後の速度変化を示す。図9において、実線は加減速変更前の加速度変化を示し、破線は加減速変更後の加速度変化を示す。
 図8及び図9において、時間T1は加減速変更前の加速期間を示し、時間T2は加減速変更前後での一定速期間の差分の期間を示し、時間T3は加減速変更前の減速期間を示し、時間T4は加減速変更前後での減速期間の差分の期間を示している。時間T5は加減速変更前の一定速期間を示している。
 図8に示すように、加減速変更後の速度は、加減速変更前の速度に比べて加速期間が長くなり、一定速期間が短くなり、減速期間が長くなる。
 時間T内における、数式2の第1項の予想消費電力Paの積分値、及び外部機器の電力は、以下の数式10(以下の数10)で求めることができる。
Figure JPOXMLDOC01-appb-M000010
 数式10において、加減速変更後の加減速期間の予想消費電力は、加速期間(T1+T2))と減速期間(T3+T4)における予想消費電力を示し、加減速変更前の加減速期間の予想消費電力は、加速期間T1と減速期間T3における予想消費電力を示す。
 数式10の(時間(T5-T2)における一定速中の電力)及び((加減速変更後の加減速期間の予想消費電力)-(加減速変更前の加減速期間の予想消費電力))は、外部機器電力を含んでいない。
 加減速を変更した場合、加減速時間も変化するが加減速中に移動する距離も変化するので一定速の時間も変化する。数式10は、この2つを考慮した増減分を計算した式である。
 ベル形加減速の場合の時間T1、T2、T3、T4、T5、目的位置までの距離Z、は数式11(以下の数11)で求めることができる。数式11において、v1は最終到達速度、a1は加減速変更前の加速度を示す。最終到達速度v1は加減速変更の前後で同じである。また、数式11において、τ1は加減速変更前の時定数、τ2は加減速変更後の時定数、t1は加減速変更前の1次加減速時間、t2は加減速変更前の2次加減速時間、T5は実測の一定速の時間である。なお、T5-T2は予想の一定速時間を示す。
Figure JPOXMLDOC01-appb-M000011
 (指数形加減速)
 以下、工作機械が指数形加減速で動作する場合において、加減速変更により位置到達の時間が増加する例について説明する。
 指数形加減速の場合は、時定数又は到達速度の変化から予想消費電力を算出する。加減速変更後の加減速設定(第2の加減速設定)は、加減速変更前の加減速設定(第1の加減速設定)の加減速時の時定数及び最終到達速度を変更することで得られる。
 図10は、指数形加減速の加減速変更前後における速度の時間変化を示す特性図である。図11は指数形加減速の加減速変更前後における加速度の時間変化を示す特性図である。
 図10において、実線は加減速変更前の速度変化を示し、破線は加減速変更後の速度変化を示す。図11において、実線は加減速変更前の加速度変化を示し、破線は加減速変更後の加速度変化を示す。図10において、時間T1は、加減速変更前の加速期間を示し、時間T2は加減速変更前後での一定速期間の差分の期間を示し、時間T3は、加減速変更前の減速期間を示し、時間T4は加減速変更前後での減速期間の差分の期間を示している。時間T5は加減速変更前の一定速期間を示している。
 図10に示すように、加減速変更後の速度は、加減速変更前の速度に比べて加速期間が長くなり、一定速期間が短くなり、減速期間が長くなる。
 時間T内における、数式2の第1項の予想消費電力Paの積分値、及び外部機器の電力は、以下の数式12(以下の数12)で求めることができる。
Figure JPOXMLDOC01-appb-M000012
 数式12において、加減速変更後の加減速期間の予想消費電力は、加速期間(T1+T2))と減速期間(T3+T4)における予想消費電力を示し、加減速変更前の加減速期間の予想消費電力は、加速期間T1と減速期間T3における予想消費電力を示す。
 数式12の(時間T2における一定速中の消費電力)及び((加減速変更後の加減速期間の予想消費電力)-(加減速変更前の加減速期間の予想消費電力))は、外部機器電力を含んでいない。
 加減速を変更した場合、加減速時間も変化するが加減速中に移動する距離も変化するので一定速の時間も変化する。数式12は、この2つを考慮した増減分を計算した式である。
 指数形加減速の場合の時間T1、T2、T3、T4、T5、目的位置までの距離Z、は数式13(以下の数13)及び数式14(以下の数14)で求めることができる。数式13及び数式14において、v1は最終到達速度、τ1は加減速変更前の時定数、τ2は加減速変更後の時定数、V1(t)は加速時の速度、V’1(t)は減速時の速度である。指数形においては、正確な時間T1を求めるのは困難なので、速度フィードバックがv1に達した時刻を時間T1とする。
Figure JPOXMLDOC01-appb-M000013
 時間Tsも同様に目標位置に到達するためにかかった実測の時間としてもよい。
 時間T2はV1(T1)=V2(T1+T2)を前提とすると、数式14(以下の数式14)で示される。
Figure JPOXMLDOC01-appb-M000014
 以上、直線加減速、ベル形加減速、指数形加減速について、加減速変更により位置到達の時間が増加する例について説明したが、本実施形態は、加減速変更により位置到達の時間が減少する例にも適用できる。
 その場合、予想消費電力を計算する計算式である、数式5、数式10及び数式12の第2項及び第3項の符号は、逆となる。
 次に、表示設定部211の構成の詳細及び表示部212による表示例について説明する。
(表示設定部の構成及び表示部の表示例)
 図12は、表示設定部の一構成例を示すブロック図である。
 図12に示すように、表示設定部211は、実消費電力入力部2111、予想消費電力入力部2112、期間設定部2113、期間分割部2114、及び表示情報生成部2115を備えている。
 実消費電力入力部2111は、実消費電力取得部210から入力された実消費電力を表示情報生成部2115に出力する。
 予想消費電力入力部2112は、予想消費電力算出部207から入力された予想消費電力を表示情報生成部2115に出力する。
 期間設定部2113は、ユーザが設定した設定期間を期間設定情報として表示情報生成部2115に出力する。期間設定部2113は、設定期間を記憶する。なお、ここではユーザが設定期間を設定しているが、設定期間は予め設定されていてもよい。
 期間分割部2114は、ユーザからの設定期間の分割指示があった場合は、期間設定部2113から設定期間を読み出して設定期間を分割して、分割された複数の設定期間を期間設定情報として表示情報生成部2115に出力する。
 表示情報生成部2115は、実消費電力入力部2111から入力された実消費電力を時系列に記憶し、予想消費電力入力部2112から入力された予想消費電力を時系列に記憶する。そして、表示情報生成部2115は、期間設定部2113によって設定された設定期間内の実消費電力及び予想表示電力を読み出してグラフ化し、グラフを画面に表示するための表示情報を表示部212に出力する。
 複数の加減速設定又は変更前後の加減速設定により算出した複数の予想消費電力がある場合、複数の予想消費電力と実消費電力とは、1つのグラフに表示してもよいし、1つの予想消費電力と実消費電力とを表示するグラフを複数設けることで表示してもよい。
 以下、表示部212に表示される表示例について説明する。
 図13は表示部に表示されるグラフ表示の第1例を示す図である。
 図13は、機械の稼働開始からの実消費電力と予想消費電力との時間変化を示すグラフ(上図)と、日ごとの実消費電力と予想消費電力の推移を示すグラフ(下図)とを示している。図13の下図の今日以後の1日目から5日目の実消費電力と予想消費電力は、今日の実消費電力と予想消費電力とに基づいて、過去の実消費電力と予想消費電力とのデータの傾向から予測される将来のデータである。
 ユーザは、図13に示す内容を表示部212で表示するために、表示設定部211の期間設定部2113に実消費電力と予想消費電力とをグラフ表示する時間、日を入力する。
 日によって、加工プログラムの稼働時間又は稼働サイクル数が異なる場合には、表示部212は、加工プログラムの稼働時間又は稼働サイクル数を合わせて表示することもできる。
 また、期間分割部2114によって設定期間が分割された場合は、図13の上図と下図の一方又は両方を複数のグラフに分割して表示することもできる。
 図14は表示部に表示されるグラフ表示の第2例を示す図である。
 図14は、積算期間、期間の分割、時定数、加速タイプ、消費電力、サイクルタイム等を表示する表と、実消費電力(現在の設定)及び予想消費電力のグラフとを示している。
 積算期間、期間の分割は、ユーザが表示設定部211に入力し、例えば、月曜日から金曜日、土曜日、日曜日の中から任意に設定される。期間を分割する場合、月曜日から金曜日と、土曜日及び日曜日とに分割することもできる。
 時定数、加減速タイプ(直線加減速、ベル形加減速、指数形加減速のいずれであるか)は、表示情報生成部2115が、加工プログラムから求めて、又は設定値記憶部206から読み出して設定される。ユーザが表示画面から設定することもできる。
 消費電力、サイクルタイムは、予想消費電力算出部207が算出して、表示設定部211の表示情報生成部2115に入力する。消費電力(予想消費電力)、サイクルタイムは、表示情報生成部2115が算出してもよい。表示情報生成部2115は、ユーザの指定によって、表示部212に、サイクルタイムに代えて、電気料金を表示してもよく、サイクルタイムと電気料金の両方を表示してもよい。サイクルタイム(軸の動作時間)は、例えば、図4、図6、及び図10に示した時間Tから求めることができる。同時に複数の軸を動かす場合には、一番長い動作時間をサイクルタイムとする。ドウェルのような待ち時間もサイクルタイムに追加しもよい。主軸の動作時間は回転時間の指定から判断する。
 図14に示す表とグラフとは、連動させることができ、例えば、グラムは実消費電力と変更後の予想消費電力を示し、ユーザが表の消費電力(予想消費電力)の値を変更した場合、グラフの予想消費電力の長さも変わる。
 ユーザが、直接、予想消費電力のグラフの長さを変更できるようにしてもよい。
 以下、設定変更部208による、加減速設定の変更について説明する。
 ユーザによって、時定数、加減速タイプが入力された場合、設定変更部208は、時定数と加減速タイプを予想消費電力算出部207に出力する。
 予想消費電力算出部207は、予想消費電力を、加減速タイプによって、時定数から予想消費電力を算出する。
 ユーザによって、予想消費電力が入力された場合、目標の予想消費電力にするには加減速をどう変えればよいか逆算する。
 時定数又は加減速を変える場合、加減速時間が変化すると同時に一定速の時間も変化する。一定速中の電力は実測値から求まるので、加減速と一定速時間の増減による外部機器電力変化も含めて最適値を算出する。予想消費電力を変える場合、加減速の変え方は全ての加減速時定数の増減の割合を同じとしてもよいし、加減速の個別設定も可能である。予想消費電力の変更範囲は加減速で変えられる範囲内とする。
 加減速タイプが、直線加減速の場合は、設定変更部208は、例えば、加減速時の時定数を変更する。
 加減速タイプが、ベル形加減速の場合は、設定変更部208は、例えば、加減速時の1次加減速時間及び2次加減速時間、又は時定数及び速度変化を変更する。
 加減速タイプが、指数形加減速の場合は、設定変更部208は、加減速時の時定数及び最終到達速度を変更する。
<外部機器>
 外部機器50は、既に説明したように、クーラントを循環させるクーラント用ポンプ、切り屑等を集めるコンベア、ライト、等である。振動測定器、カメラ、ブレーキ装置等である。外部機器50の消費電力は、既に説明したように、カタログスペックから得られる単位時間あたりの消費電力を用いて、外部機器50の稼働時間に基づいて求められる。
 図15はモータの積算電力に対する、クーラント用ポンプの積算消費電力、コンベアの積算消費電力、ライトの積算消費電力を示す特性図である。
 図15において、0からte1はモータの待ち時間(ドウェル)、te1からte2は加速時間、te2からte3は一定速時間、te3からte4は減速時間、te4からte5はモータの待ち時間(ドウェル)、te5からte6は加速時間、te6からte7は定速時間、te7からte8は減速時間、te8からte9はモータの待ち時間(ドウェル)を示す。
 図15に示すように、クーラント用ポンプはモータの動作と連動して動作し、クーラント用ポンプの電力は、モータの待ち時間中は消費されない。
 切り屑等を集めるコンベア、ライトはモータの動作と連動せずに動作する。コンベアは切り屑が一定量になったときに動作し、コンベアの電力が消費される。ライトはモータの動作前から点灯し、ライトの電力が消費される。
 以上説明した本実施形態の数値制御装置によれば、実消費電力と加減速の変化による消費電力の増減分から単純な予想値よりも正確な予想消費電力を算出することができる。
 また、実測電力と予想消費電力とをグラフ表示し可視化して表示して設定の支援をすることができる。
 以上、数値制御装置20及びサーボ制御装置30に含まれる機能ブロックについて説明した。
 これらの機能ブロックを実現するために、数値制御装置20及びサーボ制御装置30は、それぞれCPU(Central Processing Unit)等の演算処理装置を備える。また、数値制御装置20及びサーボ制御装置30は、アプリケーションソフトウェア又はOS(Operating System)等の各種の制御用プログラムを格納したHDD(Hard Disk Drive)等の補助記憶装置や、演算処理装置がプログラムを実行する上で一時的に必要とされるデータを格納するためのRAM(Random Access Memory)といった主記憶装置も備える。
 そして、数値制御装置20及びサーボ制御装置30において、それぞれの演算処理装置が補助記憶装置からアプリケーションソフトウェア又はOSを読み込み、読み込んだアプリケーションソフトウェア又はOSを主記憶装置に展開させながら、これらのアプリケーションソフトウェア又はOSに基づいた演算処理を行なう。また、この演算結果に基づいて、各装置が備える各種のハードウェアを制御する。これにより、本実施形態の機能ブロックは実現される。つまり、本実施形態は、ハードウェアとソフトウェアが協働することにより実現することができる。
 なお、数値制御装置20はサーボ制御装置30を含んでもよく、この場合、CPU(Central Processing Unit)等の演算処理装置、補助記憶装置及び主記憶装置は共用され、数値制御装置300及びサーボ制御装置400に対してそれぞれ設ける必要はなくなる。
 数値制御装置20又はサーボ制御装置30について演算量が多い場合には、例えば、パーソナルコンピュータにGPU(Graphics Processing Units)を搭載し、GPGPU(General-Purpose computing on Graphics Processing Units)と呼ばれる技術により、GPUを機械学習に伴う演算処理に利用するようにすると高速処理できるようになるのでよい。更には、より高速な処理を行うために、このようなGPUを搭載したコンピュータを複数台用いてコンピュータ・クラスターを構築し、このコンピュータ・クラスターに含まれる複数のコンピュータにて並列処理を行うようにしてもよい。
 次に、図16のフローチャートを参照して本実施形態における数値制御装置20の動作について説明をする。図16本実施形態における数値制御装置20の動作を示すフローチャートである。
 まず、図16のステップS11において、実消費電力取得部210はFB取得部209から、検出電流値及び検出電圧値を取得して、実消費電力を算出する。
 ステップS12において、予想消費電力算出部207は、外部機器50の稼働時間を求め、カタログスペックから得られる単位時間あたりの消費電力を用いて、外部機器50の消費電力を求める。
 ステップS13において、加減速変更分による消費電力の増減分を計算で求める。
 具体的には、予想消費電力算出部207は、設定値記憶部206からイナーシャJm、粘性摩擦及びクーロン摩擦である摩擦Fを読み出し、角速度ω及び角加速度dω/dtを、プログラム記憶部201に記憶された加工プログラムから、又は、又は設定値記憶部206に記憶された速度、加速度から求める。また、予想消費電力算出部207は、設定変更部208から加減速の変更を取得する。そして、予想消費電力算出部207は、数式3を挿入した数式4を用いて、加減速変更分による消費電力の増減分を計算で求める。
 ステップS14において、予想消費電力算出部207は、実消費電力と、加減速変更分による消費電力の増減分と、外部機器50の消費電力とを加算して予想消費電力を算出する。
 ステップS15において、表示設定部211は、実消費電力取得部210で取得された実消費電力と、予想消費電力算出部207で算出した予想消費電力を設定した期間ごとに表示するように表示部212の表示設定を行い、表示部212は、実消費電力と予想消費電力とをグラフ表示する。
 表示部212の表示画面を見たユーザは、現在の消費電力(実消費電力)とするか、予想消費電力とするか、又は新たな予想消費電力を再計算するかどうか判断する。
 ステップS16において、表示部212の表示画面を見たユーザが新たな予想消費電力を再計算するために、ユーザが設定変更部208に加減速、又は消費電力の変更を入力した場合は、設定変更部208は加減速の設定値を変更すると判断する(ステップS16の“新たな消費電力”)。そして、設定変更部208は、予想消費電力算出部207に予想消費電力の再計算を指示し、設定値記憶部206の速度、加速度等の変更値を記憶し、ステップS13に戻る。ステップS13及びS14で、予想消費電力の再計算が行われる。
 ステップ16において、ユーザが設定変更部208に、予想消費電力を入力した場合は、ステップS17に移行する。
 ステップ17において、設定変更部208は予測消費電力となるように、加減速制御部204の加減速を変更し、処理を終了する。
 ステップ16において、ユーザが設定変更部208に、実消費電力を入力した場合は、加減速の変更がないため、処理を終了する。
 上記の数値制御装置10に含まれる各構成部は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記の数値制御装置10に含まれる各構成部のそれぞれの協働により行なわれる制御パラメータ調整方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。
 上述した実施形態は、本発明の好適な実施形態ではあるが、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 例えば、上述した実施形態では数値制御装置で工作機械を制御する数値制御工作機械について説明したが、数値制御装置が制御する機械は、工作機械に限定されず、ロボット又は産業機械であってもよい。
 本開示による数値制御装置及び予想消費電力算出方法は、上述した実施形態を含め、次のような構成を有する各種各様の実施形態を取ることができる。
 (1) 機械を動作させる動作プログラムを記憶するプログラム記憶部(例えば、プログラム記憶部201)と、
 前記動作プログラムに基づく第1の加減速設定により前記機械を動作させて、計算又は実測により実消費電力を取得する実消費電力取得部(例えば、実消費電力取得部210)と、
 少なくとも、前記実消費電力と、前記第1の加減速設定から第2の加減速設定への加減速の変更分の消費電力の増減分とを加算して予想消費電力を算出する予想消費電力算出部(例えば、予想消費電力算出部207)と、
 前記予想消費電力算出部における、前記第1の加減速設定及び前記第2の加減速設定の消費電力の計算に必要な情報の少なくとも一部を記憶する設定値記憶部(例えば、設定値記憶部206)と、
 前記実消費電力と前記予想消費電力とを表示する表示部(例えば、表示部212)と、
 を備えた数値制御装置(例えば、数値制御装置20)。
 この数値制御装置によれば、消費電力の予想値の精度の向上を図ることができる。また、実消費電力と予想消費電力とを可視化することで、比較を容易にして消費電力の支援をするが可能となる。
(2) 前記数値制御装置は前記機械を動作させるサーボ制御装置(例えば、サーボ制御装置30)に接続され、
 前記サーボ制御装置から、検出電圧と検出電流、又は検出電流と検出速度からなるフィードバック情報を取得するフィードバック取得部(例えば、FBフィードバック取得部)を備え、
 前記実消費電力取得部は、前記フィードバック情報を用いた計算により前記実消費電力を取得する、上記(1)に記載の数値制御装置。
 (3) 前記表示部に前記実消費電力と前記予想消費電力とを設定した期間ごとに表示するための表示設定を行う表示設定部(例えば、表示設定部211)を備えた、上記(1)に記載の数値制御装置。
 (4) 前記表示設定部は、前記期間を設定する期間設定部(例えば、期間設定部2113)と、該期間設定部で設定した期間を分割する期間分割部(例えば、期間分割部2114)とを有し、前記表示設定部は、前記表示部に、前記実消費電力と前記予想消費電力とを分割期間ごとに表示するための表示設定を行う、上記(3)に記載の数値制御装置。
 (5) 前記第1の加減速設定を前記第2の加減速設定に変更する設定変更部(例えば、設定変更部208)を備え、
 前記設定変更部は前記第2の加減速設定を変更し、
 前記予想消費電力算出部は、前記設定変更部で変更された前記第2の加減速設定に基づいて前記予想消費電力を再度算出する、上記(1)に記載の数値制御装置。
 (6) 前記予想消費電力算出部は、前記設定値記憶部より外部機器の消費電力を取得し、前記外部機器の消費電力を含めて前記予想消費電力を算出する、上記(1)に記載の数値制御装置。
 (7) 前記予想消費電力算出部は、前記実消費電力に、一定速中の消費電力に関する、前記第1の加減速設定から前記第2の加減速設定への加減速設定の変更前後の増減分と、加減速時の消費電力に関する、前記第1の加減速設定から第2の加減速設定への加減速設定変更前後の増減分と、を積算することによって前記予想消費電力を算出する、上記(1)から(6)のいずれかに記載の数値制御装置。
 (8) 前記第1及び第2の加減速設定が直線加減速に設定され、
 前記第1の加減速設定を前記第2の加減速設定に変更する設定変更部(例えば、設定変更部208)を備え、
 前記設定変更部は加減速時の時定数を変更する、上記(7)に記載の数値制御装置。
 (9) 前記第1及び第2の加減速設定がベル形加減速に設定され、
 前記第1の加減速設定を前記第2の加減速設定に変更する設定変更部(例えば、設定変更部208)を備え、
 前記設定変更部は、加減速時の1次加減速時間及び2次加減速時間、又は時定数及び速度変化を変更する、上記(7)に記載の数値制御装置。
 (10) 前記第1及び第2の加減速設定が指数形加減速に設定され、
 前記第1の加減速設定を前記第2の加減速設定に変更する設定変更部(例えば、設定変更部208)を備え、
 前記設定変更部は、加減速時の時定数及び最終到達速度を変更する、上記(7)に記載の数値制御装置。
 (11) 機械を動作させる動作プログラムを記憶するプログラム記憶部を備えた、数値制御装置としてのコンピュータが、
 前記動作プログラムに基づく第1の加減速設定及び第2の加減速設定の消費電力の計算に必要な情報を記憶し、
 前記第1の加減速設定により前記機械を動作させて、計算又は実測により実消費電力を取得し、
 少なくとも、前記実消費電力と、前記第1の加減速設定から前記第2の加減速設定への加減速の変更分の消費電力の増減分とを加算して予想消費電力を算出する、予想消費電力算出方法。
 この予想消費電力算出方法によれば、消費電力の予想値の精度の向上を図ることができる。
 10 数値制御工作機械
 20 数値制御装置
 30 サーボ制御装置
 40 モータ
 50 外部機器
 201 プログラム記憶部
 2012 指令解析部
 203 補間部
 204 加減速制御部
 205 指令出力部
 206 設定値記憶部
 207 予想消費電力算出部
 208 設定変更部
 209 FB取得部
 210 実消費電力取得部
 211 表示設定部
 212 表示部
 301 減算器
 302 位置制御部
 303 減算器
 304 速度制御部
 305 減算器
 306 電流制御部
 307 積分器

Claims (11)

  1.  機械を動作させる動作プログラムを記憶するプログラム記憶部と、
     前記動作プログラムに基づく第1の加減速設定により前記機械を動作させて、計算又は実測により実消費電力を取得する実消費電力取得部と、
     少なくとも、前記実消費電力と、前記第1の加減速設定から第2の加減速設定への加減速の変更分の消費電力の増減分とを加算して予想消費電力を算出する予想消費電力算出部と、
     前記予想消費電力算出部における、前記第1の加減速設定及び前記第2の加減速設定の消費電力の計算に必要な情報の少なくとも一部を記憶する設定値記憶部と、
     前記実消費電力と前記予想消費電力とを表示する表示部と、
     を備えた数値制御装置。
  2.  前記数値制御装置は前記機械を動作させるサーボ制御装置に接続され、
     前記サーボ制御装置から、検出電圧と検出電流、又は検出電流と検出速度からなるフィードバック情報を取得するフィードバック取得部を備え、
     前記実消費電力取得部は、前記フィードバック情報を用いた計算により前記実消費電力を取得する、請求項1に記載の数値制御装置。
  3.  前記表示部に前記実消費電力と前記予想消費電力とを設定した期間ごとに表示するための表示設定を行う表示設定部を備えた、請求項1に記載の数値制御装置。
  4.  前記表示設定部は、前記期間を設定する期間設定部と、該期間設定部で設定した期間を分割する期間分割部とを有し、前記表示設定部は、前記表示部に、前記実消費電力と前記予想消費電力とを分割期間ごとに表示するための表示設定を行う、請求項3に記載の数値制御装置。
  5.  前記第1の加減速設定を前記第2の加減速設定に変更する設定変更部を備え、
     前記設定変更部は前記第2の加減速設定を変更し、
     前記予想消費電力算出部は、前記設定変更部で変更された前記第2の加減速設定に基づいて前記予想消費電力を再度算出する、請求項1に記載の数値制御装置。
  6.  前記予想消費電力算出部は、前記設定値記憶部より外部機器の消費電力を取得し、前記外部機器の消費電力を含めて前記予想消費電力を算出する、請求項1に記載の数値制御装置。
  7.  前記予想消費電力算出部は、前記実消費電力に、一定速中の消費電力に関する、前記第1の加減速設定から前記第2の加減速設定への加減速設定の変更前後の増減分と、加減速時の消費電力に関する、前記第1の加減速設定から前記第2の加減速設定への加減速設定変更前後の増減分と、を積算することによって前記予想消費電力を算出する、請求項1から6のいずれか1項に記載の数値制御装置。
  8.  前記第1及び第2の加減速設定が直線加減速に設定され、
     前記第1の加減速設定を前記第2の加減速設定に変更する設定変更部を備え、
     前記設定変更部は加減速時の時定数を変更する、請求項7に記載の数値制御装置。
  9.  前記第1及び第2の加減速設定がベル形加減速に設定され、
     前記第1の加減速設定を前記第2の加減速設定に変更する設定変更部を備え、
     前記設定変更部は、加減速時の1次加減速時間及び2次加減速時間、又は時定数及び速度変化を変更する、請求項7に記載の数値制御装置。
  10.  前記第1及び第2の加減速設定が指数形加減速に設定され、
     前記第1の加減速設定を前記第2の加減速設定に変更する設定変更部を備え、
      前記設定変更部は、加減速時の時定数及び最終到達速度を変更する、請求項7に記載の数値制御装置。
  11.  機械を動作させる動作プログラムを記憶するプログラム記憶部を備えた、数値制御装置としてのコンピュータが、
     前記動作プログラムに基づく第1の加減速設定及び第2の加減速設定の消費電力の計算に必要な情報を記憶し、
     前記第1の加減速設定により前記機械を動作させて、計算又は実測により実消費電力を取得し、
     少なくとも、前記実消費電力と、前記第1の加減速設定から前記第2の加減速設定への加減速の変更分の消費電力の増減分とを加算して予想消費電力を算出する、予想消費電力算出方法。
PCT/JP2022/024543 2022-06-20 2022-06-20 数値制御装置及び予想消費電力算出方法 WO2023248295A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024543 WO2023248295A1 (ja) 2022-06-20 2022-06-20 数値制御装置及び予想消費電力算出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/024543 WO2023248295A1 (ja) 2022-06-20 2022-06-20 数値制御装置及び予想消費電力算出方法

Publications (1)

Publication Number Publication Date
WO2023248295A1 true WO2023248295A1 (ja) 2023-12-28

Family

ID=89379465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024543 WO2023248295A1 (ja) 2022-06-20 2022-06-20 数値制御装置及び予想消費電力算出方法

Country Status (1)

Country Link
WO (1) WO2023248295A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250697A (ja) * 2009-04-17 2010-11-04 Fanuc Ltd 工作機械の制御装置
JP2011170448A (ja) * 2010-02-16 2011-09-01 Star Micronics Co Ltd 工作機械およびその消費電力量予測装置、消費電力量予測方法
JP2014219911A (ja) * 2013-05-10 2014-11-20 東芝機械株式会社 シミュレーション装置およびシミュレーションプログラム
KR20160124333A (ko) * 2015-04-17 2016-10-27 중앙대학교 산학협력단 밀링 가공공정의 소비전력 예측 방법 및 시스템
JP2017199061A (ja) * 2016-04-25 2017-11-02 ファナック株式会社 非切削状態において消費電力低減を行う数値制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250697A (ja) * 2009-04-17 2010-11-04 Fanuc Ltd 工作機械の制御装置
JP2011170448A (ja) * 2010-02-16 2011-09-01 Star Micronics Co Ltd 工作機械およびその消費電力量予測装置、消費電力量予測方法
JP2014219911A (ja) * 2013-05-10 2014-11-20 東芝機械株式会社 シミュレーション装置およびシミュレーションプログラム
KR20160124333A (ko) * 2015-04-17 2016-10-27 중앙대학교 산학협력단 밀링 가공공정의 소비전력 예측 방법 및 시스템
JP2017199061A (ja) * 2016-04-25 2017-11-02 ファナック株式会社 非切削状態において消費電力低減を行う数値制御装置

Similar Documents

Publication Publication Date Title
CN103180791B (zh) 控制装置、控制系统及控制方法
CN102999007B (zh) 具有工件设置误差修正部的多轴机床用数值控制装置
JP5416238B2 (ja) データ管理機能を備えた波形表示装置
CN103217927B (zh) 机床的热位移修正装置
CN109542046B (zh) 控制装置、控制方法及控制系统
US11209792B2 (en) Link information generation device, link information generation method, and non-transitory computer-readable medium storing link information generation program
JP2014219911A (ja) シミュレーション装置およびシミュレーションプログラム
US10437224B2 (en) Numerical controller capable of compensating error in consideration of axis movement direction
JP2006195914A (ja) 位置制御装置、測定装置および加工装置
JP5289601B1 (ja) 多軸加工機用切削距離演算装置
JP2009098981A (ja) 加工時間算出装置およびそのプログラム
WO2023248295A1 (ja) 数値制御装置及び予想消費電力算出方法
JP2019000964A (ja) 速度を表示するロボットシステム
JP2006289583A (ja) 数値制御装置
US20190041825A1 (en) Machining of workpieces with model-supported error compensation
US11454946B2 (en) Waveform display device and waveform display method
JPWO2009025132A1 (ja) モータ制御装置とその慣性モーメント同定方法
JPH0751996A (ja) Cncの過剰負荷検出方式
JP7560294B2 (ja) 数値制御システム及び干渉チェック方法
US11231699B2 (en) Program analysis device
JP7490149B1 (ja) 消費電力量調整装置、数値制御装置、および消費電力量調整方法
US11687055B2 (en) Servo control device, servo control system, and servo control method
US20230361709A1 (en) Estimation device for estimating drive state of electric motor disposed in machine tool
WO2024100808A1 (ja) 数値制御装置および数値制御プログラム
JP7015419B1 (ja) アンプ選定装置、及びコンピュータが読み取り可能な記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024528106

Country of ref document: JP